101
|
Fulcher YG, Fotso M, Chang CH, Rindt H, Reinero CR, Van Doren SR. Noninvasive Recognition and Biomarkers of Early Allergic Asthma in Cats Using Multivariate Statistical Analysis of NMR Spectra of Exhaled Breath Condensate. PLoS One 2016; 11:e0164394. [PMID: 27764146 PMCID: PMC5072706 DOI: 10.1371/journal.pone.0164394] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 09/23/2016] [Indexed: 11/25/2022] Open
Abstract
Asthma is prevalent in children and cats, and needs means of noninvasive diagnosis. We sought to distinguish noninvasively the differences in 53 cats before and soon after induction of allergic asthma, using NMR spectra of exhaled breath condensate (EBC). Statistical pattern recognition was improved considerably by preprocessing the spectra with probabilistic quotient normalization and glog transformation. Classification of the 106 preprocessed spectra by principal component analysis and partial least squares with discriminant analysis (PLS-DA) appears to be impaired by variances unrelated to eosinophilic asthma. By filtering out confounding variances, orthogonal signal correction (OSC) PLS-DA greatly improved the separation of the healthy and early asthmatic states, attaining 94% specificity and 94% sensitivity in predictions. OSC enhancement of multi-level PLS-DA boosted the specificity of the prediction to 100%. OSC-PLS-DA of the normalized spectra suggest the most promising biomarkers of allergic asthma in cats to include increased acetone, metabolite(s) with overlapped NMR peaks near 5.8 ppm, and a hydroxyphenyl-containing metabolite, as well as decreased phthalate. Acetone is elevated in the EBC of 74% of the cats with early asthma. The noninvasive detection of early experimental asthma, biomarkers in EBC, and metabolic perturbation invite further investigation of the diagnostic potential in humans.
Collapse
Affiliation(s)
- Yan G. Fulcher
- Department of Biochemistry, 117 Schweitzer Hall, University of Missouri, Columbia, MO, 65211, United States of America
| | - Martial Fotso
- Department of Biochemistry, 117 Schweitzer Hall, University of Missouri, Columbia, MO, 65211, United States of America
| | - Chee-Hoon Chang
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, 900 East Campus Drive, Columbia, MO 65211, United States of America
| | - Hans Rindt
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, 900 East Campus Drive, Columbia, MO 65211, United States of America
| | - Carol R. Reinero
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, 900 East Campus Drive, Columbia, MO 65211, United States of America
| | - Steven R. Van Doren
- Department of Biochemistry, 117 Schweitzer Hall, University of Missouri, Columbia, MO, 65211, United States of America
- * E-mail:
| |
Collapse
|
102
|
Ban GY, Cho K, Kim SH, Yoon MK, Kim JH, Lee HY, Shin YS, Ye YM, Cho JY, Park HS. Metabolomic analysis identifies potential diagnostic biomarkers for aspirin-exacerbated respiratory disease. Clin Exp Allergy 2016; 47:37-47. [PMID: 27533637 DOI: 10.1111/cea.12797] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/13/2016] [Accepted: 08/09/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND To date, there has been no reliable in vitro test to diagnose aspirin-exacerbated respiratory disease (AERD). OBJECTIVE To investigate potential diagnostic biomarkers for AERD using metabolomic analysis. METHODS An untargeted profile of serum from asthmatics in the first cohort (group 1) comprising 45 AERD, 44 patients with aspirin-tolerant asthma (ATA), and 28 normal controls was developed using the ultra-high-performance liquid chromatography (UHPLC)/Q-ToF MS system. Metabolites that discriminate AERD from ATA were quantified in both serum and urine, which were collected before (baseline) and after the lysine-aspirin bronchoprovocation test (Lys-ASA BPT). The serum metabolites were validated in the second cohort (group 2) comprising 50 patients with AERD and 50 patients with ATA. RESULTS A clear discrimination of metabolomes was found between patients with AERD and ATA. In group 1, serum levels of LTE4 and LTE4 /PGF2 α ratio before and after the Lys-ASA BPT were significantly higher in patients with AERD than in patients with ATA (P < 0.05 for each), and urine baseline levels of these two metabolites were significantly higher in patients with AERD. Significant differences of serum metabolite levels between patients with AERD and ATA were replicated in group 2 (P < 0.05 for each). Moreover, serum baseline levels of LTE4 and LTE4 /PGF2 α ratio discriminated AERD from ATA with 70.5%/71.6% sensitivity and 41.5%/62.8% specificity, respectively (AUC = 0.649 and 0.732, respectively P < 0.001 for each). Urine baseline LTE4 levels were significantly correlated with the fall in FEV1 % after the Lys-ASA BPT in patients with AERD (P = 0.008, r = 0.463). CONCLUSIONS AND CLINICAL RELEVANCE Serum metabolite level of LTE4 and LTE4 /PGF2 α ratio was identified as potential in vitro diagnostic biomarkers for AERD using the UHPLC/Q-ToF MS system, which were closely associated with major pathogenetic mechanisms underlying AERD.
Collapse
Affiliation(s)
- G-Y Ban
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - K Cho
- Department of Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea.,Department of Biomedical Science, Seoul National University College of Medicine, Seoul, Korea
| | - S-H Kim
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - M K Yoon
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - J-H Kim
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - H Y Lee
- Department of Statistics, Clinical Trial Center, Ajou University Medical Center, Suwon, Korea
| | - Y S Shin
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Y-M Ye
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - J-Y Cho
- Department of Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - H-S Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
103
|
Loureiro CC, Oliveira AS, Santos M, Rudnitskaya A, Todo-Bom A, Bousquet J, Rocha SM. Urinary metabolomic profiling of asthmatics can be related to clinical characteristics. Allergy 2016; 71:1362-5. [PMID: 27188766 DOI: 10.1111/all.12935] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2016] [Indexed: 12/27/2022]
Abstract
Metabolomics has been increasingly explored to achieve an improved understanding of asthma. In the current observational and exploratory study, the first to have examined the relationship between oxidative stress extension, eosinophilic inflammation, and disease severity in asthmatic patients, metabolomics (using target aliphatic aldehydes and alkanes) was carried out using solid-phase microextraction (SPME) followed by a comprehensive two-dimensional gas chromatography coupled to mass spectrometry with a high-resolution time-of-flight analyzer (GC×GC-ToFMS). We were able to demonstrate that metabolomics can give valuable insights into asthma mechanisms once lipidic peroxidation assessed by urinary metabolomics is related to the clinical characteristics of nonobese asthmatics, such as disease severity, lung function, and eosinophilic inflammation. Nevertheless, considering our sample size, the obtained results require further validation using a much larger sample cohort.
Collapse
Affiliation(s)
- C. C. Loureiro
- Pneumology Unit; Hospitais da Universidade de Coimbra; Centro Hospitalar e Universitário de Coimbra; Coimbra Portugal
- Centre of Pneumology; Faculty of Medicine; University of Coimbra; Coimbra Portugal
| | - A. S. Oliveira
- QOPNA and Departamento de Química; Universidade de Aveiro; Aveiro Portugal
| | - M. Santos
- QOPNA and Departamento de Química; Universidade de Aveiro; Aveiro Portugal
| | - A. Rudnitskaya
- CESAM and Departamento de Química; Universidade de Aveiro; Aveiro Portugal
| | - A. Todo-Bom
- Centre of Pneumology; Faculty of Medicine; University of Coimbra; Coimbra Portugal
- Immunoallergology Unit; Hospitais da Universidade de Coimbra; Centro Hospitalar e Universitário de Coimbra; Coimbra Portugal
| | - J. Bousquet
- University Hospital Arnaud de Villeneuve; Montpellier France
- CESP Centre for research in Epidemiology and Population Health; U1018; Respiratory and Environmental Epidemiology Team; Inserm; Villejuif France
| | - S. M. Rocha
- QOPNA and Departamento de Química; Universidade de Aveiro; Aveiro Portugal
| |
Collapse
|
104
|
Adamko DJ, Saude E, Bear M, Regush S, Robinson JL. Urine metabolomic profiling of children with respiratory tract infections in the emergency department: a pilot study. BMC Infect Dis 2016; 16:439. [PMID: 27549246 PMCID: PMC4994221 DOI: 10.1186/s12879-016-1709-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 07/12/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Clinicians lack objective tests to help determine the severity of bronchiolitis or to distinguish a viral from bacterial causes of respiratory distress. We hypothesized that children with respiratory syncytial virus (RSV) infection would have a different metabolomic profile compared to those with bacterial infection or healthy controls, and this might also vary with bronchiolitis severity. METHODS Clinical information and urine-based metabolomic data were collected from healthy age-matched children (n = 37) and those admitted to hospital with a proven infection (RSV n = 55; Non-RSV viral n = 16; bacterial n = 24). Nuclear magnetic resonance (NMR) measured 86 metabolites per urine sample. Partial least squares discriminant analysis (PLS-DA) was performed to create models of separation. RESULTS Using a combination of metabolites, a strong PLS-DA model (R2 = 0.86, Q2 = 0.76) was created differentiating healthy children from those with RSV infection. This model had over 90 % accuracy in classifying blinded infants with similar illness severity. Two other models differentiated length of hospitalization and viral versus bacterial infection. CONCLUSION While the sample sizes remain small, this is the first report suggesting that metabolomic analysis of urine samples has the potential to become a diagnostic aid. Future studies with larger sample sizes are required to validate the utility of metabolomics in pediatric patients with respiratory distress.
Collapse
Affiliation(s)
- Darryl J Adamko
- The Department of Pediatrics, University of Alberta, T6G 1C9, Edmonton, Canada. .,University of Saskatchewan, S7N 0W8, Saskatoon, Saskatchewan, Canada.
| | - Erik Saude
- Department of Emergency Medicine, University of Calgary, T2N 2T9, Calgary, Alberta, Canada
| | - Matthew Bear
- University of Saskatchewan, S7N 0W8, Saskatoon, Saskatchewan, Canada
| | - Shana Regush
- The Department of Pediatrics, University of Alberta, T6G 1C9, Edmonton, Canada
| | - Joan L Robinson
- The Department of Pediatrics, University of Alberta, T6G 1C9, Edmonton, Canada
| |
Collapse
|
105
|
Pontes JGM, Ohashi WY, Brasil AJM, Filgueiras PR, Espíndola APDM, Silva JS, Poppi RJ, Coletta-Filho HD, Tasic L. Metabolomics by NMR Spectroscopy in Plant Disease diagnostic: Huanglongbing as a Case Study. ChemistrySelect 2016. [DOI: 10.1002/slct.201600064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- João Guilherme M. Pontes
- Departamento de Química Orgânica; Instituto de Química; UNICAMP; Campinas-SP P. O. Box 6154 13083-970 Brazil
| | - William Y. Ohashi
- Departamento de Química Orgânica; Instituto de Química; UNICAMP; Campinas-SP P. O. Box 6154 13083-970 Brazil
| | - Antonio J. M. Brasil
- Departamento de Química Orgânica; Instituto de Química; UNICAMP; Campinas-SP P. O. Box 6154 13083-970 Brazil
| | - Paulo R. Filgueiras
- Departamento de Química Analítica; Instituto de Química; UNICAMP; Campinas-SP P. O. Box 6154 13083-970 Brazil
| | - Ana Paula D. M. Espíndola
- Departamento de Química Orgânica; Instituto de Química; UNICAMP; Campinas-SP P. O. Box 6154 13083-970 Brazil
| | - Jaqueline S. Silva
- Departamento de Química Orgânica; Instituto de Química; UNICAMP; Campinas-SP P. O. Box 6154 13083-970 Brazil
| | - Ronei J. Poppi
- Departamento de Química Analítica; Instituto de Química; UNICAMP; Campinas-SP P. O. Box 6154 13083-970 Brazil
| | - Helvécio D. Coletta-Filho
- Instituto Agronômico de Campinas; Centro de Citricultura Sylvio Moreira; Cordeirópolis-SP, km 158 P. O. Box 04 13490-970 Brazil
| | - Ljubica Tasic
- Departamento de Química Orgânica; Instituto de Química; UNICAMP; Campinas-SP P. O. Box 6154 13083-970 Brazil
| |
Collapse
|
106
|
Columbo M, Rohr AS. Asthma in the elderly: the effect of choline supplementation. Allergy Asthma Clin Immunol 2016; 12:15. [PMID: 26973701 PMCID: PMC4788875 DOI: 10.1186/s13223-016-0121-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 02/24/2016] [Indexed: 02/05/2023] Open
Abstract
Background Asthma in the elderly is poorly understood as very few studies have included these patients. DNA methylation can affect the expression of asthma susceptibility genes. Methyl groups can be produced through a choline dependent pathway. Asthmatics have decreased serum choline. We studied the effect of choline supplementation in elderly asthmatics and associations between different parameters at baseline. Methods This is a double-blind, placebo-controlled, cross-over study. Thirty asthmatics 65 years old and older were evaluated at baseline and 3, 6, 9, and 12 weeks later. They randomly received choline bitartrate 310 mg and placebo capsules twice daily for 6 weeks. Results Ninety percent of the study subjects were atopic and 97 % of them were using inhaled corticosteroids. Choline supplementation did not affect ACT (asthma control test), spirometric values, eosinophil counts or total serum IgE vs. placebo (p > 0.86 for all comparisons). In subjects with lower ACT (≤20), lower FEV1 % (<60 %), or higher eosinophil counts (≥0.6), there was similarly no difference between choline and placebo (p > 0.63). We found no significant association between eosinophil counts and IgE and the other parameters at baseline including in subjects with lower ACT or on higher inhaled steroid doses (p > 0.09). Asthmatic women had lower baseline ACT scores compared to men (p = 0.02). Conclusions In this study of elderly asthmatics, choline supplementation for 6 weeks did not affect ACT scores, spirometric values, peripheral blood eosinophils, or total serum IgE. These results will require confirmation in larger and longer studies. Trial registration ClinicalTrials.gov NCT02371993
Collapse
Affiliation(s)
- Michele Columbo
- Division of Allergy and Immunology, Bryn Mawr Hospital, Bryn Mawr, PA USA
| | - Albert S Rohr
- Division of Allergy and Immunology, Bryn Mawr Hospital, Bryn Mawr, PA USA
| |
Collapse
|
107
|
Grunig G, Baghdassarian A, Park SH, Pylawka S, Bleck B, Reibman J, Berman-Rosenzweig E, Durmus N. Challenges and Current Efforts in the Development of Biomarkers for Chronic Inflammatory and Remodeling Conditions of the Lungs. Biomark Insights 2016; 10:59-72. [PMID: 26917944 PMCID: PMC4756863 DOI: 10.4137/bmi.s29514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/14/2015] [Accepted: 10/18/2015] [Indexed: 02/06/2023] Open
Abstract
This review discusses biomarkers that are being researched for their usefulness to phenotype chronic inflammatory lung diseases that cause remodeling of the lung's architecture. The review focuses on asthma, chronic obstructive pulmonary disease (COPD), and pulmonary hypertension. Bio-markers of environmental exposure and specific classes of biomarkers (noncoding RNA, metabolism, vitamin, coagulation, and microbiome related) are also discussed. Examples of biomarkers that are in clinical use, biomarkers that are under development, and biomarkers that are still in the research phase are discussed. We chose to present examples of the research in biomarker development by diseases, because asthma, COPD, and pulmonary hypertension are distinct entities, although they clearly share processes of inflammation and remodeling.
Collapse
Affiliation(s)
- Gabriele Grunig
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA.; Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Aram Baghdassarian
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Sung-Hyun Park
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Serhiy Pylawka
- College of Dental Medicine, Columbia University, New York, NY, USA
| | - Bertram Bleck
- Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Joan Reibman
- Department of Medicine, New York University School of Medicine, New York, NY, USA
| | | | - Nedim Durmus
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
108
|
Exogenous Glutamine in Respiratory Diseases: Myth or Reality? Nutrients 2016; 8:76. [PMID: 26861387 PMCID: PMC4772040 DOI: 10.3390/nu8020076] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/20/2016] [Accepted: 01/26/2016] [Indexed: 01/09/2023] Open
Abstract
Several respiratory diseases feature increased inflammatory response and catabolic activity, which are associated with glutamine depletion; thus, the benefits of exogenous glutamine administration have been evaluated in clinical trials and models of different respiratory diseases. Recent reviews and meta-analyses have focused on the effects and mechanisms of action of glutamine in a general population of critical care patients or in different models of injury. However, little information is available about the role of glutamine in respiratory diseases. The aim of the present review is to discuss the evidence of glutamine depletion in cystic fibrosis (CF), asthma, chronic obstructive pulmonary disease (COPD), acute respiratory distress syndrome (ARDS), and lung cancer, as well as the results of exogenous glutamine administration in experimental and clinical studies. Exogenous glutamine administration might be beneficial in ARDS, asthma, and during lung cancer treatment, thus representing a potential therapeutic tool in these conditions. Further experimental and large randomized clinical trials focusing on the development and progression of respiratory diseases are necessary to elucidate the effects and possible therapeutic role of glutamine in this setting.
Collapse
|
109
|
Metabolic alterations in the sera of Chinese patients with mild persistent asthma: a GC-MS-based metabolomics analysis. Acta Pharmacol Sin 2015; 36:1356-66. [PMID: 26526201 DOI: 10.1038/aps.2015.102] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 07/11/2015] [Indexed: 12/31/2022]
Abstract
AIM To character the specific metabolomics profiles in the sera of Chinese patients with mild persistent asthma and to explore potential metabolic biomarkers. METHODS Seventeen Chinese patients with mild persistent asthma and age- and sex-matched healthy controls were enrolled. Serum samples were collected, and serum metabolites were analyzed using GC-MS coupled with a series of multivariate statistical analyses. RESULTS Clear intergroup separations existed between the asthmatic patients and control subjects. A list of differential metabolites and several top altered metabolic pathways were identified. The levels of succinate (an intermediate in tricarboxylic acid cycle) and inosine were highly upregulated in the asthmatic patients, suggesting a greater effort to breathe during exacerbation and hypoxic stress due to asthma. Other differential metabolites, such as 3,4-dihydroxybenzoic acid and phenylalanine, were also identified. Furthermore, the differential metabolites possessed higher values of area under the ROC curve (AUC), suggesting an excellent clinical ability for the prediction of asthma. CONCLUSION Metabolic activity is significantly altered in the sera of Chinese patients with mild persistent asthma. The data might be helpful for identifying novel biomarkers and therapeutic targets for asthma.
Collapse
|
110
|
Abstract
Metabonomic techniques have considerable potential in the field of clinical diagnostics, typifying the application of a translational research paradigm. Care must be taken at all stages to apply appropriate methodology with accurate patient selection and profiling, and rigorous data acquisition and handling, to ensure clinical validity.An ever-increasing number of publications in a wide range of diseases and diverse patient groups suggest a variety of potential clinical uses; prospective studies in large validation cohorts are required to bring metabonomics into routine clinical practice. In this chapter, the utility of metabonomics as a diagnostic tool will be discussed.
Collapse
Affiliation(s)
- Lucy C Hicks
- Department of Medicine, Imperial College London, London, UK
| | | | | |
Collapse
|
111
|
Chen WL, Lin CY, Yan YH, Cheng KT, Cheng TJ. Alterations in rat pulmonary phosphatidylcholines after chronic exposure to ambient fine particulate matter. MOLECULAR BIOSYSTEMS 2015; 10:3163-9. [PMID: 25236678 DOI: 10.1039/c4mb00435c] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This study elucidated the underlying pathophysiological changes that occur after chronic ambient fine particulate matter (PM2.5) exposure via a lipidomic approach. Five male Sprague-Dawley rats were continually whole-body exposed to ambient air containing PM2.5 at 16.7 ± 10.1 μg m(-3) from the outside of the building for 8 months, whereas a control group (n = 5) inhaled filtered air. Phosphorylcholine-containing lipids were extracted from lung tissue and profiled using ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The phosphatidylcholine (PC) signal features of the two groups were compared using partial least squares discriminant analysis (PLS-DA) and Wilcoxon rank sum tests. The PC profile of the exposure group differed from that of the control group; the R(2)Y and Q(2) were 0.953 and 0.677, respectively, in the PLS-DA model. In the exposure group, a significant 0.66- to 0.80-fold reduction in lyso-PC levels, which may have resulted from repeated inflammation, was observed. Decreased surfactant PCs by 16% at most may indicate injuries to alveolar type II cells. Cell function and cell signalling are likely to be altered because the decrease in unsaturated PCs may reduce membrane fluidity. Accompanied by the decline in plasmenylcholines, decreased unsaturated PCs may indicate the attack of reactive oxygen species generated by PM2.5 exposure. The physiological findings conformed to the histopathological changes in the exposed animals. PC profiling using UPLC-MS/MS-based lipidomics is sensitive for reflecting pathophysiological perturbations in the lung after long-term and low concentration PM2.5 exposure.
Collapse
Affiliation(s)
- Wen-Ling Chen
- Institute of Occupational Health and Industrial Hygiene, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Zhongzheng Dist., Taipei City 100, Taiwan.
| | | | | | | | | |
Collapse
|
112
|
Blankestijn MA, Boyle RJ, Gore R, Hawrylowicz C, Jarvis D, Knulst AC, Wardlaw AJ. Developments in the field of allergy in 2013 through the eyes of Clinical and Experimental Allergy. Clin Exp Allergy 2015; 44:1436-57. [PMID: 25346287 DOI: 10.1111/cea.12442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
2013 was another exciting year for allergy in general and Clinical and Experimental Allergy in particular. In the field of asthma and rhinitis, there continued to be a focus on heterogeneity and phenotypes with increasing use of biostatistical techniques to determine clusters of similar populations. Obesity- and aspirin-associated disease are intriguing associations with asthma which were explored in a number of papers. We published a number of excellent papers on mechanisms of airway inflammation and how this relates to physiology, pathology, genetics and biomarkers in both human and experimental model systems. In terms of mechanisms, there is less on individual cell types in allergic disease at the moment, but the immunology of allergic disease continued to fascinate our authors. Another area that was popular both in the mechanisms and in the epidemiology sections was early life events and how these lead to allergic disease, with an increasing focus on the role of the microbiome and how this influences immune tolerance. In the clinical allergy section, oral immunotherapy for food allergy is clearly a major topic of interest at the moment as was in vitro testing to distinguish between sensitization and allergic disease. There was less on inhalant allergy this year, but a good representation from the drug allergy community including some interesting work on non-IgE-mediated mechanisms. In the allergen section, important new allergens continue to be discovered, but the major focus as in the last couple of years was on working out how component-resolved approaches can improve diagnosis and management of food and venom allergy.
Collapse
Affiliation(s)
- M A Blankestijn
- Department of Dermatology and Allergology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
113
|
Xu W, Cardenes N, Corey C, Erzurum SC, Shiva S. Platelets from Asthmatic Individuals Show Less Reliance on Glycolysis. PLoS One 2015; 10:e0132007. [PMID: 26147848 PMCID: PMC4492492 DOI: 10.1371/journal.pone.0132007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/09/2015] [Indexed: 11/24/2022] Open
Abstract
Asthma, a chronic inflammatory airway disease, is typified by high levels of TH2-cytokines and excessive generation of reactive nitrogen and oxygen species, which contribute to bronchial epithelial injury and airway remodeling. While immune function plays a major role in the pathogenesis of the disease, accumulating evidence suggests that altered cellular metabolism is a key determinant in the predisposition and disease progression of asthma. Further, several studies demonstrate altered mitochondrial function in asthmatic airways and suggest that these changes may be systemic. However, it is unknown whether systemic metabolic changes can be detected in circulating cells in asthmatic patients. Platelets are easily accessible blood cells that are known to propagate airway inflammation in asthma. Here we perform a bioenergetic screen of platelets from asthmatic and healthy individuals and demonstrate that asthmatic platelets show a decreased reliance on glycolytic processes and have increased tricarboxylic acid cycle activity. These data demonstrate a systemic alteration in asthma and are consistent with prior reports suggesting that oxidative phosphorylation is more efficient asthmatic individuals. The implications for this potential metabolic shift will be discussed in the context of increased oxidative stress and hypoxic adaptation of asthmatic patients. Further, these data suggest that platelets are potentially a good model for the monitoring of bioenergetic changes in asthma.
Collapse
Affiliation(s)
- Weiling Xu
- Lerner Research Institute, Cleveland, Ohio, United States of America
| | - Nayra Cardenes
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Catherine Corey
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Serpil C. Erzurum
- Lerner Research Institute, Respiratory Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Sruti Shiva
- Vascular Medicine Institute, Dept of Pharmacology & Chemical Biology, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
114
|
Metabolomic profiling of asthma and chronic obstructive pulmonary disease: A pilot study differentiating diseases. J Allergy Clin Immunol 2015; 136:571-580.e3. [PMID: 26152317 DOI: 10.1016/j.jaci.2015.05.022] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 05/01/2015] [Accepted: 05/07/2015] [Indexed: 11/21/2022]
Abstract
BACKGROUND Differentiating asthma from other causes of chronic airflow limitation, such as chronic obstructive pulmonary disease (COPD), can be difficult in a typical outpatient setting. The inflammation of asthma typically is different than that of COPD, and the degree of inflammation and cellular damage varies with asthma severity. Metabolomics is the study of molecules created by cellular metabolic pathways. OBJECTIVES We hypothesized that the metabolic activity of adults with asthma would differ from that of adults with COPD. Furthermore, we hypothesized that nuclear magnetic resonance spectroscopy (NMR) would measure such differences in urine samples. METHODS Clinical and urine-based NMR data were collected on adults meeting the criteria of asthma and COPD before and after an exacerbation (n = 133 and 38, respectively) and from patients with stable asthma or COPD (n = 54 and 23, respectively). Partial least-squares discriminant analysis was performed on the NMR data to create models of separation (86 metabolites were measured per urine sample). Some subjects' metabolomic data were withheld from modeling to be run blindly to determine diagnostic accuracy. RESULTS Partial least-squares discriminant analysis of the urine NMR data found unique differences in select metabolites between patients with asthma and those with COPD seen in the emergency department and even in follow-up after exacerbation. By using these select metabolomic profiles, the model could correctly diagnose blinded asthma and COPD with greater than 90% accuracy. CONCLUSION This is the first report showing that metabolomic analysis of human urine samples could become a useful clinical tool to differentiate asthma from COPD.
Collapse
|
115
|
Metabolomics for Biomarker Discovery: Moving to the Clinic. BIOMED RESEARCH INTERNATIONAL 2015; 2015:354671. [PMID: 26090402 PMCID: PMC4452245 DOI: 10.1155/2015/354671] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 12/28/2014] [Indexed: 12/21/2022]
Abstract
To improve the clinical course of diseases, more accurate diagnostic and assessment methods are required as early as possible. In order to achieve this, metabolomics offers new opportunities for biomarker discovery in complex diseases and may provide pathological understanding of diseases beyond traditional technologies. It is the systematic analysis of low-molecular-weight metabolites in biological samples and has become an important tool in clinical research and the diagnosis of human disease and has been applied to discovery and identification of the perturbed pathways. It provides a powerful approach to discover biomarkers in biological systems and offers a holistic approach with the promise to clinically enhance diagnostics. When carried out properly, it could provide insight into the understanding of the underlying mechanisms of diseases, help to identify patients at risk of disease, and predict the response to specific treatments. Currently, metabolomics has become an important tool in clinical research and the diagnosis of human disease and becomes a hot topic. This review will highlight the importance and benefit of metabolomics for identifying biomarkers that accurately screen potential biomarkers of diseases.
Collapse
|
116
|
McGeachie MJ, Dahlin A, Qiu W, Croteau-Chonka DC, Savage J, Wu AC, Wan ES, Sordillo JE, Al-Garawi A, Martinez FD, Strunk RC, Lemanske RF, Liu AH, Raby BA, Weiss S, Clish CB, Lasky-Su JA. The metabolomics of asthma control: a promising link between genetics and disease. IMMUNITY INFLAMMATION AND DISEASE 2015; 3:224-38. [PMID: 26421150 PMCID: PMC4578522 DOI: 10.1002/iid3.61] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 03/26/2015] [Accepted: 03/27/2015] [Indexed: 12/12/2022]
Abstract
Short-acting β agonists (e.g., albuterol) are the most commonly used medications for asthma, a disease that affects over 300 million people in the world. Metabolomic profiling of asthmatics taking β agonists presents a new and promising resource for identifying the molecular determinants of asthma control. The objective is to identify novel genetic and biochemical predictors of asthma control using an integrative "omics" approach. We generated lipidomic data by liquid chromatography tandem mass spectrometry (LC-MS), - using plasma samples from 20 individuals with asthma. The outcome of interest was a binary indicator of asthma control defined by the use of albuterol inhalers in the preceding week. We integrated metabolomic data with genome-wide genotype, gene expression, and methylation data of this cohort to identify genomic and molecular indicators of asthma control. A Conditional Gaussian Bayesian Network (CGBN) was generated using the strongest predictors from each of these analyses. Integrative and metabolic pathway over-representation analyses (ORA) identified enrichment of known biological pathways within the strongest molecular determinants. Of the 64 metabolites measured, 32 had known identities. The CGBN model based on four SNPs (rs9522789, rs7147228, rs2701423, rs759582) and two metabolites-monoHETE_0863 and sphingosine-1-phosphate (S1P) could predict asthma control with an AUC of 95%. Integrative ORA identified 17 significantly enriched pathways related to cellular immune response, interferon signaling, and cytokine-related signaling, for which arachidonic acid, PGE2 and S1P, in addition to six genes (CHN1, PRKCE, GNA12, OASL, OAS1, and IFIT3) appeared to drive the pathway results. Of these predictors, S1P, GNA12, and PRKCE were enriched in the results from integrative and metabolic ORAs. Through an integrative analysis of metabolomic, genomic, and methylation data from a small cohort of asthmatics, we implicate altered metabolic pathways, related to sphingolipid metabolism, in asthma control. These results provide insight into the pathophysiology of asthma control.
Collapse
Affiliation(s)
- Michael J McGeachie
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School Boston, Massachusetts, USA
| | - Amber Dahlin
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School Boston, Massachusetts, USA
| | - Weiliang Qiu
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School Boston, Massachusetts, USA
| | - Damien C Croteau-Chonka
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School Boston, Massachusetts, USA
| | - Jessica Savage
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School Boston, Massachusetts, USA
| | - Ann Chen Wu
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School Boston, Massachusetts, USA ; Children's Hospital and Harvard Medical School Boston, Massachusetts, USA ; Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute Boston, Massachusetts, USA
| | - Emily S Wan
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School Boston, Massachusetts, USA
| | - Joanne E Sordillo
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School Boston, Massachusetts, USA
| | - Amal Al-Garawi
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School Boston, Massachusetts, USA
| | - Fernando D Martinez
- Arizona Respiratory Center and BIO5 Institute, University of Arizona Tucson, Arizona, USA
| | - Robert C Strunk
- Department of Pediatrics, Division of Allergy, Immunology and Pulmonary Medicine, Washington University School of Medicine St. Louis, Missouri, USA
| | - Robert F Lemanske
- University of Wisconsin School of Medicine and Public Health Madison, Wisconsin, USA
| | - Andrew H Liu
- Department of Pediatrics, Division of Allergy and Clinical Immunology, National Jewish Health and University of Colorado School of Medicine Denver, Colorado, USA
| | - Benjamin A Raby
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School Boston, Massachusetts, USA
| | - Scott Weiss
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School Boston, Massachusetts, USA
| | | | - Jessica A Lasky-Su
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School Boston, Massachusetts, USA
| |
Collapse
|
117
|
Shi Q, Kong Y, He B, Chen X, Yan Y, Li Y. Metabolomics study on serum of allergic bronchial asthma rabbits treated by Recuperating Lung decoction. RSC Adv 2015. [DOI: 10.1039/c4ra14710c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study found seven biological markers in the Recuperating Lung decoction, which intervenes in the mechanism of asthma.
Collapse
Affiliation(s)
- Qi Shi
- The Key Institute of State Administration of Traditional Chinese Medicine (pneumonopathy chronic cough and dyspnea)
- Beijing Key Laboratory (NO. BZ0321)
- China-Japan Friendship Hospital (100029)
- Beijing
- China
| | - Yanhua Kong
- Beijing University of Chinese Medicine (100029)
- Beijing
- China
| | - Bo He
- Beijing University of Chinese Medicine (100029)
- Beijing
- China
| | - Xinxin Chen
- Beijing University of Chinese Medicine (100029)
- Beijing
- China
| | - Yue Yan
- The Key Institute of State Administration of Traditional Chinese Medicine (pneumonopathy chronic cough and dyspnea)
- Beijing Key Laboratory (NO. BZ0321)
- China-Japan Friendship Hospital (100029)
- Beijing
- China
| | - Youlin Li
- The Key Institute of State Administration of Traditional Chinese Medicine (pneumonopathy chronic cough and dyspnea)
- Beijing Key Laboratory (NO. BZ0321)
- China-Japan Friendship Hospital (100029)
- Beijing
- China
| |
Collapse
|
118
|
Systems biology of asthma and allergic diseases: a multiscale approach. J Allergy Clin Immunol 2014; 135:31-42. [PMID: 25468194 DOI: 10.1016/j.jaci.2014.10.015] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 10/10/2014] [Accepted: 10/15/2014] [Indexed: 01/15/2023]
Abstract
Systems biology is an approach to understanding living systems that focuses on modeling diverse types of high-dimensional interactions to develop a more comprehensive understanding of complex phenotypes manifested by the system. High-throughput molecular, cellular, and physiologic profiling of populations is coupled with bioinformatic and computational techniques to identify new functional roles for genes, regulatory elements, and metabolites in the context of the molecular networks that define biological processes associated with system physiology. Given the complexity and heterogeneity of asthma and allergic diseases, a systems biology approach is attractive, as it has the potential to model the myriad connections and interdependencies between genetic predisposition, environmental perturbations, regulatory intermediaries, and molecular sequelae that ultimately lead to diverse disease phenotypes and treatment responses across individuals. The increasing availability of high-throughput technologies has enabled system-wide profiling of the genome, transcriptome, epigenome, microbiome, and metabolome, providing fodder for systems biology approaches to examine asthma and allergy at a more holistic level. In this article we review the technologies and approaches for system-wide profiling, as well as their more recent applications to asthma and allergy. We discuss approaches for integrating multiscale data through network analyses and provide perspective on how individually captured health profiles will contribute to more accurate systems biology views of asthma and allergy.
Collapse
|
119
|
Nobakht M Gh BF, Aliannejad R, Rezaei-Tavirani M, Taheri S, Oskouie AA. The metabolomics of airway diseases, including COPD, asthma and cystic fibrosis. Biomarkers 2014; 20:5-16. [PMID: 25403491 DOI: 10.3109/1354750x.2014.983167] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Chronic obstructive pulmonary disease (COPD), asthma and cystic fibrosis (CF) are characterized by airway obstruction and an inflammatory process. Reaching early diagnosis and discrimination of subtypes of these respiratory diseases are quite a challenging task than other chronic illnesses. Metabolomics is the study of metabolic pathways and the measurement of unique biochemical molecules generated in a living system. In the last decade, metabolomics has already proved to be useful for the characterization of several pathological conditions and offers promises as a clinical tool. In this article, we review the current state of the metabolomics of COPD, asthma and CF with a focus on the different methods and instrumentation being used for the discovery of biomarkers in research and translation into clinic as diagnostic aids for the choice of patient-specific therapies.
Collapse
Affiliation(s)
- B Fatemeh Nobakht M Gh
- Faculty of Paramedical Sciences, Proteomics Research Center, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | | | | | | | | |
Collapse
|
120
|
Abstract
PURPOSE OF REVIEW A variety of novel asthma treatments have been developed based on phenotypes, and the clinical trial results show promising responses. This review summarizes the current knowledge of biomarkers for the determination of asthma phenotypes. RECENT FINDINGS Eosinophilic inflammation is the most focused phenotype because most novel asthma treatments have targeted T-helper type 2 (Th2) pathway. Fractional-exhaled nitric oxide (FeNO) is a new method that represents an eosinophilic airway inflammation with a significant correlation with sputum eosinophilia and asthma severity instead of sputum eosinophil count that easily influenced by corticosteroid therapy. However, some reports indicated the discordance between treatment response or adjustment and FeNO levels. Serum periostin is a strong serum biomarker for eosinophilic airway inflammation and an indicator of Th2-targeted therapy (such as lebrikizumab or omalizumab) and airflow limitation. YKL-40 is associated with asthma severity and airway remodeling. In addition, genetic and metabolomic approaches have been made to determine asthma phenotypes and severity. SUMMARY Biomarkers such as FeNO and serum periostin represent eosinophilic airway inflammation, together with eosinophil-derived neurotoxin and osteopontin (OPN) needed more replication studies. Periostin, YKL-40, OPN and some metabolites (choline, arginine, acetone and protectin D1) are related to asthma severity and airflow limitation.
Collapse
|
121
|
Cabieses B, Uphoff E, Pinart M, Antó JM, Wright J. A systematic review on the development of asthma and allergic diseases in relation to international immigration: the leading role of the environment confirmed. PLoS One 2014; 9:e105347. [PMID: 25141011 PMCID: PMC4139367 DOI: 10.1371/journal.pone.0105347] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 07/21/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The prevalence of asthma and allergic diseases is rising worldwide. Evidence on potential causal pathways of asthma and allergies is growing, but findings have been contradictory, particularly on the interplay between allergic diseases and understudied social determinants of health like migration status. This review aimed at providing evidence for the association between migration status and asthma and allergies, and to explore the mechanisms between migration status and the development of asthma and allergies. METHODS AND FINDINGS Systematic review on asthma and allergies and immigration status in accordance with the guidelines set by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. The pooled odds ratio (OR) of the prevalence of asthma in immigrants compared to the host population was 0.60 (95% CI 0.45-0.84), and the pooled OR for allergies was 1.01 (95% CI 0.62-1.69). The pooled OR for the prevalence of asthma in first generation versus second generation immigrants was 0.37 (95% CI 0.25-0.58). Comparisons between populations in their countries of origin and those that emigrated vary depending on their level of development; more developed countries show higher rates of asthma and allergies. CONCLUSIONS Our findings suggest a strong influence of the environment on the development of asthma and allergic diseases throughout the life course. The prevalence of asthma is generally higher in second generation than first generation immigrants. With length of residence in the host country the prevalence of asthma and allergic diseases increases steadily. These findings are consistent across study populations, host countries, and children as well as adults. Differences have been found to be significant when tested in a linear model, as well as when comparing between early and later age of migration, and between shorter and longer time of residence.
Collapse
Affiliation(s)
- Báltica Cabieses
- Universidad del Desarrollo- Clínica Alemana, CAS-UDD, Lo Barnechea Santiago, Chile
- Bradford Institute for Health Research, BIHR, Bradford Royal Infirmary, Bradford, United Kingdom
- Department of Health Sciences University of York, Heslington, York, United Kingdom
| | - Eleonora Uphoff
- Bradford Institute for Health Research, BIHR, Bradford Royal Infirmary, Bradford, United Kingdom
- Department of Health Sciences University of York, Heslington, York, United Kingdom
| | - Mariona Pinart
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- IMIM (Hospital del Mar Research Institute), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
- Universitat Pompeu Fabra, Departament de Ciències Experimentals i de la Salut, Barcelona, Spain
| | - Josep Maria Antó
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- IMIM (Hospital del Mar Research Institute), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
- Universitat Pompeu Fabra, Departament de Ciències Experimentals i de la Salut, Barcelona, Spain
| | - John Wright
- Bradford Institute for Health Research, BIHR, Bradford Royal Infirmary, Bradford, United Kingdom
| |
Collapse
|
122
|
Association of serum periostin with aspirin-exacerbated respiratory disease. Ann Allergy Asthma Immunol 2014; 113:314-20. [PMID: 25037608 DOI: 10.1016/j.anai.2014.06.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 05/21/2014] [Accepted: 06/20/2014] [Indexed: 12/14/2022]
Abstract
BACKGROUND Recent studies recommend periostin as a systemic biomarker of eosinophilic airway inflammation to predict responses to novel treatments that targets eosinophilic TH2-driven inflammation in asthmatic patients. OBJECTIVE To investigate the clinical implications of serum periostin levels in patients with aspirin-exacerbated respiratory disease (AERD) based on its overlapping TH2-mediated pathogenesis with the eosinophilic asthma. METHODS Serum periostin levels were measured by human periostin enzyme-linked immunosorbent assay (ELISA) in serum samples from 277 adults with asthma. Serum periostin levels were compared between patients with AERD and aspirin tolerant asthma (ATA) with other asthma phenotypes, such as severe or nonsevere asthma and eosinophilic or noneosinophilic asthma. The association of serum periostin levels with clinical parameters (including disease severity and comorbid condition) was analyzed. RESULTS Serum periostin levels were significantly higher in patients with AERD vs ATA, patients with severe asthma vs nonsevere asthma, and patients with eosinophilic asthma vs noneosinophilic asthma (P=.005, P=.02, and P=.001, respectively). Multivariate regression analysis revealed serum periostin levels as a significant parameter to predict AERD phenotype (P=.006) together with severe asthma phenotype (P=.04). In addition, serum periostin levels correlated with blood eosinophil counts (Spearman ñ = 0.244, P<.001) and sputum eosinophil counts (Spearman ñ = 0.261, P < 0.001). Higher serum periostin levels were noted in comorbid AERD patients with more severe chronic rhinosinusitis (Lund-Mackay stages 3 and 4) than those with less severe chronic rhinosinusitis (Lund-Mackay stages 1 and 2) (P = .03). CONCLUSION Serum periostin levels are significantly elevated in AERD patients and associated with AERD phenotype and disease severity.
Collapse
|
123
|
Ho WE, Xu YJ, Cheng C, Peh HY, Tannenbaum SR, Wong WSF, Ong CN. Metabolomics Reveals Inflammatory-Linked Pulmonary Metabolic Alterations in a Murine Model of House Dust Mite-Induced Allergic Asthma. J Proteome Res 2014; 13:3771-3782. [PMID: 24956233 DOI: 10.1021/pr5003615] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Although the house dust mite (HDM) is a major environmental aeroallergen that promotes the pathogenesis and severity of allergic asthma, it remains elusive if HDM exposures can induce global metabolism aberrations during allergic airway inflammation. Using an integrated gas and liquid chromatography mass spectrometry-based metabolomics and multiplex cytokine profile analysis, metabolic alterations and cytokine changes were investigated in the bronchoalveolar lavage fluid (BALF), serum, and lung tissues in experimental HDM-induced allergic asthma. Allergic pulmonary HDM exposures lead to pronounced eosinophilia, neutrophilia, and increases in inflammatory cytokines. Metabolomics analysis of the BALF, serum, and lung tissues revealed distinctive compartmental metabolic signatures, which included depleted carbohydrates, increased energy metabolites, and consistent losses of sterols and phosphatidylcholines. Pearson correlation analysis uncovered strong associations between specific metabolic alterations and inflammatory cells and cytokines, linking altered pulmonary metabolism to allergic airway inflammation. The clinically prescribed glucocorticoid prednisolone could modulate airway inflammation but was ineffective against the reversal of many HDM-induced metabolic alterations. Collectively, metabolomics reveal comprehensive pulmonary metabolic signatures in HDM-induced allergic asthma, with specific alterations in carbohydrates, lipids, sterols, and energy metabolic pathways. Altered pulmonary metabolism may be a major underlying molecular feature involved during HDM-induced allergic airway inflammation, linked to inflammatory cells and cytokines changes.
Collapse
Affiliation(s)
- Wanxing Eugene Ho
- Singapore-MIT Alliance for Research and Technology (SMART), Singapore 138602
| | - Yong-Jiang Xu
- Key Laboratory of Insect Development and Evolutionary Biology, Chinese Academy of Sciences , Shanghai 200032, China
| | - Chang Cheng
- Department of Gastroenterology & Hepatology, Singapore General Hospital , Singapore 169608
| | | | - Steven R Tannenbaum
- Singapore-MIT Alliance for Research and Technology (SMART), Singapore 138602.,Department of Biological Engineering and Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | | | | |
Collapse
|
124
|
Scrivo R, Casadei L, Valerio M, Priori R, Valesini G, Manetti C. Metabolomics approach in allergic and rheumatic diseases. Curr Allergy Asthma Rep 2014; 14:445. [PMID: 24744271 DOI: 10.1007/s11882-014-0445-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Metabolomics is the analysis of the concentration profiles of low molecular weight compounds present in biological fluids. Metabolites are nonpeptide molecules representing the end products of cellular activity. Therefore, changes in metabolite concentrations reveal the range of biochemical effects induced by a disease or its therapeutic intervention. Metabolomics has recently become feasible with the accessibility of new technologies, including mass spectrometry and high-resolution proton nuclear magnetic resonance, and has already been applied to several disorders. Indeed, it has the advantage of being a nontargeted approach for identifying potential biomarkers, which means that it does not require a preliminary knowledge of the substances to be studied. In this review, we summarize the main studies in which metabolomic approach was used in some allergic (asthma, atopic dermatitis) and rheumatic diseases (rheumatoid arthritis, systemic lupus erythematosus) to explore the feasibility of this technique as a novel diagnostic tool in these complex disorders.
Collapse
Affiliation(s)
- Rossana Scrivo
- Dipartimento di Medicina Interna e Specialità Mediche, Reumatologia, Sapienza Università di Roma, Viale del Policlinico 155, 00161, Rome, Italy,
| | | | | | | | | | | |
Collapse
|
125
|
Duarte IF, Diaz SO, Gil AM. NMR metabolomics of human blood and urine in disease research. J Pharm Biomed Anal 2014; 93:17-26. [DOI: 10.1016/j.jpba.2013.09.025] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/16/2013] [Accepted: 09/24/2013] [Indexed: 02/06/2023]
|
126
|
Sharma S, Litonjua A. Asthma, allergy, and responses to methyl donor supplements and nutrients. J Allergy Clin Immunol 2014; 133:1246-54. [PMID: 24360248 PMCID: PMC4004707 DOI: 10.1016/j.jaci.2013.10.039] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/17/2013] [Accepted: 10/22/2013] [Indexed: 01/14/2023]
Abstract
After a brief period of stabilization, recent data have shown that the prevalence of asthma and allergic diseases continues to increase. Atopic diseases are major public health problems resulting in significant disability and resource use globally. Although environmental factors influence the development of atopic disease, dietary changes might partially explain the high burden of atopic disease. Potential mechanisms through which diet is suspected to effect asthma and allergy susceptibility are through epigenetic changes, including DNA methylation. Dietary methyl donors are important in the one-carbon metabolic pathway that is essential for DNA methylation. Findings from both observational studies and interventional trials of dietary methyl donor supplementation on the development and treatment of asthma and allergy have produced mixed results. Although issues related to the differences in study design partially explain the heterogeneous results, 2 other issues have been largely overlooked in these studies. First, these nutrients affect one of many pathways and occur in many of the same foods. Second, it is now becoming clear that the human intestinal microbiome is involved in the metabolism and production of the B vitamins and other methyl donor nutrients. Future studies will need to account for both the interrelationships between these nutrients and the effects of the microbiome.
Collapse
Affiliation(s)
- Sunita Sharma
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Mass; Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Mass.
| | - Augusto Litonjua
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Mass; Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Mass
| |
Collapse
|
127
|
Pathak RR, Davé V. Integrating omics technologies to study pulmonary physiology and pathology at the systems level. Cell Physiol Biochem 2014; 33:1239-60. [PMID: 24802001 PMCID: PMC4396816 DOI: 10.1159/000358693] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2014] [Indexed: 12/13/2022] Open
Abstract
Assimilation and integration of "omics" technologies, including genomics, epigenomics, proteomics, and metabolomics has readily altered the landscape of medical research in the last decade. The vast and complex nature of omics data can only be interpreted by linking molecular information at the organismic level, forming the foundation of systems biology. Research in pulmonary biology/medicine has necessitated integration of omics, network, systems and computational biology data to differentially diagnose, interpret, and prognosticate pulmonary diseases, facilitating improvement in therapy and treatment modalities. This review describes how to leverage this emerging technology in understanding pulmonary diseases at the systems level -called a "systomic" approach. Considering the operational wholeness of cellular and organ systems, diseased genome, proteome, and the metabolome needs to be conceptualized at the systems level to understand disease pathogenesis and progression. Currently available omics technology and resources require a certain degree of training and proficiency in addition to dedicated hardware and applications, making them relatively less user friendly for the pulmonary biologist and clinicians. Herein, we discuss the various strategies, computational tools and approaches required to study pulmonary diseases at the systems level for biomedical scientists and clinical researchers.
Collapse
Affiliation(s)
- Ravi Ramesh Pathak
- Morsani College of Medicine, Department of Pathology and Cell Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL USA
| | - Vrushank Davé
- Morsani College of Medicine, Department of Pathology and Cell Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL USA
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL USA
| |
Collapse
|
128
|
Reply: To PMID 24369803. J Allergy Clin Immunol 2014; 133:1499. [PMID: 24679847 DOI: 10.1016/j.jaci.2014.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 02/06/2014] [Indexed: 11/21/2022]
|
129
|
Metabolomics of asthma. J Allergy Clin Immunol 2014; 133:1497-9, 1499.e1. [PMID: 24679844 DOI: 10.1016/j.jaci.2014.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 02/06/2014] [Indexed: 12/11/2022]
|
130
|
Investigation of the Material Basis Underlying the Correlation between Presbycusis and Kidney Deficiency in Traditional Chinese Medicine via GC/MS Metabolomics. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:762092. [PMID: 24371466 PMCID: PMC3858872 DOI: 10.1155/2013/762092] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 10/24/2013] [Accepted: 10/24/2013] [Indexed: 02/06/2023]
Abstract
Objective. To investigate the correlation between presbycusis and kidney deficiency as defined by traditional Chinese medicine (TCM) and its material basis from the perspective of metabolism. Methods. Pure-tone audiometry was used to test auditory function. A kidney deficiency symptom scoring table was used to measure the kidney deficiency accumulated scores of the research subjects. Gas chromatography/mass spectrometry (GC/MS) was used to measure the metabolites in the urine samples from 11 presbycusis patients and 9 elderly people with normal hearing. Results. Hearing loss in the elderly was positively correlated with kidney deficiency score in TCM. There were significant differences in urine metabolite profile between the presbycusis patients and the controls. A total of 23 differentially expressed metabolites were found. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that these metabolites were related to glutathione metabolism, amino acid metabolism, glucose metabolism, the N-methyl-D-aspartic acid (NMDA) receptor pathway, and the γ -aminobutyric acid (GABA) receptor pathway. Conclusion. Glutathione metabolism, amino acid metabolism, glucose metabolism, NMDA receptors, and GABA receptors may be related to the pathogenesis of presbycusis and may be the material basis underlying the correlation between presbycusis and kidney deficiency in TCM.
Collapse
|
131
|
Zhang AH, Sun H, Qiu S, Wang XJ. NMR-based metabolomics coupled with pattern recognition methods in biomarker discovery and disease diagnosis. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2013; 51:549-556. [PMID: 23828598 DOI: 10.1002/mrc.3985] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 06/05/2013] [Accepted: 06/10/2013] [Indexed: 06/02/2023]
Abstract
Molecular biomarkers could detect biochemical changes associated with disease processes. The key metabolites have become an important part for improving the diagnosis, prognosis, and therapy of diseases. Because of the chemical diversity and dynamic concentration range, the analysis of metabolites remains a challenge. Assessment of fluctuations on the levels of endogenous metabolites by advanced NMR spectroscopy technique combined with multivariate statistics, the so-called metabolomics approach, has proved to be exquisitely valuable in human disease diagnosis. Because of its ability to detect a large number of metabolites in intact biological samples with isotope labeling of metabolites using nuclei such as H, C, N, and P, NMR has emerged as one of the most powerful analytical techniques in metabolomics and has dramatically improved the ability to identify low concentration metabolites and trace important metabolic pathways. Multivariate statistical methods or pattern recognition programs have been developed to handle the acquired data and to search for the discriminating features from biosample sets. Furthermore, the combination of NMR with pattern recognition methods has proven highly effective at identifying unknown metabolites that correlate with changes in genotype or phenotype. The research and clinical results achieved through NMR investigations during the first 13 years of the 21st century illustrate areas where this technology can be best translated into clinical practice. In this review, we will present several special examples of a successful application of NMR for biomarker discovery, implications for disease diagnosis, prognosis, and therapy evaluation, and discuss possible future improvements.
Collapse
Affiliation(s)
- Ai-hua Zhang
- National TCM Key Lab of Serum Pharmacochemistry, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | | | | | | |
Collapse
|
132
|
Reisdorph N, Wechsler ME. Utilizing metabolomics to distinguish asthma phenotypes: strategies and clinical implications. Allergy 2013; 68:959-62. [PMID: 23968382 DOI: 10.1111/all.12238] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|