101
|
Omabe M, Ezeani M, Omabe KN. Lipid metabolism and cancer progression: The missing target in metastatic cancer treatment. J Appl Biomed 2015. [DOI: 10.1016/j.jab.2014.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
102
|
Abramczyk H, Surmacki J, Kopeć M, Olejnik AK, Lubecka-Pietruszewska K, Fabianowska-Majewska K. The role of lipid droplets and adipocytes in cancer. Raman imaging of cell cultures: MCF10A, MCF7, and MDA-MB-231 compared to adipocytes in cancerous human breast tissue. Analyst 2015; 140:2224-35. [DOI: 10.1039/c4an01875c] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We discussed the potential of lipid droplets in nonmalignant and malignant human breast epithelial cell lines as a prognostic marker in breast cancer.
Collapse
Affiliation(s)
- Halina Abramczyk
- Lodz University of Technology
- Institute of Applied Radiation Chemistry
- Laboratory of Laser Molecular Spectroscopy
- 93-590 Lodz
- Poland
| | - Jakub Surmacki
- Lodz University of Technology
- Institute of Applied Radiation Chemistry
- Laboratory of Laser Molecular Spectroscopy
- 93-590 Lodz
- Poland
| | - Monika Kopeć
- Lodz University of Technology
- Institute of Applied Radiation Chemistry
- Laboratory of Laser Molecular Spectroscopy
- 93-590 Lodz
- Poland
| | - Alicja Klaudia Olejnik
- Lodz University of Technology
- Institute of Applied Radiation Chemistry
- Laboratory of Laser Molecular Spectroscopy
- 93-590 Lodz
- Poland
| | | | | |
Collapse
|
103
|
Wellberg EA, Rudolph MC, Lewis AS, Padilla-Just N, Jedlicka P, Anderson SM. Modulation of tumor fatty acids, through overexpression or loss of thyroid hormone responsive protein spot 14 is associated with altered growth and metastasis. Breast Cancer Res 2014; 16:481. [PMID: 25472762 PMCID: PMC4303195 DOI: 10.1186/s13058-014-0481-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 11/14/2014] [Indexed: 12/31/2022] Open
Abstract
Introduction Spot14 (S14), encoded by the THRSP gene, regulates de novo fatty acid synthesis in the liver, adipose, and lactating mammary gland. We recently showed that S14 stimulated fatty acid synthase (FASN) activity in vitro, and increased the synthesis of fatty acids in mammary epithelial cells in vivo. Elevated de novo fatty acid synthesis is a distinguishing feature of many solid tumors compared with adjacent normal tissue. This characteristic is thought to be acquired during tumor progression, as rapidly proliferating cells have a heightened requirement for membrane phospholipids. Further, overexpression of FASN is sufficient to stimulate cell proliferation. While many studies have focused on the FASN enzyme in cancer biology, few studies have addressed the roles of proteins that modify FASN activity, such as S14. Methods Tumor fatty acids were modulated using two mouse models, mouse mammary tumor virus (MMTV)-neu mice overexpressing S14 and MMTV-polyomavirus middle T antigen (PyMT) mice lacking S14, and associations between elevated or impaired fatty acid synthesis on tumor latency, growth, metastasis, and signaling pathways were investigated. We evaluated S14-dependent gene expression profiles in mouse tumors by microarray and used publicly available microarray datasets of human breast tumors. Results S14 overexpression in the MMTV-Neu transgenic model is associated with elevated medium-chain fatty acids, increased proliferation and a shorter tumor latency, but reduced tumor metastasis compared to controls. Loss of S14 in the MMTV-PyMT model decreased FASN activity and the synthesis of medium-chain fatty acids but did not alter tumor latency. Impaired fatty acid synthesis was associated with reduced solid tumor cell proliferation, the formation of cystic lesions in some animals, and decreased phosphorylation of Src and protein kinase B (Akt). Analysis of gene expression in these mouse and human tumors revealed a relationship between S14 status and the expression of genes associated with luminal epithelial differentiation. Conclusions This study demonstrates a potential role for S14 in regulating mammary tumor growth and fatty acid synthesis in vivo. Furthermore, these results suggest that modulating the amount of medium chain fatty acids, by changing the levels of S14, has the potential to impact malignant mammary tumor phenotypes. Electronic supplementary material The online version of this article (doi:10.1186/s13058-014-0481-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elizabeth A Wellberg
- Department of Pathology, University of Colorado School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Michael C Rudolph
- Department of Pathology, University of Colorado School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA. .,Current Address: Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Andrew S Lewis
- Department of Pathology, University of Colorado School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Nuria Padilla-Just
- Department of Pathology, University of Colorado School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA. .,Program in Cancer Biology, University of Colorado School of Medicine, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO, 80045, USA. .,Current Address: Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Paul Jedlicka
- Department of Pathology, University of Colorado School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA. .,Program in Cancer Biology, University of Colorado School of Medicine, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO, 80045, USA.
| | - Steven M Anderson
- Department of Pathology, University of Colorado School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA. .,Program in Cancer Biology, University of Colorado School of Medicine, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO, 80045, USA.
| |
Collapse
|
104
|
Cai Y, Wang J, Zhang L, Wu D, Yu D, Tian X, Liu J, Jiang X, Shen Y, Zhang L, Ren M, Huang P. Expressions of fatty acid synthase and HER2 are correlated with poor prognosis of ovarian cancer. Med Oncol 2014; 32:391. [PMID: 25433947 PMCID: PMC4247847 DOI: 10.1007/s12032-014-0391-z] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 11/19/2014] [Indexed: 11/27/2022]
Abstract
The present study was designed to explore the cross talk between fatty acid synthase (FASN) and HER2 (ErbB2) in ovarian cancer. A total of 60 ovarian cancer patients and 15 normal ovarian tissues were enrolled. Tissue array was conducted by using a tissue microarray instrument. Immunohistochemistry was performed to quantify the expressions of HER2 and FASN. The FASN was detected to be distributed in the cell cytoplasm and was significantly correlated with cancer grade (p = 0.000) and FIGO staging (p = 0.000). Patients with FASN overexpression in ovarian cancer tend to have a worse overall survival rate (p = 0.000). HER2 was also stained to be distributed in the cell cytoplasm associated with higher expression in high-grade cancer. It was also disclosed that FASN expression level is not correlated with HER2 status in ovarian cancer. These results for the first time indicated that a cross talk in FASN and HER2 expressions might be associated with prognosis in malignant ovarian cancer.
Collapse
Affiliation(s)
- Yunlang Cai
- Department of Obestetrics and Gynecology, Zhongda Hospital, Southeast University, Dingjia Qiao Road 87, Nanjing, 210009 Jiangsu Province China
| | - Jingmei Wang
- Department of Pathology, Drum Tower Hospital, Nanjing, 210009 Jiangsu Province China
| | - Lin Zhang
- Department of Obestetrics and Gynecology, Zhongda Hospital, Southeast University, Dingjia Qiao Road 87, Nanjing, 210009 Jiangsu Province China
| | - Di Wu
- Medical College, Southeast University, Dingjia Qiao Road 87, Nanjing, 210009 Jiangsu Province China
| | - Dandan Yu
- Medical College, Southeast University, Dingjia Qiao Road 87, Nanjing, 210009 Jiangsu Province China
| | - Xiaoqiang Tian
- The Second Hospital of Nanjing, Zhongfu Road 1, Nanjing, 210003 Jiangsu Province China
| | - Jun Liu
- Medical College, Southeast University, Dingjia Qiao Road 87, Nanjing, 210009 Jiangsu Province China
| | - Xinru Jiang
- Medical College, Southeast University, Dingjia Qiao Road 87, Nanjing, 210009 Jiangsu Province China
| | - Yang Shen
- Department of Obestetrics and Gynecology, Zhongda Hospital, Southeast University, Dingjia Qiao Road 87, Nanjing, 210009 Jiangsu Province China
| | - Lihua Zhang
- Department of Pathology, Zhongda Hospital, Southeast University, Dingjia Qiao Road 87, Nanjing, 210009 Jiangsu Province China
| | - Mulan Ren
- Department of Obestetrics and Gynecology, Zhongda Hospital, Southeast University, Dingjia Qiao Road 87, Nanjing, 210009 Jiangsu Province China
| | - Peilin Huang
- Medical College, Southeast University, Dingjia Qiao Road 87, Nanjing, 210009 Jiangsu Province China
| |
Collapse
|
105
|
Abstract
Patients with diabetes mellitus are at increased risk of cancer development. Metformin is a well-established, effective agent for the management of type 2 diabetes mellitus. Epidemiological studies have identified an association between metformin use and a beneficial effect on cancer prevention and treatment, which has led to increasing interest in the potential use of metformin as an anticancer agent. Basic science has provided a better understanding of the mechanism of action of metformin and the potential for metformin to modulate molecular pathways involved in cancer cell signaling and metabolism. This article outlines the link between metformin and cancer, the potential for metformin in oncology, and limitations of currently available evidence.
Collapse
Affiliation(s)
- Daniel R Morales
- Population Health Sciences Division, Medical Research Institute, and
| | | |
Collapse
|
106
|
Khan A, Aljarbou AN, Aldebasi YH, Faisal SM, Khan MA. Resveratrol suppresses the proliferation of breast cancer cells by inhibiting fatty acid synthase signaling pathway. Cancer Epidemiol 2014; 38:765-72. [PMID: 25448084 DOI: 10.1016/j.canep.2014.09.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 09/02/2014] [Accepted: 09/13/2014] [Indexed: 10/24/2022]
Abstract
In breast cancer cells, overexpression of human epidermal growth factor receptor 2 (HER2) increases the translation of fatty acid synthase (FASN) by altering the activity of PI3K/Akt signaling pathways. Cancer chemotherapy causes major side effects and is not effective enough in slowing down the progression of the disease. Earlier studies showed a role for resveratrol in the inhibition of FASN, but the molecular mechanisms of resveratrol-induced inhibition are not known. In the present study, we examined the novel mechanism of resveratrol on Her2-overexpressed breast cancer cells. The effect of resveratrol on the growth of breast cancer cells was assessed as percent cell viability by cytotoxicity-based MTT assay and the induction of apoptosis was determined by cell-death detection ELISA and flow cytometric analysis of Annexin-V-PI binding. Western immunobloting was used to detect signaling events in human breast cancer (SKBR-3) cells. Data showed that resveratrol-mediated down-regulation of FASN and HER2 genes synergistically induced apoptotic death in SKBR-3 cells. This concurrently caused a prominent up-regulation of PEA3, leads to down-regulation of HER2 genes. Resveratrol also alleviated the PI3K/Akt/mTOR signaling by down-regulation of Akt phosphorylation and up-regulation of PTEN expression. These findings suggest that resveratrol alters the cell cycle progression and induce cell death via FASN inhibition in HER2 positive breast cancer.
Collapse
Affiliation(s)
- Arif Khan
- College of Applied Medical Sciences, Qassim University, Buraidah, Al-Qassim, Saudi Arabia.
| | - Ahmad N Aljarbou
- College of Applied Medical Sciences, Qassim University, Buraidah, Al-Qassim, Saudi Arabia
| | - Yousef H Aldebasi
- College of Applied Medical Sciences, Qassim University, Buraidah, Al-Qassim, Saudi Arabia
| | - Syed M Faisal
- College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Masood A Khan
- College of Applied Medical Sciences, Qassim University, Buraidah, Al-Qassim, Saudi Arabia
| |
Collapse
|
107
|
Bessadóttir M, Skúladóttir EÁ, Gowan S, Eccles S, Ögmundsdóttir S, Ogmundsdóttir HM. Effects of anti-proliferative lichen metabolite, protolichesterinic acid on fatty acid synthase, cell signalling and drug response in breast cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:1717-1724. [PMID: 25442282 DOI: 10.1016/j.phymed.2014.08.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 07/18/2014] [Accepted: 08/16/2014] [Indexed: 06/04/2023]
Abstract
BACKGROUND The lichen compound (+)-protolichesterinic acid (+)-PA, isolated from Iceland moss, has anti-proliferative effects on several cancer cell lines. The chemical structure of (+)-PA is similar to a known fatty acid synthase (FASN) inhibitor C75. AIMS To test whether the anti-proliferative activity of (+)-PA is associated with effects on FASN and HER2 (human epidermal growth factor receptor 2) and major signalling pathways. Synergism between (+)-PA and lapatinib, a HER2 active drug, was also evaluated. MATERIALS AND METHODS Pure compound was isolated by preparative high-performance liquid chromatography (HPLC) and purity of (+)-PA analyzed by analytical HPLC. Cell viability was assessed using Crystal violet staining. FASN and HER2 expression was estimated by immunofluorescence. The Meso Scale Discovery (MSD)(®) assay was used to measure activation of ERK1/2 and AKT. Synergism was estimated by the CalcuSyn software. RESULTS Treatment with (+)-PA increased FASN expression in SK-BR-3 cells, which overexpress FASN and HER2, implying a compensatory response to inhibition of FASN activity. HER2 expression was decreased suggesting secondary downregulation. ERK1/2 and AKT signalling pathways were inhibited, probably due to reduced levels of HER2. No effects were observed in T-47D cells. Synergism between (+)-PA and lapatinib was observed in the SK-BR-3 cells. CONCLUSION Results suggest that the primary effect of (+)-PA is inhibition of FASN activity. Synergistic effects with lapatinib were seen only in SK-BR-3 cells, and not T-47D cells, further supporting the notion that (+)-PA acts by inhibiting FASN with secondary effects on HER2 expression and signalling. (+)-PA could therefore be a suitable agent for further testing, alone or in combination treatment against HER2-overexpressing breast cancer.
Collapse
Affiliation(s)
- Margrét Bessadóttir
- Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland; Faculty of Pharmaceutical Sciences, University of Iceland, 101 Reykjavik, Iceland
| | | | - Sharon Gowan
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SW7 3RP, UK
| | - Suzanne Eccles
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SW7 3RP, UK
| | | | | |
Collapse
|
108
|
Sippel KH, Vyas NK, Zhang W, Sankaran B, Quiocho FA. Crystal structure of the human fatty acid synthase enoyl-acyl carrier protein-reductase domain complexed with triclosan reveals allosteric protein-protein interface inhibition. J Biol Chem 2014; 289:33287-95. [PMID: 25301948 DOI: 10.1074/jbc.m114.608547] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human fatty acid synthase (FAS) is a large, multidomain protein that synthesizes long chain fatty acids. Because these fatty acids are primarily provided by diet, FAS is normally expressed at low levels; however, it is highly up-regulated in many cancers. Human enoyl-acyl carrier protein-reductase (hER) is one of the FAS catalytic domains, and its inhibition by drugs like triclosan (TCL) can increase cytotoxicity and decrease drug resistance in cancer cells. We have determined the structure of hER in the presence and absence of TCL. TCL was not bound in the active site, as predicted, but rather at the protein-protein interface (PPI). TCL binding induces a dimer orientation change that causes downstream structural rearrangement in critical active site residues. Kinetics studies indicate that TCL is capable of inhibiting the isolated hER domain with an IC50 of ∼ 55 μM. Given the hER-TCL structure and the inhibition observed in the hER domain, it seems likely that TCL is observed in the physiologically relevant binding site and that it acts as an allosteric PPI inhibitor. TCL may be a viable scaffold for the development of anti-cancer PPI FAS inhibitors.
Collapse
Affiliation(s)
- Katherine H Sippel
- From the Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030 and
| | - Nand K Vyas
- From the Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030 and
| | - Wei Zhang
- From the Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030 and
| | - Banumathi Sankaran
- the Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Florante A Quiocho
- From the Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030 and
| |
Collapse
|
109
|
Marro M, Nieva C, Sanz-Pamplona R, Sierra A. Molecular monitoring of epithelial-to-mesenchymal transition in breast cancer cells by means of Raman spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1785-95. [DOI: 10.1016/j.bbamcr.2014.04.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 04/07/2014] [Accepted: 04/10/2014] [Indexed: 01/29/2023]
|
110
|
Roy D, Mondal S, Wang C, He X, Khurana A, Giri S, Hoffmann R, Jung DB, Kim SH, Chini EN, Periera JC, Folmes CD, Mariani A, Dowdy SC, Bakkum-Gamez JN, Riska SM, Oberg AL, Karoly ED, Bell LN, Chien J, Shridhar V. Loss of HSulf-1 promotes altered lipid metabolism in ovarian cancer. Cancer Metab 2014; 2:13. [PMID: 25225614 PMCID: PMC4164348 DOI: 10.1186/2049-3002-2-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 07/21/2014] [Indexed: 01/12/2023] Open
Abstract
Background Loss of the endosulfatase HSulf-1 is common in ovarian cancer, upregulates heparin binding growth factor signaling and potentiates tumorigenesis and angiogenesis. However, metabolic differences between isogenic cells with and without HSulf-1 have not been characterized upon HSulf-1 suppression in vitro. Since growth factor signaling is closely tied to metabolic alterations, we determined the extent to which HSulf-1 loss affects cancer cell metabolism. Results Ingenuity pathway analysis of gene expression in HSulf-1 shRNA-silenced cells (Sh1 and Sh2 cells) compared to non-targeted control shRNA cells (NTC cells) and subsequent Kyoto Encyclopedia of Genes and Genomics (KEGG) database analysis showed altered metabolic pathways with changes in the lipid metabolism as one of the major pathways altered inSh1 and 2 cells. Untargeted global metabolomic profiling in these isogenic cell lines identified approximately 338 metabolites using GC/MS and LC/MS/MS platforms. Knockdown of HSulf-1 in OV202 cells induced significant changes in 156 metabolites associated with several metabolic pathways including amino acid, lipids, and nucleotides. Loss of HSulf-1 promoted overall fatty acid synthesis leading to enhance the metabolite levels of long chain, branched, and essential fatty acids along with sphingolipids. Furthermore, HSulf-1 loss induced the expression of lipogenic genes including FASN, SREBF1, PPARγ, and PLA2G3 stimulated lipid droplet accumulation. Conversely, re-expression of HSulf-1 in Sh1 cells reduced the lipid droplet formation. Additionally, HSulf-1 also enhanced CPT1A and fatty acid oxidation and augmented the protein expression of key lipolytic enzymes such as MAGL, DAGLA, HSL, and ASCL1. Overall, these findings suggest that loss of HSulf-1 by concomitantly enhancing fatty acid synthesis and oxidation confers a lipogenic phenotype leading to the metabolic alterations associated with the progression of ovarian cancer. Conclusions Taken together, these findings demonstrate that loss of HSulf-1 potentially contributes to the metabolic alterations associated with the progression of ovarian pathogenesis, specifically impacting the lipogenic phenotype of ovarian cancer cells that can be therapeutically targeted.
Collapse
Affiliation(s)
- Debarshi Roy
- Department of Experimental Pathology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Susmita Mondal
- Department of Experimental Pathology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Chen Wang
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiaoping He
- Department of Experimental Pathology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Ashwani Khurana
- Department of Experimental Pathology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | - Robert Hoffmann
- Department of Experimental Pathology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Deok-Beom Jung
- Cancer Preventive Material Development Research Center (CPMRC), College of Oriental Medicine, Kyunghee University, Seoul 130-701, Republic of Korea
| | - Sung H Kim
- Cancer Preventive Material Development Research Center (CPMRC), College of Oriental Medicine, Kyunghee University, Seoul 130-701, Republic of Korea
| | - Eduardo N Chini
- Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | - Clifford D Folmes
- Department of Cardiovascular Disease, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Andrea Mariani
- Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Sean C Dowdy
- Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Jamie N Bakkum-Gamez
- Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Shaun M Riska
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA
| | - Ann L Oberg
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | - Jeremy Chien
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KN 66160, USA
| | - Viji Shridhar
- Department of Experimental Pathology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| |
Collapse
|
111
|
Wu X, Daniels G, Lee P, Monaco ME. Lipid metabolism in prostate cancer. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2014; 2:111-120. [PMID: 25374912 PMCID: PMC4219300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 06/25/2014] [Indexed: 06/04/2023]
Abstract
The malignant transformation of cells requires adaptations across multiple metabolic processes to satisfy the energy required for their increased rate of proliferation. Dysregulation of lipid metabolism has been a hallmark of the malignant phenotype; increased lipid accumulation secondary to changes in the levels of a variety of lipid metabolic enzymes has been documented in a variety of tumors, including prostate. Alterations in prostate lipid metabolism include upregulation of several lipogenic enzymes as well as of enzymes that function to oxidize fatty acids as an energy source. Cholesterol metabolism and phospholipid metabolism are also affected. With respect to lipogenesis, most studies have concentrated on increased expression and activity ofthe de novo fatty acid synthesis enzyme, fatty acid synthase (FASN), with suggestions that FASN might function as an oncogene. A central role for fatty acid oxidation in supplying energy to the prostate cancer cell is supported by the observation that the peroxisomal enzyme, α-methylacyl-CoA racemase (AMACR), which facilitates the transformation of branched chain fatty acids to a form suitable for β-oxidation, is highly overexpressed in prostate cancer compared with normal prostate. Exploitation of the alterations in lipid metabolic pathways in prostate cancer could result in the development of new therapeutic modalities as well as provide candidates for new prognostic and predictive biomarkers. AMACR has already proven to be a valuable biomarker in distinguishing normal from malignant prostate tissue, and is used routinely in clinical practice.
Collapse
Affiliation(s)
- Xinyu Wu
- Department of Pathology,Physiology, New York University School of MedicineNew York, NY, USA
| | - Garrett Daniels
- Department of Pathology,Physiology, New York University School of MedicineNew York, NY, USA
| | - Peng Lee
- Department of Pathology,Physiology, New York University School of MedicineNew York, NY, USA
- VA New York Harbor Healthcare SystemNew York, NY, USA
| | - Marie E Monaco
- VA New York Harbor Healthcare SystemNew York, NY, USA
- Department of Neuroscience & Physiology, New York University School of MedicineNew York, NY, USA
| |
Collapse
|
112
|
Swierczynski J, Hebanowska A, Sledzinski T. Role of abnormal lipid metabolism in development, progression, diagnosis and therapy of pancreatic cancer. World J Gastroenterol 2014; 20:2279-303. [PMID: 24605027 PMCID: PMC3942833 DOI: 10.3748/wjg.v20.i9.2279] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/25/2013] [Accepted: 01/03/2014] [Indexed: 02/07/2023] Open
Abstract
There is growing evidence that metabolic alterations play an important role in cancer development and progression. The metabolism of cancer cells is reprogrammed in order to support their rapid proliferation. Elevated fatty acid synthesis is one of the most important aberrations of cancer cell metabolism. An enhancement of fatty acids synthesis is required both for carcinogenesis and cancer cell survival, as inhibition of key lipogenic enzymes slows down the growth of tumor cells and impairs their survival. Based on the data that serum fatty acid synthase (FASN), also known as oncoantigen 519, is elevated in patients with certain types of cancer, its serum level was proposed as a marker of neoplasia. This review aims to demonstrate the changes in lipid metabolism and other metabolic processes associated with lipid metabolism in pancreatic ductal adenocarcinoma (PDAC), the most common pancreatic neoplasm, characterized by high mortality. We also addressed the influence of some oncogenic factors and tumor suppressors on pancreatic cancer cell metabolism. Additionally the review discusses the potential role of elevated lipid synthesis in diagnosis and treatment of pancreatic cancer. In particular, FASN is a viable candidate for indicator of pathologic state, marker of neoplasia, as well as, pharmacological treatment target in pancreatic cancer. Recent research showed that, in addition to lipogenesis, certain cancer cells can use fatty acids from circulation, derived from diet (chylomicrons), synthesized in liver, or released from adipose tissue for their growth. Thus, the interactions between de novo lipogenesis and uptake of fatty acids from circulation by PDAC cells require further investigation.
Collapse
|
113
|
Bi X, Rexer B, Arteaga CL, Guo M, Mahadevan-Jansen A. Evaluating HER2 amplification status and acquired drug resistance in breast cancer cells using Raman spectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:025001. [PMID: 24496495 PMCID: PMC3913568 DOI: 10.1117/1.jbo.19.2.025001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 12/27/2013] [Indexed: 05/05/2023]
Abstract
The overexpression of human epidermal growth factor receptor 2 (HER2) is associated with increased breast cancer recurrence and worse prognosis. Effective treatments such as trastuzumab and lapatinib for patients with HER2 overexpression target the blockade of HER2 signaling activities but are often limited by the emergence of acquired drug resistance. This study applied Raman spectroscopy to differentially identify the amplification status of HER2 in cells and to characterize the biochemical composition of lapatinib resistant and sensitive HER2+ breast cancer cells in response to the drug. Raman spectra from BT474 (HER2+ breast cancer cell), MCF-10A (HER2- control), and HER2+ MCF-10A (HER2+ control) were analyzed using lasso and elastic-net regularized generalized linear models (glmnet) for multivariate statistical analysis and were discriminated to groups of different HER2 expression status with an overall 99% sensitivity and specificity. Enhanced lipid content and decreased proteome were observed in HER2+ cells. With lapatinib treatment, lapatinib-resistant breast cancer cells demonstrated sustained lipogenesis compared with the sensitive cells.
Collapse
Affiliation(s)
- Xiaohong Bi
- Vanderbilt University, Department of Biomedical Engineering, VU Station B #351631, 2301 Vanderbilt Place, Nashville, Tennessee 37235
- University of Texas Health Science Center at Houston, Department of Nanomedicine and Biomedical Engineering, CABIR 3SCR.4678, 1881 East Road, Houston, Texas 77054
- Address all correspondence to: Xiaohong Bi, E-mail: ; Anita Mahadevan-Jansen, E-mail:
| | - Brent Rexer
- Vanderbilt University, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee 37232
| | - Carlos L. Arteaga
- Vanderbilt University, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee 37232
| | - Mingsheng Guo
- Vanderbilt University, Vanderbilt Center for Quantitative Sciences, Nashville, Tennessee 37232
| | - Anita Mahadevan-Jansen
- Vanderbilt University, Department of Biomedical Engineering, VU Station B #351631, 2301 Vanderbilt Place, Nashville, Tennessee 37235
- Address all correspondence to: Xiaohong Bi, E-mail: ; Anita Mahadevan-Jansen, E-mail:
| |
Collapse
|
114
|
Agostini M, Almeida LY, Bastos DC, Ortega RM, Moreira FS, Seguin F, Zecchin KG, Raposo HF, Oliveira HCF, Amoêdo ND, Salo T, Coletta RD, Graner E. The fatty acid synthase inhibitor orlistat reduces the growth and metastasis of orthotopic tongue oral squamous cell carcinomas. Mol Cancer Ther 2013; 13:585-95. [PMID: 24362464 DOI: 10.1158/1535-7163.mct-12-1136] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fatty acid synthase (FASN) is the biosynthetic enzyme responsible for the endogenous synthesis of fatty acids. It is downregulated in most normal cells, except in lipogenic tissues such as liver, lactating breast, fetal lung, and adipose tissue. Conversely, several human cancers, including head and neck squamous cell carcinomas (HNSCC), overexpress FASN, which has been associated with poor prognosis and recently suggested as a metabolic oncoprotein. Orlistat is an irreversible inhibitor of FASN activity with cytotoxic properties on several cancer cell lines that inhibits tumor progression and metastasis in prostate cancer xenografts and experimental melanomas, respectively. To explore whether the inhibition of FASN could impact oral tongue squamous cell carcinoma (OTSCC) metastatic spread, an orthotopic model was developed by the implantation of SCC-9 ZsGreen LN-1 cells into the tongue of BALB/c nude mice. These cells were isolated through in vivo selection, show a more invasive behavior in vitro than the parental cells, and generate orthotopic tumors that spontaneously metastasize to cervical lymph nodes in 10 to 15 days only. SCC-9 ZsGreen LN-1 cells also exhibit enhanced production of MMP-2, ERBB2, and CDH2. The treatment with orlistat reduced proliferation and migration, promoted apoptosis, and stimulated the secretion of VEGFA165b by SCC-9 ZsGreen LN-1 cells. In vivo, the drug was able to decrease both the volume and proliferation indexes of the tongue orthotopic tumors and, importantly, reduced the number of metastatic cervical lymph nodes by 43%. These results suggest that FASN is a potential molecular target for the chemotherapy of patients with OTSCC.
Collapse
Affiliation(s)
- Michelle Agostini
- Corresponding Author: Edgard Graner, Department of Oral Diagnosis, School of Dentistry of Piracicaba, State University of Campinas (UNICAMP), Avenida Limeira 901, CP 52, Areão, Piracicaba, São Paulo 13414-018, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
LONG XINHUA, ZHANG GUOMEI, PENG AIFEN, LUO QINGFENG, ZHANG LIN, WEN HUICAI, ZHOU RONGPING, GAO SONG, ZHOU YANG, LIU ZHILI. Lapatinib alters the malignant phenotype of osteosarcoma cells via downregulation of the activity of the HER2-PI3K/AKT-FASN axis in vitro. Oncol Rep 2013; 31:328-34. [DOI: 10.3892/or.2013.2825] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 10/18/2013] [Indexed: 11/05/2022] Open
|
116
|
Banafa AM, Roshan S, Liu YY, Chen HJ, Chen MJ, Yang GX, He GY. Fucoidan induces G1 phase arrest and apoptosis through caspases-dependent pathway and ROS induction in human breast cancer MCF-7 cells. JOURNAL OF HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY. MEDICAL SCIENCES = HUA ZHONG KE JI DA XUE XUE BAO. YI XUE YING DE WEN BAN = HUAZHONG KEJI DAXUE XUEBAO. YIXUE YINGDEWEN BAN 2013; 33:717-724. [PMID: 24142726 DOI: 10.1007/s11596-013-1186-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 08/15/2013] [Indexed: 02/07/2023]
Abstract
Fucoidan is an active component of seaweed, which inhibits proliferation and induces apoptosis of several tumor cells while the detailed mechanisms underlying this process are still not clear. In this study, the effect of Fucoidan on the proliferation and apoptosis of human breast cancer MCF-7 cells and the molecular mechanism of Fucoidan action were investigated. Viable cell number of MCF-7 cells was decreased by Fucoidan treatment in a dose-dependent manner as measured by MTT assay. Fucoidan treatment resulted in G1 phase arrest of MCF-7 cells as revealed by flow cytometry, which was associated with the decrease in the gene expression of cyclin D1 and CDK-4. Annexin V/PI staining results showed that the number of apoptotic cells was associated with regulation of cytochrome C, caspase-8, Bax and Bcl-2 at transcriptional and translational levels. Both morphologic observation and Hoechst 33258 assay results confirmed the pro-apoptotic effect of Fucoidan. Meanwhile, the ROS production was also increased by Fucoidan treatment, which suggested that Fucoidan induced oxidative damage in MCF-7 cells. The results of present study demonstrated that Fucoidan could induce G1 phase arrest and apoptosis in MCF-7 cells through regulating the cell cycle and apoptosis-related genes or proteins expression, and ROS generation is also involved in these processes.
Collapse
Affiliation(s)
- Amal M Banafa
- The Genetic Engineering International Cooperation Base of Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Sadia Roshan
- The Genetic Engineering International Cooperation Base of Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yun-Yi Liu
- The Genetic Engineering International Cooperation Base of Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hui-Jie Chen
- The Genetic Engineering International Cooperation Base of Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ming-Jie Chen
- The Genetic Engineering International Cooperation Base of Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Guang-Xiao Yang
- The Genetic Engineering International Cooperation Base of Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Guang-Yuan He
- The Genetic Engineering International Cooperation Base of Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
117
|
Kwon JY, Weon JI, Koedrith P, Park KS, Kim IS, Seo YR. Identification of molecular candidates and interaction networks via integrative toxicogenomic analysis in a human cell line following low-dose exposure to the carcinogenic metals cadmium and nickel. Oncol Rep 2013; 30:1185-94. [PMID: 23828170 DOI: 10.3892/or.2013.2587] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 05/16/2013] [Indexed: 11/05/2022] Open
Abstract
Cadmium and nickel have been classified as carcinogenic to humans by the World Health Organization's International Agency for Research on Cancer. Given their prevalence in the environment, the fact that cadmium and nickel may cause diseases including cancer even at low doses is a cause for concern. However, the exact mechanisms underlying the toxicological effects induced by low-dose exposure to cadmium and nickel remain to be elucidated. Furthermore, it has recently been recognized that integrative analysis of DNA, mRNA and proteins is required to discover biomarkers and signaling networks relevant to human toxicant exposure. In the present study, we examined the deleterious effects of chronic low-dose exposure of either cadmium or nickel on global profiling of DNA copy number variation, mRNA and proteins. Array comparative genomic hybridization, gene expression microarray and functional proteomics were conducted, and a bioinformatics tool, which predicted signaling pathways, was applied to integrate data for each heavy metal separately and together. We found distinctive signaling networks associated with subchronic low-dose exposure to cadmium and nickel, and identified pathways common to both. ACTB, HSP90AA1, HSPA5 and HSPA8, which are key mediators of pathways related to apoptosis, proliferation and neoplastic processes, were key mediators of the same pathways in low-dose nickel and cadmium exposure in particular. CASP-associated signaling pathways involving CASP3, CASP7 and CASP9 were observed in cadmium-exposed cells. We found that HSP90AA1, one of the main modulators, interacted with HIF1A, AR and BCL2 in nickel-exposed cells. Interestingly, we found that HSP90AA1 was involved in the BCL2-associated apoptotic pathway in the nickel-only data, whereas this gene interacted with several genes functioning in CASP-associated apoptotic signaling in the cadmium-only data. Additionally, JUN and FASN were main modulators in nickel-responsive signaling pathways. Our results provide valuable biomarkers and distinctive signaling networks that responded to subchronic low-dose exposure to cadmium and nickel.
Collapse
Affiliation(s)
- Jee Young Kwon
- Department of Life Science, Institute of Environmental Medicine for Green Chemistry, Dongguk University, Seoul 100-715, Republic of Korea
| | | | | | | | | | | |
Collapse
|
118
|
Li N, Lu H, Chen C, Bu X, Huang P. Loss of fatty acid synthase inhibits the "HER2-PI3K/Akt axis" activity and malignant phenotype of Caco-2 cells. Lipids Health Dis 2013; 12:83. [PMID: 23725225 PMCID: PMC3689055 DOI: 10.1186/1476-511x-12-83] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 05/27/2013] [Indexed: 12/18/2022] Open
Abstract
Background Fatty acid synthase (FASN) is frequently activated and overexpressed in human cancers, and plays a crucial role in the carcinogenesis of various cancers. In this study, our aims were to explore the role of FASN in regulating the “HER2-PI3K/Akt axis” activity and malignant phenotype of colorectal cancer. Methods Caco-2 cells with a high expression of both HER2 and FASN were selected for functional characterization. Caco-2 cells were transfected with either the FASN specific RNAi plasmid or the negative control RNAi plasmid, followed by the RT-qPCR and western blot to examine the expression of FASN, HER2, PI3K and Akt. The MTT and colony formation assays were used to assess the proliferation potential. The migration was investigated by the transwell, and the apoptosis and cell cycle were assayed by the flow cytometry. Results Notably, the expression of FASN, HER2, PI3K and Akt were downregulated upon a silence of FASN. The proliferation was decreased after a downregulation of FASN, which was consistent with an increased apoptosis rate. The migration was also impaired in FASN-silenced cells. Conclusion A downregulation of FASN effectively inhibits the activity of “HER2-PI3K/Akt axis” and alters the malignant phenotype in colorectal cancer cells.
Collapse
Affiliation(s)
- Nan Li
- Department of Gastroenterology and Hepatology, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, Peoples R China.
| | | | | | | | | |
Collapse
|
119
|
Baumann J, Sevinsky C, Conklin DS. Lipid biology of breast cancer. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1509-17. [PMID: 23562840 DOI: 10.1016/j.bbalip.2013.03.011] [Citation(s) in RCA: 249] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 03/19/2013] [Accepted: 03/24/2013] [Indexed: 11/24/2022]
Abstract
Alterations in lipid metabolism have been reported in many types of cancer. Lipids have been implicated in the regulation of proliferation, differentiation, apoptosis, inflammation, autophagy, motility and membrane homeostasis. It is required that their biosynthesis is tightly regulated to ensure homeostasis and to prevent unnecessary energy expenditure. This review focuses on the emerging understanding of the role of lipids and lipogenic pathway regulation in breast cancer, including parallels drawn from the study of metabolic disease models, and suggestions on how these findings can potentially be exploited to promote gains in HER2/neu-positive breast cancer research. This article is part of a Special Issue entitled Lipid Metabolism in Cancer.
Collapse
Affiliation(s)
- Jan Baumann
- Cancer Research Center, Department of Biomedical Sciences, University at Albany, State University of New York, Rensselaer, NY, USA
| | | | | |
Collapse
|
120
|
Kao YC, Lee SW, Lin LC, Chen LT, Hsing CH, Hsu HP, Huang HY, Shiue YL, Chen TJ, Li CF. Fatty acid synthase overexpression confers an independent prognosticator and associates with radiation resistance in nasopharyngeal carcinoma. Tumour Biol 2013; 34:759-768. [PMID: 23208675 DOI: 10.1007/s13277-012-0605-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 11/20/2012] [Indexed: 12/24/2022] Open
Abstract
Fatty acid synthase (FASN) is overexpressed in many human cancers and associated with poor prognosis. However, the role of FASN in nasopharyngeal carcinoma (NPC) has not been studied. We evaluated the expression of FASN immunohistochemically in 124 NPC specimens, stratified them into two groups (FASN-high and FASN-low), and examined the correlation with various clinicopathological parameters. In two NPC cell lines, HONE1 and TW01, we targeted the FASN transcript by shRNAi and evaluated the effect on cell proliferation by WST-1 assay and radiation-induced apoptosis by measuring caspase-3 and caspase-7 activation. NPC with high FASN immunoexpression was correlated with advanced pT disease status and worse prognosis in terms of disease-specific survival, metastasis-free survival and local recurrence-free survival, compared to FASN-low group in both univariate and multivariate analyses. In the two NPC cell lines, endogenous FASN expression was significantly higher than the non-tumor keratinocyte, DOK. When the expression of FASN was suppressed by shRNAi, the tumor cells showed decreased cell proliferation and increased apoptosis after radiation. Our results supported FASN as an adverse prognostic marker in NPC, possibly by conferring cell growth advantage and resistance to radiation-induced apoptosis on tumor cells. The inhibition of FASN expression might be investigated as an adjunct in treatment, especially in radiation resistant NPC.
Collapse
Affiliation(s)
- Yu-Chien Kao
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Warmoes M, Jaspers JE, Xu G, Sampadi BK, Pham TV, Knol JC, Piersma SR, Boven E, Jonkers J, Rottenberg S, Jimenez CR. Proteomics of genetically engineered mouse mammary tumors identifies fatty acid metabolism members as potential predictive markers for cisplatin resistance. Mol Cell Proteomics 2013; 12:1319-34. [PMID: 23397111 DOI: 10.1074/mcp.m112.024182] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In contrast to various signatures that predict the prognosis of breast cancer patients, markers that predict chemotherapy response are still elusive. To detect such predictive biomarkers, we investigated early changes in protein expression using two mouse models for distinct breast cancer subtypes who have a differential knock-out status for the breast cancer 1, early onset (Brca1) gene. The proteome of cisplatin-sensitive BRCA1-deficient mammary tumors was compared with that of cisplatin-resistant mammary tumors resembling pleomorphic invasive lobular carcinoma. The analyses were performed 24 h after administration of the maximum tolerable dose of cisplatin. At this time point, drug-sensitive BRCA1-deficient tumors showed DNA damage, but cells were largely viable. By applying paired statistics and quantitative filtering, we identified highly discriminatory markers for the sensitive and resistant model. Proteins up-regulated in the sensitive model are involved in centrosome organization, chromosome condensation, homology-directed DNA repair, and nucleotide metabolism. Major discriminatory markers that were up-regulated in the resistant model were predominantly involved in fatty acid metabolism, such as fatty-acid synthase. Specific inhibition of fatty-acid synthase sensitized resistant cells to cisplatin. Our data suggest that exploring the functional link between the DNA damage response and cancer metabolism shortly after the initial treatment may be a useful strategy to predict the efficacy of cisplatin.
Collapse
Affiliation(s)
- Marc Warmoes
- OncoProteomics Laboratory, Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Vazquez-Martin A, Corominas-Faja B, Cufi S, Vellon L, Oliveras-Ferraros C, Menendez OJ, Joven J, Lupu R, Menendez JA. The mitochondrial H(+)-ATP synthase and the lipogenic switch: new core components of metabolic reprogramming in induced pluripotent stem (iPS) cells. Cell Cycle 2013; 12:207-18. [PMID: 23287468 PMCID: PMC3575450 DOI: 10.4161/cc.23352] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Induced pluripotent stem (iPS) cells share some basic properties, such as self-renewal and pluripotency, with cancer cells, and they also appear to share several metabolic alterations that are commonly observed in human tumors. The cancer cells' glycolytic phenotype, first reported by Otto Warburg, is necessary for the optimal routing of somatic cells to pluripotency. However, how iPS cells establish a Warburg-like metabolic phenotype and whether the metabolic pathways that support the bioenergetics of iPS cells are produced by the same mechanisms that are selected during the tumorigenic process remain largely unexplored. We recently investigated whether the reprogramming-competent metabotype of iPS cells involves changes in the activation/expression status of the H(+)-ATPase, which is a core component of mitochondrial oxidative phosphorylation that is repressed at both the activity and protein levels in human carcinomas, and of the lipogenic switch, which refers to a marked overexpression and hyperactivity of the acetyl-CoA carboxylase (ACACA) and fatty acid synthase (FASN) lipogenic enzymes that has been observed in nearly all examined cancer types. A comparison of a starting population of mouse embryonic fibroblasts and their iPS cell progeny revealed that somatic cell reprogramming involves a significant increase in the expression of ATPase inhibitor factor 1 (IF1), accompanied by extremely low expression levels of the catalytic β-F1-ATPase subunit. The pharmacological inhibition of ACACA and FASN activities markedly decreases reprogramming efficiency, and ACACA and FASN expression are notably upregulated in iPS cells. Importantly, iPS cells exhibited a significant intracellular accumulation of neutral lipid bodies; however, these bodies may be a reflection of intense lysosomal/autophagocytic activity rather than bona fide lipid droplet formation in iPS cells, as they were largely unresponsive to pharmacological modulation of PPARgamma and FASN activities. The AMPK agonist metformin, which endows somatic cells with a bioenergetic infrastructure that is protected against reprogramming, was found to drastically elongate fibroblast mitochondria, fully reverse the high IF1/β-F1-ATPase ratio and downregulate the ACACA/FASN lipogenic enzymes in iPS cells. The mitochondrial H(+)-ATP synthase and the ACACA/FASN-driven lipogenic switch are newly characterized as instrumental metabolic events that, by coupling the Warburg effect to anabolic metabolism, enable de-differentiation during the reprogramming of somatic cells to iPS cells.
Collapse
Affiliation(s)
- Alejandro Vazquez-Martin
- Metabolism & Cancer Group; Translational Research Laboratory; Catalan Institute of Oncology; Girona, Spain
- Girona Biomedical Research Institute; Girona, Spain
| | - Bruna Corominas-Faja
- Metabolism & Cancer Group; Translational Research Laboratory; Catalan Institute of Oncology; Girona, Spain
- Girona Biomedical Research Institute; Girona, Spain
| | - Sílvia Cufi
- Metabolism & Cancer Group; Translational Research Laboratory; Catalan Institute of Oncology; Girona, Spain
- Girona Biomedical Research Institute; Girona, Spain
| | - Luciano Vellon
- Reprogramming Unit; Fundación INBIOMED; San Sebastián; Gipuzkua, Spain
| | - Cristina Oliveras-Ferraros
- Metabolism & Cancer Group; Translational Research Laboratory; Catalan Institute of Oncology; Girona, Spain
- Girona Biomedical Research Institute; Girona, Spain
| | - Octavio J. Menendez
- Metabolism & Cancer Group; Translational Research Laboratory; Catalan Institute of Oncology; Girona, Spain
- Girona Biomedical Research Institute; Girona, Spain
| | - Jorge Joven
- Unitat de Recerca Biomèdica (URB-CRB); Institut d’Investigació Sanitària Pere Virgili; Universitat Rovira i Virgili; Reus, Spain
| | - Ruth Lupu
- Department of Medicine and Pathology; Division of Experimental Pathology; Mayo Clinic Cancer Center; Mayo Clinic; Rochester, MN USA
| | - Javier A. Menendez
- Metabolism & Cancer Group; Translational Research Laboratory; Catalan Institute of Oncology; Girona, Spain
- Girona Biomedical Research Institute; Girona, Spain
| |
Collapse
|
123
|
Liu H, Wu X, Dong Z, Luo Z, Zhao Z, Xu Y, Zhang JT. Fatty acid synthase causes drug resistance by inhibiting TNF-α and ceramide production. J Lipid Res 2013; 54:776-785. [PMID: 23319743 DOI: 10.1194/jlr.m033811] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Fatty acid synthase (FASN) is a key enzyme in the synthesis of palmitate, the precursor of major nutritional, energetic, and signaling lipids. FASN expression is upregulated in many human cancers and appears to be important for cancer cell survival. Overexpression of FASN has also been found to associate with poor prognosis and higher risk of recurrence of human cancers. Indeed, elevated FASN expression has been shown to contribute to drug resistance. However, the mechanism of FASN-mediated drug resistance is currently unknown. In this study, we show that FASN overexpression causes resistance to multiple anticancer drugs via inhibiting drug-induced ceramide production, caspase 8 activation, and apoptosis. We also show that FASN overexpression suppresses tumor necrosis factor-α production and nuclear factor-κB activation as well as drug-induced activation of neutral sphingomyelinase. Thus, TNF-α may play an important role in mediating FASN function in drug resistance.
Collapse
Affiliation(s)
- Hailan Liu
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN
| | - Xi Wu
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN
| | - Zizheng Dong
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN
| | - Zhiyong Luo
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN
| | - Zhenwen Zhao
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN
| | - Yan Xu
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN; IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN
| | - Jian-Ting Zhang
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN; IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
124
|
Pandey PR, Xing F, Sharma S, Watabe M, Pai SK, Iiizumi-Gairani M, Fukuda K, Hirota S, Mo YY, Watabe K. Elevated lipogenesis in epithelial stem-like cell confers survival advantage in ductal carcinoma in situ of breast cancer. Oncogene 2012. [PMID: 23208501 DOI: 10.1038/onc.2012.519] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Upregulation of lipogenesis is a hallmark of cancer and blocking the lipogenic pathway is known to cause tumor cell death by apoptosis. However, the exact role of lipogenesis in tumor initiation is as yet poorly understood. We examined the expression profile of key lipogenic genes in clinical samples of ductal carcinoma in situ (DCIS) of breast cancer and found that these genes were significantly upregulated in DCIS. We also isolated cancer stem-like cells (CSCs) from DCIS.com cell line using cell surface markers (CS24(-)CD44(+)ESA(+)) and found that this cell population has significantly higher tumor-initiating ability to generate DCIS compared with the non-stem-like population. Furthermore, the CSCs showed significantly higher level of expression of all lipogenic genes than the counterpart population from non-tumorigenic breast cancer cell line, MCF10A. Importantly, ectopic expression of SREBP1, the master regulator of lipogenic genes, in MCF10A significantly enhanced lipogenesis in stem-like cells and promoted cell growth as well as mammosphere formation. Moreover, SREBP1 expression significantly increased the ability of cell survival of CSCs from MCF10AT, another cell line that is capable of generating DCIS, in mouse and in cell culture. These results indicate that upregulation of lipogenesis is a pre-requisite for DCIS formation by endowing the ability of cell survival. We have also shown that resveratrol was capable of blocking the lipogenic gene expression in CSCs and significantly suppressed their ability to generate DCIS in animals, which provides us with a strong rationale to use this agent for chemoprevention against DCIS.
Collapse
Affiliation(s)
- P R Pandey
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Casaburi I, Puoci F, Chimento A, Sirianni R, Ruggiero C, Avena P, Pezzi V. Potential of olive oil phenols as chemopreventive and therapeutic agents against cancer: A review of in vitro studies. Mol Nutr Food Res 2012. [DOI: 10.1002/mnfr.201200503] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ivan Casaburi
- Department of Pharmaco-Biology and Pharmaceutical Sciences; University of Calabria; Italy
| | - Francesco Puoci
- Department of Pharmaco-Biology and Pharmaceutical Sciences; University of Calabria; Italy
| | - Adele Chimento
- Department of Pharmaco-Biology and Pharmaceutical Sciences; University of Calabria; Italy
| | - Rosa Sirianni
- Department of Pharmaco-Biology and Pharmaceutical Sciences; University of Calabria; Italy
| | - Carmen Ruggiero
- Department of Pharmaco-Biology and Pharmaceutical Sciences; University of Calabria; Italy
| | - Paola Avena
- Department of Pharmaco-Biology and Pharmaceutical Sciences; University of Calabria; Italy
| | - Vincenzo Pezzi
- Department of Pharmaco-Biology and Pharmaceutical Sciences; University of Calabria; Italy
| |
Collapse
|
126
|
Nieva C, Marro M, Santana-Codina N, Rao S, Petrov D, Sierra A. The lipid phenotype of breast cancer cells characterized by Raman microspectroscopy: towards a stratification of malignancy. PLoS One 2012; 7:e46456. [PMID: 23082122 PMCID: PMC3474759 DOI: 10.1371/journal.pone.0046456] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 08/30/2012] [Indexed: 01/23/2023] Open
Abstract
Although molecular classification brings interesting insights into breast cancer taxonomy, its implementation in daily clinical care is questionable because of its expense and the information supplied in a single sample allocation is not sufficiently reliable. New approaches, based on a panel of small molecules derived from the global or targeted analysis of metabolic profiles of cells, have found a correlation between activation of de novo lipogenesis and poorer prognosis and shorter disease-free survival for many tumors. We hypothesized that the lipid content of breast cancer cells might be a useful indirect measure of a variety of functions coupled to breast cancer progression. Raman microspectroscopy was used to characterize metabolism of breast cancer cells with different degrees of malignancy. Raman spectra from MDA-MB-435, MDA-MB-468, MDA-MB-231, SKBR3, MCF7 and MCF10A cells were acquired with an InVia Raman microscope (Renishaw) with a backscattered configuration. We used Principal Component Analysis and Partial Least Squares Discriminant Analyses to assess the different profiling of the lipid composition of breast cancer cells. Characteristic bands related to lipid content were found at 3014, 2935, 2890 and 2845 cm(-1), and related to lipid and protein content at 2940 cm(-1). A classificatory model was generated which segregated metastatic cells and non-metastatic cells without basal-like phenotype with a sensitivity of 90% and a specificity of 82.1%. Moreover, expression of SREBP-1c and ABCA1 genes validated the assignation of the lipid phenotype of breast cancer cells. Indeed, changes in fatty acid unsaturation were related with the epithelial-to-mesenchymal transition phenotype. Raman microspectroscopy is a promising technique for characterizing and classifying the malignant phenotype of breast cancer cells on the basis of their lipid profiling. The algorithm for the discrimination of metastatic ability is a first step towards stratifying breast cancer cells using this rapid and reagent-free tool.
Collapse
Affiliation(s)
- Claudia Nieva
- IDIBELL-Institut d'Investigació Biomèdica de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
- ICFO-Institut de Ciències Fotòniques, Parc Mediterrani de la Tecnologia, Castelldefels, Barcelona, Spain
| | - Monica Marro
- ICFO-Institut de Ciències Fotòniques, Parc Mediterrani de la Tecnologia, Castelldefels, Barcelona, Spain
| | - Naiara Santana-Codina
- IDIBELL-Institut d'Investigació Biomèdica de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
- UAB-Universitat Autònoma de Barcelona, Campus Bellaterra, Cerdanyola del Vallés, Barcelona, Spain
| | - Satish Rao
- Mount Sinai School of Medicine, New York, New York, United States of America
| | - Dmitri Petrov
- ICFO-Institut de Ciències Fotòniques, Parc Mediterrani de la Tecnologia, Castelldefels, Barcelona, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Angels Sierra
- IDIBELL-Institut d'Investigació Biomèdica de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
127
|
Wang S, Li W, Liu N, Zhang F, Liu H, Liu F, Liu J, Zhang T, Niu Y. Nek2A contributes to tumorigenic growth and possibly functions as potential therapeutic target for human breast cancer. J Cell Biochem 2012; 113:1904-14. [PMID: 22234886 DOI: 10.1002/jcb.24059] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Nek2A (NIMA-related kinases 2A) has been known as an important centrosome regulatory factor. The aim of this study was to investigate the expression of Nek2A and the role it played in different stages of breast cancer. We detected the expression of Nek2A in both mRNA and protein levels in MCF10 cell lines including MCF-10A, MCF-10DCIS.com, MCF-10CA1a and in human breast samples which contained normal breast tissue (NBT), breast ductal carcinoma in situ (DCIS), and invasive ductal carcinoma (IDC). Our study revealed that the mRNA and protein expression of Nek2A were significantly up-regulated in MCF-10DCIS.com and MCF-10CA1a cell lines as well as in human primary breast cancer tissue (DCIS and IDC). Our study also presented a correlation between Nek2A mRNA expression and some clinic pathological factors. We found that Nek2A mRNA expression was associated with molecular subtypes, ER, PR and Ki-67 immunoreactivity (P<0.05) in DCIS and associated with histological grade, lymph node metastasis, molecular subtypes, c-erbB-2, and Ki-67 expression (P<0.05) in IDC. In addition, we observed that ectopic expression of Nek2A in "normal" immortalized MCF-10A breast epithelial cell resulted in increased Nek2A which lead to abnormal centrosomes. Furthermore, knockdown of Nek2A in MCF-10DCIS.com could remarkably inhibit cell proliferation and induce cell cycle arrest in MCF-10DCIS.com cell line. These data suggested that Nek2A might bear a close relationship with development and progression of breast carcinoma, and highlighted its role as a novel potential biomarker for diagnosis and a possible therapeutic target for human breast cancer especially for DCIS.
Collapse
Affiliation(s)
- Shuling Wang
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Zhang F, Du G. Dysregulated lipid metabolism in cancer. World J Biol Chem 2012; 3:167-74. [PMID: 22937213 PMCID: PMC3430731 DOI: 10.4331/wjbc.v3.i8.167] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 08/09/2012] [Accepted: 08/16/2012] [Indexed: 02/05/2023] Open
Abstract
Alteration of lipid metabolism has been increasingly recognized as a hallmark of cancer cells. The changes of expression and activity of lipid metabolizing enzymes are directly regulated by the activity of oncogenic signals. The dependence of tumor cells on the dysregulated lipid metabolism suggests that proteins involved in this process are excellent chemotherapeutic targets for cancer treatment. There are currently several drugs under development or in clinical trials that are based on specifically targeting the altered lipid metabolic pathways in cancer cells. Further understanding of dysregulated lipid metabolism and its associated signaling pathways will help us to better design efficient cancer therapeutic strategy.
Collapse
Affiliation(s)
- Feng Zhang
- Feng Zhang, Guangwei Du, Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX 77030, United States
| | | |
Collapse
|
129
|
Li N, Bu X, Tian X, Wu P, Yang L, Huang P. Fatty acid synthase regulates proliferation and migration of colorectal cancer cells via HER2-PI3K/Akt signaling pathway. Nutr Cancer 2012; 64:864-70. [PMID: 22860766 DOI: 10.1080/01635581.2012.701704] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent evidence suggests that fatty acid synthase mediating de novo fatty acid synthesis plays a crucial role in the carcinogenesis process of various cancers. Moreover, HER2 and related PI3K/Akt signaling pathway, which links intimately with cellular metabolism, influence cancer biological behavior. However, it remains unknown whether malignant phenotype of colorectal cancer cells is regulated by the HER2-PI3K/Akt-FASN signaling pathway. In this study, Caco-2 cells were selected for functional characterization, and treated with ZSTK474, followed by RT-qPCR and Western blot assays examining PI3K, Akt, HER2, and FASN expression. The MTT and colony formation assays were used to assess proliferation. The migration was investigated by transwell, apoptosis, and cell-cycle analysis. We found that the blockade of PI3K/Akt signaling pathway by ZSTK474 treatment led to downregulation of PI3K, Akt, HER2, and FASN expression. The proliferation was decreased upon treatment which was consistent with an increased percentage of G(1) arrested cells instead of apoptosis. The migration of Caco-2 cells was also impaired by ZSTK474 treatment. Inhibition of HER2-PI3K/Akt signaling pathway suppresses FASN expression of Caco-2 cells, and inhibition of FASN expression changes malignant phenotype of Caco-2 cells.
Collapse
Affiliation(s)
- Nan Li
- Department of Internal Medicine, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
| | | | | | | | | | | |
Collapse
|
130
|
Liu Z, Wang Y, Wang S, Zhang J, Zhang F, Niu Y. Nek2C functions as a tumor promoter in human breast tumorigenesis. Int J Mol Med 2012; 30:775-82. [PMID: 22824957 DOI: 10.3892/ijmm.2012.1069] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Accepted: 06/15/2012] [Indexed: 11/06/2022] Open
Abstract
The serine⁄threonine kinase Nek2 has been proposed as a requirement for the progression of breast cancer. The aim of this study was to investigate the expression of Nek2C, which is a splice variant of Nek2, and the role it plays in the different stages of breast cancer. We investigated the role of Nek2C in the MCF10 breast cancer cell lines, MCF10A, MCF10AT, MCF10DCIS.com and MCF10CA1a, using RNA interference and plasmid transfection, as well as breast tissue samples of normal breast tissue (NBT), atypical ductal hyperplasia (ADH), ductal carcinoma in situ (DCIS) and invasive ductal carcinoma (IDC). We detected the mRNA Nek2C expression levels in the MCF10 cell lines and in human breast samples. Our results revealed that the mRNA expression of Nek2C was significantly upregulated in the MCF10DCIS.com and MCF10CA1a cell lines as well as in human primary breast cancer tissue (DCIS and IDC). As expected, the Nek2C downregulation, using RNA interference, decreased the survival, invasion and migration of MCF10DCIS.com and MCF10CA1a cells. Consistent with these results, the Nek2C upregulation in MCF10A and MCF10AT cells using plasmid transfection increased the survival ability of these cells. Our results also revealed a correlation between Nek2C mRNA expression levels and tumor grade. Taken together, our findings suggest that Nek2C plays a signicficant role in breast cancer development and that Nek2C inhibition may be a useful therapeutic approach to targeting human breast tumors.
Collapse
Affiliation(s)
- Ziyu Liu
- Department of Breast Cancer Pathology and Research Laboratory, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, PR China
| | | | | | | | | | | |
Collapse
|
131
|
Relat J, Blancafort A, Oliveras G, Cufí S, Haro D, Marrero PF, Puig T. Different fatty acid metabolism effects of (-)-epigallocatechin-3-gallate and C75 in adenocarcinoma lung cancer. BMC Cancer 2012; 12:280. [PMID: 22769244 PMCID: PMC3500220 DOI: 10.1186/1471-2407-12-280] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 07/02/2012] [Indexed: 12/11/2022] Open
Abstract
Background Fatty acid synthase (FASN) is overexpressed and hyperactivated in several human carcinomas, including lung cancer. We characterize and compare the anti-cancer effects of the FASN inhibitors C75 and (−)-epigallocatechin-3-gallate (EGCG) in a lung cancer model. Methods We evaluated in vitro the effects of C75 and EGCG on fatty acid metabolism (FASN and CPT enzymes), cellular proliferation, apoptosis and cell signaling (EGFR, ERK1/2, AKT and mTOR) in human A549 lung carcinoma cells. In vivo, we evaluated their anti-tumour activity and their effect on body weight in a mice model of human adenocarcinoma xenograft. Results C75 and EGCG had comparable effects in blocking FASN activity (96,9% and 89,3% of inhibition, respectively). In contrast, EGCG had either no significant effect in CPT activity, the rate-limiting enzyme of fatty acid β-oxidation, while C75 stimulated CPT up to 130%. Treating lung cancer cells with EGCG or C75 induced apoptosis and affected EGFR-signaling. While EGCG abolished p-EGFR, p-AKT, p-ERK1/2 and p-mTOR, C75 was less active in decreasing the levels of EGFR and p-AKT. In vivo, EGCG and C75 blocked the growth of lung cancer xenografts but C75 treatment, not EGCG, caused a marked animal weight loss. Conclusions In lung cancer, inhibition of FASN using EGCG can be achieved without parallel stimulation of fatty acid oxidation and this effect is related mainly to EGFR signaling pathway. EGCG reduce the growth of adenocarcinoma human lung cancer xenografts without inducing body weight loss. Taken together, EGCG may be a candidate for future pre-clinical development.
Collapse
Affiliation(s)
- Joana Relat
- Molecular Oncology (NEOMA), School of Medicine, University of Girona and Girona Institute for Biomedical Research (IDIBGi), 17071, Girona, Spain
| | | | | | | | | | | | | |
Collapse
|
132
|
Dysregulation of fatty acid synthesis and glycolysis in non-Hodgkin lymphoma. Proc Natl Acad Sci U S A 2012; 109:11818-23. [PMID: 22752304 DOI: 10.1073/pnas.1205995109] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The metabolic differences between B-NHL and primary human B cells are poorly understood. Among human B-cell non-Hodgkin lymphomas (B-NHL), primary effusion lymphoma (PEL) is a unique subset that is linked to infection with Kaposi's sarcoma-associated herpesvirus (KSHV). We report that the metabolic profiles of primary B cells are significantly different from that of PEL. Compared with primary B cells, both aerobic glycolysis and fatty acid synthesis (FAS) are up-regulated in PEL and other types of nonviral B-NHL. We found that aerobic glycolysis and FAS occur in a PI3K-dependent manner and appear to be interdependent. PEL overexpress the fatty acid synthesizing enzyme, FASN, and both PEL and other B-NHL were much more sensitive to the FAS inhibitor, C75, than primary B cells. Our findings suggest that FASN may be a unique candidate for molecular targeted therapy against PEL and other B-NHL.
Collapse
|
133
|
Del Barco S, Vazquez-Martin A, Cufí S, Oliveras-Ferraros C, Bosch-Barrera J, Joven J, Martin-Castillo B, Menendez JA. Metformin: multi-faceted protection against cancer. Oncotarget 2012; 2:896-917. [PMID: 22203527 PMCID: PMC3282095 DOI: 10.18632/oncotarget.387] [Citation(s) in RCA: 238] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The biguanide metformin, a widely used drug for the treatment of type 2 diabetes, may exert cancer chemopreventive effects by suppressing the transformative and hyperproliferative processes that initiate carcinogenesis. Metformin's molecular targets in cancer cells (e.g., mTOR, HER2) are similar to those currently being used for directed cancer therapy. However, metformin is nontoxic and might be extremely useful for enhancing treatment efficacy of mechanism-based and biologically targeted drugs. Here, we first revisit the epidemiological, preclinical, and clinical evidence from the last 5 years showing that metformin is a promising candidate for oncology therapeutics. Second, the anticancer effects of metformin by both direct (insulin-independent) and indirect (insulin-dependent) mechanisms are discussed in terms of metformin-targeted processes and the ontogenesis of cancer stem cells (CSC), including Epithelial-to-Mesenchymal Transition (EMT) and microRNAs-regulated dedifferentiation of CSCs. Finally, we present preliminary evidence that metformin may regulate cellular senescence, an innate safeguard against cellular immortalization. There are two main lines of evidence that suggest that metformin's primary target is the immortalizing step during tumorigenesis. First, metformin activates intracellular DNA damage response checkpoints. Second, metformin attenuates the anti-senescence effects of the ATP-generating glycolytic metabotype-the Warburg effect-, which is required for self-renewal and proliferation of CSCs. If metformin therapy presents an intrinsic barrier against tumorigenesis by lowering the threshold for stress-induced senescence, metformin therapeutic strategies may be pivotal for therapeutic intervention for cancer. Current and future clinical trials will elucidate whether metformin has the potential to be used in preventive and treatment settings as an adjuvant to current cancer therapeutics.
Collapse
Affiliation(s)
- Sonia Del Barco
- Medical Oncology, Catalan Institute of Oncology, Girona, Catalonia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
134
|
Fatty acid synthase expression associated with NAC1 is a potential therapeutic target in ovarian clear cell carcinomas. Br J Cancer 2012; 107:300-7. [PMID: 22653145 PMCID: PMC3394978 DOI: 10.1038/bjc.2012.246] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND This study examined the clinical significance of NAC1 and the expression level of its potential downstream target fatty acid synthase (FASN) in ovarian clear cell carcinomas (OCCCs), and evaluated the NAC1/FASN pathway as a potential therapeutic target. METHODS NAC1 and FASN expression and NACC1 gene amplification were assessed in ovarian cancers by immunohistochemistry, fluorescence in situ hybridisation, and clinical data collected by a retrospective chart review. C75, a FASN inhibitor, was used to assess whether this pathway represented a therapeutic target in OCCC. RESULTS High NAC1 expression was most frequent in clear cell tumours (40.0%:24/60). NACC1 gene amplification was identified in none of the 58 OCCCs. The frequency of NACC1 gene amplification was significantly higher in the high-grade serous histology than in the clear cell histology (P<0.01). NAC1 expression was significantly correlated with FASN expression in both OCCC samples and OCCC cell lines. Either high NAC1 expression or high FASN expression significantly correlated with shorter progression-free and overall survival (P=0.002 and 0.0048). NAC1 overexpression stimulated FASN expression, and NAC1 silencing using siRNA decreased FASN expression in OCCC cell lines. Profound growth inhibition was observed in C75-treated carcinoma cells with FASN overexpression when compared with the response in carcinoma cells without FASN expression. CONCLUSION These findings indicate that NAC1/FASN overexpression is critical to the growth and survival of a subset of OCCC. The FASN silencing by the C75-induced phenotypes depends on the expression status of the targeted cell line. Therefore, NAC1/FASN pathway-targeted therapy may benefit selected OCCC patients.
Collapse
|
135
|
Vamecq J, Colet JM, Vanden Eynde JJ, Briand G, Porchet N, Rocchi S. PPARs: Interference with Warburg' Effect and Clinical Anticancer Trials. PPAR Res 2012; 2012:304760. [PMID: 22654896 PMCID: PMC3357561 DOI: 10.1155/2012/304760] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 02/15/2012] [Accepted: 02/19/2012] [Indexed: 02/07/2023] Open
Abstract
The metabolic/cell signaling basis of Warburg's effect ("aerobic glycolysis") and the general metabolic phenotype adopted by cancer cells are first reviewed. Several bypasses are adopted to provide a panoramic integrated view of tumoral metabolism, by attributing a central signaling role to hypoxia-induced factor (HIF-1) in the expression of aerobic glycolysis. The cancer metabolic phenotype also results from alterations of other routes involving ras, myc, p53, and Akt signaling and the propensity of cancer cells to develop signaling aberrances (notably aberrant surface receptor expression) which, when present, offer unique opportunities for therapeutic interventions. The rationale for various emerging strategies for cancer treatment is presented along with mechanisms by which PPAR ligands might interfere directly with tumoral metabolism and promote anticancer activity. Clinical trials using PPAR ligands are reviewed and followed by concluding remarks and perspectives for future studies. A therapeutic need to associate PPAR ligands with other anticancer agents is perhaps an important lesson to be learned from the results of the clinical trials conducted to date.
Collapse
Affiliation(s)
- Joseph Vamecq
- Inserm, HMNO, CBP, CHRU Lille, 59037 Lille, France
- Biochemistry and Molecular Biology, HMNO, CBP, CHRU Lille, 59037 Lille, France
| | - Jean-Marie Colet
- Department of Human Biology and Toxicology, Faculty of Medicine and Pharmacy, UMons, 7000 Mons, Belgium
| | | | - Gilbert Briand
- Biochemistry and Molecular Biology, HMNO, CBP, CHRU Lille, 59037 Lille, France
| | - Nicole Porchet
- Biochemistry and Molecular Biology, HMNO, CBP, CHRU Lille, 59037 Lille, France
| | - Stéphane Rocchi
- Inserm U1065, IFR 50, Mediterranean Center of Molecular Medicine, 06204 Nice, France
| |
Collapse
|
136
|
Zaytseva YY, Rychahou PG, Gulhati P, Elliott VA, Mustain WC, O'Connor K, Morris AJ, Sunkara M, Weiss HL, Lee EY, Evers BM. Inhibition of fatty acid synthase attenuates CD44-associated signaling and reduces metastasis in colorectal cancer. Cancer Res 2012; 72:1504-17. [PMID: 22266115 DOI: 10.1158/0008-5472.can-11-4057] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Fatty acid synthase (FASN) and ATP-citrate lyase, key enzymes of de novo lipogenesis, are significantly upregulated and activated in many cancers and portend poor prognosis. Even though the role of lipogenesis in providing proliferative and survival advantages to cancer cells has been described, the impact of aberrant activation of lipogenic enzymes on cancer progression remains unknown. In this study, we found that elevated expression of FASN is associated with advanced stages of colorectal cancer (CRC) and liver metastasis, suggesting that it may play a role in progression of CRC to metastatic disease. Targeted inhibition of lipogenic enzymes abolished expression of CD44, a transmembrane protein associated with metastases in several cancers including CRC. In addition, inhibition of lipogenic enzymes and reduced expression of CD44 attenuated the activation of MET, Akt, FAK, and paxillin, which are known to regulate adhesion, migration, and invasion. These changes were consistent with an observed decrease in migration and adhesion of CRC cells in functional assays and with reorganization of actin cytoskeleton upon FASN inhibition. Despite the modest effect of FASN inhibition on tumor growth in xenografts, attenuation of lipogenesis completely abolished establishment of hepatic metastasis and formation of secondary metastasis. Together, our findings suggest that targeting de novo lipogenesis may be a potential treatment strategy for advanced CRC.
Collapse
|
137
|
The “HER2–PI3K/Akt–FASN Axis” Regulated Malignant Phenotype of Colorectal Cancer Cells. Lipids 2012; 47:403-11. [DOI: 10.1007/s11745-011-3649-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 12/15/2011] [Indexed: 12/23/2022]
|
138
|
Puig T, Aguilar H, Cufí S, Oliveras G, Turrado C, Ortega-Gutiérrez S, Benhamú B, López-Rodríguez ML, Urruticoechea A, Colomer R. A novel inhibitor of fatty acid synthase shows activity against HER2+ breast cancer xenografts and is active in anti-HER2 drug-resistant cell lines. Breast Cancer Res 2011; 13:R131. [PMID: 22177475 PMCID: PMC3326573 DOI: 10.1186/bcr3077] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Revised: 10/24/2011] [Accepted: 12/16/2011] [Indexed: 12/16/2022] Open
Abstract
Introduction Inhibiting the enzyme Fatty Acid Synthase (FASN) leads to apoptosis of breast carcinoma cells, and this is linked to human epidermal growth factor receptor 2 (HER2) signaling pathways in models of simultaneous expression of FASN and HER2. Methods In a xenograft model of breast carcinoma cells that are FASN+ and HER2+, we have characterised the anticancer activity and the toxicity profile of G28UCM, the lead compound of a novel family of synthetic FASN inhibitors. In vitro, we analysed the cellular and molecular interactions of combining G28UCM with anti-HER drugs. Finally, we tested the cytotoxic ability of G28UCM on breast cancer cells resistant to trastuzumab or lapatinib, that we developed in our laboratory. Results In vivo, G28UCM reduced the size of 5 out of 14 established xenografts. In the responding tumours, we observed inhibition of FASN activity, cleavage of poly-ADPribose polymerase (PARP) and a decrease of p-HER2, p- protein kinase B (AKT) and p-ERK1/2, which were not observed in the nonresponding tumours. In the G28UCM-treated animals, no significant toxicities occurred, and weight loss was not observed. In vitro, G28UCM showed marked synergistic interactions with trastuzumab, lapatinib, erlotinib or gefitinib (but not with cetuximab), which correlated with increases in apoptosis and with decreases in the activation of HER2, extracellular signal-regulated kinase (ERK)1/2 and AKT. In trastuzumab-resistant and in lapatinib-resistant breast cancer cells, in which trastuzumab and lapatinib were not effective, G28UCM retained the anticancer activity observed in the parental cells. Conclusions G28UCM inhibits fatty acid synthase (FASN) activity and the growth of breast carcinoma xenografts in vivo, and is active in cells with acquired resistance to anti-HER2 drugs, which make it a candidate for further pre-clinical development.
Collapse
Affiliation(s)
- Teresa Puig
- Institut d'Investigació Biomèdica de Girona, E-17071 Girona, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Pandey PR, Okuda H, Watabe M, Pai SK, Liu W, Kobayashi A, Xing F, Fukuda K, Hirota S, Sugai T, Wakabayashi G, Koeda K, Kashiwaba M, Suzuki K, Chiba T, Endo M, Fujioka T, Tanji S, Mo YY, Cao D, Wilber AC, Watabe K. Resveratrol suppresses growth of cancer stem-like cells by inhibiting fatty acid synthase. Breast Cancer Res Treat 2011; 130:387-398. [PMID: 21188630 PMCID: PMC3404809 DOI: 10.1007/s10549-010-1300-6] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 12/08/2010] [Indexed: 02/05/2023]
Abstract
Resveratrol is a natural polyphenolic compound and has been shown to exhibit cardio-protective as well as anti-neoplastic effects on various types of cancers. However, the exact mechanism of its anti-tumor effect is not clearly defined. Resveratrol has been shown to have strong hypolipidemic effect on normal adipocytes and as hyper-lipogenesis is a hallmark of cancer cell physiology, the effect of resveratrol on lipid synthesis in cancer stem-like cells (CD24(-)/CD44(+)/ESA(+)) that were isolated from both ER+ and ER- breast cancer cell lines was examined. The authors found that resveratrol significantly reduced the cell viability and mammosphere formation followed by inducing apoptosis in cancer stem-like cells. This inhibitory effect of resveratrol is accompanied by a significant reduction in lipid synthesis which is caused by the down-regulation of the fatty acid synthase (FAS) gene followed by up-regulation of pro-apoptotic genes, DAPK2 and BNIP3. The activation of apoptotic pathway in the cancer stem-like cells was suppressed by TOFA and by Fumonisin B1, suggesting that resveratrol-induced apoptosis is indeed through the modulation of FAS-mediated cell survival signaling. Importantly, resveratrol was able to significantly suppress the growth of cancer stem-like cells in an animal model of xenograft without showing apparental toxicity. Taken together, the results of this study indicate that resveratrol is capable of inducing apoptosis in the cancer stem-like cells through suppression of lipogenesis by modulating FAS expression, which highlights a novel mechanism of anti-tumor effect of resveratrol.
Collapse
Affiliation(s)
- Puspa R. Pandey
- Department of Medical Microbiology, Immunology & Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Hiroshi Okuda
- Department of Medical Microbiology, Immunology & Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Misako Watabe
- Department of Medical Microbiology, Immunology & Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Sudha K. Pai
- Department of Medical Microbiology, Immunology & Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Wen Liu
- Department of Medical Microbiology, Immunology & Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Aya Kobayashi
- Department of Medical Microbiology, Immunology & Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Fei Xing
- Department of Medical Microbiology, Immunology & Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Koji Fukuda
- Department of Medical Microbiology, Immunology & Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | | | | | | | | | | | | | | | - Masaki Endo
- Iwate Medical University, School of Medicine, Japan
| | | | - Susumu Tanji
- Iwate Medical University, School of Medicine, Japan
| | - Yin-Yuan Mo
- Department of Medical Microbiology, Immunology & Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Deliang Cao
- Department of Medical Microbiology, Immunology & Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Andrew C. Wilber
- Department of Surgery, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Kounosuke Watabe
- Department of Medical Microbiology, Immunology & Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| |
Collapse
|
140
|
Dayton A, Selvendiran K, Meduru S, Khan M, Kuppusamy ML, Naidu S, Kálai T, Hideg K, Kuppusamy P. Amelioration of doxorubicin-induced cardiotoxicity by an anticancer-antioxidant dual-function compound, HO-3867. J Pharmacol Exp Ther 2011; 339:350-7. [PMID: 21799049 PMCID: PMC3199994 DOI: 10.1124/jpet.111.183681] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Accepted: 07/26/2011] [Indexed: 01/08/2023] Open
Abstract
Doxorubicin (DOX) is a drug commonly used for the treatment of cancer. The development of resistance to DOX is common, and high cumulative doses cause potentially lethal cardiac side effects. HO-3867 (3,5-bis(4-fluorobenzylidene)-1-[(2,2,5,5-tetramethyl-2,5-dihydro-1-hydroxy-pyrrol-3-yl)methyl]piperidin-4-one), a synthetic curcumin analog, has been shown to exhibit both anticancer and cardioprotective effects. However, its cardioprotection in the setting of a conventional cancer therapy has not been established. This work investigated the use of HO-3867 and DOX to achieve a complementary outcome, i.e., increased toxicity toward cancer cells, and reduced cardiac toxicity. Combination treatment was investigated using DOX-resistant MCF-7 breast cancer cells [MCF-7 multidrug-resistant (MDR)] and BALB/c mice. Lower doses of HO-3867 and DOX (5 and 2.5 μM, respectively) reduced viability of MCF-7 MDR cells to an extent significantly greater than that when either drug was used alone, an effect equivalent to that induced by exposure to 50 μM DOX. In normal cardiac cells, the loss of viability from combination treatment was significantly lower than that induced by 50 μM DOX. Increases in apoptotic markers, e.g., cleaved caspase-3, and decreases in fatty acid synthase and pAkt expressions were observed by Western blotting. Mice treated with both HO-3867 and DOX showed significant improvement in cardiac functional parameters compared with mice treated with DOX alone. Reduced expression of Bcl-2 and pAkt was observed in mice treated with DOX alone, whereas mice given combination treatment showed levels similar to control. The study indicates that combination treatment of HO-3867 and DOX is a viable option for treatment of cancer with reduced cardiotoxic side effects.
Collapse
Affiliation(s)
- Alex Dayton
- Davis Heart and Lung Research Institute, Department of Internal Medicine, The Ohio State University, 420 W. 12th Avenue, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Affiliation(s)
- Hanley N Abramson
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, Michigan 48201, USA.
| |
Collapse
|
142
|
Expression of Long-chain Fatty Acyl-CoA Synthetase 4 in Breast and Prostate Cancers Is Associated with Sex Steroid Hormone Receptor Negativity. Transl Oncol 2011; 3:91-8. [PMID: 20360933 DOI: 10.1593/tlo.09202] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 11/01/2009] [Accepted: 11/04/2009] [Indexed: 01/05/2023] Open
Abstract
Previous studies have shown that key enzymes involved in lipid metabolic pathways are differentially expressed in normal compared with tumor tissues. However, the precise role played by dysregulated expression of lipid metabolic enzymes and altered lipid homeostasis in carcinogenesis remains to be established. Fatty acid synthase is overexpressed in a variety of cancers, including breast and prostate. The purpose of the present study was to examine the expression patterns of additional lipid metabolic enzymes in human breast and prostate cancers. This was accomplished by analysis of published expression databases, with confirmation by immunoblot assays. Our results indicate that the fatty acid-activating enzyme, long-chain fatty acyl-CoA synthetase 4 (ACSL4), is differentially expressed in human breast cancer as a function of estrogen receptor alpha (ER) status. In 10 separate studies, ACSL4 messenger RNA (mRNA) was overexpressed in ER-negative breast tumors. Of 50 breast cancer cell lines examined, 17 (89%) of 19 ER-positive lines were negative for ACSL4 mRNA expression and 20 (65%) of 31 ER-negative lines expressed ACSL4 mRNA. The inverse relationship between ER expression and ACSL4 expression was also observed for androgen receptor status in both breast and prostate cancers. Furthermore, loss of steroid hormone sensitivity, such as that observed in Raf1-transfected MCF-7 cells and LNCaP-AI cells, was associated with induction of ACSL4 expression. Ablation of ACSL4 expression inMDA-MB-231 breast cancer cells had no effect on cell proliferation; however, sensitivity to the cytotoxic effects of triacsin C was increased three-fold in the cells lacking ACSL4.
Collapse
|
143
|
Hu N, Li Y, Zhao Y, Wang Q, You JC, Zhang XD, Ye LH. A novel positive feedback loop involving FASN/p-ERK1/2/5-LOX/LTB4/FASN sustains high growth of breast cancer cells. Acta Pharmacol Sin 2011; 32:921-9. [PMID: 21643005 DOI: 10.1038/aps.2011.40] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
AIM To investigate the endogenous signaling pathways associated with high proliferation potential of breast cancer cells. METHODS Breast cancer cell lines LM-MCF-7 and MCF-7 with high and low proliferation capability were used. The promoter activity of fatty acid synthase (FASN) was examined using luciferase reporter gene assay. The expression level of FASN mRNA was measured using RT-PCR and real time PCR, respectively. The level of leukotriene B4 (LTB4) was determined with ELISA. The expression levels of 5-lipoxygenase (5-LOX) was analyzed using RT-PCR and Western blot, respectively. 5-Bromo-20-deoxyuridine (BrdU) incorporation assay was used to study the proliferation of LM-MCF-7 and MCF-7 cells. RESULTS The promoter activity of FASN was significantly higher in LM-MCF-7 cells than MCF-7 cells. Treatment of LM-MCF-7 cells with ERK1/2 inhibitor PD98059 (30-50 μmol/L) or LOX inhibitor NDGA (25 μmol/L) abolished the activation of FASN. Moreover, treatment of LM-MCF-7 cells with the specific 5-LOX inhibitor MK-886 (20-40 μmol/L) or 5-LOX siRNA (50-100 nmol/L) decreased the promoter activity of FASN. The level of LTB4, the final metabolite produced by 5-LOX, was significantly higher in LM-MCF-7 cells than MCF-7 cells. Administration of exogenous LTB4 (1-10 nmol/L) was able to stimulate the promoter activity of FASN in MCF-7 cells. Treatment of LM-MCF-7 cells with the FASN inhibitor cerulenin (10 μmol/L) reduced all the levels of p-ERK1/2, 5-LOX, and LTB4. Treatment of LM-MCF-7 cells with cerulenin, PD98059, or MK-886 abolished the proliferation. Administration of exogenous LTB4 (10 nmol/L) significantly increased BrdU incorporation in MCF-7 cells. CONCLUSION THESE results suggest a novel positive feedback loop involving FASN/p-ERK1/2/5-LOX/LTB4/FASN contributes to the sustaining growth of breast cancer LM-MCF-7 cells.
Collapse
|
144
|
Jin Q, Yuan LX, Boulbes D, Baek JM, Wang YN, Gomez-Cabello D, Hawke DH, Yeung SC, Lee MH, Hortobagyi GN, Hung MC, Esteva FJ. Fatty acid synthase phosphorylation: a novel therapeutic target in HER2-overexpressing breast cancer cells. Breast Cancer Res 2010; 12:R96. [PMID: 21080941 PMCID: PMC3046439 DOI: 10.1186/bcr2777] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2010] [Revised: 10/25/2010] [Accepted: 11/16/2010] [Indexed: 12/20/2022] Open
Abstract
Introduction The human epidermal growth factor receptor 2 (HER2) is a validated therapeutic target in breast cancer. Heterodimerization of HER2 with other HER family members results in enhanced tyrosine phosphorylation and activation of signal transduction pathways. HER2 overexpression increases the translation of fatty acid synthase (FASN), and FASN overexpression markedly increases HER2 signaling, which results in enhanced cell growth. However, the molecular mechanism and regulation of HER2 and FASN interaction are not well defined. Lapatinib is a small-molecule tyrosine kinase inhibitor that blocks phosphorylation of the epidermal growth factor receptor and HER2 in breast cancer cells, resulting in apoptosis. We hypothesized that FASN is directly phosphorylated by HER2, resulting in enhanced signaling and tumor progression in breast cancer cells. Methods Using mass spectrometry, we identified FASN as one of the proteins that is dephosphorylated by lapatinib in SKBR3 breast cancer cells. Immunofluorescence, immunoprecipitation, Western blotting, a kinase assay, a FASN enzymatic activity assay, an invasion assay, a cell viability assay and zymography were used to determine the role of FASN phosphorylation in invasion of SKBR3 and BT474 cells. The FASN inhibitor C75 and small interfering RNA were used to downregulate FASN expression and/or activity. Results Our data demonstrated that FASN is phosphorylated when it is in complex with HER2. FASN phosphorylation was induced by heregulin in HER2-overexpressing SKBR3 and BT474 breast cancer cells. Heregulin-induced FASN phosphorylation resulted in increased FASN enzymatic activity, which was inhibited by lapatinib. The FASN inhibitor C75 suppressed FASN activity by directly inhibiting HER2 and FASN phosphorylation. Blocking FASN phosphorylation and activity by lapatinib or C75 suppressed the activity of matrix metallopeptidase 9 and inhibited invasion of SKBR3 and BT474 cells. Conclusions FASN phosphorylation by HER2 plays an important role in breast cancer progression and may be a novel therapeutic target in HER2-overexpressing breast cancer cells.
Collapse
Affiliation(s)
- Quanri Jin
- Department of Breast Medical Oncology, The University of Texas M, D, Anderson Cancer Center, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Rysman E, Brusselmans K, Scheys K, Timmermans L, Derua R, Munck S, Van Veldhoven PP, Waltregny D, Daniëls VW, Machiels J, Vanderhoydonc F, Smans K, Waelkens E, Verhoeven G, Swinnen JV. De novo lipogenesis protects cancer cells from free radicals and chemotherapeutics by promoting membrane lipid saturation. Cancer Res 2010; 70:8117-26. [PMID: 20876798 DOI: 10.1158/0008-5472.can-09-3871] [Citation(s) in RCA: 539] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Activation of de novo lipogenesis in cancer cells is increasingly recognized as a hallmark of aggressive cancers and has been implicated in the production of membranes for rapid cell proliferation. In the current report, we provide evidence that this activation has a more profound role. Using a mass spectrometry-based phospholipid analysis approach, we show that clinical tumor tissues that display the lipogenic phenotype show an increase in the degree of lipid saturation compared with nonlipogenic tumors. Reversal of the lipogenic switch in cancer cells by treatment with the lipogenesis inhibitor soraphen A or by targeting lipogenic enzymes with small interfering RNA leads to a marked decrease in saturated and mono-unsaturated phospholipid species and increases the relative degree of polyunsaturation. Because polyunsaturated acyl chains are more susceptible to peroxidation, inhibition of lipogenesis increases the levels of peroxidation end products and renders cells more susceptible to oxidative stress-induced cell death. As saturated lipids pack more densely, modulation of lipogenesis also alters lateral and transversal membrane dynamics as revealed by diffusion of membrane-targeted green fluorescent protein and by the uptake and response to doxorubicin. These data show that shifting lipid acquisition from lipid uptake toward de novo lipogenesis dramatically changes membrane properties and protects cells from both endogenous and exogenous insults. These findings provide important new insights into the role of de novo lipogenesis in cancer cells, and they provide a rationale for the use of lipogenesis inhibitors as antineoplastic agents and as chemotherapeutic sensitizers.
Collapse
Affiliation(s)
- Evelien Rysman
- Laboratory for Experimental Medicine and Endocrinology, K.U. Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Flavin R, Peluso S, Nguyen PL, Loda M. Fatty acid synthase as a potential therapeutic target in cancer. Future Oncol 2010; 6:551-62. [PMID: 20373869 DOI: 10.2217/fon.10.11] [Citation(s) in RCA: 417] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Fatty acid synthase (FASN) is a key enzyme involved in neoplastic lipogenesis. Overexpression of FASN is common in many cancers, and accumulating evidence suggests that it is a metabolic oncogene with an important role in tumor growth and survival, making it an attractive target for cancer therapy. Early small-molecule FASN inhibitors such as cerulenin, C75 and orlistat have been shown to induce apoptosis in several cancer cell lines and to induce tumor growth delay in several cancer xenograft models but their mechanism is still not well understood. These molecules suffer from pharmacological limitations and weight loss as a side effect that prevent their development as systemic drugs. Several potent inhibitors have recently been reported that may help to unravel and exploit the full potential of FASN as a target for cancer therapy in the near future. Furthermore, novel sources of FASN inhibitors, such as green tea and dietary soy, make both dietary manipulation and chemoprevention potential alternative modes of therapy in the future.
Collapse
Affiliation(s)
- Richard Flavin
- Center for Molecular Oncologic Pathology, Dana Farber Cancer Institute, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, USA
| | | | | | | |
Collapse
|
147
|
Liu H, Liu JY, Wu X, Zhang JT. Biochemistry, molecular biology, and pharmacology of fatty acid synthase, an emerging therapeutic target and diagnosis/prognosis marker. INTERNATIONAL JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2010; 1:69-89. [PMID: 20706604 PMCID: PMC2919769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 07/16/2010] [Indexed: 05/29/2023]
Abstract
Human fatty acid synthase (FASN) is a 270-kDa cytosolic dimeric enzyme that is responsible for palmitate synthesis. FASN is slowly emerging and rediscovered as a marker for diagnosis and prognosis of human cancers. Recent studies showed that FASN is an oncogene and inhibition of FASN effectively and selectively kill cancer cells. With recent publications of the FASN crystal structure and the new development of FASN inhibitors, targeting FASN opens a new window of opportunity for metabolically combating cancers. In this article, we will review critically the recent progresses in understanding the structure, function, and the role of FASN in cancers and pharmacologically targeting FASN for human cancer treatment.
Collapse
Affiliation(s)
- Hailan Liu
- Department of Pharmacology and Toxicology and IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202
| | | | | | | |
Collapse
|
148
|
Serum HER-2 concentration is associated with insulin resistance and decreases after weight loss. Nutr Metab (Lond) 2010; 7:14. [PMID: 20184722 PMCID: PMC2841191 DOI: 10.1186/1743-7075-7-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 02/25/2010] [Indexed: 12/29/2022] Open
Abstract
Background HER2/neu is a member of the epidermal growth factor receptor family easily detectable in the serum of cancer patients. We aimed to evaluate circulating HER-2 concentrations in association with insulin resistance in healthy and obese subjects. Methods Insulin sensitivity (minimal model) and serum HER-2 concentrations were evaluated in a cross sectional study in men (cohort 1, n = 167) and longitudinally after weight loss in obese subjects (cohort 2, n = 30). Results Serum HER-2 concentrations were positively associated with BMI and waist circumference (both r = 0.18, p = 0.02), post-load glucose (r = 0.28, p = 0.001) and fasting triglycerides (r = 0.26, p = 0.001); and negatively associated with insulin sensitivity (r = -0.29, p = 0.002, n = 109). Subjects with type 2 diabetes showed significantly increased soluble serum HER-2 concentrations. In different multivariate regression models, fasting triglycerides emerged as the factor that independently contributed to 10-11% of serum HER-2 variance. Serum HER-2 concentrations correlated significantly with fasting triglycerides and insulin sensitivity index in subjects from cohort 2. Weight loss led to a significant decrease of serum HER-2 concentrations. The change in serum HER-2 concentrations were significantly associated with the change in percent body fat and fasting triglycerides in young (below the median age of the cohort) subjects. Conclusions Serum HER-2 concentrations might be implicated in the pathophysiology of insulin resistance and associated comorbidities.
Collapse
|
149
|
Nomura DK, Long JZ, Niessen S, Hoover HS, Ng SW, Cravatt BF. Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis. Cell 2010; 140:49-61. [PMID: 20079333 DOI: 10.1016/j.cell.2009.11.027] [Citation(s) in RCA: 763] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 08/18/2009] [Accepted: 11/04/2009] [Indexed: 12/21/2022]
Abstract
Tumor cells display progressive changes in metabolism that correlate with malignancy, including development of a lipogenic phenotype. How stored fats are liberated and remodeled to support cancer pathogenesis, however, remains unknown. Here, we show that the enzyme monoacylglycerol lipase (MAGL) is highly expressed in aggressive human cancer cells and primary tumors, where it regulates a fatty acid network enriched in oncogenic signaling lipids that promotes migration, invasion, survival, and in vivo tumor growth. Overexpression of MAGL in nonaggressive cancer cells recapitulates this fatty acid network and increases their pathogenicity-phenotypes that are reversed by an MAGL inhibitor. Impairments in MAGL-dependent tumor growth are rescued by a high-fat diet, indicating that exogenous sources of fatty acids can contribute to malignancy in cancers lacking MAGL activity. Together, these findings reveal how cancer cells can co-opt a lipolytic enzyme to translate their lipogenic state into an array of protumorigenic signals. PAPERFLICK:
Collapse
Affiliation(s)
- Daniel K Nomura
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
150
|
Furuta E, Okuda H, Kobayashi A, Watabe K. Metabolic genes in cancer: their roles in tumor progression and clinical implications. Biochim Biophys Acta Rev Cancer 2010; 1805:141-52. [PMID: 20122995 DOI: 10.1016/j.bbcan.2010.01.005] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2009] [Revised: 01/11/2010] [Accepted: 01/24/2010] [Indexed: 12/12/2022]
Abstract
Re-programming of metabolic pathways is a hallmark of physiological changes in cancer cells. The expression of certain genes that directly control the rate of key metabolic pathways including glycolysis, lipogenesis and nucleotide synthesis are drastically altered at different stages of tumor progression. These alterations are generally considered as an adaptation of tumor cells; however, they also contribute to the progression of tumor cells to become more aggressive phenotypes. This review summarizes the recent information about the mechanistic link of these genes to oncogenesis and their potential utility as diagnostic markers as well as for therapeutic targets. We particularly focus on three groups of genes; GLUT1, G6PD, TKTL1 and PGI/AMF in glycolytic pathway, ACLY, ACC1 and FAS in lipogenesis and RRM2, p53R2 and TYMS for nucleotide synthesis. All these genes are highly up-regulated in a variety of tumor cells in cancer patients, and they play active roles in tumor progression rather than expressing merely as a consequence of phenotypic change of the cancer cells. Molecular dissection of their orchestrated networks and understanding the exact mechanism of their expression will provide a window of opportunity to target these genes for specific cancer therapy. We also reviewed existing database of gene microarray to validate the utility of these genes for cancer diagnosis.
Collapse
Affiliation(s)
- Eiji Furuta
- Department of Medical Microbiology and Immunology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | | | | | | |
Collapse
|