101
|
Abstract
The present review describes brain imaging technologies that can be used to assess the effects of nutritional interventions in human subjects. Specifically, we summarise the biological relevance of their outcome measures, practical use and feasibility, and recommended use in short- and long-term nutritional studies. The brain imaging technologies described consist of MRI, including diffusion tensor imaging, magnetic resonance spectroscopy and functional MRI, as well as electroencephalography/magnetoencephalography, near-IR spectroscopy, positron emission tomography and single-photon emission computerised tomography. In nutritional interventions and across the lifespan, brain imaging can detect macro- and microstructural, functional, electrophysiological and metabolic changes linked to broader functional outcomes, such as cognition. Imaging markers can be considered as specific for one or several brain processes and as surrogate instrumental endpoints that may provide sensitive measures of short- and long-term effects. For the majority of imaging measures, little information is available regarding their correlation with functional endpoints in healthy subjects; therefore, imaging markers generally cannot replace clinical endpoints that reflect the overall capacity of the brain to behaviourally respond to specific situations and stimuli. The principal added value of brain imaging measures for human nutritional intervention studies is their ability to provide unique in vivo information on the working mechanism of an intervention in hypothesis-driven research. Selection of brain imaging techniques and target markers within a given technique should mainly depend on the hypothesis regarding the mechanism of action of the intervention, level (structural, metabolic or functional) and anticipated timescale of the intervention's effects, target population, availability and costs of the techniques.
Collapse
|
102
|
Jansen D, Zerbi V, Arnoldussen IAC, Wiesmann M, Rijpma A, Fang XT, Dederen PJ, Mutsaers MPC, Broersen LM, Lütjohann D, Miller M, Joosten LAB, Heerschap A, Kiliaan AJ. Effects of specific multi-nutrient enriched diets on cerebral metabolism, cognition and neuropathology in AβPPswe-PS1dE9 mice. PLoS One 2013; 8:e75393. [PMID: 24086523 PMCID: PMC3782450 DOI: 10.1371/journal.pone.0075393] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 08/12/2013] [Indexed: 11/30/2022] Open
Abstract
Recent studies have focused on the use of multi-nutrient dietary interventions in search of alternatives for the treatment and prevention of Alzheimer's disease (AD). In this study we investigated to which extent long-term consumption of two specific multi-nutrient diets can modulate AD-related etiopathogenic mechanisms and behavior in 11-12-month-old AβPPswe-PS1dE9 mice. Starting from 2 months of age, male AβPP-PS1 mice and wild-type littermates were fed either a control diet, the DHA+EPA+UMP (DEU) diet enriched with uridine monophosphate (UMP) and the omega-3 fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), or the Fortasyn® Connect (FC) diet enriched with the DEU diet plus phospholipids, choline, folic acid, vitamins and antioxidants. We performed behavioral testing, proton magnetic resonance spectroscopy, immunohistochemistry, biochemical analyses and quantitative real-time PCR to gain a better understanding of the potential mechanisms by which these multi-nutrient diets exert protective properties against AD. Our results show that both diets were equally effective in changing brain fatty acid and cholesterol profiles. However, the diets differentially affected AD-related pathologies and behavioral measures, suggesting that the effectiveness of specific nutrients may depend on the dietary context in which they are provided. The FC diet was more effective than the DEU diet in counteracting neurodegenerative aspects of AD and enhancing processes involved in neuronal maintenance and repair. Both diets elevated interleukin-1β mRNA levels in AβPP-PS1 and wild-type mice. The FC diet additionally restored neurogenesis in AβPP-PS1 mice, decreased hippocampal levels of unbound choline-containing compounds in wild-type and AβPP-PS1 animals, suggesting diminished membrane turnover, and decreased anxiety-related behavior in the open field behavior. In conclusion, the current data indicate that specific multi-nutrient diets can influence AD-related etiopathogenic processes. Intervention with the FC diet might be of interest for several other neurodegenerative and neurological disorders.
Collapse
Affiliation(s)
- Diane Jansen
- Department of Anatomy, Radboud University Nijmegen Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Valerio Zerbi
- Department of Anatomy, Radboud University Nijmegen Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Ilse A. C. Arnoldussen
- Department of Anatomy, Radboud University Nijmegen Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Maximilian Wiesmann
- Department of Anatomy, Radboud University Nijmegen Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Anne Rijpma
- Department of Anatomy, Radboud University Nijmegen Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Xiaotian T. Fang
- Department of Anatomy, Radboud University Nijmegen Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Pieter J. Dederen
- Department of Anatomy, Radboud University Nijmegen Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Martina P. C. Mutsaers
- Department of Anatomy, Radboud University Nijmegen Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Laus M. Broersen
- Nutricia Advanced Medical Nutrition, Danone Research, Centre for Specialised Nutrition, Wageningen, The Netherlands
| | - Dieter Lütjohann
- Institute for Clinical Chemistry and Clinical Pharmacology, University Clinics Bonn, Bonn, Germany
| | - Malgorzata Miller
- Department of General Internal Medicine, Radboud University Nijmegen Medical Centre, Nijmegen Institute for Infection, Inflammation and Immunity, Nijmegen, The Netherlands
| | - Leo A. B. Joosten
- Department of General Internal Medicine, Radboud University Nijmegen Medical Centre, Nijmegen Institute for Infection, Inflammation and Immunity, Nijmegen, The Netherlands
| | - Arend Heerschap
- Department of Radiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Amanda J. Kiliaan
- Department of Anatomy, Radboud University Nijmegen Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
103
|
Konagai C, Yanagimoto K, Hayamizu K, Han L, Tsuji T, Koga Y. Effects of krill oil containing n-3 polyunsaturated fatty acids in phospholipid form on human brain function: a randomized controlled trial in healthy elderly volunteers. Clin Interv Aging 2013; 8:1247-57. [PMID: 24098072 PMCID: PMC3789637 DOI: 10.2147/cia.s50349] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Krill oil, rich in n-3 (omega-3) polyunsaturated fatty acids (PUFAs) incorporated in phosphatidylcholine, has been reported to have many effects on physiological function. However, there are few studies using psychophysiological methods published that describe the effects of krill oil on brain function. We investigated the influence of ingestion of krill oil on cognitive function in elderly subjects by using near-infrared spectroscopy and electroencephalography. Methods A randomized, double-blind, parallel-group comparative study design was adopted. Forty-five healthy elderly males aged 61–72 years were assigned to receive 12 weeks of treatment with: medium-chain triglycerides as placebo; krill oil, which is rich in n-3 PUFAs incorporated in phosphatidylcholine; or sardine oil, which is abundant in n-3 PUFAs incorporated in triglycerides. Changes in oxyhemoglobin concentrations in the cerebral cortex during memory and calculation tasks were measured. The P300 component of event-related potentials was also measured during a working memory task. Results During the working memory task, changes in oxyhemoglobin concentrations in the krill oil and sardine oil groups were significantly greater than those in the medium-chain triglyceride group at week 12. The differential value for P300 latency in the krill oil group was significantly lower than that in the medium-chain triglyceride group at week 12. With regard to the calculation task, changes in oxyhemoglobin concentrations in the krill oil group were significantly greater than those in the medium-chain triglyceride group at week 12. Conclusion This study provides evidence that n-3 PUFAs activate cognitive function in the elderly. This is especially the case with krill oil, in which the majority of n-3 PUFAs are incorporated into phosphatidylcholine, causing it to be more effective than sardine oil, in which n-3 PUFAs are present as triglycerides.
Collapse
Affiliation(s)
- Chizuru Konagai
- Department of Food and Nutrition, Japan Women's University, Bunkyo-ku, Tokyo, Japan ; Department of Neuropsychiatry, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
104
|
Udani JK, Ritz BW. High potency fish oil supplement improves omega-3 fatty acid status in healthy adults: an open-label study using a web-based, virtual platform. Nutr J 2013; 12:112. [PMID: 23924406 PMCID: PMC3751074 DOI: 10.1186/1475-2891-12-112] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 08/01/2013] [Indexed: 12/20/2022] Open
Abstract
Background The health benefits of omega-3 fatty acids from fish are well known, and fish oil supplements are used widely in a preventive manner to compensate the low intake in the general population. The aim of this open-label study was to determine if consumption of a high potency fish oil supplement could improve blood levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and impact SF-12 mental and physical health scores in healthy adults. Methods A novel virtual clinical research organization was used along with the HS-Omega-3 Index, a measure of EPA and DHA in red blood cell membranes expressed as a percentage of total fatty acids that has been shown to correlate with a reduction in cardiovascular and other risk factors. Briefly, adult subjects (mean age 44 years) were recruited from among U.S. health food store employees and supplemented with 1.1 g/d of omega-3 from fish oil (756 mg EPA, 228 mg DHA, Minami Nutrition® MorEPA® Platinum) for 120 days (n = 157). Results Omega-3 status and mental health scores increased with supplementation (p < 0.001), while physical health scores remained unchanged. Conclusions The use of a virtual, web-based platform shows considerable potential for engaging in clinical research with normal, healthy subjects. A high potency fish oil supplement may further improve omega-3 status in a healthy population regularly consuming an omega-3 supplement.
Collapse
|
105
|
Kennedy DO, Jackson PA, Elliott JM, Scholey AB, Robertson BC, Greer J, Tiplady B, Buchanan T, Haskell CF. Cognitive and mood effects of 8 weeks' supplementation with 400 mg or 1000 mg of the omega-3 essential fatty acid docosahexaenoic acid (DHA) in healthy children aged 10–12 years. Nutr Neurosci 2013; 12:48-56. [DOI: 10.1179/147683009x388887] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
106
|
Karr JE, Alexander JE, Winningham RG. Omega-3 polyunsaturated fatty acids and cognition throughout the lifespan: A review. Nutr Neurosci 2013; 14:216-25. [DOI: 10.1179/1476830511y.0000000012] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
107
|
Kean JD, Camfield D, Sarris J, Kras M, Silberstein R, Scholey A, Stough C. A randomized controlled trial investigating the effects of PCSO-524, a patented oil extract of the New Zealand green lipped mussel (Perna canaliculus), on the behaviour, mood, cognition and neurophysiology of children and adolescents (aged 6-14 years) experiencing clinical and sub-clinical levels of hyperactivity and inattention: study protocol ACTRN12610000978066. Nutr J 2013; 12:100. [PMID: 23866813 PMCID: PMC3726332 DOI: 10.1186/1475-2891-12-100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 06/10/2013] [Indexed: 11/30/2022] Open
Abstract
Background The prevalence rate of attention-deficit/hyperactivity disorder (ADHD) within Western cultures is between 5% and 12%, and is the most common psychiatric illness among school-aged children, with an estimated 50% of these children retaining ADHD symptoms for the rest of their lives. Children with ADHD have lower blood levels of long-chain Poly Unsaturated Fatty Acids (LC PUFAs) compared with children without ADHD, and following PUFA supplementation, have shown improvements in ADHD-related symptoms. One highly promising marine based LC PUFA preparation is the Omega-3-rich Lyprinol/Omega XL which is a natural formulation containing standardised lipid extract of the New Zealand green lipped mussel (Perna canaliculus) known as PCSO-524® which contains a unique combination of free fatty acids, sterol esters, polar lipids and carotenoids. It is this unique combination of marine lipids that may assist in correcting the decreased levels of LC PUFA levels in children with symptoms of ADHD. The compound is a mixture belonging to a lipid group called sterol esters (SE). The fatty acids in the SE fraction are mainly myristic acid, palmitic acid, palmitoleic acid, stearic acid, oleic acid, linoleic acid, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). Lyprinol/Omega XL has previously been shown to contain a potent group of Omega-3 lipids that block the 5 - lipoxygenase metabolic pathway responsible for inflammation in the body. Methods A randomized double blind placebo controlled trial will be utilized to assess the effects of 14 weeks administration of Lyprinol/Omega XL versus placebo in 150 children aged 6 to 14 years with high levels of hyperactivity and inattention. Additionally, a range of cognitive, mood and central electrophysiological measures will be undertaken during the 14 week supplementation trial. The primary outcome measure, the Conners’ Parent Rating Scales will be completed initially at baseline, then in weeks 4, 8, 10, 14 and then again at 4 weeks post-administration (week 18). The results will contribute to our understanding of the efficacy of marine based Omega-3 s with high anti-inflammatory actions on inattention and hyperactivity in children aged 6 to 14 years.
Collapse
|
108
|
Jansen D, Zerbi V, Janssen CIF, van Rooij D, Zinnhardt B, Dederen PJ, Wright AJ, Broersen LM, Lütjohann D, Heerschap A, Kiliaan AJ. Impact of a multi-nutrient diet on cognition, brain metabolism, hemodynamics, and plasticity in apoE4 carrier and apoE knockout mice. Brain Struct Funct 2013; 219:1841-68. [PMID: 23832599 DOI: 10.1007/s00429-013-0606-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 06/24/2013] [Indexed: 11/28/2022]
Abstract
Lipid metabolism and genetic background together strongly influence the development of both cardiovascular and neurodegenerative diseases like Alzheimer's disease (AD). A non-pharmacological way to prevent the genotype-induced occurrence of these pathologies is given by dietary behavior. In the present study, we tested the effects of long-term consumption of a specific multi-nutrient diet in two models for atherosclerosis and vascular risk factors in AD: the apolipoprotein ε4 (apoE4) and the apoE knockout (apoE ko) mice. This specific multi-nutrient diet was developed to support neuronal membrane synthesis and was expected to contribute to the maintenance of vascular health. At 12 months of age, both genotypes showed behavioral changes compared to control mice and we found increased neurogenesis in apoE ko mice. The specific multi-nutrient diet decreased anxiety-related behavior in the open field, influenced sterol composition in serum and brain tissue, and increased the concentration of omega-3 fatty acids in the brain. Furthermore, we found that wild-type and apoE ko mice fed with this multi-nutrient diet showed locally increased cerebral blood volume and decreased hippocampal glutamate levels. Taken together, these data suggest that a specific dietary intervention has beneficial effects on early pathological consequences of hypercholesterolemia and vascular risk factors for AD.
Collapse
Affiliation(s)
- Diane Jansen
- Department of Anatomy, Radboud University Nijmegen Medical Centre, Donders Institute for Brain, Cognition and Behaviour, PO Box 9101, 6500 HB, Nijmegen, The Netherlands,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
A database of chromatographic properties and mass spectra of fatty acid methyl esters from omega-3 products. J Chromatogr A 2013; 1299:94-102. [DOI: 10.1016/j.chroma.2013.05.056] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 05/09/2013] [Accepted: 05/22/2013] [Indexed: 11/21/2022]
|
110
|
Concomitant docosahexaenoic acid administration ameliorates stress-induced cognitive impairment in rats. Physiol Behav 2013; 118:171-7. [PMID: 23672853 DOI: 10.1016/j.physbeh.2013.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 04/04/2012] [Accepted: 05/03/2013] [Indexed: 01/20/2023]
Abstract
Long chain n-3 fatty acids, especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) may slow cognitive decline. DHA plays an important role in neural function and decreased plasma DHA are associated with cognitive decline in healthy elderly adults and in patients with Alzheimer's disease. In this study we tested a hypothesis that DHA protects cognitive functions of male Wistar rats against negative impact of prolonged restraint stress. Specifically, we attempted to characterize the preventive action of prolonged treatment with DHA enriched preparation (daily dose of DHA: 300mg/kg, p.o. for 21days) in comparison with positive control (fluoxetine: 10mg/kg daily, p.o. for 21days) against an impairment caused by chronic restraint stress (2h daily for 21days) on recognition memory tested in a object recognition task and on the spatial working memory tested in Morris water maze. We found that administration of DHA enriched preparation prevented deleterious effects of chronic restraint stress both on recognition (p<0.01) and on the working spatial memory (p<0.001).
Collapse
|
111
|
Stonehouse W, Conlon CA, Podd J, Hill SR, Minihane AM, Haskell C, Kennedy D. DHA supplementation improved both memory and reaction time in healthy young adults: a randomized controlled trial. Am J Clin Nutr 2013; 97:1134-43. [PMID: 23515006 DOI: 10.3945/ajcn.112.053371] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Docosahexaenoic acid (DHA) is important for brain function, and its status is dependent on dietary intakes. Therefore, individuals who consume diets low in omega-3 (n-3) polyunsaturated fatty acids may cognitively benefit from DHA supplementation. Sex and apolipoprotein E genotype (APOE) affect cognition and may modulate the response to DHA supplementation. OBJECTIVES We investigated whether a DHA supplement improves cognitive performance in healthy young adults and whether sex and APOE modulate the response. DESIGN Healthy adults (n = 176; age range: 18-45 y; nonsmoking and with a low intake of DHA) completed a 6-mo randomized, placebo-controlled, double-blind intervention in which they consumed 1.16 g DHA/d or a placebo. Cognitive performance was assessed by using a computerized cognitive test battery. For all tests, z scores were calculated and clustered into cognitive domains as follows: episodic and working memory, attention, reaction time (RT) of episodic and working memory, and attention and processing speed. ANCOVA was conducted with sex and APOE as independent variables. RESULTS RTs of episodic and working memory improved with DHA compared with placebo [mean difference (95% CI): -0.18 SD (-0.33, -0.03 SD) (P = 0.02) and -0.36 SD (-0.58, -0.14 SD) (P = 0.002), respectively]. Sex × treatment interactions occurred for episodic memory (P = 0.006) and the RT of working memory (P = 0.03). Compared with the placebo, DHA improved episodic memory in women [0.28 SD (0.08, 0.48 SD); P = 0.006] and RTs of working memory in men [-0.60 SD (-0.95, -0.25 SD); P = 0.001]. APOE did not affect cognitive function, but there were some indications of APOE × sex × treatment interactions. CONCLUSIONS DHA supplementation improved memory and the RT of memory in healthy, young adults whose habitual diets were low in DHA. The response was modulated by sex. This trial was registered at the New Zealand Clinical Trials Registry (http://www.anzctr.org.au/default.aspx) as ACTRN12610000212055.
Collapse
Affiliation(s)
- Welma Stonehouse
- Institute of Food, Nutrition and Human Health, Massey University, Auckland, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
112
|
Ashley JT, Ward JS, Anderson CS, Schafer MW, Zaoudeh L, Horwitz RJ, Velinsky DJ. Children's daily exposure to polychlorinated biphenyls from dietary supplements containing fish oils. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2013; 30:506-14. [DOI: 10.1080/19440049.2012.753161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
113
|
Lee LK, Shahar S, Chin AV, Yusoff NAM. Docosahexaenoic acid-concentrated fish oil supplementation in subjects with mild cognitive impairment (MCI): a 12-month randomised, double-blind, placebo-controlled trial. Psychopharmacology (Berl) 2013; 225:605-12. [PMID: 22932777 DOI: 10.1007/s00213-012-2848-0] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 08/08/2012] [Indexed: 10/27/2022]
Abstract
RATIONALE Epidemiological studies have suggested a beneficial effect of fish oil supplementation in halting the initial progression of Alzheimer's disease. However, it remains unclear whether fish oil affects cognitive function in older people with mild cognitive impairment (MCI). OBJECTIVES This study investigated the effects of fish oil supplementation on cognitive function in elderly person with MCI. METHODS This was a 12-month, randomised, double-blind, placebo-controlled study using fish oil supplementation with concentrated docosahexaenoic acid (DHA). Thirty six low-socioeconomic-status elderly subjects with MCI were randomly assigned to receive either concentrated DHA fish oil (n = 18) or placebo (n = 18) capsules. The changes of memory, psychomotor speed, executive function and attention, and visual-constructive skills were assessed using cognitive tests. Secondary outcomes were safety and tolerability of the DHA concentrate. RESULTS The fish oil group showed significant improvement in short-term and working memory (F = 9.890; ηp (2) = 0.254; p < 0.0001), immediate verbal memory (F = 3.715; ηp (2) = 0.114; p < 0.05) and delayed recall capability (F = 3.986; ηp (2) = 0.121; p < 0.05). The 12-month change in memory (p < 0.01) was significantly better in the fish oil group. Fish oil consumption was well tolerated, and the side effects were minimal and self-limiting. CONCLUSIONS This study suggested the potential role of fish oil to improve memory function in MCI subjects. Studies with larger sample sizes, longer intervention periods, different fish oil dosages and genetic determinations should be investigated before definite recommendations can be made.
Collapse
Affiliation(s)
- Lai Kuan Lee
- Nutrition Science Program, School of Health Care Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | | | | | | |
Collapse
|
114
|
Wibrand K, Berge K, Messaoudi M, Duffaud A, Panja D, Bramham CR, Burri L. Enhanced cognitive function and antidepressant-like effects after krill oil supplementation in rats. Lipids Health Dis 2013; 12:6. [PMID: 23351783 PMCID: PMC3618203 DOI: 10.1186/1476-511x-12-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 01/19/2013] [Indexed: 01/18/2023] Open
Abstract
Background The purpose of the study was to evaluate the effects of krill oil (KO) on cognition and depression-like behaviour in rats. Methods Cognition was assessed using the Aversive Light Stimulus Avoidance Test (ALSAT). The Unavoidable Aversive Light Stimulus (UALST) and the Forced Swimming Test (FST) were used to evaluate the antidepressant-like effects of KO. Imipramine (IMIP) was used as the antidepressant reference substance. Results After 7 weeks of KO intake, both males and females treated with KO were significantly better in discriminating between the active and the inactive levers in the ALSAT from day 1 of training (p<0.01). Both KO and IMIP prevented resignation/depression on the third day in the UALST. Similarly, a shorter immobility time was observed for the KO and IMIP groups compared to the control in the FST (p<0.001). These data support a robust antidepressant-like potential and beneficial cognitive effect of KO. Changes in expression of synaptic plasticity-related genes in the prefrontal cortex and hippocampus were also investigated. mRNA for brain-derived neurotrophic factor (Bdnf) was specifically upregulated in the hippocampus of female rats receiving 7 weeks of KO supplementation (p=0.04) and a similar trend was observed in males (p=0.08). Males also exhibited an increase in prefrontal cortex expression of Arc mRNA, a key protein in long-term synaptic plasticity (p=0.05). IMIP induced clear effects on several plasticity related genes including Bdnf and Arc. Conclusions These results indicate that active components (eicosapentaenoic acid, docosahexaenoic acid and astaxanthin) in KO facilitate learning processes and provide antidepressant-like effects. Our findings also suggest that KO might work through different physiological mechanisms than IMIP.
Collapse
Affiliation(s)
- Karin Wibrand
- Department of Biomedicine and KG Jebsen Centre for Research onNeuropsychiatric Disorders, University of Bergen, Jonas Lies vei 91, BergenNO-5009, Norway
| | | | | | | | | | | | | |
Collapse
|
115
|
Titanium-treated surroundings attenuate psychological stress associated with autonomic nerve regulation in office workers with daily emotional stress. Physiol Behav 2012; 108:13-8. [PMID: 23010090 DOI: 10.1016/j.physbeh.2012.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 08/24/2012] [Accepted: 09/17/2012] [Indexed: 11/21/2022]
Abstract
Housing mice in the presence of small particles of titanium has been shown to reduce stress-responsive behavior via the autonomic nervous system. Here, we examined the effects of nighttime titanium exposure on stress parameters and autonomic nerve activity in office workers with emotional stress. A randomized double-blind, placebo controlled trial was performed in 24 male subjects with desk jobs, who were randomly allocated to spend 5 nights in rooms with or without titanium. The serum concentrations of stress-responsive hormones (cortisol, adrenocorticotropin, and catecholamine) were measured, and profiles of emotional stress were collected to subjectively assess relaxation. Autonomic nerve activity was examined by power spectra analysis of heart rate variability. In psychological tests, factors related to tension (-14.5%, 95% CI=-15.7--2.1), anger (-11.3%, 95% CI=-13.9--0.7), and emotional stress (-28.5%, 95% CI=-30.0--5.3) were significantly decreased by exposure to titanium. The serum level of adrenocorticotropin was gradually elevated throughout the experimental period in the placebo group (day 4, 80.5%, 95% CI=7.1-37.5 vs. before trial) but not the titanium group. Power spectral analysis of R-R interval data showed a significant elevation in the high-frequency power spectral ratio in subjects housed in titanium rooms (days 1-2, 14.3%, 95% CI=4.7-21.9; days 3-4, 26.8%, 95% CI=4.9-38.7; and days 5-6, 24.1%, 95% CI=5.8-34.0 vs. before trial). These results suggest that sleeping in a room containing titanium lowers physiological and psychological stress.
Collapse
|
116
|
Nilsson A, Radeborg K, Salo I, Björck I. Effects of supplementation with n-3 polyunsaturated fatty acids on cognitive performance and cardiometabolic risk markers in healthy 51 to 72 years old subjects: a randomized controlled cross-over study. Nutr J 2012; 11:99. [PMID: 23173831 PMCID: PMC3564898 DOI: 10.1186/1475-2891-11-99] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Accepted: 11/20/2012] [Indexed: 11/13/2022] Open
Abstract
Background Higher plasma n-3 polyunsaturated fatty acids (PUFA) have been associated with a lower risk of age related cognitive decline, and to beneficially affect cardiometabolic risk factors. A relation exists between metabolic disorders such as diabetes type 2 and cognitive decline. Results regarding the potential effects of n-3 PUFA on risk factors in healthy subjects are divergent, and studies regarding the possible relation between cardiometabolic parameters and cognitive performance are scarce. The objective was to evaluate the effects of five weeks intake of long chain n-3 PUFA on cognitive performance in healthy individuals, and to exploit the possible relation between outcomes in cognitive tests to cardiometabolic risk parameters. Methods Fish oil n-3 PUFA (3g daily) were consumed during 5weeks separated by a 5 week washout period in a cross-over placebo controlled study, including 40 healthy middle aged to elderly subjects. Cognitive performance was determined by tests measuring working memory (WM) and selective attention. Results Supplementation with n-3 PUFA resulted in better performance in the WM-test compared with placebo (p < 0.05). In contrast to placebo, n-3 PUFA lowered plasma triacylglycerides (P < 0.05) and systolic blood pressure (p < 0.0001). Systolic blood pressure (p < 0.05), f-glucose (p = 0.05), and s-TNF-α (p = 0.05), were inversely related to the performance in cognitive tests. Conclusions Intake of n-3 PUFA improved cognitive performance in healthy subjects after five weeks compared with placebo. In addition, inverse relations were obtained between cardiometabolic risk factors and cognitive performance, indicating a potential of dietary prevention strategies to delay onset of metabolic disorders and associated cognitive decline.
Collapse
Affiliation(s)
- Anne Nilsson
- Division of Applied Nutrition and Food Chemistry, Department of Food Technology, Engineering and Nutrition, Lund University, Lund, Sweden.
| | | | | | | |
Collapse
|
117
|
Rombaldi Bernardi J, de Souza Escobar R, Ferreira CF, Pelufo Silveira P. Fetal and neonatal levels of omega-3: effects on neurodevelopment, nutrition, and growth. ScientificWorldJournal 2012; 2012:202473. [PMID: 23125553 PMCID: PMC3483668 DOI: 10.1100/2012/202473] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 09/19/2012] [Indexed: 01/08/2023] Open
Abstract
Nutrition in pregnancy, during lactation, childhood, and later stages has a fundamental influence on overall development. There is a growing research interest on the role of key dietary nutrients in fetal health. Omega-3 polyunsaturated fatty acids (n-3 LCPUFAs) play an important role in brain development and function. Evidence from animal models of dietary n-3 LCPUFAs deficiency suggests that these fatty acids promote early brain development and regulate behavioral and neurochemical aspects related to mood disorders (stress responses, depression, and aggression and growth, memory, and cognitive functions). Preclinical and clinical studies suggest the role of n-3 LCPUFAs on neurodevelopment and growth. n-3 LCPUFAs may be an effective adjunctive factor for neural development, growth, and cognitive development, but further large-scale, well-controlled trials and preclinical studies are needed to examine its clinical mechanisms and possible benefits. The present paper discusses the use of n-3 LCPUFAs during different developmental stages and the investigation of different sources of consumption. The paper summarizes the role of n-3 LCPUFAs levels during critical periods and their effects on the children's neurodevelopment, nutrition, and growth.
Collapse
Affiliation(s)
- Juliana Rombaldi Bernardi
- Núcleo de Estudos da Saúde da Criança e do Adolescente, Hospital de Clínicas de Porto Alegre-HCPA, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2350, 90035-903 Porto Alegre, RS, Brazil
| | | | | | | |
Collapse
|
118
|
Frensham LJ, Bryan J, Parletta N. Influences of micronutrient and omega-3 fatty acid supplementation on cognition, learning, and behavior: methodological considerations and implications for children and adolescents in developed societies. Nutr Rev 2012; 70:594-610. [DOI: 10.1111/j.1753-4887.2012.00516.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
119
|
Cognitive enhancement by omega-3 fatty acids from child-hood to old age: findings from animal and clinical studies. Neuropharmacology 2012; 64:550-65. [PMID: 22841917 DOI: 10.1016/j.neuropharm.2012.07.019] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Revised: 07/06/2012] [Accepted: 07/08/2012] [Indexed: 01/15/2023]
Abstract
Omega-(n)-3 polyunsaturated fatty acids (PUFAs), including docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are major components of neuronal membranes and have a wide range of functions, from modulating synaptic plasticity and neurochemistry, to neuroimmune-modulation and neuroprotection. Thus, it is not surprising that n-3 PUFA are widely acknowledged to have cognitive-enhancing effects. Although clinical evidence is somewhat conflicting, probably in large part due to methodological issues, animal studies have consistently demonstrated that n-3 PUFA are indispensable for proper brain development, may enhance cognitive function in healthy, adult individuals and attenuate cognitive impairment in aging and age-related disorders, such as dementia. This review discusses and integrates up to date evidence from clinical and animal studies investigating the cognitive-enhancing effects of n-3 PUFA during development, child- and adult-hood, as well as old-age with associated neurodegenerative diseases, such as Alzheimer's disease. Furthermore, we cover the major underlying biochemical and neurophysiological mechanisms by which n-3 PUFA mediate these effects on cognition. This article is part of a Special Issue entitled 'Cognitive Enhancers'.
Collapse
|
120
|
Polyunsaturated fatty acids as putative cognitive enhancers. Med Hypotheses 2012; 79:456-61. [PMID: 22800804 DOI: 10.1016/j.mehy.2012.06.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 06/21/2012] [Indexed: 01/03/2023]
Abstract
Polyunsaturated essential fatty acids (PUFAs) play a pivotal role in mediating cognitive, learning, and memory functions. We propose that PUFAs directly affect the neuronal membrane. PUFAs serve to stabilize and protect the structure and functions of the neuronal membrane. PUFAs exert many effects on the brain with respect to physiology, brain biochemistry, and disorders of the central nervous system. Many of these functions have effects at the cognitive level. This summary demonstrates that a deficiency in brain PUFAs will lead to cognitive deficits, while supplementation of PUFAs can rehabilitate cognitive deficits, as manifested in attention deficit hyperactivity disorder, stress/anxiety, and aging.
Collapse
|
121
|
Lavoie S, Schäfer MR, Whitford TJ, Benninger F, Feucht M, Klier CM, Yuen HP, Pantelis C, McGorry PD, Amminger GP. Frontal delta power associated with negative symptoms in ultra-high risk individuals who transitioned to psychosis. Schizophr Res 2012; 138:206-11. [PMID: 22520856 DOI: 10.1016/j.schres.2012.03.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 03/15/2012] [Accepted: 03/26/2012] [Indexed: 11/17/2022]
Abstract
It has recently been shown that treatment with long-chain omega-3 polyunsaturated fatty acids (PUFAs) could decrease the rate of transition to psychosis, and improve psychiatric symptoms and global functioning in people at ultra-high risk (UHR) for psychosis. Previous studies have suggested that resting state brain activity measured with electroencephalography (EEG) may represent an objective biomarker of changes in neural function associated with supplementation with omega-3 PUFAs. It has also been proposed that although resting state EEG cannot, by itself, predict transition to psychosis in UHR individuals, the combination of resting state EEG with negative symptoms may be a valid predictor of transition. The present study investigated whether treatment with omega-3 PUFAs influenced resting state EEG in UHR participants, and whether or not the association of the participants' resting state EEG with their levels of negative symptoms was dependent on their transition status. The brain activity of 73 UHR participants was recorded in the context of a randomized, placebo-controlled trial of the effects of supplementation with omega-3 PUFAs. The UHR participants who subsequently transitioned to psychosis (UHR+) did not differ from those who did not transition (UHR-) in terms of resting state EEG power in any frequency band. However, negative symptom scores were associated with increased delta activity in the frontal region of the UHR+ participants, but not in the UHR- participants. Treatment with omega-3 PUFAs did not induce changes in resting state EEG in either group. The results suggest that decreased frontal delta activity, in combination with high levels of negative symptoms, may be a risk factor for subsequent transition to psychosis in UHR individuals.
Collapse
Affiliation(s)
- Suzie Lavoie
- Orygen Youth Health Research Centre, Centre for Youth Mental Health, The University of Melbourne and Melbourne Health, 35 Poplar Road, Parkville 3052, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Andreeva VA, Galan P, Torrès M, Julia C, Hercberg S, Kesse-Guyot E. Supplementation with B vitamins or n-3 fatty acids and depressive symptoms in cardiovascular disease survivors: ancillary findings from the SUpplementation with FOLate, vitamins B-6 and B-12 and/or OMega-3 fatty acids (SU.FOL.OM3) randomized trial. Am J Clin Nutr 2012; 96:208-14. [PMID: 22648722 DOI: 10.3945/ajcn.112.035253] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Dietary factors might affect depressive symptoms. OBJECTIVE In secondary data analyses, we examined effects of supplementation with B vitamins or n-3 (omega-3) fatty acids on depressive symptoms in cardiovascular disease survivors. DESIGN The SUpplementation with FOLate, vitamins B-6 and B-12 and/or OMega-3 fatty acids (SU.FOL.OM3) trial was a secondary prevention trial (2003-2009; n = 2501) in which individuals aged 45-80 y were randomly assigned, by using a 2 × 2 factorial design, to receive 0.56 mg 5-methyl-tetrahydrofolate and vitamins B-6 (3 mg) and B-12 (0.02 mg); EPA and DHA (600 mg) in a 2:1 ratio; B vitamins and n-3 fatty acids; or a placebo. Depressive symptoms were evaluated at years 3 and 5 with the 30-item Geriatric Depression Scale (GDS). Overall and sex-specific ORs and 95% CIs were estimated in 2000 participants by using factorial logistic regression. RESULTS After a median of 4.7 y of supplementation, there was no association between allocation to receive B vitamins and depressive symptoms. However, the allocation to receive n-3 fatty acids was positively associated with depressive symptoms (GDS >10) in men (adjusted OR: 1.28; 95% CI: 1.03, 1.61) but not in women. CONCLUSIONS We showed no beneficial effects of a long-term, low-dose supplementation with B vitamins or n-3 fatty acids on depressive symptoms in cardiovascular disease survivors. The adverse effects of n-3 fatty acids in men merit confirmation.
Collapse
Affiliation(s)
- Valentina A Andreeva
- Nutritional Epidemiology Research Unit, University of Paris 13, Bobigny, France.
| | | | | | | | | | | |
Collapse
|
123
|
Trans Isomers of EPA and DHA in Omega-3 Products on the European Market. Lipids 2012; 47:659-67. [DOI: 10.1007/s11745-012-3672-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 04/03/2012] [Indexed: 10/28/2022]
|
124
|
Antypa N, Smelt AHM, Strengholt A, Van der Does AJW. Effects of omega-3 fatty acid supplementation on mood and emotional information processing in recovered depressed individuals. J Psychopharmacol 2012; 26:738-43. [PMID: 22004690 DOI: 10.1177/0269881111424928] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Beneficial effects of omega-3 fatty acids have been reported for several psychiatric disorders, particularly for depression. Association studies show a relationship between omega-3 intake and depression risk. Meta-analyses of clinical trials have shown a moderate effect of supplementation on depressive symptoms, but not on normal mood states. Few studies have investigated effects on cognition. The purpose of this study was to examine effects of omega-3 supplements on cognition and mood of recovered depressed individuals. Seventy-one participants were randomized to receive either omega-3 or placebo for four weeks in a randomized double-blind design. Results showed small effects of omega-3 supplementation on aspects of emotional decision-making and on self-reported states of depression and tension. Some of the effects were confounded by learning effects. No significant effects were observed on memory, attention, cognitive reactivity and depressive symptoms. While inconclusive, the present findings may indicate that omega-3 supplementation has selective effects on emotional cognition and mood in recovered depressed participants.
Collapse
Affiliation(s)
- Niki Antypa
- Institute of Psychology, Leiden University, Leiden, The Netherlands.
| | | | | | | |
Collapse
|
125
|
Zhao CH, Liu HQ, Cao R, Ji AL, Zhang L, Wang F, Yang RH. Effects of dietary fish oil on learning function and apoptosis of hippocampal pyramidal neurons in streptozotocin-diabetic rats. Brain Res 2012; 1457:33-43. [DOI: 10.1016/j.brainres.2012.03.067] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/28/2012] [Accepted: 03/31/2012] [Indexed: 10/28/2022]
|
126
|
Yang RH, Wang F, Hou XH, Cao ZP, Wang B, Xu XN, Hu SJ. Dietary ω-3 polyunsaturated fatty acids improves learning performance of diabetic rats by regulating the neuron excitability. Neuroscience 2012; 212:93-103. [PMID: 22516014 DOI: 10.1016/j.neuroscience.2012.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 03/30/2012] [Accepted: 04/07/2012] [Indexed: 11/25/2022]
Abstract
Previous research has demonstrated that diabetes induced learning and memory deficits. However, the mechanism of memory impairment induced by diabetes is poorly understood. Dietary fatty acids, especially polyunsaturated fatty acids (PUFA), have been shown to enhance learning and memory and prevent memory deficits in various experimental conditions. Sprague-Dawley rats were used in the present study to investigate the effect of fish oil supplementation on spatial learning and memory of streptozotocin (STZ)-induced diabetic rats with the Morris Water Maze. The excitability of CA1 pyramidal neurons and the related ionic currents was also examined. Diabetes impaired spatial learning and memory of rats. Diabetes decreased the sodium currents and increased the potassium currents, and further led to the reduction of excitability of CA1 pyramidal neurons, effects which may contribute to the behavioral deficits. Fish oil dietary supplementation decreased the transient currents and Kv4.2 expression in the hippocampus and partially improved learning performance of diabetic rats. The results of the present study suggested that sodium and potassium currents contributed to the inhibitory effect of diabetes on neuron excitability, further influencing learning and memory processing. Dietary fish oil may modulate the membrane excitability and is a possible strategy for preventing the impairments of diabetes on hippocampal function.
Collapse
Affiliation(s)
- R-H Yang
- Department of Nutrition and Food Hygiene, The Ministry of Education Key Laboratory of Hazard Assessment and Control in Special Operational Environment, School of Public Health, The Fourth Military Medical University, Xi'an 710032, PR China.
| | | | | | | | | | | | | |
Collapse
|
127
|
Abstract
The grey matter of the brain contains high levels of the essential nutrient DHA. Although the role of DHA in the developing brain and in dementia has attracted attention, its influence on the brain of the healthy adult has been little considered. A total of 285 young adult females took 400 mg of DHA, in a double-blind, placebo-controlled trial, for 50 d. After 50 d, recently acquired information was more likely to be forgotten by those who had consumed DHA. No significant differences in mood, reaction times, vigilance or visual acuity were found.
Collapse
|
128
|
Abstract
Background Dietary trans fatty acids (dTFA) are primarily synthetic compounds that have been introduced only recently; little is known about their behavioral effects. dTFA inhibit production of omega-3 fatty acids, which experimentally have been shown to reduce aggression. Potential behavioral effects of dTFA merit investigation. We sought to determine whether dTFA are associated with aggression/irritability. Methodolgy/Prinicpal Findings We capitalized on baseline dietary and behavioral assessments in an existing clinical trial to analyze the relationship of dTFA to aggression. Of 1,018 broadly sampled baseline subjects, the 945 adult men and women who brought a completed dietary survey to their baseline visit are the target of this analysis. Subjects (seen 1999–2004) were not on lipid medications, and were without LDL-cholesterol extremes, diabetes, HIV, cancer or heart disease. Outcomes assessed adverse behaviors with impact on others: Overt Aggression Scale Modified-aggression subscale (primary behavioral endpoint); Life History of Aggression; Conflict Tactics Scale; and self-rated impatience and irritability. The association of dTFA to aggression was analyzed via regression and ordinal logit, unadjusted and adjusted for potential confounders (sex, age, education, alcohol, and smoking). Additional analyses stratified on sex, age, and ethnicity, and examined the prospective association. Greater dTFA were strongly significantly associated with greater aggression, with dTFA more consistently predictive than other assessed aggression predictors. The relationship was upheld with adjustment for confounders, was preserved across sex, age, and ethnicity strata, and held cross-sectionally and prospectively. Conclusions/Significance This study provides the first evidence linking dTFA with behavioral irritability and aggression. While confounding is always a concern in observational studies, factors including strength and consistency of association, biological gradient, temporality, and biological plausibility add weight to the prospect of a causal connection. Our results may have relevance to public policy determinations regarding dietary trans fats. Clinicaltrials.gov # NCT00330980
Collapse
|
129
|
Gupta S, Knight AG, Gupta S, Keller JN, Bruce-Keller AJ. Saturated long-chain fatty acids activate inflammatory signaling in astrocytes. J Neurochem 2012; 120:1060-71. [PMID: 22248073 PMCID: PMC3296820 DOI: 10.1111/j.1471-4159.2012.07660.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This study describes the effects of long-chain fatty acids on inflammatory signaling in cultured astrocytes. Data show that the saturated fatty acid palmitic acid, as well as lauric acid and stearic acid, trigger the release of TNFα and IL-6 from astrocytes. Unsaturated fatty acids were unable to induce cytokine release from cultured astrocytes. Furthermore, the effects of palmitic acid on cytokine release require Toll-like receptor 4 rather than CD36 or Toll-like receptor 2, and do not depend on palmitic acid metabolism to palmitoyl-CoA. Inhibitor studies revealed that pharmacologic inhibition of p38 or p42/44 MAPK pathways prevents the pro-inflammatory effects of palmitic acid, whereas JNK and PI3K inhibition does not affect cytokine release. Depletion of microglia from primary astrocyte cultures using the lysosomotropic agent l-leucine methyl ester revealed that the ability of palmitic acid to trigger cytokine release is not dependent on the presence of microglia. Finally, data show that the essential ω-3 fatty acid docosahexaenoic acid acts in a dose-dependent manner to prevent the actions of palmitic acid on inflammatory signaling in astrocytes. Collectively, these data demonstrate the ability of saturated fatty acids to induce astrocyte inflammation in vitro. These data thus raise the possibility that high levels of circulating saturated fatty acids could cause reactive gliosis and brain inflammation in vivo, and could potentially participate in the reported adverse neurologic consequences of obesity and metabolic syndrome.
Collapse
|
130
|
Sampath Kumar NS, Satya Vijaya Kumar N, Jaiganesh R. Therapeutic drugs: healing power of marine fish. ADVANCES IN FOOD AND NUTRITION RESEARCH 2012; 65:269-286. [PMID: 22361194 DOI: 10.1016/b978-0-12-416003-3.00018-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Marine fish is a major source of high-quality protein, lipids, and a wide variety of vitamins and minerals. These macromolecules and their derivatives show different pharmacological activities, which make the fish as a therapeutic diet. Modern technology has made it easy to explore the therapeutic importance of fish-based diet on cardiovascular diseases, neurodegenerative diseases, radicals-mediated diseases, and cancer. In this review, we focus on exploration of proteins, lipids, carbohydrates, minerals, and their derivatives from marine fish as a major source for bioactive compounds and their medicinal importance.
Collapse
Affiliation(s)
- N S Sampath Kumar
- Department of Biotechnology, SRM University, Kattankulathur, Tamilnadu, India.
| | | | | |
Collapse
|
131
|
Docosahexaenoic acid-rich fish oil modulates the cerebral hemodynamic response to cognitive tasks in healthy young adults. Biol Psychol 2012; 89:183-90. [DOI: 10.1016/j.biopsycho.2011.10.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 09/01/2011] [Accepted: 10/08/2011] [Indexed: 01/16/2023]
|
132
|
Bauer I, Crewther DP, Pipingas A, Rowsell R, Cockerell R, Crewther SG. Omega-3 fatty acids modify human cortical visual processing--a double-blind, crossover study. PLoS One 2011; 6:e28214. [PMID: 22174778 PMCID: PMC3235106 DOI: 10.1371/journal.pone.0028214] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 11/03/2011] [Indexed: 12/14/2022] Open
Abstract
While cardiovascular and mood benefits of dietary omega-3 fatty acids such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are manifest, direct neurophysiological evidence of their effects on cortical activity is still limited. Hence we chose to examine the effects of two proprietary fish oil products with different EPA:DHA ratios (EPA-rich, high EPA:DHA; DHA-rich) on mental processing speed and visual evoked brain activity. We proposed that nonlinear multifocal visual evoked potentials (mfVEP) would be sensitive to any alteration of the neural function induced by omega-3 fatty acid supplementation, because the higher order kernel responses directly measure the degree of recovery of the neural system as a function of time following stimulation. Twenty-two healthy participants aged 18-34, with no known neurological or psychiatric disorder and not currently taking any nutritional supplementation, were recruited. A double-blind, crossover design was utilized, including a 30-day washout period, between two 30-day supplementation periods of the EPA-rich and DHA-rich diets (with order of diet randomized). Psychophysical choice reaction times and multi-focal nonlinear visual evoked potential (VEP) testing were performed at baseline (No Diet), and after each supplementation period. Following the EPA-rich supplementation, for stimulation at high luminance contrast, a significant reduction in the amplitude of the first slice of the second order VEP kernel response, previously related to activation in the magnocellular pathway, was observed. The correlations between the amplitude changes of short latency second and first order components were significantly different for the two supplementations. Significantly faster choice reaction times were observed psychophysically (compared with baseline performance) under the EPA-rich (but not DHA-rich) supplementation, while simple reaction times were not affected. The reduced nonlinearities observed under the EPA-rich diet suggest a mechanism involving more efficient neural recovery of magnocellular-like visual responses following cortical activation.
Collapse
Affiliation(s)
- Isabelle Bauer
- Brain Sciences Institute, Swinburne University of Technology, Melbourne, Victoria, Australia
| | - David P. Crewther
- Brain Sciences Institute, Swinburne University of Technology, Melbourne, Victoria, Australia
- * E-mail:
| | - Andrew Pipingas
- Brain Sciences Institute, Swinburne University of Technology, Melbourne, Victoria, Australia
| | - Renee Rowsell
- Brain Sciences Institute, Swinburne University of Technology, Melbourne, Victoria, Australia
| | - Robyn Cockerell
- Brain Sciences Institute, Swinburne University of Technology, Melbourne, Victoria, Australia
| | - Sheila G. Crewther
- School of Psychological Sciences, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
133
|
DHA-rich oil modulates the cerebral haemodynamic response to cognitive tasks in healthy young adults: a near IR spectroscopy pilot study. Br J Nutr 2011; 107:1093-8. [DOI: 10.1017/s0007114511004041] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The impact of dietary n-3 PUFA on behavioural outcomes has been widely researched; however, very little attention has been given to their impact on brain functioning in physiological terms. A total of twenty-two healthy adults took part in this double-blind, placebo-controlled study, wherein the cerebral haemodynamic effects of 12 weeks of daily dietary supplementation with either 1 g DHA-rich or 1 g EPA-rich fish oil (FO) or placebo (1 g olive oil) were assessed. Relative changes in the concentration of oxygenated Hb (oxy-Hb) and deoxygenated Hb were assessed in the prefrontal cortex using near IR spectroscopy (NIRS) during the performance of four computerised cognitive tasks. Supplementation with DHA-rich FO, in comparison with placebo, resulted in a significant increase in the concentrations of oxy-Hb and total levels of Hb, indicative of increased cerebral blood flow (CBF), during the cognitive tasks. In comparison, no effect on CBF was observed following supplementation with EPA-rich FO, where concentration changes in the chromophores followed the same pattern as placebo. These encouraging pilot data warrant further application of NIRS in this area.
Collapse
|
134
|
Ginty AT, Conklin SM. Preliminary evidence that acute long-chain omega-3 supplementation reduces cardiovascular reactivity to mental stress: a randomized and placebo controlled trial. Biol Psychol 2011; 89:269-72. [PMID: 21967854 DOI: 10.1016/j.biopsycho.2011.09.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 09/16/2011] [Accepted: 09/20/2011] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Exaggerated cardiovascular reactivity predicts cardiovascular morbidity and mortality. Some evidence suggests that omega-3 fatty acids improve cardiovascular function. The objective of this study was to examine the influence of an acute low dose of long-chain omega-3 fatty acids on young, healthy individuals. METHODS Participants (n=34) were randomly assigned to either 21-days of omega-3 fatty acids (1.4 g EPA and DHA) or matched placebo. Cardiovascular measurements were obtained in the laboratory during baseline and during a standard mental arithmetic task, where participants were instructed to engage in serial subtractions by 17s from a four-digit number and cardiovascular reactivity to the task was calculated. RESULTS Mean arterial pressure reactivity was significantly reduced by supplementation (F(1,32)=5. 12, p=.03, η(2)=.144) but not by placebo. CONCLUSION Supplementation of omega-3 fatty acids may reduce cardiovascular reactivity to stress.
Collapse
Affiliation(s)
- Annie T Ginty
- Department of Psychology and Neuroscience Program, Allegheny College, Meadville, PA 16335, USA.
| | | |
Collapse
|
135
|
Abstract
Walnuts contain a number of potentially neuroprotective compounds like vitamin E, folate, melatonin, several antioxidative polyphenols and significant amounts of n-3 α-linolenic fatty acid. The present study sought to determine the effect of walnuts on verbal and non-verbal reasoning, memory and mood. A total of sixty-four college students were randomly assigned to two treatment sequences in a crossover fashion: walnuts-placebo or placebo-walnuts. Baseline data were collected for non-verbal reasoning, verbal reasoning, memory and mood states. Data were collected again after 8 weeks of intervention. After 6 weeks of washout, the intervention groups followed the diets in reverse order. Data were collected once more at the end of the 8-week intervention period. No significant increases were detected for mood, non-verbal reasoning or memory on the walnut-supplemented diet. However, inferential verbal reasoning increased significantly by 11.2 %, indicating a medium effect size (P = 0.009; d = 0.567). In young, healthy, normal adults, walnuts do not appear to improve memory, mood or non-verbal reasoning abilities. However, walnuts may have the ability to increase inferential reasoning.
Collapse
|
136
|
No effect of 12 weeks' supplementation with 1 g DHA-rich or EPA-rich fish oil on cognitive function or mood in healthy young adults aged 18–35 years. Br J Nutr 2011; 107:1232-43. [DOI: 10.1017/s000711451100403x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Then-3 PUFA are a unique class of fatty acids that cannot be manufactured by the body, and must be acquired via dietary sources. In the UK, as well as in other Western nations, these ‘essential’ fatty acids are consumed in quantities that fall below government guidelines. The present study explored the effects of 12 weeks' dietary supplementation with 1 g/d of two types of fish oil (FO; DHA-rich and EPA-rich) in 159 healthy young adults aged 18–35 years. An assessment of performance on a battery of computerised cognitive tasks and mood measures took place before and following the 12-week treatment regimen. Venous blood samples were also supplied by participants at both time points which were later analysed for serum fatty acid concentrations. Despite good adherence to the study protocol – as reflected in increased concentrations ofn-3 serum fatty acids – compared with placebo, the observed effects of both active treatments were minimal. The only finding of note revealed that supplementation with EPA-rich FO may reduce subjective mental fatigue at times of high cognitive demand, although further investigation is required. These findings, taken together with other recent reports of null effects, suggest that dietary supplementation withn-3 PUFA in healthy, normally developing and impairment-free populations is unlikely to result in cognitive enhancement.
Collapse
|
137
|
Vakhapova V, Richter Y, Cohen T, Herzog Y, Korczyn AD. Safety of phosphatidylserine containing omega-3 fatty acids in non-demented elderly: a double-blind placebo-controlled trial followed by an open-label extension. BMC Neurol 2011; 11:79. [PMID: 21711517 PMCID: PMC3136416 DOI: 10.1186/1471-2377-11-79] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Accepted: 06/28/2011] [Indexed: 11/17/2022] Open
Abstract
Background Phosphatidylserine (PS) is a naturally occurring phospholipid present in the inner leaflet of mammalian plasma membranes. Administration of PS extracted from bovine cortex (BC-PS), which contains high levels of omega-3 long chain polyunsaturated fatty acid (LC-PUFA) attached to its backbone, resulted in positive effects on brain functions such as learning and memory. Recently, a novel marine-sourced PS with omega-3 LC-PUFA attached to its backbone was developed (PS-DHA). In the present study, we evaluated the safety profile of the novel PS preparation in non-demented elderly with memory complaints. The efficacy study of this novel formulation indicated that PS-DHA may ameliorate cognitive deficits in non-demented elderly population. Methods 157 non-demented elderly participants with memory complaints were randomized to receive either PS-DHA (300 mg PS/day) or placebo for 15 weeks. Standard biochemical and hematological safety parameters, blood pressure and heart rate were evaluated at baseline and endpoint. 122 participants continued into an open-label extension for additional 15 weeks, in which they all consumed PS-DHA (100 mg PS/day) and were evaluated for their blood pressure, heart rate and weight at endpoint. Adverse events were monitored throughout the double-blind and open-label phases. Results 131 participants completed the double-blind phase. No significant differences were found in any of the tested safety parameters between the study groups, or within each group. 121 participants completed the open-label phase. At the end of this phase, there was a reduction in resting diastolic blood pressure and a slight weight gain among participants who consumed PS-DHA for 30 weeks. Conclusions The results of this study indicate that consumption of PS-DHA at a dosage of 300 mg PS/day for 15 weeks, or 100 mg PS/day for 30 weeks, is safe, well tolerated, and does not produce any negative effects in the tested parameters. Trial registration clinicaltrials. gov, identifier: NCT00437983
Collapse
Affiliation(s)
- Veronika Vakhapova
- Sieratzki Chair of Neurology, Tel-Aviv University Medical School, Ramat Aviv, Israel
| | | | | | | | | |
Collapse
|
138
|
Polyunsaturated fatty acids and blood circulation in the forebrain during a mental arithmetic task. Brain Res 2011; 1397:38-45. [DOI: 10.1016/j.brainres.2011.04.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 04/22/2011] [Accepted: 04/23/2011] [Indexed: 11/18/2022]
|
139
|
Stough C, Downey L, Silber B, Lloyd J, Kure C, Wesnes K, Camfield D. The effects of 90-day supplementation with the omega-3 essential fatty acid docosahexaenoic acid (DHA) on cognitive function and visual acuity in a healthy aging population. Neurobiol Aging 2011; 33:824.e1-3. [PMID: 21531481 DOI: 10.1016/j.neurobiolaging.2011.03.019] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 03/15/2011] [Accepted: 03/22/2011] [Indexed: 11/17/2022]
Abstract
The omega-3 fatty acid docosahexaenoic acid (DHA) is essential for nervous system and retinal development and there is evidence to suggest that DHA deficiencies increase with normal aging. A triple-blind placebo-controlled randomized repeated-measures trial was conducted with 74 healthy participants, aged 45-77 years. Cognitive and visual acuity measures and plasma levels of DHA were determined at baseline and after 90 days of administration of either HiDHA(®) (Clover Corp., Sydney, NSW, Australia: 1000 mg of tuna oil; comprising 252 mg DHA, 60 mg EPA and 10 mg vitamin E) or placebo (1000 mg soybean oil). Ninety days of DHA supplementation was found to significantly raise both plasma DHA and total ω-3 plasma levels in the treatment group, as well as significantly lower total ω-6 levels. However, no significant effects of DHA supplementation on cognitive functioning were found. For participants with corrected vision, the group receiving DHA were found to have significantly better right eye visual acuity posttreatment in comparison with the placebo group (F(1,22) = 7.651; p = 0.011; partial η(2) = 0.258).
Collapse
Affiliation(s)
- Con Stough
- National Institute of Complementary Medicine (NICM) Collaborative Centre for Neurocognition, Brain Sciences Institute, Swinburne University of Technology, Hawthorn, Melbourne, Victoria 3122, Australia.
| | | | | | | | | | | | | |
Collapse
|
140
|
Scientific Opinion on the substantiation of health claims related to docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and brain, eye and nerve development (ID 501, 513, 540), maintenance of normal brain function (ID 497, 501, 510, 513, 519, 521, 53. EFSA J 2011. [DOI: 10.2903/j.efsa.2011.2078] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
141
|
Fermentation Characteristics of Mortierella alpina in Response to Different Nitrogen Sources. Appl Biochem Biotechnol 2011; 164:979-90. [DOI: 10.1007/s12010-011-9189-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 01/25/2011] [Indexed: 10/18/2022]
|
142
|
Aloisi AM, Ceccarelli I, Carlucci M, Suman A, Sindaco G, Mameli S, Paci V, Ravaioli L, Passavanti G, Bachiocco V, Pari G. Hormone replacement therapy in morphine-induced hypogonadic male chronic pain patients. Reprod Biol Endocrinol 2011; 9:26. [PMID: 21332999 PMCID: PMC3049183 DOI: 10.1186/1477-7827-9-26] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 02/18/2011] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND In male patients suffering from chronic pain, opioid administration induces severe hypogonadism, leading to impaired physical and psychological conditions such as fatigue, anaemia and depression. Hormone replacement therapy is rarely considered for these hypogonadic patients, notwithstanding the various pharmacological solutions available. METHODS To treat hypogonadism and to evaluate the consequent endocrine, physical and psychological changes in male chronic pain patients treated with morphine (epidural route), we tested the administration of testosterone via a gel formulation for one year. Hormonal (total testosterone, estradiol, free testosterone, DHT, cortisol), pain (VAS and other pain questionnaires), andrological (Ageing Males' Symptoms Scale-AMS) and psychological (POMS, CES-D and SF-36) parameters were evaluated at baseline (T0) and after 3, 6 and 12 months (T3, T6, T12 respectively). RESULTS The daily administration of testosterone increased total and free testosterone and DHT at T3, and the levels remained high until T12. Pain rating indexes (QUID) progressively improved from T3 to T12 while the other pain parameters (VAS, Area%) remained unchanged. The AMS sexual dimension and SF-36 Mental Index displayed a significant improvement over time. CONCLUSIONS In conclusion, our results suggest that a constant, long-term supply of testosterone can induce a general improvement of the male chronic pain patient's quality of life, an important clinical aspect of pain management.
Collapse
Affiliation(s)
- Anna Maria Aloisi
- Department of Physiology, Section of Neuroscience and Applied Physiology, University of Siena, Siena, Italy
- San Carlo Clinic, Paderno Dugnano, Milano, Italy
| | - Ilaria Ceccarelli
- Department of Physiology, Section of Neuroscience and Applied Physiology, University of Siena, Siena, Italy
| | - Maria Carlucci
- Department of Physiology, Section of Neuroscience and Applied Physiology, University of Siena, Siena, Italy
| | - Annalisa Suman
- Department of Physiology, Section of Neuroscience and Applied Physiology, University of Siena, Siena, Italy
| | - Gianfranco Sindaco
- Pain Medicine Unit, Villa Serena Hospital and Advanced Algology Research, Forlì, Italy
| | | | - Valentina Paci
- Pain Medicine Unit, Villa Serena Hospital and Advanced Algology Research, Forlì, Italy
| | - Laura Ravaioli
- Pain Medicine Unit, Villa Serena Hospital and Advanced Algology Research, Forlì, Italy
| | | | - Valeria Bachiocco
- Department of Physiology, Section of Neuroscience and Applied Physiology, University of Siena, Siena, Italy
| | | |
Collapse
|
143
|
Evolutionary aspects of diet: the omega-6/omega-3 ratio and the brain. Mol Neurobiol 2011; 44:203-15. [PMID: 21279554 DOI: 10.1007/s12035-010-8162-0] [Citation(s) in RCA: 329] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 12/14/2010] [Indexed: 12/16/2022]
Abstract
Several sources of information suggest that human beings evolved on a diet that had a ratio of omega-6 to omega-3 fatty acids (FA) of about 1/1; whereas today, Western diets have a ratio of 10/1 to 20-25/1, indicating that Western diets are deficient in omega-3 FA compared with the diet on which humans evolved and their genetic patterns were established. Omega-6 and omega-3 FA are not interconvertible in the human body and are important components of practically all cell membranes. Studies with nonhuman primates and human newborns indicate that docosahexaenoic acid (DHA) is essential for the normal functional development of the brain and retina, particularly in premature infants. DHA accounts for 40% of the membrane phospholipid FA in the brain. Both eicosapentaenoic acid (EPA) and DHA have an effect on membrane receptor function and even neurotransmitter generation and metabolism. There is growing evidence that EPA and DHA could play a role in hostility and violence in addition to the beneficial effects in substance abuse disorders and alcoholism. The balance of omega-6 and omega-3 FA is important for homeostasis and normal development throughout the life cycle.
Collapse
|
144
|
Jakobsen LH, Kondrup J, Zellner M, Tetens I, Roth E. Effect of a high protein meat diet on muscle and cognitive functions: a randomised controlled dietary intervention trial in healthy men. Clin Nutr 2011; 30:303-11. [PMID: 21239090 DOI: 10.1016/j.clnu.2010.12.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 11/29/2010] [Accepted: 12/21/2010] [Indexed: 11/29/2022]
Abstract
BACKGROUND Recommendations to use other criteria than N-balance for defining protein requirements have been proposed. However, little evidence to support other measures such as physiological functions is available. OBJECTIVE To investigate the effects of a usual (UP) versus a high protein (HP) diet on muscle function, cognitive function, quality of life and biochemical regulators of protein metabolism. DESIGN A randomised intervention study was conducted with 23 healthy males (aged 19-31 yrs). All subjects consumed a Usual Protein (UP) diet (1.5 g protein/kg BW) for a 1-wk run-in period before the intervention period where they were assigned to either a UP or a High Protein (HP) diet (3.0 g protein/kg BW) for 3-wks with controlled intake of food and beverages. Blood and urine samples were taken along with measurements of physiological functions at baseline and at the end of the intervention period. RESULTS The HP group improved their reaction time significantly compared with the UP group. Branched chain amino acids and phenylalanine in plasma were significantly increased following the HP diet, which may explain the improved reaction time. CONCLUSION Healthy young males fed a HP diet improved reaction time. No adverse effects of the HP diet were observed. This trial was registered at www.clinicaltrials.gov as NCT00621231.
Collapse
Affiliation(s)
- Lene H Jakobsen
- Department of Human Nutrition, Faculty of Life Sciences, University of Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
145
|
Gorby HE, Brownawell AM, Falk MC. Do specific dietary constituents and supplements affect mental energy? Review of the evidence. Nutr Rev 2010; 68:697-718. [PMID: 21091914 DOI: 10.1111/j.1753-4887.2010.00340.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The numbers of marketing claims and food, beverage, and drug products claiming to increase mental energy have risen rapidly, thus increasing the need for scientific specificity in marketing and food label claims. Mental energy is a three-dimensional construct consisting of mood (transient feelings about the presence of fatigue or energy), motivation (determination and enthusiasm), and cognition (sustained attention and vigilance). The present review focuses on four dietary constituents/supplements (Ginkgo biloba, ginseng, glucose, and omega-3 polyunsaturated fatty acids) to illustrate the current state of the literature on dietary constituents and mental energy. The strongest evidence suggests effects of Ginkgo biloba on certain aspects of mood and on attention in healthy subjects, as well as associations between omega-3 polyunsaturated fatty acids and reduced risk of age-related cognitive decline. Limitations of the current data and challenges for future research are discussed.
Collapse
Affiliation(s)
- Heather E Gorby
- Life Sciences Research Organization, Bethesda, Maryland, USA
| | | | | |
Collapse
|
146
|
Jakobsen LH, Sorensen JM, Rask IK, Jensen BS, Kondrup J. Validation of reaction time as a measure of cognitive function and quality of life in healthy subjects and patients. Nutrition 2010; 27:561-70. [PMID: 20951002 DOI: 10.1016/j.nut.2010.08.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 07/08/2010] [Accepted: 08/04/2010] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Malnutrition is a common problem in hospitalized patients and is related to decreased cognitive function and impaired quality of life (QoL). We investigated the validity of reaction time as a simple bedside tool for measuring cognitive function in healthy subjects and patients, and additionally the relationships with QoL and malnutrition in patients. METHODS Healthy subjects (N = 130) were assessed for simple and complex reaction time and cognitive function (Addenbrooke cognitive examination, ACE). Patients (N = 70) were assessed for simple and complex reaction time, cognitive function (ACE), and QoL (short-form health survey) (N = 40). RESULTS Reaction time was related to cognitive function in both healthy subjects and patients. Reaction time was inversely related to the physical component summary of QoL in patients (r = -0.42, P < 0.001). Five of eight QoL scales and the mental component summary of QoL were significantly lower in malnourished patients. Reaction time and ACE were impaired in patients compared to healthy subjects, but not further impaired in malnourished patients. CONCLUSION Simple reaction time test is related to cognitive function in healthy subjects and patients and to QoL in patients. Complex reaction time test is related to more components of cognitive function. Thus, simple and complex reaction time tests could serve as bedside measurements reflecting, respectively, QoL or cognitive function.
Collapse
Affiliation(s)
- Lene H Jakobsen
- Department of Human Nutrition, Faculty of Life Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
147
|
Wilczynska-Kwiatek A, Bargiel-Matusiewicz K, Lapinski L. Asthma, allergy, mood disorders, and nutrition. Eur J Med Res 2010; 14 Suppl 4:248-54. [PMID: 20156766 PMCID: PMC3521357 DOI: 10.1186/2047-783x-14-s4-248] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background Growing evidence supports comorbidity of asthma and allergies with mood disorders and various connections between these diseases. It still remains unclear whether this comorbidity is caused by the same pathophysiological factors or whether there are other links between asthma and depression. There is no definite answer to the question of an optimal treatment to deal with both asthma and depression, when they occur simultaneously. Epidemiological and clinical trials on the influence of nutrition on certain diseases suggest the effects of ω3 polyunsaturated fatty acids (PUFAs) in aiding treatment of mood disorders and inflammatory conditions. Objective This is an overview showing the connections between asthma, allergic disease, and mood disorders, and the influence of nutrition on these conditions. Evidence indicates positive correlations between consumption of PUFAs and mood correction. Several analyses show the connection between diet and asthma. They may form a basis for potential recommending ω3 PUFAs as an adjuvant in prevention and treatment of mental disorders, asthma, and allergy.
Collapse
|
148
|
Fontani G, Lodi L, Migliorini S, Corradeschi F. Effect of omega-3 and policosanol supplementation on attention and reactivity in athletes. J Am Coll Nutr 2010; 28 Suppl:473S-481S. [PMID: 20234035 DOI: 10.1080/07315724.2009.10718114] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVE The purpose of this study was to determine the effect of omega-3 fatty acids and policosanol supplementation on the cognitive processes involved in the control of reactivity in karateka engaged in attention tests. METHODS Eighteen karateka were randomly assigned to 2 groups. One group (10 subjects) took the supplement of omega-3 fatty acids (2.25 g) plus policosanol (10 mg) (O3 + P) for 21 days, and the other group was supplemented with placebo (oleic sunflower oil). Subjects were tested at the beginning of the experiment (Test 1), after 21 days (Test 2), and after 42 days (Test 3). The experimental procedure consisted of an Alert and a Sustained Attention (SA) reaction time test: the subject had to react by pressing a key of a computer keyboard in Alert and a sequence of 3 keys in SA in response to stimuli, activating a complex go/no-go paradigm. For each test, we recorded the reaction time and the event-related potentials by electroencephalogram and electromyography (EMG) of the forefinger flexor muscle. The Profile of Mood States (POMS) test was also administered. RESULTS After 21 days of supplementation, subjects who received O3 + P showed a reduced reaction time and increased vigor sensation associated with a reduction of the negative states measured with the POMS test. Analysis of the event-related brain potentials showed a reduced latency of the movement-related brain macropotentials. In particular, the potentials recorded in the premotor period and motor period occurred earlier and the latency of EMG activation was reduced. In the third test, 21 days after the last O3 + P supplementation, the positive effects on the mood state persisted, while the reaction time, EMG, and brain potential latencies increased, although their values remained lower than in the first test. The placebo group did not show any significant differences in Tests 2 and 3 compared to Test 1 for either POMS or reactivity and brain potentials. CONCLUSIONS Supplementation with O3 + P may be effective in improving mood state and reactivity. The reaction time reduction appears to be due to a central nervous system effect, as shown by the reduced latency of movement-related brain macropotentials and EMG activation. These results are in line with previous experiments.
Collapse
Affiliation(s)
- Giuliano Fontani
- Department of Physiology, University of Siena, Via A. Moro 2, I-53100 Siena, Italy.
| | | | | | | |
Collapse
|
149
|
Watari M, Hamazaki K, Hirata T, Hamazaki T, Okubo Y. Hostility of drug-free patients with schizophrenia and n-3 polyunsaturated fatty acid levels in red blood cells. Psychiatry Res 2010; 177:22-6. [PMID: 20227767 DOI: 10.1016/j.psychres.2010.02.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 01/26/2010] [Accepted: 02/17/2010] [Indexed: 12/22/2022]
Abstract
Many reports suggest that n-3 polyunsaturated fatty acids (PUFAs) influence the symptoms of psychiatric disorders. Moreover, it has also been reported that n-3 PUFAs control aggression and hostility. Acute symptoms of schizophrenia such as aggression can be a formidable clinical problem resulting in hospitalization. However, few investigations have determined the relationships between acute symptoms of drug-free schizophrenia and n-3 PUFAs. We recruited 75 inpatients with acute drug-free schizophrenia admitted to Chiba Psychiatric Medical Center, an emergency psychiatric hospital. Blood was sampled immediately after admission. The red blood cell (RBC) fatty acid composition and hostility score of Positive and Negative Syndrome Scale (PANSS) scores were measured. Multiple regression analysis showed that the concentrations of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and the ratio of EPA/arachidonic acid (AA) in RBC showed significant negative correlations with the hostility score of PANSS scores after adjustment for age and sex. AA, on the other hand, showed significant positive correlations. The tissue n-3 PUFA and n-6 PUFA levels were negatively and positively associated with the hostility score of PANSS scores, respectively, suggesting possible effects of PUFA levels on hostile behavior in patients with schizophrenia.
Collapse
Affiliation(s)
- Michiko Watari
- Department of Neuropsychiatry, Nippon Medical School, Tokyo, Japan
| | | | | | | | | |
Collapse
|
150
|
Muldoon MF, Ryan CM, Sheu L, Yao JK, Conklin SM, Manuck SB. Serum phospholipid docosahexaenonic acid is associated with cognitive functioning during middle adulthood. J Nutr 2010; 140:848-53. [PMID: 20181791 PMCID: PMC2838625 DOI: 10.3945/jn.109.119578] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Existing evidence links greater dietary intake of fish and (n-3) PUFA to better early brain development and lowered risk of cognitive disorders in late life. The mechanisms for these associations remain unclear and may be related to specific (n-3) fatty acids and may concern cognitive function generally rather than only early brain development and age-related cognitive dysfunction. In this investigation, we tested potential associations between (n-3) fatty acids in serum phospholipids and major dimensions of cognitive functioning in mid-life adults. Participants were 280 community volunteers between 35 and 54 y of age, free of major neuropsychiatric disorders, and not taking fish oil supplements. Dietary biomarkers were alpha-linolenic acid (ALA), eicosapentaenoic acid (EPA), and docosahexaenonic acid (DHA) in serum phospholipids measured using GC. Five major dimensions of cognitive functioning were assessed with a 75-min battery of neuropsychological tests. In covariate adjusted regression models, higher DHA (mol %) was related to better performance on tests of nonverbal reasoning and mental flexibility, working memory, and vocabulary (P <or= 0.05). These associations were generally linear. Associations between DHA and nonverbal reasoning and working memory persisted with additional adjustment for participant education and vocabulary scores (P <or= 0.05). Neither EPA nor ALA was notably related to any of the 5 tested dimensions of cognitive performance. Among the 3 key (n-3) PUFA, only DHA is associated with major aspects of cognitive performance in nonpatient adults <55 y old. These findings suggest that DHA is related to brain health throughout the lifespan and may have implications for clinical trials of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Matthew F. Muldoon
- Center for Clinical Pharmacology,; Department of Psychiatry,; VA Pittsburgh Healthcare System, School of Medicine, and; Behavioral Physiology Laboratory, Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260; Department of Psychology and Neuroscience, Allegheny College, Meadville, PA 16335,To whom correspondence should be addressed. E-mail:
| | - Christopher M. Ryan
- Center for Clinical Pharmacology,; Department of Psychiatry,; VA Pittsburgh Healthcare System, School of Medicine, and; Behavioral Physiology Laboratory, Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260; Department of Psychology and Neuroscience, Allegheny College, Meadville, PA 16335
| | - Lei Sheu
- Center for Clinical Pharmacology,; Department of Psychiatry,; VA Pittsburgh Healthcare System, School of Medicine, and; Behavioral Physiology Laboratory, Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260; Department of Psychology and Neuroscience, Allegheny College, Meadville, PA 16335
| | - Jeffrey K. Yao
- Center for Clinical Pharmacology,; Department of Psychiatry,; VA Pittsburgh Healthcare System, School of Medicine, and; Behavioral Physiology Laboratory, Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260; Department of Psychology and Neuroscience, Allegheny College, Meadville, PA 16335
| | - Sarah M. Conklin
- Center for Clinical Pharmacology,; Department of Psychiatry,; VA Pittsburgh Healthcare System, School of Medicine, and; Behavioral Physiology Laboratory, Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260; Department of Psychology and Neuroscience, Allegheny College, Meadville, PA 16335
| | - Stephen B. Manuck
- Center for Clinical Pharmacology,; Department of Psychiatry,; VA Pittsburgh Healthcare System, School of Medicine, and; Behavioral Physiology Laboratory, Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260; Department of Psychology and Neuroscience, Allegheny College, Meadville, PA 16335
| |
Collapse
|