101
|
Kumar V, Vogelsang L, Seidel T, Schmidt R, Weber M, Reichelt M, Meyer A, Clemens S, Sharma SS, Dietz KJ. Interference between arsenic-induced toxicity and hypoxia. PLANT, CELL & ENVIRONMENT 2019; 42:574-590. [PMID: 30198184 DOI: 10.1111/pce.13441] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/30/2018] [Accepted: 08/30/2018] [Indexed: 06/08/2023]
Abstract
Plants often face combinatorial stresses in their natural environment. Here, arsenic (As) toxicity was combined with hypoxia (Hpx) in the roots of Arabidopsis thaliana as it often occurs in nature. Arsenic inhibited growth of both roots and leaves, whereas root growth almost entirely ceased in Hpx. Growth efficiently resumed, and Hpx marker transcripts decreased upon reaeration. Compromised recovery from HpxAs treatment following reaeration indicated some persistent effects of combined stresses despite lower As accumulation. Root glutathione redox potential turned more oxidized in Hpx and most strongly in HpxAs. The more oxidizing root cell redox potential and the lowered glutathione amounts may be conducive to the growth arrest of plants exposed to HpxAs. The stresses elicited changes in elemental and transcriptomic composition. Thus, calcium, magnesium, and phosphorous amounts decreased in rosettes, but the strongest decline was seen for potassium. The reorganized potassium-related transcriptome supports the conclusion that disturbed potassium homeostasis contributes to the growth phenotype. In a converse manner, photosynthesis-related parameters were hardly affected, whereas accumulated carbohydrates under all stresses and anthocyanins under Hpx exclude carbohydrate limitation. The study demonstrates the existence of both synergistic since mutually aggravating effects and antagonistic effects of single and combined stresses.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, Bielefeld, Germany
- Department of Biosciences, Himachal Pradesh University, Shimla, India
| | - Lara Vogelsang
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, Bielefeld, Germany
| | - Thorsten Seidel
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, Bielefeld, Germany
| | - Romy Schmidt
- Institute of Biology I (Botany/Molecular Genetics), RWTH Aachen University, Aachen, Germany
| | - Michael Weber
- Department of Plant Physiology, Faculty of Biology, Chemistry and Earth Sciences, University of Bayreuth, Bayreuth, Germany
| | - Michael Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Andreas Meyer
- Institute of Crop Science and Resource Conservation (INRES)-Chemical Signalling, University of Bonn, Bonn, Germany
- Bioeconomy Science Center, Forschungszentrum Jülich, Jülich, Germany
| | - Stephan Clemens
- Department of Plant Physiology, Faculty of Biology, Chemistry and Earth Sciences, University of Bayreuth, Bayreuth, Germany
| | - Shanti S Sharma
- Department of Biosciences, Himachal Pradesh University, Shimla, India
- Department of Botany, School of Life Sciences, Sikkim University, Gangtok, India
| | - Karl-Josef Dietz
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, Bielefeld, Germany
| |
Collapse
|
102
|
Smirnoff N, Arnaud D. Hydrogen peroxide metabolism and functions in plants. THE NEW PHYTOLOGIST 2019; 221:1197-1214. [PMID: 30222198 DOI: 10.1111/nph.15488] [Citation(s) in RCA: 473] [Impact Index Per Article: 78.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/28/2018] [Indexed: 05/18/2023]
Abstract
Contents Summary 1197 I. Introduction 1198 II. Measurement and imaging of H2 O2 1198 III. H2 O2 and O2·- toxicity 1199 IV. Production of H2 O2 : enzymes and subcellular locations 1200 V. H2 O2 transport 1205 VI. Control of H2 O2 concentration: how and where? 1205 VII. Metabolic functions of H2 O2 1207 VIII. H2 O2 signalling 1207 IX. Where next? 1209 Acknowledgements 1209 References 1209 SUMMARY: Hydrogen peroxide (H2 O2 ) is produced, via superoxide and superoxide dismutase, by electron transport in chloroplasts and mitochondria, plasma membrane NADPH oxidases, peroxisomal oxidases, type III peroxidases and other apoplastic oxidases. Intracellular transport is facilitated by aquaporins and H2 O2 is removed by catalase, peroxiredoxin, glutathione peroxidase-like enzymes and ascorbate peroxidase, all of which have cell compartment-specific isoforms. Apoplastic H2 O2 influences cell expansion, development and defence by its involvement in type III peroxidase-mediated polymer cross-linking, lignification and, possibly, cell expansion via H2 O2 -derived hydroxyl radicals. Excess H2 O2 triggers chloroplast and peroxisome autophagy and programmed cell death. The role of H2 O2 in signalling, for example during acclimation to stress and pathogen defence, has received much attention, but the signal transduction mechanisms are poorly defined. H2 O2 oxidizes specific cysteine residues of target proteins to the sulfenic acid form and, similar to other organisms, this modification could initiate thiol-based redox relays and modify target enzymes, receptor kinases and transcription factors. Quantification of the sources and sinks of H2 O2 is being improved by the spatial and temporal resolution of genetically encoded H2 O2 sensors, such as HyPer and roGFP2-Orp1. These H2 O2 sensors, combined with the detection of specific proteins modified by H2 O2 , will allow a deeper understanding of its signalling roles.
Collapse
Affiliation(s)
- Nicholas Smirnoff
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Dominique Arnaud
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| |
Collapse
|
103
|
Nietzel T, Elsässer M, Ruberti C, Steinbeck J, Ugalde JM, Fuchs P, Wagner S, Ostermann L, Moseler A, Lemke P, Fricker MD, Müller-Schüssele SJ, Moerschbacher BM, Costa A, Meyer AJ, Schwarzländer M. The fluorescent protein sensor roGFP2-Orp1 monitors in vivo H 2 O 2 and thiol redox integration and elucidates intracellular H 2 O 2 dynamics during elicitor-induced oxidative burst in Arabidopsis. THE NEW PHYTOLOGIST 2019; 221:1649-1664. [PMID: 30347449 DOI: 10.1111/nph.15550] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 10/13/2018] [Indexed: 05/04/2023]
Abstract
Hydrogen peroxide (H2 O2 ) is ubiquitous in cells and at the centre of developmental programmes and environmental responses. Its chemistry in cells makes H2 O2 notoriously hard to detect dynamically, specifically and at high resolution. Genetically encoded sensors overcome persistent shortcomings, but pH sensitivity, silencing of expression and a limited concept of sensor behaviour in vivo have hampered any meaningful H2 O2 sensing in living plants. We established H2 O2 monitoring in the cytosol and the mitochondria of Arabidopsis with the fusion protein roGFP2-Orp1 using confocal microscopy and multiwell fluorimetry. We confirmed sensor oxidation by H2 O2 , show insensitivity to physiological pH changes, and demonstrated that glutathione dominates sensor reduction in vivo. We showed the responsiveness of the sensor to exogenous H2 O2 , pharmacologically-induced H2 O2 release, and genetic interference with the antioxidant machinery in living Arabidopsis tissues. Monitoring intracellular H2 O2 dynamics in response to elicitor exposure reveals the late and prolonged impact of the oxidative burst in the cytosol that is modified in redox mutants. We provided a well defined toolkit for H2 O2 monitoring in planta and showed that intracellular H2 O2 measurements only carry meaning in the context of the endogenous thiol redox systems. This opens new possibilities to dissect plant H2 O2 dynamics and redox regulation, including intracellular NADPH oxidase-mediated ROS signalling.
Collapse
Affiliation(s)
- Thomas Nietzel
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, D-48143, Münster, Germany
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| | - Marlene Elsässer
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, D-48143, Münster, Germany
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
- Institute for Cellular and Molecular Botany (IZMB), University of Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Cristina Ruberti
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, D-48143, Münster, Germany
| | - Janina Steinbeck
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, D-48143, Münster, Germany
| | - José Manuel Ugalde
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| | - Philippe Fuchs
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, D-48143, Münster, Germany
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| | - Stephan Wagner
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, D-48143, Münster, Germany
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| | - Lara Ostermann
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
- BioSC, c/o Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Anna Moseler
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| | - Philipp Lemke
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, D-48143, Münster, Germany
| | - Mark D Fricker
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Stefanie J Müller-Schüssele
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| | - Bruno M Moerschbacher
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, D-48143, Münster, Germany
| | - Alex Costa
- Dipartimento di Bioscienze, Università degli Studi di Milano, I-20133, Milano, Italy
| | - Andreas J Meyer
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
- BioSC, c/o Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Markus Schwarzländer
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, D-48143, Münster, Germany
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| |
Collapse
|
104
|
Dumont S, Rivoal J. Consequences of Oxidative Stress on Plant Glycolytic and Respiratory Metabolism. FRONTIERS IN PLANT SCIENCE 2019; 10:166. [PMID: 30833954 PMCID: PMC6387960 DOI: 10.3389/fpls.2019.00166] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/31/2019] [Indexed: 05/03/2023]
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are present at low and controlled levels under normal conditions. These reactive molecules can increase to high levels under various biotic and abiotic conditions, resulting in perturbation of the cellular redox state that can ultimately lead to oxidative or nitrosative stress. In this review, we analyze the various effects that result from alterations of redox homeostasis on plant glycolytic pathway and tricarboxylic acid (TCA) cycle. Most documented modifications caused by ROS or RNS are due to the presence of redox-sensitive cysteine thiol groups in proteins. Redox modifications include Cys oxidation, disulfide bond formation, S-glutathionylation, S-nitrosylation, and S-sulfhydration. A growing number of proteomic surveys and biochemical studies document the occurrence of ROS- or RNS-mediated modification in enzymes of glycolysis and the TCA cycle. In a few cases, these modifications have been shown to affect enzyme activity, suggesting an operational regulatory mechanism in vivo. Further changes induced by oxidative stress conditions include the proposed redox-dependent modifications in the subcellular distribution of a putative redox sensor, NAD-glyceraldehyde-3P dehydrogenase and the micro-compartmentation of cytosolic glycolytic enzymes. Data from the literature indicate that oxidative stress may induce complex changes in metabolite pools in central carbon metabolism. This information is discussed in the context of our understanding of plant metabolic response to oxidative stress.
Collapse
|
105
|
Stanford KR, Ajmo JM, Bahia PK, Hadley SH, Taylor-Clark TE. Improving redox sensitivity of roGFP1 by incorporation of selenocysteine at position 147. BMC Res Notes 2018; 11:827. [PMID: 30466490 PMCID: PMC6249920 DOI: 10.1186/s13104-018-3929-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 11/13/2018] [Indexed: 12/19/2022] Open
Abstract
Objective Redox-sensitive green fluorescent protein (roGFP) is a genetically-encoded redox-sensitive protein used to detect cellular oxidative stress associated with reactive oxygen species production. Here we replaced the cysteine at position 147 of roGFP1 (variant of roGFP) with selenocysteine in order to increase redox sensitivity of the redox reporter. Results Expression of roGFP1 selenoprotein (roGFP1-Se147) in HEK293 cells required the presence of a selenocysteine insertion sequence and was augmented by co-expression with SBP2. roGFP1-Se147 demonstrated a similar excitation and emission spectra to roGFP1. Although expression of roGFP1-Se147 was limited, it was sufficient enough to perform live cell imaging to evaluate sensitivity to oxidation and reduction. roGFP1-Se147 exhibited a 100-fold increase in sensitivity to oxidation with H2O2 in comparison to roGFP1 as well as a 20-fold decrease in the EC50 of H2O2. Furthermore, roGFP1-Se147, unlike roGFP1, was able to detect oxidation caused by the mitochondrial electron transport complex III inhibitor antimycin A. Unfortunately roGFP-Se147 exhibited a diminished dynamic range and photoinstability. Electronic supplementary material The online version of this article (10.1186/s13104-018-3929-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katherine R Stanford
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, USA
| | - Joanne M Ajmo
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, USA
| | - Parmvir K Bahia
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, USA
| | - Stephen H Hadley
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, USA
| | - Thomas E Taylor-Clark
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, USA.
| |
Collapse
|
106
|
Kostyuk AI, Panova AS, Bilan DS, Belousov VV. Redox biosensors in a context of multiparameter imaging. Free Radic Biol Med 2018; 128:23-39. [PMID: 29630928 DOI: 10.1016/j.freeradbiomed.2018.04.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/18/2018] [Accepted: 04/04/2018] [Indexed: 12/22/2022]
Abstract
A wide variety of genetically encoded fluorescent biosensors are available to date. Some of them have already contributed significantly to our understanding of biological processes occurring at cellular and organismal levels. Using such an approach, outstanding success has been achieved in the field of redox biology. The probes allowed researchers to observe, for the first time, the dynamics of important redox parameters in vivo during embryogenesis, aging, the inflammatory response, the pathogenesis of various diseases, and many other processes. Given the differences in the readout and spectra of the probes, they can be used in multiparameter imaging in which several processes are monitored simultaneously in the cell. Intracellular processes form an extensive network of interactions. For example, redox changes are often accompanied by changes in many other biochemical reactions related to cellular metabolism and signaling. Therefore, multiparameter imaging can provide important information concerning the temporal and spatial relationship of various signaling and metabolic processes. In this review, we will describe the main types of genetically encoded biosensors, the most frequently used readout, and their use in multiplexed imaging mode.
Collapse
Affiliation(s)
- Alexander I Kostyuk
- Faculty of Biology, Moscow State University, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Anastasiya S Panova
- Faculty of Biology, Moscow State University, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Dmitry S Bilan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Vsevolod V Belousov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; Pirogov Russian National Research Medical University, Moscow 117997, Russia; Institute for Cardiovascular Physiology, Georg August University Göttingen, Göttingen D-37073, Germany.
| |
Collapse
|
107
|
Tung QN, Loi VV, Busche T, Nerlich A, Mieth M, Milse J, Kalinowski J, Hocke AC, Antelmann H. Stable integration of the Mrx1-roGFP2 biosensor to monitor dynamic changes of the mycothiol redox potential in Corynebacterium glutamicum. Redox Biol 2018; 20:514-525. [PMID: 30481728 PMCID: PMC6258114 DOI: 10.1016/j.redox.2018.11.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/08/2018] [Accepted: 11/15/2018] [Indexed: 12/20/2022] Open
Abstract
Mycothiol (MSH) functions as major low molecular weight (LMW) thiol in the industrially important Corynebacterium glutamicum. In this study, we genomically integrated an Mrx1-roGFP2 biosensor in C. glutamicum to measure dynamic changes of the MSH redox potential (EMSH) during the growth and under oxidative stress. C. glutamicum maintains a highly reducing intrabacterial EMSH throughout the growth curve with basal EMSH levels of ~- 296 mV. Consistent with its H2O2 resistant phenotype, C. glutamicum responds only weakly to 40 mM H2O2, but is rapidly oxidized by low doses of NaOCl. We further monitored basal EMSH changes and the H2O2 response in various mutants which are compromised in redox-signaling of ROS (OxyR, SigH) and in the antioxidant defense (MSH, Mtr, KatA, Mpx, Tpx). While the probe was constitutively oxidized in the mshC and mtr mutants, a smaller oxidative shift in basal EMSH was observed in the sigH mutant. The catalase KatA was confirmed as major H2O2 detoxification enzyme required for fast biosensor re-equilibration upon return to non-stress conditions. In contrast, the peroxiredoxins Mpx and Tpx had only little impact on EMSH and H2O2 detoxification. Further live imaging experiments using confocal laser scanning microscopy revealed the stable biosensor expression and fluorescence at the single cell level. In conclusion, the stably expressed Mrx1-roGFP2 biosensor was successfully applied to monitor dynamic EMSH changes in C. glutamicum during the growth, under oxidative stress and in different mutants revealing the impact of Mtr and SigH for the basal level EMSH and the role of OxyR and KatA for efficient H2O2 detoxification under oxidative stress.
Collapse
Affiliation(s)
- Quach Ngoc Tung
- Freie Universität Berlin, Institute for Biology-Microbiology, D-14195 Berlin, Germany
| | - Vu Van Loi
- Freie Universität Berlin, Institute for Biology-Microbiology, D-14195 Berlin, Germany
| | - Tobias Busche
- Freie Universität Berlin, Institute for Biology-Microbiology, D-14195 Berlin, Germany; Center for Biotechnology (CeBiTec), Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Andreas Nerlich
- Department of Internal Medicine/Infectious Diseases and Respiratory Medicine, Charité -Universitätsmedizin Berlin, D-10117 Berlin, Germany
| | - Maren Mieth
- Department of Internal Medicine/Infectious Diseases and Respiratory Medicine, Charité -Universitätsmedizin Berlin, D-10117 Berlin, Germany
| | - Johanna Milse
- Center for Biotechnology (CeBiTec), Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Andreas C Hocke
- Department of Internal Medicine/Infectious Diseases and Respiratory Medicine, Charité -Universitätsmedizin Berlin, D-10117 Berlin, Germany
| | - Haike Antelmann
- Freie Universität Berlin, Institute for Biology-Microbiology, D-14195 Berlin, Germany.
| |
Collapse
|
108
|
Oestreicher J, Morgan B. Glutathione: subcellular distribution and membrane transport 1. Biochem Cell Biol 2018; 97:270-289. [PMID: 30427707 DOI: 10.1139/bcb-2018-0189] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Glutathione (γ-l-glutamyl-l-cysteinylglycine) is a small tripeptide found at millimolar concentrations in nearly all eukaryotes as well as many prokaryotic cells. Glutathione synthesis is restricted to the cytosol in animals and fungi and to the cytosol and plastids in plants. Nonetheless, glutathione is found in virtually all subcellular compartments. This implies that transporters must exist that facilitate glutathione transport into and out of the various subcellular compartments. Glutathione may also be exported and imported across the plasma membrane in many cells. However, in most cases, the molecular identity of these transporters remains unclear. Whilst glutathione transport is essential for the supply and replenishment of subcellular glutathione pools, recent evidence supports a more active role for glutathione transport in the regulation of subcellular glutathione redox homeostasis. However, our knowledge of glutathione redox homeostasis at the level of specific subcellular compartments remains remarkably limited and the role of glutathione transport remains largely unclear. In this review, we discuss how new tools and techniques have begun to yield insights into subcellular glutathione distribution and glutathione redox homeostasis. In particular, we discuss the known and putative glutathione transporters and examine their contribution to the regulation of subcellular glutathione redox homeostasis.
Collapse
Affiliation(s)
- Julian Oestreicher
- a Cellular Biochemistry, University of Kaiserslautern, 67663 Kaiserslautern, Germany.,b Institute of Biochemistry, Center of Human and Molecular Biology (ZHMB), University of the Saarland, Campus B 2.2, D-66123 Saarbrücken, Germany
| | - Bruce Morgan
- a Cellular Biochemistry, University of Kaiserslautern, 67663 Kaiserslautern, Germany.,b Institute of Biochemistry, Center of Human and Molecular Biology (ZHMB), University of the Saarland, Campus B 2.2, D-66123 Saarbrücken, Germany
| |
Collapse
|
109
|
Schuh AK, Rahbari M, Heimsch KC, Mohring F, Gabryszewski SJ, Weder S, Buchholz K, Rahlfs S, Fidock DA, Becker K. Stable Integration and Comparison of hGrx1-roGFP2 and sfroGFP2 Redox Probes in the Malaria Parasite Plasmodium falciparum. ACS Infect Dis 2018; 4:1601-1612. [PMID: 30129748 DOI: 10.1021/acsinfecdis.8b00140] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Studying redox metabolism in malaria parasites is of great interest for understanding parasite biology, parasite-host interactions, and mechanisms of drug action. Genetically encoded fluorescent redox sensors have recently been described as powerful tools for determining the glutathione-dependent redox potential in living parasites. In the present study, we genomically integrated and expressed the ratiometric redox sensors hGrx1-roGFP2 (human glutaredoxin 1 fused to reduction-oxidation sensitive green fluorescent protein) and sfroGFP2 (superfolder roGFP2) in the cytosol of NF54- attB blood-stage Plasmodium falciparum parasites. Both sensors were evaluated in vitro and in cell culture with regard to their fluorescence properties and reactivity. As genomic integration allows for the stable expression of redox sensors in parasites, we systematically compared single live-cell imaging with plate reader detection. For these comparisons, short-term effects of redox-active compounds were analyzed along with mid- and long-term effects of selected antimalarial agents. Of note, the single components of the redox probes themselves did not influence the redox balance of the parasites. Our analyses revealed comparable results for both the hGrx1-roGFP2 and sfroGFP2 probes, with sfroGFP2 exhibiting a more pronounced fluorescence intensity in cellulo. Accordingly, the sfroGFP2 probe was employed to monitor the fluorescence signals throughout the parasites' asexual life cycle. Through the use of stable genomic integration, we demonstrate a means of overcoming the limitations of transient transfection, allowing more detailed in-cell studies as well as high-throughput analyses using plate reader-based approaches.
Collapse
Affiliation(s)
- Anna Katharina Schuh
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Mahsa Rahbari
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Kim C. Heimsch
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Franziska Mohring
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, 35392 Giessen, Germany
| | | | - Stine Weder
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Kathrin Buchholz
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Stefan Rahlfs
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, 35392 Giessen, Germany
| | | | - Katja Becker
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, 35392 Giessen, Germany
| |
Collapse
|
110
|
Roma LP, Deponte M, Riemer J, Morgan B. Mechanisms and Applications of Redox-Sensitive Green Fluorescent Protein-Based Hydrogen Peroxide Probes. Antioxid Redox Signal 2018; 29:552-568. [PMID: 29160083 DOI: 10.1089/ars.2017.7449] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
SIGNIFICANCE Genetically encoded hydrogen peroxide (H2O2) sensors, based on fusions between thiol peroxidases and redox-sensitive green fluorescent protein 2 (roGFP2), have dramatically broadened the available "toolbox" for monitoring cellular H2O2 changes. Recent Advances: Recently developed peroxiredoxin-based probes such as roGFP2-Tsa2ΔCR offer considerably improved H2O2 sensitivity compared with previously available genetically encoded sensors and now permit dynamic, real-time, monitoring of changes in endogenous H2O2 levels. CRITICAL ISSUES The correct understanding and interpretation of probe read-outs is crucial for their meaningful use. We discuss probe mechanisms, potential pitfalls, and best practices for application and interpretation of probe responses and highlight where gaps in our knowledge remain. FUTURE DIRECTIONS The full potential of the newly available sensors remains far from being fully realized and exploited. We discuss how the ability to monitor basal H2O2 levels in real time now allows us to re-visit long-held ideas in redox biology such as the response to ischemia-reperfusion and hypoxia-induced reactive oxygen species production. Further, recently proposed circadian cycles of peroxiredoxin hyperoxidation might now be rigorously tested. Beyond their application as H2O2 probes, roGFP2-based H2O2 sensors hold exciting potential for studying thiol peroxidase mechanisms, inactivation properties, and the impact of post-translational modifications, in vivo. Antioxid. Redox Signal. 29, 552-568.
Collapse
Affiliation(s)
- Leticia Prates Roma
- 1 Biophysics Department, Center for Human and Molecular Biology, Universität des Saarlandes , Homburg/Saar, Germany
| | - Marcel Deponte
- 2 Faculty of Chemistry/Biochemistry, University of Kaiserslautern , Kaiserslautern, Germany
| | - Jan Riemer
- 3 Institute of Biochemistry, University of Cologne , Cologne, Germany
| | - Bruce Morgan
- 4 Department of Cellular Biochemistry, University of Kaiserslautern , Kaiserslautern, Germany
| |
Collapse
|
111
|
Noctor G, Reichheld JP, Foyer CH. ROS-related redox regulation and signaling in plants. Semin Cell Dev Biol 2018; 80:3-12. [DOI: 10.1016/j.semcdb.2017.07.013] [Citation(s) in RCA: 403] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/10/2017] [Accepted: 07/13/2017] [Indexed: 12/14/2022]
|
112
|
Ortega-Villasante C, Burén S, Blázquez-Castro A, Barón-Sola Á, Hernández LE. Fluorescent in vivo imaging of reactive oxygen species and redox potential in plants. Free Radic Biol Med 2018; 122:202-220. [PMID: 29627452 DOI: 10.1016/j.freeradbiomed.2018.04.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 03/26/2018] [Accepted: 04/04/2018] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) are by-products of aerobic metabolism, and excessive production can result in oxidative stress and cell damage. In addition, ROS function as cellular messengers, working as redox regulators in a multitude of biological processes. Understanding ROS signalling and stress responses requires methods for precise imaging and quantification to monitor local, subcellular and global ROS dynamics with high selectivity, sensitivity and spatiotemporal resolution. In this review, we summarize the present knowledge for in vivo plant ROS imaging and detection, using both chemical probes and fluorescent protein-based biosensors. Certain characteristics of plant tissues, for example high background autofluorescence in photosynthetic organs and the multitude of endogenous antioxidants, can interfere with ROS and redox potential detection, making imaging extra challenging. Novel methods and techniques to measure in vivo plant ROS and redox changes with better selectivity, accuracy, and spatiotemporal resolution are therefore desirable to fully acknowledge the remarkably complex plant ROS signalling networks.
Collapse
Affiliation(s)
- Cristina Ortega-Villasante
- Fisiología Vegetal, Departamento de Biología, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Stefan Burén
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Alfonso Blázquez-Castro
- Departamento de Física de Materiales, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Ángel Barón-Sola
- Fisiología Vegetal, Departamento de Biología, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Luis E Hernández
- Fisiología Vegetal, Departamento de Biología, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
113
|
Arabidopsis mutants impaired in glutathione biosynthesis exhibit higher sensitivity towards the glucosinolate hydrolysis product allyl-isothiocyanate. Sci Rep 2018; 8:9809. [PMID: 29955088 PMCID: PMC6023892 DOI: 10.1038/s41598-018-28099-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 06/15/2018] [Indexed: 11/16/2022] Open
Abstract
Upon tissue damage the plant secondary metabolites glucosinolates can generate various hydrolysis products, including isothiocyanates (ITCs). Their role in plant defence against insects and pest and their potential health benefits have been well documented, but our knowledge regarding the endogenous molecular mechanisms of their effect in plants is limited. Here we investigated the effect of allyl-isothiocyanate (AITC) on Arabidopsis thaliana mutants impaired in homeostasis of the low-molecular weight thiol glutathione. We show that glutathione is important for the AITC-induced physiological responses, since mutants deficient in glutathione biosynthesis displayed a lower biomass and higher root growth inhibition than WT seedlings. These mutants were also more susceptible than WT to another ITC, sulforaphane. Sulforaphane was however more potent in inhibiting root growth than AITC. Combining AITC with the glutathione biosynthesis inhibitor L-buthionine-sulfoximine (BSO) led to an even stronger phenotype than observed for the single treatments. Furthermore, transgenic plants expressing the redox-sensitive fluorescent biomarker roGFP2 indicated more oxidative conditions during AITC treatment. Taken together, we provide genetic evidence that glutathione plays an important role in AITC-induced growth inhibition, although further studies need to be conducted to reveal the underlying mechanisms.
Collapse
|
114
|
Volpert A, Graff van Creveld S, Rosenwasser S, Vardi A. Diurnal fluctuations in chloroplast GSH redox state regulate susceptibility to oxidative stress and cell fate in a bloom-forming diatom. JOURNAL OF PHYCOLOGY 2018; 54:329-341. [PMID: 29505088 DOI: 10.1111/jpy.12638] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 02/07/2018] [Indexed: 06/08/2023]
Abstract
Diatoms are one of the key phytoplankton groups in the ocean, forming vast oceanic blooms and playing a significant part in global primary production. To shed light on the role of redox metabolism in diatom's acclimation to light-dark transition and its interplay with cell fate regulation, we generated transgenic lines of the diatom Thalassiosira pseudonana that express the redox-sensitive green fluorescent protein targeted to various subcellular organelles. We detected organelle-specific redox patterns in response to oxidative stress, indicating compartmentalized antioxidant capacities. Monitoring the GSH redox potential (EGSH ) in the chloroplast over diurnal cycles revealed distinct rhythmic patterns. Intriguingly, in the dark, cells exhibited reduced basal chloroplast EGSH but higher sensitivity to oxidative stress than cells in the light. This dark-dependent sensitivity to oxidative stress was a result of a depleted pool of reduced glutathione which accumulated during the light period. Interestingly, reduction in the chloroplast EGSH was observed in the light phase prior to the transition to darkness, suggesting an anticipatory phase. Rapid chloroplast EGSH re-oxidation was observed upon re-illumination, signifying an induction of an oxidative signaling during transition to light that may regulate downstream metabolic processes. Since light-dark transitions can dictate metabolic capabilities and susceptibility to a range of environmental stress conditions, deepening our understanding of the molecular components mediating the light-dependent redox signals may provide novel insights into cell fate regulation and its impact on oceanic bloom successions.
Collapse
Affiliation(s)
- Adi Volpert
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Shiri Graff van Creveld
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Shilo Rosenwasser
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Assaf Vardi
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| |
Collapse
|
115
|
Walia A, Waadt R, Jones AM. Genetically Encoded Biosensors in Plants: Pathways to Discovery. ANNUAL REVIEW OF PLANT BIOLOGY 2018; 69:497-524. [PMID: 29719164 DOI: 10.1146/annurev-arplant-042817-040104] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Genetically encoded biosensors that directly interact with a molecule of interest were first introduced more than 20 years ago with fusion proteins that served as fluorescent indicators for calcium ions. Since then, the technology has matured into a diverse array of biosensors that have been deployed to improve our spatiotemporal understanding of molecules whose dynamics have profound influence on plant physiology and development. In this review, we address several types of biosensors with a focus on genetically encoded calcium indicators, which are now the most diverse and advanced group of biosensors. We then consider the discoveries in plant biology made by using biosensors for calcium, pH, reactive oxygen species, redox conditions, primary metabolites, phytohormones, and nutrients. These discoveries were dependent on the engineering, characterization, and optimization required to develop a successful biosensor; they were also dependent on the methodological developments required to express, detect, and analyze the readout of such biosensors.
Collapse
Affiliation(s)
- Ankit Walia
- Sainsbury Laboratory, Cambridge University, Cambridge CB2 1LR, United Kingdom;
| | - Rainer Waadt
- Centre for Organismal Studies, Ruprecht-Karls-Universität Heidelberg, Heidelberg 69120, Germany
| | - Alexander M Jones
- Sainsbury Laboratory, Cambridge University, Cambridge CB2 1LR, United Kingdom;
| |
Collapse
|
116
|
Grossmann G, Krebs M, Maizel A, Stahl Y, Vermeer JEM, Ott T. Green light for quantitative live-cell imaging in plants. J Cell Sci 2018; 131:jcs.209270. [PMID: 29361538 DOI: 10.1242/jcs.209270] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Plants exhibit an intriguing morphological and physiological plasticity that enables them to thrive in a wide range of environments. To understand the cell biological basis of this unparalleled competence, a number of methodologies have been adapted or developed over the last decades that allow minimal or non-invasive live-cell imaging in the context of tissues. Combined with the ease to generate transgenic reporter lines in specific genetic backgrounds or accessions, we are witnessing a blooming in plant cell biology. However, the imaging of plant cells entails a number of specific challenges, such as high levels of autofluorescence, light scattering that is caused by cell walls and their sensitivity to environmental conditions. Quantitative live-cell imaging in plants therefore requires adapting or developing imaging techniques, as well as mounting and incubation systems, such as micro-fluidics. Here, we discuss some of these obstacles, and review a number of selected state-of-the-art techniques, such as two-photon imaging, light sheet microscopy and variable angle epifluorescence microscopy that allow high performance and minimal invasive live-cell imaging in plants.
Collapse
Affiliation(s)
- Guido Grossmann
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany.,Excellence Cluster CellNetworks, Heidelberg University, 69120 Heidelberg, Germany
| | - Melanie Krebs
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Alexis Maizel
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Yvonne Stahl
- Institute for Developmental Genetics, Heinrich-Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Joop E M Vermeer
- Laboratory for Cell Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Thomas Ott
- Faculty of Biology, Cell Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| |
Collapse
|
117
|
Crystal Structure of Green Fluorescent Protein Clover and Design of Clover-Based Redox Sensors. Structure 2018; 26:225-237.e3. [PMID: 29307487 DOI: 10.1016/j.str.2017.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/31/2017] [Accepted: 12/06/2017] [Indexed: 11/23/2022]
Abstract
We have determined the crystal structure of Clover, one of the brightest fluorescent proteins, and found that its T203H/S65G mutations relative to wild-type GFP lock the critical E222 side chain in a fixed configuration that mimics the major conformer of that in EGFP. The resulting equilibrium shift to the predominantly deprotonated chromophore increases the extinction coefficient (EC), opposes photoactivation, and is responsible for the bathochromic shift. Clover's brightness can further be attributed to a π-π stacking interaction between H203 and the chromophore. Consistent with these observations, the Clover G65S mutant reversed the equilibrium shift, dramatically decreased the EC, and made Clover photoactivatable under conditions that activated photoactivatable GFP. Using the Clover structure, we rationally engineered a non-photoactivatable redox sensor, roClover1, and determined its structure as well as that of its parental template, roClover0.1. These high-resolution structures provide deeper insights into structure-function relationships in GFPs and may aid the development of excitation-improved ratiometric biosensors.
Collapse
|
118
|
Esposito S, Masala A, Sanna S, Rassu M, Pimxayvong V, Iaccarino C, Crosio C. Redox-sensitive GFP to monitor oxidative stress in neurodegenerative diseases. Rev Neurosci 2018; 28:133-144. [PMID: 28030361 DOI: 10.1515/revneuro-2016-0041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/02/2016] [Indexed: 02/06/2023]
Abstract
Redox processes are key events in the degenerative cascade of many adult-onset neurodegenerative diseases (NDs), but the biological relevance of a single redox change is often dependent on the redox couple involved and on its subcellular origin. The biosensors based on engineered fluorescent proteins (redox-sensitive GFP [roGFP]) offer a unique opportunity to monitor redox changes in both physiological and pathological contexts in living animals and plants. Here, we review the use of roGFPs to monitor oxidative stress in different three adult-onset NDs: Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). Despite the many differences spanning from incidence to onset, the hypotheses on biological processes underlying both sporadic and familiar ND forms in humans outline a model in which noncompeting mechanisms are likely to converge in various unsuccessful patterns to mediate the selective degeneration of a specific neuronal population. roGFPs, targeted to different cell compartments, are successfully used as specific markers of cell toxicity, induced by expression of causative genes linked to a determined ND. We also report the use of roGFP to monitor oxidative stress induced by the expression of the ALS-causative gene SOD1.
Collapse
|
119
|
Abstract
The plant endoplasmic reticulum forms a network of tubules connected by three-way junctions or sheet-like cisternae. Although the network is three-dimensional, in many plant cells, it is constrained to a thin volume sandwiched between the vacuole and plasma membrane, effectively restricting it to a 2-D planar network. The structure of the network, and the morphology of the tubules and cisternae can be automatically extracted following intensity-independent edge-enhancement and various segmentation techniques to give an initial pixel-based skeleton, which is then converted to a graph representation. Collectively, this approach yields a wealth of quantitative metrics for ER structure and can be used to describe the effects of pharmacological treatments or genetic manipulation. The software is publicly available.
Collapse
|
120
|
Cell-Type Specific Metabolic Flux Analysis: A Challenge for Metabolic Phenotyping and a Potential Solution in Plants. Metabolites 2017; 7:metabo7040059. [PMID: 29137184 PMCID: PMC5746739 DOI: 10.3390/metabo7040059] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 12/22/2022] Open
Abstract
Stable isotope labelling experiments are used routinely in metabolic flux analysis (MFA) to determine the metabolic phenotype of cells and tissues. A complication arises in multicellular systems because single cell measurements of transcriptomes, proteomes and metabolomes in multicellular organisms suggest that the metabolic phenotype will differ between cell types. In silico analysis of simulated metabolite isotopomer datasets shows that cellular heterogeneity confounds conventional MFA because labelling data averaged over multiple cell types does not necessarily yield averaged flux values. A potential solution to this problem—the use of cell-type specific reporter proteins as a source of cell-type specific labelling data—is proposed and the practicality of implementing this strategy in the roots of Arabidopsis thaliana seedlings is explored. A protocol for the immunopurification of ectopically expressed green fluorescent protein (GFP) from Arabidopsis thaliana seedlings using a GFP-binding nanobody is developed, and through GC-MS analysis of protein hydrolysates it is established that constitutively expressed GFP reports accurately on the labelling of total protein in root tissues. It is also demonstrated that the constitutive expression of GFP does not perturb metabolism. The principal obstacle to the implementation of the method in tissues with cell-type specific GFP expression is the sensitivity of the GC-MS system.
Collapse
|
121
|
Systems Phytohormone Responses to Mitochondrial Proteotoxic Stress. Mol Cell 2017; 68:540-551.e5. [DOI: 10.1016/j.molcel.2017.10.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 08/07/2017] [Accepted: 10/05/2017] [Indexed: 02/06/2023]
|
122
|
Panieri E, Millia C, Santoro MM. Real-time quantification of subcellular H 2O 2 and glutathione redox potential in living cardiovascular tissues. Free Radic Biol Med 2017; 109:189-200. [PMID: 28192232 DOI: 10.1016/j.freeradbiomed.2017.02.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/31/2017] [Accepted: 02/08/2017] [Indexed: 12/17/2022]
Abstract
Detecting and measuring the dynamic redox events that occur in vivo is a prerequisite for understanding the impact of oxidants and redox events in normal and pathological conditions. These aspects are particularly relevant in cardiovascular tissues wherein alterations of the redox balance are associated with stroke, aging, and pharmacological intervention. An ambiguous aspect of redox biology is how redox events occur in subcellular organelles including mitochondria, and nuclei. Genetically-encoded Rogfp2 fluorescent probes have become powerful tools for real-time detection of redox events. These probes detect hydrogen peroxide (H2O2) levels and glutathione redox potential (EGSH), both with high spatiotemporal resolution. By generating novel transgenic (Tg) zebrafish lines that express compartment-specific Rogfp2-Orp1 and Grx1-Rogfp2 sensors we analyzed cytosolic, mitochondrial, and the nuclear redox state of endothelial cells and cardiomyocytes of living zebrafish embryos. We provide evidence for the usefulness of these Tg lines for pharmacological compounds screening by addressing the blocking of pentose phosphate pathways (PPP) and glutathione synthesis, thus altering subcellular redox state in vivo. Rogfp2-based transgenic zebrafish lines represent valuable tools to characterize the impact of redox changes in living tissues and offer new opportunities for studying metabolic driven antioxidant response in biomedical research.
Collapse
Affiliation(s)
- Emiliano Panieri
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Carlo Millia
- Laboratory of Endothelial Molecular Biology, Vesalius Research Center, Department of Oncology, VIB-KUL, Leuven, Belgium
| | - Massimo M Santoro
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy; Laboratory of Endothelial Molecular Biology, Vesalius Research Center, Department of Oncology, VIB-KUL, Leuven, Belgium.
| |
Collapse
|
123
|
Bilan DS, Belousov VV. New tools for redox biology: From imaging to manipulation. Free Radic Biol Med 2017; 109:167-188. [PMID: 27939954 DOI: 10.1016/j.freeradbiomed.2016.12.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 12/02/2016] [Accepted: 12/03/2016] [Indexed: 12/12/2022]
Abstract
Redox reactions play a key role in maintaining essential biological processes. Deviations in redox pathways result in the development of various pathologies at cellular and organismal levels. Until recently, studies on transformations in the intracellular redox state have been significantly hampered in living systems. The genetically encoded indicators, based on fluorescent proteins, have provided new opportunities in biomedical research. The existing indicators already enable monitoring of cellular redox parameters in different processes including embryogenesis, aging, inflammation, tissue regeneration, and pathogenesis of various diseases. In this review, we summarize information about all genetically encoded redox indicators developed to date. We provide the description of each indicator and discuss its advantages and limitations, as well as points that need to be considered when choosing an indicator for a particular experiment. One chapter is devoted to the important discoveries that have been made by using genetically encoded redox indicators.
Collapse
Affiliation(s)
- Dmitry S Bilan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | | |
Collapse
|
124
|
De Col V, Fuchs P, Nietzel T, Elsässer M, Voon CP, Candeo A, Seeliger I, Fricker MD, Grefen C, Møller IM, Bassi A, Lim BL, Zancani M, Meyer AJ, Costa A, Wagner S, Schwarzländer M. ATP sensing in living plant cells reveals tissue gradients and stress dynamics of energy physiology. eLife 2017; 6. [PMID: 28716182 PMCID: PMC5515573 DOI: 10.7554/elife.26770] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/28/2017] [Indexed: 12/13/2022] Open
Abstract
Growth and development of plants is ultimately driven by light energy captured through photosynthesis. ATP acts as universal cellular energy cofactor fuelling all life processes, including gene expression, metabolism, and transport. Despite a mechanistic understanding of ATP biochemistry, ATP dynamics in the living plant have been largely elusive. Here, we establish MgATP2- measurement in living plants using the fluorescent protein biosensor ATeam1.03-nD/nA. We generate Arabidopsis sensor lines and investigate the sensor in vitro under conditions appropriate for the plant cytosol. We establish an assay for ATP fluxes in isolated mitochondria, and demonstrate that the sensor responds rapidly and reliably to MgATP2- changes in planta. A MgATP2- map of the Arabidopsis seedling highlights different MgATP2- concentrations between tissues and within individual cell types, such as root hairs. Progression of hypoxia reveals substantial plasticity of ATP homeostasis in seedlings, demonstrating that ATP dynamics can be monitored in the living plant.
Collapse
Affiliation(s)
- Valentina De Col
- Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany.,Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Philippe Fuchs
- Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Thomas Nietzel
- Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Marlene Elsässer
- Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Chia Pao Voon
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Alessia Candeo
- Dipartimento di Fisica, Politecnico di Milano, Milano, Italy
| | - Ingo Seeliger
- Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Mark D Fricker
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Christopher Grefen
- Centre for Plant Molecular Biology, Developmental Genetics, University of Tübingen, Tübingen, Germany
| | - Ian Max Møller
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Andrea Bassi
- Dipartimento di Fisica, Politecnico di Milano, Milano, Italy
| | - Boon Leong Lim
- School of Biological Sciences, University of Hong Kong, Hong Kong, China.,State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Hong Kong, China
| | - Marco Zancani
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Andreas J Meyer
- Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany.,Bioeconomy Science Center, Forschungszentrum Jülich, Jülich, Germany
| | - Alex Costa
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Stephan Wagner
- Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Markus Schwarzländer
- Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany.,Bioeconomy Science Center, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
125
|
Exposito-Rodriguez M, Laissue PP, Yvon-Durocher G, Smirnoff N, Mullineaux PM. Photosynthesis-dependent H 2O 2 transfer from chloroplasts to nuclei provides a high-light signalling mechanism. Nat Commun 2017; 8:49. [PMID: 28663550 PMCID: PMC5491514 DOI: 10.1038/s41467-017-00074-w] [Citation(s) in RCA: 238] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/26/2017] [Indexed: 12/30/2022] Open
Abstract
Chloroplasts communicate information by signalling to nuclei during acclimation to fluctuating light. Several potential operating signals originating from chloroplasts have been proposed, but none have been shown to move to nuclei to modulate gene expression. One proposed signal is hydrogen peroxide (H2O2) produced by chloroplasts in a light-dependent manner. Using HyPer2, a genetically encoded fluorescent H2O2 sensor, we show that in photosynthetic Nicotiana benthamiana epidermal cells, exposure to high light increases H2O2 production in chloroplast stroma, cytosol and nuclei. Critically, over-expression of stromal ascorbate peroxidase (H2O2 scavenger) or treatment with DCMU (photosynthesis inhibitor) attenuates nuclear H2O2 accumulation and high light-responsive gene expression. Cytosolic ascorbate peroxidase over-expression has little effect on nuclear H2O2 accumulation and high light-responsive gene expression. This is because the H2O2 derives from a sub-population of chloroplasts closely associated with nuclei. Therefore, direct H2O2 transfer from chloroplasts to nuclei, avoiding the cytosol, enables photosynthetic control over gene expression.Multiple plastid-derived signals have been proposed but not shown to move to the nucleus to promote plant acclimation to fluctuating light. Here the authors use a fluorescent hydrogen peroxide sensor to provide evidence that H2O2 is transferred directly from chloroplasts to nuclei to control nuclear gene expression.
Collapse
Affiliation(s)
- Marino Exposito-Rodriguez
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK
| | | | - Gabriel Yvon-Durocher
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9EZ, UK
| | - Nicholas Smirnoff
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK.
| | - Philip M Mullineaux
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK.
| |
Collapse
|
126
|
Marschall R, Tudzynski P. The Protein Disulfide Isomerase of Botrytis cinerea: An ER Protein Involved in Protein Folding and Redox Homeostasis Influences NADPH Oxidase Signaling Processes. Front Microbiol 2017; 8:960. [PMID: 28611757 PMCID: PMC5447010 DOI: 10.3389/fmicb.2017.00960] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/15/2017] [Indexed: 11/13/2022] Open
Abstract
Botrytis cinerea is a filamentous plant pathogen, which infects hundreds of plant species; within its lifestyle, the production of reactive oxygen species (ROS) and a balanced redox homeostasis are essential parameters. The pathogen is capable of coping with the plant’s oxidative burst and even produces its own ROS to enhance the plant’s oxidative burst. Highly conserved NADPH oxidase (Nox) complexes produce the reactive molecules. The membrane-associated complexes regulate a large variety of vegetative and pathogenic processes. Besides their commonly accepted function at the plasma membrane, recent studies reveal that Nox complexes are also active at the membrane of the endoplasmic reticulum. In this study, we identified the essential ER protein BcPdi1 as new interaction partner of the NoxA complex in B. cinerea. Mutants that lack this ER chaperone display overlapping phenotypes to mutants of the NoxA signaling pathway. The protein appears to be involved in all major developmental processes, such as the formation of sclerotia, conidial anastomosis tubes and infection cushions (IC’s) and is needed for full virulence. Moreover, expression analyses and reporter gene studies indicate that BcPdi1 affects the redox homeostasis and unfolded protein response (UPR)-related genes. Besides the close association between BcPdi1 and BcNoxA, interaction studies provide evidence that the ER protein might likewise be involved in Ca2+ regulated processes. Finally, we were able to show that the potential key functions of the protein BcPdi1 might be affected by its phosphorylation state.
Collapse
Affiliation(s)
- Robert Marschall
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität MünsterMünster, Germany
| | - Paul Tudzynski
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität MünsterMünster, Germany
| |
Collapse
|
127
|
Chio IIC, Tuveson DA. ROS in Cancer: The Burning Question. Trends Mol Med 2017; 23:411-429. [PMID: 28427863 PMCID: PMC5462452 DOI: 10.1016/j.molmed.2017.03.004] [Citation(s) in RCA: 372] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/16/2017] [Accepted: 03/16/2017] [Indexed: 02/07/2023]
Abstract
An unanswered question in human health is whether antioxidation prevents or promotes cancer. Antioxidation has historically been viewed as chemopreventive, but emerging evidence suggests that antioxidants may be supportive of neoplasia. We posit this contention to be rooted in the fact that ROS do not operate as one single biochemical entity, but as diverse secondary messengers in cancer cells. This cautions against therapeutic strategies to increase ROS at a global level. To leverage redox alterations towards the development of effective therapies necessitates the application of biophysical and biochemical approaches to define redox dynamics and to functionally elucidate specific oxidative modifications in cancer versus normal cells. An improved understanding of the sophisticated workings of redox biology is imperative to defeating cancer.
Collapse
Affiliation(s)
- Iok In Christine Chio
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA.
| | - David A Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
128
|
Müller A, Schneider JF, Degrossoli A, Lupilova N, Dick TP, Leichert LI. Systematic in vitro assessment of responses of roGFP2-based probes to physiologically relevant oxidant species. Free Radic Biol Med 2017; 106:329-338. [PMID: 28242229 DOI: 10.1016/j.freeradbiomed.2017.02.044] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 02/03/2017] [Accepted: 02/22/2017] [Indexed: 01/11/2023]
Abstract
The genetically encoded probes roGFP2-Orp1 and Grx1-roGFP2 have been designed to be selectively oxidized by hydrogen peroxide (H2O2) and glutathione disulfide (GSSG), respectively. Both probes have demonstrated such selectivity in a broad variety of systems and conditions. In this study, we systematically compared the in vitro response of roGFP2, roGFP2-Orp1 and Grx1-roGFP2 to increasing amounts of various oxidant species that may also occur in biological settings. We conclude that the previously established oxidant selectivity is highly robust and likely to be maintained under most physiological conditions. Yet, we also find that hypochlorous acid, known to be produced in the phagocyte respiratory burst, can lead to non-selective oxidation of roGFP2-based probes at concentrations ≥2µM, in vitro. Further, we confirm that polysulfides trigger direct roGFP2 responses. A side-by-side comparison of all three probes can be used to reveal micromolar amounts of hypochlorous acid or polysulfides.
Collapse
Affiliation(s)
- Alexandra Müller
- Institute of Biochemistry and Pathobiochemistry - Microbial Biochemistry, Ruhr-University Bochum, 44780 Bochum, Germany.
| | - Jannis F Schneider
- Institute of Biochemistry and Pathobiochemistry - Microbial Biochemistry, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Adriana Degrossoli
- Institute of Biochemistry and Pathobiochemistry - Microbial Biochemistry, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Nataliya Lupilova
- Institute of Biochemistry and Pathobiochemistry - Microbial Biochemistry, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Tobias P Dick
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Lars I Leichert
- Institute of Biochemistry and Pathobiochemistry - Microbial Biochemistry, Ruhr-University Bochum, 44780 Bochum, Germany
| |
Collapse
|
129
|
Heath SE, Knox K, Vale PF, Collins S. Virus Resistance Is Not Costly in a Marine Alga Evolving under Multiple Environmental Stressors. Viruses 2017; 9:v9030039. [PMID: 28282867 PMCID: PMC5371794 DOI: 10.3390/v9030039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 02/24/2017] [Accepted: 02/28/2017] [Indexed: 01/21/2023] Open
Abstract
Viruses are important evolutionary drivers of host ecology and evolution. The marine picoplankton Ostreococcus tauri has three known resistance types that arise in response to infection with the Phycodnavirus OtV5: susceptible cells (S) that lyse following viral entry and replication; resistant cells (R) that are refractory to viral entry; and resistant producers (RP) that do not all lyse but maintain some viruses within the population. To test for evolutionary costs of maintaining antiviral resistance, we examined whether O. tauri populations composed of each resistance type differed in their evolutionary responses to several environmental drivers (lower light, lower salt, lower phosphate and a changing environment) in the absence of viruses for approximately 200 generations. We did not detect a cost of resistance as measured by life-history traits (population growth rate, cell size and cell chlorophyll content) and competitive ability. Specifically, all R and RP populations remained resistant to OtV5 lysis for the entire 200-generation experiment, whereas lysis occurred in all S populations, suggesting that resistance is not costly to maintain even when direct selection for resistance was removed, or that there could be a genetic constraint preventing return to a susceptible resistance type. Following evolution, all S population densities dropped when inoculated with OtV5, but not to zero, indicating that lysis was incomplete, and that some cells may have gained a resistance mutation over the evolution experiment. These findings suggest that maintaining resistance in the absence of viruses was not costly.
Collapse
Affiliation(s)
- Sarah E Heath
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, The King's Buildings, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK.
| | - Kirsten Knox
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Rutherford Building, Max Born Crescent, Edinburgh EH9 3BF, UK.
| | - Pedro F Vale
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, The King's Buildings, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK.
| | - Sinead Collins
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, The King's Buildings, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK.
| |
Collapse
|
130
|
Mohring F, Rahbari M, Zechmann B, Rahlfs S, Przyborski JM, Meyer AJ, Becker K. Determination of glutathione redox potential and pH value in subcellular compartments of malaria parasites. Free Radic Biol Med 2017; 104:104-117. [PMID: 28062360 DOI: 10.1016/j.freeradbiomed.2017.01.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 12/16/2016] [Accepted: 01/02/2017] [Indexed: 12/26/2022]
Abstract
The malaria parasite Plasmodium falciparum is exposed to multiple sources of oxidative challenge during its complex life cycle in the Anopheles vector and its human host. In order to further elucidate redox-based parasite host cell interactions and mechanisms of drug action, we targeted the genetically encoded glutathione redox sensor roGFP2 coupled to human glutaredoxin 1 (roGFP2-hGrx1) as well as the ratiometric pH sensor pHluorin to the apicoplast and the mitochondrion of P. falciparum. Using live cell imaging, this allowed for the first time the determination of the pH values of the apicoplast (7.12±0.40) and mitochondrion (7.37±0.09) in the intraerythrocytic asexual stages of the parasite. Based on the roGFP2-hGrx1 signals, glutathione-dependent redox potentials of -267mV and -328mV, respectively, were obtained. Employing these novel tools, initial studies on the effects of redox-active agents and clinically employed antimalarial drugs were carried out on both organelles.
Collapse
Affiliation(s)
- Franziska Mohring
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Mahsa Rahbari
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Bernd Zechmann
- Center for Microscopy and Imaging, Baylor University, 101 Bagby Ave., Waco, TX 76706, USA
| | - Stefan Rahlfs
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Jude M Przyborski
- Parasitology, Philipps University Marburg, Karl-von-Frisch Strasse 8, 35043 Marburg, Germany
| | - Andreas J Meyer
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, 53113 Bonn, Germany
| | - Katja Becker
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| |
Collapse
|
131
|
Considine MJ, Diaz-Vivancos P, Kerchev P, Signorelli S, Agudelo-Romero P, Gibbs DJ, Foyer CH. Learning To Breathe: Developmental Phase Transitions in Oxygen Status. TRENDS IN PLANT SCIENCE 2017; 22:140-153. [PMID: 27986423 DOI: 10.1016/j.tplants.2016.11.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 11/01/2016] [Accepted: 11/20/2016] [Indexed: 05/04/2023]
Abstract
Plants are developmentally disposed to significant changes in oxygen availability, but our understanding of the importance of hypoxia is almost entirely limited to stress biology. Differential patterns of the abundance of oxygen, nitric oxide (•NO), and reactive oxygen species (ROS), as well as of redox potential, occur in organs and meristems, and examples are emerging in the literature of mechanistic relationships of these to development. We describe here the convergence of these cues in meristematic and reproductive tissues, and discuss the evidence for regulated hypoxic niches within which oxygen-, ROS-, •NO-, and redox-dependent signalling curate developmental transitions in plants.
Collapse
Affiliation(s)
- Michael J Considine
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia; Department of Agriculture and Food Western Australia, South Perth, WA 6151, Australia; Centre for Plant Sciences, School of Biology, University of Leeds, Leeds LS2 9JT, UK.
| | - Pedro Diaz-Vivancos
- Group of Fruit Biotechnology, Department of Plant Breeding, Centro de Edafología y Biología Aplicada del Segura (CEBAS)-Consejo Superior de Investigaciones Científicas (CSIC), Campus Universitario de Espinardo, Murcia 30100, Spain
| | - Pavel Kerchev
- Vlaams Instituut voor Biotechnologie (VIB) Department of Plant Systems Biology, University of Gent Technologiepark 927, Gent, 9052 Belgium
| | - Santiago Signorelli
- School of Plant Biology, The University of Western Australia, Perth, WA 6009, Australia
| | - Patricia Agudelo-Romero
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA 6009, Australia
| | - Daniel J Gibbs
- School of Biosciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Christine H Foyer
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia; Centre for Plant Sciences, School of Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
132
|
|
133
|
Lee CP, Maksaev G, Jensen GS, Murcha MW, Wilson ME, Fricker M, Hell R, Haswell ES, Millar AH, Sweetlove LJ. MSL1 is a mechanosensitive ion channel that dissipates mitochondrial membrane potential and maintains redox homeostasis in mitochondria during abiotic stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:809-825. [PMID: 27505616 PMCID: PMC5195915 DOI: 10.1111/tpj.13301] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/04/2016] [Accepted: 08/05/2016] [Indexed: 05/18/2023]
Abstract
Mitochondria must maintain tight control over the electrochemical gradient across their inner membrane to allow ATP synthesis while maintaining a redox-balanced electron transport chain and avoiding excessive reactive oxygen species production. However, there is a scarcity of knowledge about the ion transporters in the inner mitochondrial membrane that contribute to control of membrane potential. We show that loss of MSL1, a member of a family of mechanosensitive ion channels related to the bacterial channel MscS, leads to increased membrane potential of Arabidopsis mitochondria under specific bioenergetic states. We demonstrate that MSL1 localises to the inner mitochondrial membrane. When expressed in Escherichia coli, MSL1 forms a stretch-activated ion channel with a slight preference for anions and provides protection against hypo-osmotic shock. In contrast, loss of MSL1 in Arabidopsis did not prevent swelling of isolated mitochondria in hypo-osmotic conditions. Instead, our data suggest that ion transport by MSL1 leads to dissipation of mitochondrial membrane potential when it becomes too high. The importance of MSL1 function was demonstrated by the observation of a higher oxidation state of the mitochondrial glutathione pool in msl1-1 mutants under moderate heat- and heavy-metal-stress. Furthermore, we show that MSL1 function is not directly implicated in mitochondrial membrane potential pulsing, but is complementary and appears to be important under similar conditions.
Collapse
Affiliation(s)
- Chun Pong Lee
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Bayliss Building M316, 35 Stirling Highway, Crawley, 6009, Western Australia, Australia
| | - Grigory Maksaev
- Department of Biology, Washington University in Saint Louis, One Brookings Drive, Mailcode 1137, Saint Louis, MO, 63130, USA
| | - Gregory S Jensen
- Department of Biology, Washington University in Saint Louis, One Brookings Drive, Mailcode 1137, Saint Louis, MO, 63130, USA
| | - Monika W Murcha
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Bayliss Building M316, 35 Stirling Highway, Crawley, 6009, Western Australia, Australia
| | - Margaret E Wilson
- Department of Biology, Washington University in Saint Louis, One Brookings Drive, Mailcode 1137, Saint Louis, MO, 63130, USA
| | - Mark Fricker
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Ruediger Hell
- Department of Plant Molecular Biology, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 360, D-69120, Heidelberg, Germany
| | - Elizabeth S Haswell
- Department of Biology, Washington University in Saint Louis, One Brookings Drive, Mailcode 1137, Saint Louis, MO, 63130, USA
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Bayliss Building M316, 35 Stirling Highway, Crawley, 6009, Western Australia, Australia
| | - Lee J Sweetlove
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| |
Collapse
|
134
|
Marschall R, Siegmund U, Burbank J, Tudzynski P. Update on Nox function, site of action and regulation in Botrytis cinerea. Fungal Biol Biotechnol 2016; 3:8. [PMID: 28955467 PMCID: PMC5611593 DOI: 10.1186/s40694-016-0026-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 09/29/2016] [Indexed: 12/11/2022] Open
Abstract
Background The production of reactive oxygen species (ROS) and a balanced redox homeostasis are essential parameters, which control the infection process of the plant pathogen Botrytis cinerea. The necrotrophic fungus is able to cope with the plants’ oxidative burst and even produces its own ROS to overcome the plants’ defense barrier. Major enzyme complexes, which are responsible for the production of superoxide, are NADPH oxidase (Nox) complexes. They play a central role in various growth, differentiation and pathogenic processes. However, information about their regulation and the integration in the complex signaling network of filamentous fungi is still scarce. Results In this work, we give an update on Nox structure, function, site of action and regulation. We show that functionality of the catalytic Nox-subunits seems to be independent from their transcriptional regulation and that the membrane orientation of BcNoxA would allow electron transport inside the ER. Following previous studies, which provided evidence for distinct functions of the NoxA complex inside the ER, we highlight in this work that the N-terminus of BcNoxA is essential for these functions. Finally, we elucidate the role of BcNoxD and BcNoxB inside the ER by complementing the deletion mutants with ER bound alleles. Conclusions This study provides a deeper analysis of the Nox complexes in B. cinerea. Besides new insights in the overall regulation of the complexes, we provide further evidence that the NoxA complex has a predominant role inside the ER, while the NoxB complex is mainly important outside the ER, likely at the plasma membrane. By considering all other putative Nox complex members, we propose a putative model, which describes the distinct complex pattern upon certain differentiation processes. Electronic supplementary material The online version of this article (doi:10.1186/s40694-016-0026-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Robert Marschall
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms Universität, Schlossplatz 8, 48143 Münster, Germany
| | - Ulrike Siegmund
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms Universität, Schlossplatz 8, 48143 Münster, Germany
| | - Joachim Burbank
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms Universität, Schlossplatz 8, 48143 Münster, Germany
| | - Paul Tudzynski
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms Universität, Schlossplatz 8, 48143 Münster, Germany
| |
Collapse
|
135
|
Ortega-Villasante C, Burén S, Barón-Sola Á, Martínez F, Hernández LE. In vivo ROS and redox potential fluorescent detection in plants: Present approaches and future perspectives. Methods 2016; 109:92-104. [DOI: 10.1016/j.ymeth.2016.07.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/08/2016] [Accepted: 07/11/2016] [Indexed: 11/16/2022] Open
|
136
|
Braeckman BP, Smolders A, Back P, De Henau S. In Vivo Detection of Reactive Oxygen Species and Redox Status in Caenorhabditis elegans. Antioxid Redox Signal 2016; 25:577-92. [PMID: 27306519 PMCID: PMC5041511 DOI: 10.1089/ars.2016.6751] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 06/14/2016] [Indexed: 12/21/2022]
Abstract
SIGNIFICANCE Due to its large families of redox-active enzymes, genetic amenability, and complete transparency, the nematode Caenorhabditis elegans has the potential to become an important model for the in vivo study of redox biology. RECENT ADVANCES The recent development of several genetically encoded ratiometric reactive oxygen species (ROS) and redox sensors has revolutionized the quantification and precise localization of ROS and redox signals in living organisms. Only few exploratory studies have applied these sensors in C. elegans and undoubtedly much remains to be discovered in this model. As a follow-up to our recent findings that the C. elegans somatic gonad uses superoxide and hydrogen peroxide (H2O2) signals to communicate with the germline, we here analyze the patterns of H2O2 inside the C. elegans germline. CRITICAL ISSUES Despite the advantages of genetically encoded ROS and redox sensors over classic chemical sensors, still several general as well as C. elegans-specific issues need to be addressed. The major concerns for the application of these sensors in C. elegans are (i) decreased vitality of some reporter strains, (ii) interference of autofluorescent compartments with the sensor signal, and (iii) the use of immobilization methods that do not influence the worm's redox physiology. FUTURE DIRECTIONS We propose that several of the current issues may be solved by designing reporter strains carrying single copies of codon-optimized sensors. Preferably, these sensors should have their emission wavelengths in the red region, where autofluorescence is absent. Worm analysis could be optimized using four-dimensional ratiometric fluorescence microscopy of worms immobilized in microfluidic chips. Antioxid. Redox Signal. 25, 577-592.
Collapse
Affiliation(s)
| | - Arne Smolders
- Biology Department, Ghent University, Ghent, Belgium
| | - Patricia Back
- Biology Department, Ghent University, Ghent, Belgium
| | - Sasha De Henau
- Biology Department, Ghent University, Ghent, Belgium
- Biomedical Genetics, University Medical Center Untrecht, Utrecht, The Netherlands
| |
Collapse
|
137
|
Bratt A, Rosenwasser S, Meyer A, Fluhr R. Organelle redox autonomy during environmental stress. PLANT, CELL & ENVIRONMENT 2016; 39:1909-1919. [PMID: 27037976 DOI: 10.1111/pce.12746] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/14/2016] [Accepted: 03/17/2016] [Indexed: 06/05/2023]
Abstract
Oxidative stress is generated in plants because of inequalities in the rate of reactive oxygen species (ROS) generation and scavenging. The subcellular redox state under various stress conditions was assessed using the redox reporter roGFP2 targeted to chloroplastic, mitochondrial, peroxisomal and cytosolic compartments. In parallel, the vitality of the plant was measured by ion leakage. Our results revealed that during certain physiological stress conditions the changes in roGFP2 oxidation are comparable to application of high concentrations of exogenous H2 O2 . Under each stress, particular organelles were affected. Conditions of extended dark stress, or application of elicitor, impacted chiefly on the status of peroxisomal redox state. In contrast, conditions of drought or high light altered the status of mitochondrial or chloroplast redox state, respectively. Amalgamation of the results from diverse environmental stresses shows cases of organelle autonomy as well as multi-organelle oxidative change. Importantly, organelle-specific oxidation under several stresses proceeded cell death as measured by ion leakage, suggesting early roGFP oxidation as predictive of cell death. The measurement of redox state in multiple compartments enables one to look at redox state connectivity between organelles in relation to oxidative stress as well as assign a redox fingerprint to various types of stress conditions.
Collapse
Affiliation(s)
- Avishay Bratt
- Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel, 7610001
| | - Shilo Rosenwasser
- Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel, 7610001
| | - Andreas Meyer
- Chemical Signaling Lab, University of Bonn, Bonn, Germany, D-53113
| | - Robert Fluhr
- Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel, 7610001
| |
Collapse
|
138
|
Swain L, Kesemeyer A, Meyer-Roxlau S, Vettel C, Zieseniss A, Güntsch A, Jatho A, Becker A, Nanadikar MS, Morgan B, Dennerlein S, Shah AM, El-Armouche A, Nikolaev VO, Katschinski DM. Redox Imaging Using Cardiac Myocyte-Specific Transgenic Biosensor Mice. Circ Res 2016; 119:1004-1016. [PMID: 27553648 DOI: 10.1161/circresaha.116.309551] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 08/22/2016] [Indexed: 01/09/2023]
Abstract
RATIONALE Changes in redox potentials of cardiac myocytes are linked to several cardiovascular diseases. Redox alterations are currently mostly described qualitatively using chemical sensors, which however do not allow quantifying redox potentials, lack specificity, and the possibility to analyze subcellular domains. Recent advances to quantitatively describe defined redox changes include the application of genetically encoded redox biosensors. OBJECTIVE Establishment of mouse models, which allow the quantification of the glutathione redox potential (EGSH) in the cytoplasm and the mitochondrial matrix of isolated cardiac myocytes and in Langendorff-perfused hearts based on the use of the redox-sensitive green fluorescent protein 2, coupled to the glutaredoxin 1 (Grx1-roGFP2). METHODS AND RESULTS We generated transgenic mice with cardiac myocyte-restricted expression of Grx1-roGFP2 targeted either to the mitochondrial matrix or to the cytoplasm. The response of the roGFP2 toward H2O2, diamide, and dithiothreitol was titrated and used to determine the EGSH in isolated cardiac myocytes and in Langendorff-perfused hearts. Distinct EGSH were observed in the cytoplasm and the mitochondrial matrix. Stimulation of the cardiac myocytes with isoprenaline, angiotensin II, or exposure to hypoxia/reoxygenation additionally underscored that these compartments responded independently. A compartment-specific response was also observed 3 to 14 days after myocardial infarction. CONCLUSIONS We introduce redox biosensor mice as a new tool, which allows quantification of defined alterations of EGSH in the cytoplasm and the mitochondrial matrix in cardiac myocytes and can be exploited to answer questions in basic and translational cardiovascular research.
Collapse
Affiliation(s)
- Lija Swain
- From the Institute of Cardiovascular Physiology, Georg August University Göttingen, Germany (L.S., A.K., A.Z., A.G., A.J., A.B., M.S.N., D.M.K.); Institute of Pharmacology, Technical University Dresden, Germany (S.M.-R., A.E.-A.); Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany (C.V.); Cellular Biochemistry, Department of Biology, University of Kaiserslautern, Germany (B.M.); Department of Cellular Biochemistry, University Medical Center Göttingen, Germany (S.D.); Cardiovascular Division, King's College London, British Heart Foundation Centre, United Kingdom (A.M.S.); and German Center for Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (V.O.N.); and Institute of Experimental Cardiovascular Research, Hamburg, Germany (V.O.N.)
| | - Andrea Kesemeyer
- From the Institute of Cardiovascular Physiology, Georg August University Göttingen, Germany (L.S., A.K., A.Z., A.G., A.J., A.B., M.S.N., D.M.K.); Institute of Pharmacology, Technical University Dresden, Germany (S.M.-R., A.E.-A.); Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany (C.V.); Cellular Biochemistry, Department of Biology, University of Kaiserslautern, Germany (B.M.); Department of Cellular Biochemistry, University Medical Center Göttingen, Germany (S.D.); Cardiovascular Division, King's College London, British Heart Foundation Centre, United Kingdom (A.M.S.); and German Center for Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (V.O.N.); and Institute of Experimental Cardiovascular Research, Hamburg, Germany (V.O.N.)
| | - Stefanie Meyer-Roxlau
- From the Institute of Cardiovascular Physiology, Georg August University Göttingen, Germany (L.S., A.K., A.Z., A.G., A.J., A.B., M.S.N., D.M.K.); Institute of Pharmacology, Technical University Dresden, Germany (S.M.-R., A.E.-A.); Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany (C.V.); Cellular Biochemistry, Department of Biology, University of Kaiserslautern, Germany (B.M.); Department of Cellular Biochemistry, University Medical Center Göttingen, Germany (S.D.); Cardiovascular Division, King's College London, British Heart Foundation Centre, United Kingdom (A.M.S.); and German Center for Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (V.O.N.); and Institute of Experimental Cardiovascular Research, Hamburg, Germany (V.O.N.)
| | - Christiane Vettel
- From the Institute of Cardiovascular Physiology, Georg August University Göttingen, Germany (L.S., A.K., A.Z., A.G., A.J., A.B., M.S.N., D.M.K.); Institute of Pharmacology, Technical University Dresden, Germany (S.M.-R., A.E.-A.); Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany (C.V.); Cellular Biochemistry, Department of Biology, University of Kaiserslautern, Germany (B.M.); Department of Cellular Biochemistry, University Medical Center Göttingen, Germany (S.D.); Cardiovascular Division, King's College London, British Heart Foundation Centre, United Kingdom (A.M.S.); and German Center for Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (V.O.N.); and Institute of Experimental Cardiovascular Research, Hamburg, Germany (V.O.N.)
| | - Anke Zieseniss
- From the Institute of Cardiovascular Physiology, Georg August University Göttingen, Germany (L.S., A.K., A.Z., A.G., A.J., A.B., M.S.N., D.M.K.); Institute of Pharmacology, Technical University Dresden, Germany (S.M.-R., A.E.-A.); Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany (C.V.); Cellular Biochemistry, Department of Biology, University of Kaiserslautern, Germany (B.M.); Department of Cellular Biochemistry, University Medical Center Göttingen, Germany (S.D.); Cardiovascular Division, King's College London, British Heart Foundation Centre, United Kingdom (A.M.S.); and German Center for Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (V.O.N.); and Institute of Experimental Cardiovascular Research, Hamburg, Germany (V.O.N.)
| | - Annemarie Güntsch
- From the Institute of Cardiovascular Physiology, Georg August University Göttingen, Germany (L.S., A.K., A.Z., A.G., A.J., A.B., M.S.N., D.M.K.); Institute of Pharmacology, Technical University Dresden, Germany (S.M.-R., A.E.-A.); Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany (C.V.); Cellular Biochemistry, Department of Biology, University of Kaiserslautern, Germany (B.M.); Department of Cellular Biochemistry, University Medical Center Göttingen, Germany (S.D.); Cardiovascular Division, King's College London, British Heart Foundation Centre, United Kingdom (A.M.S.); and German Center for Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (V.O.N.); and Institute of Experimental Cardiovascular Research, Hamburg, Germany (V.O.N.)
| | - Aline Jatho
- From the Institute of Cardiovascular Physiology, Georg August University Göttingen, Germany (L.S., A.K., A.Z., A.G., A.J., A.B., M.S.N., D.M.K.); Institute of Pharmacology, Technical University Dresden, Germany (S.M.-R., A.E.-A.); Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany (C.V.); Cellular Biochemistry, Department of Biology, University of Kaiserslautern, Germany (B.M.); Department of Cellular Biochemistry, University Medical Center Göttingen, Germany (S.D.); Cardiovascular Division, King's College London, British Heart Foundation Centre, United Kingdom (A.M.S.); and German Center for Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (V.O.N.); and Institute of Experimental Cardiovascular Research, Hamburg, Germany (V.O.N.)
| | - Andreas Becker
- From the Institute of Cardiovascular Physiology, Georg August University Göttingen, Germany (L.S., A.K., A.Z., A.G., A.J., A.B., M.S.N., D.M.K.); Institute of Pharmacology, Technical University Dresden, Germany (S.M.-R., A.E.-A.); Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany (C.V.); Cellular Biochemistry, Department of Biology, University of Kaiserslautern, Germany (B.M.); Department of Cellular Biochemistry, University Medical Center Göttingen, Germany (S.D.); Cardiovascular Division, King's College London, British Heart Foundation Centre, United Kingdom (A.M.S.); and German Center for Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (V.O.N.); and Institute of Experimental Cardiovascular Research, Hamburg, Germany (V.O.N.)
| | - Maithily S Nanadikar
- From the Institute of Cardiovascular Physiology, Georg August University Göttingen, Germany (L.S., A.K., A.Z., A.G., A.J., A.B., M.S.N., D.M.K.); Institute of Pharmacology, Technical University Dresden, Germany (S.M.-R., A.E.-A.); Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany (C.V.); Cellular Biochemistry, Department of Biology, University of Kaiserslautern, Germany (B.M.); Department of Cellular Biochemistry, University Medical Center Göttingen, Germany (S.D.); Cardiovascular Division, King's College London, British Heart Foundation Centre, United Kingdom (A.M.S.); and German Center for Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (V.O.N.); and Institute of Experimental Cardiovascular Research, Hamburg, Germany (V.O.N.)
| | - Bruce Morgan
- From the Institute of Cardiovascular Physiology, Georg August University Göttingen, Germany (L.S., A.K., A.Z., A.G., A.J., A.B., M.S.N., D.M.K.); Institute of Pharmacology, Technical University Dresden, Germany (S.M.-R., A.E.-A.); Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany (C.V.); Cellular Biochemistry, Department of Biology, University of Kaiserslautern, Germany (B.M.); Department of Cellular Biochemistry, University Medical Center Göttingen, Germany (S.D.); Cardiovascular Division, King's College London, British Heart Foundation Centre, United Kingdom (A.M.S.); and German Center for Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (V.O.N.); and Institute of Experimental Cardiovascular Research, Hamburg, Germany (V.O.N.)
| | - Sven Dennerlein
- From the Institute of Cardiovascular Physiology, Georg August University Göttingen, Germany (L.S., A.K., A.Z., A.G., A.J., A.B., M.S.N., D.M.K.); Institute of Pharmacology, Technical University Dresden, Germany (S.M.-R., A.E.-A.); Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany (C.V.); Cellular Biochemistry, Department of Biology, University of Kaiserslautern, Germany (B.M.); Department of Cellular Biochemistry, University Medical Center Göttingen, Germany (S.D.); Cardiovascular Division, King's College London, British Heart Foundation Centre, United Kingdom (A.M.S.); and German Center for Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (V.O.N.); and Institute of Experimental Cardiovascular Research, Hamburg, Germany (V.O.N.)
| | - Ajay M Shah
- From the Institute of Cardiovascular Physiology, Georg August University Göttingen, Germany (L.S., A.K., A.Z., A.G., A.J., A.B., M.S.N., D.M.K.); Institute of Pharmacology, Technical University Dresden, Germany (S.M.-R., A.E.-A.); Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany (C.V.); Cellular Biochemistry, Department of Biology, University of Kaiserslautern, Germany (B.M.); Department of Cellular Biochemistry, University Medical Center Göttingen, Germany (S.D.); Cardiovascular Division, King's College London, British Heart Foundation Centre, United Kingdom (A.M.S.); and German Center for Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (V.O.N.); and Institute of Experimental Cardiovascular Research, Hamburg, Germany (V.O.N.)
| | - Ali El-Armouche
- From the Institute of Cardiovascular Physiology, Georg August University Göttingen, Germany (L.S., A.K., A.Z., A.G., A.J., A.B., M.S.N., D.M.K.); Institute of Pharmacology, Technical University Dresden, Germany (S.M.-R., A.E.-A.); Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany (C.V.); Cellular Biochemistry, Department of Biology, University of Kaiserslautern, Germany (B.M.); Department of Cellular Biochemistry, University Medical Center Göttingen, Germany (S.D.); Cardiovascular Division, King's College London, British Heart Foundation Centre, United Kingdom (A.M.S.); and German Center for Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (V.O.N.); and Institute of Experimental Cardiovascular Research, Hamburg, Germany (V.O.N.)
| | - Viacheslav O Nikolaev
- From the Institute of Cardiovascular Physiology, Georg August University Göttingen, Germany (L.S., A.K., A.Z., A.G., A.J., A.B., M.S.N., D.M.K.); Institute of Pharmacology, Technical University Dresden, Germany (S.M.-R., A.E.-A.); Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany (C.V.); Cellular Biochemistry, Department of Biology, University of Kaiserslautern, Germany (B.M.); Department of Cellular Biochemistry, University Medical Center Göttingen, Germany (S.D.); Cardiovascular Division, King's College London, British Heart Foundation Centre, United Kingdom (A.M.S.); and German Center for Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (V.O.N.); and Institute of Experimental Cardiovascular Research, Hamburg, Germany (V.O.N.)
| | - Dörthe M Katschinski
- From the Institute of Cardiovascular Physiology, Georg August University Göttingen, Germany (L.S., A.K., A.Z., A.G., A.J., A.B., M.S.N., D.M.K.); Institute of Pharmacology, Technical University Dresden, Germany (S.M.-R., A.E.-A.); Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany (C.V.); Cellular Biochemistry, Department of Biology, University of Kaiserslautern, Germany (B.M.); Department of Cellular Biochemistry, University Medical Center Göttingen, Germany (S.D.); Cardiovascular Division, King's College London, British Heart Foundation Centre, United Kingdom (A.M.S.); and German Center for Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (V.O.N.); and Institute of Experimental Cardiovascular Research, Hamburg, Germany (V.O.N.).
| |
Collapse
|
139
|
Lee CP, Millar AH. The Plant Mitochondrial Transportome: Balancing Metabolic Demands with Energetic Constraints. TRENDS IN PLANT SCIENCE 2016; 21:662-676. [PMID: 27162080 DOI: 10.1016/j.tplants.2016.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/25/2016] [Accepted: 04/04/2016] [Indexed: 06/05/2023]
Abstract
In plants, mitochondrial function is associated with hundreds of metabolic reactions. To facilitate these reactions, charged substrates and cofactors move across the charge-impermeable inner mitochondrial membrane via specialized transporters and must work cooperatively with the electrochemical gradient which is essential for mitochondrial function. The regulatory framework for mitochondrial metabolite transport is expected to be more complex in plants than in mammals owing to the close metabolic association between mitochondrial, plastids, and peroxisome metabolism, as well as to the major diurnal fluctuations in plant metabolic function. We propose here how recent advances can be integrated towards defining the mitochondrial transportome in plants. We also discuss what this reveals about sustaining cooperativity between bioenergetics, metabolism, and transport in typical and challenging environments.
Collapse
Affiliation(s)
- Chun Pong Lee
- Australian Reseach Council (ARC) Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Australia
| | - A Harvey Millar
- Australian Reseach Council (ARC) Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Australia.
| |
Collapse
|
140
|
Maulucci G, Bačić G, Bridal L, Schmidt HH, Tavitian B, Viel T, Utsumi H, Yalçın AS, De Spirito M. Imaging Reactive Oxygen Species-Induced Modifications in Living Systems. Antioxid Redox Signal 2016; 24:939-58. [PMID: 27139586 PMCID: PMC4900226 DOI: 10.1089/ars.2015.6415] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE Reactive Oxygen Species (ROS) may regulate signaling, ion channels, transcription factors, and biosynthetic processes. ROS-related diseases can be due to either a shortage or an excess of ROS. RECENT ADVANCES Since the biological activity of ROS depends on not only concentration but also spatiotemporal distribution, real-time imaging of ROS, possibly in vivo, has become a need for scientists, with potential for clinical translation. New imaging techniques as well as new contrast agents in clinically established modalities were developed in the previous decade. CRITICAL ISSUES An ideal imaging technique should determine ROS changes with high spatio-temporal resolution, detect physiologically relevant variations in ROS concentration, and provide specificity toward different redox couples. Furthermore, for in vivo applications, bioavailability of sensors, tissue penetration, and a high signal-to-noise ratio are additional requirements to be satisfied. FUTURE DIRECTIONS None of the presented techniques fulfill all requirements for clinical translation. The obvious way forward is to incorporate anatomical and functional imaging into a common hybrid-imaging platform. Antioxid. Redox Signal. 24, 939-958.
Collapse
Affiliation(s)
- Giuseppe Maulucci
- 1 Institute of Physics, Catholic University of Sacred Heart , Roma, Italy
| | - Goran Bačić
- 2 Faculty of Physical Chemistry, University of Belgrade , Belgrade, Serbia
| | - Lori Bridal
- 3 Laboratoire d'Imagerie Biomédicale, Sorbonne Universités and UPMC Univ Paris 06 and CNRS and INSERM , Paris, France
| | - Harald Hhw Schmidt
- 4 Department of Pharmacology and Personalised Medicine, CARIM, Faculty of Health, Medicine & Life Science, Maastricht University , Maastricht, the Netherlands
| | - Bertrand Tavitian
- 5 Laboratoire de Recherche en Imagerie, Université Paris Descartes, Hôpital Européen Georges Pompidou , Service de Radiologie, Paris, France
| | - Thomas Viel
- 5 Laboratoire de Recherche en Imagerie, Université Paris Descartes, Hôpital Européen Georges Pompidou , Service de Radiologie, Paris, France
| | - Hideo Utsumi
- 6 Innovation Center for Medical Redox Navigation, Kyushu University , Fukuoka, Japan
| | - A Süha Yalçın
- 7 Department of Biochemistry, School of Medicine, Marmara University , İstanbul, Turkey
| | - Marco De Spirito
- 1 Institute of Physics, Catholic University of Sacred Heart , Roma, Italy
| |
Collapse
|
141
|
Fricker MD, Moger J, Littlejohn GR, Deeks MJ. Making microscopy count: quantitative light microscopy of dynamic processes in living plants. J Microsc 2016; 263:181-91. [PMID: 27145353 DOI: 10.1111/jmi.12403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/31/2016] [Accepted: 02/16/2016] [Indexed: 12/18/2022]
Abstract
Cell theory has officially reached 350 years of age as the first use of the word 'cell' in a biological context can be traced to a description of plant material by Robert Hooke in his historic publication 'Micrographia: or some physiological definitions of minute bodies'. The 2015 Royal Microscopical Society Botanical Microscopy meeting was a celebration of the streams of investigation initiated by Hooke to understand at the subcellular scale how plant cell function and form arises. Much of the work presented, and Honorary Fellowships awarded, reflected the advanced application of bioimaging informatics to extract quantitative data from micrographs that reveal dynamic molecular processes driving cell growth and physiology. The field has progressed from collecting many pixels in multiple modes to associating these measurements with objects or features that are meaningful biologically. The additional complexity involves object identification that draws on a different type of expertise from computer science and statistics that is often impenetrable to biologists. There are many useful tools and approaches being developed, but we now need more interdisciplinary exchange to use them effectively. In this review we show how this quiet revolution has provided tools available to any personal computer user. We also discuss the oft-neglected issue of quantifying algorithm robustness and the exciting possibilities offered through the integration of physiological information generated by biosensors with object detection and tracking.
Collapse
Affiliation(s)
- Mark D Fricker
- Department of Plant Sciences, University of Oxford, Oxford, U.K
| | - Julian Moger
- Department of Physics, University of Exeter, Exeter, Devon, U.K
| | | | - Michael J Deeks
- Department of Biosciences, University of Exeter, Exeter, Devon, U.K
| |
Collapse
|
142
|
Noctor G, Mhamdi A, Foyer CH. Oxidative stress and antioxidative systems: recipes for successful data collection and interpretation. PLANT, CELL & ENVIRONMENT 2016; 39:1140-60. [PMID: 26864619 DOI: 10.1111/pce.12726] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/25/2016] [Accepted: 01/31/2016] [Indexed: 05/18/2023]
Abstract
Oxidative stress and reactive oxygen species (ROS) are common to many fundamental responses of plants. Enormous and ever-growing interest has focused on this research area, leading to an extensive literature that documents the tremendous progress made in recent years. As in other areas of plant biology, advances have been greatly facilitated by developments in genomics-dependent technologies and the application of interdisciplinary techniques that generate information at multiple levels. At the same time, advances in understanding ROS are fundamentally reliant on the use of biochemical and cell biology techniques that are specific to the study of oxidative stress. It is therefore timely to revisit these approaches with the aim of providing a guide to convenient methods and assisting interested researchers in avoiding potential pitfalls. Our critical overview of currently popular methodologies includes a detailed discussion of approaches used to generate oxidative stress, measurements of ROS themselves, determination of major antioxidant metabolites, assays of antioxidative enzymes and marker transcripts for oxidative stress. We consider the applicability of metabolomics, proteomics and transcriptomics approaches and discuss markers such as damage to DNA and RNA. Our discussion of current methodologies is firmly anchored to future technological developments within this popular research field.
Collapse
Affiliation(s)
- Graham Noctor
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405, Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405, Orsay, France
| | - Amna Mhamdi
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405, Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405, Orsay, France
- Department of Plant Biotechnology and Bioinformatics, Ghent University, VIB, Department of Plant Systems Biology, Technologie Park 927, B-9052, Ghent, Belgium
| | - Christine H Foyer
- Centre for Plant Sciences, School of Biology and Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
143
|
Foyer CH, Noctor G. Stress-triggered redox signalling: what's in pROSpect? PLANT, CELL & ENVIRONMENT 2016; 39:951-64. [PMID: 26264148 DOI: 10.1111/pce.12621] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 07/09/2015] [Accepted: 07/26/2015] [Indexed: 05/22/2023]
Abstract
Reactive oxygen species (ROS) have a profound influence on almost every aspect of plant biology. Here, we emphasize the fundamental, intimate relationships between light-driven reductant formation, ROS, and oxidative stress, together with compartment-specific differences in redox buffering and the perspectives for their analysis. Calculations of approximate H2 O2 concentrations in the peroxisomes are provided, and based on the likely values in other locations such as chloroplasts, we conclude that much of the H2 O2 detected in conventional in vitro assays is likely to be extracellular. Within the context of scant information on ROS perception mechanisms, we consider current knowledge, including possible parallels with emerging information on oxygen sensing. Although ROS can sometimes be signals for cell death, we consider that an equally important role is to transmit information from metabolism to allow appropriate cellular responses to developmental and environmental changes. Our discussion speculates on novel sensing mechanisms by which this could happen and how ROS could be counted by the cell, possibly as a means of monitoring metabolic flux. Throughout, we place emphasis on the positive effects of ROS, predicting that in the coming decades they will increasingly be defined as hallmarks of viability within a changing and challenging environment.
Collapse
Affiliation(s)
- Christine H Foyer
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Graham Noctor
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, Université Paris-Sud, CNRS, INRA, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405, Orsay, France
| |
Collapse
|
144
|
Schwarzländer M, Dick TP, Meyer AJ, Morgan B. Dissecting Redox Biology Using Fluorescent Protein Sensors. Antioxid Redox Signal 2016; 24:680-712. [PMID: 25867539 DOI: 10.1089/ars.2015.6266] [Citation(s) in RCA: 209] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
SIGNIFICANCE Fluorescent protein sensors have revitalized the field of redox biology by revolutionizing the study of redox processes in living cells and organisms. RECENT ADVANCES Within one decade, a set of fundamental new insights has been gained, driven by the rapid technical development of in vivo redox sensing. Redox-sensitive yellow and green fluorescent protein variants (rxYFP and roGFPs) have been the central players. CRITICAL ISSUES Although widely used as an established standard tool, important questions remain surrounding their meaningful use in vivo. We review the growing range of thiol redox sensor variants and their application in different cells, tissues, and organisms. We highlight five key findings where in vivo sensing has been instrumental in changing our understanding of redox biology, critically assess the interpretation of in vivo redox data, and discuss technical and biological limitations of current redox sensors and sensing approaches. FUTURE DIRECTIONS We explore how novel sensor variants may further add to the current momentum toward a novel mechanistic and integrated understanding of redox biology in vivo. Antioxid. Redox Signal. 24, 680-712.
Collapse
Affiliation(s)
- Markus Schwarzländer
- 1 Plant Energy Biology Lab, Department Chemical Signalling, Institute of Crop Science and Resource Conservation (INRES), University of Bonn , Bonn, Germany
| | - Tobias P Dick
- 2 Division of Redox Regulation, German Cancer Research Center (DKFZ) , DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Andreas J Meyer
- 3 Department Chemical Signalling, Institute of Crop Science and Resource Conservation (INRES), University of Bonn , Bonn, Germany
| | - Bruce Morgan
- 2 Division of Redox Regulation, German Cancer Research Center (DKFZ) , DKFZ-ZMBH Alliance, Heidelberg, Germany .,4 Cellular Biochemistry, Department of Biology, University of Kaiserslautern , Kaiserslautern, Germany
| |
Collapse
|
145
|
|
146
|
Marschall R, Tudzynski P. Reactive oxygen species in development and infection processes. Semin Cell Dev Biol 2016; 57:138-146. [PMID: 27039026 DOI: 10.1016/j.semcdb.2016.03.020] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/29/2016] [Accepted: 03/29/2016] [Indexed: 12/31/2022]
Abstract
Reactive oxygen species (ROS) are important signaling molecules that affect vegetative and pathogenic processes in pathogenic fungi. There is growing evidence that ROS are not only secreted during the interaction of host and pathogen but also involved in tightly controlled intracellular processes. The major ROS producing enzymes are NADPH oxidases (Nox). Recent investigations in fungi revealed that Nox-activity is responsible for the formation of infection structures, cytoskeleton architecture as well as interhyphal communication. However, information about the localization and site of action of the Nox complexes in fungi is limited and signaling pathways and intracellular processes affected by ROS have not been fully elucidated. This review focuses on the role of ROS as signaling molecules in fungal "model" organisms: it examines the role of ROS in vegetative and pathogenic processes and gives special attention to Nox complexes and their function as important signaling hubs.
Collapse
Affiliation(s)
- Robert Marschall
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms Universität, Schlossplatz 8, D-48143 Münster, Germany
| | - Paul Tudzynski
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms Universität, Schlossplatz 8, D-48143 Münster, Germany.
| |
Collapse
|
147
|
Chasing stress signals - Exposure to extracellular stimuli differentially affects the redox state of cell compartments in the wild type and signaling mutants of Botrytis cinerea. Fungal Genet Biol 2016; 90:12-22. [PMID: 26988904 DOI: 10.1016/j.fgb.2016.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/26/2016] [Accepted: 03/13/2016] [Indexed: 10/22/2022]
Abstract
Reactive oxygen species (ROS) are important molecules influencing intracellular developmental processes as well as plant pathogen interactions. They are produced at the infection site and affect the intracellular redox homeostasis. However, knowledge of ROS signaling pathways, their connection to other signaling cascades, and tools for the visualization of intra- and extracellular ROS levels and their impact on the redox state are scarce. By using the genetically encoded biosensor roGFP2 we studied for the first time the differences between the redox states of the cytosol, the intermembrane space of mitochondria and the ER in the filamentous fungus Botrytis cinerea. We showed that the ratio of oxidized to reduced glutathione inside of the cellular compartments differ and that the addition of hydrogen peroxide (H2O2), calcium chloride (CaCl2) and the fluorescent dye calcofluor white (CFW) have a direct impact on the cellular redox states. Dependent on the type of stress agents applied, the redox states were affected in the different cellular compartments in a temporally shifted manner. By integrating the biosensor in deletion mutants of bcnoxA, bcnoxB, bctrx1 and bcltf1 we further elucidated the putative roles of the different proteins in distinct stress-response pathways. We showed that the redox states of ΔbcnoxA and ΔbcnoxB display a wild-type pattern upon exposure to H2O2, but appear to be strongly affected by CaCl2 and CFW. Moreover, we demonstrated the involvement of the light-responsive transcription factor BcLtf1 in the maintenance of the redox state in the intermembrane space of the mitochondria. Finally, we report that CaCl2 as well as cell wall stress-inducing agents stimulate ROS production and that ΔbcnoxB produces significantly less ROS than the wild type and ΔbcnoxA.
Collapse
|
148
|
Delorme-Hinoux V, Bangash SAK, Meyer AJ, Reichheld JP. Nuclear thiol redox systems in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 243:84-95. [PMID: 26795153 DOI: 10.1016/j.plantsci.2015.12.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/03/2015] [Accepted: 12/07/2015] [Indexed: 05/18/2023]
Abstract
Thiol-disulfide redox regulation is essential for many cellular functions in plants. It has major roles in defense mechanisms, maintains the redox status of the cell and plays structural, with regulatory roles for many proteins. Although thiol-based redox regulation has been extensively studied in subcellular organelles such as chloroplasts, it has been much less studied in the nucleus. Thiol-disulfide redox regulation is dependent on the conserved redox proteins, glutathione/glutaredoxin (GRX) and thioredoxin (TRX) systems. We first focus on the functions of glutathione in the nucleus and discuss recent data concerning accumulation of glutathione in the nucleus. We also provide evidence that glutathione reduction is potentially active in the nucleus. Recent data suggests that the nucleus is enriched in specific GRX and TRX isoforms. We discuss the biochemical and molecular characteristics of these isoforms and focus on genetic evidences for their potential nuclear functions. Finally, we make an overview of the different thiol-based redox regulated proteins in the nucleus. These proteins are involved in various pathways including transcriptional regulation, metabolism and signaling.
Collapse
Affiliation(s)
- Valérie Delorme-Hinoux
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France; Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France.
| | - Sajid A K Bangash
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, 53113 Bonn, Germany
| | - Andreas J Meyer
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, 53113 Bonn, Germany
| | - Jean-Philippe Reichheld
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France; Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France.
| |
Collapse
|
149
|
|
150
|
Diaz-Vivancos P, de Simone A, Kiddle G, Foyer CH. Glutathione--linking cell proliferation to oxidative stress. Free Radic Biol Med 2015; 89:1154-64. [PMID: 26546102 DOI: 10.1016/j.freeradbiomed.2015.09.023] [Citation(s) in RCA: 233] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 08/18/2015] [Accepted: 09/21/2015] [Indexed: 01/02/2023]
Abstract
SIGNIFICANCE The multifaceted functions of reduced glutathione (gamma-glutamyl-cysteinyl-glycine; GSH) continue to fascinate plants and animal scientists, not least because of the dynamic relationships between GSH and reactive oxygen species (ROS) that underpin reduction/oxidation (redox) regulation and signalling. Here we consider the respective roles of ROS and GSH in the regulation of plant growth, with a particular focus on regulation of the plant cell cycle. Glutathione is discussed not only as a crucial low molecular weight redox buffer that shields nuclear processes against oxidative challenge but also a flexible regulator of genetic and epigenetic functions. RECENT ADVANCES The intracellular compartmentalization of GSH during the cell cycle is remarkably consistent in plants and animals. Moreover, measurements of in vivo glutathione redox potentials reveal that the cellular environment is much more reducing than predicted from GSH/GSSG ratios measured in tissue extracts. The redox potential of the cytosol and nuclei of non-dividing plant cells is about -300 mV. This relatively low redox potential maintained even in cells experiencing oxidative stress by a number of mechanisms including vacuolar sequestration of GSSG. We propose that regulated ROS production linked to glutathione-mediated signalling events are the hallmark of viable cells within a changing and challenging environment. CRITICAL ISSUES The concept that the cell cycle in animals is subject to redox controls is well established but little is known about how ROS and GSH regulate this process in plants. However, it is increasingly likely that redox controls exist in plants, although possibly through different pathways. Moreover, redox-regulated proteins that function in cell cycle checkpoints remain to be identified in plants. While GSH-responsive genes have now been identified, the mechanisms that mediate and regulate protein glutathionylation in plants remain poorly defined. FUTURE DIRECTIONS The nuclear GSH pool provides an appropriate redox environment for essential nuclear functions. Future work will focus on how this essential thiol interacts with the nuclear thioredoxin system and nitric oxide to regulate genetic and epigenetic mechanisms. The characterization of redox-regulated cell cycle proteins in plants, and the elucidation of mechanisms that facilitate GSH accumulation in the nucleus are keep steps to unravelling the complexities of nuclear redox controls.
Collapse
Affiliation(s)
- Pedro Diaz-Vivancos
- CEBAS-CSIC, Department of Plant Breeding, P.O. Box 164, Campus de Espinardo, 30100 Murcia, Spain
| | - Ambra de Simone
- Centre for Plant Sciences, Faculty of Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Guy Kiddle
- Lumora Ltd, Bartholomews Walk, Cambridge Business Park, Cambridge CB7 4EA, UK
| | - Christine H Foyer
- Centre for Plant Sciences, Faculty of Biology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|