101
|
Tseng CC, Lee CJ, Chung YT, Sung TY, Hsieh MH. Differential regulation of Arabidopsis plastid gene expression and RNA editing in non-photosynthetic tissues. PLANT MOLECULAR BIOLOGY 2013; 82:375-92. [PMID: 23645360 DOI: 10.1007/s11103-013-0069-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 04/27/2013] [Indexed: 05/17/2023]
Abstract
RNA editing is one of the post-transcriptional processes that commonly occur in plant plastids and mitochondria. In Arabidopsis, 34 C-to-U RNA editing events, affecting transcripts of 18 plastid genes, have been identified. Here, we examined the editing and expression of these transcripts in different organs, and in green and non-green seedlings (etiolated, cia5-2, ispF and ispG albino mutants, lincomycin-, and norflurazon-treated). The editing efficiency of Arabidopsis plastid transcripts varies from site to site, and may be specifically regulated in different tissues. Steady state levels of plastid transcripts are low or undetectable in etiolated seedlings, but most editing sites are edited with efficiencies similar to those observed in green seedlings. By contrast, the editing of some sites is completely lost or significantly reduced in other non-green tissues; for instance, the editing of ndhB-149, ndhB-1255, and ndhD-2 is completely lost in roots and in lincomycin-treated seedlings. The editing of ndhD-2 is also completely lost in albino mutants and norflurazon-treated seedlings. However, matK-640 is completely edited, and accD-794, atpF-92, psbE-214, psbF-77, psbZ-50, and rps14-50 are completely or highly edited in both green and non-green tissues. In addition, the expression of nucleus-encoded RNA polymerase dependent transcripts is specifically induced by lincomycin, and the splicing of ndhB transcripts is significantly reduced in the albino mutants and inhibitor-treated seedlings. Our results indicate that plastid gene expression, and the splicing and editing of plastid transcripts are specifically and differentially regulated in various types of non-green tissues.
Collapse
Affiliation(s)
- Ching-Chih Tseng
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
102
|
Zhang YF, Hou MM, Tan BC. The requirement of WHIRLY1 for embryogenesis is dependent on genetic background in maize. PLoS One 2013; 8:e67369. [PMID: 23840682 PMCID: PMC3696099 DOI: 10.1371/journal.pone.0067369] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Accepted: 05/16/2013] [Indexed: 11/19/2022] Open
Abstract
Plastid gene expression is essential to embryogenesis in higher plants, but the underlying mechanism is obscure. Through molecular characterization of an embryo defective 16 (emb16) locus, here we report that the requirement of plastid translation for embryogenesis is dependent on the genetic background in maize (Zea mays). The emb16 mutation arrests embryogenesis at transition stage and allows the endosperm to develop largely normally. Molecular cloning reveals that Emb16 encodes WHIRLY1 (WHY1), a DNA/RNA binding protein that is required for genome stability and ribosome formation in plastids. Interestingly, the previous why1 mutant alleles (why1-1 and why1-2) do not affect embryogenesis, only conditions albino seedlings. The emb16 allele of why1 mutation is in the W22 genetic background. Crosses between emb16 and why1-1 heterozygotes resulted in both defective embryos and albino seedlings in the F1 progeny. Introgression of the emb16 allele from W22 into A188, B73, Mo17, Oh51a and the why1-1 genetic backgrounds yielded both defective embryos and albino seedlings. Similar results were obtained with two other emb mutants (emb12 and emb14) that are impaired in plastid protein translation process. These results indicate that the requirement of plastid translation for embryogenesis is dependent on genetic backgrounds, implying a mechanism of embryo lethality suppression in maize.
Collapse
Affiliation(s)
- Ya-Feng Zhang
- Institute of Plant Molecular Biology and Agricultural Biotechnology, State Key Lab of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Ming-Ming Hou
- Institute of Plant Molecular Biology and Agricultural Biotechnology, State Key Lab of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Bao-Cai Tan
- Institute of Plant Molecular Biology and Agricultural Biotechnology, State Key Lab of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| |
Collapse
|
103
|
Härtel B, Zehrmann A, Verbitskiy D, Takenaka M. The longest mitochondrial RNA editing PPR protein MEF12 in Arabidopsis thaliana requires the full-length E domain. RNA Biol 2013; 10:1543-8. [PMID: 23845994 DOI: 10.4161/rna.25484] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Mitochondrial RNA editing factor 12 (MEF12) was identified in a screen for editing defects of a chemically mutated plant population in Arabidopsis thaliana. The MEF12 editing protein is required for the C to U change of nucleotide nad5-374. The MEF12 polypeptide is characterized by an exceptionally long stretch of 25 pentatricopeptide repeats (PPR) and a C-terminal extension domain. Editing is lost in mutant plants with a stop codon in the extending element. A T-DNA insertion substituting the 10 C-terminal amino acids of the extension domain reduces RNA editing to about 20% at the target site in a mutant plant. These results support the importance of the full-length extension module for functional RNA editing in plant mitochondria.
Collapse
|
104
|
Bentolila S, Oh J, Hanson MR, Bukowski R. Comprehensive high-resolution analysis of the role of an Arabidopsis gene family in RNA editing. PLoS Genet 2013; 9:e1003584. [PMID: 23818871 PMCID: PMC3688494 DOI: 10.1371/journal.pgen.1003584] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 05/01/2013] [Indexed: 11/19/2022] Open
Abstract
In flowering plants, mitochondrial and chloroplast mRNAs are edited by C-to-U base modification. In plant organelles, RNA editing appears to be generally a correcting mechanism that restores the proper function of the encoded product. Members of the Arabidopsis RNA editing-Interacting Protein (RIP) family have been recently shown to be essential components of the plant editing machinery. We report the use of a strand- and transcript-specific RNA-seq method (STS-PCRseq) to explore the effect of mutation or silencing of every RIP gene on plant organelle editing. We confirm RIP1 to be a major editing factor that controls the editing extent of 75% of the mitochondrial sites and 20% of the plastid C targets of editing. The quantitative nature of RNA sequencing allows the precise determination of overlapping effects of RIP factors on RNA editing. Over 85% of the sites under the influence of RIP3 and RIP8, two moderately important mitochondrial factors, are also controlled by RIP1. Previously uncharacterized RIP family members were found to have only a slight effect on RNA editing. The preferential location of editing sites controlled by RIP7 on some transcripts suggests an RNA metabolism function for this factor other than editing. In addition to a complete characterization of the RIP factors for their effect on RNA editing, our study highlights the potential of RNA-seq for studying plant organelle editing. Unlike previous attempts to use RNA-seq to analyze RNA editing extent, our methodology focuses on sequencing of organelle cDNAs corresponding to known transcripts. As a result, the depth of coverage of each editing site reaches unprecedented values, assuring a reliable measurement of editing extent and the detection of numerous new sites. This strategy can be applied to the study of RNA editing in any organism. RNA editing is a co- or post-transcriptional RNA processing reaction that changes the nucleotide sequence of the RNA substrate. In flowering plants, mRNA editing is confined to organelle transcripts, altering cytidine to uridine. Recently, some members of a small Arabidopsis gene family were found to be important for editing of chloroplast and mitochondrial transcripts. Several methods have been developed to measure the amount of edited transcripts at specific Cs, but most of these methods either lack sensitivity or are unable to determine the number and location of edited Cs in a particular transcript. While sensitive assays have been previously developed, they are costly and labor-intensive precluding their use on a large-scale. In order to characterize the role of an entire gene family in RNA editing, we have successfully adapted RNA sequencing technology to characterize the effect of mutation and silencing of family members on organelle RNA editing. Our method to measure editing extent is sensitive, reliable, and cost-effective. As well as detecting additional family members that play a role in RNA editing, we have detected numerous new editing sites. Our strategy should benefit the investigation of RNA editing in any organism.
Collapse
Affiliation(s)
- Stéphane Bentolila
- Department of Molecular Biology and Genetics, Biotechnology Building, Cornell University, Ithaca, New York, USA.
| | | | | | | |
Collapse
|
105
|
Shen Y, Li C, McCarty DR, Meeley R, Tan BC. Embryo defective12 encodes the plastid initiation factor 3 and is essential for embryogenesis in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:792-804. [PMID: 23451851 DOI: 10.1111/tpj.12161] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 02/26/2013] [Accepted: 02/27/2013] [Indexed: 05/09/2023]
Abstract
Embryo-specific mutants in maize define a unique class of genetic loci that affect embryogenesis without a significant deleterious impact on endosperm development. Here we report the characterization of an embryo specific12 (emb12) mutant in maize. Embryogenesis in the emb12 mutants is arrested at or before transition stage. The mutant embryo at an early stage exhibits abnormal cell structure with increased vacuoles and dramatically reduced internal membrane organelles. In contrast, the mutant endosperm appears normal in morphology, cell structure, starch, lipid and protein accumulation. The Emb12 locus was cloned by transposon tagging and predicts a protein with a high similarity to prokaryotic translation initiation factor 3 (IF3). EMB12-GFP fusion analysis indicates that EMB12 is localized in plastids. The RNA in situ hybridization and protein immunohistochemical analyses indicate that a high level of Emb12 expression localizes in the embryo proper at early developmental stages and in the embryo axis at later stages. Western analysis indicates that plastid protein synthesis is impaired. These results indicate that Emb12 encodes the plastid IF3 which is essential for embryogenesis but not for endosperm development in maize.
Collapse
Affiliation(s)
- Yun Shen
- State Key Lab of Agrobiotechnology, Institute of Plant Molecular Biology and Agrobiotechnology, School of Life Science, The Chinese University of Hong Kong, N.T. Hong Kong, China
| | | | | | | | | |
Collapse
|
106
|
Abstract
PPR proteins form a huge family in flowering plants and are involved in RNA maturation in plastids and mitochondria. These proteins are sequence-specific RNA-binding proteins that recruit the machinery of RNA processing. We summarize progress in the research on the functional mechanisms of divergent RNA maturation and on the mechanism by which RNA sequences are recognized. We further focus on two topics. RNA editing is an enigmatic process of RNA maturation in organelles, in which members of the PLS subfamily contribute to target site recognition. As the first topic, we speculate on why the PLS subfamily was selected by the RNA editing machinery. Second, we discuss how the regulation of plastid gene expression contributes to efficient photosynthesis. Although the molecular functions of PPR proteins have been studied extensively, information on the physiological significance of regulation by these proteins remains very limited.
Collapse
Affiliation(s)
| | - Sota Fujii
- Graduate School of Science; Kyoto University; Kyoto, Japan
| |
Collapse
|
107
|
Pfalz J, Pfannschmidt T. Essential nucleoid proteins in early chloroplast development. TRENDS IN PLANT SCIENCE 2013; 18:186-94. [PMID: 23246438 DOI: 10.1016/j.tplants.2012.11.003] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 11/01/2012] [Accepted: 11/12/2012] [Indexed: 05/04/2023]
Abstract
The plastid transcription machinery can be biochemically purified at different organisational levels as soluble RNA polymerase, transcriptionally active chromosome, or nucleoid. Recent proteomic studies have uncovered several novel proteins in these structures and functional genomic studies have indicated that a lack of many of these proteins results in chlorotic phenotypes of varying degree. The most severe cases exhibit complete albino phenotypes, which led to the conclusion that the proteins that were lacking had important regulatory roles in plastid gene expression and chloroplast development. In this opinion article, we propose an alternative model in which the structural establishment of a transcriptional subdomain within the nucleoid represents an early developmental bottleneck that leads to abortion of proper chloroplast biogenesis if disturbed.
Collapse
Affiliation(s)
- Jeannette Pfalz
- Department of Plant Physiology, Institute of General Botany and Plant Physiology, Friedrich-Schiller-University Jena, Dornburger Str. 159, D-07743 Jena, Germany
| | | |
Collapse
|
108
|
An RNA recognition motif-containing protein is required for plastid RNA editing in Arabidopsis and maize. Proc Natl Acad Sci U S A 2013; 110:E1169-78. [PMID: 23487777 DOI: 10.1073/pnas.1220162110] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plant RNA editing modifies cytidines (C) to uridines (U) at specific sites in the transcripts of both mitochondria and plastids. Specific targeting of particular Cs is achieved by pentatricopeptide proteins that recognize cis elements upstream of the C that is edited. Members of the RNA-editing factor interacting protein (RIP) family in Arabidopsis have recently been shown to be essential components of the plant editosome. We have identified a gene that contains a pair of truncated RIP domains (RIP-RIP). Unlike any previously described RIP family member, the encoded protein carries an RNA recognition motif (RRM) at its C terminus and has therefore been named Organelle RRM protein 1 (ORRM1). ORRM1 is an essential plastid editing factor; in Arabidopsis and maize mutants, RNA editing is impaired at particular sites, with an almost complete loss of editing for 12 sites in Arabidopsis and 9 sites in maize. Transfection of Arabidopsis orrm1 mutant protoplasts with constructs encoding a region encompassing the RIP-RIP domain or a region spanning the RRM domain of ORRM1 demonstrated that the RRM domain is sufficient for the editing function of ORRM1 in vitro. According to a yeast two-hybrid assay, ORRM1 interacts selectively with pentatricopeptide transfactors via its RIP-RIP domain. Phylogenetic analysis reveals that the RRM in ORRM1 clusters with a clade of RRM proteins that are targeted to organelles. Taken together, these results suggest that other members of the ORRM family may likewise function in RNA editing.
Collapse
|
109
|
Härtel B, Zehrmann A, Verbitskiy D, van der Merwe JA, Brennicke A, Takenaka M. MEF10 is required for RNA editing at nad2-842 in mitochondria of Arabidopsis thaliana and interacts with MORF8. PLANT MOLECULAR BIOLOGY 2013; 81:337-346. [PMID: 23288601 DOI: 10.1007/s11103-012-0003-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 12/15/2012] [Indexed: 06/01/2023]
Abstract
A forwards genetic screen of a chemically mutated plant population identified mitochondrial RNA editing factor 10 (MEF10) in Arabidopsis thaliana. MEF10 is a trans-factor required specifically for the C to U editing of site nad2-842. The MEF10 protein is characterized by a stretch of pentatricopeptide repeats (PPR) and a C-terminal extension domain ending with the amino acids DYW. Editing is lost in mutant plants but is recovered by transgenic introduction of an intact MEF10 gene. The MEF10 protein interacts with multiple organellar RNA editing factor 8 (MORF8) but not with other mitochondrial MORF proteins in yeast two hybrid assays. These results support the model that specific combinations of MORF and MEF proteins are involved in RNA editing in plant mitochondria.
Collapse
Affiliation(s)
- Barbara Härtel
- Molekulare Botanik, Universität Ulm, 89069, Ulm, Germany.
| | | | | | | | | | | |
Collapse
|
110
|
Liu YJ, Xiu ZH, Meeley R, Tan BC. Empty pericarp5 encodes a pentatricopeptide repeat protein that is required for mitochondrial RNA editing and seed development in maize. THE PLANT CELL 2013; 25:868-83. [PMID: 23463776 PMCID: PMC3634694 DOI: 10.1105/tpc.112.106781] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Revised: 12/28/2012] [Accepted: 02/15/2013] [Indexed: 05/18/2023]
Abstract
In flowering plants, RNA editing is a posttranscriptional mechanism that converts specific cytidines to uridines in both mitochondrial and plastidial transcripts, altering the information encoded by these genes. Here, we report the molecular characterization of the empty pericarp5 (emp5) mutants in maize (Zea mays). Null mutation of Emp5 results in abortion of embryo and endosperm development at early stages. Emp5 encodes a mitochondrion-targeted DYW subgroup pentatricopeptide repeat (PPR) protein. Analysis of the mitochondrial transcripts revealed that loss of the EMP5 function abolishes the C-to-U editing of ribosomal protein L16 at the rpl16-458 site (100% edited in the wild type), decreases the editing at nine sites in NADH dehydrogenase9 (nad9), cytochrome c oxidase3 (cox3), and ribosomal protein S12 (rps12), and surprisingly increases the editing at five sites of ATP synthase F0 subunit a (atp6), apocytochrome b (cob), nad1, and rpl16. Mutant EMP5-4 lacking the E+ and DYW domains still retains the substrate specificity and editing function, only at reduced efficiency. This suggests that the E+ and DYW domains of EMP5 are not essential to the EMP5 editing function but are necessary for efficiency. Analysis of the ortholog in rice (Oryza sativa) indicates that rice EMP5 has a conserved function in C-to-U editing of the rice mitochondrial rpl16-458 site. EMP5 knockdown expression in transgenics resulted in slow growth and defective seeds. These results demonstrate that Emp5 encodes a PPR-DYW protein that is required for the editing of multiple transcripts in mitochondria, and the editing events, particularly the C-to-U editing at the rpl16-458 site, are critical to the mitochondrial functions and, hence, to seed development in maize.
Collapse
Affiliation(s)
- Yu-Jun Liu
- State Key Lab of Agrobiotechnology, Institute of Plant Molecular Biology and Agrobiotechnology, School of Life Science, Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Zhi-Hui Xiu
- State Key Lab of Agrobiotechnology, Institute of Plant Molecular Biology and Agrobiotechnology, School of Life Science, Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | | | - Bao-Cai Tan
- State Key Lab of Agrobiotechnology, Institute of Plant Molecular Biology and Agrobiotechnology, School of Life Science, Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
- Address correspondence to
| |
Collapse
|
111
|
Takenaka M, Brennicke A. Using multiplex single-base extension typing to screen for mutants defective in RNA editing. Nat Protoc 2012; 7:1931-45. [PMID: 23037308 DOI: 10.1038/nprot.2012.117] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
RNA editing is an RNA maturation process that changes the nucleotide present at particular positions (editing sites) in specific RNAs; in plant organelles, the most common nucleotide change is from cytidine (C) to uridine (U). In a mutant suspected of affecting RNA editing, all known editing sites have to be analyzed. Therefore, to screen a population of mutants, all individuals must be analyzed at every editing site. We describe a multiplex single-nucleotide polymorphism (SNP)-typing procedure to economically screen a mutant individual or population for differences at hundreds of nucleotide positions in RNA or DNA. By using this protocol, we have previously identified mutants defective in RNA editing in a randomly mutated population of Arabidopsis thaliana. The procedure requires 2-3 weeks to identify the individual plant in the mutant population. The time required to locate the mutated gene is between 3 and 24 months in Arabidopsis. Although this procedure has been developed to study RNA editing in plants, it could also be used to investigate other RNA modification processes. It could also be adapted to investigate RNA editing in other organisms.
Collapse
|
112
|
Gao ZP, Chen GX, Yang ZN. Regulatory role of Arabidopsis pTAC14 in chloroplast development and plastid gene expression. PLANT SIGNALING & BEHAVIOR 2012; 7:1354-6. [PMID: 22902688 PMCID: PMC3493425 DOI: 10.4161/psb.21618] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Transcriptionally active chromosome (TAC) is a fraction of protein/DNA complexes with RNA polymerase activity in the plastid. The function of most TAC proteins is not well known. We isolated a mutant gene encoding a plastid TAC component, pTAC14, and performed functional analysis of plastid gene expression and chloroplast development in Arabidopsis. We found that knockout of pTAC14 led to the blockage of thylakoid formation in the initial process of chloroplast development. Furthermore, the transcript levels of plastid-encoded polymerase (PEP)-dependent genes were downregulated in ptac14, suggesting that PEP activity was decreased in the mutant. On the basis of these results, we briefly review the available evidence and highlight the interaction between pTAC14 and pTAC12 that could help us understand the regulatory role of pTAC14 in chloroplast development and plastid gene expression.
Collapse
Affiliation(s)
- Zhi-Ping Gao
- College of Life Sciences; Nanjing Normal University; Jiangsu, China
- School of Life Sciences; The Chinese University of HongKong; Shatin, Hong Kong, China
- College of Life and Environmental Sciences; Shanghai Normal University; Shanghai, China
| | - Guo-Xiang Chen
- College of Life Sciences; Nanjing Normal University; Jiangsu, China
- Correspondence to: Guo-Xiang Chen, and Zhong-Nan Yang,
| | - Zhong-Nan Yang
- College of Life and Environmental Sciences; Shanghai Normal University; Shanghai, China
- Correspondence to: Guo-Xiang Chen, and Zhong-Nan Yang,
| |
Collapse
|
113
|
Sosso D, Canut M, Gendrot G, Dedieu A, Chambrier P, Barkan A, Consonni G, M. Rogowsky P. PPR8522 encodes a chloroplast-targeted pentatricopeptide repeat protein necessary for maize embryogenesis and vegetative development. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:5843-57. [PMID: 22945943 PMCID: PMC3467297 DOI: 10.1093/jxb/ers232] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The pentatricopeptide repeat (PPR) domain is an RNA binding domain allowing members of the PPR superfamily to participate in post-transcriptional processing of organellar RNA. Loss of PPR8522 from maize (Zea mays) confers an embryo-specific (emb) phenotype. The emb8522 mutation was isolated in an active Mutator (Mu) population and co-segregation analysis revealed that it was tightly linked to a MuDR insertion in the first exon of PPR8522. Independent evidence that disruption of PPR8522 caused the emb phenotype was provided by fine mapping to a region of 116kb containing no other gene than PPR8522 and complementation of the emb8522 mutant by a PPR8522 cDNA. The deduced PPR8522 amino acid sequence of 832 amino acids contains 10 PPR repeats and a chloroplast target peptide, the function of which was experimentally demonstrated by transient expression in Nicotiana benthamiana. Whereas mutant endosperm is apparently normal, mutant embryos deviate from normal development as early as 3 days after pollination, are reduced in size, exhibit more or less severe morphological aberrations depending on the genetic background, and generally do not germinate. The emb8522 mutation is the first to associate the loss of a PPR gene with an embryo-lethal phenotype in maize. Analyses of mutant plantlets generated by embryo-rescue experiments indicate that emb8522 also affects vegetative plant growth and chloroplast development. The loss of chloroplast transcription dependent on plastid-encoded RNA polymerase is the likely cause for the lack of an organized thylakoid network and an albino, seedling-lethal phenotype.
Collapse
Affiliation(s)
- Davide Sosso
- Université de Lyon, Ecole Normale Supérieure de Lyon,
Université Lyon 1, Unité Reproduction et Développement des
Plantes,F-69364 Lyon,France
- INRA, UMR879 Reproduction et Développement des Plantes,F-69364 Lyon,France
- CNRS, UMR5667 Reproduction et Développement des Plantes,F-69364 Lyon,France
- Dipartimento di Produzione Vegetale, Università degli Studi di
Milano,20133 Milan,Italy
| | - Matthieu Canut
- Université de Lyon, Ecole Normale Supérieure de Lyon,
Université Lyon 1, Unité Reproduction et Développement des
Plantes,F-69364 Lyon,France
- INRA, UMR879 Reproduction et Développement des Plantes,F-69364 Lyon,France
- CNRS, UMR5667 Reproduction et Développement des Plantes,F-69364 Lyon,France
| | - Ghislaine Gendrot
- Université de Lyon, Ecole Normale Supérieure de Lyon,
Université Lyon 1, Unité Reproduction et Développement des
Plantes,F-69364 Lyon,France
- INRA, UMR879 Reproduction et Développement des Plantes,F-69364 Lyon,France
- CNRS, UMR5667 Reproduction et Développement des Plantes,F-69364 Lyon,France
| | - Annick Dedieu
- Université de Lyon, Ecole Normale Supérieure de Lyon,
Université Lyon 1, Unité Reproduction et Développement des
Plantes,F-69364 Lyon,France
- INRA, UMR879 Reproduction et Développement des Plantes,F-69364 Lyon,France
- CNRS, UMR5667 Reproduction et Développement des Plantes,F-69364 Lyon,France
| | - Pierre Chambrier
- Université de Lyon, Ecole Normale Supérieure de Lyon,
Université Lyon 1, Unité Reproduction et Développement des
Plantes,F-69364 Lyon,France
- INRA, UMR879 Reproduction et Développement des Plantes,F-69364 Lyon,France
- CNRS, UMR5667 Reproduction et Développement des Plantes,F-69364 Lyon,France
| | - Alice Barkan
- Institute of Molecular Biology, University of Oregon, EugeneOR 97403,USA
| | - Gabriella Consonni
- Dipartimento di Produzione Vegetale, Università degli Studi di
Milano,20133 Milan,Italy
| | - Peter M. Rogowsky
- Université de Lyon, Ecole Normale Supérieure de Lyon,
Université Lyon 1, Unité Reproduction et Développement des
Plantes,F-69364 Lyon,France
- INRA, UMR879 Reproduction et Développement des Plantes,F-69364 Lyon,France
- CNRS, UMR5667 Reproduction et Développement des Plantes,F-69364 Lyon,France
- To whom correspondence should be addressed: E-mail:
| |
Collapse
|
114
|
Verbitskiy D, Zehrmann A, Härtel B, Brennicke A, Takenaka M. Two related RNA-editing proteins target the same sites in mitochondria of Arabidopsis thaliana. J Biol Chem 2012; 287:38064-72. [PMID: 22977245 DOI: 10.1074/jbc.m112.397992] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The facilitators for specific cytosine-to-uridine RNA-editing events in plant mitochondria and plastids are pentatricopeptide repeat (PPR)-containing proteins with specific additional C-terminal domains. Here we report the related PPR proteins mitochondrial editing factor 8 (MEF8) and MEF8S with only five such repeats each to be both involved in RNA editing at the same two sites in mitochondria of Arabidopsis thaliana. Mutants of MEF8 show diminished editing in leaves but not in pollen, whereas mutants of the related protein MEF8S show reduced RNA editing in pollen but not in leaves. Overexpressed MEF8 or MEF8S both increase editing at the two target sites in a mef8 mutant. Double mutants of MEF8 and MEF8S are not viable although both identified target sites are in mRNAs for nonessential proteins. This suggests that MEF8 and MEF8S may have other essential functions beyond these two editing sites in complex I mRNAs.
Collapse
|
115
|
Boussardon C, Salone V, Avon A, Berthomé R, Hammani K, Okuda K, Shikanai T, Small I, Lurin C. Two interacting proteins are necessary for the editing of the NdhD-1 site in Arabidopsis plastids. THE PLANT CELL 2012; 24:3684-94. [PMID: 23001034 PMCID: PMC3480295 DOI: 10.1105/tpc.112.099507] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
After transcription, mRNA editing in angiosperm chloroplasts and mitochondria results in the conversion of cytidine to uridine by deamination. Analysis of Arabidopsis thaliana mutants affected in RNA editing have shown that many pentatricopeptide repeat proteins (PPRs) are required for specific cytidine deamination events. PPR proteins have been shown to be sequence-specific RNA binding proteins allowing the recognition of the C to be edited. The C-terminal DYW domain present in many editing factors has been proposed to catalyze C deamination, as it shows sequence similarities with cytidine deaminases in other organisms. However, many editing factors, such as the first to be discovered, CHLORORESPIRATORY REDUCTION4 (CRR4), lack this domain, so its importance has been unclear. Using a reverse genetic approach, we identified DYW1, an RNA editing factor acting specifically on the plastid ndhD-1 editing site recognized by CRR4. Unlike other known editing factors, DYW1 contains no identifiable PPR motifs but does contain a clear DYW domain. We were able to show interaction between CRR4 and DYW1 by bimolecular fluorescence complementation and to reconstitute a functional chimeric CRR4-DYW1 protein complementing the crr4 dyw1double mutant. We propose that CRR4 and DYW1 act together to edit the ndhD-1 site.
Collapse
Affiliation(s)
- Clément Boussardon
- Unité de Recherche en Génomique Végétale, Unité Mixte de Recherche, Institut National de la Recherche Agronomique/Université Evry Val d'Essonne/Equipe de Recherche Labellisée, Centre National de la Recherche Scientifique 91057, 91057 Evry cedex, France
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Véronique Salone
- Unité de Recherche en Génomique Végétale, Unité Mixte de Recherche, Institut National de la Recherche Agronomique/Université Evry Val d'Essonne/Equipe de Recherche Labellisée, Centre National de la Recherche Scientifique 91057, 91057 Evry cedex, France
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Alexandra Avon
- Unité de Recherche en Génomique Végétale, Unité Mixte de Recherche, Institut National de la Recherche Agronomique/Université Evry Val d'Essonne/Equipe de Recherche Labellisée, Centre National de la Recherche Scientifique 91057, 91057 Evry cedex, France
| | - Richard Berthomé
- Unité de Recherche en Génomique Végétale, Unité Mixte de Recherche, Institut National de la Recherche Agronomique/Université Evry Val d'Essonne/Equipe de Recherche Labellisée, Centre National de la Recherche Scientifique 91057, 91057 Evry cedex, France
| | - Kamel Hammani
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Kenji Okuda
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Toshiharu Shikanai
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Claire Lurin
- Unité de Recherche en Génomique Végétale, Unité Mixte de Recherche, Institut National de la Recherche Agronomique/Université Evry Val d'Essonne/Equipe de Recherche Labellisée, Centre National de la Recherche Scientifique 91057, 91057 Evry cedex, France
- Address correspondence to
| |
Collapse
|
116
|
Bang WY, Chen J, Jeong IS, Kim SW, Kim CW, Jung HS, Lee KH, Kweon HS, Yoko I, Shiina T, Bahk JD. Functional characterization of ObgC in ribosome biogenesis during chloroplast development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:122-34. [PMID: 22380942 DOI: 10.1111/j.1365-313x.2012.04976.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The Spo0B-associated GTP-binding protein (Obg) GTPase, essential for bacterial viability, is also conserved in eukaryotes, but its primary role in eukaryotes remains unknown. Here, our functional characterization of Arabidopsis and rice obgc mutants strongly underlines the evolutionarily conserved role of eukaryotic Obgs in organellar ribosome biogenesis. The mutants exhibited a chlorotic phenotype, caused by retarded chloroplast development. A plastid DNA macroarray revealed a plastid-encoded RNA polymerase (PEP) deficiency in an obgc mutant, caused by incompleteness of the PEP complex, as its western blot exhibited reduced levels of RpoA protein, a component of PEP. Plastid rRNA profiling indicated that plastid rRNA processing is defective in obgc mutants, probably resulting in impaired ribosome biogenesis and, in turn, in reduced levels of RpoA protein. RNA co-immunoprecipitation revealed that ObgC specifically co-precipitates with 23S rRNA in vivo. These findings indicate that ObgC functions primarily in plastid ribosome biogenesis during chloroplast development. Furthermore, complementation analysis can provide new insights into the functional modes of three ObgC domains, including the Obg fold, G domain and OCT.
Collapse
Affiliation(s)
- Woo Young Bang
- Swine Science and Technology Center, Gyeongnam National University of Science and Technology-GNTECH, Jinju 660-758, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Hayes ML, Giang K, Mulligan RM. Molecular evolution of pentatricopeptide repeat genes reveals truncation in species lacking an editing target and structural domains under distinct selective pressures. BMC Evol Biol 2012; 12:66. [PMID: 22583633 PMCID: PMC3441922 DOI: 10.1186/1471-2148-12-66] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 04/17/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pentatricopeptide repeat (PPR) proteins are required for numerous RNA processing events in plant organelles including C-to-U editing, splicing, stabilization, and cleavage. Fifteen PPR proteins are known to be required for RNA editing at 21 sites in Arabidopsis chloroplasts, and belong to the PLS class of PPR proteins. In this study, we investigate the co-evolution of four PPR genes (CRR4, CRR21, CLB19, and OTP82) and their six editing targets in Brassicaceae species. PPR genes are composed of approximately 10 to 20 tandem repeats and each repeat has two α-helical regions, helix A and helix B, that are separated by short coil regions. Each repeat and structural feature was examined to determine the selective pressures on these regions. RESULTS All of the PPR genes examined are under strong negative selection. Multiple independent losses of editing site targets are observed for both CRR21 and OTP82. In several species lacking the known editing target for CRR21, PPR genes are truncated near the 17th PPR repeat. The coding sequences of the truncated CRR21 genes are maintained under strong negative selection; however, the 3' UTR sequences beyond the truncation site have substantially diverged. Phylogenetic analyses of four PPR genes show that sequences corresponding to helix A are high compared to helix B sequences. Differential evolutionary selection of helix A versus helix B is observed in both plant and mammalian PPR genes. CONCLUSION PPR genes and their cognate editing sites are mutually constrained in evolution. Editing sites are frequently lost by replacement of an edited C with a genomic T. After the loss of an editing site, the PPR genes are observed with three outcomes: first, few changes are detected in some cases; second, the PPR gene is present as a pseudogene; and third, the PPR gene is present but truncated in the C-terminal region. The retention of truncated forms of CRR21 that are maintained under strong negative selection even in the absence of an editing site target suggests that unrecognized function(s) might exist for this PPR protein. PPR gene sequences that encode helix A are under strong selection, and could be involved in RNA substrate recognition.
Collapse
Affiliation(s)
- Michael L Hayes
- Developmental & Cell Biology, University of California, Irvine, CA 92697, USA
| | | | | |
Collapse
|
118
|
Peng Y, Zhang Y, Lv J, Zhang J, Li P, Shi X, Wang Y, Zhang H, He Z, Teng S. Characterization and fine mapping of a novel rice albino mutant low temperature albino 1. J Genet Genomics 2012; 39:385-96. [PMID: 22884095 DOI: 10.1016/j.jgg.2012.05.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Revised: 04/29/2012] [Accepted: 05/02/2012] [Indexed: 11/16/2022]
Abstract
Albino mutants are useful genetic resource for studying chlorophyll biosynthesis and chloroplast development and cloning genes involved in these processes in plants. Here we report a novel rice mutant low temperature albino 1 (lta1) that showed albino leaves before 4-leaf stage when grown under temperature lower than 20°C, but developed normal green leaves under temperature higher than 24°C or similar morphological phenotypes in dark as did the wild-type (WT). Our analysis showed that the contents of chlorophylls and chlorophyll precursors were remarkably decreased in the lta1 mutant under low temperature compared to WT. Transmission electron microscope observation revealed that chloroplasts were defectively developed in the albino lta1 leaves, which lacked of well-stacked granum and contained less stroma lamellae. These results suggested that the lta1 mutation may delay the light-induced thylakoid assembly under low temperature. Genetic analysis indicated that the albino phenotype was controlled by a single recessive locus. Through map-based approach, we finally located the Lta1 gene to a region of 40.3 kb on the short arm of chromosome 11. There are 8 predicted open reading frames (ORFs) in this region and two of them were deleted in lta1 genome compared with the WT genome. The further characterization of the Lta1 gene would provide a good approach to uncover the novel molecular mechanisms involved in chloroplast development under low temperature stress.
Collapse
Affiliation(s)
- Yu Peng
- Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
RIP1, a member of an Arabidopsis protein family, interacts with the protein RARE1 and broadly affects RNA editing. Proc Natl Acad Sci U S A 2012; 109:E1453-61. [PMID: 22566615 DOI: 10.1073/pnas.1121465109] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Transcripts of plant organelle genes are modified by cytidine-to-uridine (C-to-U) RNA editing, often changing the encoded amino acid predicted from the DNA sequence. Members of the PLS subclass of the pentatricopeptide repeat (PPR) motif-containing family are site-specific recognition factors for either chloroplast or mitochondrial C targets of editing. However, other than PPR proteins and the cis-elements on the organelle transcripts, no other components of the editing machinery in either organelle have previously been identified. The Arabidopsis chloroplast PPR protein Required for AccD RNA Editing 1 (RARE1) specifies editing of a C in the accD transcript. RARE1 was detected in a complex of >200 kDa. We immunoprecipitated epitope-tagged RARE1, and tandem MS/MS analysis identified a protein of unknown function lacking PPR motifs; we named it RNA-editing factor interacting protein 1 (RIP1). Yeast two-hybrid analysis confirmed RIP1 interaction with RARE1, and RIP1-GFP fusions were found in both chloroplasts and mitochondria. Editing assays for all 34 known Arabidopsis chloroplast targets in a rip1 mutant revealed altered efficiency of 14 editing events. In mitochondria, 266 editing events were found to have reduced efficiency, with major loss of editing at 108 C targets. Virus-induced gene silencing of RIP1 confirmed the altered editing efficiency. Transient introduction of a WT RIP1 allele into rip1 improved the defective RNA editing. The presence of RIP1 in a protein complex along with chloroplast editing factor RARE1 indicates that RIP1 is an important component of the RNA editing apparatus that acts on many chloroplast and mitochondrial C targets.
Collapse
|
120
|
Su N, Hu ML, Wu DX, Wu FQ, Fei GL, Lan Y, Chen XL, Shu XL, Zhang X, Guo XP, Cheng ZJ, Lei CL, Qi CK, Jiang L, Wang H, Wan JM. Disruption of a rice pentatricopeptide repeat protein causes a seedling-specific albino phenotype and its utilization to enhance seed purity in hybrid rice production. PLANT PHYSIOLOGY 2012; 159:227-38. [PMID: 22430843 PMCID: PMC3366715 DOI: 10.1104/pp.112.195081] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Accepted: 03/15/2012] [Indexed: 05/18/2023]
Abstract
The pentatricopeptide repeat (PPR) gene family represents one of the largest gene families in higher plants. Accumulating data suggest that PPR proteins play a central and broad role in modulating the expression of organellar genes in plants. Here we report a rice (Oryza sativa) mutant named young seedling albino (ysa) derived from the rice thermo/photoperiod-sensitive genic male-sterile line Pei'ai64S, which is a leading male-sterile line for commercial two-line hybrid rice production. The ysa mutant develops albino leaves before the three-leaf stage, but the mutant gradually turns green and recovers to normal green at the six-leaf stage. Further investigation showed that the change in leaf color in ysa mutant is associated with changes in chlorophyll content and chloroplast development. Map-based cloning revealed that YSA encodes a PPR protein with 16 tandem PPR motifs. YSA is highly expressed in young leaves and stems, and its expression level is regulated by light. We showed that the ysa mutation has no apparent negative effects on several important agronomic traits, such as fertility, stigma extrusion rate, selfed seed-setting rate, hybrid seed-setting rate, and yield heterosis under normal growth conditions. We further demonstrated that ysa can be used as an early marker for efficient identification and elimination of false hybrids in commercial hybrid rice production, resulting in yield increases by up to approximately 537 kg ha(-1).
Collapse
MESH Headings
- Amino Acid Motifs
- Amino Acid Sequence
- Biomarkers
- Chimera/genetics
- Chimera/metabolism
- Chlorophyll/metabolism
- Chloroplasts/metabolism
- Chloroplasts/ultrastructure
- Chromosome Mapping
- Chromosomes, Plant/genetics
- Chromosomes, Plant/metabolism
- Cloning, Molecular
- Crosses, Genetic
- Fertility
- Genes, Plant
- Hybrid Vigor
- Microscopy, Electron, Transmission
- Molecular Sequence Data
- Mutation
- Oryza/anatomy & histology
- Oryza/genetics
- Oryza/metabolism
- Phenotype
- Photoperiod
- Plant Leaves/anatomy & histology
- Plant Leaves/metabolism
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plant Stems/metabolism
- Plant Stems/physiology
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Seedlings/genetics
- Seedlings/metabolism
- Seeds/genetics
- Seeds/metabolism
- Transcription, Genetic
Collapse
|
121
|
Jiang Y, Fan SL, Song MZ, Yu JN, Yu SX. Identification of RNA editing sites in cotton (Gossypium hirsutum) chloroplasts and editing events that affect secondary and three-dimensional protein structures. GENETICS AND MOLECULAR RESEARCH 2012; 11:987-1001. [PMID: 22576925 DOI: 10.4238/2012.april.19.4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
RNA editing can alter individual nucleotides in primary transcripts, which can cause the amino acids encoded by edited RNA to deviate from the ones predicted from the DNA template. We investigated RNA editing sites of protein-coding genes from the chloroplast genome of cotton. Fifty-four editing sites were identified in 27 transcripts, which is the highest editing frequency found until now in angiosperms. All these editing sites were C-to-U conversion, biased toward ndh genes and U_A context. Examining published editotypes in various angiosperms, we found that RNA editing mostly converts amino acid from hydrophilic to hydrophobic and restores evolutionary conserved amino acids. Using bioinformatics to analyze the effect of editing events on protein secondary and three-dimensional structures, we found that 21 editing sites can affect protein secondary structures and seven editing sites can alter three-dimensional protein structures. These results imply that 24 editing sites in cotton chloroplast transcripts may play an important role in their protein structures and functions.
Collapse
Affiliation(s)
- Y Jiang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, PR China
| | | | | | | | | |
Collapse
|
122
|
Kindgren P, Kremnev D, Blanco NE, de Dios Barajas López J, Fernández AP, Tellgren-Roth C, Kleine T, Small I, Strand A. The plastid redox insensitive 2 mutant of Arabidopsis is impaired in PEP activity and high light-dependent plastid redox signalling to the nucleus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:279-91. [PMID: 22211401 DOI: 10.1111/j.1365-313x.2011.04865.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The photosynthetic apparatus is composed of proteins encoded by genes from both the nuclear and the chloroplastic genomes. The activities of the nuclear and chloroplast genomes must therefore be closely coordinated through intracellular signalling. The plastids produce multiple retrograde signals at different times of their development, and in response to changes in the environment. These signals regulate the expression of nuclear-encoded photosynthesis genes to match the current status of the plastids. Using forward genetics we identified PLASTID REDOX INSENSITIVE 2 (PRIN2), a chloroplast component involved in redox-mediated retrograde signalling. The allelic mutants prin2-1 and prin2-2 demonstrated a misregulation of photosynthesis-associated nuclear gene expression in response to excess light, and an inhibition of photosynthetic electron transport. As a consequence of the misregulation of LHCB1.1 and LHCB2.4, the prin2 mutants displayed a high irradiance-sensitive phenotype with significant photoinactivation of photosystem II, indicated by a reduced variable to maximal fluorescence ratio (F(v) /F(m) ). PRIN2 is localized to the nucleoids, and plastid transcriptome analyses demonstrated that PRIN2 is required for full expression of genes transcribed by the plastid-encoded RNA polymerase (PEP). Similarly to the prin2 mutants, the ys1 mutant with impaired PEP activity also demonstrated a misregulation of LHCB1.1 and LHCB2.4 expression in response to excess light, suggesting a direct role for PEP activity in redox-mediated retrograde signalling. Taken together, our results indicate that PRIN2 is part of the PEP machinery, and that the PEP complex responds to photosynthetic electron transport and generates a retrograde signal, enabling the plant to synchronize the expression of photosynthetic genes from both the nuclear and plastidic genomes.
Collapse
Affiliation(s)
- Peter Kindgren
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, S-901 87 Umeå, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
123
|
|
124
|
Chi W, He B, Mao J, Li Q, Ma J, Ji D, Zou M, Zhang L. The function of RH22, a DEAD RNA helicase, in the biogenesis of the 50S ribosomal subunits of Arabidopsis chloroplasts. PLANT PHYSIOLOGY 2012; 158:693-707. [PMID: 22170977 PMCID: PMC3271760 DOI: 10.1104/pp.111.186775] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 12/12/2011] [Indexed: 05/18/2023]
Abstract
The chloroplast ribosome is a large and dynamic ribonucleoprotein machine that is composed of the 30S and 50S subunits. Although the components of the chloroplast ribosome have been identified in the last decade, the molecular mechanisms driving chloroplast ribosome biogenesis remain largely elusive. Here, we show that RNA helicase 22 (RH22), a putative DEAD RNA helicase, is involved in chloroplast ribosome assembly in Arabidopsis (Arabidopsis thaliana). A loss of RH22 was lethal, whereas a knockdown of RH22 expression resulted in virescent seedlings with clear defects in chloroplast ribosomal RNA (rRNA) accumulation. The precursors of 23S and 4.5S, but not 16S, rRNA accumulated in rh22 mutants. Further analysis showed that RH22 was associated with the precursors of 50S ribosomal subunits. These results suggest that RH22 may function in the assembly of 50S ribosomal subunits in chloroplasts. In addition, RH22 interacted with the 50S ribosomal protein RPL24 through yeast two-hybrid and pull-down assays, and it was also bound to a small 23S rRNA fragment encompassing RPL24-binding sites. This action of RH22 may be similar to, but distinct from, that of SrmB, a DEAD RNA helicase that is involved in the ribosomal assembly in Escherichia coli, which suggests that DEAD RNA helicases and rRNA structures may have coevolved with respect to ribosomal assembly and function.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lixin Zhang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
125
|
Qi Y, Armbruster U, Schmitz-Linneweber C, Delannoy E, de Longevialle AF, Rühle T, Small I, Jahns P, Leister D. Arabidopsis CSP41 proteins form multimeric complexes that bind and stabilize distinct plastid transcripts. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1251-70. [PMID: 22090436 PMCID: PMC3276088 DOI: 10.1093/jxb/err347] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 10/06/2011] [Accepted: 10/10/2011] [Indexed: 05/20/2023]
Abstract
The spinach CSP41 protein has been shown to bind and cleave chloroplast RNA in vitro. Arabidopsis thaliana, like other photosynthetic eukaryotes, encodes two copies of this protein. Several functions have been described for CSP41 proteins in Arabidopsis, including roles in chloroplast rRNA metabolism and transcription. CSP41a and CSP41b interact physically, but it is not clear whether they have distinct functions. It is shown here that CSP41b, but not CSP41a, is an essential and major component of a specific subset of RNA-binding complexes that form in the dark and disassemble in the light. RNA immunoprecipitation and hybridization to gene chips (RIP-chip) experiments indicated that CSP41 complexes can contain chloroplast mRNAs coding for photosynthetic proteins and rRNAs (16S and 23S), but no tRNAs or mRNAs for ribosomal proteins. Leaves of plants lacking CSP41b showed decreased steady-state levels of CSP41 target RNAs, as well as decreased plastid transcription and translation rates. Representative target RNAs were less stable when incubated with broken chloroplasts devoid of CSP41 complexes, indicating that CSP41 proteins can stabilize target RNAs. Therefore, it is proposed that (i) CSP41 complexes may serve to stabilize non-translated target mRNAs and precursor rRNAs during the night when the translational machinery is less active in a manner responsive to the redox state of the chloroplast, and (ii) that the defects in translation and transcription in CSP41 protein-less mutants are secondary effects of the decreased transcript stability.
Collapse
Affiliation(s)
- Yafei Qi
- Lehrstuhl für Molekularbiologie der Pflanzen (Botanik), Department Biologie I, Ludwig-Maximilians-Universität München, D-82152 Planegg-Martinsried, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Verbitskiy D, Merwe JAVD, Zehrmann A, Härtel B, Takenaka M. The E-class PPR protein MEF3 of Arabidopsis thaliana can also function in mitochondrial RNA editing with an additional DYW domain. PLANT & CELL PHYSIOLOGY 2012; 53:358-67. [PMID: 22186180 DOI: 10.1093/pcp/pcr182] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
In plants, RNA editing is observed in mitochondria and plastids, changing selected C nucleotides into Us in both organelles. We here identify the PPR (pentatricopeptide repeat) protein MEF3 (mitochondrial editing factor 3) of the E domain PPR subclass by genetic mapping of a variation between ecotypes Columbia (Col) and Landsberg erecta (Ler) in Arabidopsis thaliana to be required for a specific RNA editing event in mitochondria. The Ler variant of MEF3 differs from Col in two amino acids in repeats 9 and 10, which reduce RNA editing levels at site atp4-89 to about 50% in Ler. In a T-DNA insertion line, editing at this site is completely lost. In Vitis vinifera the gene most similar to MEF3 continues into a DYW extension beyond the common E domain. Complementation assays with various combinations of PPR and E domains from the vine and A. thaliana proteins show that the vine E region can substitute for the A. thaliana E region with or without the DYW domain. These findings suggest that the additional DYW domain does not disturb the MEF3 protein function in mitochondrial RNA editing in A. thaliana.
Collapse
|
127
|
Zehrmann A, van der Merwe J, Verbitskiy D, Härtel B, Brennicke A, Takenaka M. The DYW-class PPR protein MEF7 is required for RNA editing at four sites in mitochondria of Arabidopsis thaliana. RNA Biol 2012; 9:155-61. [PMID: 22258224 DOI: 10.4161/rna.18644] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In plant mitochondria and plastids, RNA editing alters about 400 and about 35 C nucleotides into Us, respectively. Four of these RNA editing events in plant mitochondria specifically require the PPR protein MEF7, characterized by E and DYW extension domains. The gene for MEF7 was identified by genomic mapping of the locus mutated in plants from EMS treated seeds. The SNaPshot screen of the mutant plant population identified two independent EMS mutants with the same editing defects as a corresponding T-DNA insertion line of the MEF7 gene. Although the amino acid codons introduced by the editing events are conserved throughout flowering plants, even the combined failure of four editing events does not impair the growth efficiency of the mutant plants. Five nucleotides are conserved between the four affected editing sites, but are not sufficient for specific recognition by MEF7 since they are also present at three other sites which are unaffected in the mutants.
Collapse
|
128
|
Kleine T. Arabidopsis thaliana mTERF proteins: evolution and functional classification. FRONTIERS IN PLANT SCIENCE 2012; 3:233. [PMID: 23087700 PMCID: PMC3471360 DOI: 10.3389/fpls.2012.00233] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 09/27/2012] [Indexed: 05/18/2023]
Abstract
Organellar gene expression (OGE) is crucial for plant development, photosynthesis, and respiration, but our understanding of the mechanisms that control it is still relatively poor. Thus, OGE requires various nucleus-encoded proteins that promote transcription, splicing, trimming, and editing of organellar RNAs, and regulate translation. In metazoans, proteins of the mitochondrial Transcription tERmination Factor (mTERF) family interact with the mitochondrial chromosome and regulate transcriptional initiation and termination. Sequencing of the Arabidopsis thaliana genome led to the identification of a diversified MTERF gene family but, in contrast to mammalian mTERFs, knowledge about the function of these proteins in photosynthetic organisms is scarce. In this hypothesis article, I show that tandem duplications and one block duplication contributed to the large number of MTERF genes in A. thaliana, and propose that the expansion of the family is related to the evolution of land plants. The MTERF genes-especially the duplicated genes-display a number of distinct mRNA accumulation patterns, suggesting functional diversification of mTERF proteins to increase adaptability to environmental changes. Indeed, hypothetical functions for the different mTERF proteins can be predicted using co-expression analysis and gene ontology (GO) annotations. On this basis, mTERF proteins can be sorted into five groups. Members of the "chloroplast" and "chloroplast-associated" clusters are principally involved in chloroplast gene expression, embryogenesis, and protein catabolism, while representatives of the "mitochondrial" cluster seem to participate in DNA and RNA metabolism in that organelle. Moreover, members of the "mitochondrion-associated" cluster and the "low expression" group may act in the nucleus and/or the cytosol. As proteins involved in OGE and presumably nuclear gene expression (NGE), mTERFs are ideal candidates for the coordination of the expression of organelle and nuclear genomes.
Collapse
Affiliation(s)
- Tatjana Kleine
- *Correspondence: Tatjana Kleine, Department Biology I, Plant Molecular Biology (Botany), Ludwig-Maximilians-University Munich (LMU), Großhaderner Str. 2, D-82152 Planegg-Martinsried, Germany. e-mail:
| |
Collapse
|
129
|
Cardi T, Giegé P, Kahlau S, Scotti N. Expression Profiling of Organellar Genes. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2012. [DOI: 10.1007/978-94-007-2920-9_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
130
|
Chen H, Deng L, Jiang Y, Lu P, Yu J. RNA editing sites exist in protein-coding genes in the chloroplast genome of Cycas taitungensis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2011; 53:961-70. [PMID: 22044752 DOI: 10.1111/j.1744-7909.2011.01082.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
RNA editing is a post-transcriptional process that results in modifications of ribonucleotides at specific locations. In land plants editing can occur in both mitochondria and chloroplasts and most commonly involves C-to-U changes, especially in seed plants. Using prediction and experimental determination, we investigated RNA editing in 40 protein-coding genes from the chloroplast genome of Cycas taitungensis. A total of 85 editing sites were identified in 25 transcripts. Comparison analysis of the published editotypes of these 25 transcripts in eight species showed that RNA editing events gradually disappear during plant evolution. The editing in the first and third codon position disappeared quicker than that in the second codon position. ndh genes have the highest editing frequency while serine and proline codons were more frequently edited than the codons of other amino acids. These results imply that retained RNA editing sites have imbalanced distribution in genes and most of them may function by changing protein structure or interaction. Mitochondrion protein-coding genes have three times the editing sites compared with chloroplast genes of Cycas, most likely due to slower evolution speed.
Collapse
Affiliation(s)
- Haiyan Chen
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | | | | | | | | |
Collapse
|
131
|
Gao ZP, Yu QB, Zhao TT, Ma Q, Chen GX, Yang ZN. A functional component of the transcriptionally active chromosome complex, Arabidopsis pTAC14, interacts with pTAC12/HEMERA and regulates plastid gene expression. PLANT PHYSIOLOGY 2011; 157:1733-45. [PMID: 22010110 PMCID: PMC3327189 DOI: 10.1104/pp.111.184762] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 10/14/2011] [Indexed: 05/18/2023]
Abstract
The SET domain-containing protein, pTAC14, was previously identified as a component of the transcriptionally active chromosome (TAC) complexes. Here, we investigated the function of pTAC14 in the regulation of plastid-encoded bacterial-type RNA polymerase (PEP) activity and chloroplast development. The knockout of pTAC14 led to the blockage of thylakoid formation in Arabidopsis (Arabidopsis thaliana), and ptac14 was seedling lethal. Sequence and transcriptional analysis showed that pTAC14 encodes a specific protein in plants that is located in the chloroplast associated with the thylakoid and that its expression depends on light. In addition, the transcript levels of all investigated PEP-dependent genes were clearly reduced in the ptac14-1 mutants, while the accumulation of nucleus-encoded phage-type RNA polymerase-dependent transcripts was increased, indicating an important role of pTAC14 in maintaining PEP activity. pTAC14 was found to interact with pTAC12/HEMERA, another component of TACs that is involved in phytochrome signaling. The data suggest that pTAC14 is essential for proper chloroplast development, most likely by affecting PEP activity and regulating PEP-dependent plastid gene transcription in Arabidopsis together with pTAC12.
Collapse
|
132
|
Steiner S, Schröter Y, Pfalz J, Pfannschmidt T. Identification of essential subunits in the plastid-encoded RNA polymerase complex reveals building blocks for proper plastid development. PLANT PHYSIOLOGY 2011; 157:1043-55. [PMID: 21949211 PMCID: PMC3252157 DOI: 10.1104/pp.111.184515] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 09/14/2011] [Indexed: 05/18/2023]
Abstract
The major RNA polymerase activity in mature chloroplasts is a multisubunit, Escherichia coli-like protein complex called PEP (for plastid-encoded RNA polymerase). Its subunit structure has been extensively investigated by biochemical means. Beside the "prokaryotic" subunits encoded by the plastome-located RNA polymerase genes, a number of additional nucleus-encoded subunits of eukaryotic origin have been identified in the PEP complex. These subunits appear to provide additional functions and regulation modes necessary to adapt transcription to the varying functional situations in chloroplasts. However, despite the enormous progress in genomic data and mass spectrometry techniques, it is still under debate which of these subunits belong to the core complex of PEP and which ones represent rather transient or peripheral components. Here, we present a catalog of true PEP subunits that is based on comparative analyses from biochemical purifications, protein mass spectrometry, and phenotypic analyses. We regard reproducibly identified protein subunits of the basic PEP complex as essential when the corresponding knockout mutants reveal an albino or pale-green phenotype. Our study provides a clearly defined subunit catalog of the basic PEP complex, generating the basis for a better understanding of chloroplast transcription regulation. In addition, the data support a model that links PEP complex assembly and chloroplast buildup during early seedling development in vascular plants.
Collapse
|
133
|
Castandet B, Araya A. RNA editing in plant organelles. Why make it easy? BIOCHEMISTRY (MOSCOW) 2011; 76:924-31. [DOI: 10.1134/s0006297911080086] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
134
|
Rüdinger M, Szövényi P, Rensing SA, Knoop V. Assigning DYW-type PPR proteins to RNA editing sites in the funariid mosses Physcomitrella patens and Funaria hygrometrica. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:370-380. [PMID: 21466601 DOI: 10.1111/j.1365-313x.2011.04600.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The plant-specific pentatricopeptide repeat (PPR) proteins with variable PPR repeat lengths (PLS-type) and protein extensions up to the carboxyterminal DYW domain have received attention as specific recognition factors for the C-to-U type of RNA editing events in plant organelles. Here, we report a DYW-protein knockout in the model plant Physcomitrella patens specifically affecting mitochondrial RNA editing positions cox1eU755SL and rps14eU137SL. Assignment of DYW proteins and RNA editing sites might best be corroborated by data from a taxon with a slightly different, yet similarly manageable low number of editing sites and DYW proteins. To this end we investigated the mitochondrial editing status of the related funariid moss Funaria hygrometrica. We find that: (i) Funaria lacks three mitochondrial RNA editing positions present in Physcomitrella, (ii) that F. hygrometrica cDNA sequence data identify nine DYW proteins as clear orthologues of their P. patens counterparts, and (iii) that the 'missing' 10th DYW protein in F. hygrometrica is responsible for two mitochondrial editing sites in P. patens lacking in F. hygrometrica (nad3eU230SL, nad4eU272SL). Interestingly, the third site of RNA editing missing in F. hygrometrica (rps14eU137SL) is addressed by the DYW protein characterized here and the presence of its orthologue in F. hygrometrica is explained through its simultaneous action on site cox1eU755SL conserved in both mosses.
Collapse
Affiliation(s)
- Mareike Rüdinger
- IZMB-Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, Bonn, Germany
| | | | | | | |
Collapse
|
135
|
Abstract
The pentatricopeptide repeat (PPR) is a degenerate 35-amino-acid structural motif identified from analysis of the sequenced genome of the model plant Arabidopsis thaliana. From the wealth of sequence information now available from plant genomes, the PPR protein family is now known to be one of the largest families in angiosperm species, as most genomes encode 400-600 members. As the number of PPR genes is generally only c. 10-20 in other eukaryotic organisms, including green algae, the family has obviously greatly expanded during land plant evolution. This provides a rare opportunity to study selection pressures driving a 50-fold expansion of a single gene family. PPR proteins are sequence-specific RNA-binding proteins involved in many aspects of RNA processing in organelles. In this review, we will summarize our current knowledge about the evolution of PPR genes, and will discuss the relevance of the dramatic expansion in the family to the functional diversification of plant organelles, focusing primarily on RNA editing.
Collapse
Affiliation(s)
- Sota Fujii
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley 6009, WA, Australia
| | - Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley 6009, WA, Australia
| |
Collapse
|
136
|
Uchida M, Ohtani S, Ichinose M, Sugita C, Sugita M. The PPR-DYW proteins are required for RNA editing of rps14, cox1 and nad5 transcripts in Physcomitrella patens mitochondria. FEBS Lett 2011; 585:2367-71. [PMID: 21708151 DOI: 10.1016/j.febslet.2011.06.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 06/10/2011] [Accepted: 06/10/2011] [Indexed: 10/18/2022]
Abstract
We identified two DYW subclass pentatricopeptide repeat (PPR) proteins, PpPPR_78 and PpPPR_79, as RNA editing factors in the moss Physcomitrella patens. Disruption of each gene by homologous recombination revealed that PpPPR_78 was involved in RNA editing at the rps14 (rps14-C137) and cox1 (cox1-C755) sites and PpPPR_79 at the nad5-1 (nad5-C598) site in the mitochondrial transcripts. RNA editing defects did not affect transcript patterns of the target genes. Thus, DYW subclass PPR proteins seem to be site-specific trans-acting factors for RNA editing.
Collapse
Affiliation(s)
- Masato Uchida
- Center for Gene Research, Nagoya University, Chikusa-ku, Nagoya, Japan
| | | | | | | | | |
Collapse
|
137
|
Takenaka M. Identifying specific trans-factors of RNA editing in plant mitochondria by multiplex single base extension typing. Methods Mol Biol 2011; 718:151-61. [PMID: 21370047 DOI: 10.1007/978-1-61779-018-8_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The multiplex single base extension SNP-typing procedure outlined here can be employed to screen large numbers of plants for mutations in nuclear genes that affect mitochondrial RNA editing. The high -sensitivity of this method allows high-throughput analysis of individual plants altered in RNA editing at given sites in total cellular cDNA from pooled RNA preparations of up to 50 green plants. The method can be used for large-scale screening for mutations in genes encoding trans-factors for specific RNA -editing sites. Several nuclear encoded genes involved in RNA editing at specific sites in mitochondria of Arabidopsis thaliana have been identified by this approach.
Collapse
|
138
|
Qiao J, Ma C, Wimmelbacher M, Börnke F, Luo M. Two novel proteins, MRL7 and its paralog MRL7-L, have essential but functionally distinct roles in chloroplast development and are involved in plastid gene expression regulation in Arabidopsis. PLANT & CELL PHYSIOLOGY 2011; 52:1017-30. [PMID: 21515910 DOI: 10.1093/pcp/pcr054] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Chloroplast development requires the coordinated action of various proteins, many of which remain to be identified. Here, we report two novel genes, Mesophyll-cell RNAi Library line 7 (MRL7) and MRL7-Like (MRL7-L), that are involved in this process. An Arabidopsis knock-down transgenic plant (MRL7-RNAi) with delayed-greening phenotype was isolated from an RNA interference (RNAi) transformant library. Cotyledons and young leaves of MRL7-RNAi were pale in seedlings and gradually greened as the plant matured, while a knock-out in the MRL7 gene was seedling lethal. The MRL7 protein was shown to co-localize with a marker protein for nucleoids in chloroplasts, indicative of a role for the protein in chloroplast nucleic acid metabolism. Accordingly, chloroplast development was arrested upon loss of MRL7 function and the expression of plastid-encoded genes transcribed by plastid-encoded RNA polymerase (PEP) was significantly reduced in MRL7 knock-down and knock-out plants. A paralog of MRL7 (MRL7-L) was identified in the Arabidopsis genome. Both MRL7 and MRL7-L are only found in land plants and encode previously uncharacterized proteins without any known conserved domain. Like MRL7, knock-down of MRL7-L also resulted in a virescent phenotype, and a similar effect on plastid gene expression. However, the MRL7-L protein was localized to the chloroplast stroma. Taken together, our data indicate that the two paralogous proteins MRL7 and MRL7-L have essential but distinct roles during early chloroplast development and are involved in regulation of plastid gene expression.
Collapse
Affiliation(s)
- Jiangwei Qiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, PR China
| | | | | | | | | |
Collapse
|
139
|
Hammani K, des Francs-Small CC, Takenaka M, Tanz SK, Okuda K, Shikanai T, Brennicke A, Small I. The pentatricopeptide repeat protein OTP87 is essential for RNA editing of nad7 and atp1 transcripts in Arabidopsis mitochondria. J Biol Chem 2011; 286:21361-71. [PMID: 21504904 DOI: 10.1074/jbc.m111.230516] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In plant organelles, RNA editing is a post-transcriptional mechanism that converts specific cytidines to uridines in RNA of both mitochondria and plastids, altering the information encoded by the gene. The cytidine to be edited is determined by a cis-element surrounding the editing site that is specifically recognized and bound by a trans-acting factor. All the trans-acting editing factors identified so far in plant organelles are members of a large protein family, the pentatricopeptide repeat (PPR) proteins. We have identified the Organelle Transcript Processing 87 (OTP87) gene, which is required for RNA editing of the nad7-C24 and atp1-C1178 sites in Arabidopsis mitochondria. OTP87 encodes an E-subclass PPR protein with an unusually short E-domain. The recombinant protein expressed in Escherichia coli specifically binds to RNAs comprising 30 nucleotides upstream and 10 nucleotides downstream of the nad7-C24 and atp1-C1178 editing sites. The loss-of-function of OTP87 results in small plants with growth and developmental delays. In the otp87 mutant, the amount of assembled respiratory complex V (ATP synthase) is highly reduced compared with the wild type suggesting that the amino acid alteration in ATP1 caused by loss of editing at the atp1-C1178 site affects complex V assembly in mitochondria.
Collapse
Affiliation(s)
- Kamel Hammani
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009 Western Australia, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
140
|
Cao ZL, Yu QB, Sun Y, Lu Y, Cui YL, Yang ZN. A point mutation in the pentatricopeptide repeat motif of the AtECB2 protein causes delayed chloroplast development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2011; 53:258-69. [PMID: 21294841 DOI: 10.1111/j.1744-7909.2011.01030.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
AtECB2 encodes a pentatricopeptide repeat (PPR) protein that regulates the editing of the plastid genes accD and ndhF. The ecb2-1 knockout shows an albino phenotype and is seedling lethal. In this study, we isolated an allelic mutant of the AtECB2 gene, ecb2-2, which showed delayed greening phenotype but could complete their life cycle. In this mutant, the Thr(500) is converted to Ile(500) in the 13(th) PPR motif of the AtECB2 protein. Transmission electron microscopy demonstrated that chloroplast development was delayed in both the cotyledons and leaves of the mutant. An investigation of the chloroplast gene expression profile indicated that PEP (plastid-encoded RNA polymerase) activity in ecb2-2 cotyledons was not obviously affected, whereas it was severely impaired in ecb2-1. This result suggests that the PEP activities cause the different phenotypes of the ecb2-1 and ecb2-2 mutants. The editing efficiency of the three editing sites of accD (C794 and C1568) and ndhF (C290) in the mutant was dynamically altered, which was in agreement with the phenotype. This result indicates that the editing efficiency of accD and ndhF in the ecb2-2 mutant is associated with a delayed greening phenotype. As ecb2-2 can survive and set seeds, this mutant can be used for further investigation of RNA editing and chloroplast development in arabidopsis.
Collapse
Affiliation(s)
- Zhi-Lin Cao
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
| | | | | | | | | | | |
Collapse
|
141
|
Bryant N, Lloyd J, Sweeney C, Myouga F, Meinke D. Identification of nuclear genes encoding chloroplast-localized proteins required for embryo development in Arabidopsis. PLANT PHYSIOLOGY 2011; 155:1678-89. [PMID: 21139083 PMCID: PMC3091104 DOI: 10.1104/pp.110.168120] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 11/29/2010] [Indexed: 05/18/2023]
Abstract
We describe here the diversity of chloroplast proteins required for embryo development in Arabidopsis (Arabidopsis thaliana). Interfering with certain chloroplast functions has long been known to result in embryo lethality. What has not been reported before is a comprehensive screen for embryo-defective (emb) mutants altered in chloroplast proteins. From a collection of transposon and T-DNA insertion lines at the RIKEN chloroplast function database (http://rarge.psc.riken.jp/chloroplast/) that initially appeared to lack homozygotes and segregate for defective seeds, we identified 23 additional examples of EMB genes that likely encode chloroplast-localized proteins. Fourteen gene identities were confirmed with allelism tests involving duplicate mutant alleles. We then queried journal publications and the SeedGenes database (www.seedgenes.org) to establish a comprehensive dataset of 381 nuclear genes encoding chloroplast proteins of Arabidopsis associated with embryo-defective (119 genes), plant pigment (121 genes), gametophyte (three genes), and alternate (138 genes) phenotypes. Loci were ranked based on the level of certainty that the gene responsible for the phenotype had been identified and the protein product localized to chloroplasts. Embryo development is frequently arrested when amino acid, vitamin, or nucleotide biosynthesis is disrupted but proceeds when photosynthesis is compromised and when levels of chlorophyll, carotenoids, or terpenoids are reduced. Chloroplast translation is also required for embryo development, with genes encoding chloroplast ribosomal and pentatricopeptide repeat proteins well represented among EMB datasets. The chloroplast accD locus, which is necessary for fatty acid biosynthesis, is essential in Arabidopsis but not in Brassica napus or maize (Zea mays), where duplicated nuclear genes compensate for its absence or loss of function.
Collapse
|
142
|
Pogson BJ, Albrecht V. Genetic dissection of chloroplast biogenesis and development: an overview. PLANT PHYSIOLOGY 2011; 155:1545-51. [PMID: 21330494 PMCID: PMC3091115 DOI: 10.1104/pp.110.170365] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 02/03/2011] [Indexed: 05/20/2023]
|
143
|
Jacobs J, Kück U. Function of chloroplast RNA-binding proteins. Cell Mol Life Sci 2011; 68:735-48. [PMID: 20848156 PMCID: PMC11115000 DOI: 10.1007/s00018-010-0523-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 08/25/2010] [Accepted: 08/30/2010] [Indexed: 12/18/2022]
Abstract
Chloroplasts are eukaryotic organelles which represent evolutionary chimera with proteins that have been derived from either a prokaryotic endosymbiont or a eukaryotic host. Chloroplast gene expression starts with transcription of RNA and is followed by multiple post-transcriptional processes which are mediated mainly by an as yet unknown number of RNA-binding proteins. Here, we review the literature to date on the structure and function of these chloroplast RNA-binding proteins. For example, the functional protein domains involved in RNA binding, such as the RNA-recognition motifs, the chloroplast RNA-splicing and ribosome maturation domains, and the pentatricopeptide-repeat motifs, are summarized. We also describe biochemical and forward genetic approaches that led to the identification of proteins modifying RNA stability or carrying out RNA splicing or editing. Such data will greatly contribute to a better understanding of the biogenesis of a unique organelle found in all photosynthetic organisms.
Collapse
Affiliation(s)
- Jessica Jacobs
- Department for General and Molecular Biology, Ruhr-University Bochum, Universitätsstraße 150, Bochum, Germany.
| | | |
Collapse
|
144
|
Chateigner-Boutin AL, des Francs-Small CC, Delannoy E, Kahlau S, Tanz SK, de Longevialle AF, Fujii S, Small I. OTP70 is a pentatricopeptide repeat protein of the E subgroup involved in splicing of the plastid transcript rpoC1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 65:532-42. [PMID: 21288264 DOI: 10.1111/j.1365-313x.2010.04441.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Over 20 proteins of the pentatricopeptide repeat (PPR) family have been demonstrated to be involved in RNA editing in plant mitochondria and chloroplasts. All of these editing factors contain a so-called 'E' domain that has been shown to be essential for editing to occur. The presumption has been that this domain recruits the (unknown) editing enzyme to the RNA. In this report, we show that not all putative E-class PPR proteins are directly involved in RNA editing. Disruption of the OTP70 gene leads to a strong defect in splicing of the plastid transcript rpoC1, leading to a virescent phenotype. The mutant has a chloroplast transcript pattern characteristic of a reduction in plastid-encoded RNA polymerase activity. The E domain of OTP70 is not required for splicing, and can be deleted or replaced by the E domain from the known editing factor CRR4 without loss of rpoC1 splicing. Furthermore, the E domain of OTP70 is incapable of inducing RNA editing when fused to the RNA binding domain of CRR4. We conclude that the truncated E domain of OTP70 is no longer functional in RNA editing, and that the protein has acquired a new function in promoting RNA splicing.
Collapse
Affiliation(s)
- Anne-Laure Chateigner-Boutin
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009 WA, Australia
| | | | | | | | | | | | | | | |
Collapse
|
145
|
Knoop V. When you can't trust the DNA: RNA editing changes transcript sequences. Cell Mol Life Sci 2011; 68:567-86. [PMID: 20938709 PMCID: PMC11114842 DOI: 10.1007/s00018-010-0538-9] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 09/13/2010] [Accepted: 09/23/2010] [Indexed: 12/25/2022]
Abstract
RNA editing describes targeted sequence alterations in RNAs so that the transcript sequences differ from their DNA template. Since the original discovery of RNA editing in trypanosomes nearly 25 years ago more than a dozen such processes of nucleotide insertions, deletions, and exchanges have been identified in evolutionarily widely separated groups of the living world including plants, animals, fungi, protists, bacteria, and viruses. In many cases gene expression in mitochondria is affected, but RNA editing also takes place in chloroplasts and in nucleocytosolic genetic environments. While some RNA editing systems largely seem to repair defect genes (cryptogenes), others have obvious functions in modulating gene activities. The present review aims for an overview on the current states of research in the different systems of RNA editing by following a historic timeline along the respective original discoveries.
Collapse
Affiliation(s)
- Volker Knoop
- Abteilung Molekulare Evolution, Institut für Zelluläre und Molekulare Botanik (IZMB), Bonn, Germany.
| |
Collapse
|
146
|
Verbitskiy D, Härtel B, Zehrmann A, Brennicke A, Takenaka M. The DYW-E-PPR protein MEF14 is required for RNA editing at site matR-1895 in mitochondria of Arabidopsis thaliana. FEBS Lett 2011; 585:700-4. [PMID: 21281638 DOI: 10.1016/j.febslet.2011.01.037] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 01/25/2011] [Accepted: 01/25/2011] [Indexed: 11/17/2022]
Abstract
We here identify the PPR protein MEF14 of the DYW subclass as a specific trans-factor required for C to U editing of site matR-1895 by genetic mapping of an EMS induced editing mutant in Arabidopsis thaliana. The wild type Col MEF14 gene complements mutant protoplasts. A T-DNA insertion in the MEF14 gene abolishes detectable editing at the matR-1895 site. Lack of RNA editing at the matR-1895 site does not alter the level of mature and precursor nad1 mRNA molecules. Such RNA editing mutants can be used to analyse the function of genes like this maturase related reading frame in plant mitochondria.
Collapse
|
147
|
Hayes ML, Mulligan RM. Pentatricopeptide repeat proteins constrain genome evolution in chloroplasts. Mol Biol Evol 2011; 28:2029-39. [PMID: 21263042 DOI: 10.1093/molbev/msr023] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Higher plants encode hundreds of pentatricopeptide repeat proteins (PPRs) that are involved in several types of RNA processing reactions. Most PPR genes are predicted to be targeted to chloroplasts or mitochondria, and many are known to affect organellar gene expression. In some cases, RNA binding has been directly demonstrated, and the sequences of the cis-elements are known. In this work, we demonstrate that RNA cis-elements recognized by PPRs are constrained in chloroplast genome evolution. Cis-elements for two PPR genes and several RNA editing sites were analyzed for sequence changes by pairwise nucleotide substitution frequency, pairwise indel frequency, and maximum likelihood (ML) phylogenetic distances. All three of these analyses demonstrated that sequences within the cis-element are highly conserved compared with surrounding sequences. In addition, we have compared sequences around chloroplast editing sites and homologous sequences in species that lack an editing site due to the presence of a genomic T. Cis-elements for RNA editing sites are highly conserved in angiosperms; by contrast, comparable sequences around a genomically encoded T exhibit higher rates of nucleotide substitution, higher frequencies of indels, and greater ML distances. The loss in requirement for editing to create the ndhD start codon has resulted in the conversion of the PPR gene responsible for editing that site to a pseudogene. We show that organellar dependence on nuclear-encoded PPR proteins for gene expression has constrained the evolution of cis-elements that are required at the level of RNA processing. Thus, the expansion of the PPR gene family in plants has had a dramatic effect on the evolution of plant organelle genomes.
Collapse
Affiliation(s)
- Michael L Hayes
- Developmental and Cell Biology, University of California, Irvine, USA
| | | |
Collapse
|
148
|
Abstract
mRNA editing in plastids (chloroplasts) of higher plants proceeds by cytidine-to-uridine conversion at highly specific sites. Editing sites are recognized by the interplay of cis-acting elements at the RNA level and site-specific trans-acting protein factors that are believed to bind to the cis-elements in a sequence-specific manner. The C-to-U editing enzyme, a presumptive cytidine deaminase acting on polynucleotides, is still unknown. The development of methods for the stable genetic transformation of the plastid genome in higher plants has facilitated the analysis of RNA editing in vivo. Plastid transformation has been extensively used to define the sequence requirements for editing site selection and to address questions about editing site evolution. This chapter describes the basic methods involved in the generation and analysis of plants with transgenic chloroplast genomes and summarizes the applications of plastid transformation in editing research.
Collapse
Affiliation(s)
- Stephanie Ruf
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | | |
Collapse
|
149
|
Takenaka M, Zehrmann A. Complementation of mutants in plant mitochondrial RNA editing by protoplast transfection. Methods Mol Biol 2011; 718:163-169. [PMID: 21370048 DOI: 10.1007/978-1-61779-018-8_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A crucial and often decisive test of a nuclear gene being involved in a given process is the complementation of mutants. Restoring the wild type phenotype by the wild type gene introduced into the mutant is a major piece of evidence for the function of this gene. We have developed a rapid and reliable method to complement protoplasts from plants with mutations in mitochondrial RNA editing with the respective wild type genes. The method furthermore allows testing the functionality of modified protein sequences without the need to make and grow transgenic plants, which is very time-consuming. We successfully employed this method for several nuclear-encoded genes involved in RNA editing at specific sites in mitochondria of Arabidopsis thaliana.
Collapse
|
150
|
Bentolila S, Knight W, Hanson M. Natural variation in Arabidopsis leads to the identification of REME1, a pentatricopeptide repeat-DYW protein controlling the editing of mitochondrial transcripts. PLANT PHYSIOLOGY 2010; 154:1966-82. [PMID: 20974892 PMCID: PMC2996027 DOI: 10.1104/pp.110.165969] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In vascular plants, organelle RNAs are edited by C-to-U base modification. Hundreds of mitochondrial C residues are targeted for editing in flowering plants. In this study, we exploited naturally occurring variation in editing extent to identify Required for Efficiency of Mitochondrial Editing1 (REME1), an Arabidopsis (Arabidopsis thaliana) pentatricopeptide repeat protein-encoding gene belonging to the DYW subclass that promotes editing of at least two C residues on different mitochondrial transcripts. Positional cloning identified REME1 unambiguously as the gene controlling editing of nad2-558. Virus-induced gene silencing of REME1 confirmed its role in editing of nad2-558 and allowed us to identify orfX-552 as a second C whose editing is positively controlled by REME1. An unexpected outcome of REME1 silencing was the finding of a number of mitochondrial C targets whose editing extent exhibits a significant and reproducible increase in silenced tissues. That increase was shown to be partly due to the virus inoculation and partly to REME1-specific silencing. Analysis of an insertional T-DNA mutant within the REME1 coding sequence confirmed the findings of the virus-induced gene silencing experiments: decrease in editing extent of nad2-558 and orfX-552 and increase in editing extent of two sites, matR-1771 and rpl5-92. Transgenic complementation of the low-edited accession (Landsberg erecta) restored the editing of nad2-558 and orfX-552 to high-edited accession (Columbia)-type levels or to even higher levels than Columbia. There was no effect of the transgene on editing extent of matR-1771 and rpl5-92. The strategy and tools used in this report can be applied to identify additional genes that affect editing extent in plant mitochondria.
Collapse
|