101
|
Affiliation(s)
- Jean‐Michel Gaillard
- Laboratoire de Biométrie et Biologie Evolutive UMR5558 CNRS Université Lyon 1 University of Lyon Villeurbanne France
| | - Jean‐François Lemaître
- Laboratoire de Biométrie et Biologie Evolutive UMR5558 CNRS Université Lyon 1 University of Lyon Villeurbanne France
| |
Collapse
|
102
|
Nabi G, Hao Y, Liu X, Sun Y, Wang Y, Jiang C, Li J, Wu Y, Li D. Hypothalamic-Pituitary-Thyroid Axis Crosstalk With the Hypothalamic-Pituitary-Gonadal Axis and Metabolic Regulation in the Eurasian Tree Sparrow During Mating and Non-mating Periods. Front Endocrinol (Lausanne) 2020; 11:303. [PMID: 32547486 PMCID: PMC7272604 DOI: 10.3389/fendo.2020.00303] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/21/2020] [Indexed: 12/13/2022] Open
Abstract
Reproduction is an energetically costly phenomenon. Therefore, to optimize reproductive success, male birds invest enough energetic resources for maintaining well-developed testes. The hypothalamic-pituitary-thyroid (HPT) axis in birds can crosstalk with the hypothalamic-pituitary-gonadal (HPG) axis, thus orchestrating both the reproduction and metabolism. However, until now, how the free-living birds timely optimize both the energy metabolism and reproduction via HPT-axis is not understood. To uncover this physiological mechanism, we investigated the relationships among body mass, testis size, plasma hormones including thyroid-stimulating hormone (TSH), thyroxine (T4), triiodothyronine (T3), metabolites including glucose (Glu), triglyceride (TG), total cholesterol (TC), uric acid (UA), diencephalon mRNA expressions of type 2 (Dio2) and 3 (Dio3) iodothyronine deiodinase enzymes, thyrotropin-releasing hormone (TRH), thyroid-stimulating hormone (TSH), gonadotropin-releasing hormone I (GnRH-I), and gonadotropin-inhibitory hormone (GnIH) in a male Eurasian tree sparrow (ETS, Passer montanus). We found significantly larger testis size; elevated diencephalon Dio2 and TRH mRNA expressions, plasma T3, and UA levels; and significantly lowered Glu, TG, and TC levels during mating relative to the non-mating stages in male ETSs. However, Dio3, TSH, GnRH-I, and GnIH mRNA expression did not vary with the stage. Furthermore, life-history stage dependent variation in plasma T3 had both direct effects on the available energy substrates and indirect effects on body mass and testis size, indicating a complex regulation of metabolic pathways through the HPT- and HPG-axes. The identified differences and relationships in mRNA expression, plasma T3 and metabolites, and testis size in male ETSs contribute to our understanding how free-living birds adjust their molecular, endocrinal, and biochemical features to orchestrate their reproductive physiology and metabolism for the maintenance of well-developed testes.
Collapse
Affiliation(s)
- Ghulam Nabi
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Yinchao Hao
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- Functional Laboratory, Experimental Center for Teaching, Hebei Medical University, Shijiazhuang, China
| | - Xuelu Liu
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Yanfeng Sun
- Ocean College, Hebei Agricultural University, Qinhuangdao, China
| | - Yang Wang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Chuan Jiang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Juyong Li
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Yuefeng Wu
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Dongming Li
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- *Correspondence: Dongming Li
| |
Collapse
|
103
|
Christen F, Dufresne F, Leduc G, Dupont-Cyr BA, Vandenberg GW, Le François NR, Tardif JC, Lamarre SG, Blier PU. Thermal tolerance and fish heart integrity: fatty acids profiles as predictors of species resilience. CONSERVATION PHYSIOLOGY 2020; 8:coaa108. [PMID: 33408863 PMCID: PMC7771578 DOI: 10.1093/conphys/coaa108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 10/21/2020] [Accepted: 11/20/2020] [Indexed: 05/05/2023]
Abstract
The cardiovascular system is a major limiting system in thermal adaptation, but the exact physiological mechanisms underlying responses to thermal stress are still not completely understood. Recent studies have uncovered the possible role of reactive oxygen species production rates of heart mitochondria in determining species' upper thermal limits. The present study examines the relationship between individual response to a thermal challenge test (CTmax), susceptibility to peroxidation of membrane lipids, heart fatty acid profiles and cardiac antioxidant enzyme activities in two salmonid species from different thermal habitats (Salvelinus alpinus, Salvelinus fontinalis) and their hybrids. The susceptibility to peroxidation of membranes in the heart was negatively correlated with individual thermal tolerance. The same relationship was found for arachidonic and eicosapentaenoic acid. Total H2O2 buffering activity of the heart muscle was higher for the group with high thermal resistance. These findings underline a potential general causative relationship between sensitivity to oxidative stress, specific fatty acids, antioxidant activity in the cardiac muscle and thermal tolerance in fish and likely other ectotherms. Heart fatty acid profile could be indicative of species resilience to global change, and more importantly the plasticity of this trait could predict the adaptability of fish species or populations to changes in environmental temperature.
Collapse
Affiliation(s)
- Felix Christen
- Département de Biologie, Université du Québec à Rimouski, Rimouski, Québec, G5L3A1, Canada
| | - France Dufresne
- Département de Biologie, Université du Québec à Rimouski, Rimouski, Québec, G5L3A1, Canada
| | - Gabriel Leduc
- Département de Biologie, Université du Québec à Rimouski, Rimouski, Québec, G5L3A1, Canada
| | - Bernard A Dupont-Cyr
- Département de Biologie, Université du Québec à Rimouski, Rimouski, Québec, G5L3A1, Canada
| | - Grant W Vandenberg
- Département de Sciences Animales, Université Laval, Québec, Québec, G1V 0A6, Canada
| | | | - Jean-Claude Tardif
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, H1T 1C8, Canada
| | - Simon G Lamarre
- Département de Biologie, Université de Moncton, Moncton, New-Brunswick, E1A 3E9, Canada
| | - Pierre U Blier
- Département de Biologie, Université du Québec à Rimouski, Rimouski, Québec, G5L3A1, Canada
- Corresponding author: Département de Biologie, Université du Québec à Rimouski, Rimouski, Québec, G5L3A1, Canada.
| |
Collapse
|
104
|
Abstract
Stress exposure can leave long-term footprints within the organism, like in telomeres (TLs), protective chromosome caps that shorten during cell replication and following exposure to stressors. Short TLs are considered to indicate lower fitness prospects, but why TLs shorten under stressful conditions is not understood. Glucocorticoid hormones (GCs) increase upon stress exposure and are thought to promote TL shortening by increasing oxidative damage. However, evidence that GCs are pro-oxidants and oxidative stress is causally linked to TL attrition is mixed . Based on new biochemical findings, we propose the metabolic telomere attrition hypothesis: during times of substantially increased energy demands, TLs are shortened as part of the transition into an organismal 'emergency state', which prioritizes immediate survival functions over processes with longer-term benefits. TL attrition during energy shortages could serve multiple roles including amplified signalling of cellular energy debt to re-direct critical resources to immediately important processes. This new view of TL shortening as a strategy to resolve major energetic trade-offs can improve our understanding of TL dynamics. We suggest that TLs are master regulators of cell homeostasis and propose future research avenues to understand the interactions between energy homeostasis, metabolic regulators and TL.
Collapse
Affiliation(s)
- Stefania Casagrande
- 1 Research Group Evolutionary Physiology, Max Planck Institute for Ornithology , 82319 Seewiesen , Germany
| | - Michaela Hau
- 1 Research Group Evolutionary Physiology, Max Planck Institute for Ornithology , 82319 Seewiesen , Germany.,2 Department of Biology, University of Konstanz , D-78457 Konstanz , Germany
| |
Collapse
|
105
|
Dupoué A, Blaimont P, Rozen‐Rechels D, Richard M, Meylan S, Clobert J, Miles DB, Martin R, Decencière B, Agostini S, Le Galliard J. Water availability and temperature induce changes in oxidative status during pregnancy in a viviparous lizard. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13481] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Andréaz Dupoué
- Station d'Ecologie Théorique et Expérimentale de Moulis CNRS‐UMR 5321 Saint Girons France
| | - Pauline Blaimont
- Department of Ecology & Evolutionary Biology University of California, Santa Cruz Santa Cruz CA USA
| | | | - Murielle Richard
- Station d'Ecologie Théorique et Expérimentale de Moulis CNRS‐UMR 5321 Saint Girons France
| | - Sandrine Meylan
- Sorbonne Université, iEES ParisCNRS‐UMR 7618 Paris France
- ESPE de Paris, Sorbonne Université Paris France
| | - Jean Clobert
- Station d'Ecologie Théorique et Expérimentale de Moulis CNRS‐UMR 5321 Saint Girons France
| | - Donald B. Miles
- Department of Biological Sciences Ohio University Athens OH USA
| | - Rémi Martin
- Station d'Ecologie Théorique et Expérimentale de Moulis CNRS‐UMR 5321 Saint Girons France
| | - Beatriz Decencière
- Centre de Recherche en Ecologie Expérimentale et Prédictive (CEREEP‐Ecotron Ile De France) Ecole Normale Supérieure CNRS‐UMS 3194 PSL Research University Saint‐Pierre‐lès‐Nemours France
| | - Simon Agostini
- Centre de Recherche en Ecologie Expérimentale et Prédictive (CEREEP‐Ecotron Ile De France) Ecole Normale Supérieure CNRS‐UMS 3194 PSL Research University Saint‐Pierre‐lès‐Nemours France
| | - Jean‐François Le Galliard
- Sorbonne Université, iEES ParisCNRS‐UMR 7618 Paris France
- Centre de Recherche en Ecologie Expérimentale et Prédictive (CEREEP‐Ecotron Ile De France) Ecole Normale Supérieure CNRS‐UMS 3194 PSL Research University Saint‐Pierre‐lès‐Nemours France
| |
Collapse
|
106
|
Tan K, Zhang B, Ma H, Li S, Zheng H. Oxidative stress responses of golden and brown noble scallops Chlamys nobilis to acute cold stress. FISH & SHELLFISH IMMUNOLOGY 2019; 95:349-356. [PMID: 31678188 DOI: 10.1016/j.fsi.2019.10.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/15/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
The noble scallop Chlamys nobilis is an important edible marine bivalve that is widely cultivated in the sea of southern China. Unfortunately, the mass mortality of noble scallops frequently occurs during the winter months. The present study investigated the effects of acute cold stress (8 °C) to the physiological responses of polymorphic noble scallops, by assessing the HSP70 gene expression, total carotenoid content (TCC), total antioxidant capacity (TAC), malondialdehyde (MDA) content, catalase (CAT) activity and superoxide dismutase (SOD) enzymatic activity in different tissues of golden and brown scallops. The results of the present study revealed that MDA, TCC and CAT increased drastically in most tissues in the early stage of acute cold stress (0-3 h), but TCC, SOD and CAT generally showed a downward trend. Within 3-6 h of acute cold stress, MDA content decreased in most tissues and the SOD content increased significantly in most tissues, while TCC and CAT remained at peak. After 6 h of acute cold stress, MDA content continued to increase in most tissues, while TCC, CAT, SOD and TAC decreased or remained at a lower level. For HSP70 expression, up-regulation of the HSP70 gene was observed only in mantle of brown scallops and hemolymph of golden scallops at 3 h and 24 h, respectively. The findings of the present study can better understand the physiological response of noble scallops to acute cold stress.
Collapse
Affiliation(s)
- Karsoon Tan
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou, 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Bo Zhang
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou, 515063, China
| | - Hongyu Ma
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou, 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Shengkang Li
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou, 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Huaiping Zheng
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou, 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China.
| |
Collapse
|
107
|
Gutiérrez JS, Sabat P, Castañeda LE, Contreras C, Navarrete L, Peña-Villalobos I, Navedo JG. Oxidative status and metabolic profile in a long-lived bird preparing for extreme endurance migration. Sci Rep 2019; 9:17616. [PMID: 31772390 PMCID: PMC6879648 DOI: 10.1038/s41598-019-54057-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 11/08/2019] [Indexed: 12/11/2022] Open
Abstract
The high metabolic activity associated with endurance flights and intense fuelling of migrant birds may produce large quantities of reactive oxygen species, which cause oxidative damage. Yet it remains unknown how long-lived birds prepare for oxidative challenges prior to extreme flights. We combined blood measurements of oxidative status and enzyme and fat metabolism in Hudsonian godwits (Limosa haemastica, a long-lived shorebird) before they embarked on non-stop flights longer than 10,000 km during their northbound migrations. We found that godwits increased total antioxidant capacity (TAC) and reduced oxidative damage (TBARS) as the pre-migratory season progressed, despite higher basal metabolic rates before departure. Elevations in plasma β-hydroxybutyrate and uric acid suggest that lipid and protein breakdown supports energetic requirements prior to migration. Significant associations between blood mitochondrial cytochrome-c oxidase and plasma TAC (negative) and TBARS (positive) during winter indicate that greater enzyme activity can result in greater oxidative damage and antioxidant responses. However enzyme activity remained unchanged between winter and premigratory stages, so birds may be unable to adjust metabolic enzyme activity in anticipation of future demands. These results indicate that godwits enhance their oxidative status during migratory preparation, which might represent an adaptation to diminish the physiological costs of long-distance migration.
Collapse
Affiliation(s)
- Jorge S Gutiérrez
- Estación Experimental Quempillén, Facultad de Ciencias, Universidad Austral de Chile, Ancud, Chiloé, Chile.
- Conservation Biology Research Group, Department of Anatomy, Cell Biology and Zoology, Faculty of Sciences, University of Extremadura, Badajoz, Spain.
| | - Pablo Sabat
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Center of Applied Ecology and Sustainability, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luis E Castañeda
- Programa de Genética Humana, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Carolina Contreras
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Lucas Navarrete
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Isaac Peña-Villalobos
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Juan G Navedo
- Estación Experimental Quempillén, Facultad de Ciencias, Universidad Austral de Chile, Ancud, Chiloé, Chile
- Bird Ecology Lab, Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
108
|
Gale TJ, Garratt M, Brooks RC. Female mice seek refuge from castrated males, but not intact or vasectomized males, mitigating a socially-induced glucocorticoid response. Physiol Behav 2019; 211:112678. [PMID: 31505190 DOI: 10.1016/j.physbeh.2019.112678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 08/07/2019] [Accepted: 09/05/2019] [Indexed: 10/26/2022]
Abstract
Sexual conflict may be manifested during social interactions, shaping the costs of reproduction in sexually reproducing species. This conflict, and the physical necessity of intromission, can intensify the already costly nature of reproduction for female mammals. To identify and partition the costs that males inflict on females during mating and reproduction, we paired female mice with either other females or castrated, vasectomised, or intact (sham-vasectomised) males, thus manipulating exposure to social mating behavior and costs arising from fertilization. We also provided females with refuges where males could not enter, to test whether females show avoidance or attraction to males of different gonadal status expected to exhibit different levels of social behavior. We found that females paired with vasectomised and castrated males spent the most time in their refuge. Females housed with castrated males also had increased glucocorticoid levels, an effect that was mitigated when females could retreat from these males to a refuge. This suggests that females actively refuge from castrated males, and that housing with such males is sufficient to generate an increased glucocorticoid response. Our results show that females choose to refuge from males depending on the partner's gonadal status, choices that are linked to social induced stress responses but not exposure to male mating behaviour.
Collapse
Affiliation(s)
- Teagan J Gale
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences (BEES), the University of New South Wales, High Street, Kensington, NSW 2052, Australia.
| | - Michael Garratt
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences (BEES), the University of New South Wales, High Street, Kensington, NSW 2052, Australia; Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Robert C Brooks
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences (BEES), the University of New South Wales, High Street, Kensington, NSW 2052, Australia
| |
Collapse
|
109
|
Cooper-Mullin C, Carter WA, McWilliams SR. Acute effects of intense exercise on the antioxidant system in birds: does exercise training help? ACTA ACUST UNITED AC 2019; 222:jeb.210443. [PMID: 31511346 DOI: 10.1242/jeb.210443] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/10/2019] [Indexed: 12/20/2022]
Abstract
The acute effects of an energy-intensive activity such as exercise may alter an animal's redox homeostasis, although these short-term effects may be ameliorated by chronic exposure to that activity, or training, over time. Although well documented in mammals, how energy-intensive training affects the antioxidant system and damage by reactive species has not been investigated fully in flight-trained birds. We examined changes to redox homeostasis in zebra finches exposed to energy-intensive activity (60 min of perch-to-perch flights twice a day), and how exercise training over many weeks affected this response. We measured multiple components of the antioxidant system: an enzymatic antioxidant (glutathione peroxidase, GPx) and non-enzymatic antioxidants (measured by the OXY-adsorbent test) as well as a measure of oxidative damage (d-ROMs). At no point during the experiment did oxidative damage change. We discovered that exposure to energy-intensive exercise training did not alter baseline levels of GPx, but induced exercise-trained birds to maintain a higher non-enzymatic antioxidant status as compared with untrained birds. GPx activity was elevated above baseline in trained birds immediately after completion of the second 1 h flight on each of the three sampling days, and non-enzymatic antioxidants were acutely depleted during flight after 13 and 44 days of training. The primary effect of exercise training on the acute response of the antioxidant system to 2 h flights was increased coordination between the enzymatic (GPx) and non-enzymatic components of the antioxidant system of birds that reduced oxidative damage associated with exercise.
Collapse
Affiliation(s)
- Clara Cooper-Mullin
- Department of Natural Resources Science, University of Rhode Island, Kingston, RI 02881, USA
| | - Wales A Carter
- Department of Natural Resources Science, University of Rhode Island, Kingston, RI 02881, USA
| | - Scott R McWilliams
- Department of Natural Resources Science, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
110
|
Gormally BMG, Estrada R, Yin H, Romero LM. Recovery from repeated stressors: Physiology and behavior are affected on different timescales in house sparrows. Gen Comp Endocrinol 2019; 282:113225. [PMID: 31330125 DOI: 10.1016/j.ygcen.2019.113225] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/17/2019] [Accepted: 07/18/2019] [Indexed: 12/16/2022]
Abstract
For decades, researchers across disciplines have been captivated by classifying, diagnosing, and avoiding the consequences of chronic stress. Despite the vast body of literature this has generated, we still lack the ability to predict which individuals or populations may be susceptible to stress-related pathologies. One critical unanswered question is whether the impacts of repeated stressors are reversible, or if instead they permanently alter an individual. In this study, we exposed house sparrows (Passer domesticus) to 6 days of random, repeated stressors, permitted them 0, 1, 3, or 6 days to recover, and then assessed changes in their body mass, hypothalamic-pituitaryadrenal (HPA) axis (baseline, stress-induced corticosterone, negative feedback strength), immune function, uric acid concentrations, DNA damage levels, and perch hopping activity. Body mass did not vary between groups after recovery. We found that the HPA axis and perch hopping were not significantly impacted by the 6 days of stressors, but that uric acid and DNA damage increased. Short recovery periods tended to negatively affect the HPA axis and reduced uric acid levels, but these were reversed with longer recovery periods. Following the recovery periods, the birds experienced an additional 6 days of random stressors and their responses were assessed again. All recovery times reduced perch hopping and immune function, but paradoxically, DNA damage was highest in the birds that had the longest amount of time to recover. These results show that recovery time affects responses to subsequent chronic stress in complex ways, and highlight the importance of multimodal, interdisciplinary approaches to studying stress physiology.
Collapse
Affiliation(s)
| | - Rodolfo Estrada
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Hannah Yin
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | | |
Collapse
|
111
|
Pheomelanin-based coloration is related to individual quality and oxidative stress in blue petrels. Evol Ecol 2019. [DOI: 10.1007/s10682-019-10010-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
112
|
Xu DL, Xu MM, Wang DH. Effects of air temperatures on antioxidant defense and immunity in Mongolian gerbils. J Therm Biol 2019; 84:111-120. [DOI: 10.1016/j.jtherbio.2019.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/20/2019] [Accepted: 06/20/2019] [Indexed: 12/22/2022]
|
113
|
Xu DL, Xu MM, Wang DH. Effect of temperature on antioxidant defense and innate immunity in Brandt's voles. Zool Res 2019; 40:305-316. [PMID: 31310064 PMCID: PMC6680122 DOI: 10.24272/j.issn.2095-8137.2019.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 03/22/2019] [Indexed: 11/23/2022] Open
Abstract
Ambient temperature is an important factor influencing many physiological processes, including antioxidant defense and immunity. In the present study, we tested the hypothesis that antioxidant defense and immunity are suppressed by high and low temperature treatment in Brandt's voles (Lasiopodomys brandtii). Thirty male voles were randomly assigned into different temperature groups (4, 23, and 32 °C, n=10 for each group), with the treatment course lasting for 27 d. Results showed that low temperature increased gross energy intake (GEI) and liver, heart, and kidney mass, but decreased body fat mass and dry carcass mass. With the decline in temperature, hydrogen peroxide (H2O2) concentration, which is indicative of reactive oxygen species (ROS) levels, increased in the liver, decreased in the heart, and was unchanged in the kidney, testis, and small intestine. Lipid peroxidation indicated by malonaldehyde (MDA) content in the liver, heart, kidney, testis, and small intestine did not differ among groups, implying that high and low temperature did not cause oxidative damage. Similarly, superoxide dismutase (SOD) and catalase (CAT) activities and total antioxidant capacity (T-AOC) in the five tissues did not respond to low or high temperature, except for elevation of CAT activity in the testis upon cold exposure. Bacteria killing capacity, which is indicative of innate immunity, was nearly suppressed in the 4 °C group in contrast to the 23 °C group, whereas spleen mass and white blood cells were unaffected by temperature treatment. The levels of testosterone, but not corticosterone, were influenced by temperature treatment, though neither were correlated with innate immunity, H2O2 and MDA levels, or SOD, CAT, and T-AOC activity in any detected tissues. Overall, these results showed that temperature had different influences on oxidative stress, antioxidant enzymes, and immunity, which depended on the tissues and parameters tested. Up-regulation or maintenance of antioxidant defense might be an important mechanism for voles to survive highly variable environmental temperatures.
Collapse
Affiliation(s)
- De-Li Xu
- College of Life Sciences, Qufu Normal University, Qufu Shandong 273165, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Meng-Meng Xu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - De-Hua Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
114
|
Costantini D. Understanding diversity in oxidative status and oxidative stress: the opportunities and challenges ahead. ACTA ACUST UNITED AC 2019; 222:222/13/jeb194688. [PMID: 31266782 DOI: 10.1242/jeb.194688] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Oxidative stress may be of profound biological relevance. In this Commentary, I discuss some key issues faced by the emerging field of oxidative stress ecology, and seek to provide interpretations and solutions. First, I show that the way in which we define oxidative stress has far-reaching implications for the interpretation of results, and that we need to distinguish between (1) a biochemical definition in terms of the molecular outcomes of oxidative stress (e.g. generation of oxidative damage) and (2) a biological definition in terms of the fitness consequences for the organism (e.g. effects on fertility). Second, I discuss the dangers of comparing different tissues and markers. Third, I highlight the need to pay more attention to the cross-talk between oxidative stress and other important physiological costs and functions; this will allow us to better understand the mechanistic basis of fitness costs. Fourth, I propose the 'redox signalling hypothesis' of life history to complement the current 'oxidative stress hypothesis' of life history. The latter states that oxidative damage underlies trade-offs because it affects traits like growth, reproduction or cell senescence. By contrast, the redox signalling hypothesis states that a trade-off between signalling and biochemical oxidative stress underlies the regulation of reactive oxygen species production and their subsequent control. Finally, I critically appraise our current knowledge of oxidative stress ecology, highlighting key research themes and providing an optimistic overview of future opportunities for the discipline to yield considerable insight into the ecological and evolutionary meaning of oxidative stress.
Collapse
Affiliation(s)
- David Costantini
- UMR 7221 CNRS/MNHN, Muséum National d'Histoire Naturelle, Sorbonne Universités, 7 rue Cuvier, 75005 Paris, France
| |
Collapse
|
115
|
Teets NM, Dias VS, Pierce BK, Schetelig MF, Handler AM, Hahn DA. Overexpression of an antioxidant enzyme improves male mating performance after stress in a lek-mating fruit fly. Proc Biol Sci 2019; 286:20190531. [PMID: 31185862 DOI: 10.1098/rspb.2019.0531] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In many species, courtship displays are reliable signals of male quality, and current hypotheses suggest that these displays allow females to choose males with high cellular function. Environmental stressors generate excess reactive oxygen species (ROS) that impair cellular function, and thus antioxidant pathways that remove ROS are probably critical for preserving complex sexual behaviours. Here, we test the hypothesis that enhanced antioxidant activity in mitochondria preserves mating performance following oxidative stress. Using a transgenic approach, we directly manipulated mitochondrial antioxidant activity in the Caribbean fruit fly, Anastrepha suspensa, a lek-mating species with elaborate sexual displays and intense sexual selection that is also a model for sterile insect technique programmes. We generated seven transgenic lines that overexpress mitochondrial superoxide dismutase (MnSOD). Radiation is a severe oxidative stressor used to induce sterility for sterile insect programmes. After radiation treatment, two lines with intermediate MnSOD overexpression showed enhanced mating performance relative to wild-type males. These improvements in mating corresponded with reduced oxidative damage to lipids, demonstrating that MnSOD overexpression protects flies from oxidative stress at the cellular level. For lines with improved mating performance, overexpression also preserved locomotor activity, as indicated by a laboratory climbing assay. Our results show a clear link between oxidative stress, antioxidant capacity and male performance. Our work has implications for fundamentally understanding the role of antioxidants in sexual selection, and shows promise for using transgenic approaches to enhance the field performance of insects released for area-wide pest management strategies and improving performance of biological control agents in general.
Collapse
Affiliation(s)
- Nicholas M Teets
- 1 Department of Entomology and Nematology, University of Florida , Gainesville, FL 32611 , USA.,2 Department of Entomology, University of Kentucky , Lexington, KY 40546 , USA
| | - Vanessa S Dias
- 1 Department of Entomology and Nematology, University of Florida , Gainesville, FL 32611 , USA
| | - Bailey K Pierce
- 1 Department of Entomology and Nematology, University of Florida , Gainesville, FL 32611 , USA
| | - Marc F Schetelig
- 3 Department of Insect Biotechnology in Plant Protection, Justus-Liebig-University Gießen , 35394 Gießen , Germany
| | - Alfred M Handler
- 4 USDA/ARS, Center for Medical, Agricultural and Veterinary Entomology , Gainesville, FL 32608 , USA
| | - Daniel A Hahn
- 1 Department of Entomology and Nematology, University of Florida , Gainesville, FL 32611 , USA
| |
Collapse
|
116
|
Friesen CR, de Graaf SP, Olsson M. The relationship of body condition, superoxide dismutase, and superoxide with sperm performance. Behav Ecol 2019. [DOI: 10.1093/beheco/arz086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Abstract
Sperm competition theory predicts a negative correlation between somatic investment and traits that aid in pre- and postcopulatory sexual selection. Sperm performance is critical for postcopulatory success but sperm are susceptible to damage by free radicals such as superoxide radicals generated during mitochondrial respiration (mtSOx). Males can ameliorate damage to spermatozoa by investing in the production of antioxidants, like superoxide dismutase (SOD), which may act as a mechanistic link to pre- and postcopulatory trade-offs. Some male Australian, color-polymorphic painted dragon lizards (Ctenophorus pictus) possess a yellow throat patch (bib) that females prefer over nonbibbed males and are also more likely to win male–male contests indicating that males with bibs may be better at monopolizing females. We tested whether the sperm performance in nonbibbed males was superior to that of bibbed males. We show that overall sperm performance was not different between the bib-morphs, however, higher mtSOx levels were negatively correlated with sperm performance in bibbed males, but not of nonbibbed males. Blood cell mtSOx levels are negatively correlated with SOD activity in the plasma in all males early in the breeding season but SOD was lower in bibbed males. Nonbibbed males maintain a positive correlation between body condition and SOD activity over time while bibbed males do not. Together, these data suggest physiological associations between body condition, SOD activity, and sperm performance are linked to the expression of a yellow gular patch, which may be related to intrinsic differences in the metabolism of bibbed versus nonbibbed males.
Collapse
Affiliation(s)
- Christopher R Friesen
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, Australia
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Ross St. Camperdown, NSW Australia, Australia
| | - Simon P de Graaf
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Ross St. Camperdown, NSW Australia, Australia
| | - Mats Olsson
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, Australia
- Department of Biological & Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
117
|
Beattie UK, Jimenez AG. Oxidative stress does not differ in primary dermal fibroblasts isolated from fast-growing and control-growing Japanese Quail ( Coturnix japonica). CAN J ZOOL 2019. [DOI: 10.1139/cjz-2018-0230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Growth rate is a key life-history trait that influences fitness and shapes the physiology of organisms. Additionally, faster growing individuals of the same species seem to be burdened with higher whole-animal metabolism and higher cellular turnover rates, which may lead to increases in oxidative stress, though this fact remains controversial within the literature. Aerobic organisms are subjected to metabolic by-products known as reactive oxygen species (ROS), which can wreak havoc on macromolecules, such as structurally altering proteins and inducing mutations in DNA, among others. To combat accumulating damage, organisms have evolved endogenous antioxidants and can consume exogenous antioxidants to sequester ROS before they cause cellular damage. We used primary fibroblast cells isolated from control-growing and fast-growing Japanese Quail (Coturnix japonica Temminck and Schlegel, 1849) as a study model for the effects of differing growth rates on oxidative stress. We measured reduced glutathione (GSH) concentration, ROS production, mitochondrial content, and lipid peroxidation (LPO) damage. We found no significant differences in the four parameters measured between control-growing and fast-growing Quail. However, we found that in fast-growing Quail, GSH correlated with LPO damage and mitochondrial content, and LPO damage positively correlated with mitochondrial content, whereas control-growing Quail only showed positive relationships between LPO damage and ROS production.
Collapse
Affiliation(s)
- Ursula Konstantin Beattie
- Colgate University, Department of Biology, 13 Oak Drive, Hamilton, NY 13346, USA
- Colgate University, Department of Biology, 13 Oak Drive, Hamilton, NY 13346, USA
| | - Ana Gabriela Jimenez
- Colgate University, Department of Biology, 13 Oak Drive, Hamilton, NY 13346, USA
- Colgate University, Department of Biology, 13 Oak Drive, Hamilton, NY 13346, USA
| |
Collapse
|
118
|
Parolini M, Possenti CD, Secomandi S, Carboni S, Caprioli M, Rubolini D, Romano A, Saino N. Prenatal independent and combined effects of yolk vitamin E and corticosterone on embryo growth and oxidative status in the yellow-legged gull. ACTA ACUST UNITED AC 2019; 222:jeb.199265. [PMID: 31043457 DOI: 10.1242/jeb.199265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/24/2019] [Indexed: 11/20/2022]
Abstract
Variation in the concentration of antioxidants and hormones of maternal origin in the eggs of birds can have a profound influence on offspring phenotype both prenatally and postnatally. Egg maternal substances can have interacting effects, but experimental studies of the consequences of the combined variation in the egg concentration of such molecules are extremely rare, particularly as far as prenatal stages are concerned. We manipulated the yolk concentration of vitamin E and corticosterone, which are, respectively, the main antioxidant and the main glucocorticoid hormone in bird eggs, both independently and simultaneously, and we tested their separate and combined effects on growth and oxidative status in the liver and in the brain of yellow-legged gull (Larus michahellis) embryos. Egg supplementation of relatively large physiological doses of corticosterone depressed embryo growth (total body mass, tarsus length and liver mass), whereas administration of vitamin E in association with corticosterone restored normal growth. Vitamin E did not affect embryo growth when administered alone. We further analysed the independent and combined effects of vitamin E and corticosterone on liver and brain total antioxidant capacity, the concentration of reactive oxygen molecules and lipid peroxidation. Vitamin E significantly reduced liver total antioxidant capacity, while corticosterone depressed brain lipid peroxidation. Prenatal exposure to vitamin E and corticosterone appears to have antagonistic effects on body growth, although vitamin E is not limiting in yellow-legged gull eggs. In combination with the results of previous experiments on the same species applying smaller experimental doses or focusing on the postnatal rather than prenatal life stages, our findings indicate that the effects of a physiological increase in the egg concentration of these substances can be life stage and dose specific, implying that generalizing prenatal effects of egg compounds may not be feasible.
Collapse
Affiliation(s)
- Marco Parolini
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, I-20133 Milan, Italy
| | - Cristina Daniela Possenti
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, I-20133 Milan, Italy
| | - Simona Secomandi
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, I-20133 Milan, Italy
| | - Silvia Carboni
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, I-20133 Milan, Italy
| | - Manuela Caprioli
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, I-20133 Milan, Italy
| | - Diego Rubolini
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, I-20133 Milan, Italy
| | - Andrea Romano
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, I-20133 Milan, Italy.,Department of Ecology and Evolution, University of Lausanne, Building Biophore, CH-1015 Lausanne, Switzerland
| | - Nicola Saino
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, I-20133 Milan, Italy
| |
Collapse
|
119
|
Gomez-Chamorro A, Battilotti F, Cayol C, Mappes T, Koskela E, Boulanger N, Genné D, Sarr A, Voordouw MJ. Susceptibility to infection with Borrelia afzelii and TLR2 polymorphism in a wild reservoir host. Sci Rep 2019; 9:6711. [PMID: 31040326 PMCID: PMC6491475 DOI: 10.1038/s41598-019-43160-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/17/2019] [Indexed: 12/14/2022] Open
Abstract
The study of polymorphic immune genes in host populations is critical for understanding genetic variation in susceptibility to pathogens. Controlled infection experiments are necessary to separate variation in the probability of exposure from genetic variation in susceptibility to infection, but such experiments are rare for wild vertebrate reservoir hosts and their zoonotic pathogens. The bank vole (Myodes glareolus) is an important reservoir host of Borrelia afzelii, a tick-borne spirochete that causes Lyme disease. Bank vole populations are polymorphic for Toll-like receptor 2 (TLR2), an innate immune receptor that recognizes bacterial lipoproteins. To test whether the TLR2 polymorphism influences variation in the susceptibility to infection with B. afzelii, we challenged pathogen-free, lab-born individuals of known TLR2 genotype with B. afzelii-infected ticks. We measured the spirochete load in tissues of the bank voles. The susceptibility to infection with B. afzelii following an infected tick bite was very high (95%) and did not differ between TLR2 genotypes. The TLR2 polymorphism also had no effect on the spirochete abundance in the tissues of the bank voles. Under the laboratory conditions of our study, we did not find that the TLR2 polymorphism in bank voles influenced variation in the susceptibility to B. afzelii infection.
Collapse
Affiliation(s)
| | | | - Claire Cayol
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Tapio Mappes
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Esa Koskela
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Nathalie Boulanger
- Facultés de Médecine et de Pharmacie, Université de Strasbourg, Strasbourg, France
| | - Dolores Genné
- Institut de Biologie, Université de Neuchâtel, Neuchâtel, Switzerland
| | - Anouk Sarr
- Institut de Biologie, Université de Neuchâtel, Neuchâtel, Switzerland
| | - Maarten Jeroen Voordouw
- Institut de Biologie, Université de Neuchâtel, Neuchâtel, Switzerland.
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada.
| |
Collapse
|
120
|
Antioxidant capacity is repeatable across years but does not consistently correlate with a marker of peroxidation in a free-living passerine bird. J Comp Physiol B 2019; 189:283-298. [DOI: 10.1007/s00360-019-01211-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 01/22/2019] [Accepted: 03/01/2019] [Indexed: 02/06/2023]
|
121
|
Impact of colibacillosis on production in laying hens associated with interference of the phosphotransfer network and oxidative stress. Microb Pathog 2019; 130:131-136. [PMID: 30858007 DOI: 10.1016/j.micpath.2019.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/30/2019] [Accepted: 03/04/2019] [Indexed: 11/22/2022]
Abstract
The objective of this study was to evaluate the productive impact of colibacillosis on laying hens and to investigate whether energetic metabolism and oxidative stress were involved in the pathogenesis of the disease. An experimental shed containing 270 laying hens of the Hy-Line lineage (32 weeks old) presented approximately 40% daily laying, and many birds presented with diarrhea and apathy followed by death. Necropsy revealed macroscopic lesions compatible with colibacillosis and infectious agent Escherichia coli was isolated from fecal samples of all birds in the infected group, as well as from tissue (ovary, liver and peritoneum). Sixteen chickens were selected for this study, divided into two groups: Control (animals without clinical alterations) and infected (with diarrhea and apathetic). E. coli isolates were subjected to the antimicrobial susceptibility testing according to the methodology approved by CLSI, 2018. This testing showed sensitivity to gentamicin, amoxicillin, norfloxacin and colistin. It was then determined that laying hens would be treated with norfloxacin (15 mg/kg) diluted in water offered at will to the birds for three days. Blood collections were performed via brachial vein after the diagnosis of E. coli (before starting treatment) and seven days after treatment. Three debilitated chickens died on the second day after initiating therapy. Before treatment, birds with clinical signs had higher levels of lipoperoxidation (LPO) and activities of antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPx) than in the control group (asymptomatic animals). After treatment, LPO levels remained higher in birds that had clinical disease (infected group), whereas the activity of SOD and GPx enzymes did not differ between groups. Activity levels of creatine kinase (CK) and pyruvate kinase (PK) were higher in the group of chickens with clinical disease before treatment. Post-treatment, no differences were observed between groups in terms of CK; however, PK activity remained high in these animals. In the hens that died, there were lesions characteristic of avian colibacillosis, with ovary involvement, explaining the low laying activity of the birds at their peak of production. For 10 days after starting treatment, the percentage of laying increased to 90%. Therefore, we conclude that colibacillosis interferes with the phosphotransfer network by stimulating ATP production, in addition to causing oxidative stress of the birds during laying, that negatively affects health and productive efficiency.
Collapse
|
122
|
Zhang W, Niu C, Liu Y, Storey KB. Positive or negative? The shell alters the relationship among behavioral defense strategy, energy metabolic levels and antioxidant capacity in freshwater turtles. Front Zool 2019; 16:3. [PMID: 30809267 PMCID: PMC6375210 DOI: 10.1186/s12983-019-0301-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/23/2019] [Indexed: 11/10/2022] Open
Abstract
Background The relationships among energy metabolic levels, behavioral and other physiological traits help to determine the trade-off of energy allocation between different traits and the evolution of life-history driven by natural selection. However, these relationships may be distinctive in selected animal taxa because of their unique traits. In the present study, the relationships among energy metabolic levels, behavioral defense strategies, and antioxidant capacity were explored in three freshwater turtle species with different shell morphologies, by assessing responses to attack, righting time, shell morphology, whole-organism metabolic rates, tissue metabolic enzyme activities and antioxidant levels. Results The Chinese three-keeled pond turtles, Chinemys reevesii, showed a passive defense strategy, relatively larger shells, a higher resting metabolic rate (RMR) and higher antioxidant levels compared to the snapping turtle, Chelydra serpentina, or the Chinese soft-shelled turtle, Pelodiscus sinensis. These latter two species both showed an active defense strategy, a higher factorial aerobic scope and better muscle anaerobic metabolic capacity but relatively smaller shells, lower RMR and antioxidant capacity. Conclusion Our results indicate a negative relationship between RMR and activity levels in behavioral defense strategies along small-big shell continuum among the three turtle species. We also found a positive relationship between antioxidant capacity and energy metabolism but a negative one between antioxidant capacity and activity levels in defense strategies. The present study indicated a role of turtle shell in forming unique relationship between energy metabolic levels and behaviors in freshwater turtle taxa and a possible trade-off between the maintenance of physiological homeostasis and activity levels in energy allocation.
Collapse
Affiliation(s)
- Wenyi Zhang
- 1Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875 China.,2State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102 People's Republic of China
| | - Cuijuan Niu
- 1Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875 China
| | - Yukun Liu
- 1Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875 China
| | - Kenneth B Storey
- 3Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6 Canada
| |
Collapse
|
123
|
Mohr AE, Girard M, Rowe M, McGraw KJ, Sweazea KL. Varied effects of dietary carotenoid supplementation on oxidative damage in tissues of two waterfowl species. Comp Biochem Physiol B Biochem Mol Biol 2019; 231:67-74. [PMID: 30794961 DOI: 10.1016/j.cbpb.2019.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/11/2019] [Accepted: 02/11/2019] [Indexed: 12/26/2022]
Abstract
Carotenoids are regarded as a cornerstone of avian vitality and coloration. Currently, the antioxidant potential of dietary carotenoids is debated for birds. Although some studies support a protective role, others report either no effect or pro-oxidant effects. However, the majority of research on this topic has not analyzed the oxidative status of a series of tissues in animals nor considered a range of carotenoid dosages. We investigated the effects of three levels of carotenoid supplementation on plasma, liver, adipose, heart and breast muscle oxidative damage in two congeneric species of waterfowl that exhibit marked differences in carotenoid coloration. After a 6-week depletion period, captive adult northern pintail (Anas acuta) and mallard (A. platyrhynchos) ducks of both sexes were fed either a carotenoid-depleted diet (<3 μg/g xanthophylls, lutein and zeaxanthin), a carotenoid-supplemented diet (50 μg/g) within physiological range, or a carotenoid-rich diet (100 μg/g) within pharmacological range for 22 to 32 weeks. We hypothesized that these dosages of dietary carotenoids would differentially affect oxidative damage between species and sexes and among the tissues examined. We found that dietary xanthophyll supplementation had no significant effect on tissue pro-oxidation in males and females from both species. Moreover, sex or species differences in oxidative stress were only observed in two tissues (plasma and heart). Significant correlations in the levels of oxidative damage were not observed among the tissues examined. In conclusion, the current study does not support a consistent antioxidant role for dietary carotenoids in the tissues of these two waterfowl species. Instead, our results align with the notion that carotenoids play complex, tissue- and species-specific roles in oxidative status in birds.
Collapse
Affiliation(s)
- Alex E Mohr
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States of America
| | - Marc Girard
- School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
| | - Melissah Rowe
- School of Life Sciences, Arizona State University, Tempe, AZ, United States of America; Natural History Museum, University of Oslo, 0562 Oslo, Norway; Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Kevin J McGraw
- School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
| | - Karen L Sweazea
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States of America; School of Life Sciences, Arizona State University, Tempe, AZ, United States of America.
| |
Collapse
|
124
|
Kriengwatana BP. Learning strategies and the social brain: Missing elements in the link between developmental stress, song and cognition? Integr Zool 2019; 14:158-171. [PMID: 30688022 DOI: 10.1111/1749-4877.12379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bird songs may advertise aspects of cognition because song learning and learning speed in cognitive tasks are both affected by early-life environments. However, such relationships remain ambiguous in the literature. Here, I discuss 2 lines of research that may help to demystify links between song learning and cognition. First, learning strategies should be considered when assessing performance to ensure that individual differences in learning ability are not masked by individual differences in learning strategies. Second, song characteristics should be associated with social behavior because songs have a social purpose and, consequently, should be strongly related at functional and neural levels. Finally, if song learning and cognitive abilities are correlated because they develop concurrently and/or share or compete for the same resources, I discuss ways glucocorticoids may link early-life stress, song learning and cognitive ability, focusing particularly on oxidative stress as a potential mechanism.
Collapse
|
125
|
Vágási CI, Vincze O, Pătraș L, Osváth G, Pénzes J, Haussmann MF, Barta Z, Pap PL. Longevity and life history coevolve with oxidative stress in birds. Funct Ecol 2019; 33:152-161. [PMID: 34290466 PMCID: PMC8291348 DOI: 10.1111/1365-2435.13228] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 09/30/2018] [Indexed: 01/09/2023]
Abstract
1. The mechanisms that underpin the evolution of ageing and life histories remain elusive. Oxidative stress, which results in accumulated cellular damages, is one of the mechanisms suggested to play a role. 2. In this paper, we set out to test the "oxidative stress theory of ageing" and the "oxidative stress hypothesis of life histories" using a comprehensive phylogenetic comparison based on an unprecedented dataset of oxidative physiology in 88 free-living bird species. 3. We show for the first time that bird species with longer lifespan have higher non-enzymatic antioxidant capacity and suffer less oxidative damage to their lipids. We also found that bird species featuring a faster pace-of-life either have lower non-enzymatic antioxidant capacity or are exposed to higher levels of oxidative damage, while adult annual mortality does not relate to oxidative state. 4. These results reinforce the role of oxidative stress in the evolution of lifespan and also corroborate the role of oxidative state in the evolution of life histories among free-living birds.
Collapse
Affiliation(s)
- Csongor I. Vágási
- Hungarian Department of Biology and Ecology, Evolutionary Ecology Group, Babeş-Bolyai University, Cluj-Napoca, Romania
- Department of Evolutionary Zoology, MTA-DE Behavioural Ecology Research Group, University of Debrecen, Debrecen, Hungary
| | - Orsolya Vincze
- Hungarian Department of Biology and Ecology, Evolutionary Ecology Group, Babeş-Bolyai University, Cluj-Napoca, Romania
- Department of Evolutionary Zoology, MTA-DE Behavioural Ecology Research Group, University of Debrecen, Debrecen, Hungary
| | - Laura Pătraș
- Department of Molecular Biology and Biotechnology, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Gergely Osváth
- Hungarian Department of Biology and Ecology, Evolutionary Ecology Group, Babeş-Bolyai University, Cluj-Napoca, Romania
- Department of Evolutionary Zoology, MTA-DE Behavioural Ecology Research Group, University of Debrecen, Debrecen, Hungary
- Museum of Zoology, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Janka Pénzes
- Hungarian Department of Biology and Ecology, Evolutionary Ecology Group, Babeş-Bolyai University, Cluj-Napoca, Romania
| | | | - Zoltán Barta
- Department of Evolutionary Zoology, MTA-DE Behavioural Ecology Research Group, University of Debrecen, Debrecen, Hungary
| | - Péter L. Pap
- Hungarian Department of Biology and Ecology, Evolutionary Ecology Group, Babeş-Bolyai University, Cluj-Napoca, Romania
- Department of Evolutionary Zoology, MTA-DE Behavioural Ecology Research Group, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
126
|
Tóth Z, Ouyang JQ, Lendvai ÁZ. Exploring the mechanistic link between corticosterone and insulin-like growth factor-1 in a wild passerine bird. PeerJ 2018; 6:e5936. [PMID: 30581657 PMCID: PMC6296332 DOI: 10.7717/peerj.5936] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/15/2018] [Indexed: 01/10/2023] Open
Abstract
Background Physiological regulators of life history trade-offs need to be responsive to sudden changes of resource availability. When homeostasis is challenged by unpredictable stressors, vertebrates respond through a set of physiological reactions, which can promote organismal survival. Glucocorticoids have been traditionally recognized as one of the main regulators of the physiological stress response, but the role of an evolutionarily more conserved pathway, the hypothalamic-pituitary-somatotropic (HPS) axis producing insulin-like growth factor-1 (IGF-1) has received much less attention. Although IGF-1 is known to affect several life history traits, little is known about its role in the physiological stress response and it has never been studied directly in adult wild animals. Methods In this study, we combined field observations with a controlled experiment to investigate how circulating levels of IGF-1 change in response to stress and whether this change is due to concomitant change in glucocorticoids in a free-living songbird, the bearded reedling Panurus biarmicus. We used a standard capture-restraint protocol in field observation, in which we took first and second (stress induced: 15 minutes later) samples. In a follow-up experiment, we used a minimally invasive oral corticosterone manipulation. Results We showed that corticosterone levels significantly increased while IGF-1 levels significantly decreased during capture and handling stress. However, change in corticosterone levels were not related to change in IGF-1 levels. We found that experimentally elevated corticosterone levels did not affect IGF-1 levels. Discussion Our results are the first to highlight that circulating IGF-1 levels are responsive to stress independently from glucocorticoids and suggest that the HPS axis is an autonomous physiological pathway that may play an important role as regulator of life-history decisions.
Collapse
Affiliation(s)
- Zsófia Tóth
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary
| | - Jenny Q Ouyang
- Department of Biology, University of Nevada, Reno, NV, United States of America
| | - Ádám Z Lendvai
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary.,Department of Geology, University of Babeş-Bolyai, Cluj-Napoca, Romania
| |
Collapse
|
127
|
Gil D, Alfonso-Iñiguez S, Pérez-Rodríguez L, Muriel J, Monclús R. Harsh conditions during early development influence telomere length in an altricial passerine: Links with oxidative stress and corticosteroids. J Evol Biol 2018; 32:111-125. [PMID: 30387533 DOI: 10.1111/jeb.13396] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 10/15/2018] [Accepted: 10/30/2018] [Indexed: 12/30/2022]
Abstract
Stress during early development can induce substantial long-term effects in organisms. In the case of birds, despite growth compensations, nestlings reared under harsh conditions typically show reduced survival chances in adulthood. It has been proposed that environmental early-life stressors could affect longevity via effects on telomere length, possibly mediated through oxidative stress. However, the link between these processes is not clear. In this study, we experimentally manipulated brood size in spotless starlings (Sturnus unicolor) to test the causal relationship between early stress, oxidative and corticosterone-mediated stress and telomere shortening. Our results show that experimentally enlarged brood sizes led to a reduction in morphometric development on nestlings, the effect being stronger for females than males. Additionally, basal corticosterone levels increased with increasing brood size in female nestlings. Neither plasma antioxidant status nor malondialdehyde levels (a marker of lipid peroxidation) were affected by experimental brood size, although the levels of a key intracellular antioxidant (glutathione) decreased with increasing brood size. We found that the treatment showed a quadratic effect on nestling telomere lengths: these were shortened either by increases or by decreases in the original brood size. Our study provides experimental evidence for a link between developmental stress and telomere length, but does not support a direct causal link of this reduction with corticosterone or oxidative stress. We suggest that future studies should focus on how telomere length responds to additional markers of allostatic load.
Collapse
Affiliation(s)
- Diego Gil
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
| | - Sergio Alfonso-Iñiguez
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
| | - Lorenzo Pérez-Rodríguez
- Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Jaime Muriel
- Departamento de Anatomía, Biología Celular y Zoología, Universidad de Extremadura, Badajoz, Spain
| | - Raquel Monclús
- Ecologie Systématique Evolution, University of Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Orsay, France
| |
Collapse
|
128
|
Casagrande S, Hau M. Enzymatic antioxidants but not baseline glucocorticoids mediate the reproduction-survival trade-off in a wild bird. Proc Biol Sci 2018; 285:rspb.2018.2141. [PMID: 30487312 DOI: 10.1098/rspb.2018.2141] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 11/07/2018] [Indexed: 12/21/2022] Open
Abstract
The trade-off between reproductive investment and survival is central to life-history theory, but the relative importance and the complex interactions among the physiological mechanisms mediating it are still debated. Here we experimentally tested whether baseline glucocorticoid hormones, the redox system or their interaction mediate reproductive investment-survival trade-offs in wild great tits (Parus major). We increased the workload of parental males by clipping three feathers on each wing, and 5 days later determined effects on baseline corticosterone concentrations (Cort), redox state (reactive oxygen metabolites, protein carbonyls, glutathione peroxidase [GPx], total non-enzymatic antioxidants), body mass, body condition, reproductive success and survival. Feather-clipping did not affect fledgling numbers, chick body condition, nest provisioning rates or survival compared with controls. However, feather-clipped males lost mass and increased both Cort and GPx concentrations. Within feather-clipped individuals, GPx increases were positively associated with reproductive investment (i.e. male nest provisioning). Furthermore, within all individuals, males that increased GPx suffered reduced survival rates. Baseline Cort increases were related to mass loss but not to redox state, nest provisioning or male survival. Our findings provide experimental evidence that changes in the redox system are associated with the trade-off between reproductive investment and survival, while baseline Cort may support this trade-off indirectly through a link with body condition. These results also emphasize that plastic changes in individuals, rather than static levels of physiological signals, may mediate life-history trade-offs.
Collapse
Affiliation(s)
- Stefania Casagrande
- Department of Evolutionary Physiology, Max Planck Institute for Ornithology, Seewiesen, Starnberg, Germany
| | - Michaela Hau
- Department of Evolutionary Physiology, Max Planck Institute for Ornithology, Seewiesen, Starnberg, Germany
| |
Collapse
|
129
|
Morosinotto C, Rainio M, Ruuskanen S, Korpimäki E. Antioxidant Enzyme Activities Vary with Predation Risk and Environmental Conditions in Free-Living Passerine Birds. Physiol Biochem Zool 2018; 91:837-848. [PMID: 29494281 DOI: 10.1086/697087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Prolonged physiological stress response may lead to an excessive production of reactive oxygen species (ROS) and ultimately to oxidative stress and severe fitness costs. We investigated whether natural variation in predation risk, induced by pygmy owls (Glaucidium passerinum), modifies the oxidative status of two free-living food-supplemented passerine bird species-the great tit (Parus major) and the willow tit (Poecile montanus)-in March 2012 and 2013. Predation risk significantly affected antioxidant enzyme activities of willow tits. Antioxidant enzyme activities (principal component factor 2 [PC2] representing glutathione-S-transferase and superoxide dismutase activities) were higher in high predation risk areas in 2013 than in low predation risk areas in the same year. Higher enzyme activities may suggest higher ROS production in birds living under high predation risk. In addition, antioxidant enzyme activities (PC2) were also higher in high predation risk areas in 2013 than in high predation risk areas in the previous year, 2012. This may represent variation in the risk represented by pygmy owls, which is probably inversely related to the natural fluctuations in the densities of their main prey, voles. In willow tits, PC1 (representing catalase, total glutathione, the ratio of reduced to oxidized glutathione, and protein carbonylation) was not affected by perceived predation risk, nor were antioxidant levels or enzyme activities in great tits. Higher enzyme activities observed in willow tits suggest that predator presence can modify the antioxidant status of avian prey, but the response also seem to be influenced by other environmental characteristics, like harsh winter conditions.
Collapse
|
130
|
López-Arrabé J, Monaghan P, Cantarero A, Boner W, Pérez-Rodríguez L, Moreno J. Sex-Specific Associations between Telomere Dynamics and Oxidative Status in Adult and Nestling Pied Flycatchers. Physiol Biochem Zool 2018; 91:868-877. [PMID: 29547348 DOI: 10.1086/697294] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Oxidative stress can contribute to an acceleration of telomere erosion, leading to cellular senescence and aging. Increased investment in reproduction is known to accelerate senescence, generally resulting in reduced future reproductive potential and survival. To better understand the role played by oxidative status and telomere dynamics in the conflict between maintenance and reproduction, it is important to determine how these factors are related in parents and their offspring. We investigated the relationship between oxidative status and telomere measurements in pied flycatchers (Ficedula hypoleuca). Total antioxidant status (TAS) in plasma, total levels of glutathione in red blood cells (RBCs), and oxidative damage in plasma lipids (malondialdehyde [MDA]) were assessed in both parents and nestlings. Telomeres were measured in RBCs in adults. Our results showed sex differences in oxidative variables in adults that are likely to be mediated by sex steroids, with testosterone and estrogens increasing and reducing, respectively, the production of reactive oxygen and nitrogen species. We found a negative association between telomere length (TL) and MDA in adults in the previous season. Moreover, TL was positively associated with TAS in females, while telomere shortening (ΔTL) correlated positively with MDA in males in the current year. These associations could be reflecting differences between sexes in reproductive physiology. We found a positive correlation between parental ΔTL and nestling MDA, an example of how parental physiological aging could affect offspring quality in terms of oxidative stress that highlights the constraints imposed by higher rates of ΔTL during reproduction and rearing.
Collapse
|
131
|
Simmons LW, Lovegrove M, Lymbery SJ. Dietary antioxidants, but not courtship effort, affect oxidative balance in the testes and muscles of crickets. ACTA ACUST UNITED AC 2018; 221:jeb.184770. [PMID: 30190320 DOI: 10.1242/jeb.184770] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/30/2018] [Indexed: 01/04/2023]
Abstract
Recent interest has focused on the role of reactive oxygen species (ROS) as universal constraints in life-history evolution. Empirical studies have examined the oxidative costs of reproduction for females, with little work conducted on males. The male germline is thought to be particularly susceptible to oxidative damage because the testes, and the sperm themselves, can be prolific producers of ROS. We tested the hypothesis that protection of the male germline from oxidative damage represents a cost of reproduction for males. We fed male crickets, Teleogryllus oceanicus, with one of two experimental diets in which we manipulated the availability of dietary antioxidants, and we induced variation in their expenditure on courtship effort by manipulating access to females. We measured the total antioxidant capacity, levels of ROS production and the amount of oxidative damage to proteins in both testis and thoracic muscle tissues. Dietary antioxidants contributed to positive oxidative balance in both tissue types. Although the testes had greater antioxidant defences than muscle tissue, they also produced considerably higher levels of ROS and sustained higher levels of oxidative damage. Courtship effort had no impact on any measure of oxidative balance. Our data confirm that the male germline is especially susceptible to oxidative stress and that dietary antioxidants can alleviate this oxidative cost of reproduction.
Collapse
Affiliation(s)
- Leigh W Simmons
- Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, Crawley, WA 6009, Australia
| | - Maxine Lovegrove
- Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, Crawley, WA 6009, Australia
| | - Samuel J Lymbery
- Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
132
|
Torres-Medina F, Cabezas S, Marchant TA, Wikelski M, Romero LM, Hau M, Carrete M, Tella JL, Blas J. Corticosterone implants produce stress-hyporesponsive birds. ACTA ACUST UNITED AC 2018; 221:jeb.173864. [PMID: 30111557 DOI: 10.1242/jeb.173864] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 08/07/2018] [Indexed: 12/25/2022]
Abstract
In birds, the use of corticosterone (Cort) implants is a frequent tool aimed at simulating systemic elevations of this hormone and studying effects on biological traits (e.g. physiology, morphology, behavior). This manipulation may alter adrenocortical function, potentially changing both baseline (CortBAS) and stress-induced (CortSTRESS) plasma Cort levels. However, implant effects on the latter trait are rarely measured, disregarding downstream consequences of potentially altered stress responses. Here, we analyzed the effects of Cort implants on both CortBAS and CortSTRESS in nestling and adult European white storks, Ciconia ciconia In addition, we performed a review of 50 studies using Cort implants in birds during the last two decades to contextualize stork results, assess researchers' patterns of use and infer current study biases. High and low doses of Cort implants resulted in a decrease of both CortBAS (31-71% below controls) and CortSTRESS (63-79% below controls) in storks. Our literature review revealed that CortBAS generally increases (72% of experiments) whereas CortSTRESS decreases (78% of experiments) following implant treatment in birds. Our results challenge and expand the prevailing assumption that Cort implants increase circulating CortBAS levels because: (i) CortBAS levels show a quadratic association with implant dose across bird species, and decreased levels may occur at both high and low implant doses, and (ii) Cort implants also decrease CortSTRESS levels, thus producing stress-hyporesponsive phenotypes. It is time to work towards a better understanding of the effects of Cort implants on adrenocortical function, before addressing downstream links to variation in other biological traits.
Collapse
Affiliation(s)
- Fernando Torres-Medina
- Departamento de Biología de la Conservación, Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), 41092 Seville, Spain .,Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada, S7N 5E2
| | - Sonia Cabezas
- Departamento de Biología de la Conservación, Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), 41092 Seville, Spain.,Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada, S7N 5E2
| | - Tracy A Marchant
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada, S7N 5E2
| | - Martin Wikelski
- Department of Migration and Immuno-Ecology, Max Planck Institute for Ornithology, 78315 Radolfzell, Germany.,Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany
| | | | - Michaela Hau
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany.,Evolutionary Physiology Group. Max Planck Institute for Ornithology, Eberhard-Gwinner-Str., 82319 Seewiesen, Germany
| | - Martina Carrete
- Departamento de Biología de la Conservación, Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), 41092 Seville, Spain.,Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, 41013 Seville, Spain
| | - José L Tella
- Departamento de Biología de la Conservación, Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), 41092 Seville, Spain
| | - Julio Blas
- Departamento de Biología de la Conservación, Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), 41092 Seville, Spain .,Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada, S7N 5E2
| |
Collapse
|
133
|
Prokić MD, Despotović SG, Vučić TZ, Petrović TG, Gavrić JP, Gavrilović BR, Radovanović TB, Saičić ZS. Oxidative cost of interspecific hybridization: a case study of two Triturus species and their hybrids. ACTA ACUST UNITED AC 2018; 221:jeb.182055. [PMID: 30127083 DOI: 10.1242/jeb.182055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/07/2018] [Indexed: 01/18/2023]
Abstract
Oxidative stress has most recently been suggested as one of the possible mechanisms responsible for reduced fitness of hybrids. To explore possible oxidative cost of hybridization, we examined anti-oxidant defence system parameters (superoxide dismutase, catalase, glutathione peroxidase, glutathione S-transferase, glutathione reductase, glutathione, SH groups), their interconnectedness (index of integration) and levels of oxidative damage [concentrations of lipid peroxides, TBARS (thiobarbituric acid reactive substances)] in laboratory-reared newt species, Triturus macedonicus and T. ivanbureschi, and their hybrid. Our results showed that parental species differed in anti-oxidant defence system parameters, but not in the levels of integration of the whole system and oxidative damage. Individuals of T. ivanbureschi had higher activities of superoxide dismutase, glutathione S-transferase and concentrations of glutathione. Hybrid individuals of crested newts displayed higher levels of the anti-oxidant defence system (higher superoxide dismutase, catalase, glutathione peroxidase activities and concentrations of SH groups), and a lower overall correlation of anti-oxidant system (lower index of integration) in comparison with both parental species, suggesting that they may possess a less efficient anti-oxidant defence system and a higher investment in maintaining oxidative balance. The higher investment in the anti-oxidant system could divert limited resources away from other functions and affect further hybrid fitness. The presented findings contribute to a better understanding of the anti-oxidant defence system of crested newts and their interspecies differences, and support the hypothesis that oxidative stress is one of the costs of interspecific hybridization.
Collapse
Affiliation(s)
- Marko D Prokić
- Department of Physiology, Institute for Biological Research 'Siniša Stanković', University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Svetlana G Despotović
- Department of Physiology, Institute for Biological Research 'Siniša Stanković', University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Tijana Z Vučić
- Department of Evolutionary Biology, Institute for Biological Research 'Siniša Stanković', University of Belgrade, Belgrade, Serbia.,Faculty of Biology, Institute for Zoology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
| | - Tamara G Petrović
- Department of Physiology, Institute for Biological Research 'Siniša Stanković', University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Jelena P Gavrić
- Department of Physiology, Institute for Biological Research 'Siniša Stanković', University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Branka R Gavrilović
- Department of Physiology, Institute for Biological Research 'Siniša Stanković', University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Tijana B Radovanović
- Department of Physiology, Institute for Biological Research 'Siniša Stanković', University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Zorica S Saičić
- Department of Physiology, Institute for Biological Research 'Siniša Stanković', University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| |
Collapse
|
134
|
Comparative assessment of the antioxidative defense system in subadult and adult anurans: A lesson from the Bufotes viridis toad. ZOOLOGY 2018; 130:30-37. [DOI: 10.1016/j.zool.2018.08.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 12/25/2022]
|
135
|
Costantini D, Czirják GÁ, Melzheimer J, Menges V, Wachter B. Sex and species differences of stress markers in sympatric cheetahs and leopards in Namibia. Comp Biochem Physiol A Mol Integr Physiol 2018; 227:8-13. [PMID: 30201541 DOI: 10.1016/j.cbpa.2018.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 09/03/2018] [Indexed: 10/28/2022]
Abstract
Physiological stress markers may provide valuable insight for our understanding of costs of given life-history strategies or of wildlife health condition, most importantly in case of threatened species. In the last decade, there has been growing interest in the ecological relevance of cellular oxidative stress, which would provide complimentary information to that obtained by the classic analyses of glucocorticoid hormones. In this study, we analysed the sex and species variation of five blood-based markers of oxidative status, both molecular oxidative damage and antioxidant protection, in sympatric cheetahs (Acinonyx jubatus) and leopards (Panthera pardus) living on Namibian farmlands. Both these terrestrial carnivores are classified as vulnerable by the International Union for Conservation of Nature. We found that female cheetahs had significantly higher serum reactive oxygen metabolites of non-protein origin and lower glutathione peroxidase activity in whole blood than both male and female leopards and male cheetahs. We also found that cheetahs and leopards differed in the association between the two antioxidant enzymes glutathione peroxidase and superoxide dismutase. Correlations among oxidative status markers were stronger in female cheetahs than leopards or male cheetahs. Our results suggest that female cheetahs are more sensitive to local sources of stress. Our work did not corroborate the assumption that two species with different life histories consistently differ in key physiological traits.
Collapse
Affiliation(s)
- David Costantini
- UMR 7221 CNRS/MNHN, Muséum National d'Histoire Naturelle, Sorbonne Universités, 7 rue Cuvier, 75005 Paris, France; Institute for Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, G12 8QQ Glasgow, Scotland, UK; Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium; Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, 10315 Berlin, Germany.
| | - Gábor Á Czirják
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, 10315 Berlin, Germany
| | - Joerg Melzheimer
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, 10315 Berlin, Germany
| | - Vera Menges
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, 10315 Berlin, Germany
| | - Bettina Wachter
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, 10315 Berlin, Germany
| |
Collapse
|
136
|
Chinn SM, Monson DH, Tinker MT, Staedler MM, Crocker DE. Lactation and resource limitation affect stress responses, thyroid hormones, immune function, and antioxidant capacity of sea otters ( Enhydra lutris). Ecol Evol 2018; 8:8433-8447. [PMID: 30250713 PMCID: PMC6145021 DOI: 10.1002/ece3.4280] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/22/2018] [Accepted: 05/19/2018] [Indexed: 12/11/2022] Open
Abstract
Lactation is the most energetically demanding stage of reproduction in female mammals. Increased energetic allocation toward current reproduction may result in fitness costs, although the mechanisms underlying these trade-offs are not well understood. Trade-offs during lactation may include reduced energetic allocation to cellular maintenance, immune response, and survival and may be influenced by resource limitation. As the smallest marine mammal, sea otters (Enhydra lutris) have the highest mass-specific metabolic rate necessitating substantial energetic requirements for survival. To provide the increased energy needed for lactation, female sea otters significantly increase foraging effort, especially during late-lactation. Caloric insufficiency during lactation is reflected in the high numbers of maternal deaths due to End-Lactation Syndrome in the California subpopulation. We investigated the effects of lactation and resource limitation on maternal stress responses, metabolic regulation, immune function, and antioxidant capacity in two subspecies of wild sea otters (northern: E. l. nereis and southern: E. l. kenyoni) within the California, Washington, and Alaska subpopulations. Lactation and resource limitation were associated with reduced glucocorticoid responses to acute capture stress. Corticosterone release was lower in lactating otters. Cortisol release was lower under resource limitation and suppression during lactation was only evident under resource limitation. Lactation and resource limitation were associated with alterations in thyroid hormones. Immune responses and total antioxidant capacity were not reduced by lactation or resource limitation. Southern sea otters exhibited higher concentrations of antioxidants, immunoglobulins, and thyroid hormones than northern sea otters. These data provide evidence for allocation trade-offs during reproduction and in response to nutrient limitation but suggest self-maintenance of immune function and antioxidant defenses despite energetic constraints. Income-breeding strategists may be especially vulnerable to the consequences of stress and modulation of thyroid function when food resources are insufficient to support successful reproduction and may come at a cost to survival, and thereby influence population trends.
Collapse
Affiliation(s)
- Sarah M. Chinn
- Department of BiologySonoma State UniversityRohnert ParkCalifornia
| | | | - M. Tim Tinker
- U.S. Geological SurveyWestern Ecological Research CenterLong Marine LaboratorySanta CruzCalifornia
| | | | | |
Collapse
|
137
|
Margotta JW, Roberts SP, Elekonich MM. Effects of flight activity and age on oxidative damage in the honey bee, Apis mellifera. ACTA ACUST UNITED AC 2018; 221:jeb.183228. [PMID: 29724776 DOI: 10.1242/jeb.183228] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 02/06/2023]
Abstract
Frequent and highly aerobic behaviors likely contribute to naturally occurring stress, accelerate senescence and limit lifespan. To understand how the physiological and cellular mechanisms that determine the onset and duration of senescence are shaped by behavioral development and behavioral duration, we exploited the tractability of the honey bee (Apis mellifera) model system. First, we determined whether a cause-effect relationship exists between honey bee flight and oxidative stress by comparing oxidative damage accrued from intense flight bouts to damage accrued from d-galactose ingestion, which induces oxidative stress and limits lifespan in other insects. Second, we experimentally manipulated the duration of honey bee flight across a range of ages to determine the effects on reactive oxygen species (ROS) accumulation and associated enzymatic antioxidant protective mechanisms. In bees fed d-galactose, lipid peroxidation (assessed by measuring malondialdehyde levels) was higher than in bees fed sucrose and age-matched bees with a high and low number of flight experiences collected from a colony. Bees with high amounts of flight experience exhibited elevated 8-hydroxy-2'-deoxyguanosine, a marker of oxidative DNA damage, relative to bees with less flight experience. Bees with high amounts of flight experience also showed increased levels of pro-oxidants (superoxide and hydrogen peroxide) and decreased or unchanged levels of antioxidants (superoxide dismutase and catalase). These data implicate an imbalance of pro- to anti-oxidants in flight-associated oxidative stress, and reveal how behavior can damage a cell and consequently limit lifespan.
Collapse
Affiliation(s)
- Joseph W Margotta
- University of Nevada, Las Vegas, School of Life Sciences, Biology Department, Las Vegas, NV 89141, USA
| | | | - Michelle M Elekonich
- University of Nevada, Las Vegas, School of Life Sciences, Biology Department, Las Vegas, NV 89141, USA.,National Science Foundation, Arlington, VA 22230, USA
| |
Collapse
|
138
|
Oxidative stress in wild European rabbits naturally infected with myxoma virus and rabbit haemorrhagic disease virus. EUR J WILDLIFE RES 2018. [DOI: 10.1007/s10344-018-1203-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
139
|
Gale T, Garratt M, Brooks RC. Perceived threats of infanticide reduce maternal allocation during lactation and lead to elevated oxidative damage in offspring. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Teagan Gale
- School of Biological, Earth and Environmental Sciences (BEES) Evolution and Ecology Research Centre University of New South Wales Kensington NSW Australia
| | - Michael Garratt
- Department of Pathology University of Michigan Medical School Ann Arbor Michigan
| | - Robert C. Brooks
- School of Biological, Earth and Environmental Sciences (BEES) Evolution and Ecology Research Centre University of New South Wales Kensington NSW Australia
| |
Collapse
|
140
|
Peach WJ, Mallord JW, Ockendon N, Orsman CJ, Haines WG. Depleted suburban house sparrow Passer domesticus population not limited by food availability. Urban Ecosyst 2018. [DOI: 10.1007/s11252-018-0784-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
141
|
Terrestrial birds in coastal environments: metabolic rate and oxidative status varies with the use of marine resources. Oecologia 2018; 188:65-73. [PMID: 29948312 DOI: 10.1007/s00442-018-4181-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/30/2018] [Indexed: 01/21/2023]
Abstract
Life in saline environments represents a major physiological challenge for birds, particularly for passerines that lack nasal salt glands and hence are forced to live in environments that do not contain salty resources. Increased energy costs associated with increased salt intake, which in turn increases the production of reactive oxygen species, is likely a major selection pressure for why passerines are largely absent from brackish and marine environments. Here we measured basal metabolic rates (BMR) and oxidative status of free-ranging individuals of three species of Cinclodes, a group of passerine birds that inhabit marine and freshwater habitats in Chile. We used a combination of carbon, nitrogen, and hydrogen isotope data from metabolically active (blood) and inert (feathers) tissues to estimate seasonal changes in marine resource use and infer altitudinal migration. Contrary to our expectations, the consumption of marine resources did not result in higher BMR values and higher oxidative stress. Specifically, the marine specialist C. nigrofumosus had lower BMR than the other two species (C. fuscus and C. oustaleti), which seasonally switch between terrestrial and marine resources. C. fuscus had significantly higher total antioxidant capacity than the other two species (C. nigrofumosus and C. oustaleti) that consumed a relatively high proportion of marine resources. Nearly all studies examining the effects of salt consumption have focused on intraspecific acclimation via controlled experiments in the laboratory. The mixed results obtained from field- and lab-based studies reflect our poor understanding of the mechanistic link among hydric-salt balance, BMR, and oxidative stress in birds.
Collapse
|
142
|
Salmón P, Stroh E, Herrera-Dueñas A, von Post M, Isaksson C. Oxidative stress in birds along a NO x and urbanisation gradient: An interspecific approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 622-623:635-643. [PMID: 29223087 DOI: 10.1016/j.scitotenv.2017.11.354] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/29/2017] [Accepted: 11/30/2017] [Indexed: 06/07/2023]
Abstract
Urbanisation is regarded as one of the most threatening global issues for wildlife, however, measuring its impact is not always straight forward. Oxidative stress physiology has been suggested to be a useful biomarker of health and therefore, a potentially important indicator of the impact that urban environmental stressors, especially air pollution, can have on wildlife. For example, nitrogen oxides (NOx), released during incomplete combustion of fossil fuels, are highly potent pro-oxidants, thus predicted to affect either the protective antioxidants and/or cause oxidative damage to bio-molecules. To date, epidemiological modelling of the predicted association between oxidative stress and NOx exposure has not been performed in wild animals. Here, we address this short-coming, by investigating multiple oxidative stress markers in four common passerine bird species, the blue tit (Cyanistes caeruleus), great tit (Parus major), house sparrow (Passer domesticus) and tree sparrow (Passer montanus), living along a gradient of NOx and urbanisation levels in southern Sweden. First of all, the results revealed that long- and medium-term (one month and one week, respectively) NOx levels were highly correlated with the level of urbanisation. This confirms that the commonly used urbanisation index is a reliable proxy for urban air pollution. Furthermore, in accordance to our prediction, individuals exposed to higher long- and medium-term NOx levels/urbanisation had higher plasma antioxidant capacity. However, only tree sparrows showed higher oxidative damage (protein carbonyls) in relation to NOx levels and this association was absent with urbanisation. Lipid peroxidation, glutathione and superoxide dismutase levels did not co-vary with NOx/urbanisation. Given that most oxidative stress biomarkers showed strong species-specificity, independent of variation in NOx/urbanisation, the present study highlights the need to study variation in oxidative stress across contexts, seasons and life-stages in order to understand how the ecology and phylogeny of species interact to affect species resilience to urban environmental stress.
Collapse
Affiliation(s)
- Pablo Salmón
- Evolutionary Ecology, Department of Biology, Lund University, Ecology Building, Lund, Sweden.
| | - Emilie Stroh
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Sweden
| | - Amparo Herrera-Dueñas
- Evolutionary Ecology, Department of Biology, Lund University, Ecology Building, Lund, Sweden; Evolution and Conservation Biology, Department of Biodiversity, Ecology and Evolution, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Maria von Post
- Evolutionary Ecology, Department of Biology, Lund University, Ecology Building, Lund, Sweden
| | - Caroline Isaksson
- Evolutionary Ecology, Department of Biology, Lund University, Ecology Building, Lund, Sweden
| |
Collapse
|
143
|
Plummer KE, Bearhop S, Leech DI, Chamberlain DE, Blount JD. Effects of winter food provisioning on the phenotypes of breeding blue tits. Ecol Evol 2018; 8:5059-5068. [PMID: 29876081 PMCID: PMC5980576 DOI: 10.1002/ece3.4048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/21/2018] [Accepted: 02/23/2018] [Indexed: 01/06/2023] Open
Abstract
Throughout the Western World, huge numbers of people regularly supply food for wild birds. However, evidence of negative impacts of winter feeding on future reproduction has highlighted a need to improve understanding of the underlying mechanisms shaping avian responses to supplementary food. Here, we test the possibility that carry-over effects are mediated via their impact on the phenotypes of breeding birds, either by influencing the phenotypic structure of populations through changes in winter survival and/or by more direct effects on the condition of breeding birds. Using a landscape-scale 3-year study of blue tits (Cyanistes caeruleus), we demonstrate the importance of nutritional composition of supplementary food in determining carry-over effect outcomes. We show that breeding populations which had access to vitamin E-rich foods during the previous winter were comprised of individuals with reduced feather carotenoid concentrations, indicative of lower pre-feeding phenotypic condition, compared to fat-fed and unfed populations. This suggests that supplementary feeding in winter can result in altered population phenotypic structure at the time of breeding, perhaps by enhancing survival and recruitment of lower quality individuals. However, supplementation of a fat-rich diet during winter was detrimental to the oxidative state of breeding birds, with these phenotypic differences ultimately found to impact upon reproductive success. Our findings demonstrate the complex nature by which supplementary feeding can influence wild bird populations.
Collapse
Affiliation(s)
- Kate E. Plummer
- Centre for Ecology and ConservationCollege of Life & Environmental SciencesUniversity of ExeterPenrynCornwallUK
- British Trust for OrnithologyThe NunneryThetfordNorfolkUK
| | - Stuart Bearhop
- Centre for Ecology and ConservationCollege of Life & Environmental SciencesUniversity of ExeterPenrynCornwallUK
| | - David I. Leech
- British Trust for OrnithologyThe NunneryThetfordNorfolkUK
| | - Dan E. Chamberlain
- Dipartimento di Scienze della Vita e Biologià dei SistemiUniversità degli Studi di TorinoTurinItaly
| | - Jonathan D. Blount
- Centre for Ecology and ConservationCollege of Life & Environmental SciencesUniversity of ExeterPenrynCornwallUK
| |
Collapse
|
144
|
Zhang Y, Brasher AL, Park NR, Taylor HA, Kavazis AN, Hood WR. High activity before breeding improves reproductive performance by enhancing mitochondrial function and biogenesis. J Exp Biol 2018; 221:jeb177469. [PMID: 29487162 PMCID: PMC5963833 DOI: 10.1242/jeb.177469] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 02/19/2018] [Indexed: 12/11/2022]
Abstract
Understanding of physiological responses of organisms is typically based on data collected during an isolated event. Although many fundamental insights have been gained from these studies, evaluating the response to a single event ignores the fact that each individual has experienced a unique set of events throughout its life that may have altered its physiology. The idea that prior experiences can influence subsequent performance is known as a carry-over effect. Carry-over effects may explain much of the variation in performance found among individuals. For example, high physical activity has been shown to improve mitochondrial respiratory function and biogenesis and reduce oxidative stress, and has been linked to improved health and longevity. In this study, we asked whether the bioenergetic differences between active and inactive individuals carry over to impact performance in a subsequent reproductive event and alter a female's reproductive outcome. Female mice that had access to a running wheel for a month before mating gave birth to a larger litter and weaned a heavier litter, indicating that high physical activity had a positive carry-over effect to reproduction. Mice that ran also displayed higher mitochondrial respiration and biogenesis with no changes in endogenous antioxidant enzymes. These results provide a mechanistic framework for how the conditions that animals experience before breeding can impact reproductive outcomes.
Collapse
Affiliation(s)
- Yufeng Zhang
- Department of Biological Sciences, Auburn University, Auburn, AL 36830, USA
| | - Adam L Brasher
- Department of Biological Sciences, Auburn University, Auburn, AL 36830, USA
| | - Noel R Park
- Department of Biological Sciences, Auburn University, Auburn, AL 36830, USA
| | - Halie A Taylor
- Department of Biological Sciences, Auburn University, Auburn, AL 36830, USA
| | | | - Wendy R Hood
- Department of Biological Sciences, Auburn University, Auburn, AL 36830, USA
| |
Collapse
|
145
|
Hyatt HW, Zhang Y, Hood WR, Kavazis AN. Changes in Metabolism, Mitochondrial Function, and Oxidative Stress Between Female Rats Under Nonreproductive and 3 Reproductive Conditions. Reprod Sci 2018; 26:114-127. [PMID: 29621953 DOI: 10.1177/1933719118766264] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Women who do not lactate display increased incidence of obesity, type II diabetes, and cancer. Stuebe and Rich-Edwards proposed that these effects occur because physiological changes that ensue during pregnancy are not reversed without lactation. To empirically test this hypothesis, we compared markers of metabolism, mitochondrial function, and oxidative stress between 4 groups of Sprague-Dawley rats: (1) nonreproductive (NR) rats, (2) rats killed at day 20 of gestation, (3) rats that gave birth but were not allowed to suckle their pups (nonlactating), and (4) rats that suckled their young for 14 days. Nonlactating females displayed higher body fat compared to all other groups. Peroxisome proliferator-activated receptor δ (PPARδ) in skeletal muscle and white adipose tissue of nonlactating rats was lower than the other groups. The PPARδ is associated with lipid metabolism suggesting that the higher fat mass in nonlactating females was not associated with the retention of a physiological state that was set during pregnancy but instead an independent drop in PPARδ. Relative mitochondrial respiratory function and complex activity in the liver and skeletal muscle of nonlactating mice were not predictive of higher body mass, and measures of oxidative stress displayed minimal variation between groups.
Collapse
Affiliation(s)
- Hayden W Hyatt
- 1 School of Kinesiology, Auburn University, Auburn, AL, USA
| | - Yufeng Zhang
- 2 Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Wendy R Hood
- 2 Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | | |
Collapse
|
146
|
Rapid larval development under time stress reduces adult life span through increasing oxidative damage. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13068] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
147
|
Turzańska-Pietras K, Chachulska J, Polechońska L, Borowiec M. Does heavy metal exposure affect the condition of Whitethroat (Sylvia communis) nestlings? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:7758-7766. [PMID: 29290059 PMCID: PMC5847627 DOI: 10.1007/s11356-017-1064-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 12/18/2017] [Indexed: 05/30/2023]
Abstract
Anthropogenic pollution results in high concentrations of heavy metals in the environment. Due to their persistence and a high potential for bioaccumulation, metals are a real threat for birds breeding in industrial areas. The aim of the present study has been to explore the contents of heavy metals (arsenic As, cadmium Cd, chromium Cr, copper Cu, iron Fe, nickel Ni, lead Pb and zinc Zn) in the excreta of Whitethroat (Sylvia communis) nestlings living in polluted environment and to investigate the relationship between these contents and the nestlings' condition. Excrement samples contained all the studied elements. The contents of arsenic, cadmium, copper and zinc in the excreta of nestlings from nests located close to a slag dump were several times higher than in the soil near the dump, which suggested accumulation in food consumed by the birds. Condition parameters (body mass and haemoglobin concentration) were not related to heavy metal concentrations in the nestlings' excreta, except of Zn. It is possible that Whitethroats are able to detoxicate heavy metals to a certain extent. Detailed, multi-element analysis of the environment, food and bird tissues or excreta should be performed to explore relations between different chemicals and bird condition.
Collapse
Affiliation(s)
| | - Justyna Chachulska
- Department of Nature Conservation, Faculty of Biological Sciences, University of Zielona Góra, ul. prof. Z. Szafrana St. 1, 65-516 Zielona Góra, Poland
| | - Ludmiła Polechońska
- Department of Ecology, Biogeochemistry and Environmental Protection, University of Wrocław, ul. Kanonia 6/8, 50-328 Wrocław, Poland
| | - Marta Borowiec
- Museum of Natural History, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland
| |
Collapse
|
148
|
Norte AC, Costantini D, Araújo PM, Eens M, Ramos JA, Heylen D. Experimental infection by microparasites affects the oxidative balance in their avian reservoir host the blackbird Turdus merula. Ticks Tick Borne Dis 2018; 9:720-729. [PMID: 29478884 DOI: 10.1016/j.ttbdis.2018.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 02/08/2018] [Accepted: 02/08/2018] [Indexed: 11/18/2022]
Abstract
By draining resources, microparasites can negatively affect the host fitness, which in turn can result in reduced transmission when virulence leads to reductions in host population size. Therefore, for a microparasite to persist in nature, the level of harm it can do to its host is expected to be limited. We tested this hypothesis for tick-borne Borrelia burgdorferi sensu lato (s.l.) infections in the blackbird Turdus merula, one of the most important avian reservoir hosts in Europe. Experimental and observational data were combined to examine the physiological effects caused by B. burgdorferi s.l. infection in blackbirds. Pathogen-free blackbirds were exposed to B. burgdorferi s.l.-infected Ixodes ricinus and I. frontalis nymphs, and compared with a control group (exposed to naïve laboratory-derived I. ricinus nymphs). Their physiological status was evaluated before and after infection with B. burgdorferi s.l., through a set of immunological (erythrocyte sedimentation rate, haptoglobin, white blood cell count and heterophil/lymphocyte ratio), oxidative stress (glutathione peroxidase activity, protein carbonyls and nitric oxide) and general body condition variables (body condition, glucose and haematocrit). Infected males showed higher levels of oxidative damage to proteins (increased levels of protein carbonyls), decreased glutathione peroxidase activity and increased body mass. Infected females had higher levels of glutathione peroxidase activity after infection by B. burgdorferi s.l. than the control group. No significant effects of B. burgdorferi s.l. infection were detected on erythrocyte sedimentation rate, haptoglobin, heterophil/lymphocyte ratio, nitric oxide, glucose and haematocrit. The first experimental study on the effects of B. burgdorferi s.l. on its avian reservoir hosts shows that these bacteria may inflict non-negligible physiological costs. We speculate that during energetically demanding periods, these physiological costs may reduce host fitness and affect pathogen transmission.
Collapse
Affiliation(s)
- Ana Cláudia Norte
- Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, Coimbra, Portugal; Center for Vector and Infectious Diseases Research, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal.
| | - David Costantini
- Behavioural Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium; UMR 7221 CNRS/MNHN, Muséum National d'Histoire Naturelle, ComEU Sorbonnes Universités, 7 rue Cuvier, 75005, Paris, France
| | - Pedro Miguel Araújo
- Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Marcel Eens
- Behavioural Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Jaime Albino Ramos
- Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Dieter Heylen
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
149
|
Proximity of breeding and foraging areas affects foraging effort of a crepuscular, insectivorous bird. Sci Rep 2018; 8:3008. [PMID: 29445120 PMCID: PMC5813100 DOI: 10.1038/s41598-018-21321-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 02/01/2018] [Indexed: 12/30/2022] Open
Abstract
When complementary resources are required for an optimal life cycle, most animals need to move between different habitats. However, the level of connectivity between resources can vary and, hence, influence individuals’ behaviour. We show that landscape composition and configuration affect the connectivity between breeding (heathlands) and foraging habitats (extensively-grazed grasslands) of the European Nightjar (Caprimulgus europaeus), a crepuscular insectivorous bird. On a daily basis, nightjars connect breeding and foraging sites by rapidly crossing unsuitable habitats in order to exploit a higher prey biomass in foraging sites. However, low availability of foraging habitat near breeding sites and clustered landscapes greatly increase foraging distance. Birds occupying these sub-optimal breeding areas compensate for longer travels by increasing foraging duration, and their physiology shows increased stress levels. All findings suggest that landscape heterogeneity can affect population dynamics of nightjars. Therefore, we recommend an integrated management approach for this EU-protected bird species.
Collapse
|
150
|
Weaver RJ, Santos ESA, Tucker AM, Wilson AE, Hill GE. Carotenoid metabolism strengthens the link between feather coloration and individual quality. Nat Commun 2018; 9:73. [PMID: 29311592 PMCID: PMC5758789 DOI: 10.1038/s41467-017-02649-z] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/15/2017] [Indexed: 02/07/2023] Open
Abstract
Thirty years of research has made carotenoid coloration a textbook example of an honest signal of individual quality, but tests of this idea are surprisingly inconsistent. Here, to investigate sources of this heterogeneity, we perform meta-analyses of published studies on the relationship between carotenoid-based feather coloration and measures of individual quality. To create color displays, animals use either carotenoids unchanged from dietary components or carotenoids that they biochemically convert before deposition. We hypothesize that converted carotenoids better reflect individual quality because of the physiological links between cellular function and carotenoid metabolism. We show that feather coloration is an honest signal of some, but not all, measures of quality. Where these relationships exist, we show that converted, but not dietary, carotenoid coloration drives the relationship. Our results have broad implications for understanding the evolutionary role of carotenoid coloration and the physiological mechanisms that maintain signal honesty of animal ornamental traits.
Collapse
Affiliation(s)
- Ryan J Weaver
- Department of Biological Sciences, Auburn University, 331 Funchess Hall, Auburn, AL, 36849, USA.
| | - Eduardo S A Santos
- BECO do Departamento de Zoologia, Universidade de São Paulo, São Paulo, SP, 05508-090, Brazil
| | - Anna M Tucker
- School of Forestry and Wildlife Sciences, Auburn University, 3301 SFWS Building, Auburn, AL, 36849, USA
| | - Alan E Wilson
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, 203 Swingle Hall, Auburn, AL, 36849, USA
| | - Geoffrey E Hill
- Department of Biological Sciences, Auburn University, 331 Funchess Hall, Auburn, AL, 36849, USA
| |
Collapse
|