101
|
Régnier A, Vicaut E, Mraovitch S. Aggravation of seizure-associated microvascular injuries by ibuprofen may involve multiple pathways. Epilepsia 2010; 51:2412-22. [DOI: 10.1111/j.1528-1167.2009.02480.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
102
|
Kainic acid-induced neurodegenerative model: potentials and limitations. J Biomed Biotechnol 2010; 2011:457079. [PMID: 21127706 PMCID: PMC2992819 DOI: 10.1155/2011/457079] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 10/25/2010] [Indexed: 01/03/2023] Open
Abstract
Excitotoxicity is considered to be an important mechanism involved in various neurodegenerative diseases in the central nervous system (CNS) such as Alzheimer's disease (AD). However, the mechanism by which excitotoxicity is implicated in neurodegenerative disorders remains unclear. Kainic acid (KA) is an epileptogenic and neuroexcitotoxic agent by acting on specific kainate receptors (KARs) in the CNS. KA has been extensively used as a specific agonist for ionotrophic glutamate receptors (iGluRs), for example, KARs, to mimic glutamate excitotoxicity in neurodegenerative models as well as to distinguish other iGluRs such as α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptors and N-methyl-D-aspartate receptors. Given the current knowledge of excitotoxicity in neurodegeneration, interventions targeted at modulating excitotoxicity are promising in terms of dealing with neurodegenerative disorders. This paper summarizes the up-to-date knowledge of neurodegenerative studies based on KA-induced animal model, with emphasis on its potentials and limitations.
Collapse
|
103
|
Järvelä JT, Ruohonen S, Kukko-Lukjanov TK, Plysjuk A, Lopez-Picon FR, Holopainen IE. Kainic acid-induced neurodegeneration and activation of inflammatory processes in organotypic hippocampal slice cultures: treatment with cyclooxygenase-2 inhibitor does not prevent neuronal death. Neuropharmacology 2010; 60:1116-25. [PMID: 20932983 DOI: 10.1016/j.neuropharm.2010.09.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 09/28/2010] [Accepted: 09/28/2010] [Indexed: 01/27/2023]
Abstract
In the postnatal rodent hippocampus status epilepticus (SE) leads to age- and region-specific excitotoxic neuronal damage, the precise mechanisms of which are still incompletely known. Recent studies suggest that the activation of inflammatory responses together with glial cell reactivity highly contribute to excitotoxic neuronal damage. However, pharmacological tools to attenuate their activation in the postnatal brain are still poorly elucidated. In this study, we investigated the role of inflammatory mediators in kainic acid (KA)-induced neuronal damage in organotypic hippocampal slice cultures (OHCs). A specific cyclooxygenase-2 (COX-2) inhibitor N-[2-(cyclohexyloxy)-4-nitrophenyl]-methanesulfonamide (NS-398) was used to study whether or not it could ameliorate neuronal death. Our results show that KA treatment (24 h) resulted in a dose-dependent degeneration of CA3a/b pyramidal neurons. Furthermore, COX-2 immunoreactivity was pronouncedly enhanced particularly in CA3c pyramidal neurons, microglial and astrocyte morphology changed from a resting to active appearance, the expression of the microglial specific protein, Iba1, increased, and prostaglandin E₂ (PGE₂) production increased. These indicated the activation of inflammatory processes. However, the expression of neither proinflammatory cytokines, i.e. tumour necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β), nor the anti-inflammatory cytokine IL-10 mRNA was significantly altered by KA treatment as studied by real-time PCR. Despite activation of an array of inflammatory processes, neuronal damage could not be rescued either with the combined pre- and co-treatment with a specific COX-2 inhibitor, NS-398. Our results suggest that KA induces activation of a repertoire of inflammatory processes in immature OHCs, and that the timing of anti-inflammatory treatment to achieve neuroprotection is a challenge due to developmental properties and the complexity of inflammatory processes activated by noxious stimuli. This article is part of a Special Issue entitled 'Trends in neuropharmacology: in memory of Erminio Costa'.
Collapse
Affiliation(s)
- Juha T Järvelä
- Department of Pharmacology, Drug Development, and Therapeutics, Institute of Biomedicine, University of Turku, Itäinen Pitkäkatu 4B, FIN-20014 Turku, Finland
| | | | | | | | | | | |
Collapse
|
104
|
Shin EJ, Hong JS, Kim HC. Neuropsychopharmacological understanding for therapeutic application of morphinans. Arch Pharm Res 2010; 33:1575-87. [PMID: 21052935 PMCID: PMC3399693 DOI: 10.1007/s12272-010-1009-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 08/23/2010] [Accepted: 08/24/2010] [Indexed: 01/12/2023]
Abstract
Morphinans are a class of compounds containing the basic structure of morphine. It is well-known that morphinans possess diverse pharmacological effects on the central nervous system. This review will demonstrate novel neuroprotective effects of several morphinans such as, dextromethorphan, its analogs and naloxone on the models of multiple neurodegenerative disease by modulating glial activation associated with the production of a host of proinflammatory and neurotoxic factors, although dextromethorphan possesses neuropsychotoxic potentials. The neuroprotective effects and the therapeutic potential for the treatment of excitotoxic and inflammatory neurodegenerative diseases, and underlying mechanism of morphinans are discussed.
Collapse
Affiliation(s)
- Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 200-701, Korea
| | - Jau-Shyong Hong
- Neuropharmacology Section, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 200-701, Korea
| |
Collapse
|
105
|
Auvin S, Mazarati A, Shin D, Sankar R. Inflammation enhances epileptogenesis in the developing rat brain. Neurobiol Dis 2010; 40:303-10. [PMID: 20600912 PMCID: PMC2926147 DOI: 10.1016/j.nbd.2010.06.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 05/17/2010] [Accepted: 06/11/2010] [Indexed: 01/20/2023] Open
Abstract
In many experimental systems, proinflammatory stimuli exhibit proconvulsant properties. There are also accumulating data suggesting that inflammation may contribute to epileptogenesis in experimental models as well as in humans. Using two different models (Lithium-pilocarpine induced-status epilepticus (SE) and rapid kindling), we address this issue in the developing brain. Using P14 Wistar rat pups, we showed that inflammation induced by LPS results, after SE, into a more severe disease in adulthood. The main histological feature was an active gliosis that was observed only when inflammation and SE was combined. The use of a kindling model at P14, a model where seizure progress without any neurodegeneration, permits to show that systemic inflammation is responsible of an enhancement of epileptogenesis. The role of inflammation should be further explored in immature brain to identify therapeutic targets that may be relevant to clinical practice where the association of inflammation and epileptic events is common.
Collapse
Affiliation(s)
- Stéphane Auvin
- Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| | | | | | | |
Collapse
|
106
|
Ahmad S, Marsh ED. Febrile status epilepticus: current state of clinical and basic research. Semin Pediatr Neurol 2010; 17:150-4. [PMID: 20727483 DOI: 10.1016/j.spen.2010.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Febrile status epilepticus occurs in up to 5% of all cases of febrile seizures and has been linked to the development of focal epilepsy. This article reviews the clinical characteristics and treatment issues of febrile status. Controversy exists regarding the relationship of febrile status epilepticus to the subsequent development of epilepsy. This subject is discussed by first reviewing the clinical research literature and then highlighting the basic science research regarding this controversial question. The current literature appears to support a role for febrile status in the development of focal epilepsy but is clearly neither necessary nor sufficient in the focal epileptogenisis process. Multiple insults are likely necessary for a child with febrile status epilepticus to develop epilepsy later in life.
Collapse
Affiliation(s)
- Saba Ahmad
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | |
Collapse
|
107
|
Laurén HB, Lopez-Picon FR, Brandt AM, Rios-Rojas CJ, Holopainen IE. Transcriptome analysis of the hippocampal CA1 pyramidal cell region after kainic acid-induced status epilepticus in juvenile rats. PLoS One 2010; 5:e10733. [PMID: 20505763 PMCID: PMC2873964 DOI: 10.1371/journal.pone.0010733] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 04/28/2010] [Indexed: 11/19/2022] Open
Abstract
Molecular mechanisms involved in epileptogenesis in the developing brain remain poorly understood. The gene array approach could reveal some of the factors involved by allowing the identification of a broad scale of genes altered by seizures. In this study we used microarray analysis to reveal the gene expression profile of the laser microdissected hippocampal CA1 subregion one week after kainic acid (KA)-induced status epilepticus (SE) in 21-day-old rats, which are developmentally roughly comparable to juvenile children. The gene expression analysis with the Chipster software generated a total of 1592 differently expressed genes in the CA1 subregion of KA-treated rats compared to control rats. The KEGG database revealed that the identified genes were involved in pathways such as oxidative phosporylation (26 genes changed), and long-term potentiation (LTP; 18 genes changed). Also genes involved in Ca2+ homeostasis, gliosis, inflammation, and GABAergic transmission were altered. To validate the microarray results we further examined the protein expression for a subset of selected genes, glial fibrillary protein (GFAP), apolipoprotein E (apo E), cannabinoid type 1 receptor (CB1), Purkinje cell protein 4 (PEP-19), and interleukin 8 receptor (CXCR1), with immunohistochemistry, which confirmed the transcriptome results. Our results showed that SE resulted in no obvious CA1 neuronal loss, and alterations in the expression pattern of several genes during the early epileptogenic phase were comparable to previous gene expression studies of the adult hippocampus of both experimental epileptic animals and patients with temporal lobe epilepsy (TLE). However, some changes seem to occur after SE specifically in the juvenile rat hippocampus. Insight of the SE-induced alterations in gene expression and their related pathways could give us hints for the development of new target-specific antiepileptic drugs that interfere with the progression of the disease in the juvenile age group.
Collapse
Affiliation(s)
- Hanna B. Laurén
- Department of Pharmacology, Drug Development, and Therapeutics, Institute of Biomedicine, University of Turku, Turku, Finland
- MediCity Research Laboratory, Turku, Finland
| | - Francisco R. Lopez-Picon
- Department of Pharmacology, Drug Development, and Therapeutics, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Annika M. Brandt
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Clarissa J. Rios-Rojas
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Irma E. Holopainen
- Department of Pharmacology, Drug Development, and Therapeutics, Institute of Biomedicine, University of Turku, Turku, Finland
- MediCity Research Laboratory, Turku, Finland
- * E-mail:
| |
Collapse
|
108
|
Choi J, Nordli DR, Alden TD, DiPatri A, Laux L, Kelley K, Rosenow J, Schuele SU, Rajaram V, Koh S. Cellular injury and neuroinflammation in children with chronic intractable epilepsy. J Neuroinflammation 2009; 6:38. [PMID: 20021679 PMCID: PMC2811703 DOI: 10.1186/1742-2094-6-38] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 12/19/2009] [Indexed: 11/25/2022] Open
Abstract
Objective To elucidate the presence and potential involvement of brain inflammation and cell death in neurological morbidity and intractable seizures in childhood epilepsy, we quantified cell death, astrocyte proliferation, microglial activation and cytokine release in brain tissue from patients who underwent epilepsy surgery. Methods Cortical tissue was collected from thirteen patients with intractable epilepsy due to focal cortical dysplasia (6), encephalomalacia (5), Rasmussen's encephalitis (1) or mesial temporal lobe epilepsy (1). Sections were processed for immunohistochemistry using markers for neuron, astrocyte, microglia or cellular injury. Cytokine assay was performed on frozen cortices. Controls were autopsy brains from eight patients without history of neurological diseases. Results Marked activation of microglia and astrocytes and diffuse cell death were observed in epileptogenic tissue. Numerous fibrillary astrocytes and their processes covered the entire cortex and converged on to blood vessels, neurons and microglia. An overwhelming number of neurons and astrocytes showed DNA fragmentation and its magnitude significantly correlated with seizure frequency. Majority of our patients with abundant cell death in the cortex have mental retardation. IL-1beta, IL-8, IL-12p70 and MIP-1beta were significantly increased in the epileptogenic cortex; IL-6 and MCP-1 were significantly higher in patients with family history of epilepsy. Conclusions Our results suggest that active neuroinflammation and marked cellular injury occur in pediatric epilepsy and may play a common pathogenic role or consequences in childhood epilepsy of diverse etiologies. Our findings support the concept that immunomodulation targeting activated microglia and astrocytes may be a novel therapeutic strategy to reduce neurological morbidity and prevent intractable epilepsy.
Collapse
Affiliation(s)
- Jieun Choi
- Department of Pediatrics, Northwestern University Children's Memorial Hospital, Chicago, IL, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Vulnerability of postnatal hippocampal neurons to seizures varies regionally with their maturational stage. Neurobiol Dis 2009; 37:394-402. [PMID: 19879360 DOI: 10.1016/j.nbd.2009.10.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 09/15/2009] [Accepted: 10/22/2009] [Indexed: 11/21/2022] Open
Abstract
The mechanism of status epilepticus-induced neuronal death in the immature brain is not fully understood. In the present study, we examined the contribution of caspases in our lithium-pilocarpine model of status epilepticus in 14 days old rat pups. In CA1, upregulation of caspase-8, but not caspase-9, preceded caspase-3 activation in morphologically necrotic cells. Pretreatment with a pan-caspase inhibitor provided neuroprotection, showing that caspase activation was not an epiphenomenon but contributed to neuronal necrosis. By contrast, upregulation of active caspase-9 and caspase-3, but not caspase-8, was detected in apoptotic dentate gyrus neurons, which were immunoreactive for doublecortin and calbindin-negative, two features of immature neurons. These results suggest that, in cells which are aligned in series as parts of the same excitatory hippocampal circuit, the same seizures induce neuronal death through different mechanisms. The regional level of neuronal maturity may be a determining factor in the execution of a specific death program.
Collapse
|
110
|
Galanopoulou AS, Moshé SL. The epileptic hypothesis: developmentally related arguments based on animal models. Epilepsia 2009; 50 Suppl 7:37-42. [PMID: 19682049 DOI: 10.1111/j.1528-1167.2009.02217.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The significant morbidity linked to epileptic encephalopathies of childhood has prompted the need to identify and dissect the factors and mechanisms that contribute to the resultant functional regression. Although experiments specifically assessing language in rodents are difficult to design, a number of studies have shed light on the conditions that contribute to the functional deterioration. In particular, interictal spikes and seizures, especially if prolonged or frequent, may cause acute or long-lasting effects on brain functioning and development, which may impair performance in a variety of behavioral tests. These effects are further modified by a number of genetic, biological, and epigenetic factors, including age, sex, and underlying pathology, which further diversify outcome. Of special importance is the developmental age when the epileptic disorder manifests, because it may dictate outcome but also may be a deciding factor in selecting appropriate therapies.
Collapse
Affiliation(s)
- Aristea S Galanopoulou
- Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Bronx, NY 10461, U.S.A.
| | | |
Collapse
|
111
|
Sharma AK, Searfoss GH, Reams RY, Jordan WH, Snyder PW, Chiang AY, Jolly RA, Ryan TP. Kainic Acid-induced F-344 Rat model of Mesial Temporal Lobe Epilepsy: Gene Expression and Canonical Pathways. Toxicol Pathol 2009; 37:776-89. [DOI: 10.1177/0192623309344202] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Mesial temporal lobe epilepsy (MTLE) is a severe neurological condition of unknown pathogenesis for which several animal models have been developed. To obtain a better understanding of the underlying molecular mechanisms and identify potential biomarkers of lesion progression, we used a rat kainic acid (KA) treatment model of MTLE coupled with global gene expression analysis to examine temporal (four hours, days 3, 14, or 28) gene regulation relative to hippocampal histopathological changes. The authors recommend reviewing the companion histopathology paper ( Sharma et al. 2008 ) to get a better understanding of the work presented here. Analysis of filtered gene expression data using Ingenuity Pathways Analysis (Ingenuity Systems, http://www.ingenuity.com ) revealed that a number of genes pertaining to neuronal plasticity (RhoA, Rac1, Cdc42, BDNF, and Trk), neurodegeneration (Caspase3, Calpain 1, Bax, a Cytochrome c, and Smac/Diablo), and inflammation/immune-response pathways (TNF-α, CCL2, Cox2) were modulated in a temporal fashion after KA treatment. Expression changes for selected genes known to have a role in neuronal plasticity were subsequently validated by quantitative polymerase chain reaction (qPCR). Notably, canonical pathway analysis revealed that a number of genes within the axon guidance signaling canonical pathway were up-regulated from Days 3 to 28, which correlated with aberrant mossy fiber (MF) sprouting observed histologically beginning at Day 6. Importantly, analysis of the gene expression data also identified potential biomarkers for monitoring neurodegeneration (Cox2) and neuronal/synaptic plasticity (Kalrn).
Collapse
Affiliation(s)
- Alok K. Sharma
- Department of Pathology, Covance Laboratories Inc., Madison, WI 53704, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - George H. Searfoss
- Lilly Research Laboratories, Division of Eli Lilly and Co., Indianapolis, IN 46285, USA
| | - Rachel Y. Reams
- Department of Pathology, Covance Laboratories Inc., Greenfield, IN 46140, USA
| | - William H. Jordan
- Lilly Research Laboratories, Division of Eli Lilly and Co., Indianapolis, IN 46285, USA
| | - Paul W. Snyder
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - Alan Y. Chiang
- Lilly Research Laboratories, Division of Eli Lilly and Co., Indianapolis, IN 46285, USA
| | - Robert A. Jolly
- Lilly Research Laboratories, Division of Eli Lilly and Co., Indianapolis, IN 46285, USA
| | - Timothy P. Ryan
- Lilly Research Laboratories, Division of Eli Lilly and Co., Indianapolis, IN 46285, USA
| |
Collapse
|
112
|
Abstract
PURPOSE Early life status epilepticus (SE) could enhance the vulnerability of the immature brain to a second SE in adulthood (two-hit seizure model). Naloxone has been proved to possess inflammation inhibitory effects in nervous system. This study was designed to evaluate the dose-dependent protective effects of naloxone in kainic acid (KA)-induced two-hit seizure model. METHODS After KA-induced SE at postnatal day 15 (P15), Sprague-Dawley rats were infused with either saline or different doses (1.92, 3.84, 5.76, and 7.68 mg/kg) of naloxone continuously for 12 h. De novo synthesis of cytokines (interleukin-1 beta [IL-1 beta], S100B) was assessed by real-time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA) at 12 h after P15 SE. Glial activation states were analyzed by western blotting of glial markers (glial fibrillary acidic protein [GFAP], S100B, Iba1) both at 12 h after P15 SE and at P45. After a second SE at P45, cognitive deteriorations were evaluated by Morris water tests and neuron injuries were evaluated by TdT-mediated dUTP nick end labeling (TUNEL) assays. RESULTS Naloxone reduced IL-1 beta synthesis and microglial activation most potently at a dose of 3.84 mg/kg. Attenuation of S100B synthesis and astrocyte activation were achieved most dramatically by naloxone at a dose of 5.76 mg/kg, which is equal to the most powerful dose in ameliorating cognitive injuries and neuron apoptosis after second SE. CONCLUSIONS Naloxone treatment immediately after early life SE could dose-dependently reduce cytokine production, glial activation, and further lower the vulnerability of immature brains to a second hit in adulthood.
Collapse
Affiliation(s)
- Lu Yang
- Pediatric department of Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | | | | | | | | | | |
Collapse
|
113
|
Somera-Molina KC, Nair S, Van Eldik LJ, Watterson DM, Wainwright MS. Enhanced microglial activation and proinflammatory cytokine upregulation are linked to increased susceptibility to seizures and neurologic injury in a 'two-hit' seizure model. Brain Res 2009; 1282:162-72. [PMID: 19501063 PMCID: PMC2739829 DOI: 10.1016/j.brainres.2009.05.073] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 05/18/2009] [Accepted: 05/20/2009] [Indexed: 12/21/2022]
Abstract
Early-life seizures result in increased susceptibility to seizures and greater neurologic injury with a second insult in adulthood. The mechanisms which link seizures in early-life to increased susceptibility to neurologic injury following a 'second hit' are not known. We examined the contribution of microglial activation and increased proinflammatory cytokine production to the subsequent increase in susceptibility to neurologic injury using a kainic acid (KA)-induced, established 'two-hit' seizure model in rats. Postnatal day (P)15 rats were administered intraperitoneal KA (early-life seizures) or saline, followed on P45 with either a 'second hit' of KA, a first exposure to KA (adult seizures), or saline. We measured the levels of proinflammatory cytokines (IL-1 beta, TNF-alpha, and S100B), the chemokine CCL2, microglial activation, seizure susceptibility and neuronal outcomes in adult rats 12 h and 10 days after the second hit on P45. The 'two-hit' group exposed to KA on both P15 and P45 had higher levels of cytokines, greater microglial activation, and increased susceptibility to seizures and neurologic injury compared to the adult seizures group. Treatment after early-life seizures with Minozac, a small molecule experimental therapeutic that targets upregulated proinflammatory cytokine production, attenuated the enhanced microglial and cytokine responses, the increased susceptibility to seizures, and the greater neuronal injury in the 'two-hit' group. These results implicate microglial activation as one mechanism by which early-life seizures contribute to increased vulnerability to neurologic insults in adulthood, and indicate the potential longer term benefits of early-life intervention with therapies that target up-regulation of proinflammatory cytokines.
Collapse
Affiliation(s)
- Kathleen C. Somera-Molina
- Integrated Graduate Program, Northwestern University, Chicago, IL
- Department of Pediatrics, Division of Neurology, Northwestern University, Chicago, IL
- Center for Interdisciplinary Research in Pediatric Critical Illness and Injury, Northwestern University, Chicago, IL
- Center for Drug Discovery and Chemical Biology, Northwestern University, Chicago, IL
| | - Sangeetha Nair
- Department of Pediatrics, Division of Neurology, Northwestern University, Chicago, IL
- Center for Interdisciplinary Research in Pediatric Critical Illness and Injury, Northwestern University, Chicago, IL
| | - Linda J. Van Eldik
- Center for Drug Discovery and Chemical Biology, Northwestern University, Chicago, IL
- Department of Cell and Molecular Biology, Northwestern University, Chicago, IL
| | - D. Martin Watterson
- Center for Drug Discovery and Chemical Biology, Northwestern University, Chicago, IL
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University, Chicago, IL
| | - Mark S. Wainwright
- Department of Pediatrics, Division of Neurology, Northwestern University, Chicago, IL
- Center for Interdisciplinary Research in Pediatric Critical Illness and Injury, Northwestern University, Chicago, IL
- Center for Drug Discovery and Chemical Biology, Northwestern University, Chicago, IL
| |
Collapse
|
114
|
Auvin S, Porta N, Nehlig A, Lecointe C, Vallée L, Bordet R. Inflammation in rat pups subjected to short hyperthermic seizures enhances brain long-term excitability. Epilepsy Res 2009; 86:124-30. [PMID: 19535227 DOI: 10.1016/j.eplepsyres.2009.05.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 05/17/2009] [Accepted: 05/18/2009] [Indexed: 01/19/2023]
Abstract
UNLABELLED Inflammatory processes in response to infection are involved in the pathophysiological mechanisms of febrile seizures (FS). Prolonged FS may promote the development of temporal lobe epilepsy. It has been shown in rats that prolonged hyperthermic seizures (HS) are followed by long-term modification of brain excitability. To examine whether short FS results in modification of brain excitability, we induced an inflammatory response in combination with short HS. METHODS HS were induced in rat pups at either P11 or P16 using a heating lamp with a continuous monitoring of the core temperature. Rat pups were maintained at the temperature seizure threshold during 5 min. In order to induce an inflammatory response, lipopolysaccharide (LPS, Eschericha coli 055:B5) was injected i.p. at 5 microg/kg or 50 microg/kg, 2h prior seizure induction. After 1 month, pentylenetetrazol threshold (PTZth) was used to assess the change of brain excitability. Histological studies were performed 24h after the FS (Fluorojade-B) and after the PTZth (cresyl violet). RESULTS The temperature thresholds to induce the seizures were not different among the groups. The PTZth was not significantly different between sham and FS only groups, and decreased dose-dependently when LPS was combined to FS. Histological studies suggested the absence of cell injury. CONCLUSION Lower PTZth obtained by using LPS in combination with HS in rat pups suggests a change in brain excitability. Our model with only 5 min of HS in combination with LPS suggests that an inflammatory response could, in part, explain long-term change in brain excitability following short FS.
Collapse
Affiliation(s)
- Stéphane Auvin
- Pediatric Neurology Department, Robert Debré Children Hospital, APHP, Paris, France.
| | | | | | | | | | | |
Collapse
|
115
|
Parinejad N, Keshavarzi S, Movahedin M, Raza M. Behavioral and histological assessment of the effect of intermittent feeding in the pilocarpine model of temporal lobe epilepsy. Epilepsy Res 2009; 86:54-65. [PMID: 19505798 DOI: 10.1016/j.eplepsyres.2009.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2008] [Revised: 04/26/2009] [Accepted: 05/01/2009] [Indexed: 01/17/2023]
Abstract
Temporal lobe epilepsy (TLE) is the most resistant type of epilepsy. Currently available drugs for epilepsy are not antiepileptogenic. A novel treatment for epilepsy would be to block or reverse the process of epileptogenesis. We used intermittent feeding (IF) regimen of the dietary restriction (DR) to study its effect on epileptogenesis and neuroprotection in the pilocarpine model of TLE in rats. The effect of IF regimen on the induction of status epilepticus (SE), the duration of latent period, and the frequency, duration, severity and the time of occurrence of Spontaneous Recurrent Seizures (SRS) were investigated. We also studied the effect of IF regimen on hippocampal neurons against the excitotoxic damage of prolonged SE (about 4h) induced by pilocarpine. The animals (Wistar, male, 200-250g) were divided into four main groups: AL-AL (ad libitum diet throughout), AL-IF (PfS) [IF post-first seizure], AL-IF (PSE) [IF post-SE] and IF-IF (IF diet throughout), and two AL and IF control groups. SE was induced by pilocarpine (350mg/kg, i.p.) and with diazepam (6mg/kg, i.p.) injected after 3h, the behavioral signs of SE terminated at about 4h (AL animals, n=29, 260.43+/-8.74min; IF animals, n=19, 224.32+/-20.73min). Behavioral monitoring was carried out by 24h video recording for 3 weeks after the first SRS. Rat brains were then prepared for histological study with Nissl stain and cell counting was done in CA1, CA2 and CA3 regions of the hippocampus. The results show that the animals on IF diet had significantly less SE induction and significantly longer duration of latent period (the period of epileptogenesis) was seen in IF-IF group compared to the AL-AL group. The severity of SRS was significantly more in AL-IF (PfS) compared to the AL-IF (PSE) group. These results indicate that IF diet can make rats resistant to the induction of SE and can prolong the process of epileptogenesis. The results of the histological study show that the number of pyramidal neurons was statistically less in CA1, CA2 and CA3 of the hippocampus in the experimental groups compared to the control groups. However, IF regimen could not protect the hippocampal neurons against the excitotoxic injury caused by a prolonged SE. We conclude that IF regimen can significantly influence various behavioral characteristics of pilocarpine model of TLE. Further studies can elaborate the exact mechanisms as well as its possible role in the treatment of human TLE.
Collapse
Affiliation(s)
- Neda Parinejad
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Islamic Republic of Iran
| | | | | | | |
Collapse
|
116
|
Posttreatment with group II metabotropic glutamate receptor agonist 2R,4R-4-aminopyrrolidine-2,4-dicarboxylate is only weakly effective on seizures in immature rats. Brain Res 2009; 1273:144-54. [DOI: 10.1016/j.brainres.2009.03.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Accepted: 03/18/2009] [Indexed: 11/22/2022]
|
117
|
The role of interleukin-1 in seizures and epilepsy: a critical review. Exp Neurol 2008; 216:258-71. [PMID: 19162013 DOI: 10.1016/j.expneurol.2008.12.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2008] [Revised: 12/01/2008] [Accepted: 12/13/2008] [Indexed: 01/15/2023]
Abstract
Interleukin-1 (IL-1) has a multitude of functions in the central nervous system. Some of them involve mechanisms that are related to epileptogenesis. The role of IL-1 in seizures and epilepsy has been investigated in both patients and animal models. This review aims to synthesize, based on the currently available literature, the consensus role of IL-1 in epilepsy. Three lines of evidence suggest a role for IL-1: brain tissue from epilepsy patients and brain tissue from animal models shows increased IL-1 expression after seizures, and IL-1 has proconvulsive properties when applied exogeneously. However, opposing results have been published as well. More research is needed to fully establish the role of IL-1 in seizure generation and epilepsy, and to explore possible new treatment strategies that are based on interference with intracellular signaling cascades that are initiated when IL-1 binds to its receptor.
Collapse
|
118
|
Levine JM, Fosgate GT, Porter B, Schatzberg SJ, Greer K. Epidemiology of necrotizing meningoencephalitis in Pug dogs. J Vet Intern Med 2008; 22:961-8. [PMID: 18647157 PMCID: PMC7166975 DOI: 10.1111/j.1939-1676.2008.0137.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Background: Although the histopathologic features of necrotizing meningoencephalitis (NME) have been described previously, little information is available concerning the signalment, geographic distribution, seasonal onset, treatment, and survival of affected dogs. Animals: Sixty Pugs with NME and 14 contemporaneous control Pugs with other intracranial diseases (non‐NME group). Methods: Pugs that were euthanized or died because of intracranial disease were prospectively obtained. All dogs had necropsy, histopathology, and testing for various infectious diseases and were subsequently divided into NME and non‐NME groups. Signalment, geographic distribution, seasonal onset, treatment, and survival were compared between groups. Results: In Pugs with NME, median age at onset of clinical signs was 18 months (range, 4–113 months). A greater proportion of female dogs were present in the NME group (40/60) compared with the control group (6/14). Pugs with NME had a significantly lower mean weight (7.81 kg) than control Pugs (9.79 kg) (P= .012). Mean survival in Pugs with NME was 93 days (range, 1–680 days), with dogs receiving any form of treatment living significantly longer than those that were not treated (P= .003). Anticonvulsive drugs were the only treatment significantly associated with longer survival (P= .003). Conclusions and Clinical Importance: NME appears to be a common cause of intracranial signs in Pugs, based on the high proportion of NME dogs reported in this population. Pugs with NME are most commonly young adult female dogs. Although further investigation is needed to determine the optimal treatment of NME, anticonvulsive drugs appear to beneficially affect duration of survival.
Collapse
Affiliation(s)
- J M Levine
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| | | | | | | | | |
Collapse
|
119
|
Short- and long-term limbic abnormalities after experimental febrile seizures. Neurobiol Dis 2008; 32:293-301. [PMID: 18707002 DOI: 10.1016/j.nbd.2008.07.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 07/06/2008] [Accepted: 07/15/2008] [Indexed: 11/20/2022] Open
Abstract
Experimental febrile seizures (FS) are known to promote hyperexcitability of the limbic system and increase the risk for eventual temporal lobe epilepsy (TLE). Early markers of accompanying microstructural and metabolic changes may be provided by in vivo serial MRI. FS were induced in 9-day old rats by hyperthermia. Quantitative multimodal MRI was applied 24 h and 8 weeks later, in rats with FS and age-matched controls, and comprised hippocampal volumetry and proton spectroscopy, and cerebral T2 relaxometry and diffusion tensor imaging (DTI). At 9 weeks histology was performed. Hippocampal T2 relaxation time elevations appeared to be transient. DTI abnormalities detected in the amygdala persisted up to 8 weeks. Hippocampal volumes were not affected. Histology showed increased fiber density and anisotropy in the hippocampus, and reduced neuronal surface area in the amygdala. Quantitative serial MRI is able to detect transient, and most importantly, long-term FS-induced changes that reflect microstructural alterations.
Collapse
|
120
|
Galic MA, Riazi K, Heida JG, Mouihate A, Fournier NM, Spencer SJ, Kalynchuk LE, Teskey GC, Pittman QJ. Postnatal inflammation increases seizure susceptibility in adult rats. J Neurosci 2008; 28:6904-13. [PMID: 18596165 PMCID: PMC3547980 DOI: 10.1523/jneurosci.1901-08.2008] [Citation(s) in RCA: 228] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2007] [Accepted: 05/19/2008] [Indexed: 01/28/2023] Open
Abstract
There are critical postnatal periods during which even subtle interventions can have long-lasting effects on adult physiology. We asked whether an immune challenge during early postnatal development can alter neuronal excitability and seizure susceptibility in adults. Postnatal day 14 (P14) male Sprague Dawley rats were injected with the bacterial endotoxin lipopolysaccharide (LPS), and control animals received sterile saline. Three weeks later, extracellular recordings from hippocampal slices revealed enhanced field EPSP slopes after Schaffer collateral stimulation and increased epileptiform burst-firing activity in CA1 after 4-aminopyridine application. Six to 8 weeks after postnatal LPS injection, seizure susceptibility was assessed in response to lithium-pilocarpine, kainic acid, and pentylenetetrazol. Rats treated with LPS showed significantly greater adult seizure susceptibility to all convulsants, as well as increased cytokine release and enhanced neuronal degeneration within the hippocampus after limbic seizures. These persistent increases in seizure susceptibility occurred only when LPS was given during a critical postnatal period (P7 and P14) and not before (P1) or after (P20). This early effect of LPS on adult seizures was blocked by concurrent intracerebroventricular administration of a tumor necrosis factor alpha (TNFalpha) antibody and mimicked by intracerebroventricular injection of rat recombinant TNFalpha. Postnatal LPS injection did not result in permanent changes in microglial (Iba1) activity or hippocampal cytokine [IL-1beta (interleukin-1beta) and TNFalpha] levels, but caused a slight increase in astrocyte (GFAP) numbers. These novel results indicate that a single LPS injection during a critical postnatal period causes a long-lasting increase in seizure susceptibility that is strongly dependent on TNFalpha.
Collapse
Affiliation(s)
- Michael A Galic
- Epilepsy and Brain Circuits Program, Hotchkiss Brain Institute, Department of Neuroscience, University of Calgary, Calgary, Alberta, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Järvelä JT, Lopez-Picon FR, Holopainen IE. Age-dependent cyclooxygenase-2 induction and neuronal damage after status epilepticus in the postnatal rat hippocampus. Epilepsia 2008; 49:832-41. [DOI: 10.1111/j.1528-1167.2007.01454.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
122
|
Miyamoto R, Shimakawa S, Suzuki S, Ogihara T, Tamai H. Edaravone prevents kainic acid-induced neuronal death. Brain Res 2008; 1209:85-91. [DOI: 10.1016/j.brainres.2008.02.064] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Revised: 02/06/2008] [Accepted: 02/15/2008] [Indexed: 12/28/2022]
|
123
|
Lemmens EM, Schijns OE, Beuls EA, Hoogland G. Cytogenesis in the dentate gyrus after neonatal hyperthermia-induced seizures: What becomes of surviving cells? Epilepsia 2008; 49:853-60. [DOI: 10.1111/j.1528-1167.2007.01476.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
124
|
Sun H, Huang Y, Yu X, Li Y, Yang J, Li R, Deng Y, Zhao G. Peroxisome proliferator‐activated receptor gamma agonist, rosiglitazone, suppresses CD40 expression and attenuates inflammatory responses after lithium pilocarpine‐induced status epilepticus in rats. Int J Dev Neurosci 2008; 26:505-15. [DOI: 10.1016/j.ijdevneu.2008.01.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 01/30/2008] [Accepted: 01/30/2008] [Indexed: 12/28/2022] Open
Affiliation(s)
- Hong Sun
- Research Center of EpilepsyDepartment of NeurologyXijing Hospital, the Fourth Military Medicine University of Chinese PLAXi'an710032Shaanxi ProvinceChina
| | - Yuangui Huang
- Research Center of EpilepsyDepartment of NeurologyXijing Hospital, the Fourth Military Medicine University of Chinese PLAXi'an710032Shaanxi ProvinceChina
| | - Xin Yu
- Research Center of EpilepsyDepartment of NeurologyXijing Hospital, the Fourth Military Medicine University of Chinese PLAXi'an710032Shaanxi ProvinceChina
- Department of NeurologyPeople's Liberation Army 401 HospitalQingdaoShandong266071China
| | - Yongnan Li
- Research Center of EpilepsyDepartment of NeurologyXijing Hospital, the Fourth Military Medicine University of Chinese PLAXi'an710032Shaanxi ProvinceChina
| | - Jun Yang
- Research Center of EpilepsyDepartment of NeurologyXijing Hospital, the Fourth Military Medicine University of Chinese PLAXi'an710032Shaanxi ProvinceChina
| | - Rui Li
- Department of NeurologyShaanxi Provincial People's HospitalChina
| | - Yanchun Deng
- Research Center of EpilepsyDepartment of NeurologyXijing Hospital, the Fourth Military Medicine University of Chinese PLAXi'an710032Shaanxi ProvinceChina
| | - Gang Zhao
- Department of NeurologyXijing Hospital, the Fourth Military Medicine University of Chinese PLAXi'an710032Shaanxi ProvinceChina
| |
Collapse
|
125
|
Abstract
Inflammation is known to participate in the mediation of a growing number of acute and chronic neurological disorders. Even so, the involvement of inflammation in the pathogenesis of epilepsy and seizure-induced brain damage has only recently been appreciated. Inflammatory processes, including activation of microglia and astrocytes and production of proinflammatory cytokines and related molecules, have been described in human epilepsy patients as well as in experimental models of epilepsy. For many decades, a functional role for brain inflammation has been implied by the effective use of anti-inflammatory treatments, such as steroids, in treating intractable pediatric epilepsy of diverse causes. Conversely, common pediatric infectious or autoimmune diseases are often accompanied by seizures during the course of illness. In addition, genetic susceptibility to inflammation correlated with an increased risk of epilepsy. Mounting evidence thus supports the hypothesis that inflammation may contribute to epileptogenesis and cause neuronal injury in epilepsy. We provide an overview of the current knowledge that implicates brain inflammation as a common predisposing factor in epilepsy, particularly childhood epilepsy.
Collapse
Affiliation(s)
- Jieun Choi
- Department of Pediatrics, Division of Neurology, Northwestern University Children's Memorial Hospital, Chicago, IL, USA
- Department of Pediatrics, Seoul National University Boramae Hospital, Seoul, Korea
| | - Sookyong Koh
- Department of Pediatrics, Division of Neurology, Northwestern University Children's Memorial Hospital, Chicago, IL, USA
| |
Collapse
|
126
|
Seizures in the developing brain: cellular and molecular mechanisms of neuronal damage, neurogenesis and cellular reorganization. Neurochem Int 2007; 52:935-47. [PMID: 18093696 DOI: 10.1016/j.neuint.2007.10.021] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Revised: 10/29/2007] [Accepted: 10/31/2007] [Indexed: 12/30/2022]
Abstract
Epilepsy is a common neurological disorder that occurs more frequently in children than in adults. The extent that prolonged seizure activity, i.e. status epilepticus (SE), and repeated, brief seizures affect neuronal structure and function in both the immature and mature brain has been the subject of increasing clinical and experimental research. Earlier studies suggest that seizure-induced effects in the immature brain compared with the adult brain are different. This is manifested as differences in neuronal vulnerability, cellular and synaptic reorganization and regenerative processes. The focus of this review is first to give a short overview of currently used experimental models of epilepsy in immature rats, and then discuss more thoroughly seizure-induced acute and sub-acute cellular and molecular alterations, highlight the contribution of inflammatory-like reactions and intracellular cytoskeleton to the insult, and reveal changes in the structure and function of inhibitory GABA(A) and excitatory glutamate receptors. The role of seizure-activated reparative, plastic processes, synaptic remodelling, neurogenesis as well as the long-term consequences of seizures are briefly outlined. The main emphasis is put on studies carried out in experimental animals, and the focus of interest is the hippocampus, the brain area of great vulnerability in epilepsy. In vitro studies are discussed only to limited extent. Collectively, recent studies suggest that the deleterious effects of seizures may not solely be a consequence of neuronal damage and loss per se, but could be due to the fact that seizures interfere with the highly regulated developmental processes in the immature brain.
Collapse
|
127
|
Somera-Molina KC, Robin B, Somera CA, Anderson C, Stine C, Koh S, Behanna HA, Van Eldik LJ, Watterson DM, Wainwright MS. Glial Activation Links Early-Life Seizures and Long-Term Neurologic Dysfunction: Evidence Using a Small Molecule Inhibitor of Proinflammatory Cytokine Upregulation. Epilepsia 2007; 48:1785-1800. [PMID: 17521344 DOI: 10.1111/j.1528-1167.2007.01135.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE Early-life seizures increase vulnerability to subsequent neurologic insult. We tested the hypothesis that early-life seizures increase susceptibility to later neurologic injury by causing chronic glial activation. To determine the mechanisms by which glial activation may modulate neurologic injury, we examined both acute changes in proinflammatory cytokines and long-term changes in astrocyte and microglial activation and astrocyte glutamate transporters in a "two-hit" model of kainic acid (KA)-induced seizures. METHODS Postnatal day (P) 15 male rats were administered KA or phosphate buffered saline (PBS). On P45 animals either received a second treatment of KA or PBS. On P55, control (PBS-PBS), early-life seizure (KA-PBS), adult seizure (PBS-KA), and "two-hit" (KA-KA) groups were examined for astrocyte and microglial activation, alteration in glutamate transporters, and expression of the glial protein, clusterin. RESULTS P15 seizures resulted in an acute increase in hippocampal levels of IL-1beta and S100B, followed by behavioral impairment and long-term increases in GFAP and S100B. Animals in the "two-hit" group showed greater microglial activation, neurologic injury, and susceptibility to seizures compared to the adult seizure group. Glutamate transporters increased following seizures but did not differ between these two groups. Treatment with Minozac, a small molecule inhibitor of proinflammatory cytokine upregulation, following early-life seizures prevented both the long-term increase in activated glia and the associated behavioral impairment. CONCLUSIONS These data suggest that glial activation following early-life seizures results in increased susceptibility to seizures in adulthood, in part through priming microglia and enhanced microglial activation. Glial activation may be a novel therapeutic target in pediatric epilepsy.
Collapse
Affiliation(s)
- Kathleen C Somera-Molina
- Integrated Graduate Program, Department of PediatricsNeurologyNeonatologyCenter for Drug Discovery and Chemical BiologyDepartment of Cell and Molecular BiologyDepartment of Molecular Pharmacology and Biological Chemistry, Northwestern University, Chicago, Illinois, U.S.A
| | - Beverley Robin
- Integrated Graduate Program, Department of PediatricsNeurologyNeonatologyCenter for Drug Discovery and Chemical BiologyDepartment of Cell and Molecular BiologyDepartment of Molecular Pharmacology and Biological Chemistry, Northwestern University, Chicago, Illinois, U.S.A
| | - Cherie Ann Somera
- Integrated Graduate Program, Department of PediatricsNeurologyNeonatologyCenter for Drug Discovery and Chemical BiologyDepartment of Cell and Molecular BiologyDepartment of Molecular Pharmacology and Biological Chemistry, Northwestern University, Chicago, Illinois, U.S.A
| | - Christopher Anderson
- Integrated Graduate Program, Department of PediatricsNeurologyNeonatologyCenter for Drug Discovery and Chemical BiologyDepartment of Cell and Molecular BiologyDepartment of Molecular Pharmacology and Biological Chemistry, Northwestern University, Chicago, Illinois, U.S.A
| | - Christy Stine
- Integrated Graduate Program, Department of PediatricsNeurologyNeonatologyCenter for Drug Discovery and Chemical BiologyDepartment of Cell and Molecular BiologyDepartment of Molecular Pharmacology and Biological Chemistry, Northwestern University, Chicago, Illinois, U.S.A
| | - Sookyong Koh
- Integrated Graduate Program, Department of PediatricsNeurologyNeonatologyCenter for Drug Discovery and Chemical BiologyDepartment of Cell and Molecular BiologyDepartment of Molecular Pharmacology and Biological Chemistry, Northwestern University, Chicago, Illinois, U.S.A
| | - Heather A Behanna
- Integrated Graduate Program, Department of PediatricsNeurologyNeonatologyCenter for Drug Discovery and Chemical BiologyDepartment of Cell and Molecular BiologyDepartment of Molecular Pharmacology and Biological Chemistry, Northwestern University, Chicago, Illinois, U.S.A
| | - Linda J Van Eldik
- Integrated Graduate Program, Department of PediatricsNeurologyNeonatologyCenter for Drug Discovery and Chemical BiologyDepartment of Cell and Molecular BiologyDepartment of Molecular Pharmacology and Biological Chemistry, Northwestern University, Chicago, Illinois, U.S.A
| | - D Martin Watterson
- Integrated Graduate Program, Department of PediatricsNeurologyNeonatologyCenter for Drug Discovery and Chemical BiologyDepartment of Cell and Molecular BiologyDepartment of Molecular Pharmacology and Biological Chemistry, Northwestern University, Chicago, Illinois, U.S.A
| | - Mark S Wainwright
- Integrated Graduate Program, Department of PediatricsNeurologyNeonatologyCenter for Drug Discovery and Chemical BiologyDepartment of Cell and Molecular BiologyDepartment of Molecular Pharmacology and Biological Chemistry, Northwestern University, Chicago, Illinois, U.S.A
| |
Collapse
|
128
|
Kinney HC, Armstrong DL, Chadwick AE, Crandall LA, Hilbert C, Belliveau RA, Kupsky WJ, Krous HF. Sudden death in toddlers associated with developmental abnormalities of the hippocampus: a report of five cases. Pediatr Dev Pathol 2007; 10:208-23. [PMID: 17535090 DOI: 10.2350/06-08-0144.1] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Accepted: 11/27/2006] [Indexed: 12/24/2022]
Abstract
Sudden unexplained death in childhood (SUDC) is the sudden death of a child older than 1 year of age that remains unexplained after review of the clinical history, circumstances of death, and autopsy with appropriate ancillary testing. We report here 5 cases of SUDC in toddlers that we believe define a new entity associated with hippocampal anomalies at autopsy. All of the toddlers died unexpectedly during the night, apparently during sleep. Within 48 hours before death, 2 toddlers had fever, 3 had a minor upper respiratory tract infection, and 3 experienced minor head trauma. There was a history of febrile seizures in 2 (40%) and a family history of febrile seizures in 2 (40%). Hippocampal findings included external asymmetry and 2 or more microdysgenetic features. The incidence of certain microdysgenetic features was substantially increased in the temporal lobes of these 5 cases compared with the temporal lobes of 39 (control) toddlers with the causes of death established at autopsy (P < 0.01). We propose that these 5 cases define a potential subset of SUDC whose sudden death is caused by an unwitnessed seizure arising during sleep in the anomalous hippocampus and producing cardiopulmonary arrest. Precipitating factors may be fever, infection, and/or minor head trauma. Suggested risk factors are a history of febrile seizures and/or a family history of febrile seizures. Future studies are needed to confirm these initial findings and to define the putative links between sudden death, hippocampal anomalies, and febrile seizures in toddlers.
Collapse
Affiliation(s)
- Hannah C Kinney
- Department of Pathology, Children's Hospital and Harvard Medical School, Boston, MA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
129
|
α-MSH Rescues Neurons from Excitotoxic Cell Death. J Mol Neurosci 2007; 33:239-51. [DOI: 10.1007/s12031-007-0019-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Accepted: 10/10/2006] [Indexed: 01/13/2023]
|
130
|
Scantlebury MH, Heida JG, Hasson HJ, Velísková J, Velísek L, Galanopoulou AS, Moshé SL. Age-Dependent Consequences of Status Epilepticus: Animal Models. Epilepsia 2007; 48 Suppl 2:75-82. [PMID: 17571355 DOI: 10.1111/j.1528-1167.2007.01069.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Status epilepticus (SE) is a significant neurological emergency that occurs most commonly in children. Although SE has been associated with an elevated risk of brain injury, it is unclear from clinical studies in whom and under what circumstances brain injury will occur. The purpose of this review is to evaluate the effects of age on the consequences of SE. In this review, we focus mainly on the animal data that describe the consequences of a single episode of SE induced in the adult and immature rat brain. The experimental data suggest that the risk of developing SE-induced brain damage, subsequent epilepsy and cognitive deficits in large part depends on the age in which the SE occurs. Younger rats are more resistant to seizure-induced brain damage than older rats; however, when SE occurs in immature rats with abnormal brains, there is an increase in the severity of seizure-induced brain injury. Better understanding of the pathophysiologic mechanisms underlying the age-specific alterations to the brain induced by SE will lead to the development of novel and effective strategies to improve the deleterious consequences.
Collapse
Affiliation(s)
- Morris H Scantlebury
- Korey Department of Neurology, Albert Einstein College of Medicine, Pelham Parkway South, Kennedy Center, Bronx, NY, USA.
| | | | | | | | | | | | | |
Collapse
|
131
|
Jara JH, Singh BB, Floden AM, Combs CK. Tumor necrosis factor alpha stimulates NMDA receptor activity in mouse cortical neurons resulting in ERK-dependent death. J Neurochem 2007; 100:1407-20. [PMID: 17241124 PMCID: PMC3619402 DOI: 10.1111/j.1471-4159.2006.04330.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Multiple cytokines are secreted in the brain during pro-inflammatory conditions and likely affect neuron survival. Previously, we demonstrated that glutamate and tumor necrosis factor alpha (TNFalpha) kill neurons via activation of the N-methyl-d-aspartate (NMDA) and TNFalpha receptors, respectively. This report continues characterizing the signaling cross-talk pathway initiated during this inflammation-related mechanism of death. Stimulation of mouse cortical neuron cultures with TNFalpha results in a transient increase in NMDA receptor-dependent calcium influx that is additive with NMDA stimulation and inhibited by pre-treatment with the NMDA receptor antagonist, DL-2-amino-5-phosphonovaleric acid, or the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate/kainate receptor antagonist, 6,7-dinitroquinoxaline-2,3-dione. Pre-treatment with N-type calcium channel antagonist, omega-conotoxin, or the voltage-gated sodium channel antagonist, tetrodotoxin, also prevents the TNFalpha-stimulated calcium influx. Combined TNFalpha and NMDA stimulation results in a transient increase in activity of extracellular signal-regulated kinases (ERKs) and c-Jun N-terminal kinases (JNKs). Specific inhibition of ERKs but not JNKs is protective against TNFalpha and NMDA-dependent death. Death is mediated via the low-affinity TNFalpha receptor, TNFRII, as agonist antibodies for TNFRII but not TNFRI stimulate NMDA receptor-dependent calcium influx and death. These data demonstrate how microglial pro-inflammatory secretions including TNFalpha can acutely facilitate glutamate-dependent neuron death.
Collapse
Affiliation(s)
- Javier H. Jara
- Department of Pharmacology, Physiology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, USA
| | - Brij B. Singh
- Department of Biochemistry and Molecular Biology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, USA
| | - Angela M. Floden
- Department of Pharmacology, Physiology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, USA
| | - Colin K. Combs
- Department of Pharmacology, Physiology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, USA
| |
Collapse
|
132
|
Dietert RR, Piepenbrink MS. Perinatal immunotoxicity: why adult exposure assessment fails to predict risk. ENVIRONMENTAL HEALTH PERSPECTIVES 2006; 114:477-83. [PMID: 16581533 PMCID: PMC1440768 DOI: 10.1289/ehp.8566] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Recent research has pointed to the developing immune system as a remarkably sensitive toxicologic target for environmental chemicals and drugs. In fact, the perinatal period before and just after birth is replete with dynamic immune changes, many of which do not occur in adults. These include not only the basic maturation and distribution of immune cell types and selection against autoreactive lymphocytes but also changes designed specifically to protect the pregnancy against immune-mediated miscarriage. The newborn is then faced with critical immune maturational adjustments to achieve an immune balance necessary to combat myriad childhood and later-life diseases. All these processes set the fetus and neonate completely apart from the adult regarding immunotoxicologic risk. Yet for decades, safety evaluation has relied almost exclusively upon exposure of the adult immune system to predict perinatal immune risk. Recent workshops and forums have suggested a benefit in employing alternative exposures that include exposure throughout early life stages. However, issues remain concerning when and where such applications might be required. In this review we discuss the reasons why immunotoxic assessment is important for current childhood diseases and why adult exposure assessment cannot predict the effect of xenobiotics on the developing immune system. It also provides examples of developmental immunotoxicants where age-based risk appears to differ. Finally, it stresses the need to replace adult exposure assessment for immune evaluation with protocols that can protect the developing immune system.
Collapse
Affiliation(s)
- Rodney R Dietert
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, North Tower Road, Ithaca, NY 14853, USA.
| | | |
Collapse
|
133
|
Abstract
PURPOSE Despite the prevalence of febrile convulsions (FCs), their pathophysiology has remained elusive. We tested the hypothesis that components of the immune response, particularly the proinflammatory cytokine interleukin-1beta (IL-1beta) and its naturally occurring antagonist interleukin-1 receptor antagonist (IL-1ra) may play a role in the genesis of FC. METHODS Postnatal day 14 rats were treated with lipopolysaccharide (LPS; 200 microg/kg, i.p.) followed by a subconvulsant dose of kainic acid (1.75 mg/kg, i.p.). Brains were harvested at and 2 h after onset of FCs to measure brain levels of IL-1beta and IL-1ra. Separate groups of animals were given intracerebroventricular (ICV) injections of IL-1beta, or IL-1ra in an attempt to establish a causal relation between the IL-1beta/IL-1ra system and FCs. RESULTS Animals with FCs showed increased IL-1beta in the hypothalamus and hippocampus but not in the cortex compared with noFC animals that also received LPS and kainic acid. This increase was first detected in the hippocampus at onset of FCs. No detectable difference in IL-1ra was found in brain regions examined in either group. When animals were treated with IL-1beta ICV, a dose-dependant increase was noted in the proportion of animals that experienced FCs, whereas increasing doses of IL-1ra, given to separate groups of animals, were anticonvulsant. CONCLUSIONS Our results suggest that excessive amounts of IL-1beta may influence the genesis of FCs. This may occur by overproduction of IL-1beta, or by alteration in the IL-1beta/IL-1ra ratio in the brain after an immune challenge.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Brain/drug effects
- Brain/immunology
- Brain Chemistry/drug effects
- Brain Chemistry/immunology
- Cerebral Cortex/chemistry
- Cerebral Cortex/drug effects
- Cerebral Cortex/physiopathology
- Chemokines/immunology
- Chemokines/pharmacology
- Chemokines/physiology
- Cytokines/immunology
- Cytokines/pharmacology
- Cytokines/physiology
- Disease Models, Animal
- Dose-Response Relationship, Immunologic
- Female
- Hippocampus/chemistry
- Hippocampus/drug effects
- Hippocampus/immunology
- Hippocampus/physiopathology
- Hypothalamus/drug effects
- Hypothalamus/immunology
- Hypothalamus/physiopathology
- Injections, Intraventricular
- Interleukin 1 Receptor Antagonist Protein
- Interleukin-1/immunology
- Interleukin-1/pharmacology
- Interleukin-1/physiology
- Rats
- Rats, Sprague-Dawley
- Receptors, Interleukin-1/antagonists & inhibitors
- Receptors, Interleukin-1/drug effects
- Receptors, Interleukin-1/physiology
- Seizures, Febrile/chemically induced
- Seizures, Febrile/immunology
- Seizures, Febrile/physiopathology
- Sialoglycoproteins/immunology
- Sialoglycoproteins/pharmacology
- Sialoglycoproteins/physiology
Collapse
Affiliation(s)
- James G Heida
- Hotchkiss Brain Institute, Department of Physiology and Biophysics, Faculty of Medicine University of Calgary, Calgary, Alberta, Canada.
| | | |
Collapse
|
134
|
Bluthé RM, Frenois F, Kelley KW, Dantzer R. Pentoxifylline and insulin-like growth factor-I (IGF-I) abrogate kainic acid-induced cognitive impairment in mice. J Neuroimmunol 2005; 169:50-8. [PMID: 16154639 DOI: 10.1016/j.jneuroim.2005.07.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Accepted: 07/27/2005] [Indexed: 12/20/2022]
Abstract
Hippocampal insults involving neuroimmune mechanisms can impair learning and memory in a variety of tasks. The present study was designed to assess the effect of pentoxifylline, an inhibitor of tumor necrosis factor alpha (TNFalpha), and insulin-like growth factor-I (IGF-I) on kainate (KA)-induced impairment in spatial memory. Male mice received a subcutaneous injection of a dose of KA (15 mg/kg) that had no cytotoxic effect on hippocampal neurons as confirmed by Fluorojade B staining. This dose resulted in an impairment of spatial memory in a two-trial recognition task 11 days later. Intraperitoneal administration of pentoxifylline (200 mg/kg) abrogated this effect. Repeated intracerebroventricular injection of IGF-I (2 microg/mouse on day 1 followed by 1 microg/mouse on days 2-5) abrogated KA-induced deficits in spatial memory whereas acute IGF-I (2 microg/mouse on day 1 only) had mixed effects. These findings indicate that endogenous TNFalpha is probably involved in the detrimental effects of kainate on cognition and that exogenous IGF-I can oppose these effects, probably by antagonizing TNFalpha-induced neurotoxicity.
Collapse
Affiliation(s)
- Rose-Marie Bluthé
- Integrative Neurobiology, CNRS - INRA - University Victor Segalen, Bordeaux, France.
| | | | | | | |
Collapse
|