101
|
Wang J, Behr MA. Building a better bacillus: the emergence of Mycobacterium tuberculosis. Front Microbiol 2014; 5:139. [PMID: 24765091 PMCID: PMC3982062 DOI: 10.3389/fmicb.2014.00139] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 03/18/2014] [Indexed: 11/29/2022] Open
Abstract
The genus Mycobacterium is comprised of more than 150 species that reside in a wide variety of habitats. Most mycobacteria are environmental organisms that are either not associated with disease or are opportunistic pathogens that cause non-transmissible disease in immunocompromised individuals. In contrast, a small number of species, such as the tubercle bacillus, Mycobacterium tuberculosis, are host-adapted pathogens for which there is no known environmental reservoir. In recent years, gene disruption studies using the host-adapted pathogen have uncovered a number of “virulence factors,” yet genomic data indicate that many of these elements are present in non-pathogenic mycobacteria. This suggests that much of the genetic make-up that enables virulence in the host-adapted pathogen is already present in environmental members of the genus. In addition to these generic factors, we hypothesize that molecules elaborated exclusively by professional pathogens may be particularly implicated in the ability of M. tuberculosis to infect, persist, and cause transmissible pathology in its host species, Homo sapiens. One approach to identify these molecules is to employ comparative analysis of mycobacterial genomes, to define evolutionary events such as horizontal gene transfer (HGT) that contributed M. tuberculosis-specific genetic elements. Independent studies have now revealed the presence of HGT genes in the M. tuberculosis genome and their role in the pathogenesis of disease is the subject of ongoing investigations. Here we review these studies, focusing on the hypothesized role played by HGT loci in the emergence of M. tuberculosis from a related environmental species into a highly specialized human-adapted pathogen.
Collapse
Affiliation(s)
- Joyce Wang
- Department of Microbiology and Immunology, McGill University Montreal, QC, Canada
| | - Marcel A Behr
- Department of Microbiology and Immunology, McGill University Montreal, QC, Canada ; Department of Medicine, McGill University Montreal, QC, Canada ; McGill International TB Centre Montreal, QC, Canada
| |
Collapse
|
102
|
Lu J, Liu M, Wang Y, Pang Y, Zhao Z. Mechanisms of fluoroquinolone monoresistance inMycobacterium tuberculosis. FEMS Microbiol Lett 2014; 353:40-8. [DOI: 10.1111/1574-6968.12401] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Jie Lu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery; Beijing Pediatric Research Institute; Beijing Children's Hospital affiliated to Capital Medical University; Beijing China
- National Center for Tuberculosis Control and Prevention; Chinese Center for Disease Control and Prevention; Beijing China
| | - Min Liu
- Liaoning Provincial Center for Disease Control and Prevention; Shenyang China
| | - Yufeng Wang
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery; Beijing Pediatric Research Institute; Beijing Children's Hospital affiliated to Capital Medical University; Beijing China
| | - Yu Pang
- National Center for Tuberculosis Control and Prevention; Chinese Center for Disease Control and Prevention; Beijing China
| | - Zhuo Zhao
- Liaoning Provincial Center for Disease Control and Prevention; Shenyang China
| |
Collapse
|
103
|
Xu Y, Zhang Z, Sun Z. Drug resistance to Mycobacterium tuberculosis: from the traditional Chinese view to modern systems biology. Crit Rev Microbiol 2014; 41:399-410. [PMID: 24433008 DOI: 10.3109/1040841x.2013.860948] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The pathogen, Mycobacterium tuberculosis (M. tuberculosis) is a well-evolved, organized pathogen that has developed drug resistance, specifically multidrug resistance (MDR) and extensive drug resistance (XDR). This review primarily summarizes the mechanisms of drug resistance by M. tuberculosis according to the traditional Chinese view. The traditional Chinese view of drug resistance includes: the physical barrier of the cell wall; mutations relating to current anti-TB agents; drug efflux pumps; and drug stress, including the SOS response systems, the mismatch repair systems and the toxin-antitoxin systems. In addition, this review addresses the integrated systems biology of genomics, transcriptomics, proteomics, metabolomics and interactomics. Development of the various levels of systems biology has enabled determination of the anatomy of bacteria. Finally, the current review proposes that further investigation regarding the population of individuals with a high drug metabolic speed is vital to further understand drug resistance in M. tuberculosis.
Collapse
Affiliation(s)
- Yuhui Xu
- Department of Molecular Biology, Beijing Tuberculosis & Thoracic Tumor Research Institute , Tongzhou District, Beijing , China
| | | | | |
Collapse
|
104
|
Viveiros M, Martins M, Rodrigues L, Machado D, Couto I, Ainsa J, Amaral L. Inhibitors of mycobacterial efflux pumps as potential boosters for anti-tubercular drugs. Expert Rev Anti Infect Ther 2014; 10:983-98. [DOI: 10.1586/eri.12.89] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
105
|
Shi C, Tiwari D, Wilson DJ, Seiler CL, Schnappinger D, Aldrich CC. Bisubstrate Inhibitors of Biotin Protein Ligase in Mycobacterium tuberculosis Resistant to Cyclonucleoside Formation. ACS Med Chem Lett 2013; 4. [PMID: 24363833 DOI: 10.1021/ml400328a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb), the etiological agent of tuberculosis, is the leading cause bacterial infectious diseases mortality. Biotin protein ligase (BirA) globally regulates lipid metabolism in Mtb through the posttranslational biotinylation of acyl coenzyme A carboxylases (ACCs) involved in lipid biosynthesis and is essential for Mtb survival. We previously developed a rationally designed bisubstrate inhibitor of BirA that displays potent enzyme inhibition and whole-cell activity against multidrug resistant and extensively drug resistant Mtb strains. Here we present the design, synthesis and evaluation of a focused series of inhibitors, which are resistant to cyclonucleoside formation, a key decomposition pathway of our initial analogue. Improved chemical stability is realized through replacement of the adenosyl N-3 nitrogen and C-5' oxygen atom with carbon as well as incorporation of bulky group on the nucleobase to prevent the required syn-conformation necessary for proper alignment of N-3 with C-5'.
Collapse
Affiliation(s)
- Ce Shi
- Center
for Drug Design, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department
of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Divya Tiwari
- Department
of Microbiology and Immunology, Weill Cornell Medical College, New York, New York 10065, United States
| | - Daniel J. Wilson
- Center
for Drug Design, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christopher L. Seiler
- Department
of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Dirk Schnappinger
- Department
of Microbiology and Immunology, Weill Cornell Medical College, New York, New York 10065, United States
| | - Courtney C. Aldrich
- Center
for Drug Design, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department
of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
106
|
Jiang D, Zhang Q, Zheng Q, Zhou H, Jin J, Zhou W, Bartlam M, Rao Z. Structural analysis ofMycobacterium tuberculosisATP-binding cassette transporter subunit UgpB reveals specificity for glycerophosphocholine. FEBS J 2013; 281:331-41. [DOI: 10.1111/febs.12600] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 10/31/2013] [Accepted: 11/01/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Dunquan Jiang
- State Key Laboratory of Medicinal Chemical Biology; Tianjin China
- College of Life Sciences; Nankai University; Tianjin China
| | - Qingqing Zhang
- State Key Laboratory of Medicinal Chemical Biology; Tianjin China
- College of Life Sciences; Nankai University; Tianjin China
| | - Qianqian Zheng
- State Key Laboratory of Medicinal Chemical Biology; Tianjin China
- College of Life Sciences; Nankai University; Tianjin China
| | - Hao Zhou
- State Key Laboratory of Medicinal Chemical Biology; Tianjin China
- College of Life Sciences; Nankai University; Tianjin China
| | - Jin Jin
- State Key Laboratory of Medicinal Chemical Biology; Tianjin China
- College of Pharmacy; Nankai University; Tianjin China
| | - Weihong Zhou
- State Key Laboratory of Medicinal Chemical Biology; Tianjin China
- College of Life Sciences; Nankai University; Tianjin China
| | - Mark Bartlam
- State Key Laboratory of Medicinal Chemical Biology; Tianjin China
- College of Life Sciences; Nankai University; Tianjin China
| | - Zihe Rao
- State Key Laboratory of Medicinal Chemical Biology; Tianjin China
- College of Life Sciences; Nankai University; Tianjin China
- College of Pharmacy; Nankai University; Tianjin China
| |
Collapse
|
107
|
Ardelli BF. Transport proteins of the ABC systems superfamily and their role in drug action and resistance in nematodes. Parasitol Int 2013; 62:639-46. [DOI: 10.1016/j.parint.2013.02.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 02/20/2013] [Accepted: 02/21/2013] [Indexed: 11/28/2022]
|
108
|
Lamont EA, Xu WW, Sreevatsan S. Host-Mycobacterium avium subsp. paratuberculosis interactome reveals a novel iron assimilation mechanism linked to nitric oxide stress during early infection. BMC Genomics 2013; 14:694. [PMID: 24112552 PMCID: PMC3832399 DOI: 10.1186/1471-2164-14-694] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 10/02/2013] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The initial interaction between host cell and pathogen sets the stage for the ensuing infection and ultimately determine the course of disease. However, there is limited knowledge of the transcripts utilized by host and pathogen and how they may impact one another during this critical step. The purpose of this study was to create a host-Mycobacterium avium subsp. paratuberculosis (MAP) interactome for early infection in an epithelium-macrophage co-culture system using RNA-seq. RESULTS Establishment of the host-MAP interactome revealed a novel iron assimilation system for carboxymycobactin. Iron assimilation is linked to nitric oxide synthase-2 production by the host and subsequent nitric oxide buildup. Iron limitation as well as nitric oxide is a prompt for MAP to enter into an iron sequestration program. This new iron sequestration program provides an explanation for mycobactin independence in some MAP strains grown in vitro as well as during infection within the host cell. Utilization of such a pathway is likely to aid MAP establishment and long-term survival within the host. CONCLUSIONS The host-MAP interactome identified a number of metabolic, DNA repair and virulence genes worthy for consideration as novel drug targets as well as future pathogenesis studies. Reported interactome data may also be utilized to conduct focused, hypothesis-driven research. Co-culture of uninfected bovine epithelial cells (MAC-T) and primary bovine macrophages creates a tolerant genotype as demonstrated by downregulation of inflammatory pathways. This co-culture system may serve as a model to investigate other bovine enteric pathogens.
Collapse
Affiliation(s)
- Elise A Lamont
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, 1971 Commonwealth Avenue, Saint Paul, MN 55108, USA
| | - Wayne W Xu
- Minnesota Supercomputing Institute, University of Minnesota, Saint Paul, MN 55108, USA
| | - Srinand Sreevatsan
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, 1971 Commonwealth Avenue, Saint Paul, MN 55108, USA
- Department of Veterinary Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108, USA
| |
Collapse
|
109
|
Ioerger TR, O’Malley T, Liao R, Guinn KM, Hickey MJ, Mohaideen N, Murphy KC, Boshoff HIM, Mizrahi V, Rubin EJ, Sassetti CM, Barry CE, Sherman DR, Parish T, Sacchettini JC. Identification of new drug targets and resistance mechanisms in Mycobacterium tuberculosis. PLoS One 2013; 8:e75245. [PMID: 24086479 PMCID: PMC3781026 DOI: 10.1371/journal.pone.0075245] [Citation(s) in RCA: 185] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 08/12/2013] [Indexed: 11/18/2022] Open
Abstract
Identification of new drug targets is vital for the advancement of drug discovery against Mycobacterium tuberculosis, especially given the increase of resistance worldwide to first- and second-line drugs. Because traditional target-based screening has largely proven unsuccessful for antibiotic discovery, we have developed a scalable platform for target identification in M. tuberculosis that is based on whole-cell screening, coupled with whole-genome sequencing of resistant mutants and recombineering to confirm. The method yields targets paired with whole-cell active compounds, which can serve as novel scaffolds for drug development, molecular tools for validation, and/or as ligands for co-crystallization. It may also reveal other information about mechanisms of action, such as activation or efflux. Using this method, we identified resistance-linked genes for eight compounds with anti-tubercular activity. Four of the genes have previously been shown to be essential: AspS, aspartyl-tRNA synthetase, Pks13, a polyketide synthase involved in mycolic acid biosynthesis, MmpL3, a membrane transporter, and EccB3, a component of the ESX-3 type VII secretion system. AspS and Pks13 represent novel targets in protein translation and cell-wall biosynthesis. Both MmpL3 and EccB3 are involved in membrane transport. Pks13, AspS, and EccB3 represent novel candidates not targeted by existing TB drugs, and the availability of whole-cell active inhibitors greatly increases their potential for drug discovery.
Collapse
Affiliation(s)
- Thomas R. Ioerger
- Department of Computer Science and Engineering, Texas A&M University, College Station, Texas, United States of America
| | - Theresa O’Malley
- Infectious Disease Research Institute, Seattle, Washington, United States of America
| | - Reiling Liao
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Kristine M. Guinn
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Mark J. Hickey
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Nilofar Mohaideen
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Kenan C. Murphy
- University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Helena I. M. Boshoff
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Valerie Mizrahi
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Eric J. Rubin
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Christopher M. Sassetti
- University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Clifton E. Barry
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - David R. Sherman
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Tanya Parish
- Infectious Disease Research Institute, Seattle, Washington, United States of America
| | - James C. Sacchettini
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
110
|
Palma C, Schiavoni G, Abalsamo L, Mattei F, Piccaro G, Sanchez M, Fernandez C, Singh M, Gabriele L. Mycobacterium tuberculosis PstS1 amplifies IFN-γ and induces IL-17/IL-22 responses by unrelated memory CD4+ T cells via dendritic cell activation. Eur J Immunol 2013; 43:2386-97. [PMID: 23719937 DOI: 10.1002/eji.201243245] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 04/10/2013] [Accepted: 05/27/2013] [Indexed: 12/31/2022]
Abstract
The immunological mechanisms that modulate protection during Mycobacterium tuberculosis (Mtb) infection or vaccination are not fully understood. Secretion of IFN-γ and, to a lesser extent, of IL-17 by CD4(+) T cells plays a major role both in protection and immunopathology. Few Mtb Ags interacting with DCs affect priming, activation, and regulation of Ag-unrelated CD4(+) T-cell responses. Here we demonstrate that PstS1, a 38 kDa-lipoprotein of Mtb, promotes Ag-independent activation of memory T lymphocytes specific for Ag85B or Ag85A, two immunodominant protective Ags of Mtb. PstS1 expands CD4(+) and CD8(+) memory T cells, amplifies secretion of IFN-γ and IL-22 and induces IL-17 production by effector memory cells in an Ag-unrelated manner in vitro and in vivo. These effects were mediated through the stimulation of DCs, particularly of the CD8α(-) subtype, which respond to PstS1 by undergoing phenotypic maturation and by secreting IL-6, IL-1β and, to a lower extent, IL-23. IL-6 secretion by PstS1-stimulated DCs was required for IFN-γ, and to a lesser extent for IL-22 responses by Ag85B-specific memory T cells. These results may open new perspectives for immunotherapeutic strategies to control Th1/Th17 immune responses in Mtb infections and in vaccinations against tuberculosis.
Collapse
Affiliation(s)
- Carla Palma
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Spivey VL, Whalan RH, Hirst EMA, Smerdon SJ, Buxton RS. An attenuated mutant of the Rv1747 ATP-binding cassette transporter of Mycobacterium tuberculosis and a mutant of its cognate kinase, PknF, show increased expression of the efflux pump-related iniBAC operon. FEMS Microbiol Lett 2013; 347:107-15. [PMID: 23915284 PMCID: PMC3908365 DOI: 10.1111/1574-6968.12230] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 07/24/2013] [Accepted: 07/24/2013] [Indexed: 11/30/2022] Open
Abstract
The ATP-binding cassette transporter Rv1747 is required for the growth of Mycobacterium tuberculosis in mice and in macrophages. Its structure suggests it is an exporter. Rv1747 forms a two-gene operon with pknF coding for the serine/threonine protein kinase PknF, which positively modulates the function of the transporter. We show that deletion of Rv1747 or pknF results in a number of transcriptional changes which could be complemented by the wild type allele, most significantly up-regulation of the iniBAC genes. This operon is inducible by isoniazid and ethambutol and by a broad range of inhibitors of cell wall biosynthesis and is required for efflux pump functioning. However, neither the Rv1747 or pknF mutant showed increased susceptibility to a range of drugs and cell wall stress reagents including isoniazid and ethambutol, cell wall structure and cell division appear normal by electron microscopy, and no differences in lipoarabinomannan were found. Transcription from the pknF promoter was not induced by a range of stress reagents. We conclude that the loss of Rv1747 affects cell wall biosynthesis leading to the production of intermediates that cause induction of iniBAC transcription and implicates it in exporting a component of the cell wall, which is necessary for virulence.
Collapse
Affiliation(s)
- Vicky L Spivey
- Division of Mycobacterial Research, MRC National Institute for Medical Research, London, UK
| | | | | | | | | |
Collapse
|
112
|
Liu H, Jiang Y, Dou X, Wang H, Zhao X, Zhang W, Wan L, Zhang Z, Chen C, Wan K. pstS1 polymorphisms of Mycobacterium tuberculosis strains may reflect ongoing immune evasion. Tuberculosis (Edinb) 2013; 93:475-81. [PMID: 23849889 DOI: 10.1016/j.tube.2013.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 05/04/2013] [Accepted: 05/08/2013] [Indexed: 10/26/2022]
Abstract
The mycobacterial antigen PstS1 is a highly immunogenic and immunostimulatory component of the mycobacterial cell membrane and a good candidate for the diagnosis and vaccination against tuberculosis. Here we selected 180 clinical isolates of Mycobacterium tuberculosis complex (MTBC) in China and 11 different Bacille Calmette Guerin (BCG) strains, amplified the gene of the PstS1 antigen and compared the sequences with those of four other Mycobacterium bovis and BCG strains from the NCBI genome website. Some of the mutations, especially 2 frameshift mutations, occurred in the PstS1antigen, which may have resulted in the protein function alteration and ongoing immune evasion. A unique single nucleotide polymorphism of the M. bovis and BCG strains was found in this antigen and may be useful for differentiating M. bovis and BCG strains from M. tuberculosis strains.
Collapse
Affiliation(s)
- Haican Liu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Beijing 102206, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Cox RA, Garcia MJ. Adaptation of mycobacteria to growth conditions: a theoretical analysis of changes in gene expression revealed by microarrays. PLoS One 2013; 8:e59883. [PMID: 23593152 PMCID: PMC3625197 DOI: 10.1371/journal.pone.0059883] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 02/19/2013] [Indexed: 11/19/2022] Open
Abstract
Background Microarray analysis is a powerful technique for investigating changes in gene expression. Currently, results (r-values) are interpreted empirically as either unchanged or up- or down-regulated. We now present a mathematical framework, which relates r-values to the macromolecular properties of population-average cells. The theory is illustrated by the analysis of published data for two species; namely, Mycobacterium bovis BCG Pasteur and Mycobacterium smegmatis mc2 155. Each species was grown in a chemostat at two different growth rates. Application of the theory reveals the growth rate dependent changes in the mycobacterial proteomes. Principal Findings The r-value r(i) of any ORF (ORF(i)) encoding protein p(i) was shown to be equal to the ratio of the concentrations of p(i) and so directly proportional to the ratio of the numbers of copies of p(i) per population-average cells of the two cultures. The proportionality constant can be obtained from the ratios DNA: RNA: protein. Several subgroups of ORFs were identified because they shared a particular r-value. Histograms of the number of ORFs versus the expression ratio were simulated by combining the particular r-values of several subgroups of ORFs. The largest subgroup was ORF(j) (r(j) = 1.00± SD) which was estimated to comprise respectively 59% and 49% of ORFs of M. bovis BCG Pasteur and M. smegmatis mc2 155. The standard deviations reflect the properties of the cDNA preparations investigated. Significance The analysis provided a quantitative view of growth rate dependent changes in the proteomes of the mycobacteria studied. The majority of the ORFs were found to be constitutively expressed. In contrast, the protein compositions of the outer permeability barriers and cytoplasmic membranes were found to be dependent on growth rate; thus illustrating the response of bacteria to their environment. The theoretical approach applies to any cultivatable bacterium under a wide range of growth conditions.
Collapse
Affiliation(s)
- Robert Ashley Cox
- Division of Mycobacterial Research, National Institute for Medical Research, London, United Kingdom.
| | | |
Collapse
|
114
|
Wolfe LM, Veeraraghavan U, Idicula-Thomas S, Schürer S, Wennerberg K, Reynolds R, Besra GS, Dobos KM. A chemical proteomics approach to profiling the ATP-binding proteome of Mycobacterium tuberculosis. Mol Cell Proteomics 2013; 12:1644-60. [PMID: 23462205 PMCID: PMC3675820 DOI: 10.1074/mcp.m112.025635] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis, remains one of the leading causes of death worldwide despite extensive research, directly observed therapy using multidrug regimens, and the widespread use of a vaccine. The majority of patients harbor the bacterium in a state of metabolic dormancy. New drugs with novel modes of action are needed to target essential metabolic pathways in M. tuberculosis; ATP-competitive enzyme inhibitors are one such class. Previous screening efforts for ATP-competitive enzyme inhibitors identified several classes of lead compounds that demonstrated potent anti-mycobacterial efficacy as well as tolerable levels of toxicity in cell culture. In this report, a probe-based chemoproteomic approach was used to selectively profile the M. tuberculosis ATP-binding proteome in normally growing and hypoxic M. tuberculosis. From these studies, 122 ATP-binding proteins were identified in either metabolic state, and roughly 60% of these are reported to be essential for survival in vitro. These data are available through ProteomeXchange with identifier PXD000141. Protein families vital to the survival of the tubercle bacillus during hypoxia emerged from our studies. Specifically, along with members of the DosR regulon, several proteins involved in energy metabolism (Icl/Rv0468 and Mdh/Rv1240) and lipid biosynthesis (UmaA/Rv0469, DesA1/Rv0824c, and DesA2/Rv1094) were found to be differentially abundant in hypoxic versus normal growing cultures. These pathways represent a subset of proteins that may be relevant therapeutic targets for development of novel ATP-competitive antibiotics.
Collapse
Affiliation(s)
- Lisa M Wolfe
- Department of Microbiology, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | | | | | | | | | | | |
Collapse
|
115
|
Weiling H, Xiaowen Y, Chunmei L, Jianping X. Function and evolution of ubiquitous bacterial signaling adapter phosphopeptide recognition domain FHA. Cell Signal 2013. [DOI: 10.1016/j.cellsig.2012.11.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
116
|
Szabó AM, Sipák Z, Miczák A, Faludi I. ABC transporter ATPase of Chlamydophila pneumoniae as a potential vaccine candidate. Acta Microbiol Immunol Hung 2013; 60:11-20. [PMID: 23529295 DOI: 10.1556/amicr.60.2013.1.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Better vaccines and new therapeutic drugs could be a successful breakthrough against intracellular bacteria. M. tuberculosis ABC transporter ATPase (Rv0986) plays a role in mycobacterial virulence by inhibiting phagosome-lysosome fusion. Thus, it could be a potential vaccine candidate. C. pneumoniae another important intracellular bacterium possesses a protein named CpB0255, which is homologous with the mycobacterial Rv0986. The aim of this study was the cloning, over-expression and purification of CpB0255 ABC transporter ATPase protein to study its biological properties. The immunogenicity and protective effect of recombinant chlamydial ATPase protein combined with Alum adjuvant were investigated in mice. The immunization resulted in the reduction of the number of viable C. pneumoniae in the lungs after challenge. Our results confirm that chlamydial ATPase induces protective immunity in mice.
Collapse
Affiliation(s)
- Agnes M Szabó
- Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary.
| | | | | | | |
Collapse
|
117
|
Gopinath K, Venclovas C, Ioerger TR, Sacchettini JC, McKinney JD, Mizrahi V, Warner DF. A vitamin B₁₂ transporter in Mycobacterium tuberculosis. Open Biol 2013; 3:120175. [PMID: 23407640 PMCID: PMC3603451 DOI: 10.1098/rsob.120175] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Vitamin B12-dependent enzymes function in core biochemical pathways in Mycobacterium tuberculosis, an obligate pathogen whose metabolism in vivo is poorly understood. Although M. tuberculosis can access vitamin B12in vitro, it is uncertain whether the organism is able to scavenge B12 during host infection. This question is crucial to predictions of metabolic function, but its resolution is complicated by the absence in the M. tuberculosis genome of a direct homologue of BtuFCD, the only bacterial B12 transport system described to date. We applied genome-wide transposon mutagenesis to identify M. tuberculosis mutants defective in their ability to use exogenous B12. A small proportion of these mapped to Rv1314c, identifying the putative PduO-type ATP : co(I)rrinoid adenosyltransferase as essential for B12 assimilation. Most notably, however, insertions in Rv1819c dominated the mutant pool, revealing an unexpected function in B12 acquisition for an ATP-binding cassette (ABC)-type protein previously investigated as the mycobacterial BacA homologue. Moreover, targeted deletion of Rv1819c eliminated the ability of M. tuberculosis to transport B12 and related corrinoids in vitro. Our results establish an alternative to the canonical BtuCD-type system for B12 uptake in M. tuberculosis, and elucidate a role in B12 metabolism for an ABC protein implicated in chronic mycobacterial infection.
Collapse
Affiliation(s)
- Krishnamoorthy Gopinath
- MRC/NHLS/UCT Molecular Mycobacteriology Research Unit and DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, University of Cape Town, Observatory, Cape Town 7925, South Africa
| | | | | | | | | | | | | |
Collapse
|
118
|
Tischler AD, Leistikow RL, Kirksey MA, Voskuil MI, McKinney JD. Mycobacterium tuberculosis requires phosphate-responsive gene regulation to resist host immunity. Infect Immun 2013; 81:317-28. [PMID: 23132496 PMCID: PMC3536151 DOI: 10.1128/iai.01136-12] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 10/30/2012] [Indexed: 12/22/2022] Open
Abstract
Mycobacterium tuberculosis persists in the tissues of mammalian hosts despite inducing a robust immune response dominated by the macrophage-activating cytokine gamma interferon (IFN-γ). We identified the M. tuberculosis phosphate-specific transport (Pst) system component PstA1 as a factor required to resist IFN-γ-dependent immunity. A ΔpstA1 mutant was fully virulent in IFN-γ(-/-) mice but attenuated in wild-type (WT) mice and mice lacking specific IFN-γ-inducible immune mechanisms: nitric oxide synthase (NOS2), phagosome-associated p47 GTPase (Irgm1), or phagocyte oxidase (phox). These phenotypes suggest that ΔpstA1 bacteria are sensitized to an IFN-γ-dependent immune mechanism(s) other than NOS2, Irgm1, or phox. In other species, the Pst system has a secondary role as a negative regulator of phosphate starvation-responsive gene expression through an interaction with a two-component signal transduction system. In M. tuberculosis, we found that ΔpstA1 bacteria exhibited dysregulated gene expression during growth in phosphate-rich medium that was mediated by the two-component sensor kinase/response regulator system SenX3-RegX3. Remarkably, deletion of the regX3 gene suppressed the replication and virulence defects of ΔpstA1 bacteria in NOS2(-/-) mice, suggesting that M. tuberculosis requires the Pst system to negatively regulate activity of RegX3 in response to available phosphate in vivo. We therefore speculate that inorganic phosphate is readily available during replication in the lung and is an important signal controlling M. tuberculosis gene expression via the Pst-SenX3-RegX3 signal transduction system. Inability to sense this environmental signal, due to Pst deficiency, results in dysregulation of gene expression and sensitization of the bacteria to the host immune response.
Collapse
Affiliation(s)
- Anna D Tischler
- School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland.
| | | | | | | | | |
Collapse
|
119
|
Szumowski JD, Adams KN, Edelstein PH, Ramakrishnan L. Antimicrobial efflux pumps and Mycobacterium tuberculosis drug tolerance: evolutionary considerations. Curr Top Microbiol Immunol 2013; 374:81-108. [PMID: 23242857 PMCID: PMC3859842 DOI: 10.1007/82_2012_300] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The need for lengthy treatment to cure tuberculosis stems from phenotypic drug resistance, also known as drug tolerance, which has been previously attributed to slowed bacterial growth in vivo. We discuss recent findings that challenge this model and instead implicate macrophage-induced mycobacterial efflux pumps in antimicrobial tolerance. Although mycobacterial efflux pumps may have originally served to protect against environmental toxins, in the pathogenic mycobacteria, they appear to have been repurposed for intracellular growth. In this light, we discuss the potential of efflux pump inhibitors such as verapamil to shorten tuberculosis treatment by their dual inhibition of tolerance and growth.
Collapse
Affiliation(s)
- John D Szumowski
- Department of Medicine (Division of Infectious Diseases), University of Washington, Seattle, WA, USA,
| | | | | | | |
Collapse
|
120
|
Wang K, Pei H, Huang B, Zhu X, Zhang J, Zhou B, Zhu L, Zhang Y, Zhou FF. The expression of ABC efflux pump, Rv1217c-Rv1218c, and its association with multidrug resistance of Mycobacterium tuberculosis in China. Curr Microbiol 2012; 66:222-6. [PMID: 23143285 DOI: 10.1007/s00284-012-0215-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 08/01/2012] [Indexed: 11/28/2022]
Abstract
Currently the treatment of Mycobacterium tuberculosis (TB) infection is largely limited due to the prevalence of multidrug resistance strains. Over-expressing the efflux pumps such as the ATP-binding cassette (ABC) transporter has been reported to significantly contribute to its resistance to several antibiotics. This study investigated the expression profile of one important ABC efflux pump, Rv1217c-Rv1218c, by quantitative real-time PCR (RT-qPCR) in clinical isolates from China, which also revealed its association with the multidrug resistance of M. tuberculosis. Significantly increased expressions of Rv1217c and Rv1218c at transcriptional level have been observed in multidrug-resistant TB group (MDR-TB) compared to those of the drug-susceptible group (P < 0.05), when H37Rv strain was used as the control. Furthermore, correlation analysis revealed that the over-expression of both Rv1217c and Rv1218c resulted in the higher minimum inhibition concentrations (MICs) of rifampicin (RIF) (OR = 1.01, P < 0.05 of Rv1217c; OR = 1.23, P < 0.05 of Rv1218c), while the over-expression of Rv1218c only led to the higher MICs of isoniazid (INH) (OR = 1.17, P < 0.05). Our findings contributed to the better understanding of the molecular mechanisms of ABC efflux pumps, in particular Rv1217c-Rv1218c, in M. tuberculosis and will assist in developing new antibiotic treatments for multidrug-resistant M. tuberculosis in the future.
Collapse
Affiliation(s)
- Ke Wang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, Jiangsu Province, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Sarathy JP, Dartois V, Lee EJD. The role of transport mechanisms in mycobacterium tuberculosis drug resistance and tolerance. Pharmaceuticals (Basel) 2012; 5:1210-35. [PMID: 24281307 PMCID: PMC3816664 DOI: 10.3390/ph5111210] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 10/25/2012] [Accepted: 11/02/2012] [Indexed: 02/02/2023] Open
Abstract
In the fight against tuberculosis, cell wall permeation of chemotherapeutic agents remains a critical but largely unsolved question. Here we review the major mechanisms of small molecule penetration into and efflux from Mycobacterium tuberculosis and other mycobacteria, and outline how these mechanisms may contribute to the development of phenotypic drug tolerance and induction of drug resistance. M. tuberculosis is intrinsically recalcitrant to small molecule permeation thanks to its thick lipid-rich cell wall. Passive diffusion appears to account for only a fraction of total drug permeation. As in other bacterial species, influx of hydrophilic compounds is facilitated by water-filled open channels, or porins, spanning the cell wall. However, the diversity and density of M. tuberculosis porins appears lower than in enterobacteria. Besides, physiological adaptations brought about by unfavorable conditions are thought to reduce the efficacy of porins. While intracellular accumulation of selected drug classes supports the existence of hypothesized active drug influx transporters, efflux pumps contribute to the drug resistant phenotype through their natural abundance and diversity, as well as their highly inducible expression. Modulation of efflux transporter expression has been observed in phagocytosed, non-replicating persistent and multi-drug resistant bacilli. Altogether, M. tuberculosis has evolved both intrinsic properties and acquired mechanisms to increase its level of tolerance towards xenobiotic substances, by preventing or minimizing their entry. Understanding these adaptation mechanisms is critical to counteract the natural mechanisms of defense against toxic compounds and develop new classes of chemotherapeutic agents that positively exploit the influx and efflux pathways of mycobacteria.
Collapse
Affiliation(s)
- Jansy Passiflora Sarathy
- Novartis Institute for Tropical Diseases Pte Ltd, 10 Biopolis Road #05-01, Chromos, 138670, Singapore.
| | | | | |
Collapse
|
122
|
Forrellad MA, Klepp LI, Gioffré A, Sabio y García J, Morbidoni HR, de la Paz Santangelo M, Cataldi AA, Bigi F. Virulence factors of the Mycobacterium tuberculosis complex. Virulence 2012; 4:3-66. [PMID: 23076359 PMCID: PMC3544749 DOI: 10.4161/viru.22329] [Citation(s) in RCA: 379] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The Mycobacterium tuberculosis complex (MTBC) consists of closely related species that cause tuberculosis in both humans and animals. This illness, still today, remains to be one of the leading causes of morbidity and mortality throughout the world. The mycobacteria enter the host by air, and, once in the lungs, are phagocytated by macrophages. This may lead to the rapid elimination of the bacillus or to the triggering of an active tuberculosis infection. A large number of different virulence factors have evolved in MTBC members as a response to the host immune reaction. The aim of this review is to describe the bacterial genes/proteins that are essential for the virulence of MTBC species, and that have been demonstrated in an in vivo model of infection. Knowledge of MTBC virulence factors is essential for the development of new vaccines and drugs to help manage the disease toward an increasingly more tuberculosis-free world.
Collapse
|
123
|
Duckworth BP, Nelson KM, Aldrich CC. Adenylating enzymes in Mycobacterium tuberculosis as drug targets. Curr Top Med Chem 2012; 12:766-96. [PMID: 22283817 DOI: 10.2174/156802612799984571] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 11/08/2011] [Indexed: 11/22/2022]
Abstract
Adenylation or adenylate-forming enzymes (AEs) are widely found in nature and are responsible for the activation of carboxylic acids to intermediate acyladenylates, which are mixed anhydrides of AMP. In a second reaction, AEs catalyze the transfer of the acyl group of the acyladenylate onto a nucleophilic amino, alcohol, or thiol group of an acceptor molecule leading to amide, ester, and thioester products, respectively. Mycobacterium tuberculosis encodes for more than 60 adenylating enzymes, many of which represent potential drug targets due to their confirmed essentiality or requirement for virulence. Several strategies have been used to develop potent and selective AE inhibitors including highthroughput screening, fragment-based screening, and the rationale design of bisubstrate inhibitors that mimic the acyladenylate. In this review, a comprehensive analysis of the mycobacterial adenylating enzymes will be presented with a focus on the identification of small molecule inhibitors. Specifically, this review will cover the aminoacyl tRNAsynthetases (aaRSs), MenE required for menaquinone synthesis, the FadD family of enzymes including the fatty acyl- AMP ligases (FAAL) and the fatty acyl-CoA ligases (FACLs) involved in lipid metabolism, and the nonribosomal peptide synthetase adenylation enzyme MbtA that is necessary for mycobactin synthesis. Additionally, the enzymes NadE, GuaA, PanC, and MshC involved in the respective synthesis of NAD, guanine, pantothenate, and mycothiol will be discussed as well as BirA that is responsible for biotinylation of the acyl CoA-carboxylases.
Collapse
|
124
|
Upregulation of the phthiocerol dimycocerosate biosynthetic pathway by rifampin-resistant, rpoB mutant Mycobacterium tuberculosis. J Bacteriol 2012; 194:6441-52. [PMID: 23002228 DOI: 10.1128/jb.01013-12] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Multidrug-resistant tuberculosis has emerged as a major threat to tuberculosis control. Phylogenetically related rifampin-resistant actinomycetes with mutations mapping to clinically dominant Mycobacterium tuberculosis mutations in the rpoB gene show upregulation of gene networks encoding secondary metabolites. We compared the expressed proteomes and metabolomes of two fully drug-susceptible clinical strains of M. tuberculosis (wild type) to those of their respective rifampin-resistant, rpoB mutant progeny strains with confirmed rifampin monoresistance following antitubercular therapy. Each of these strains was also used to infect gamma interferon- and lipopolysaccharide-activated murine J774A.1 macrophages to analyze transcriptional responses in a physiologically relevant model. Both rpoB mutants showed significant upregulation of the polyketide synthase genes ppsA-ppsE and drrA, which constitute an operon encoding multifunctional enzymes involved in the biosynthesis of phthiocerol dimycocerosate and other lipids in M. tuberculosis, but also of various secondary metabolites in related organisms, including antibiotics, such as erythromycin and rifamycins. ppsA (Rv2931), ppsB (Rv2932), and ppsC (Rv2933) were also found to be upregulated more than 10-fold in the Beijing rpoB mutant strain relative to its wild-type parent strain during infection of activated murine macrophages. In addition, metabolomics identified precursors of phthiocerol dimycocerosate, but not the intact molecule itself, in greater abundance in both rpoB mutant isolates. These data suggest that rpoB mutation in M. tuberculosis may trigger compensatory transcriptional changes in secondary metabolism genes analogous to those observed in related actinobacteria. These findings may assist in developing novel methods to diagnose and treat drug-resistant M. tuberculosis infections.
Collapse
|
125
|
Bisubstrate adenylation inhibitors of biotin protein ligase from Mycobacterium tuberculosis. ACTA ACUST UNITED AC 2012; 18:1432-41. [PMID: 22118677 DOI: 10.1016/j.chembiol.2011.08.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 08/05/2011] [Accepted: 08/24/2011] [Indexed: 10/15/2022]
Abstract
The mycobacterial biotin protein ligase (MtBPL) globally regulates lipid metabolism in Mtb through the posttranslational biotinylation of acyl coenzyme A carboxylases involved in lipid biosynthesis that catalyze the first step in fatty acid biosynthesis and pyruvate coenzyme A carboxylase, a gluconeogenic enzyme vital for lipid catabolism. Here we describe the design, development, and evaluation of a rationally designed bisubstrate inhibitor of MtBPL. This inhibitor displays potent subnanomolar enzyme inhibition and antitubercular activity against multidrug resistant and extensively drug resistant Mtb strains. We show that the inhibitor decreases in vivo protein biotinylation of key enzymes involved in fatty acid biosynthesis and that the antibacterial activity is MtBPL dependent. Additionally, the gene encoding BPL was found to be essential in M. smegmatis. Finally, the X-ray cocrystal structure of inhibitor bound MtBPL was solved providing detailed insight for further structure-activity analysis. Collectively, these data suggest that MtBPL is a promising target for further antitubercular therapeutic development.
Collapse
|
126
|
Dianišková P, Korduláková J, Skovierová H, Kaur D, Jackson M, Brennan PJ, Mikušová K. Investigation of ABC transporter from mycobacterial arabinogalactan biosynthetic cluster. Gen Physiol Biophys 2011; 30:239-50. [PMID: 21952433 DOI: 10.4149/gpb_2011_03_239] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Two genes from the "mycobacterial arabinogalactan biosynthetic cluster" spanning the region from Rv3779 to Rv3809c in the genome of Mycobacterium tuberculosis H37Rv were annotated as possible components of the ATP-binding cassette transporter. Rv3781 encodes a nucleotide-binding domain and Rv3783 determines production of a membrane-spanning domain. We have examined possible roles of these genes in mycobacterial cell wall biosynthesis through inactivation of their respective orthologs in Mycobacterium smegmatis mc(2)155, phenotypic characterization of the mutant strains via metabolic labeling with [U-(14)C]-glucose, cell-free reactions with UDP-[U-(14)C]-galactose monitoring galactan build-up and transcriptional analysis. Several lines of evidence suggest that this ABC transporter is involved in biosynthesis of arabinogalactan, although more investigation is needed to establish its precise role or the transported substrate.
Collapse
|
127
|
Hao P, Shi-Liang Z, Ju L, Ya-Xin D, Biao H, Xu W, Min-Tao H, Shou-Gang K, Ke W. The role of ABC efflux pump, Rv1456c-Rv1457c-Rv1458c, from Mycobacterium tuberculosis clinical isolates in China. Folia Microbiol (Praha) 2011; 56:549-53. [PMID: 22083788 DOI: 10.1007/s12223-011-0080-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 10/19/2011] [Indexed: 10/15/2022]
Abstract
Recently the ATP-binding cassette (ABC) efflux pumps have been proved to be a major component of drug resistance in Mycobacterium tuberculosis. The objective of this study was to investigate the expression profiles of Rv1456c-Rv1457c-Rv1458c efflux system in clinical isolates of M. tuberculosis and its involvement in drug-resistance mechanisms. Significantly increased mRNA expression of Rv1456c, Rv1457c, and Rv1458c appeared among the clinical isolates (P < 0.05), which are resistant to at least one of the four first-line drugs including rifampin, isoniazid, streptomycin, and ethambutol. In addition, overexpression of this efflux system was more frequently found in multidrug-resistant and extensively drug-resistant M. tuberculosis strains. Therefore, Rv1456c-Rv1457c-Rv1458c efflux pumps may play an important role in drug resistance of treatment of M. tuberculosis. Further investigation of this gene may lead to the development of countermeasures against M. tuberculosis drug resistance.
Collapse
Affiliation(s)
- Pei Hao
- Wuxi Hospital of Infectious Disease, Wuxi, 214005 Jiangsu Province, China
| | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Biedrzycki ML, L V, Bais HP. The role of ABC transporters in kin recognition in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2011; 6:1154-61. [PMID: 21758011 PMCID: PMC3260713 DOI: 10.4161/psb.6.8.15907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The ability to sense and respond to the surrounding rhizosphere including communications with neighboring plants and microbes is essential for plant survival. Recently, it has been established that several plant species including Arabidopsis thaliana have the ability to recognize rhizospheric neighbors based or their genetic identity. This study investigated the role of ABC transporters in kin recognition in A. thaliana based on previous evidence that root secretions are involved in the kin recognition response and that ABC transporters are responsible for secretion of a number of compounds. Three genes, AtPGP1, ATATH1 and ATATH10, are all implicated to be partially involved in the complex kin recognition response in A. thaliana based on this report. These findings highlight the importance of ABC transporters in understanding root secretions and plant-plant community interactions.
Collapse
Affiliation(s)
- Meredith L Biedrzycki
- Department of Plant and Soil Sciences, University of Delaware, Delaware Biotechnology Institute, Newark, DE, USA
| | | | | |
Collapse
|
129
|
Spivey VL, Molle V, Whalan RH, Rodgers A, Leiba J, Stach L, Walker KB, Smerdon SJ, Buxton RS. Forkhead-associated (FHA) domain containing ABC transporter Rv1747 is positively regulated by Ser/Thr phosphorylation in Mycobacterium tuberculosis. J Biol Chem 2011; 286:26198-209. [PMID: 21622570 PMCID: PMC3138270 DOI: 10.1074/jbc.m111.246132] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 05/24/2011] [Indexed: 12/22/2022] Open
Abstract
One major signaling method employed by Mycobacterium tuberculosis, the causative agent of tuberculosis, is through reversible phosphorylation of proteins mediated by protein kinases and phosphatases. This study concerns one of these enzymes, the serine/threonine protein kinase PknF, that is encoded in an operon with Rv1747, an ABC transporter that is necessary for growth of M. tuberculosis in vivo and contains two forkhead-associated (FHA) domains. FHA domains are phosphopeptide recognition motifs that specifically recognize phosphothreonine-containing epitopes. Experiments to determine how PknF regulates the function of Rv1747 demonstrated that phosphorylation occurs on two specific threonine residues, Thr-150 and Thr-208. To determine the in vivo consequences of phosphorylation, infection experiments were performed in bone marrow-derived macrophages and in mice using threonine-to-alanine mutants of Rv1747 that prevent specific phosphorylation and revealed that phosphorylation positively modulates Rv1747 function in vivo. The role of the FHA domains in this regulation was further demonstrated by isothermal titration calorimetry, using peptides containing both phosphothreonine residues. FHA-1 domain mutation resulted in attenuation in macrophages highlighting the critical role of this domain in Rv1747 function. A mutant deleted for pknF did not, however, have a growth phenotype in an infection, suggesting that other kinases can fulfill its role when it is absent. This study provides the first information on the molecular mechanism(s) regulating Rv1747 through PknF-dependent phosphorylation but also indicates that phosphorylation activates Rv1747, which may have important consequences in regulating growth of M. tuberculosis.
Collapse
Affiliation(s)
- Vicky L. Spivey
- From the Division of Mycobacterial Research, Medical Research Council National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom
| | - Virginie Molle
- the Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Universités de Montpellier II et I, CNRS, UMR 5235, Case 107, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| | - Rachael H. Whalan
- From the Division of Mycobacterial Research, Medical Research Council National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom
| | - Angela Rodgers
- the Immunology and Cellular Immunity Section, Bacteriology Division, National Institute of Biological Standards and Control (A Centre of the Health Protection Agency), Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom, and
| | - Jade Leiba
- the Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Universités de Montpellier II et I, CNRS, UMR 5235, Case 107, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| | - Lasse Stach
- the Division of Molecular Structure, Medical Research Council National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom
| | - K. Barry Walker
- the Immunology and Cellular Immunity Section, Bacteriology Division, National Institute of Biological Standards and Control (A Centre of the Health Protection Agency), Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom, and
| | - Stephen J. Smerdon
- the Division of Molecular Structure, Medical Research Council National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom
| | - Roger S. Buxton
- From the Division of Mycobacterial Research, Medical Research Council National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom
| |
Collapse
|
130
|
Louw GE, Warren RM, van Pittius NCG, Leon R, Jimenez A, Hernandez-Pando R, McEvoy CRE, Grobbelaar M, Murray M, van Helden PD, Victor TC. Rifampicin reduces susceptibility to ofloxacin in rifampicin-resistant Mycobacterium tuberculosis through efflux. Am J Respir Crit Care Med 2011; 184:269-76. [PMID: 21512166 PMCID: PMC3698754 DOI: 10.1164/rccm.201011-1924oc] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Central dogma suggests that rifampicin resistance in Mycobacterium tuberculosis develops solely through rpoB gene mutations. OBJECTIVE To determine whether rifampicin induces efflux pumps activation in rifampicin resistant M. tuberculosis strains thereby defining rifampicin resistance levels and reducing ofloxacin susceptibility. METHODS Rifampicin and/or ofloxacin minimum inhibitory concentrations (MICs) were determined in rifampicin resistant strains by culture in BACTEC 12B medium. Verapamil and reserpine were included to determine their effect on rifampicin and ofloxacin susceptibility. RT-qPCR was applied to assess expression of efflux pump/transporter genes after rifampicin exposure. To determine whether verapamil could restore susceptibility to first-line drugs, BALB/c mice were infected with a MDR-TB strain and treated with first-line drugs with/without verapamil. MEASUREMENTS AND MAIN FINDINGS Rifampicin MICs varied independently of rpoB mutation and genetic background. Addition reserpine and verapamil significantly restored rifampicin susceptibility (p = 0.0000). RT-qPCR demonstrated that rifampicin induced differential expression of efflux/transporter genes in MDR-TB isolates. Incubation of rifampicin mono-resistant strains in rifampicin (2 μg/ml) for 7 days induced ofloxacin resistance (MIC > 2 μg/ml) in strains with an rpoB531 mutation. Ofloxacin susceptibility was restored by exposure to efflux pump inhibitors. Studies in BALB/c mice showed that verapamil in combination with first-line drugs significantly reduced pulmonary CFUs after 1 and 2 months treatment (p < 0.05). CONCLUSION Exposure of rifampicin resistant M. tuberculosis strains to rifampicin can potentially compromise the efficacy of the second-line treatment regimens containing ofloxacin, thereby emphasising the need for rapid diagnostics to guide treatment. Efflux pump inhibitors have the potential to improve the efficacy of anti-tuberculosis drug treatment.
Collapse
Affiliation(s)
- Gail E. Louw
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Robin M. Warren
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Nicolaas C. Gey van Pittius
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Rosalba Leon
- Medical Research Unit of Natural Products Pharmacology, Pediatrics Hospital, National Medical Centre, Mexico City, Mexico
| | - Adelina Jimenez
- Medical Research Unit of Natural Products Pharmacology, Pediatrics Hospital, National Medical Centre, Mexico City, Mexico
| | - Rogelio Hernandez-Pando
- Experimental Pathology Section, Department of Pathology, National Institute of Medical Sciences and Nutrition, Mexico City, Mexico
| | - Christopher R. E. McEvoy
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Melanie Grobbelaar
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Megan Murray
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts
| | - Paul D. van Helden
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Thomas C. Victor
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
131
|
da Silva PEA, Von Groll A, Martin A, Palomino JC. Efflux as a mechanism for drug resistance in Mycobacterium tuberculosis. ACTA ACUST UNITED AC 2011; 63:1-9. [PMID: 21668514 DOI: 10.1111/j.1574-695x.2011.00831.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Tuberculosis remains an important global public health problem, with an estimated prevalence of 14 million individuals with tuberculosis worldwide in 2007. Because antibiotic treatment is one of the main tools for tuberculosis control, knowledge of Mycobacterium tuberculosis drug resistance is an important component for the disease control strategy. Although several gene mutations in specific loci of the M. tuberculosis genome have been reported as the basis for drug resistance, additional resistance mechanisms are now believed to exist. Efflux is a ubiquitous mechanism responsible for intrinsic and acquired drug resistance in prokaryotic and eukaryotic cells. Mycobacterium tuberculosis presents one of the largest numbers of putative drug efflux pumps compared with its genome size. Bioinformatics as well as direct and indirect evidence have established relationships among drug efflux with intrinsic or acquired resistance in M. tuberculosis. This minireview describes the current knowledge on drug efflux in M. tuberculosis.
Collapse
Affiliation(s)
- Pedro Eduardo Almeida da Silva
- Universidade Federal do Rio Grande, Rio Grande, BrazilMycobacteriology Unit, Institute of Tropical Medicine Antwerp, Belgium
| | | | | | | |
Collapse
|
132
|
Almeida Da Silva PEA, Palomino JC. Molecular basis and mechanisms of drug resistance in Mycobacterium tuberculosis: classical and new drugs. J Antimicrob Chemother 2011; 66:1417-30. [PMID: 21558086 DOI: 10.1093/jac/dkr173] [Citation(s) in RCA: 331] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Tuberculosis (TB) remains one of the leading public health problems worldwide. Declared as a global emergency in 1993 by the WHO, its control is hampered by the emergence of multidrug resistance (MDR), defined as resistance to at least rifampicin and isoniazid, two key drugs in the treatment of the disease. More recently, severe forms of drug resistance such as extensively drug-resistant (XDR) TB have been described. After the discovery of several drugs with anti-TB activity, multidrug therapy became fundamental for control of the disease. Major advances in molecular biology and the availability of new information generated after sequencing the genome of Mycobacterium tuberculosis increased our knowledge of the mechanisms of resistance to the main anti-TB drugs. Better knowledge of the mechanisms of drug resistance in TB and the molecular mechanisms involved will help us to improve current techniques for rapid detection and will also stimulate the exploration of new targets for drug activity and drug development. This article presents an updated review of the mechanisms and molecular basis of drug resistance in M. tuberculosis. It also comments on the several gaps in our current knowledge of the molecular mechanisms of drug resistance to the main classical and new anti-TB drugs and briefly discusses some implications of the development of drug resistance and fitness, transmission and pathogenicity of M. tuberculosis.
Collapse
|
133
|
The M. tuberculosis phosphate-binding lipoproteins PstS1 and PstS3 induce Th1 and Th17 responses that are not associated with protection against M. tuberculosis infection. Clin Dev Immunol 2011; 2011:690328. [PMID: 21603219 PMCID: PMC3095447 DOI: 10.1155/2011/690328] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 02/10/2011] [Indexed: 12/04/2022]
Abstract
The M. tuberculosis phosphate-binding transporter lipoproteins PstS1 and PstS3 were good immunogens inducing CD8+ T-cell activation and both Th1 and Th17 immunity in mice. However, this antigen-specific immunity, even when amplified by administration of the protein with the adjuvant LTK63 or by the DNA priming/protein boosting regimen, was not able to contain M. tuberculosis replication in the lungs of infected mice. The lack of protection might be ascribed with the scarce/absent capacity of PstS1/PstS3 antigens to modulate the IFN-γ response elicited by M. tuberculosis infection during which, however, PstS1-specific IL-17 secreting cells were generated in both unvaccinated and BCG-vaccinated mice. In spite of a lack of protection by PstS1/PstS3 immunizations, our results do show that PstS1 is able to induce IL-17 response upon M. tuberculosis infection which is of interest in the study of anti-M. tuberculosis immunity and as potential immunomodulator in combined vaccines.
Collapse
|
134
|
Banerjee S, Farhana A, Ehtesham NZ, Hasnain SE. Iron acquisition, assimilation and regulation in mycobacteria. INFECTION GENETICS AND EVOLUTION 2011; 11:825-38. [PMID: 21414421 DOI: 10.1016/j.meegid.2011.02.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 02/25/2011] [Accepted: 02/28/2011] [Indexed: 11/28/2022]
Abstract
Iron is as crucial to the pathogen as it is to the host. The tuberculosis causing bacillus, Mycobacterium tuberculosis (M.tb), is an exceptionally efficient pathogen that has evolved proficient mechanisms to sequester iron from the host despite its thick mycolate-rich outer covering and a highly impermeable membrane of phagolysosome within which it persists inside an infected host macrophage. Further, both overindulgence and moderation of iron inside a host are a threat to mycobacterial persistence. While for removing iron from the host reservoirs, mycobacteria synthesize molecules that have several times higher affinity for iron than their host counterparts, they also synthesize molecules for efficient storage of excess iron. This is supported by tightly regulated iron dependent global gene expressions. In this review we discuss the various molecules and pathways evolved by mycobacteria for an efficient iron metabolism. We also discuss the less investigated players, like iron responsive proteins and iron responsive elements in mycobacteria, and highlight the lacunae in our current understanding of iron acquisition and utilization in mycobacteria with an ultimate aim to make iron metabolism as a possible anti-mycobacterial target.
Collapse
Affiliation(s)
- Sharmistha Banerjee
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | | | | | | |
Collapse
|
135
|
Roy S, Vijay S, Arumugam M, Anand D, Mir M, Ajitkumar P. Mycobacterium tuberculosis expresses ftsE gene through multiple transcripts. Curr Microbiol 2011; 62:1581-9. [PMID: 21336990 DOI: 10.1007/s00284-011-9897-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Accepted: 02/06/2011] [Indexed: 11/25/2022]
Abstract
Bacterial FtsE gene codes for the ATP-binding protein, FtsE, which in complex with the transmembrane protein, FtsX, participates in diverse cellular processes. Therefore, regulated expression of FtsE and FtsX might be critical to the human pathogen, Mycobacterium tuberculosis, under stress conditions. Although ftsX gene of M. tuberculosis (MtftsX) is known to be transcribed from a promoter inside the upstream gene, ftsE, the transcriptional status of ftsE gene of M. tuberculosis (MtftsE) remains unknown. Therefore, the authors initiated transcriptional analyses of MtftsE, using total RNA from M. tuberculosis cells that were grown under stress conditions, which the pathogen is exposed to, in granuloma in tuberculosis patients. Primer extension experiments showed the presence of putative transcripts, T1, T2, T3, and T4. T1 originated from the intergenic region between the upstream gene, MRA_3135, and MtftsE. T2 and T3 were found initiated from within MRA_3135. T4 was transcribed from a region upstream of MRA_3135. RT-PCR confirmed co-transcription of MRA_3135 and MtftsE. The cloned putative promoter regions for T1, T2, and T3 elicited transcriptional activity in Mycobacterium smegmatis transformants. T1, T2, and T3, but no new transcript, were present in the M. tuberculosis cells that were grown under the stress conditions, which the pathogen is exposed to in granuloma in tuberculosis patients. It showed lack of modulation of MtftsE transcripts under the stress conditions tested, indicating that ftsE may not have a stress response-specific function in M. tuberculosis.
Collapse
Affiliation(s)
- Sougata Roy
- Indian Institute of Science, Microbiology and Cell Biology, Bangalore, Karnataka
| | | | | | | | | | | |
Collapse
|
136
|
Trehalose-recycling ABC transporter LpqY-SugA-SugB-SugC is essential for virulence of Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2010; 107:21761-6. [PMID: 21118978 DOI: 10.1073/pnas.1014642108] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) is an exclusively human pathogen that proliferates within phagosomes of host phagocytes. Host lipids are believed to provide the major carbon and energy sources for Mtb, with only limited availability of carbohydrates. There is an apparent paradox because five putative carbohydrate uptake permeases are present in Mtb, but there are essentially no host carbohydrates inside phagosomes. Nevertheless, carbohydrate transporters have been implicated in Mtb pathogenesis, suggesting that acquisition of host sugars is important during some stages of infection. Here we show, however, that the LpqY-SugA-SugB-SugC ATP-binding cassette transporter is highly specific for uptake of the disaccharide trehalose, a sugar not present in mammals, thus refuting a role in nutrient acquisition from the host. Trehalose release is known to occur as a byproduct of the biosynthesis of the mycolic acid cell envelope by Mtb's antigen 85 complex. The antigen 85 complex constitutes a group of extracellular mycolyl transferases, which transfer the lipid moiety of the glycolipid trehalose monomycolate (TMM) to arabinogalactan or another molecule of TMM, yielding trehalose dimycolate. These reactions also lead to the concomitant extracellular release of the trehalose moiety of TMM. We found that the LpqY-SugA-SugB-SugC ATP-binding cassette transporter is a recycling system mediating the retrograde transport of released trehalose. Perturbations in trehalose recycling strongly impaired virulence of Mtb. This study reveals an unexpected accessory component involved in the formation of the mycolic acid cell envelope in mycobacteria and provides a previously unknown role for sugar transporters in bacterial pathogenesis.
Collapse
|
137
|
Ward SK, Abomoelak B, Marcus SA, Talaat AM. Transcriptional profiling of mycobacterium tuberculosis during infection: lessons learned. Front Microbiol 2010; 1:121. [PMID: 21738523 PMCID: PMC3125582 DOI: 10.3389/fmicb.2010.00121] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 10/12/2010] [Indexed: 12/12/2022] Open
Abstract
Infection with Mycobacterium tuberculosis, the causative agent of tuberculosis, is considered one of the biggest infectious disease killers worldwide. A significant amount of attention has been directed toward revealing genes involved in the virulence and pathogenesis of this air-born pathogen. With the advances in technologies for transcriptional profiling, several groups, including ours, took advantage of DNA microarrays to identify transcriptional units differentially regulated by M. tuberculosis within a host. The main idea behind this approach is that pathogens tend to regulate their gene expression levels depending on the host microenvironment, and preferentially express those needed for survival. Identifying this class of genes will improve our understanding of pathogenesis. In our case, we identified an in vivo expressed genomic island that was preferentially active in murine lungs during early infection, as well as groups of genes active during chronic tuberculosis. Other studies have identified additional gene groups that are active during macrophage infection and even in human lungs. Despite all of these findings, one of the lingering questions remaining was whether in vivo expressed transcripts are relevant to the virulence, pathogenesis, and persistence of the organism. The work of our group and others addressed this question by examining the contribution of in vivo expressed genes using a strategy based on gene deletions followed by animal infections. Overall, the analysis of most of the in vivo expressed genes supported a role of these genes in M. tuberculosis pathogenesis. Further, these data suggest that in vivo transcriptional profiling is a valid approach to identify genes required for bacterial pathogenesis.
Collapse
Affiliation(s)
- Sarah K Ward
- Department of Pathobiological Sciences, University of Wisconsin-Madison Madison, WI, USA
| | | | | | | |
Collapse
|
138
|
Kinnings SL, Xie L, Fung KH, Jackson RM, Xie L, Bourne PE. The Mycobacterium tuberculosis drugome and its polypharmacological implications. PLoS Comput Biol 2010; 6:e1000976. [PMID: 21079673 PMCID: PMC2973814 DOI: 10.1371/journal.pcbi.1000976] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 09/24/2010] [Indexed: 11/26/2022] Open
Abstract
We report a computational approach that integrates structural bioinformatics, molecular modelling and systems biology to construct a drug-target network on a structural proteome-wide scale. The approach has been applied to the genome of Mycobacterium tuberculosis (M.tb), the causative agent of one of today's most widely spread infectious diseases. The resulting drug-target interaction network for all structurally characterized approved drugs bound to putative M.tb receptors, we refer to as the ‘TB-drugome’. The TB-drugome reveals that approximately one-third of the drugs examined have the potential to be repositioned to treat tuberculosis and that many currently unexploited M.tb receptors may be chemically druggable and could serve as novel anti-tubercular targets. Furthermore, a detailed analysis of the TB-drugome has shed new light on the controversial issues surrounding drug-target networks [1]–[3]. Indeed, our results support the idea that drug-target networks are inherently modular, and further that any observed randomness is mainly caused by biased target coverage. The TB-drugome (http://funsite.sdsc.edu/drugome/TB) has the potential to be a valuable resource in the development of safe and efficient anti-tubercular drugs. More generally the methodology may be applied to other pathogens of interest with results improving as more of their structural proteomes are determined through the continued efforts of structural biology/genomics. The worldwide increase in multi-drug resistant TB poses a great threat to human health and highlights the need to identify new anti-tubercular agents. We have developed a computational strategy to link the structural proteome of Mycobacterium tuberculosis, the causative agent of tuberculosis, to all structurally characterized approved drugs, and hence construct a proteome-wide drug-target network – the TB-drugome. The TB-drugome has the potential to be a valuable resource in the development of safe and efficient anti-tubercular drugs. More generally, the proteome-wide and multi-scale view of target and drug space may facilitate a systematic drug discovery process, which concurrently takes into account the disease mechanism and druggability of targets, the drug-likeness and ADMET properties of chemical compounds, and the genetic dispositions of individuals. Ultimately it may help to reduce the high attrition rate in drug development through a better understanding of drug-receptor interactions on a large scale.
Collapse
Affiliation(s)
- Sarah L. Kinnings
- Institute of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
- San Diego Supercomputer Center, University of California, San Diego, La Jolla, California, United States of America
| | - Li Xie
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Kingston H. Fung
- Bioinformatics Program, University of California, San Diego, La Jolla, California, United States of America
| | - Richard M. Jackson
- Institute of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Lei Xie
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, United States of America
- * E-mail: (LX); (PEB)
| | - Philip E. Bourne
- San Diego Supercomputer Center, University of California, San Diego, La Jolla, California, United States of America
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, United States of America
- * E-mail: (LX); (PEB)
| |
Collapse
|
139
|
Vanzembergh F, Peirs P, Lefevre P, Celio N, Mathys V, Content J, Kalai M. Effect of PstS sub-units or PknD deficiency on the survival of Mycobacterium tuberculosis. Tuberculosis (Edinb) 2010; 90:338-45. [PMID: 20933472 DOI: 10.1016/j.tube.2010.09.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 09/03/2010] [Accepted: 09/08/2010] [Indexed: 10/19/2022]
Abstract
The membrane-associated phosphate-specific transporter (Pst) complex is composed of four different proteins: PstS, PstC, PstA and PstB. The PstS component detects and binds Pi with high affinity; the PstA and PstC form transmembrane pores for Pi entry, while PstB provides energy through ATP hydrolysis. In the Mycobacterium tuberculosis genome, four different gene clusters encode three PstS, and two of each of the other sub-units. We used RT-PCR to show that these clusters represent at least three distinct operons. The pstS3-containing operon was the only one induced by lack of environmental Pi. To study the physiologic role of the different PstS sub-units and that of another potential Pi receptor, PknD, we constructed and complemented their knockout (KO) mutants. In Sauton medium, the PstS1-3 KO grew faster than the Wt or the PknD KO. Following 24 h of complete starvation, the PstS3 or PknD deficient strains died if exposed to Pi poor conditions while the PstS1 and PstS2 KO survived and still grew faster than the Wt strain. These results suggest that PstS1-3 may play a role in the regulation of M. tuberculosis growth or metabolism while PstS3 and PknD contribute to the survival of the bacteria in phosphate poor conditions.
Collapse
Affiliation(s)
- Frederic Vanzembergh
- Scientific Institute of Public Health, Communicable and infectious diseases, Engeland St. 642, 1180 Brussels, Belgium.
| | | | | | | | | | | | | |
Collapse
|
140
|
Rv1218c, an ABC transporter of Mycobacterium tuberculosis with implications in drug discovery. Antimicrob Agents Chemother 2010; 54:5167-72. [PMID: 20921309 DOI: 10.1128/aac.00610-10] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Efflux systems are important in determining the efficacy of antibiotics used in the treatment of bacterial infections. In the last decade much attention has been paid to studying the efflux pumps of mycobacteria. New classes of compounds are under investigation for development into potential candidate drugs for the treatment of tuberculosis. Quite often, these have poor bactericidal activities but exhibit excellent target (biochemical) inhibition. Microarray studies conducted in our laboratories for deciphering the mode of action of experimental drugs revealed the presence of putative ABC transporters. Among these transporters, Rv1218c was chosen for studying its physiological relevance in mediating efflux in Mycobacterium tuberculosis. A ΔRv1218c mutant of M. tuberculosis displayed a 4- to 8-fold increase in the inhibitory and bactericidal potency for different classes of compounds. The MICs and MBCs were reversed to wild-type values when the full-length Rv1218c gene was reintroduced into the ΔRv1218c mutant on a multicopy plasmid. Most of the compound classes had significantly better bactericidal activity in the ΔRv1218c mutant than in the wild-type H37Rv, suggesting the involvement of Rv1218c gene product in effluxing these compounds from M. tuberculosis. The implication of these findings on tuberculosis drug discovery is discussed.
Collapse
|
141
|
Sinha S, Arora S, Kosalai K, Namane A, Pym AS, Cole ST. Proteome analysis of the plasma membrane of Mycobacterium tuberculosis. Comp Funct Genomics 2010; 3:470-83. [PMID: 18629250 PMCID: PMC2448412 DOI: 10.1002/cfg.211] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2002] [Accepted: 09/11/2002] [Indexed: 11/19/2022] Open
Abstract
The plasma membrane of Mycobacterium tuberculosis is likely to contain proteins that could serve as novel drug targets, diagnostic probes or even components of a vaccine
against tuberculosis. With this in mind, we have undertaken proteome analysis of the
membrane of M. tuberculosis H37Rv. Isolated membrane vesicles were extracted with
either a detergent (Triton X114) or an alkaline buffer (carbonate) following two of the
protocols recommended for membrane protein enrichment. Proteins were resolved
by 2D-GE using immobilized pH gradient (IPG) strips, and identified by peptide
mass mapping utilizing the M. tuberculosis genome database. The two extraction
procedures yielded patterns with minimal overlap. Only two proteins, both HSPs,
showed a common presence. MALDI–MS analysis of 61 spots led to the identification
of 32 proteins, 17 of which were new to the M. tuberculosis proteome database.
We classified 19 of the identified proteins as ‘membrane-associated’; 14 of these
were further classified as ‘membrane-bound’, three of which were lipoproteins. The
remaining proteins included four heat-shock proteins and several enzymes involved
in energy or lipid metabolism. Extraction with Triton X114 was found to be more
effective than carbonate for detecting ‘putative’ M. tuberculosis membrane proteins.
The protocol was also found to be suitable for comparing BCG and M. tuberculosis
membranes, identifying ESAT-6 as being expressed selectively in M. tuberculosis.
While this study demonstrates for the first time some of the membrane proteins of
M. tuberculosis, it also underscores the problems associated with proteomic analysis
of a complex membrane such as that of a mycobacterium.
Collapse
Affiliation(s)
- Sudhir Sinha
- Division of Biochemistry, Central Drug Research Institute, Chattar Manzil, Lucknow 226001, India.
| | | | | | | | | | | |
Collapse
|
142
|
Dutta NK, Mehra S, Didier PJ, Roy CJ, Doyle LA, Alvarez X, Ratterree M, Be NA, Lamichhane G, Jain SK, Lacey MR, Lackner AA, Kaushal D. Genetic requirements for the survival of tubercle bacilli in primates. J Infect Dis 2010; 201:1743-52. [PMID: 20394526 DOI: 10.1086/652497] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Tuberculosis (TB) leads to the death of 1.7 million people annually. The failure of the bacille Calmette-Guérin vaccine, synergy between AIDS and TB, and the emergence of drug resistance have worsened this situation. It is imperative to delineate the mechanisms employed by Mycobacterium tuberculosis to successfully infect and persist in mammalian lungs. METHODS Nonhuman primates (NHPs) are arguably the best animal system to model critical aspects of human TB. We studied genes essential for growth and survival of M. tuberculosis in the lungs of NHPs experimentally exposed to aerosols of an M. tuberculosis transposon mutant library. RESULTS Mutants in 108 M. tuberculosis genes (33.13% of all genes tested) were attenuated for in vivo growth. Comparable studies have reported the attenuation of only approximately 6% of mutants in mice. The M. tuberculosis mutants attenuated for in vivo survival in primates were involved in the transport of various biomolecules, including lipid virulence factors; biosynthesis of cell-wall arabinan and peptidoglycan; DNA repair; sterol metabolism; and mammalian cell entry. CONCLUSIONS Our study highlights the various virulence mechanisms employed by M. tuberculosis to overcome the hostile environment encountered during infection of primates. Prophylactic approaches aimed against bacterial factors that respond to such in vivo stressors have the potential to prevent infection at an early stage, thus likely reducing the extent of transmission of M. tuberculosis.
Collapse
Affiliation(s)
- Noton K Dutta
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, 18703 Three Rivers Road, Covington, LA 70433, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Abstract
SUMMARYABC systems are one of the largest described protein superfamilies. These systems have a domain organization that may contain 1 or more transmembrane domains (ABC_TM1F) and 1 or 2 ATP-binding domains (ABC_2). The functions (e.g., import, export and DNA repair) of these proteins distinguish the 3 classes of ABC systems. Mining and PCR-based cloning were used to identify 33 putative ABC systems from theBrugia malayigenome. There were 31 class 2 genes, commonly called ABC transporters, and 2 class 3 genes. The ABC transporters were divided into subfamilies. Three belonged to subfamily A, 16 to subfamily B, 5 to subfamily C, 1 to subfamily E and 3 to subfamilies F and G, respectively. None were placed in subfamilies D and H. Similar to other ABC systems, the ABC_2 domain ofB. malayigenes was conserved and contained the Walker A and B motifs, the signature sequence/linker region and the switch region with the conserved histidine. The ABC_TM1F domain was less conserved. The relative abundance of ABC systems was quantified using real-time reverse transcription PCR and was significantly higher in female adults ofB. malayithan in males and microfilaria, particularly those in subfamilies B and C, which are associated with drug resistance.
Collapse
|
144
|
Structural and functional analyses of Mycobacterium tuberculosis Rv3315c-encoded metal-dependent homotetrameric cytidine deaminase. J Struct Biol 2010; 169:413-23. [DOI: 10.1016/j.jsb.2009.12.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 11/19/2009] [Accepted: 12/17/2009] [Indexed: 11/21/2022]
|
145
|
Gupta AK, Katoch VM, Chauhan DS, Sharma R, Singh M, Venkatesan K, Sharma VD. Microarray Analysis of Efflux Pump Genes in Multidrug-ResistantMycobacterium tuberculosisDuring Stress Induced by Common Anti-Tuberculous Drugs. Microb Drug Resist 2010; 16:21-8. [DOI: 10.1089/mdr.2009.0054] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Anuj Kumar Gupta
- Department of Microbiology and Molecular Biology, National JALMA Institute for Leprosy and Other Mycobacterial Diseases (NJILOMD), Agra, India
| | - Vishwa Mohan Katoch
- Department of Microbiology and Molecular Biology, National JALMA Institute for Leprosy and Other Mycobacterial Diseases (NJILOMD), Agra, India
| | - Devendra Singh Chauhan
- Department of Microbiology and Molecular Biology, National JALMA Institute for Leprosy and Other Mycobacterial Diseases (NJILOMD), Agra, India
| | - Rahul Sharma
- Department of Microbiology and Molecular Biology, National JALMA Institute for Leprosy and Other Mycobacterial Diseases (NJILOMD), Agra, India
| | - Mradula Singh
- Department of Microbiology and Molecular Biology, National JALMA Institute for Leprosy and Other Mycobacterial Diseases (NJILOMD), Agra, India
| | - Krishnamurthy Venkatesan
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases (NJILOMD), Agra, India
| | - Vishnu Dutt Sharma
- Department of Microbiology and Molecular Biology, National JALMA Institute for Leprosy and Other Mycobacterial Diseases (NJILOMD), Agra, India
| |
Collapse
|
146
|
The Rhodococcal Cell Envelope: Composition, Organisation and Biosynthesis. BIOLOGY OF RHODOCOCCUS 2010. [DOI: 10.1007/978-3-642-12937-7_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
147
|
The Mycobacterium tuberculosis high-affinity iron importer, IrtA, contains an FAD-binding domain. J Bacteriol 2009; 192:861-9. [PMID: 19948799 DOI: 10.1128/jb.00223-09] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Iron is an essential nutrient not freely available to microorganisms infecting mammals. To overcome iron deficiency, bacteria have evolved various strategies including the synthesis and secretion of high-affinity iron chelators known as siderophores. The siderophores produced and secreted by Mycobacterium tuberculosis, exomycobactins, compete for iron with host iron-binding proteins and, together with the iron-regulated ABC transporter IrtAB, are required for the survival of M. tuberculosis in iron deficient conditions and for normal replication in macrophages and in mice. This study further characterizes the role of IrtAB in M. tuberculosis iron acquisition. Our results demonstrate a role for IrtAB in iron import and show that the amino terminus domain of IrtA is a flavin-adenine dinucleotide-binding domain essential for iron acquisition. These results suggest a model in which the amino terminus of IrtA functions to couple iron transport and assimilation.
Collapse
|
148
|
Cook GM, Berney M, Gebhard S, Heinemann M, Cox RA, Danilchanka O, Niederweis M. Physiology of mycobacteria. Adv Microb Physiol 2009; 55:81-182, 318-9. [PMID: 19573696 DOI: 10.1016/s0065-2911(09)05502-7] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mycobacterium tuberculosis is a prototrophic, metabolically flexible bacterium that has achieved a spread in the human population that is unmatched by any other bacterial pathogen. The success of M. tuberculosis as a pathogen can be attributed to its extraordinary stealth and capacity to adapt to environmental changes throughout the course of infection. These changes include: nutrient deprivation, hypoxia, various exogenous stress conditions and, in the case of the pathogenic species, the intraphagosomal environment. Knowledge of the physiology of M. tuberculosis during this process has been limited by the slow growth of the bacterium in the laboratory and other technical problems such as cell aggregation. Advances in genomics and molecular methods to analyze the M. tuberculosis genome have revealed that adaptive changes are mediated by complex regulatory networks and signals, resulting in temporal gene expression coupled to metabolic and energetic changes. An important goal for bacterial physiologists will be to elucidate the physiology of M. tuberculosis during the transition between the diverse conditions encountered by M. tuberculosis. This review covers the growth of the mycobacterial cell and how environmental stimuli are sensed by this bacterium. Adaptation to different environments is described from the viewpoint of nutrient acquisition, energy generation, and regulation. To gain quantitative understanding of mycobacterial physiology will require a systems biology approach and recent efforts in this area are discussed.
Collapse
Affiliation(s)
- Gregory M Cook
- Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | | | | | | | | | | | | |
Collapse
|
149
|
Abstract
Drug efflux pumps play a key role in drug resistance and also serve other functions in bacteria. There has been a growing list of multidrug and drug-specific efflux pumps characterized from bacteria of human, animal, plant and environmental origins. These pumps are mostly encoded on the chromosome, although they can also be plasmid-encoded. A previous article in this journal provided a comprehensive review regarding efflux-mediated drug resistance in bacteria. In the past 5 years, significant progress has been achieved in further understanding of drug resistance-related efflux transporters and this review focuses on the latest studies in this field since 2003. This has been demonstrated in multiple aspects that include but are not limited to: further molecular and biochemical characterization of the known drug efflux pumps and identification of novel drug efflux pumps; structural elucidation of the transport mechanisms of drug transporters; regulatory mechanisms of drug efflux pumps; determining the role of the drug efflux pumps in other functions such as stress responses, virulence and cell communication; and development of efflux pump inhibitors. Overall, the multifaceted implications of drug efflux transporters warrant novel strategies to combat multidrug resistance in bacteria.
Collapse
Affiliation(s)
- Xian-Zhi Li
- Human Safety Division, Veterinary Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario K1A OK9, Canada
| | - Hiroshi Nikaido
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202, USA
| |
Collapse
|
150
|
A balancing act: efflux/influx in mycobacterial drug resistance. Antimicrob Agents Chemother 2009; 53:3181-9. [PMID: 19451293 DOI: 10.1128/aac.01577-08] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|