101
|
Incidence, aetiology, and serotype spectrum analysis of adult hand, foot, and mouth disease patients: A retrospective observational cohort study in northern Zhejiang, China. Int J Infect Dis 2019; 85:28-36. [PMID: 31100417 DOI: 10.1016/j.ijid.2019.05.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Hand, foot, and mouth disease (HFMD) in adults has rarely been reported in the literature, although its clinical significance is underestimated. This study was performed to systematically elucidate the epidemiological characteristics of adult HFMD. METHODS A total of 266 adult patients with HFMD were recruited. The control group comprised 40 healthy adults. Swabs and serum samples were collected. Enterovirus strains were tested by RT-PCR, and cytokine expression was examined using commercial kits. Socio-demographic data were collected through follow-up telephone calls. Daily meteorological data were obtained from the China Meteorological Data Sharing Service System. Socio-economic data were collected from the statistical bureau. RESULTS This study identified several unique spatiotemporal patterns in adult HFMD. Having a child recently diagnosed with HFMD was a risk factor for HFMD, whereas keeping pets was a protective factor against HFMD. The results of this study indicate the existence of subclinical carriers or misdiagnosed patients who might be the latent infectious source of HFMD. Further, this study also indicated that adults may act as the main infectious source of trans-regional spread of HFMD. CONCLUSIONS This study revealed the potential hazards of adult HFMD and is a reminder of the vital clinical significance of further research into adult HFMD.
Collapse
|
102
|
Apostol LN, Shimizu H, Suzuki A, Umami RN, Jiao MMA, Tandoc A, Saito M, Lupisan S, Oshitani H. Molecular characterization of enterovirus-A71 in children with acute flaccid paralysis in the Philippines. BMC Infect Dis 2019; 19:370. [PMID: 31046684 PMCID: PMC6498601 DOI: 10.1186/s12879-019-3955-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 04/08/2019] [Indexed: 12/03/2022] Open
Abstract
Background Several inactivated enterovirus-A71 (EV-A71) vaccines are currently licensed in China; however, the development of additional EV-A71 vaccines is ongoing, necessitating extensive analysis of the molecular epidemiology of the virus worldwide. Until 2012, laboratory confirmation of EV-A71 for hand, foot, and mouth disease (HFMD) and other associated diseases had not occurred in the Philippines. Because EV-A71 has been linked with cases of acute flaccid paralysis (AFP), AFP surveillance is one strategy for documenting its possible circulation in the country. To expand current knowledge on EV-A71, molecular epidemiologic analysis and genetic characterization of EV-A71 isolates were performed in this study. Methods A retrospective study was performed to identify and characterize nonpolio enteroviruses (NPEVs) associated with AFP in the Philippines, and nine samples were found to be EV-A71–positive. Following characterization of these EV-A71 isolates, the complete viral protein 1 (VP1) gene was targeted for phylogenetic analysis. Results Nine EV-A71 isolates detected in 2000 (n = 2), 2002 (n = 4), 2005 (n = 2), and 2010 (n = 1) were characterized using molecular methods. Genomic regions spanning the complete VP1 region were amplified and sequenced using specific primers. Phylogenetic analysis of the full-length VP1 region identified all nine EV-A71 Philippine isolates as belonging to the genogroup C lineage, specifically the C2 cluster. The result indicated a genetic linkage with several strains isolated in Japan and Taiwan, suggesting that strains in the C2 cluster identified in the Asia-Pacific region were circulating in the Philippines. Conclusion The study presents the genetic analysis of EV-A71 in the Philippines. Despite some limitations, the study provides additional genetic data on the circulating EV-A71 strains in the Asia-Pacific region, in which information on EV-A71 molecular epidemiology is incomplete. Considering that EV-A71 has a significant public health impact in the region, knowledge of its circulation in each country is important, especially for formulating vaccines covering a wide variety of strains.
Collapse
Affiliation(s)
- Lea Necitas Apostol
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Japan. .,Department of Virology, Research Institute for Tropical Medicine, Muntinlupa, Philippines.
| | - Hiroyuki Shimizu
- Department of Virology II, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Akira Suzuki
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Tohoku-RITM Collaborating Research Center for Emerging and Re-emerging Infectious Diseases, Muntinlupa, Philippines
| | - Rifqiyah Nur Umami
- Department of Virology II, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan.,Research Center for Biotechnology, Indonesian Institute of Sciences, Cibinong, 16911, Indonesia
| | - Maria Melissa Ann Jiao
- Department of Virology, Research Institute for Tropical Medicine, Muntinlupa, Philippines
| | - Amado Tandoc
- Department of Virology, Research Institute for Tropical Medicine, Muntinlupa, Philippines
| | - Mariko Saito
- Tohoku-RITM Collaborating Research Center for Emerging and Re-emerging Infectious Diseases, Muntinlupa, Philippines
| | - Socorro Lupisan
- Department of Virology, Research Institute for Tropical Medicine, Muntinlupa, Philippines
| | - Hitoshi Oshitani
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Tohoku-RITM Collaborating Research Center for Emerging and Re-emerging Infectious Diseases, Muntinlupa, Philippines
| |
Collapse
|
103
|
A decade of sustained selection pressure on two surface sites of the VP1 protein of Enterovirus A71 suggests that immune evasion may be an indirect driver for virulence. Sci Rep 2019; 9:5427. [PMID: 30931960 PMCID: PMC6443798 DOI: 10.1038/s41598-019-41662-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/11/2019] [Indexed: 01/17/2023] Open
Abstract
Enterovirus A71 (EV-A71) is an emerging pathogen in the Enterovirus A species group. EV-A71 causes hand, foot and mouth disease (HFMD), with virulent variants exhibiting polio-like acute flaccid paralysis and other central nervous system manifestations. We analysed all enterovirus A71 complete genomes with collection dates from 2008 to mid-2018. All sub-genotypes exhibit a strong molecular clock with omega (dN/dS) suggesting strong purifying selection. In sub-genotypes B5 and C4, positive selection can be detected at two surface sites on the VP1 protein, also detected in positive selection studies performed prior to 2008. Toggling of a limited repertoire of amino acids at these positively selected residues over the last decade suggests that EV-A71 may be undergoing a sustained frequency-dependent selection process for immune evasion, raising issues for vaccine development. These same sites have also been previously implicated in virus-host binding and strain-associated severity of HFMD, suggesting that immune evasion may be an indirect driver for virulence (154 words).
Collapse
|
104
|
Fu Y, Zhang L, Zhang R, Xu S, Wang H, Jin Y, Wu Z. Enterovirus 71 Suppresses miR-17-92 Cluster Through Up-Regulating Methylation of the miRNA Promoter. Front Microbiol 2019; 10:625. [PMID: 30984146 PMCID: PMC6447709 DOI: 10.3389/fmicb.2019.00625] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 03/12/2019] [Indexed: 11/13/2022] Open
Abstract
Enterovirus 71 (EV71), the etiological agent of hand-foot-and-mouth disease, has become an increasing public health challenge worldwide. Accumulating evidence suggests that mammalian microRNAs (miRNAs), a class of non-coding RNAs of 18 to 24 nucleotides (nt) with important regulatory roles in cellular processes, participate in host antiviral defense and studies have suggested roles of miRNAs in EV71 replication and pathogenesis. In the current study, we reported that the expression of hsa-miR-17∼92 cluster was significantly downregulated during EV71 infection. Overexpression of hsa-miR-17∼92 inhibited, while inhibition of endogenous hsa-miR-17∼92 facilitated EV71 replication. We identified two sequences located at nt 3024 to 3038 and nt 2838 to 2862 of the EV71 (strain FY0805) genome as potential targets for hsa-miR-17-5p and miR-19a/b, respectively, which were validated by luciferase reporter assays and Western blot. Meanwhile, we identified DNA methylation as a novel mechanism of hsa-miR-17∼92 regulatory roles. The methylation of the miR-17-92 promoter was significantly increased (50%) upon EV71 infection, which appeared to be caused by the increased expression of DNMT3B but not DNMT1 and DNMT3A. Furthermore, we demonstrated that the members of miR-17-92 cluster were decreased in the sera of EV71 infected patients, suggesting the clinical implication and the potential therapeutic application of miR-17-92.
Collapse
Affiliation(s)
- Yuxuan Fu
- School of Life Sciences, Ningxia University, Yinchuan, China.,Center for Public Health Research, Medical School of Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Li Zhang
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, China
| | - Rui Zhang
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, China
| | - Shijie Xu
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, China
| | - Huanru Wang
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, China
| | - Yu Jin
- Nanjing Children's Hospital, Nanjing Medical University, Nanjing, China
| | - Zhiwei Wu
- School of Life Sciences, Ningxia University, Yinchuan, China.,Center for Public Health Research, Medical School of Nanjing University, Nanjing, China.,The State Key Laboratory of Analytical Chemistry for Life Sciences, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
105
|
Ma HQ, Wang Y, Mao YH, Wang SY, Zhang YP, Zuo CQ, Liang SJ, Liu JW. The inactivation of the non-enveloped enterovirus 71 (EV71) by a novel disinfectant gel formulation for topical use. Drug Dev Ind Pharm 2019; 45:506-513. [DOI: 10.1080/03639045.2018.1562464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Hai-Qiu Ma
- Tianjin International Joint Academy of Biomedicine, The Tianjin Economic-Technological Development Area (TEDA), Tianjin, China
- Xu He (Tianjin) Medical Technology Co., Ltd., The Tianjin Economic-Technological Development Area (TEDA), Tianjin, China
| | - Ying Wang
- Tianjin International Joint Academy of Biomedicine, The Tianjin Economic-Technological Development Area (TEDA), Tianjin, China
| | - Yong-Hong Mao
- Tianjin International Joint Academy of Biomedicine, The Tianjin Economic-Technological Development Area (TEDA), Tianjin, China
| | - Shu-Yan Wang
- Tianjin International Joint Academy of Biomedicine, The Tianjin Economic-Technological Development Area (TEDA), Tianjin, China
- Xu He (Tianjin) Medical Technology Co., Ltd., The Tianjin Economic-Technological Development Area (TEDA), Tianjin, China
| | - Yu-Pu Zhang
- Tianjin International Joint Academy of Biomedicine, The Tianjin Economic-Technological Development Area (TEDA), Tianjin, China
| | - Chen-Qiang Zuo
- Tianjin International Joint Academy of Biomedicine, The Tianjin Economic-Technological Development Area (TEDA), Tianjin, China
| | - Shao-Juan Liang
- Tianjin International Joint Academy of Biomedicine, The Tianjin Economic-Technological Development Area (TEDA), Tianjin, China
| | - Jun-Wei Liu
- Tianjin International Joint Academy of Biomedicine, The Tianjin Economic-Technological Development Area (TEDA), Tianjin, China
- Xu He (Tianjin) Medical Technology Co., Ltd., The Tianjin Economic-Technological Development Area (TEDA), Tianjin, China
| |
Collapse
|
106
|
Enterovirus A71 Infection Activates Human Immune Responses and Induces Pathological Changes in Humanized Mice. J Virol 2019; 93:JVI.01066-18. [PMID: 30429352 DOI: 10.1128/jvi.01066-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/05/2018] [Indexed: 12/16/2022] Open
Abstract
Since the discovery of enterovirus A71 (EV-A71) half a century ago, it has been recognized as the cause of large-scale outbreaks of hand-foot-and-mouth disease worldwide, particularly in the Asia-Pacific region, causing great concern for public health and economic burdens. Detailed mechanisms on the modulation of immune responses after EV-A71 infection have not been fully known, and the lack of appropriate models hinders the development of promising vaccines and drugs. In the present study, NOD-scid IL2Rγ-/- (NSG) mice with a human immune system (humanized mice) at the age of 4 weeks were found to be susceptible to a human isolate of EV-A71 infection. After infection, humanized mice displayed limb weakness, which is similar to the clinical features found in some of the EV-A71-infected patients. Histopathological examination indicated the presence of vacuolation, gliosis, or meningomyelitis in brain stem and spinal cord, which were accompanied by high viral loads detected in these organs. The numbers of activated human CD4+ and CD8+ T cells were upregulated after EV-A71 infection, and EV-A71-specific human T cell responses were found. Furthermore, the secretion of several proinflammatory cytokines, such as human gamma interferon (IFN-γ), interleukin-8 (IL-8), and IL-17A, was elevated in the EV-A71-infected humanized mice. Taken together, our results suggested that the humanized mouse model permits insights into the human immune responses and the pathogenesis of EV-A71 infection, which may provide a platform for the evaluation of anti-EV-A71 drug candidates in the future.IMPORTANCE Despite causing self-limited hand-food-and-mouth disease in younger children, EV-A71 is consistently associated with severe forms of neurological complications and pulmonary edema. Nevertheless, only limited vaccines and drugs have been developed over the years, which is possibly due to a lack of models that can more accurately recapitulate human specificity, since human is the only natural host for wild-type EV-A71 infection. Our humanized mouse model not only mimics histological symptoms in patients but also allows us to investigate the function of the human immune system during infection. It was found that human T cell responses were activated, accompanied by an increase in the production of proinflammatory cytokines in EV-A71-infected humanized mice, which might contribute to the exacerbation of disease pathogenesis. Collectively, this model allows us to delineate the modulation of human immune responses during EV-A71 infection and may provide a platform to evaluate anti-EV-A71 drug candidates in the future.
Collapse
|
107
|
Hao H, Hao S, Chen H, Chen Z, Zhang Y, Wang J, Wang H, Zhang B, Qiu J, Deng F, Guan W. N6-methyladenosine modification and METTL3 modulate enterovirus 71 replication. Nucleic Acids Res 2019; 47:362-374. [PMID: 30364964 PMCID: PMC6326802 DOI: 10.1093/nar/gky1007] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/09/2018] [Accepted: 10/11/2018] [Indexed: 12/11/2022] Open
Abstract
N6-methyladenosine (m6A) constitutes one of the most abundant internal RNA modifications and is critical for RNA metabolism and function. It has been previously reported that viral RNA contains internal m6A modifications; however, only recently the function of m6A modification in viral RNAs has been elucidated during infections of HIV, hepatitis C virus and Zika virus. In the present study, we found that enterovirus 71 (EV71) RNA undergoes m6A modification during viral infection, which alters the expression and localization of the methyltransferase and demethylase of m6A, and its binding proteins. Moreover, knockdown of m6A methyltransferase resulted in decreased EV71 replication, whereas knockdown of the demethylase had the opposite effect. Further study showed that the m6A binding proteins also participate in the regulation of viral replication. In particular, two m6A modification sites were identified in the viral genome, of which mutations resulted in decreased virus replication, suggesting that m6A modification plays an important role in EV71 replication. Notably, we found that METTL3 interacted with viral RNA-dependent RNA polymerase 3D and induced enhanced sumoylation and ubiquitination of the 3D polymerase that boosted viral replication. Taken together, our findings demonstrated that the host m6A modification complex interacts with viral proteins to modulate EV71 replication.
Collapse
Affiliation(s)
- Haojie Hao
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sujuan Hao
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Honghe Chen
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Zhen Chen
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Yanfang Zhang
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Jun Wang
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Hanzhong Wang
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Bo Zhang
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Jianming Qiu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Fei Deng
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Wuxiang Guan
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| |
Collapse
|
108
|
Rasti M, Khanbabaei H, Teimoori A. An update on enterovirus 71 infection and interferon type I response. Rev Med Virol 2019; 29:e2016. [PMID: 30378208 PMCID: PMC7169063 DOI: 10.1002/rmv.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/01/2018] [Accepted: 10/02/2018] [Indexed: 12/13/2022]
Abstract
Enteroviruses are members of Pichornaviridae family consisting of human enterovirus group A, B, C, and D as well as nonhuman enteroviruses. Hand, foot, and mouth disease (HFMD) is a serious disease which is usually seen in the Asia-Pacific region in children. Enterovirus 71 and coxsackievirus A16 are two important viruses responsible for HFMD which are members of group A enterovirus. IFN α and β are two cytokines, which have a major activity in the innate immune system against viral infections. Most of the viruses have some weapons against these cytokines. EV71 has two main proteases called 2A and 3C, which are important for polyprotein processing and virus maturation. Several studies have indicated that they have a significant effect on different cellular pathways such as interferon production and signaling pathway. The aim of this study was to investigate the latest findings about the interaction of 2A and 3C protease of EV71 and IFN production/signaling pathway and their inhibitory effects on this pathway.
Collapse
Affiliation(s)
- Mojtaba Rasti
- Infectious and Tropical Diseases Research Center, Health Research InstituteAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Hashem Khanbabaei
- Medical Physics Department, School of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Ali Teimoori
- Department of Virology, Faculty of MedicineHamadan University of Medical SciencesHamadanIran
| |
Collapse
|
109
|
Wang H, Li Y. Recent Progress on Functional Genomics Research of Enterovirus 71. Virol Sin 2018; 34:9-21. [PMID: 30552635 DOI: 10.1007/s12250-018-0071-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/14/2018] [Indexed: 01/20/2023] Open
Abstract
Enterovirus 71 (EV71) is one of the main pathogens that causes hand-foot-and-mouth disease (HFMD). HFMD caused by EV71 infection is mostly self-limited; however, some infections can cause severe neurological diseases, such as aseptic meningitis, brain stem encephalitis, and even death. There are still no effective clinical drugs used for the prevention and treatment of HFMD. Studying EV71 protein function is essential for elucidating the EV71 replication process and developing anti-EV71 drugs and vaccines. In this review, we summarized the recent progress in the studies of EV71 non-coding regions (5' UTR and 3' UTR) and all structural and nonstructural proteins, especially the key motifs involving in viral infection, replication, and immune regulation. This review will promote our understanding of EV71 virus replication and pathogenesis, and will facilitate the development of novel drugs or vaccines to treat EV71.
Collapse
Affiliation(s)
- Huiqiang Wang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.,NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yuhuan Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China. .,NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
110
|
Zhu J, Chen N, Zhou S, Zheng K, Sun L, Zhang Y, Cao L, Zhang X, Xiang Q, Chen Z, Wang C, Fan C, He Q. Severity of enterovirus A71 infection in a human SCARB2 knock-in mouse model is dependent on infectious strain and route. Emerg Microbes Infect 2018; 7:205. [PMID: 30518755 PMCID: PMC6281673 DOI: 10.1038/s41426-018-0201-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/10/2018] [Accepted: 10/25/2018] [Indexed: 11/30/2022]
Abstract
Enterovirus A71 (EV-A71) is a major etiological agent of human hand, foot and mouth disease, and it can cause severe neurological complications. Although several genotypes of EV-A71 strains are prevalent in different regions of the world, the genotype C4 has circulated in mainland China for more than 20 years. The pathogenicity of different EV-A71 clinical isolates varies and needs to be explored. In this study, hSCARB2 knock-in mice (N = 181) with a wide range of ages were tested for their susceptibility to two EV-A71 strains with the subgenotypes C4 and C2, and two infection routes (intracranial and venous) were compared. The clinical manifestations and pathology and their relationship to the measured viral loads in different tissues were monitored. We observed that 3 weeks is a crucial age, as mice younger than 3-week-old that were infected became extremely ill. However, mice older than 3 weeks displayed diverse clinical symptoms. Significant differences were observed in the pathogenicity of the two strains with respect to clinical signs, disease incidence, survival rate, and body weight change. We concluded that hSCARB2 knock-in mice are a sensitive model for investigating the clinical outcomes resulting from infection by different EV-A71 strains. The intracranial infection model appears to be suitable for evaluating EV-A71 neurovirulence, whereas the venous infection model is appropriate for studying the pathogenicity of EV-A71.
Collapse
Affiliation(s)
- Junping Zhu
- Department of Medical Microbiology, Capital Medical University, Beijing, 100069, China
| | - Ning Chen
- Department of Medical Microbiology, Capital Medical University, Beijing, 100069, China
| | - Shuya Zhou
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Kai Zheng
- Department of Medical Microbiology, Capital Medical University, Beijing, 100069, China
| | - Lin Sun
- Department of Medical Microbiology, Capital Medical University, Beijing, 100069, China
| | - Yuxiao Zhang
- Department of Medical Microbiology, Capital Medical University, Beijing, 100069, China
| | - Lina Cao
- Department of Medical Microbiology, Capital Medical University, Beijing, 100069, China
| | - Xiaoyan Zhang
- Department of Medical Microbiology, Capital Medical University, Beijing, 100069, China
| | - Qiaoyan Xiang
- Department of Medical Microbiology, Capital Medical University, Beijing, 100069, China
| | - Zhiyun Chen
- Department of Medical Microbiology, Capital Medical University, Beijing, 100069, China
| | - Chenfei Wang
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Changfa Fan
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, 100050, China.
| | - Qiushui He
- Department of Medical Microbiology, Capital Medical University, Beijing, 100069, China.
- Department of Medical Microbiology and Immunology, University of Turku, Turku, 20520, Finland.
| |
Collapse
|
111
|
Unusual ent-atisane type diterpenoids with 2-oxopropyl skeleton from the roots of Euphorbia ebracteolata and their antiviral activity against human rhinovirus 3 and enterovirus 71. Bioorg Chem 2018; 81:234-240. [DOI: 10.1016/j.bioorg.2018.08.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 08/17/2018] [Accepted: 08/21/2018] [Indexed: 11/24/2022]
|
112
|
Immunocompetent and Immunodeficient Mouse Models for Enterovirus 71 Pathogenesis and Therapy. Viruses 2018; 10:v10120674. [PMID: 30487421 PMCID: PMC6316343 DOI: 10.3390/v10120674] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/23/2018] [Accepted: 11/26/2018] [Indexed: 12/29/2022] Open
Abstract
Enterovirus 71 (EV71) is a global health threat. Children infected with EV71 could develop hand-foot-and-mouth disease (HFMD), encephalitis, paralysis, pulmonary edema, and death. At present, no effective treatment for EV71 is available. We reviewed here various mouse models for EV71 pathogenesis and therapy. Earlier studies relied on the use of mouse-adapted EV71 strains. To avoid artificial mutations arising de novo during the serial passages, recent studies used EV71 clinical isolates without adaptation. Several human receptors for EV71 were shown to facilitate viral entry in cell culture. However, in vivo infection with human SCARB2 receptor transgenic mice appeared to be more limited to certain strains and genotypes of EV71. Efficacy of oral infection in these transgenic models is extremely low. Intriguingly, despite the lack of human receptors, immunodeficient neonatal mouse models can still be infected with EV71 clinical isolates via oral or intraperitoneal routes. Crossbreeding between SCARB2 transgenic and stat1 knockout mice generated a more sensitive and user-friendly hybrid mouse model. Infected hybrid mice developed a higher incidence and earlier onset of CNS disease and death. Different pathogenesis profiles were observed in models deficient in various arms of innate or humoral immunity. These models are being actively used for antiviral research.
Collapse
|
113
|
Taylor S, Khan M, Zaidi S, Alvi U, Fatima Y. Central serous retinopathy and hand-foot-mouth disease: coincidence or causation? Int Med Case Rep J 2018; 11:277-282. [PMID: 30425589 PMCID: PMC6202041 DOI: 10.2147/imcrj.s181088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Introduction The clinical and pathological correlation between hand–foot–mouth disease (HFMD) and ocular complications has not yet been established. However, individual case reports indicate a trend that may be the emergence of a new burden of the previous self-limiting virus. This virus is particularly prevalent in childcare centers and poses an infectious disease risk for this workplace. Objectives The primary objective of this case report is to describe an unusual clinical record of a patient who developed central serous retinopathy while unwell with HFMD. Discussion of management strategies for this workplace, its staff, and visitors is also included. Methods This was an observational case report that was identified and reported retrospectively. For comparison, a search of the literature to identify similar ocular complications of HFMD was also undertaken. Results from this search, in addition to international data and prevention and management strategies are also provided. Results A total of 13 individual case reports with ocular associations, including this clinical record, were identified in the literature worldwide. The median age was 33 years, and three patients (23%) were female. No treatment or management guidelines for ocular complications of HFMD have been identified. Conclusion Severe and potentially life-threatening complications of a seemingly harmless childhood illness are represented sporadically in the literature. The requirement for research and evaluation into this emerging occupational hazard area is necessary for improved prevention, management, and treatment strategies to be developed.
Collapse
Affiliation(s)
- Selina Taylor
- Centre for Rural and Remote Health, James Cook University, Mount Isa, QLD, Australia,
| | - Maureen Khan
- Sunshine Coast University Hospital, Sunshine Coast, QLD, Australia
| | - Shams Zaidi
- Mackay Hospital and Health Service, Mackay, QLD, Australia
| | | | - Yaqoot Fatima
- Centre for Rural and Remote Health, James Cook University, Mount Isa, QLD, Australia,
| |
Collapse
|
114
|
Tang WF, Huang RT, Chien KY, Tang P, Horng JT. Large-Scale Proteomic Identification of Targets of Cellular miR-197 Downregulated by Enterovirus A71. J Proteome Res 2018; 18:449-460. [PMID: 30336044 DOI: 10.1021/acs.jproteome.8b00762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
MicroRNAs are noncoding RNA species comprising 18-23 nucleotides that regulate host-virus interaction networks. Here, we show that enterovirus A71 infection in human rhabdomyosarcoma (RD) is regulated by miR-197 expression. Transfection of miR-197 mimic into RD cells inhibited virus replication by interfering with the viral RNA synthesis. We employed a combination of mass-spectrometry-based quantitative proteomics with the stable isotope labeling with amino acids in cell culture (SILAC) approach for the identification of the miR-197 target genes in RD cells and to investigate the differential expression of the prospective target proteins. A total of 1822 proteins were repeatedly identified in miR-197-transfected RD cells, 106 of which were predicted to have seed sites by TargetScan. Notably, seven of eight selected genes potentially related to viral replication and immune response were validated as direct miR-197 targets, using a luciferase 3'-untranslated region (UTR) reporter assay. The expression levels of three selected endogenous molecules (ITGAV, ETF1, and MAP2K1/MEK1) were significantly reduced when RD cells were transfected with a miR-197 mimic. Our results provide a comprehensive database of miR-197 targets, which might provide better insights into the understanding of host-virus interaction.
Collapse
Affiliation(s)
- Wen-Fang Tang
- Department of Biochemistry and Molecular Biology, College of Medicine , Chang Gung University , Taoyuan 333 , Taiwan.,Research Center for Emerging Viral Infections , Chang Gung University , Taoyuan 333 , Taiwan
| | - Ru-Ting Huang
- Department of Biochemistry and Molecular Biology, College of Medicine , Chang Gung University , Taoyuan 333 , Taiwan
| | - Kun-Yi Chien
- Department of Biochemistry and Molecular Biology, College of Medicine , Chang Gung University , Taoyuan 333 , Taiwan.,Clinical Proteomics Core Laboratory , Chang Gung Memorial Hospital , Taoyuan 333 , Taiwan
| | - Petrus Tang
- Bioinformatics Center , Chang Gung University, Chang Gung University , Taoyuan 333 , Taiwan.,Molecular Infectious Disease Research Center , Chang Gung Memorial Hospital , Taoyuan 333 , Taiwan
| | - Jim-Tong Horng
- Department of Biochemistry and Molecular Biology, College of Medicine , Chang Gung University , Taoyuan 333 , Taiwan.,Molecular Infectious Disease Research Center , Chang Gung Memorial Hospital , Taoyuan 333 , Taiwan.,Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety and Graduate Institute of Health Industry Technology, College of Human Ecology , Chang Gung University of Science and Technology , Taoyuan 333 , Taiwan.,Research Center for Emerging Viral Infections , Chang Gung University , Taoyuan 333 , Taiwan
| |
Collapse
|
115
|
Chen H, Cheng Y, Liang X, Meng JT, Zuo HJ, Su LY, Wang XX, Yang CB, Luan RS. Molecular characterization of enterovirus 71 sibling strains for thermal adaption in Vero cells with adaptive laboratory evolution. INFECTION GENETICS AND EVOLUTION 2018; 67:44-50. [PMID: 30347249 DOI: 10.1016/j.meegid.2018.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/16/2018] [Accepted: 10/18/2018] [Indexed: 10/28/2022]
Abstract
Enterovirus 71 is the main pathogen that causes severe and fatal hand-foot-mouth-disease (HFMD) cases. As the enterovirus virus mutation has implications for pathogenesis, vaccine development, antiviral therapy, and epidemiological disease management of the virus. In this study, we investigated the variations of enterovirus 71 in thermal adaption, using the method of adaptive laboratory evolution. The sibling virus strains were isolated from a 2-year-old severe case of HFMD (#100) and her symptomless close contact (#101). Both strains were cultured in Vero cells by serial passage of 36 generations at the temperatures of 28.0 °C, 33.0 °C and 39.5 °C to construct adaptive lineages. According to the comparative analysis of phenotypes between adapted strains and parental strains, differences in growth rate were observed in the sibling lineages and a larger plaque was found mainly in the hot adapted strains for lineage #101. Two sets of adaptive strains from six time points (parental, 12th 17th, 31st, 35th passage and endpoint) were sequenced and analyzed by both Sanger sequencing and Next Generation Sequencing. Several variations in most coding genes and one reverse mutation in 5'UTR was observed, along with the identity of 99.8% for complete genome for both lineages. Notably, thermal specific non-synonymous mutations were found in the gene of VP1\VP3\3A\2C\3C. Moreover, the concurrent mutations A292G, A434G and A355C/T of sibling lineages in VP1 showed quantificational trace with distinguishing patterns for different temperatures, which were suspected to be the thermo-sensitive mutation hotspots. These results highlight the possible rules of thermal adaption in enterovirus 71, produce a novel picture of genome evolution of the virus, and shed light on viral variation and evolution.
Collapse
Affiliation(s)
- Heng Chen
- West China School of Public Health, & No. 4 West China Teaching Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China; Chengdu Center for Disease Control and Prevention, Chengdu 610041, Sichuan Province, China
| | - Yue Cheng
- Chengdu Center for Disease Control and Prevention, Chengdu 610041, Sichuan Province, China
| | - Xian Liang
- Chengdu Center for Disease Control and Prevention, Chengdu 610041, Sichuan Province, China
| | - Jian-Tong Meng
- Chengdu Center for Disease Control and Prevention, Chengdu 610041, Sichuan Province, China
| | - Hao-Jiang Zuo
- West China School of Public Health, & No. 4 West China Teaching Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Li-Yuan Su
- Chengdu Center for Disease Control and Prevention, Chengdu 610041, Sichuan Province, China
| | - Xi-Xi Wang
- Chengdu Center for Disease Control and Prevention, Chengdu 610041, Sichuan Province, China
| | - Cai-Bin Yang
- Chengdu Center for Disease Control and Prevention, Chengdu 610041, Sichuan Province, China
| | - Rong-Sheng Luan
- West China School of Public Health, & No. 4 West China Teaching Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China.
| |
Collapse
|
116
|
Molecular epidemiology of coxsackievirus A6 circulating in Hong Kong reveals common neurological manifestations and emergence of novel recombinant groups. J Clin Virol 2018; 108:43-49. [PMID: 30237097 DOI: 10.1016/j.jcv.2018.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/21/2018] [Accepted: 09/07/2018] [Indexed: 11/23/2022]
Abstract
BACKGROUND Coxsackievirus A6 (CV-A6) represents the predominant enterovirus serotype in Hong Kong, but its epidemiology in our population was unknown. OBJECTIVES To examine the clinical and molecular epidemiology of CV-A6 and detect emerging recombinant strains in Hong Kong. STUDY DESIGN Nasopharyngeal aspirates (NPAs) from patients with febrile or respiratory illness were subject to RT-PCR for CV-A6 and sequencing of 5'-NCR and VP1. CV-A6-positive samples were further subject to 2C and 3D gene sequencing. Complete genome sequencing was performed on potential recombinant strains. RESULTS Thirty-six (0.35%) NPAs were positive for CV-A6 by 5'-NCR RT-PCR and sequencing, 28 of which confirmed by partial VP1 gene sequencing. Among the 28 patients (mainly young children) with CV-A6 infection, hand-foot-and-mouth disease (HFMD) (43%), herpangina (18%) and tonsillitis (11%) were the most common diagnoses. Seven (25%) patients had neurological manifestations, including febrile seizures, encephalitis and meningitis. VP1 gene analysis showed that 24 CV-A6 strains circulating in Hong Kong belonged to genotype D5, while 4 strains belonged to D4. Further 2C and 3D gene analysis revealed eight potential recombinant strains. Genome sequencing of five selected strains confirmed four recombinant strains: HK459455/2013 belonging to recombination group RJ arisen from CV-A6/CV-A4, HK458288/2015 and HK446377/2015 representing novel group RL arisen from CV-A6/CV-A4, and HK462069/2015 representing novel group RM arisen from CV-A6/EV-A71. Recombination breakpoints located at 3D were identified in the latter three recombinant strains, with HK462069/2015 (from a child with encephalitis) having acquired 3D region from EV-A71. CONCLUSIONS We identified novel recombinant CV-A6 strains in Hong Kong, with 3D being a common recombination site.
Collapse
|
117
|
USP4 positively regulates RLR-induced NF-κB activation by targeting TRAF6 for K48-linked deubiquitination and inhibits enterovirus 71 replication. Sci Rep 2018; 8:13418. [PMID: 30194441 PMCID: PMC6128947 DOI: 10.1038/s41598-018-31734-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 08/24/2018] [Indexed: 12/25/2022] Open
Abstract
Retinoic acid-inducible gene I-like receptor (RLR) is one of the most important pattern recognition receptors of the innate immune system that detects positive and/or negative stranded RNA viruses. Subsequently, it stimulates downstream transcription of interferon regulatory factor 3 (IRF3) and nuclear factor κB (NF-κB) inducing the production of interferons (IFNs) and inflammatory cytokines. Tumour necrosis factor receptor associated factor 6 (TRAF6) is a key protein involved in the RLR-mediated antiviral signalling pathway, recruiting additional proteins to form a multiprotein complex capable of activating the NF-κB inflammatory pathway. Despite TRAF6 playing an important role in regulating host immunity and viral infection, the deubiquitination of TRAF6 induced by viral infection remains elusive. In this study, we found that enterovirus 71 (EV71) infection attenuated the expression of Ubiquitin-specific protease 4 (USP4) in vitro and in vivo, while overexpression of USP4 significantly suppressed EV71 replication. Furthermore, it was found that EV71 infection reduced the RLR signalling pathway and enhanced the degradation of TRAF6. USP4 was also found to interact with TRAF6 and positively regulate the RLR-induced NF-κB signalling pathway, inhibiting the replication of EV71. Therefore, as a novel positive regulator of TRAF6, USP4 plays an essential role in EV71 infection by deubiquitinating K48-linked ubiquitin chains.
Collapse
|
118
|
Fang CY, Liu CC. Recent development of enterovirus A vaccine candidates for the prevention of hand, foot, and mouth disease. Expert Rev Vaccines 2018; 17:819-831. [PMID: 30095317 DOI: 10.1080/14760584.2018.1510326] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Hand, foot, and mouth disease (HFMD) is a childhood illness commonly caused by enterovirus A. Enterovirus A71 (EV-A71) and coxsackievirus A16 (CV-A16) are the most commonly identified viruses associated with HFMD. Recently, outbreaks caused by different enterovirus A including CV-A6 and CV-A10 are increasing. Being available now to protect against EV-A71 infection, inactivated EV-A71 vaccines cannot prevent coxsackievirus infections, thus limiting their general application in controlling HFMD. Multivalent HFMD vaccines are suggested to have broad cross-neutralizing responses against these emerging enteroviruses. AREAS COVERED We discuss the recent development of enterovirus A vaccines including the inactivated whole-virion vaccine and virus-like particle vaccine candidates and review the information of neutralization epitopes of these viruses. EXPERT COMMENTARY Evaluation of the efficacy and safety of the coxsackievirus vaccine and the multivalent HFMD vaccine candidates in clinical trials is urgently required. Epitopic analysis showed that common immunodominant sites exist across these enteroviruses. However, variations of amino acid residues in these regions limit the induction of cross-neutralization antibodies, and therefore, a multivalent HFMD vaccine is required for broad protection against HFMD. With the inclusion of major circulating viruses in the development of multivalent HFMD vaccines, an increase in the success in HFMD control is anticipated.
Collapse
Affiliation(s)
- Chih-Yeu Fang
- a Department of Pathology, Wan Fang Hospital , Taipei Medical University , Taipei , Taiwan
| | - Chia-Chyi Liu
- b National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes , Zhunan Town , Taiwan
| |
Collapse
|
119
|
Polymorphism of OAS2 rs739901 C/A Involves the Susceptibility to EV71 Infection in Chinese Children. Curr Med Sci 2018; 38:640-647. [DOI: 10.1007/s11596-018-1925-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 05/15/2018] [Indexed: 10/28/2022]
|
120
|
Molecular characterization of echovirus 12 strains isolated from healthy children in China. Sci Rep 2018; 8:11716. [PMID: 30082917 PMCID: PMC6078983 DOI: 10.1038/s41598-018-30250-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 07/25/2018] [Indexed: 12/26/2022] Open
Abstract
Human echovirus 12 (E-12) belongs to the enterovirus B species. To date, only one full-length genome sequence of E-12 (prototype strain Travis) is available in the GenBank database. This study determined the complete sequence of three E-12 strains, which were isolated from the stools of three healthy children in Yunnan, China, in 2013. We revealed that the three Yunnan E-12 strains had only 80.8-80.9% nucleotide identity and 96.4-96.8% amino acid identity with the Travis strain based on pairwise comparisons of the complete genome nucleotide and amino acid sequences. The three Yunnan strains shared 99.7% nucleotide identity and 99.1-99.5% amino acid similarity. Phylogenetic and similarity plot analyses showed that intertypic recombination occurred in the non-structural regions of the three Yunnan E-12 strains. This is the first report of the complete genome sequence of E-12 in China and it enriches the complete genome sequences of E-12 in the GenBank database.
Collapse
|
121
|
Tseligka ED, Sobo K, Stoppini L, Cagno V, Abdul F, Piuz I, Meylan P, Huang S, Constant S, Tapparel C. A VP1 mutation acquired during an enterovirus 71 disseminated infection confers heparan sulfate binding ability and modulates ex vivo tropism. PLoS Pathog 2018; 14:e1007190. [PMID: 30075025 PMCID: PMC6093697 DOI: 10.1371/journal.ppat.1007190] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 08/15/2018] [Accepted: 06/29/2018] [Indexed: 12/16/2022] Open
Abstract
Enterovirus 71 (EV71) causes hand, foot and mouth disease, a mild and self-limited illness that is sometimes associated with severe neurological complications. EV71 neurotropic determinants remain ill-defined to date. We previously identified a mutation in the VP1 capsid protein (L97R) that was acquired over the course of a disseminated infection in an immunocompromised host. The mutation was absent in the respiratory tract but was present in the gut (as a mixed population) and in blood and cerebrospinal fluid (as a dominant species). In this study, we demonstrated that this mutation does not alter the dependence of EV71 on the human scavenger receptor class B2 (SCARB2), while it enables the virus to bind to the heparan sulfate (HS) attachment receptor and modifies viral tropism in cell lines and in respiratory, intestinal and neural tissues. Variants with VP197L or VP197R were able to replicate to high levels in intestinal and neural tissues and, to a lesser extent, in respiratory tissues, but their preferred entry site (from the luminal or basal tissue side) differed in respiratory and intestinal tissues and correlated with HS expression levels. These data account for the viral populations sequenced from the patient's respiratory and intestinal samples and suggest that improved dissemination, resulting from an acquired ability to bind HS, rather than specific neurotropism determinants, enabled the virus to reach and infect the central nervous system. Finally, we showed that iota-carrageenan, a highly sulfated polysaccharide, efficiently blocks the replication of HS-dependent variants in cells and 2D neural cultures. Overall, the results of this study emphasize the importance of HS binding in EV71 pathogenesis and open new avenues for the development of antiviral molecules that may prevent this virus's dissemination.
Collapse
Affiliation(s)
- Eirini D. Tseligka
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, Geneva, Switzerland
| | - Komla Sobo
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, Geneva, Switzerland
| | - Luc Stoppini
- Tissue Engineering Laboratory, HES-SO/University of Applied Sciences, Geneva, Western Switzerland
| | - Valeria Cagno
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, Geneva, Switzerland
| | - Fabien Abdul
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, Geneva, Switzerland
| | - Isabelle Piuz
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, Geneva, Switzerland
| | - Pascal Meylan
- Institute of Microbiology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | | | | | - Caroline Tapparel
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, Geneva, Switzerland
| |
Collapse
|
122
|
Messacar K, Asturias EJ, Hixon AM, Van Leer-Buter C, Niesters HGM, Tyler KL, Abzug MJ, Dominguez SR. Enterovirus D68 and acute flaccid myelitis-evaluating the evidence for causality. THE LANCET. INFECTIOUS DISEASES 2018; 18:e239-e247. [PMID: 29482893 PMCID: PMC6778404 DOI: 10.1016/s1473-3099(18)30094-x] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/19/2017] [Accepted: 11/09/2017] [Indexed: 01/11/2023]
Abstract
Increased circulation of enterovirus D68 in 2014 and 2016 temporally and geographically coincided with increases in cases of acute flaccid myelitis, an uncommon condition of paralysis due to lesions in the anterior horn of the spinal cord. The identification of enterovirus D68 in respiratory specimens from cases of acute flaccid myelitis worldwide further supports an association, yet the absence of direct virus isolation from affected tissues, infrequent detection in cerebrospinal fluid, and the absence, until recently, of an animal model has left the causal nature of the relationship unproven. In this Personal View we evaluate epidemiological and biological evidence linking enterovirus D68 and acute flaccid myelitis. We applied the Bradford Hill criteria to investigate the evidence for a causal relationship and highlight the importance of comprehensive surveillance and research to further characterise the role of enterovirus D68 in acute flaccid myelitis and pursue effective therapies and prevention strategies.
Collapse
Affiliation(s)
- Kevin Messacar
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA; Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA; Children's Hospital Colorado, Aurora, CO, USA.
| | - Edwin J Asturias
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA; Children's Hospital Colorado, Aurora, CO, USA; Center for Global Health and Department of Epidemiology, Colorado School of Public Health, Aurora, CO, USA
| | - Alison M Hixon
- University of Colorado School of Medicine Medical Scientist Training Program, Aurora, CO, USA
| | - Coretta Van Leer-Buter
- Division of Clinical Virology, Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Hubert G M Niesters
- Division of Clinical Virology, Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Kenneth L Tyler
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Mark J Abzug
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA; Children's Hospital Colorado, Aurora, CO, USA
| | - Samuel R Dominguez
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA; Children's Hospital Colorado, Aurora, CO, USA
| |
Collapse
|
123
|
Lin YL, Chow YH, Huang LM, Hsieh SM, Cheng PY, Hu KC, Chiang BL. A CpG-adjuvanted intranasal enterovirus 71 vaccine elicits mucosal and systemic immune responses and protects human SCARB2-transgenic mice against lethal challenge. Sci Rep 2018; 8:10713. [PMID: 30013088 PMCID: PMC6048030 DOI: 10.1038/s41598-018-28281-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 05/15/2018] [Indexed: 12/11/2022] Open
Abstract
Enterovirus 71 (EV71) is an aetiological agent responsible for seasonal epidemics of hand-foot-and-mouth disease, which causes considerable mortality among young children. Mucosal vaccines can efficiently induce secretory IgA at mucosal surfaces and thereby prevent or limit infection at the site of virus entry. CpG oligodeoxynucleotides (ODNs), which resemble bacterial DNA, can induce the innate immune response through activation of Toll-like receptor 9. Here, we used CpG ODNs as adjuvants to investigate an EV71 mucosal vaccine in mice. In the EV71 + CpG group, the EV71-specific IgG and IgA titres in the serum, nasal wash, bronchoalveolar lavage fluid, and faeces were substantially higher than those in the EV71- and phosphate-buffered saline-treated groups. Moreover, the number of EV71-specific IgG- and IgA-producing cells was also higher in the EV71 + CpG group. Furthermore, T-cell proliferative responses and interleukin-17 secretion were markedly increased when CpG-adjuvanted EV71 was delivered intranasally. More importantly, the induced antibodies neutralised infection by EV71 of the C2 genotype and crossneutralised infection by EV71 of the B4 and B5 genotypes. Lastly, human scavenger receptor class B, member 2-transgenic mice intranasally immunised with the CpG-adjuvanted EV71 vaccine resisted a subsequent lethal challenge with EV71, indicating that CpG was an effective intranasal adjuvant for EV71 mucosal-vaccine development.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Administration, Intranasal
- Animals
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Bronchoalveolar Lavage Fluid/immunology
- Disease Models, Animal
- Enterovirus A, Human/immunology
- Enterovirus A, Human/pathogenicity
- Female
- Hand, Foot and Mouth Disease/blood
- Hand, Foot and Mouth Disease/immunology
- Hand, Foot and Mouth Disease/prevention & control
- Hand, Foot and Mouth Disease/virology
- Humans
- Immunity, Mucosal
- Immunogenicity, Vaccine
- Lysosomal Membrane Proteins/genetics
- Mice
- Mice, Inbred BALB C
- Mice, Transgenic
- Oligodeoxyribonucleotides/administration & dosage
- Oligodeoxyribonucleotides/immunology
- Receptors, Scavenger/genetics
- Treatment Outcome
- Vaccines, Inactivated
- Viral Vaccines/administration & dosage
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Yu-Li Lin
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Hung Chow
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Li-Min Huang
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Szu-Min Hsieh
- Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Pei-Yun Cheng
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Kai-Chieh Hu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Bor-Luen Chiang
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
124
|
Su YS, Tsai AH, Ho YF, Huang SY, Liu YC, Hwang LH. Stimulation of the Internal Ribosome Entry Site (IRES)-Dependent Translation of Enterovirus 71 by DDX3X RNA Helicase and Viral 2A and 3C Proteases. Front Microbiol 2018; 9:1324. [PMID: 29971060 PMCID: PMC6018165 DOI: 10.3389/fmicb.2018.01324] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 05/30/2018] [Indexed: 12/16/2022] Open
Abstract
The translation of enterovirus 71 (EV71) is mediated by an internal ribosome entry site (IRES)-dependent manner. EV71 IRES comprises five highly structured domains (domains II-VI) in the 5′-untranslated region of the viral mRNA. A conserved AUG triplet residing in domain VI is proposed to be the ribosome entry site. It is thus envisaged that the highly structured conformation of domain VI may actually reduce the accessibility of the AUG triplet to the ribosome. This study identified a DEAD-box family RNA helicase, DDX3X, that positively regulated the EV71 IRES-dependent translation. The helicase activity of DDX3X was required for the stimulation of EV71 IRES activity; however, DDX3X was no longer important for the IRES activity when the secondary structure of domain VI was destabilized. DDX3X interacted with the truncated eIF4G which bound specifically to domain V. Thus, we proposed that DDX3X might bind to domain VI or a region nearby via the interaction with the truncated eIF4G, and subsequently unwound the secondary structure of domain VI to facilitate ribosome entry. Additionally, we demonstrated that the viral 2Apro and 3Cpro enhanced the IRES-dependent translation via their protease activities. Together, these results indicate that DDX3X is an important RNA helicase involved in EV71 IRES-dependent translation and that IRES translation is enhanced by viral infection, partly mediated by viral protease activity.
Collapse
Affiliation(s)
- Yu-Siang Su
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Ai-Hsuan Tsai
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Yueh-Feng Ho
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Shin-Yi Huang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Yen-Chun Liu
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Lih-Hwa Hwang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
125
|
Lin YL, Cheng PY, Chin CL, Huang LM, Lin SY, Chiang BL. Fibroblast-stimulating lipopeptide-1 as a potential mucosal adjuvant enhances mucosal and systemic immune responses to enterovirus 71 vaccine. Vaccine 2018; 36:4331-4338. [PMID: 29891349 DOI: 10.1016/j.vaccine.2018.05.090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 05/18/2018] [Accepted: 05/21/2018] [Indexed: 01/05/2023]
Abstract
To prevent viral infection at the site of entry, mucosal vaccines are potent tools for inducing IgA secretion for defense. Because Toll-like receptor (TLR) ligands serve as strong adjuvants, two ligands that mimic the structure of mycoplasmal and bacterial lipopeptides represent interesting vaccine candidates. Pam3CSK4, a synthetic triacylated lipopeptide, interacts with TLR2/1. Because fibroblast-stimulating lipopeptide-1 (FSL-1), a synthetic diacylated lipopeptide, is recognized by TLR2/6, we targeted the potential immuno-inducibility of Pam3CSK4 and FSL-1 as adjuvants of an enterovirus 71 (EV71) mucosal vaccine. Naïve BALB/c mice were used for intranasal immunization three times over a 3-week interval, with results showing that EV71-specific IgG and IgA in serum, nasal washes, bronchoalveolar lavage fluid, and feces from the EV71 + FSL-1 group were significantly higher than levels observed in mice treated with EV71 + Pam3CSK4, EV71 alone, or the control group treated with phosphate-buffered saline. Furthermore, we observed more EV71-specific IgG and IgA-producing cells in treatments using EV71 formulated with FSL-1. Additionally, T cell-proliferative responses and interferon-γ and interleukin-17 secretion were significantly increased when inactivated EV71 was formulated using FSL-1. Moreover, serum from immunized mice was capable of neutralizing the infectivity of EV71 (C2 genotype) and was able to cross-neutralize the B4 and B5 genotypes of EV71. Our data suggested that FSL-1 could be used as an efficient adjuvant for intranasal EV71-vaccine immunization.
Collapse
Affiliation(s)
- Yu-Li Lin
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Pei-Yun Cheng
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Chiao-Li Chin
- Graduate Institute of Immunology, College of Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Li-Min Huang
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Shr-Yu Lin
- Graduate Institute of Immunology, College of Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Bor-Luen Chiang
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
126
|
Hung TH, Chen VCH, Yang YH, Tsai CS, Lu ML, McIntyre RS, Lee Y, Huang KY. Association between enterovirus infection and speech and language impairments: A nationwide population-based study. RESEARCH IN DEVELOPMENTAL DISABILITIES 2018; 77:76-86. [PMID: 29705533 DOI: 10.1016/j.ridd.2018.04.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 04/16/2018] [Accepted: 04/19/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND AND AIMS Delay and impairment in Speech and language are common developmental problems in younger populations. Hitherto, there has been minimal study of the association between common childhood infections (e.g. enterovirus [EV]) and speech and language. The impetus for evaluating this association is provided by evidence linking inflammation to neurodevelopmental disorders. Herein we sought to determine whether an association exists between EV infection and subsequent diagnoses of speech and language impairments in a nationwide population-based sample in Taiwan. METHODS Our study acquired data from the Taiwan National Health Insurance Research Database. The sample was comprised of individuals under 18 years of age with newly diagnosed EV infection during the period from January 1998 to December 2011. 39669 eligible cases were compared to matched controls and assessed during the study period for incident cases of speech and language impairments. Cox regression analyses were applied, adjusting for sex, age and other physical and mental problems. RESULTS In the fully adjusted Cox regression model for hazard ratios, EV infection as positively associated with speech and language impairments (HR = 1.14, 95% CI: 1.06-1.22) after adjusting for age, sex and other confounds. Compared to the control group, the hazard ratio for speech and language impairments was 1.12 (95% CI: 1.03-1.21) amongst the group of EV infection without hospitalization, and 1.26 (95% CI: 1.10-1.45) amongst the group of EV infection with hospitalization. CONCLUSIONS EV infection is temporally associated with incident speech and language impairments. Our findings herein provide rationale for educating families that EV infection may be associated with subsequent speech and language problems in susceptible individuals and that monitoring for such a presentation would be warranted. WHAT THIS PAPER ADDS?: Speech and language impairments associated with central nervous system infections have been reported in the literature. EV are medically important human pathogens and associated with select neuropsychiatric diseases. Notwithstanding, relatively few reports have mentioned the effects of EV infection on speech and language problems. Our study used a nationwide longitudinal dataset and identified that children with EV infection have a greater risk for speech and language impairments as compared with control group. Infected children combined other comorbidities or risk factors might have greater possibility to develop speech problems. Clinicians should be vigilant for the onset of language developmental abnormalities of preschool children with EV infection.
Collapse
Affiliation(s)
- Tai-Hsin Hung
- Department of Psychiatry, Chang Gung Memorial Hospital and University, Chiayi, Taiwan; School of Medicine, Chang Gung University, Taoyuan, Taiwan; Chang Gung Institute of Technology, Taoyuan, Taiwan
| | - Vincent Chin-Hung Chen
- Department of Psychiatry, Chang Gung Memorial Hospital and University, Chiayi, Taiwan; School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yao-Hsu Yang
- Department for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan; Center of Excellence for Chang Gung Research Datalink, Chang Gung Memorial Hospital, Chiayi, Taiwan; Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University College of Public Health, Taipei, Taiwan
| | - Ching-Shu Tsai
- Department of Psychiatry, Chang Gung Memorial Hospital and University, Chiayi, Taiwan; School of Medicine, Chang Gung University, Taoyuan, Taiwan; Chang Gung Institute of Technology, Taoyuan, Taiwan
| | - Mong-Liang Lu
- Department of Psychiatry, Wan-Fang Hospital & School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Roger S McIntyre
- Department of Psychiatry, University of Toronto, Toronto, Canada; Mood Disorders Psychopharmacology Unit, University Health Network, University of Toronto, Toronto, Canada
| | - Yena Lee
- Mood Disorders Psychopharmacology Unit, University Health Network, University of Toronto, Toronto, Canada
| | - Kuo-You Huang
- Department of Speech Language Pathology and Audiology, Chung Shan Medical University and Hospital, Taichung, Taiwan.
| |
Collapse
|
127
|
Mei L, Song X, Kong Y, Yu G. An assessment of a pediatric early warning system score in severe hand-foot-and-mouth disease children: To detect clinical deterioration in hospitalized children. Medicine (Baltimore) 2018; 97:e11355. [PMID: 29953028 PMCID: PMC6039599 DOI: 10.1097/md.0000000000011355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Identification of deteriorating severe hand, foot, and mouth disease (HFMD) children for referral to intensive care remains problematic.The medical records of 2382 hospitalized children with severe HFMD from May 2013 to September 2015 were retrospectively reviewed. A Pediatric Early Warning System (PEWS) score was designed based on study parameters on admission, evaluated in a logistic regression model, and subsequently validated with different cut-off scores, to predict the risk for clinical deterioration.After admission, 191 cases were transferred to the pediatric intensive care unit (PICU) and 2191 were admitted to the infectious disease department. Of which, 116 cases were subsequently transferred to PICU, with younger age, consciousness levels of sluggishness, lethargy or drowsiness, rashes with vesicles on the hands or feet, moderate or high fever, increased or disordered lung marking or pulmonary infiltration, abnormal heart rate, fasting plasma glucose, blood platelet, and C-reactive protein. A corresponding 10-component PEWS score >7 was significantly associated with subsequent transfer to PICU.A 10-component PEWS score >7 has good specificity but poor sensitivity for identifying severe HFMD children vulnerable to clinical deterioration.
Collapse
Affiliation(s)
- Lu Mei
- Qingdao Women and Children's Hospital
| | - Xin Song
- Qingdao Municipal Center For Disease Control and Prevention
- Qingdao Institute of Preventive Medicine, Qingdao, P.R. China
| | - Yan Kong
- Qingdao Women and Children's Hospital
| | | |
Collapse
|
128
|
Chang CK, Wu SR, Chen YC, Lee KJ, Chung NH, Lu YJ, Yu SL, Liu CC, Chow YH. Mutations in VP1 and 5'-UTR affect enterovirus 71 virulence. Sci Rep 2018; 8:6688. [PMID: 29703921 PMCID: PMC5923339 DOI: 10.1038/s41598-018-25091-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 04/16/2018] [Indexed: 11/27/2022] Open
Abstract
Enterovirus 71 (EV71) is a major cause of hand, foot and mouth disease (HFMD). The current EV71 propagating in Vero (EV-V) or sub-passaged in RD (EV-R) cells was used as a pathogen. Interestingly, EV-R exhibited differential virulence; challenging human scavenger receptor class B2-expressing (hSCARB2-Tg) mice with EV71 revealed that EV-V was more virulent than EV-R: 100% of mice that received lethal amounts of EV-V died, while all the mice that received EV-R survived. Severe pathogenesis correlated with viral burdens and proinflammatory cytokine levels were observed in EV-V-challenged mice, but controversy in EV-R-challenged mice. Consensus sequence analysis revealed EV-R rapidly acquired complete mutations at E145G and S241L and partial mutations at V146I of VP1, and acquired a T to C substitution at nucleotide 494 of the 5'-UTR. EV-R exhibited higher binding affinity for another EV71 receptor, human P-selectin glycoprotein ligand-1 (hPSGL-1), than EV-V. Both EV71s exhibited no significant difference in binding to hSCARB2. The molecular modelling indicate that these mutations might influence EV71 engagement with PSGL-1 and in vivo virulence.
Collapse
Affiliation(s)
- Ching-Kun Chang
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, 350, Taiwan
- Graduate Institute of Life Science, National Defense Medical Center, Taipei, 114, Taiwan
| | - Shang-Rung Wu
- Institute of Oral Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ying-Chin Chen
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, 350, Taiwan
| | - Kuen-Jin Lee
- Institute of Oral Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Nai-Hsiang Chung
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, 350, Taiwan
- Graduate Program of Biotechnology in Medicine, Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Yi-Ju Lu
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, 350, Taiwan
| | - Shu-Ling Yu
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, 350, Taiwan
- Graduate Institute of Life Science, National Defense Medical Center, Taipei, 114, Taiwan
| | - Chia-Chyi Liu
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, 350, Taiwan
| | - Yen-Hung Chow
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, 350, Taiwan.
- Graduate Institute of Life Science, National Defense Medical Center, Taipei, 114, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan.
| |
Collapse
|
129
|
Ding Y, Rui B, Gao C, Xu M, Wang L, Zhao C, Bai J, Wang J, Xu J, Pan W. Non-neutralizing Antibody Responses against VP1 in Enterovirus A, B, C and Rhinovirus A species among Infants and Children in Shanghai. Sci Rep 2018; 8:5455. [PMID: 29615683 PMCID: PMC5882884 DOI: 10.1038/s41598-018-23683-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/19/2018] [Indexed: 11/09/2022] Open
Abstract
The overall non-neutralizing antibody responses against EV infections among infants and children remain unknown. The non-neutralizing antibody responses against VP1 of EV-A species (Enterovirus 71 (EV71), Coxsackievirus A16 (CA16)), EV-B species (Coxsackievirus B3 (CB3)), EV-C species (Poliovirus 1 (PV1)) and RV-A species (Rhinovirus A N13 (RV13)) were detected and analyzed using a novel evolved immunoglobulin-binding molecule (NEIBM)-based ELISA among infants and children aged 1 day to 6 years in Shanghai. The anti-VP1 reactivity against these EVs changed similarly in an age-related dynamic: being high level in the 1-28-day age group, declining to the lowest level in the 1-12-month age group, gradually increasing to the peak level in the 13-60-month age group, and remarkably declining in the 61-72-month age group, which reflects the conversion from maternally-derived to primary antibody responses. The anti-RV13 VP1 antibodies were demonstrated at the highest level, with anti-CB3 and PV1 VP1 antibodies at the second highest level and anti-CA16 and EV71 VP1 antibodies at the lowest level. These findings are the first to describe the overall non-neutralizing antibody responses against VP1 of the EV-A, B, C and RV-A viruses among the infants and children and could be helpful for further understanding the ubiquitous EV infections among children.
Collapse
Affiliation(s)
- Yingying Ding
- Department of Medical Microbiology and Parasitology, School of Basic Medicine, Second Military Medical University, No. 8 Panshan Road, Shanghai, 200433, China
| | - Bing Rui
- Department of Medical Microbiology and Parasitology, School of Basic Medicine, Second Military Medical University, No. 8 Panshan Road, Shanghai, 200433, China
| | - Caixia Gao
- Department of Medical Microbiology and Parasitology, School of Basic Medicine, Second Military Medical University, No. 8 Panshan Road, Shanghai, 200433, China
| | - Menghua Xu
- Department of Clinical Laboratory, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Lili Wang
- Department of Medical Microbiology and Parasitology, School of Basic Medicine, Second Military Medical University, No. 8 Panshan Road, Shanghai, 200433, China
| | - Chunyan Zhao
- Department of Medical Microbiology and Parasitology, School of Basic Medicine, Second Military Medical University, No. 8 Panshan Road, Shanghai, 200433, China
| | - Jie Bai
- Department of Medical Microbiology and Parasitology, School of Basic Medicine, Second Military Medical University, No. 8 Panshan Road, Shanghai, 200433, China
| | - Jinhong Wang
- Department of Medical Microbiology and Parasitology, School of Basic Medicine, Second Military Medical University, No. 8 Panshan Road, Shanghai, 200433, China
| | - Jin Xu
- Department of Clinical Laboratory, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China.
| | - Wei Pan
- Department of Medical Microbiology and Parasitology, School of Basic Medicine, Second Military Medical University, No. 8 Panshan Road, Shanghai, 200433, China.
| |
Collapse
|
130
|
Association of Interleukin-17F gene polymorphisms with susceptibility to severe enterovirus 71 infection in Chinese children. Arch Virol 2018; 163:1933-1939. [PMID: 29549443 PMCID: PMC7086816 DOI: 10.1007/s00705-018-3807-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 02/06/2018] [Indexed: 11/06/2022]
Abstract
Enterovirus 71 (EV71) is a single-strand RNA virus that causes hand, foot and mouth disease (HFMD) in infants and young children, leading to neurological complications with significant morbidity and mortality. Unfortunately, the pathogenesis of EV71 infection is not well understood. In this study, we investigated the IL-17F rs1889570 and rs4715290 gene polymorphisms in a Chinese Han population. Severe cases and cases with EV71 encephalitis had a significantly higher frequency of the rs1889570 T/T genotype and T allele. The serum IL-17F levels in rs1889570 T/T and C/T genotypes were also significantly elevated when compared to C/C genotypes. However, there was no significant difference observed in rs4715290 genotype distribution and allele frequency. These findings suggest that IL-17F rs1889570 gene polymorphisms are significantly associated with the susceptibility to severe EV71 infection in Chinese Han children.
Collapse
|
131
|
Factors associated with fatal outcome of children with enterovirus A71 infection: a case series. Epidemiol Infect 2018. [DOI: 10.1017/s0950268818000468] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
AbstractEnterovirus A-71 (EV-A71) may be fatal, but the natural history, symptoms, and signs are poorly understood. This study aimed to examine the natural history of fatal EV-A71 infection and to identify the symptoms and signs of early warning of deterioration. This was a clinical observational study of fatal cases of EV-A71 infection treated at five Chinese hospitals between 1 January 2010 and 31 December 2012. We recorded and analysed 91 manifestations of EV-A71 infection in order to identify early prognosis indicators. There were 54 fatal cases. Median age was 21.5 months (Q1−Q3: 12–36). The median duration from onset to death was 78.5 h (range, 6 to 432). The multilayer perceptron analysis showed that ataxia respiratory, ultrahyperpyrexia, excessive tachycardia, refractory shock, absent pharyngeal reflex, irregular respiratory rhythm, hyperventilation, deep coma, pulmonary oedema and/or haemorrhage, excessive hypertension, tachycardia, somnolence, CRT extension, fatigue or sleepiness and age were associated with death. Autopsy findings (n = 2) showed neuronal necrosis, softening, perivascular cuffing, colloid and neuronophagia phenomenon in the brainstem. The fatal cases of enterovirus A71 had neurologic involvement, even at the early stage. Direct virus invasion through the neural pathway and subsequent brainstem damage might explain the rapid progression to death.
Collapse
|
132
|
Yen MH, Huang CI, Lee MS, Cheng YP, Hsieh CJ, Chiang LC, Chang JS. Artemisia capillaris inhibited enterovirus 71-induced cell injury by preventing viral internalization. Kaohsiung J Med Sci 2018; 34:150-159. [DOI: 10.1016/j.kjms.2017.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 11/01/2017] [Accepted: 11/08/2017] [Indexed: 01/13/2023] Open
|
133
|
Li M, Yang X, Guan C, Wen T, Duan Y, Zhang W, Li X, Wang Y, Zhao Z, Liu S. Andrographolide sulfonate reduces mortality in Enterovirus 71 infected mice by modulating immunity. Int Immunopharmacol 2018; 55:142-150. [DOI: 10.1016/j.intimp.2017.11.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/19/2017] [Accepted: 11/28/2017] [Indexed: 01/13/2023]
|
134
|
Liu Y, Liu P, Liu S, Guo Y, He H, Yang C, Song J, Zhang N, Cheng J, Chen Z. Oligoadenylate synthetase 3 S381R gene polymorphism is associated with severity of EV71 infection in Chinese children. J Clin Virol 2018; 101:29-33. [PMID: 29414184 DOI: 10.1016/j.jcv.2018.01.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 01/15/2018] [Accepted: 01/24/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Oligoadenylate synthetase 3 (OAS3) is interferon-induced antiviral enzyme, playing a significant role in the innate immune response. Genetic polymorphism in OAS3 gene has been reported to be a susceptibility factor in many infected diseases, but evidence of its effect on enterovirus 71 (EV71) infection is still lacking. OBJECTIVES An attempt study was made to investigate whether genetic polymorphism of OAS3 S381R is associated with the severity of EV71 infection in Chinese children. STUDY DESIGN Retrospectively sumed up the clinical onsets and experimental results for 249 cases with EV71 infection (including 151 mild cases and 98 severe cases) and 243 controls. An improved multiplex ligation detection reaction (iMLDR) technique was carried out to analyze polymorphism in OAS3 S381R G/C gene for genetic association analyses. The plasma levels of IFN-γ were determined by enzyme-linked immunosorbent assays. RESULTS The distribution of OAS3 S381R CC genotype (73.47%) and C allele (85.20%) in severe cases was markedly higher than in mild cases (45.70%, P < .01; 67.88%, P < .01). The blood IFN-γ levels of severe cases were significantly lower in CC genotype (131.66 ± 10.84 pg/mL) compared to GG (183.37 ± 24.50 pg/mL, p < .01) and GC genotype (168.48 ± 26.57 pg/mL, p < .01). CONCLUSIONS Carrying the C allele of the OAS3 S381R gene could be a susceptibility factor in the development of severe EV71 infection in Chinese children.
Collapse
Affiliation(s)
- Yedan Liu
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, NO. 16, Jiangsu Road, Qingdao 266000, China.
| | - Peipei Liu
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, NO. 16, Jiangsu Road, Qingdao 266000, China.
| | - Shihai Liu
- Medical Research Center, The Affiliated Hospital of Qingdao University, NO. 1677, Wutaishan Road, Qingdao, 266000, China.
| | - Ya Guo
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, NO. 16, Jiangsu Road, Qingdao 266000, China.
| | - Hongfang He
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, NO. 16, Jiangsu Road, Qingdao 266000, China.
| | - Chengqing Yang
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, NO. 16, Jiangsu Road, Qingdao 266000, China.
| | - Jie Song
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, NO. 16, Jiangsu Road, Qingdao 266000, China.
| | - Na Zhang
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, NO. 16, Jiangsu Road, Qingdao 266000, China.
| | - Jianguo Cheng
- Departments of Pain Management and Neurosciences, Lerner Research Institute, Cleveland Clinic, Euclid Avenue, Cleveland, OH 44195, USA.
| | - Zongbo Chen
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, NO. 16, Jiangsu Road, Qingdao 266000, China.
| |
Collapse
|
135
|
Xing Y, Zuo J, Krogstad P, Jung ME. Synthesis and Structure-Activity Relationship (SAR) Studies of Novel Pyrazolopyridine Derivatives as Inhibitors of Enterovirus Replication. J Med Chem 2018; 61:1688-1703. [PMID: 29346733 DOI: 10.1021/acs.jmedchem.7b01863] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of novel pyrazolopyridine compounds have been designed and prepared by a general synthetic route. Their activities against the replication of poliovirus-1, EV-A71, and CV-B3 enteroviruses were evaluated. The comprehensive understanding of the structure-activity relationship was obtained by utilizing the variation of four positions, namely, N1, C6, C4, and linker unit. From the screened analogues, the inhibitors with the highest selectivity indices at 50% inhibition of viral replication (SI50) were those with isopropyl at the N1 position and thiophenyl-2-yl unit at C6 position. Furthermore, the C4 position offered the greatest potential for improvement because many different N-aryl groups had better antiviral activities and compatibilities than the lead compound JX001. For example, JX040 with a 2-pyridyl group was the analogue with the most potent activity against non-polio enteroviruses, and JX025, possessing a 3-sulfamoylphenyl moiety, had the best activity against polioviruses. In addition, analogue JX037, possessing a novel pyrazolopyridine heterocycle, was also shown to have good antienteroviral activity, which further enlarges the compound space for antienteroviral drug design.
Collapse
Affiliation(s)
- Yanpeng Xing
- Department of Chemistry and Biochemistry, ‡Department of Pediatrics, and §Department of Molecular and Medical Pharmacology, University of California , Los Angeles, California 90095, United States
| | - Jun Zuo
- Department of Chemistry and Biochemistry, ‡Department of Pediatrics, and §Department of Molecular and Medical Pharmacology, University of California , Los Angeles, California 90095, United States
| | - Paul Krogstad
- Department of Chemistry and Biochemistry, ‡Department of Pediatrics, and §Department of Molecular and Medical Pharmacology, University of California , Los Angeles, California 90095, United States
| | - Michael E Jung
- Department of Chemistry and Biochemistry, ‡Department of Pediatrics, and §Department of Molecular and Medical Pharmacology, University of California , Los Angeles, California 90095, United States
| |
Collapse
|
136
|
Xie L, Lu B, Zheng Z, Miao Y, Liu Y, Zhang Y, Zheng C, Ke X, Hu Q, Wang H. The 3C protease of enterovirus A71 counteracts the activity of host zinc-finger antiviral protein (ZAP). J Gen Virol 2018; 99:73-85. [PMID: 29182509 DOI: 10.1099/jgv.0.000982] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Enterovirus A71 (EV-A71) is a positive-strand RNA virus that causes hand-foot-mouth disease and neurological complications in children and infants. Although the underlying mechanisms remain to be further defined, impaired immunity is thought to play an important role. The host zinc-finger antiviral protein (ZAP), an IFN-stimulated gene product, has been reported to specifically inhibit the replication of certain viruses. However, whether ZAP restricts the infection of enteroviruses remains unknown. Here, we report that EV-A71 infection upregulates ZAP mRNA in RD and HeLa cells. Moreover, ZAP overexpression rendered 293 T cells resistant to EV-A71 infection, whereas siRNA-mediated depletion of endogenous ZAP enhanced EV-A71 infection. The EV-A71 infection stimulated site-specific proteolysis of two ZAP isoforms, leading to the accumulation of a 40 kDa N-terminal ZAP fragment in virus-infected cells. We further revealed that the 3C protease (3Cpro) of EV-A71 mediates ZAP cleavage, which requires protease activity. Furthermore, ZAP variants with single amino acid substitutions at Gln-369 were resistant to 3Cpro cleavage, implying that Gln-369 is the sole cleavage site in ZAP. Moreover, although ZAP overexpression inhibited EV-A71 replication, the cleaved fragments did not show this effect. Our results indicate that an equilibrium between ZAP and enterovirus 3Cpro controls viral infection. The findings in this study suggest that viral 3Cpro mediated ZAP cleavage may represent a mechanism to escape host antiviral responses.
Collapse
Affiliation(s)
- Li Xie
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Baojing Lu
- Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, PR China
| | - Zhenhua Zheng
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Yuanjiu Miao
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Yan Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Yuan Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Caishang Zheng
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Xianliang Ke
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Qinxue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Hanzhong Wang
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| |
Collapse
|
137
|
Lee K, Kim DE, Jang KS, Kim SJ, Cho S, Kim C. Gemcitabine, a broad-spectrum antiviral drug, suppresses enterovirus infections through innate immunity induced by the inhibition of pyrimidine biosynthesis and nucleotide depletion. Oncotarget 2017; 8:115315-115325. [PMID: 29383162 PMCID: PMC5777774 DOI: 10.18632/oncotarget.23258] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 12/05/2017] [Indexed: 11/25/2022] Open
Abstract
Gemcitabine, an anti-cancer chemotherapy drug, has additionally shown the antiviral activity against a broad range of viruses and we also have previously reported its synergistic antiviral activity with ribavirin against enteroviruses. As a cytidine analog, gemcitabine has been reported to have an inhibitory activity on the pyrimidine biosynthesis. In addition, a few inhibitors of the pyrimidine biosynthesis have shown to induce the innate immunity in a yet-to-be-determined manner and inhibit the virus infection. Thus, we also investigated whether the anti-enteroviral activity of gemcitabine is mediated by innate immunity, induction of which is related with the inhibition of the pyrimidine synthesis. In this study, we found that the addition of exogenous cytidine, uridine and uridine mono-phosphate (UMP) effectively reversed the antiviral activity of gemcitabine in enterovirus-infected as well as enteroviral replicon-harboring cells, demonstrating gemcitabine's targeting of the salvage pathway. Moreover, the expression of several interferon (IFN)-stimulated genes (ISGs) was significantly induced by the treatment of gemcitabine, which was also suppressed by the co-treatment with cytidine. These results suggest that the antiviral activity of gemcitabine involves ISGs induced by the inhibition of the pyrimidine biosynthesis.
Collapse
Affiliation(s)
- Kyungjin Lee
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Dong-Eun Kim
- Anticancer Agent Research Center, Korea Research Institute of Bioscience & Biotechnology, Cheongju, South Korea
| | - Kyoung-Soon Jang
- Biomedical Omics Group, Korea Basic Science Institute, Cheongju, South Korea
| | - Seong-Jun Kim
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Sungchan Cho
- Anticancer Agent Research Center, Korea Research Institute of Bioscience & Biotechnology, Cheongju, South Korea.,Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, South Korea
| | - Chonsaeng Kim
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, South Korea.,Department of Medicinal and Pharmaceutical Chemistry, Korea University of Science and Technology, Daejeon, South Korea
| |
Collapse
|
138
|
Yang ZY, Chen XQ, Sun D, Wei D. Mortality in Children with Severe Hand, Foot and Mouth Disease in Guangxi, China. Indian Pediatr 2017. [DOI: 10.1007/s13312-018-1247-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Abstract
Objective
To analyze the clinical features of children with hand foot and mouth disease (HFMD) who died.
Methods
331 deaths due to HFMD between 2010 and 2014 were included in this retrospective study; 15 autopsies were performed.
Results
Most deaths were seen in children aged below 3 y, and with enterovirus 71 infection (91%). The mean (SD) duration of HFMD from onset to death was 3.7(2.9) d. The mean (SD) age of fast progressors (from onset to death less than 4 days) was 17.4 (9.2) mo. Most of them were diagnosed as stage 3 and stage 4 of HFMD. Various pathological changes were observed in brain after autopsy, especially in brain stem and medulla.
Conclusions
The brain stem encephalitis with the neurotropism of enteroviruses seems to be the main contributor to the death in HFMD.
Collapse
|
139
|
Cox JA, Hiscox JA, Solomon T, Ooi MH, Ng LFP. Immunopathogenesis and Virus-Host Interactions of Enterovirus 71 in Patients with Hand, Foot and Mouth Disease. Front Microbiol 2017; 8:2249. [PMID: 29238324 PMCID: PMC5713468 DOI: 10.3389/fmicb.2017.02249] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 10/31/2017] [Indexed: 12/12/2022] Open
Abstract
Enterovirus 71 (EV71) is a global infectious disease that affects millions of people. The virus is the main etiological agent for hand, foot, and mouth disease with outbreaks and epidemics being reported globally. Infection can cause severe neurological, cardiac, and respiratory problems in children under the age of 5. Despite on-going efforts, little is known about the pathogenesis of EV71, how the host immune system responds to the virus and the molecular mechanisms behind these responses. Moreover, current animal models remain limited, because they do not recapitulate similar disease patterns and symptoms observed in humans. In this review the role of the host-viral interactions of EV71 are discussed together with the various models available to examine: how EV71 utilizes its proteins to cleave host factors and proteins, aiding virus replication; how EV71 uses its own viral proteins to disrupt host immune responses and aid in its immune evasion. These discoveries along with others, such as the EV71 crystal structure, have provided possible targets for treatment and drug interventions.
Collapse
Affiliation(s)
- Jonathan A. Cox
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Julian A. Hiscox
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, United Kingdom
| | - Tom Solomon
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, United Kingdom
- Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - Mong-How Ooi
- Institute of Health and Community Medicine, Universiti Malaysia Sarawak, Samarahan, Malaysia
- Department of Paediatrics, Sarawak General Hospital, Kuching, Malaysia
| | - Lisa F. P. Ng
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, United Kingdom
| |
Collapse
|
140
|
Dong Q, Men R, Dan X, Chen Y, Li H, Chen G, Zee B, Wang MHT, He ML. Hsc70 regulates the IRES activity and serves as an antiviral target of enterovirus A71 infection. Antiviral Res 2017; 150:39-46. [PMID: 29180285 DOI: 10.1016/j.antiviral.2017.11.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/23/2017] [Accepted: 11/23/2017] [Indexed: 12/11/2022]
Abstract
Enterovirus A71 (EV-A71) is a small positive-stranded RNA virus that causes human hand, foot and mouth disease (HFMD) and fatal neurological disorders in some cases without effective treatment. Here we show that heat shock cognate protein 70 (Hsc70), a molecular chaperone, displays pivotal role in viral infections. Knockdown of Hsc70 significantly suppresses viral replication evidenced by reducing not only the level of both viral replication intermediates (negative stranded RNA) and viral genomic RNA (positive stranded RNA), but also the level of viral protein expression; whereas ectopic expression of Hsc70 markedly promotes viral replication. Interestingly, depletion of Hsc70 decreases the IRES activity of EV-A71, and the ectopic expression of Hsc70 enhances the IRES activity accordingly. Further study shows that Hsc70 binds viral genomic RNA but does not directly interact with IRES. Moreover, we reveal that Hsc70 interacts with 2A protease and promotes eIF4G cleavage. More importantly, Hsc70 inhibitor Ver-155008 significantly protects cytopathic effects from EV-A71 infection and inhibits both IRES activity and viral reproduction in a dose-dependent manner. The cell viability assay shows that the IC50 and CC50 are 2.01 μM and 47.67 μM, respectively. These results demonstrate not only an important mechanism of Hsc70 in facilitating EV-A71 replication, but also a target for antiviral drug development.
Collapse
Affiliation(s)
- Qi Dong
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Ruoting Men
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China; Jockey Club of School of Public Health, Chinese University of Hong Kong, Hong Kong, China
| | - Xuelian Dan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Ying Chen
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Huangcan Li
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Gong Chen
- Departments of Surgery, Faculty of Medicine, Chinese University of Hong Kong, China
| | - Benny Zee
- Jockey Club of School of Public Health, Chinese University of Hong Kong, Hong Kong, China
| | - Maggie H T Wang
- Jockey Club of School of Public Health, Chinese University of Hong Kong, Hong Kong, China.
| | - Ming-Liang He
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China; Biotechnology and Health Center, CityU Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
141
|
Fu Y, Zhang L, Zhang F, Tang T, Zhou Q, Feng C, Jin Y, Wu Z. Exosome-mediated miR-146a transfer suppresses type I interferon response and facilitates EV71 infection. PLoS Pathog 2017; 13:e1006611. [PMID: 28910400 PMCID: PMC5614653 DOI: 10.1371/journal.ppat.1006611] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 09/26/2017] [Accepted: 08/28/2017] [Indexed: 12/31/2022] Open
Abstract
Exosomes can transfer genetic materials between cells. Their roles in viral infections are beginning to be appreciated. Researches have shown that exosomes released from virus-infected cells contain a variety of viral and host cellular factors that are able to modulate recipient’s cellular response and result in productive infection of the recipient host. Here, we showed that EV71 infection resulted in upregulated exosome secretion and differential packaging of the viral genomic RNA and miR-146a into exosomes. We provided evidence showing that miR-146a was preferentially enriched in exosomes while the viral RNA was not in infected cells. Moreover, the exosomes contained replication-competent EV71 RNA in complex with miR-146a, Ago2, and GW182 and could mediate EV71 transmission independent of virus-specific receptor. The exosomal viral RNA could be transferred to and replicate in a new target cell while the exosomal miR-146a suppressed type I interferon response in the target cell, thus facilitating the viral replication. Additionally, we found that the IFN-stimulated gene factors (ISGs), BST-2/tetherin, were involved in regulating EV71-induced upregulation of exosome secretion. Importantly, in vivo study showed that exosomal viral RNA exhibited differential tissue accumulation as compared to the free virus particles. Together, our findings provide evidence that exosomes secreted by EV71-infected cells selectively packaged high level miR-146a that can be functionally transferred to and facilitate exosomal EV71 RNA to replicate in the recipient cells by suppressing type I interferon response. Exosomes are small membrane-encapsulated vesicles that secrete into the extracellular environment. Various proteins and RNA molecules have been identified in exosomes whose content reflects the physiological or pathological state of the host cells. Researches have shown that exosomes released from virus-infected cells contain a variety of viral and host cellular factors that are able to modulate recipient’s cellular responses and result in productive infection of the recipient host. Here, we showed that Enterovirus 71 (EV71), a non-enveloped, single-strand positive sense RNA virus that belongs to the family Picornaviridae and is a major etiologic agent of hand-foot and-mouth disease (HFMD), could stimulate exosome secretion and differential packaging of the viral genomic RNA and miR-146a into exosomes. The exosomal viral RNA could be transferred to and replicate in a new target cell while the exosomal miR-146a suppressed type I interferon response in the target cell, thus facilitating the viral replication. Importantly, in vivo study showed that exosomal viral RNA exhibited differential tissue accumulation as compared to the free virus particles. We postulate that the preferential packaging of miRNA-146a into exosome is a viral strategy of suppressing host innate immunity upon infection and the exosomal EV 71 RNA may play an important pathogenic role in the infection.
Collapse
Affiliation(s)
- Yuxuan Fu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, PR China
| | - Li Zhang
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, PR China
| | - Fang Zhang
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, PR China
| | - Ting Tang
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, PR China
| | - Qi Zhou
- Nanjing Children's Hospital, Nanjing Medical University, Nanjing, PR China
| | - Chunhong Feng
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, PR China
| | - Yu Jin
- Nanjing Children's Hospital, Nanjing Medical University, Nanjing, PR China
| | - Zhiwei Wu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, PR China
- State Key Lab of Analytical Chemistry for Life Science, Nanjing University, Nanjing, PR China
- Medical School and Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, PR China
- * E-mail:
| |
Collapse
|
142
|
Zhang Y, Ke X, Zheng C, Liu Y, Xie L, Zheng Z, Wang H. Development of a luciferase-based biosensor to assess enterovirus 71 3C protease activity in living cells. Sci Rep 2017; 7:10385. [PMID: 28871120 PMCID: PMC5583365 DOI: 10.1038/s41598-017-10840-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/15/2017] [Indexed: 11/23/2022] Open
Abstract
Enterovirus 71 (EV71) is a major pathogen of hand, foot, and mouth disease (HFMD). To date, no antiviral drug has been approved to treat EV71 infection. Due to the essential role that EV71 3 C protease (3Cpro) plays in the viral life cycle, it is generally considered as a highly appealing target for antiviral drug development. In this study, we present a transgene-encoded biosensor that can accurately, sensitively and quantitatively report the proteolytic activity of EV71 3Cpro. This biosensor is based on the catalyzed activity of a pro-interleukin (IL)-1β-enterovirus 3Cpro cleavage site-Gaussia Luciferase (GLuc) fusion protein that we named i-3CS-GLuc. GLuc enzyme is inactive in the fusion protein because of aggregation caused by pro-IL-1β. However, the 3Cpro of EV71 and other enteroviruses, such as coxsackievirus A9 (CVA9), coxsackievirus B3 (CVB3), and poliovirus can recognize and process the canonical enterovirus 3Cpro cleavage site between pro-IL-1β and GLuc, thereby releasing and activating GLuc and resulting in increased luciferase activity. The high sensitivity, ease of use, and applicability as a transgene in cell-based assays of i-3CS-GLuc biosensor make it a powerful tool for studying viral protease proteolytic events in living cells and for achieving high-throughput screening of antiviral agents.
Collapse
Affiliation(s)
- Yuan Zhang
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xianliang Ke
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children Medical Center, Guangzhou, 510623, China
| | - Caishang Zheng
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children Medical Center, Guangzhou, 510623, China
| | - Yan Liu
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Li Xie
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zhenhua Zheng
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Hanzhong Wang
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
143
|
Pan Y, Zhang F, Zhang L, Liu S, Cai M, Shan Y, Wang X, Wang H, Wang H. The Process of Wrapping Virus Revealed by a Force Tracing Technique and Simulations. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1600489. [PMID: 28932658 PMCID: PMC5604396 DOI: 10.1002/advs.201600489] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 02/20/2017] [Indexed: 05/05/2023]
Abstract
Viral entry into the host cell is the first step of virus infection; however, its dynamic process via endocytosis remains largely elusive. Here, the force tracing technique and single particle simulation are combined to investigate the invagination of single human enterovirus 71 (HEV71, a positive single-stranded RNA virus that is associated with hand, foot, and mouth disease) via cell membranes during its host cell entry. The experimental results reveal that the HEV71 invaginates in membrane vesicles at a force of 58 ± 16 pN, a duration time of 278 ± 68 ms. The simulation further shows that the virus can reach a partially wrapped state very fast, then the upper surface of the virus is covered by the membrane traveling over a long period of time. Combining the experiment with the simulation, the mechanism of membrane wrapping of virus is uncovered, which provides new insights into how the cell is operated to initiate the endocytosis of virus.
Collapse
Affiliation(s)
- Yangang Pan
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
| | - Fuxian Zhang
- Key Laboratory of Special Pathogens and BiosafetyCenter for Emerging Infectious DiseasesWuhan Institute of VirologyChinese Academy of SciencesWuhan430071China
| | - Liuyang Zhang
- College of EngineeringUniversity of GeorgiaAthensGA30602USA
| | - Shuheng Liu
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
| | - Mingjun Cai
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
| | - Yuping Shan
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
- School of Chemistry and Life ScienceAdvanced Institute of Materials ScienceChangchun University of TechnologyChangchun130012China
| | - Xianqiao Wang
- College of EngineeringUniversity of GeorgiaAthensGA30602USA
| | - Hanzhong Wang
- Key Laboratory of Special Pathogens and BiosafetyCenter for Emerging Infectious DiseasesWuhan Institute of VirologyChinese Academy of SciencesWuhan430071China
| | - Hongda Wang
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
- State Key Laboratory of Electroanalytical ChemistryUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| |
Collapse
|
144
|
Rao DC, Naidu JR, Maiya PP, Babu A, Bailly JL. Large-scale HFMD epidemics caused by Coxsackievirus A16 in Bangalore, India during 2013 and 2015. INFECTION GENETICS AND EVOLUTION 2017; 55:228-235. [PMID: 28864155 DOI: 10.1016/j.meegid.2017.08.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/27/2017] [Accepted: 08/28/2017] [Indexed: 11/28/2022]
Abstract
Hand foot and mouth disease (HFMD) is a relatively unreported disease in India. This study was undertaken to characterize the enterovirus type/s associated with two unexpectedly-massive epidemics that occurred in Bangalore, India in 2013 and 2015. Stool samples of 229 children with HFMD living in Northern and Southern areas of Bangalore were tested by RT-PCR; 189 (82.5%) were enterovirus positive. The Indian CV-A16 strains exhibited 98-99% sequence identity with those reported in France and China in the 5' untranslated region. BLAST and phylogenetic analyses of complete genomes of representative Indian isolates revealed that the 2015 epidemic was predominated by an inter-species recombinant between CV-A16 and coxsackievirus B5. The 2013 epidemic was primarily caused by nonrecombinant strains. The CV-A16 strains circulated in India since 2007 and phylogeographic analyses indicated imported cases in France and China. In conclusion, CV-A16-associated HFMD epidemics should be recognized as an emerging public health problem in India.
Collapse
Affiliation(s)
- Durga C Rao
- Department of Microbiology & Cell Biology, Indian Institute of Science, Bangalore, India.
| | - Jagadeesh R Naidu
- Department of Microbiology & Cell Biology, Indian Institute of Science, Bangalore, India
| | | | | | - Jean-Luc Bailly
- Université Clermont Auvergne, UFR Médecine, Clermont-Ferrand cedex1, France
| |
Collapse
|
145
|
Enterovirus 71 Inhibits Pyroptosis through Cleavage of Gasdermin D. J Virol 2017; 91:JVI.01069-17. [PMID: 28679757 DOI: 10.1128/jvi.01069-17] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 06/28/2017] [Indexed: 12/15/2022] Open
Abstract
Enterovirus 71 (EV71) can cause hand-foot-and-mouth disease (HFMD) in young children. Severe infection with EV71 can lead to neurological complications and even death. However, the molecular basis of viral pathogenesis remains poorly understood. Here, we report that EV71 induces degradation of gasdermin D (GSDMD), an essential component of pyroptosis. Remarkably, the viral protease 3C directly targets GSDMD and induces its cleavage, which is dependent on the protease activity. Further analyses show that the Q193-G194 pair within GSDMD is the cleavage site of 3C. This cleavage produces a shorter N-terminal fragment spanning amino acids 1 to 193 (GSDMD1-193). However, unlike the N-terminal fragment produced by caspase-1 cleavage, this fragment fails to trigger cell death or inhibit EV71 replication. Importantly, a T239D or F240D substitution abrogates the activity of GSDMD consisting of amino acids 1 to 275 (GSDMD1-275). This is correlated with the lack of pyroptosis or inhibition of viral replication. These results reveal a previously unrecognized strategy for EV71 to evade the antiviral response.IMPORTANCE Recently, it has been reported that GSDMD plays a critical role in regulating lipopolysaccharide and NLRP3-mediated interleukin-1β (IL-1β) secretion. In this process, the N-terminal domain of p30 released from GSDMD acts as an effector in cell pyroptosis. We show that EV71 infection downregulates GSDMD. EV71 3C cleaves GSDMD at the Q193-G194 pair, resulting in a truncated N-terminal fragment disrupted for inducing cell pyroptosis. Notably, GSDMD1-275 (p30) inhibits EV71 replication whereas GSDMD1-193 does not. These results reveal a new strategy for EV71 to evade the antiviral response.
Collapse
|
146
|
Zhao N, Chen HL, Chen ZZ, Li J, Chen ZB. IL-10-592 polymorphism is associated with IL-10 expression and severity of enterovirus 71 infection in chinese children. J Clin Virol 2017; 95:42-46. [PMID: 28843383 DOI: 10.1016/j.jcv.2017.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/18/2017] [Accepted: 08/10/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Enterovirus 71 (EV71) infection results in some severe complications with high mortality and disability in Hand, Foot and Mouth Disease (HFMD) in children. Recent studies have shown that cytokine genetic predispositions have associations with both the development of EV71 infection and severity of HFMD. OBJECTIVE This study was designed to investigate whether the IL-10-592 polymorphism is associated with IL-10 levels and disease severity in Chinese children with EV71 infection. STUDY DESIGN In patients selected, there were 378 cases with EV71 infection (including 291 mild cases, 70 severe cases and 17 critical cases), as well as 406 health controls. EV71 in serum was tested by RT-PCR, and IL-10-592 genotype was detected by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis techniques. RESULT The IL-10-592C allele was observed with higher frequency in patients with critical EV71 infection (70.59%) compared with severe EV71 infection (41.43%, P<0.01), mild EV71 infection (43.81%, P<0.01) and healthy children (44.46%, P<0.01). The blood IL-10 levels of critical cases were significantly higher than severe cases, mild cases, and healthy children. Among all of the four groups, IL-10 levels in patients with genotype AA were significantly lower than those with genotypes AC+CC (t=4.86, P<0.05; t=2.30, P<0.05; t=3.44, P<0.05; t=5.58, P<0.05). CONCLUSION IL-10-592C allele is associated with IL-10 expressions and the severity of EV71 infection in Chinese patients.
Collapse
Affiliation(s)
- Na Zhao
- Neonatal Departmant, The Affiliated Women & Children Hospital of Qingdao University, Qingdao, 266000, China; Pediatric Department, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Hui-Lan Chen
- Neonatal Departmant, The Affiliated Women & Children Hospital of Qingdao University, Qingdao, 266000, China
| | - Zhen-Zhen Chen
- Pediatric Intensive Care Unit, The Affiliated Women & Children Hospital of Qingdao University, Qingdao, 266000, China
| | - Jing Li
- Neonatal Departmant, The Affiliated Women & Children Hospital of Qingdao University, Qingdao, 266000, China
| | - Zong-Bo Chen
- Pediatric Department, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| |
Collapse
|
147
|
Jin Z, Yang L, Ding G, Yang G, Han Y, Zhang X, Li W. Sophocarpine against enterovirus 71 in vitro. Exp Ther Med 2017; 14:3792-3797. [PMID: 29042981 DOI: 10.3892/etm.2017.4958] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 07/12/2017] [Indexed: 12/11/2022] Open
Abstract
Sophocarpine (SCA) is a bioactive alkaloid present in Sophoraflavescens Ait. The present study demonstrated that SCA inhibited enterovirus 71 (EV71) infection in Vero cells. The results indicated that the 50% cytotoxicity concentration of SCA for Vero cells was 1,346 µg/ml, and the 50% inhibition concentration of SCA against EV71 was 350 µg/ml. SCA produced a marked inhibitory effect against EV71 when the Vero cells were treated with SCA prior to infection with the virus. Additionally, SCA was effective against EV71 when the Vero cells were infected with EV71 (100xTCID50) that had been treated with SCA for 2 h, and was effective when the Vero cells were infected with EV71 (100xTCID50) at 37°C under 5% CO2 for 2 h prior to treatment with SCA for 2 h. SCA was demonstrated to inhibit the attachment and penetration of EV71 and was more effective at inhibiting attachment. The assay additionally verified that SCA suppressed the replication of viral genomic RNA and indicated that SCA may inhibit EV71 infection in vitro.
Collapse
Affiliation(s)
- Zengjun Jin
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P.R. China.,University of The Chinese Academy of Sciences, Beijing 100049, P.R. China.,Handan Municipal Centre for Disease Control and Prevention, Handan, Hebei 056008, P.R. China
| | - Lixin Yang
- Hebei Centre for Disease Control and Prevention, Shijiazhuang, Hebei 050021, P.R. China
| | - Guotao Ding
- Handan Municipal Centre for Disease Control and Prevention, Handan, Hebei 056008, P.R. China.,College of Life Sciences, Hebei Agricultural University, Baoding, Hebei 071001, P.R. China
| | - Guoxing Yang
- Handan Municipal Centre for Disease Control and Prevention, Handan, Hebei 056008, P.R. China
| | - Yonghong Han
- Handan Municipal Centre for Disease Control and Prevention, Handan, Hebei 056008, P.R. China
| | - Xia Zhang
- School of Life Science and Technology, Tongji University, Shanghai 200092, P.R. China
| | - Weihao Li
- Handan Municipal Centre for Disease Control and Prevention, Handan, Hebei 056008, P.R. China
| |
Collapse
|
148
|
Zhang X, Yang P, Wang N, Zhang J, Li J, Guo H, Yin X, Rao Z, Wang X, Zhang L. The binding of a monoclonal antibody to the apical region of SCARB2 blocks EV71 infection. Protein Cell 2017; 8:590-600. [PMID: 28447294 PMCID: PMC5546930 DOI: 10.1007/s13238-017-0405-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 03/16/2017] [Indexed: 12/02/2022] Open
Abstract
Entero virus 71 (EV71) causes hand, foot, and mouth disease (HFMD) and occasionally leads to severe neurological complications and even death. Scavenger receptor class B member 2 (SCARB2) is a functional receptor for EV71, that mediates viral attachment, internalization, and uncoating. However, the exact binding site of EV71 on SCARB2 is unknown. In this study, we generated a monoclonal antibody (mAb) that binds to human but not mouse SCARB2. It is named JL2, and it can effectively inhibit EV71 infection of target cells. Using a set of chimeras of human and mouse SCARB2, we identified that the region containing residues 77-113 of human SCARB2 contributes significantly to JL2 binding. The structure of the SCARB2-JL2 complex revealed that JL2 binds to the apical region of SCARB2 involving α-helices 2, 5, and 14. Our results provide new insights into the potential binding sites for EV71 on SCARB2 and the molecular mechanism of EV71 entry.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/metabolism
- Binding Sites
- Cell Line
- Crystallography, X-Ray
- Enterovirus A, Human/drug effects
- Enterovirus A, Human/genetics
- Enterovirus A, Human/growth & development
- Enterovirus A, Human/immunology
- Fibroblasts/drug effects
- Fibroblasts/virology
- Gene Expression
- HEK293 Cells
- Humans
- Immunoglobulin Fab Fragments/chemistry
- Immunoglobulin Fab Fragments/genetics
- Immunoglobulin Fab Fragments/metabolism
- Lysosomal Membrane Proteins/chemistry
- Lysosomal Membrane Proteins/genetics
- Lysosomal Membrane Proteins/immunology
- Mice
- Models, Molecular
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Interaction Domains and Motifs
- Receptors, Scavenger/chemistry
- Receptors, Scavenger/genetics
- Receptors, Scavenger/immunology
- Receptors, Virus/chemistry
- Receptors, Virus/genetics
- Receptors, Virus/immunology
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Sequence Alignment
- Sequence Homology, Amino Acid
- Sf9 Cells
- Spodoptera
- Thermodynamics
Collapse
Affiliation(s)
- Xuyuan Zhang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pan Yang
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nan Wang
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jialong Zhang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jingyun Li
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hao Guo
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiangyun Yin
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zihe Rao
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiangxi Wang
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Liguo Zhang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
149
|
Zhao D, Sun B, Sun S, Fu B, Liu C, Liu D, Chu Y, Ma Y, Bai L, Wu Y, Zhou Y, Su W, Hou A, Cai L, Xu F, Kong W, Jiang C. Characterization of human enterovirus71 virus-like particles used for vaccine antigens. PLoS One 2017; 12:e0181182. [PMID: 28732070 PMCID: PMC5521781 DOI: 10.1371/journal.pone.0181182] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 06/27/2017] [Indexed: 12/11/2022] Open
Abstract
Human enterovirus 71 (EV71) is a major causative pathogen of hand, foot and mouth disease (HFMD) and has caused outbreaks with significant mortality among young children in the Asia-Pacific region in recent years. Towards developing a vaccine for this disease, we have expressed and purified EV71 virus-like particles (VLPs), which resemble the authentic virus in appearance, capsid structure and protein sequence, from insect cells (Sf9) using a multistep chromatography process. We demonstrated intracellular localization of the VLPs in host cells by in situ immunogold detection, electron microscopy and immunofluorescence. Characteristics of these EV71 VLPs were studied using a variety of immunological and physicochemical techniques, which aimed to reveal that the purified EV71 VLPs have good morphology and structure consistent with natural EV71 empty capsids. Results of the amino acid analysis, SDS-PAGE, Western blotting and high-performance liquid chromatography confirmed the high purity of the EV71 VLPs. However the sedimentation coefficient of the VLPs showed that they were smaller than that of secreted EV71 VLPs purified by discontinuous cesium chloride density gradients, they were similar to the empty capsids of natural EV71 virions reported previously. Combined with the previous study that EV71 VLPs purified by a multistep chromatography process were able to elicit strong humoral immune responses in mice, our results further supported the conclusion that our EV71 VLPs had well-preserved molecular and structural characteristics. The EV71 VLPs produced from the baculovirus expression system and purified by a multistep chromatography process displayed key structural and immunological features, which would contribute to their efficacy as a HFMD vaccine.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Blotting, Western
- Chromatography, High Pressure Liquid
- Dynamic Light Scattering
- Electrophoresis, Polyacrylamide Gel
- Enterovirus A, Human/genetics
- Enterovirus A, Human/immunology
- Immunohistochemistry
- Mass Spectrometry
- Microscopy, Atomic Force
- Microscopy, Confocal
- Microscopy, Electron, Transmission
- Sf9 Cells
- Vaccines, Virus-Like Particle/chemistry
- Vaccines, Virus-Like Particle/genetics
- Vaccines, Virus-Like Particle/immunology
- Vaccines, Virus-Like Particle/ultrastructure
- Viral Vaccines/chemistry
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Dandan Zhao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
- School of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Bo Sun
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Shiyang Sun
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Bin Fu
- Beijing Proteome Research Center, Beijing, China
| | - Chuntian Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Dawei Liu
- Changchun BCHT Biotechnology Company, Changchun, China
| | - Yanfei Chu
- Changchun BCHT Biotechnology Company, Changchun, China
| | - Youlei Ma
- Changchun BCHT Biotechnology Company, Changchun, China
| | - Lu Bai
- Changchun BCHT Biotechnology Company, Changchun, China
| | - Yongge Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Yan Zhou
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Weiheng Su
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Ali Hou
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Linjun Cai
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Fei Xu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
- * E-mail: (WK); (CJ)
| | - Chunlai Jiang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
- * E-mail: (WK); (CJ)
| |
Collapse
|
150
|
Persistent circulation of Coxsackievirus A6 of genotype D3 in mainland of China between 2008 and 2015. Sci Rep 2017; 7:5491. [PMID: 28710474 PMCID: PMC5511160 DOI: 10.1038/s41598-017-05618-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/19/2017] [Indexed: 12/22/2022] Open
Abstract
A total of 807 entire VP1 sequences of Coxsackievirus A6 (CV-A6) from mainland of China from 1992 to 2015, including 520 in this study and 287 from the GenBank database, were analysed to provide a basic framework of molecular epidemiological characteristics of CV-A6 in China. Sixty-five VP1 sequences including 46 representative CV-A6 isolates from 807 Chinese strains and 19 international strains from GenBank were used for describing the genotypes and sub-genotypes. The results revealed that CV-A6 strains can be categorised into 4 genotypes designated as A, B, C, and D according to previous data and can be further subdivided into B1–B2, C1–C2, and D1–D3 sub-genotypes. D3 is the predominant sub-genotype that circulated in recent years in mainland of China and represents 734 of 807 Chinese isolates. Sixty-six strains belong to D2, whereas B1 and C1 comprise a single strain each, and five AFP strains formed B2. Sub-genotype D3 first circulated in 2008 and has become the predominant sub-genotype since 2009 and then reached a peak in 2013, while D2 was mostly undetectable in the past years. These data revealed different transmission stages of CV-A6 in mainland of China and that sub-genotype D3 may have stronger transmission ability.
Collapse
|