101
|
Nakamura T, Yamashita M, Ikegami K, Suzuki M, Yanagita M, Kitagaki J, Kitamura M, Murakami S. Autophagy facilitates type I collagen synthesis in periodontal ligament cells. Sci Rep 2021; 11:1291. [PMID: 33446772 PMCID: PMC7809284 DOI: 10.1038/s41598-020-80275-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a lysosomal protein degradation system in which the cell self-digests its intracellular protein components and organelles. Defects in autophagy contribute to the pathogenesis of age-related chronic diseases, such as myocardial infarction and rheumatoid arthritis, through defects in the extracellular matrix (ECM). However, little is known about autophagy in periodontal diseases characterised by the breakdown of periodontal tissue. Tooth-supportive periodontal ligament (PDL) tissue contains PDL cells that produce various ECM proteins such as collagen to maintain homeostasis in periodontal tissue. In this study, we aimed to clarify the physiological role of autophagy in periodontal tissue. We found that autophagy regulated type I collagen synthesis by elimination of misfolded proteins in human PDL (HPDL) cells. Inhibition of autophagy by E-64d and pepstatin A (PSA) or siATG5 treatment suppressed collagen production in HPDL cells at mRNA and protein levels. Immunoelectron microscopy revealed collagen fragments in autolysosomes. Accumulation of misfolded collagen in HPDL cells was confirmed by sodium dodecyl sulfate–polyacrylamide gel electrophoresis. E-64d and PSA treatment suppressed and rapamycin treatment accelerated the hard tissue-forming ability of HPDL cells. Our findings suggest that autophagy is a crucial regulatory process that facilitates type I collagen synthesis and partly regulates osteoblastic differentiation of PDL cells.
Collapse
Affiliation(s)
- Tomomi Nakamura
- Department of Periodontology, Graduate School of Dentistry, Osaka University, 1-8, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Motozo Yamashita
- Department of Periodontology, Graduate School of Dentistry, Osaka University, 1-8, Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Kuniko Ikegami
- Department of Periodontology, Graduate School of Dentistry, Osaka University, 1-8, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Mio Suzuki
- Department of Periodontology, Graduate School of Dentistry, Osaka University, 1-8, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Manabu Yanagita
- Department of Periodontology, Graduate School of Dentistry, Osaka University, 1-8, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Jirouta Kitagaki
- Department of Periodontology, Graduate School of Dentistry, Osaka University, 1-8, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masahiro Kitamura
- Department of Periodontology, Graduate School of Dentistry, Osaka University, 1-8, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shinya Murakami
- Department of Periodontology, Graduate School of Dentistry, Osaka University, 1-8, Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
102
|
Azraq I, Craveiro RB, Niederau C, Brockhaus J, Bastian A, Knaup I, Neuss S, Wolf M. Gene expression and phosphorylation of ERK and AKT are regulated depending on mechanical force and cell confluence in murine cementoblasts. Ann Anat 2021; 234:151668. [PMID: 33400981 DOI: 10.1016/j.aanat.2020.151668] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 01/26/2023]
Abstract
Cementoblasts, located on the tooth root surface covered with cementum, are considered to have tooth protecting abilities. They prevent tissue damage and secure teeth anchorage inside the periodontal ligament during mechanical stress. However, the involvement of cementoblasts in mechanical compression induced periodontal remodeling needs to be identified and better understood. Here, we investigated the effect of static compressive stimulation, simulating the compression side of orthodontic force and cell confluence on a murine cementoblast cell line (OC/CM). The influence of cell confluence in cementoblast cells was analyzed by MTS assay and immunostaining. Furthermore, mRNA and protein expression were investigated by real-time RT-PCR and western blotting at different confluence grades and after mechanical stimulation. We observed that cementoblast cell proliferation increases with increasing confluence grades, while cell viability decreases in parallel. Gene expression of remodeling markers is regulated by compressive force. In addition, cementoblast confluence plays a crucial role in this regulation. Confluent cementoblasts show a significantly higher basal expression of Bsp, Osterix, Alpl, Vegfa, Mmp9, Tlr2 and Tlr4 compared to sub-confluent cells. After compressive force of 48 h at 60% confluence, an upregulation of Bsp, Osterix, Alpl, Vegf and Mmp9 is observed. In contrast, at high confluence, all analyzed genes were downregulated through mechanical stress. We also proved a regulation of ERK, phospho-ERK and phospho-AKT dependent on compressive force. In summary, our findings provide evidence that cementoblast physiology and metabolism is highly regulated in a cell confluence-dependent manner and by mechanical stimulation.
Collapse
Affiliation(s)
- Irma Azraq
- Department of Orthodontics, Dental Clinic, University of Aachen, Germany
| | - Rogerio B Craveiro
- Department of Orthodontics, Dental Clinic, University of Aachen, Germany.
| | - Christian Niederau
- Department of Orthodontics, Dental Clinic, University of Aachen, Germany
| | - Julia Brockhaus
- Department of Orthodontics, Dental Clinic, University of Aachen, Germany
| | - Asisa Bastian
- Department of Orthodontics, Dental Clinic, University of Aachen, Germany
| | - Isabel Knaup
- Department of Orthodontics, Dental Clinic, University of Aachen, Germany
| | - Sabine Neuss
- Helmholtz Institute for Biomedical Engineering, BioInterface Group, RWTH Aachen University, Aachen, Germany; Institute of Pathology, RWTH Aachen University, Aachen, Germany
| | - Michael Wolf
- Department of Orthodontics, Dental Clinic, University of Aachen, Germany
| |
Collapse
|
103
|
Zhou M, Hu H, Han Y, Li J, Zhang Y, Tang S, Yuan Y, Zhang X. Long non-coding RNA 01126 promotes periodontitis pathogenesis of human periodontal ligament cells via miR-518a-5p/HIF-1α/MAPK pathway. Cell Prolif 2021; 54:e12957. [PMID: 33231338 PMCID: PMC7791173 DOI: 10.1111/cpr.12957] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/10/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Periodontitis is a prevalent oral inflammatory disease, which can cause periodontal ligament to a local hypoxia environment. However, the mechanism of hypoxia associated long non-coding RNAs (lncRNAs) involved in periodontitis is still largely unknown. METHODS Microarray was performed to detect the expression patterns of lncRNAs in 3 pairs of gingival tissues from patients with periodontitis and healthy controls. The expression of lncRNA 01126 (LINC01126), miR-518a-5p and hypoxia-inducible factor-1α (HIF-1α) in periodontal tissues and in human periodontal ligament cells (hPDLCs) under hypoxia was measured by quantitative real-time polymerase chain reaction or western blot. Fluorescence in situ hybridization and cell fraction assay were performed to determine the subcellular localization of LINC01126 and miR-518a-5p. Overexpression or knockdown of LINC01126 or HIF-1α was used to confirm their biological roles in hPDLCs. MTT assays were performed to evaluate hPDLCs proliferation ability. Flow cytometry was used to detect apoptosis. ELISA was used to measure the expression levels of interleukin (IL)-1β, IL-6, IL-8 and TNF-α. Dual-luciferase reporter assays were performed to assess the binding of miR-518a-5p to LINC01126 and HIF-1α. RNA immunoprecipitation assay was used to identify whether LINC01126 and miR-518a-5p were significantly enriched in AGO-containing micro-ribonucleoprotein complexes. RESULTS We selected LINC01126, which was the most highly expressed lncRNA, to further verify its functions in periodontitis-induced hypoxia. The expression of LINC01126 was increased in periodontal tissues. In vitro experiment demonstrated that LINC01126 suppressed proliferation, promoted apoptosis and inflammation of hPDLCs under hypoxia via sponging miR-518a-5p. Moreover, we identified HIF-1α acted as a direct target of miR-518a-5p in hPDLCs and LINC01126 promoted periodontitis pathogenesis by regulating the miR-518a-5p/HIF-1α/MAPK pathway. CONCLUSION LINC01126 promotes periodontitis pathogenesis of hPDLCs via miR-518a-5p/HIF-1α/MAPK pathway, providing a possible clue for LINC01126-based periodontal therapeutic approaches.
Collapse
Affiliation(s)
- Mi Zhou
- College of StomatologyChongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Hui Hu
- College of StomatologyChongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Yineng Han
- Department of Oral and Maxillofacial SurgeryPeking University School and Hospital of StomatologyBeijingChina
| | - Jie Li
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Yang Zhang
- College of StomatologyChongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqingChina
| | - Song Tang
- College of StomatologyChongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqingChina
| | - Yu Yuan
- College of StomatologyChongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqingChina
| | - Xiaonan Zhang
- College of StomatologyChongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| |
Collapse
|
104
|
Fraser D, Nguyen T, Benoit DSW. Matrix Control of Periodontal Ligament Cell Activity Via Synthetic Hydrogel Scaffolds. Tissue Eng Part A 2020; 27:733-747. [PMID: 33107404 DOI: 10.1089/ten.tea.2020.0278] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Rebuilding the tooth-supporting tissues (periodontium) destroyed by periodontitis remains a clinical challenge. Periodontal ligament cells (PDLCs), multipotent cells within the periodontal ligament (PDL), differentiate and form new PDL and mineralized tissues (cementum and bone) during native tissue repair in response to specific extracellular matrix (ECM) cues. Thus, harnessing ECM cues to control PDLC activity ex vivo, and ultimately, to design a PDLC delivery vehicle for tissue regeneration is an important goal. In this study, poly(ethylene glycol) hydrogels were used as a synthetic PDL ECM to interrogate the roles of cell-matrix interactions and cell-mediated matrix remodeling in controlling PDLC activity. Results showed that PDLCs within matrix metalloproteinase (MMP)-degradable hydrogels expressed key PDL matrix genes and showed a six to eightfold increase in alkaline phosphatase (ALP) activity compared with PDLCs in nondegradable hydrogel controls. The increase in ALP activity, commonly considered an early marker of cementogenic/osteogenic differentiation, occurred independent of the presentation of the cell-binding ligand RGD or soluble media cues and remained elevated when inhibiting PDLC-matrix binding and intracellular tension. ALP activity was further increased in softer hydrogels regardless of degradability and was accompanied by an increase in PDLC volume. However, scaffolds that fostered PDLC ALP activity did not necessarily promote hydrogel ECM mineralization. Rather, matrix mineralization was greatest in stiffer, MMP-degradable hydrogels and required the presence of soluble media cues. These divergent outcomes illustrate the complexity of the PDLC response to ECM cues and the limitations of current scaffold materials. Nevertheless, key biomaterial design principles for controlling PDLC activity were identified for incorporation into scaffolds for periodontal tissue regeneration. Impact statement Engineered scaffolds are an attractive approach for delivering periodontal ligament cells (PDLCs) to rebuild the tooth-supporting tissues. Replicating key extracellular matrix (ECM) cues within tissue engineered scaffolds may maximize PDLC potential. However, the identity of important ECM cues and how they can be harnessed to control PDLC activity is still unknown. In this study, matrix degradability, cell-matrix binding, and stiffness were varied using synthetic poly(ethylene glycol) hydrogels for three-dimensional PDLC culture. PDLCs exhibited dramatic and divergent responses to these cues, supporting further investigation of ECM-replicating scaffolds for control of PDLC behavior and periodontal tissue regeneration.
Collapse
Affiliation(s)
- David Fraser
- Translational Biomedical Science, University of Rochester, Rochester, New York, USA.,Eastman Institute for Oral Health, University of Rochester, Rochester, New York, USA
| | - Tram Nguyen
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, USA
| | - Danielle S W Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, USA.,Department of Chemical Engineering, University of Rochester, Rochester, New York, USA.,Materials Science Program, University of Rochester, Rochester, New York, USA.,Center for Oral Biology, University of Rochester, Rochester, New York, USA.,Center for Musculoskeletal Research, University of Rochester, Rochester, New York, USA
| |
Collapse
|
105
|
Otani T, Koga T, Nozaki K, Kobayashi Y, Tanaka M. Mechanical effects of distributed fibre orientation in the periodontal ligament of an idealised geometry. Comput Methods Biomech Biomed Engin 2020; 24:1-10. [PMID: 33225747 DOI: 10.1080/10255842.2020.1847277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 10/09/2020] [Accepted: 11/03/2020] [Indexed: 10/22/2022]
Abstract
In this study, we computationally assess the effects of the distributed fibre orientation in the periodontal ligament (PDL) on mechanical responses of the tooth-PDL complex. An idealised axial-symmetric geometry of a tooth-PDL complex was constructed. The fibre orientation in the PDL was modelled as a trigonometric function based on anatomical knowledge, and the PDL was modelled as a transversely isotropic hyperelastic material dependent on fibre orientations. Parametric studies of the fibre orientation on the mechanical responses of the tooth-PDL complex were conducted. Obtained results showed that the anatomically consistent fibre orientation functions as a supporting structure against not only vertical but also horizontal loads.
Collapse
Affiliation(s)
- Tomohiro Otani
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Japan
| | - Taiki Koga
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Japan
| | - Kazunori Nozaki
- Division of Medical Information, Osaka University Dental Hospital, Osaka, Japan
| | - Yo Kobayashi
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Japan
| | - Masao Tanaka
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Japan
| |
Collapse
|
106
|
Ribeiro AB, Brognara F, da Silva JF, Castania JA, Fernandes PG, Tostes RC, Salgado HC. Carotid sinus nerve stimulation attenuates alveolar bone loss and inflammation in experimental periodontitis. Sci Rep 2020; 10:19258. [PMID: 33159128 PMCID: PMC7648828 DOI: 10.1038/s41598-020-76194-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
Baroreceptor and chemoreceptor reflexes modulate inflammatory responses. However, whether these reflexes attenuate periodontal diseases has been poorly examined. Thus, the present study determined the effects of electrical activation of the carotid sinus nerve (CSN) in rats with periodontitis. We hypothesized that activation of the baro and chemoreflexes attenuates alveolar bone loss and the associated inflammatory processes. Electrodes were implanted around the CSN, and bilateral ligation of the first mandibular molar was performed to, respectively, stimulate the CNS and induce periodontitis. The CSN was stimulated daily for 10 min, during nine days, in unanesthetized animals. On the eighth day, a catheter was inserted into the left femoral artery and, in the next day, the arterial pressure was recorded. Effectiveness of the CNS electrical stimulation was confirmed by hypotensive responses, which was followed by the collection of a blood sample, gingival tissue, and jaw. Long-term (9 days) electrical stimulation of the CSN attenuated bone loss and the histological damage around the first molar. In addition, the CSN stimulation also reduced the gingival and plasma pro-inflammatory cytokines induced by periodontitis. Thus, CSN stimulation has a protective effect on the development of periodontal disease mitigating alveolar bone loss and inflammatory processes.
Collapse
Affiliation(s)
- Aline Barbosa Ribeiro
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Avenida dos Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil
| | - Fernanda Brognara
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Avenida dos Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil
| | - Josiane Fernandes da Silva
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Jaci Airton Castania
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Avenida dos Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil
| | | | - Rita C Tostes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Helio Cesar Salgado
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Avenida dos Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil.
| |
Collapse
|
107
|
Weider M, Schröder A, Docheva D, Rodrian G, Enderle I, Seidel CL, Andreev D, Wegner M, Bozec A, Deschner J, Kirschneck C, Proff P, Gölz L. A Human Periodontal Ligament Fibroblast Cell Line as a New Model to Study Periodontal Stress. Int J Mol Sci 2020; 21:ijms21217961. [PMID: 33120924 PMCID: PMC7663139 DOI: 10.3390/ijms21217961] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 01/22/2023] Open
Abstract
The periodontal ligament (PDL) is exposed to different kinds of mechanical stresses such as bite force or orthodontic tooth movement. A simple and efficient model to study molecular responses to mechanical stress is the application of compressive force onto primary human periodontal ligament fibroblasts via glass disks. Yet, this model suffers from the need for primary cells from human donors which have a limited proliferative capacity. Here we show that an immortalized cell line, PDL-hTERT, derived from primary human periodontal ligament fibroblasts exhibits characteristic responses to glass disk-mediated compressive force resembling those of primary cells. These responses include induction and secretion of pro-inflammatory markers, changes in expression of extracellular matrix-reorganizing genes and induction of genes related to angiogenesis, osteoblastogenesis and osteoclastogenesis. The fact that PDL-hTERT cells can easily be transfected broadens their usefulness, as molecular gain- and loss-of-function studies become feasible.
Collapse
Affiliation(s)
- Matthias Weider
- Department of Orthodontics and Orofacial Orthopedics, University Hospital of Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Glueckstr. 11, 91054 Erlangen, Germany; (G.R.); (I.E.); (C.L.S.); (L.G.)
- Correspondence: ; Tel.: + 49-9131-85-45653
| | - Agnes Schröder
- Department of Orthodontics, University Hospital Regensburg, Franz Josef Strauss Allee 11, 93053 Regensburg, Germany; (A.S.); (C.K.); (P.P.)
| | - Denitsa Docheva
- Experimental Trauma Surgery, Department of Trauma Surgery, University Hospital Regensburg, Franz Josef Strauss Allee 11, 93053 Regensburg, Germany;
| | - Gabriele Rodrian
- Department of Orthodontics and Orofacial Orthopedics, University Hospital of Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Glueckstr. 11, 91054 Erlangen, Germany; (G.R.); (I.E.); (C.L.S.); (L.G.)
| | - Isabel Enderle
- Department of Orthodontics and Orofacial Orthopedics, University Hospital of Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Glueckstr. 11, 91054 Erlangen, Germany; (G.R.); (I.E.); (C.L.S.); (L.G.)
| | - Corinna Lesley Seidel
- Department of Orthodontics and Orofacial Orthopedics, University Hospital of Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Glueckstr. 11, 91054 Erlangen, Germany; (G.R.); (I.E.); (C.L.S.); (L.G.)
| | - Darja Andreev
- Department of Medicine 3, Rheumatology and Immunology, University of Erlangen-Nuremberg, Glueckstr. 6, 91054 Erlangen, Germany; (D.A.); (A.B.)
| | - Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstr. 17, 91054 Erlangen, Germany;
| | - Aline Bozec
- Department of Medicine 3, Rheumatology and Immunology, University of Erlangen-Nuremberg, Glueckstr. 6, 91054 Erlangen, Germany; (D.A.); (A.B.)
| | - James Deschner
- Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany;
| | - Christian Kirschneck
- Department of Orthodontics, University Hospital Regensburg, Franz Josef Strauss Allee 11, 93053 Regensburg, Germany; (A.S.); (C.K.); (P.P.)
| | - Peter Proff
- Department of Orthodontics, University Hospital Regensburg, Franz Josef Strauss Allee 11, 93053 Regensburg, Germany; (A.S.); (C.K.); (P.P.)
| | - Lina Gölz
- Department of Orthodontics and Orofacial Orthopedics, University Hospital of Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Glueckstr. 11, 91054 Erlangen, Germany; (G.R.); (I.E.); (C.L.S.); (L.G.)
| |
Collapse
|
108
|
Lee SA, Park BR, Moon SM, Shin SH, Kim JS, Kim DK, Kim CS. Cynaroside protects human periodontal ligament cells from lipopolysaccharide-induced damage and inflammation through suppression of NF-κB activation. Arch Oral Biol 2020; 120:104944. [PMID: 33099251 DOI: 10.1016/j.archoralbio.2020.104944] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/22/2020] [Accepted: 10/07/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVE To investigate whether cynaroside protects human periodontal ligament (hPDL) cells from lipopolysaccharide (LPS)-induced damage and inflammation and to analyze the underlying mechanism. METHODS LPS was used to stimulate hPDL and RAW264.7 cells. MTT assay was used to detect cell viability, and protein expression levels were measured via western blot analysis. Nitrite oxide and prostaglandin E2 were used to quantify the inflammatory response. Alizarin Red S staining was used to detect mineralized nodules. RESULTS Cynaroside inhibited the expression of iNOS, COX-2, TNF-α, and IL-6 in LPS-stimulated hPDL and RAW264.7 cells without cytotoxicity. Furthermore, cynaroside significantly suppressed LPS-induced protein expression of matrix metalloproteinase 3. Additionally, cynaroside prevented LPS-induced NF-κB p65 subunit translocation to the nucleus by inhibiting the phosphorylation and degradation of IκB-α. Moreover, cynaroside could restore the mineralization ability of hPDL cells reduced by LPS. CONCLUSION Cynaroside protected hPDL cells from LPS-induced damage and inflammation via inhibition of NF-κB activation. These results suggest that cynaroside may be a potential therapeutic agent for the alleviation of periodontitis.
Collapse
Affiliation(s)
- Seul Ah Lee
- Department of Oral Biochemistry, College of Dentistry, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju, 61452, Republic of Korea
| | - Bo-Ram Park
- Department of Dental Hygiene, College of Health and Welfare, Kyungwoon University, 730, Gangdong-ro, Gyeongsangbuk-do, 39160, Republic of Korea
| | - Sung-Min Moon
- CStech Research Institute, 38 Chumdanventuresoro, Gwangju, 61007, Republic of Korea
| | - Sang Hun Shin
- Department of Oral Biochemistry, College of Dentistry, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju, 61452, Republic of Korea
| | - Jae-Sung Kim
- Oral Biology Research Institute, College of Dentistry, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju, 61452, Republic of Korea
| | - Do Kyung Kim
- Oral Biology Research Institute, College of Dentistry, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju, 61452, Republic of Korea
| | - Chun Sung Kim
- Department of Oral Biochemistry, College of Dentistry, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju, 61452, Republic of Korea.
| |
Collapse
|
109
|
Hirashima S, Ohta K, Kanazawa T, Togo A, Tsuneyoshi R, Kusukawa J, Nakamura KI. Cellular network across cementum and periodontal ligament elucidated by FIB/SEM tomography. ACTA ACUST UNITED AC 2020; 69:53-58. [PMID: 32047915 DOI: 10.1093/jmicro/dfz117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/25/2019] [Accepted: 12/26/2019] [Indexed: 11/12/2022]
Abstract
Cementocytes in cementum form a lacuna-canalicular network. However, the 3D ultrastructure and range of the cementocyte network are unclear. Here, the 3D ultrastructure of the cementocyte network at the interface between cementum and periodontal ligament (PDL) was investigated on the mesoscale using FIB/SEM tomography. The results revealed a cellular network of cementocytes and PDL cells. A previous histomorphological study revealed the osteocyte-osteoblast-PDL cellular network. We extended this knowledge and revealed the cementum-PDL-bone cellular network, which may orchestrate the remodeling and modification of periodontal tissue, using a suitable method for imaging of complex tissue.
Collapse
Affiliation(s)
- Shingo Hirashima
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka 830-0011, Japan.,Dental and Oral Medical Center, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka 830-0011, Japan
| | - Keisuke Ohta
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka 830-0011, Japan.,Advanced Imaging Research Center, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka 830-0011, Japan
| | - Tomonoshin Kanazawa
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka 830-0011, Japan
| | - Akinobu Togo
- Advanced Imaging Research Center, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka 830-0011, Japan
| | - Risa Tsuneyoshi
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka 830-0011, Japan
| | - Jingo Kusukawa
- Dental and Oral Medical Center, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka 830-0011, Japan
| | - Kei-Ichiro Nakamura
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka 830-0011, Japan
| |
Collapse
|
110
|
Periodontal ligament enhancement in mesio-angulated impaction of third molars after orthodontic tooth movement: A prospective cohort study. Am J Orthod Dentofacial Orthop 2020; 158:495-504. [DOI: 10.1016/j.ajodo.2019.08.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/01/2019] [Accepted: 08/01/2019] [Indexed: 12/26/2022]
|
111
|
Lim JC, Bae SH, Lee G, Ryu CJ, Jang YJ. Activation of β-catenin by TGF-β1 promotes ligament-fibroblastic differentiation and inhibits cementoblastic differentiation of human periodontal ligament cells. Stem Cells 2020; 38:1612-1623. [PMID: 32930424 DOI: 10.1002/stem.3275] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 08/03/2020] [Indexed: 11/08/2022]
Abstract
TGF-β and Wnt/β-catenin signaling pathways are known to be essential for the development of periodontal tissue. In this study, we examined the crosstalk between TGF-β and Wnt/β-catenin signaling in ligament-fibroblastic differentiation of human periodontal ligament cells (hPDLCs). TGF-β1 treatment significantly increased the expression of ligament-fibroblastic markers, but such expression was preventing by treatment with SB431542, a TGF-β type I receptor inhibitor. As well as phosphorylation of Smad3, TGF-β1 increased β-catenin activation. The depletion of β-catenin reduced the expression of ligament-fibroblastic markers, suggesting that β-catenin is essential for ligament differentiation. The effect of TGF-β1 on β-catenin activation did not seem to be much correlated with Wnt stimuli, but endogenous DKK1 was suppressed by TGF-β1, indicating that β-catenin activation could be increased much more by TGF-β1. In addition to DKK1 suppression, Smad3 phosphorylation by TGF-β1 facilitated the nuclear translocation of cytoplasmic β-catenin. In contrast to ligament-fibroblastic differentiation, inhibition of TGF-β1 signaling was needed for cementoblastic differentiation of hPDLCs. BMP7 treatment accompanied by inhibition of TGF-β1 signaling had a synergistic effect on cementoblastic differentiation. In conclusion, β-catenin activation by TGF-β1 caused ligament-fibroblastic differentiation of hPDLCs, and the presence of TGF-β1 stimuli basically determined whether hPDLCs are differentiated into ligament progenitor or cementoblasts.
Collapse
Affiliation(s)
- Jong-Chan Lim
- Department of Nanobiomedical Science & BK21 Research Center for Regenerative Medicine, Dankook University, Cheonan, South Korea
| | - Sang-Hoon Bae
- Department of Nanobiomedical Science & BK21 Research Center for Regenerative Medicine, Dankook University, Cheonan, South Korea
| | - Gyutae Lee
- Yonsei Wooil Dental Hospital, Cheonan, South Korea
| | - Chun Jeih Ryu
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, South Korea
| | - Young-Joo Jang
- Department of Nanobiomedical Science & BK21 Research Center for Regenerative Medicine, Dankook University, Cheonan, South Korea
- College of Dentistry, Dankook University, Cheonan, South Korea
| |
Collapse
|
112
|
Monteiro MM, Lima CR, Gomes CC, Cruz MC, Horliana ACRT, Santos MF. Lowered Expression of MicroRNAs 221 and 222 Mediate Apoptosis Induced by High Glucose in Human Periodontal Ligament Cells. Cell Biochem Biophys 2020; 78:391-398. [PMID: 32681442 DOI: 10.1007/s12013-020-00932-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 07/08/2020] [Indexed: 12/26/2022]
Abstract
Impaired periodontal healing is a common complication of diabetes mellitus (DM), frequently related to hyperglycemia. MicroRNAs 221 and 222 have been studied as biomarkers for inflammatory diseases, including diabetes, but their role in the periodontal ligament (PL) is unknown. The effects of high glucose on human PL cells death were studied, as well as the expression of microRNA-221 and microRNA-222, potentially modulated by DM. Cells were obtained from the premolar teeth of young humans and cultured for 7 days under different glucose concentrations (5 or 30 mM). MicroRNAs-221/222 expressions were evaluated by real-time RT-PCR and apoptosis by TUNEL assays. Caspase-3 expression was studied by western blotting and immunocytochemistry. High glucose increased apoptosis and caspase-3 protein expression by about 3×. MicroRNA-221 and microRNA-222 expressions decreased by nearly 40% under high glucose. MicroRNA-221 and microRNA-222 inhibition using antagomiRs increased apoptosis by 2-3×, while the expression of caspase-3, a validated target for these microRNAs, was increased by 50%. The overexpression of both microRNAs using miR mimics in high glucose cells did no effect on apoptosis but increased caspase-3 expression by 30%. In conclusion, high glucose induces apoptosis of human PL cells potentially through a reduction of microRNA-221 and microRNA-222 expression and elevation of caspase-3.
Collapse
Affiliation(s)
- Mariana M Monteiro
- Instituto de Ciencias Biomedicas, Departamento de Biologia Celular e do Desenvolvimento, Universidade de Sao Paulo, Sao Paulo, SP, Brasil
| | - Cilene R Lima
- Instituto de Ciencias Biomedicas, Departamento de Biologia Celular e do Desenvolvimento, Universidade de Sao Paulo, Sao Paulo, SP, Brasil.,Universidade Cruzeiro do Sul, Sao Paulo, SP, Brasil
| | - Cibele C Gomes
- Instituto de Ciencias Biomedicas, Departamento de Biologia Celular e do Desenvolvimento, Universidade de Sao Paulo, Sao Paulo, SP, Brasil
| | - Mario C Cruz
- Instituto de Ciencias Biomedicas, Centro de Facilidades de Apoio a Pesquisa (CEFAP-USP), Universidade de Sao Paulo, Sao Paulo, SP, Brasil
| | - Anna C R T Horliana
- Programa de Pos-Graduacao em Biofotonica Aplicada a Ciencias da Saude, Universidade Nove de Julho, Sao Paulo, Brasil
| | - Marinilce F Santos
- Instituto de Ciencias Biomedicas, Departamento de Biologia Celular e do Desenvolvimento, Universidade de Sao Paulo, Sao Paulo, SP, Brasil.
| |
Collapse
|
113
|
Sadowsky SJ, Brunski JB. Are teeth superior to implants? A mapping review. J Prosthet Dent 2020; 126:181-187. [PMID: 32862999 DOI: 10.1016/j.prosdent.2020.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 10/23/2022]
Abstract
STATEMENT OF PROBLEM There is a long-held assumption that teeth are superior to implants because the periodontal ligament (PDL) confers a preeminent defense against biologic and mechanical challenges. However, adequate analysis of the literature is lacking. As a result, differential treatment planning of tooth- and implant-supported restorations has been compromised. PURPOSE Given an abundance and diversity of research, the purpose of this mapping review was to identify basic scientific gaps in the knowledge of how teeth and implants respond to biologic and mechanical loads. The findings will offer enhanced evidence-based clinical decision-making when considering replacement of periodontally compromised teeth and the design of implant prostheses. MATERIAL AND METHODS The online databases PubMed, Science Direct, and Web of Science were searched. Published work from 1965 to 2020 was collected and independently analyzed by both authors for inclusion in this review. RESULTS A total of 108 articles met the inclusion criteria of clinical, in vivo, and in vitro studies in the English language on the periradicular and peri-implant bone response to biologic and mechanical loads. The qualitative analysis found that the PDL's enhanced vascularity, stem cell ability, and resident cells that respond to inflammation allow for a more robust defense against biologic threats compared with implants. While the suspensory PDL acts to mediate moderate loads to the bone, higher compressive stress and strain within the PDL itself can initiate a biologic sequence of osteoclastic activity that can affect changes in the adjacent bone. Conversely, the peri-implant bone is more resistant to similar loads and the threshold for overload is higher because of the absence of a stress or strain sensitivity inherent in the PDL. CONCLUSIONS Based on this mapping review, teeth are superior to implants in their ability to resist biologic challenges, but implants are superior to teeth in managing higher compressive loads without prompting bone resorption.
Collapse
Affiliation(s)
- Steven J Sadowsky
- Professor, Preventive and Restorative Department, University of the Pacific Arthur A. Dugoni School of Dentistry, San Francisco, Calif.
| | - John B Brunski
- Professor, Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Stanford University, Stanford, Calif
| |
Collapse
|
114
|
Svandova E, Peterkova R, Matalova E, Lesot H. Formation and Developmental Specification of the Odontogenic and Osteogenic Mesenchymes. Front Cell Dev Biol 2020; 8:640. [PMID: 32850793 PMCID: PMC7396701 DOI: 10.3389/fcell.2020.00640] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/25/2020] [Indexed: 12/15/2022] Open
Abstract
Within the mandible, the odontogenic and osteogenic mesenchymes develop in a close proximity and form at about the same time. They both originate from the cranial neural crest. These two condensing ecto-mesenchymes are soon separated from each other by a very loose interstitial mesenchyme, whose cells do not express markers suggesting a neural crest origin. The two condensations give rise to mineralized tissues while the loose interstitial mesenchyme, remains as a soft tissue. This is crucial for proper anchorage of mammalian teeth. The situation in all three regions of the mesenchyme was compared with regard to cell heterogeneity. As the development progresses, the early phenotypic differences and the complexity in cell heterogeneity increases. The differences reported here and their evolution during development progressively specifies each of the three compartments. The aim of this review was to discuss the mechanisms underlying condensation in both the odontogenic and osteogenic compartments as well as the progressive differentiation of all three mesenchymes during development. Very early, they show physical and structural differences including cell density, shape and organization as well as the secretion of three distinct matrices, two of which will mineralize. Based on these data, this review highlights the consecutive differences in cell-cell and cell-matrix interactions, which support the cohesion as well as mechanosensing and mechanotransduction. These are involved in the conversion of mechanical energy into biochemical signals, cytoskeletal rearrangements cell differentiation, or collective cell behavior.
Collapse
Affiliation(s)
- Eva Svandova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, Brno, Czechia
| | - Renata Peterkova
- Department of Histology and Embryology, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Eva Matalova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, Brno, Czechia.,Department of Physiology, University of Veterinary and Pharmaceutical Sciences, Brno, Czechia
| | - Herve Lesot
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, Brno, Czechia
| |
Collapse
|
115
|
Jin Y, Ding L, Ding Z, Fu Y, Song Y, Jing Y, Li Q, Zhang J, Ni Y, Hu Q. Tensile force-induced PDGF-BB/PDGFRβ signals in periodontal ligament fibroblasts activate JAK2/STAT3 for orthodontic tooth movement. Sci Rep 2020; 10:11269. [PMID: 32647179 PMCID: PMC7347599 DOI: 10.1038/s41598-020-68068-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/15/2020] [Indexed: 12/14/2022] Open
Abstract
Orthodontic force-induced osteogenic differentiation and bone formation at tension side play a pivotal role in orthodontic tooth movement (OTM). Platelet-derived growth factor-BB (PDGF-BB) is a clinically proven growth factor during bone regeneration process with unclear mechanisms. Fibroblasts in periodontal ligament (PDL) are considered to be mechanosensitive under orthodontic force. Thus, we established OTM model to investigate the correlation between PDGF-BB and fibroblasts during bone regeneration at tension side. We confirmed that tensile force stimulated PDL cells to induce osteogenic differentiation via Runx-2, OCN up-regulation, and to accelerate new bone deposition along the periodontium and the alveolar bone interface. Interestingly, PDGF-BB level was remarkably enhanced at tension side during OTM in parallel with up-regulated PDGFRβ+/α-SMA+ fibroblasts in PDL by immunohistochemistry. Moreover, orthodontic force-treated primary fibroblasts from PDL were isolated and, cultured in vitro, which showed similar morphology and phenotype with control fibroblasts without OTM treatment. PDGFRβ expression was confirmed to be increased in orthodontic force-treated fibroblasts by immunofluorescence and flow cytometry. Bioinformatics analysis identified that PDGF-BB/PDGFRβ signals were relevant to the activation of JAK/STAT3 signals. The protein expression of JAK2 and STAT3 was elevated in PDL of tension side. Importantly, in vivo, the treatment of the inhibitors (imatinib and AG490) for PDGFRβ and JAK-STAT signals were capable of attenuating the tooth movement. The osteogenic differentiation and bone regeneration in tension side were down-regulated upon the treatment of inhibitors during OTM. Meanwhile, the expressions of PDGFRβ, JAK2 and STAT3 were inhibited by imatinib and AG490. Thus, we concluded that tensile force-induced PDGF-BB activated JAK2/STAT3 signals in PDGFRβ+ fibroblasts in bone formation during OTM.
Collapse
Affiliation(s)
- Yuqin Jin
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Liang Ding
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, No. 30 Zhongyang Road, Nanjing, 210008, China
| | - Zhuang Ding
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, No. 30 Zhongyang Road, Nanjing, 210008, China
| | - Yong Fu
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, No. 30 Zhongyang Road, Nanjing, 210008, China
| | - Yuxian Song
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, No. 30 Zhongyang Road, Nanjing, 210008, China
| | - Yue Jing
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, No. 30 Zhongyang Road, Nanjing, 210008, China
| | - Qiang Li
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, No. 30 Zhongyang Road, Nanjing, 210008, China
| | - Jianyun Zhang
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yanhong Ni
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, No. 30 Zhongyang Road, Nanjing, 210008, China.
| | - Qingang Hu
- Department of Oral and Maxillofacial Surgery, Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, No. 30 Zhongyang Road, Nanjing, 210008, China.
| |
Collapse
|
116
|
MEST Regulates the Stemness of Human Periodontal Ligament Stem Cells. Stem Cells Int 2020; 2020:9672673. [PMID: 32724317 PMCID: PMC7366229 DOI: 10.1155/2020/9672673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/02/2020] [Accepted: 03/19/2020] [Indexed: 12/11/2022] Open
Abstract
Periodontal ligament (PDL) stem cells (PDLSCs) have been reported as a useful cell source for periodontal tissue regeneration. However, one of the issues is the difficulty of obtaining a sufficient number of PDLSCs for clinical application because very few PDLSCs can be isolated from PDL tissue of donors. Therefore, we aimed to identify a specific factor that converts human PDL cells into stem-like cells. In this study, microarray analysis comparing the gene profiles of human PDLSC lines (2-14 and 2-23) with those of a cell line with a low differentiation potential (2-52) identified the imprinted gene mesoderm-specific transcript (MEST). MEST was expressed in the cytoplasm of 2-23 cells. Knockdown of MEST by siRNA in 2-23 cells inhibited the expression of stem cell markers, such as CD105, CD146, p75NTR, N-cadherin, and NANOG; the proliferative potential; and multidifferentiation capacity for osteoblasts, adipocytes, and chondrocytes. On the other hand, overexpression of MEST in 2-52 cells enhanced the expression of stem cell markers and PDL-related markers and the multidifferentiation capacity. In addition, MEST-overexpressing 2-52 cells exhibited a change in morphology from a spindle shape to a stem cell-like round shape that was similar to 2-14 and 2-23 cell morphologies. These results suggest that MEST plays a critical role in the maintenance of stemness in PDLSCs and converts PDL cells into PDLSC-like cells. Therefore, this study indicates that MEST may be a therapeutic factor for periodontal tissue regeneration by inducing PDLSCs.
Collapse
|
117
|
Chu EY, Vo TD, Chavez MB, Nagasaki A, Mertz EL, Nociti FH, Aitken SF, Kavanagh D, Zimmerman K, Li X, Stabach PR, Braddock DT, Millán JL, Foster BL, Somerman MJ. Genetic and pharmacologic modulation of cementogenesis via pyrophosphate regulators. Bone 2020; 136:115329. [PMID: 32224162 PMCID: PMC7482720 DOI: 10.1016/j.bone.2020.115329] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 11/27/2022]
Abstract
Pyrophosphate (PPi) serves as a potent and physiologically important regulator of mineralization, with systemic and local concentrations determined by several key regulators, including: tissue-nonspecific alkaline phosphatase (ALPL gene; TNAP protein), the progressive ankylosis protein (ANKH; ANK), and ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1; ENPP1). Results to date have indicated important roles for PPi in cementum formation, and we addressed several gaps in knowledge by employing genetically edited mouse models where PPi metabolism was disrupted and pharmacologically modulating PPi in a PPi-deficient mouse model. We demonstrate that acellular cementum growth is inversely proportional to PPi levels, with reduced cementum in Alpl KO (increased PPi levels) mice and excess cementum in Ank KO mice (decreased PPi levels). Moreover, simultaneous ablation of Alpl and Ank results in reestablishment of functional cementum in dKO mice. Additional reduction of PPi by dual deletion of Ank and Enpp1 does not further increase cementogenesis, and PDL space is maintained in part through bone modeling/remodeling by osteoclasts. Our results provide insights into cementum formation and expand our knowledge of how PPi regulates cementum. We also demonstrate for the first time that pharmacologic manipulation of PPi through an ENPP1-Fc fusion protein can regulate cementum growth, supporting therapeutic interventions targeting PPi metabolism.
Collapse
Affiliation(s)
- E Y Chu
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA.
| | - T D Vo
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - M B Chavez
- Biosciences Division, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - A Nagasaki
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - E L Mertz
- National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - F H Nociti
- Department of Prosthodontics & Periodontics, State University of Campinas, Piracicaba Dental School, Piracicaba, São Paulo, Brazil
| | - S F Aitken
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - D Kavanagh
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - K Zimmerman
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - X Li
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - P R Stabach
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - D T Braddock
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - J L Millán
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - B L Foster
- Biosciences Division, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - M J Somerman
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
118
|
Abidi AH, Alghamdi SS, Dabbous MK, Tipton DA, Mustafa SM, Moore BM. Cannabinoid type-2 receptor agonist, inverse agonist, and anandamide regulation of inflammatory responses in IL-1β stimulated primary human periodontal ligament fibroblasts. J Periodontal Res 2020; 55:762-783. [PMID: 32562275 DOI: 10.1111/jre.12765] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 04/08/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The aim of this study is to understand the role of cannabinoid type 2 receptor (CB2R) during periodontal inflammation and to identify anti-inflammatory agents for the development of drugs to treat periodontitis (PD). BACKGROUND Cannabinoid type 2 receptor is found in periodontal tissue at sites of inflammation/infection. Our previous study demonstrated anti-inflammatory responses in human periodontal ligament fibroblasts (hPDLFs) via CB2R ligands. METHODS Anandamide (AEA), HU-308 (agonist), and SMM-189 (inverse agonist) were tested for effects on IL-1β-stimulated cytokines, chemokines, and angiogenic and vascular markers expressed by hPDLFs using Mesoscale Discovery V-Plex Kits. Signal transduction pathways (p-c-Jun, p-ERK, p-p-38, p-JNK, p-CREB, and p-NF-kB) were investigated using Cisbio HTRF kits. ACTOne and Tango™ -BLA functional assays were used to measure cyclic AMP (cAMP) and β-arrestin activity. RESULTS IL-1β stimulated hPDLF production of 18/39 analytes, which were downregulated by the CB2R agonist and the inverse agonist. AEA exhibited pro-inflammatory and anti-inflammatory effects. IL-1β increased phosphoproteins within the first hour except p-JNK. CB2R ligands attenuated p-p38 and p-NFĸB, but a late rise in p-38 was seen with HU-308. As p-ERK levels declined, a significant increase in p-ERK was observed later in the time course by synthetic CB2R ligands. P-JNK was significantly affected by SMM-189 only, while p-CREB was elevated significantly by CB2R ligands at 180 minutes. HU-308 affected both cAMP and β-arrestin pathway. SMM-189 only stimulated cAMP. CONCLUSION The findings that CB2R agonist and inverse agonist may potentially regulate inflammation suggest that development of CB2R therapeutics could improve on current treatments for PD and other oral inflammatory pathologies.
Collapse
Affiliation(s)
- Ammaar H Abidi
- College of Dentistry, The University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Bioscience Research, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sahar S Alghamdi
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Mustafa Kh Dabbous
- College of Dentistry, The University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Bioscience Research, The University of Tennessee Health Science Center, Memphis, TN, USA.,College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Microbiology, Immunology and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - David A Tipton
- College of Dentistry, The University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Bioscience Research, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Suni M Mustafa
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Bob M Moore
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
119
|
Itoyama T, Yoshida S, Tomokiyo A, Hasegawa D, Hamano S, Sugii H, Ono T, Fujino S, Maeda H. Possible function of GDNF and Schwann cells in wound healing of periodontal tissue. J Periodontal Res 2020; 55:830-839. [PMID: 32562261 DOI: 10.1111/jre.12774] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 05/07/2020] [Accepted: 05/16/2020] [Indexed: 12/22/2022]
Abstract
OBJECTIVE The purpose of this study was to evaluate the function of Schwann cells in wound healing of periodontal tissue. BACKGROUND In our previous study, glial cell line-derived neurotrophic factor (GDNF) promoted the migration of human periodontal ligament (PDL) cells and that GDNF expression increased in wounded periodontal tissue. GDNF reportedly induces the migration of Schwann cell precursors. Schwann cells play a crucial role in the regeneration of peripheral tissues, including bone tissue. However, the role of Schwann cells on periodontal tissue regeneration remains unclear. METHODS A transwell assay and a WST-1 (water-soluble tetrazolium compound-1) proliferation assay were used to determine whether GDNF promotes the migration and proliferation of Schwann cells, respectively. Quantitative RT-PCR and Alizarin Red S staining were performed to examine the effect of these cells on the differentiation of human preosteoblast (Saos2 cells) using conditioned medium from YST-1 (YST-1-CM). Western blotting analysis was performed to determine whether YST-1-CM activates ERK signaling pathway in Saos2 cells. The expression of Schwann cell markers, S100 calcium-binding protein B (S100-B) and growth associated protein 43 (GAP-43), was determined in normal and wounded periodontal tissue by immunofluorescent staining. RESULTS Glial cell line-derived neurotrophic factor promoted the migration of YST-1 cells but did not affect the proliferation of YST-1 cells. Saos2 cells cultured with YST-1-CM increased the expression of osteoblastic markers and mineralization. YST-1-CM also induced phosphorylation of ERK1/2 in Saos2 cells. The number of S100-B-immunoreactive cells which also expressed GAP-43 was increased in rat wounded periodontal tissue during healing process. CONCLUSION The accumulation of Schwann cells in wounded periodontal tissue suggests that they play a significant role in wound healing of this tissue, especially alveolar bone tissue.
Collapse
Affiliation(s)
- Tomohiro Itoyama
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | | | - Atsushi Tomokiyo
- Department of Endodontology, Kyushu University Hospital, Fukuoka, Japan
| | - Daigaku Hasegawa
- Department of Endodontology, Kyushu University Hospital, Fukuoka, Japan
| | - Sayuri Hamano
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan.,OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Hideki Sugii
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Taiga Ono
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Shoko Fujino
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Hidefumi Maeda
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan.,Department of Endodontology, Kyushu University Hospital, Fukuoka, Japan
| |
Collapse
|
120
|
The effect of lipoxin A4 on E. coli LPS-induced osteoclastogenesis. Clin Oral Investig 2020; 25:957-969. [PMID: 32506323 PMCID: PMC7878239 DOI: 10.1007/s00784-020-03385-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 05/28/2020] [Indexed: 02/06/2023]
Abstract
Objectives The objective of the present study was to investigate the effect of lipoxin-type A4 (LXA4) on bacterial-induced osteoclastogenesis. Material and methods Human periodontal ligament cells (PDLCs) in coculture with osteoclast precursors (RAW264.7 cells) were exposed to bacterial stimulation with lipopolysaccharide (LPS) to induce inflammation. After 24 h, cells were treated to 100 ng/ml of LXA4 and 50 ng/ml of forymul peptide receptor 2 (FPR2/ALX) receptor antagonist (Boc-2). After 5 days, osteoclastic resorptive activity was assessed on calcium phosphate (CaP) synthetic bone substitute. Additionally, osteoclastic differentiation was evaluated using tartrate-resistant acid phosphatase (TRAP) staining, TRAP enzymatic activity assay, and on the expression of osteoclast-specific genes. Results We found that stimulation of in the osteoclasts with LPS-stimulated PDLCs induced a significant increase in tartrate-resistant acid phosphatase (TRAP) positive cells, higher resorptive activity, and enhanced expression of specific genes. Meanwhile, LXA4-treatment exhibited strong anti-inflammatory activity, and was able to reverse these inflammatory effects. Conclusions We conclude that (1) PDLCs are a potential target for treating bacterial-induced bone resorption in patients with periodontal disease, and (2) LXA4 is a suitable candidate for such therapy. Clinical relevance The results prove that lipoxins have a protective role in bacterial-induced periodontal inflammation and alveolar bone resorption, which can be translated into a clinical beneficial alterative treatment.
Collapse
|
121
|
Ferreira BC, Freire AR, Araujo R, do Amaral-Silva GK, Okamoto R, Prado FB, Rossi AC. β-catenin and Its Relation to Alveolar Bone Mechanical Deformation - A Study Conducted in Rats With Tooth Extraction. Front Physiol 2020; 11:549. [PMID: 32581840 PMCID: PMC7291952 DOI: 10.3389/fphys.2020.00549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/30/2020] [Indexed: 12/29/2022] Open
Abstract
The aim of this study was to analyze the relationship between alveolar bone deformation and β-catenin expression levels in response to the mechanical load changed by dental extraction in adult rats. Twenty-four male rats (Rattus norvegicus albinus), Wistar linage, at 2 months of age, were used. The right upper incisor tooth was extracted, and euthanasia occurred in periods 5 (n = 6), 7 (n = 6), and 14 (n = 6) days after Day 0. In the control group (n = 6), the dentition was maintained. The euthanasia occurred within 14 days after day 0. After euthanasia, the rats of all groups had their left jaw with tooth removed and separated in the middle. The pieces were undergone routine histological processing and then the immunohistochemical marking were performed to label expression of the primary β-catenin antibody, which was evaluated by qualitative and quantitative analysis. One head by each group (control and experimental) was submitted to computerized microtomography. After the three-dimensional reconstruction of the skull of the rat in each group, the computational simulation for finite elements analysis were performed to simulate a bite in the incisors. In finite element analysis, the strain patterns were evaluated after the application of bite force. The results were analyzed considering the areas in which changes in the amount of deformations were detected. The action of the bite force in the experimental condition, resulted in a uniform distribution of the amount of deformations, in addition to lower amount of deformation areas, differentiating from the control group. Comparing with the control group, the levels of β-catenin signaled in the lingual bone of the middle third of the alveolar bone were raised in the periods of 5 and 14 days. The increased β-catenin positive staining intensity was concentrated on osteocytes and gaps of osteocytes. The findings of the present study were in accordance with our hypothesis that the condition of dental extraction can cause the expression of β-catenin and alter the regimes of bone deformation.
Collapse
Affiliation(s)
- Beatriz Carmona Ferreira
- Laboratory for Mechanobiology Research, Biosciences Department, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Alexandre Rodrigues Freire
- Laboratory for Mechanobiology Research, Biosciences Department, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Rafael Araujo
- São Leopoldo Research Institute, São Leopoldo Mandic University, Campinas, Brazil
| | - Gleyson Kleber do Amaral-Silva
- Oral Pathology Laboratory, Oral Diagnosis Department, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Roberta Okamoto
- Laboratory for Study of Mineralized Tissue, Basic Sciences Department, School of Dentistry of Araçatuba, São Paulo State University, Araçatuba, Brazil
| | - Felippe Bevilacqua Prado
- Laboratory for Mechanobiology Research, Biosciences Department, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Ana Cláudia Rossi
- Laboratory for Mechanobiology Research, Biosciences Department, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| |
Collapse
|
122
|
Colley M, Liang S, Tan C, Trobough KP, Bach SB, Chun YHP. Mapping and Identification of Native Proteins of Developing Teeth in Mouse Mandibles. Anal Chem 2020; 92:7630-7637. [PMID: 32362116 PMCID: PMC7898936 DOI: 10.1021/acs.analchem.0c00359] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Mass spectrometry imaging is a powerful tool of increasing utility due to its ability to spatially resolve molecular biomarkers directly from sectioned tissues. One hindrance to its universality is that no single protocol is sufficient for every tissue type, fixation, and pretreatment. Mineralized tissues are uniquely challenging as extensive decalcification protocols are necessary to achieve thin sections. In this study, we optimized a method to image tryptic peptides by matrix-assisted laser desorption ionization mass spectrometry of decalcified, formalin-fixed paraffin-embedded mouse hemimandibles. Using a combination of on-tissue MS/MS and hydrogel extraction LC-MS/MS, peptides from the enamel, dentin, periodontal ligament, alveolar bone, pulp, and other regions are identified and mapped. This breakthrough method provides a comprehensive approach to biomarker discovery in dental and craniofacial tissues which is highly relevant given that diseases originating from this region of the body are the most prevalent across all populations.
Collapse
Affiliation(s)
- Madeline Colley
- Department of Chemistry, UT San Antonio, San Antonio, TX, USA
| | - Sitai Liang
- Department of Periodontics, UT Health San Antonio, San Antonio, TX, USA
| | - Chunyan Tan
- Department of Periodontics, UT Health San Antonio, San Antonio, TX, USA
| | - Kyle P. Trobough
- Department of Periodontics, UT Health San Antonio, San Antonio, TX, USA
| | | | - Yong-Hee Patricia Chun
- Department of Periodontics, UT Health San Antonio, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| |
Collapse
|
123
|
Aonuma T, Tamamura N, Fukunaga T, Sakai Y, Takeshita N, Shigemi S, Yamashiro T, Thesleff I, Takano-Yamamoto T. Delayed tooth movement in Runx2 +/- mice associated with mTORC2 in stretch-induced bone formation. Bone Rep 2020; 12:100285. [PMID: 32509933 PMCID: PMC7264061 DOI: 10.1016/j.bonr.2020.100285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/27/2020] [Accepted: 05/25/2020] [Indexed: 12/15/2022] Open
Abstract
Runt-related transcription factor 2 (Runx2) is an essential transcription factor for osteoblast differentiation, and is activated by mechanical stress to promote osteoblast function. Cleidocranial dysplasia (CCD) is caused by mutations of RUNX2, and CCD patients exhibit malocclusion and often need orthodontic treatment. However, treatment is difficult because of impaired tooth movement, the reason of which has not been clarified. We examined the amount of experimental tooth movement in Runx2+/− mice, the animal model of CCD, and investigated bone formation on the tension side of experimental tooth movement in vivo. Continuous stretch was conducted to bone marrow stromal cells (BMSCs) as an in vitro model of the tension side of tooth movement. Compared to wild-type littermates the Runx2+/− mice exhibited delayed experimental tooth movement, and osteoid formation and osteocalcin (OSC) mRNA expression were impaired in osteoblasts on the tension side of tooth movement. Runx2 heterozygous deficiency delayed stretch-induced increase of DNA content in BMSCs, and also delayed and reduced stretch-induced alkaline phosphatase (ALP) activity, OSC mRNA expression, and calcium content of BMSCs in osteogenic medium. Furthermore Runx2+/− mice exhibited delayed and suppressed expression of mammalian target of rapamycin (mTOR) and rapamycin-insensitive companion of mTOR (Rictor), essential factors of mTORC2, which is regulated by Runx2 to phosphorylate Akt to regulate cell proliferation and differentiation, in osteoblasts on the tension side of tooth movement in vivo and in vitro. Loss of half Runx2 gene dosage inhibited stretch-induced PI3K dependent mTORC2/Akt activity to promote BMSCs proliferation. Furthermore, Runx2+/− BMSCs in osteogenic medium exhibited delayed and suppressed stretch-induced expression of mTOR and Rictor. mTORC2 regulated stretch-elevated Runx2 and ALP mRNA expression in BMSCs in osteogenic medium. We conclude that Runx2+/− mice present a useful model of CCD patients for elucidation of the molecular mechanisms in bone remodeling during tooth movement, and that Runx2 plays a role in stretch-induced proliferation and osteogenesis in BMSCs via mTORC2 activation. Experimental tooth movement is delayed in Runx2+/− mice compared with wild-type mice. Runx2 plays a role in stretch-induced proliferation and differentiation of BMSCs via mTORC2 activation. Runx2+/− mice are useful model to clarify the mechanical stress-induced bone remodeling in CCD patients.
Collapse
Affiliation(s)
- Tomo Aonuma
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Nagato Tamamura
- Department of Orthodontics and Dentofacial Orthopedics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama City, Okayama 700-8558, Japan
| | - Tomohiro Fukunaga
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Yuichi Sakai
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Nobuo Takeshita
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Shohei Shigemi
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Takashi Yamashiro
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, 1-8 Yamada-Oka, Suita, Osaka 565-0871, Japan
| | - Irma Thesleff
- Research Program in Developmental Biology, Institute of Biotechnology, POB56, University of Helsinki, 00014 Helsinki, Finland
| | - Teruko Takano-Yamamoto
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan.,Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University, Kita 13, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8586, Japan
| |
Collapse
|
124
|
Cytokines Differently Define the Immunomodulation of Mesenchymal Stem Cells from the Periodontal Ligament. Cells 2020; 9:cells9051222. [PMID: 32423044 PMCID: PMC7290931 DOI: 10.3390/cells9051222] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/05/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022] Open
Abstract
Human periodontal ligament stem cells (hPDLSCs) play an important role in periodontal tissue homeostasis and regeneration. The function of these cells in vivo depends largely on their immunomodulatory ability, which is reciprocally regulated by immune cells via cytokines, particularly interferon (IFN)-γ, tumor necrosis factor (TNF)-α, and interleukin (IL)-1β. Different cytokines activate distinct signaling pathways and might differently affect immunomodulatory activities of hPDLSCs. This study directly compared the effect of IFN-γ, TNF-α, or IL-1β treated primary hPDLSCs on allogenic CD4+ T lymphocyte proliferation and apoptosis in an indirect co-culture model. The effects of IFN-γ, TNF-α, and IL-1β on the expression of specific immunomodulatory factors such as intoleamine-2,3-dioxygenase-1 (IDO-1), prostaglandin E2 (PGE2), and programmed cell death 1 ligand 1 (PD-L1) and ligand 2 (PD-L2) in hPDLSCs were compared. The contribution of different immunomodulatory mediators to the immunomodulatory effects of hPDLSCs in the indirect co-culture experiments was assessed using specific inhibitors. Proliferation of CD4+ T lymphocytes was inhibited by hPDLSCs, and this effect was strongly enhanced by IFN-γ and IL-1β but not by TNF-α. Apoptosis of CD4+ T lymphocytes was decreased by hPDLSCs per se. This effect was counteracted by IFN-γ or IL-1β. Additionally, IFN-γ, TNF-α, and IL-1β differently regulated all investigated immunomediators in hPDLSCs. Pharmacological inhibition of immunomediators showed that their contribution in regulating CD4+ T lymphocytes depends on the cytokine milieu. Our data indicate that inflammatory cytokines activate specific immunomodulatory mechanisms in hPDLSCs and the expression of particular immunomodulatory factors, which underlies a complex reciprocal interaction between hPDLSCs and CD4+ T lymphocytes.
Collapse
|
125
|
Lin JD, Ryder M, Kang M, Ho SP. Biomechanical pathways of dentoalveolar fibrous joints in health and disease. Periodontol 2000 2020; 82:238-256. [PMID: 31850635 DOI: 10.1111/prd.12306] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Spatial and temporal adaptations within periodontal tissues and their interfaces result from functional loads. Functional loads can be physiologic and/or pathologic in nature. The prolonged effect of these loads can alter the overall biomechanics of a dentoalveolar fibrous joint (dentoalveolar joint) by changing the form of the tooth root and its socket. This "sculpting" of the tooth root and alveolar bony socket is a consequence of several mechano-biological changes that occur within the periodontal complex of a load-bearing dentoalveolar joint. These include changes in biochemical expressions, structure, elemental composition, and mechanical properties of alveolar bone, the underlying tissues of the roots of teeth, and their interfaces. These physicochemical changes in tissues continue to prompt mechano-responsive biochemical activities at the attachment sites of periodontal ligament (soft) with bone (hard), and ligament with cementum (hard), which are the entheses of a load-bearing dentoalveolar joint. Forces at soft-hard tissue attachment sites between disparate materials with different stiffness values theoretically generate strain singularities or discontinuities. These discontinuities under prolonged functional loading increase the probability for failure to occur specifically at the enthesial zones. However, in a normal dentoalveolar joint, gradual stiffness gradients exist from ligament to bone, and from ligament to cementum. The gradual transitions in stiffness from softer ligament (lower stiffness) to harder bone or cementum (higher stiffness) or vice versa optimize tissue and interfacial strains. Optimization of tissue and ligament-enthesial physical and chemical properties facilitates transmission of cyclic forces of varying magnitudes and frequencies that collectively maintain the overall biomechanics of a dentoalveolar joint. The objectives of this review are 3-fold: (i) to illustrate physicochemical adaptations at the periodontal ligament entheses of a human periodontal complex affected by subgingival calculus; (ii) to demonstrate how to "program" the hallmarks of periodontitis in small-scale vertebrates in vivo to generate spatiotemporal maps of physicochemical adaptations in a diseased dentoalveolar joint; and (iii) to correlate dentoalveolar joint biomechanics in healthy and diseased states to spatiotemporal maps of physicochemical adaptations within respective periodontal tissues. This interdisciplinary approach demonstrates that physicochemical adaptations within periodontal tissues using the mechanics of materials (tissue mechanics), materials science (tissue composition), and mechano-biology (matrix molecules) can help explain the mechano-adaptation of dentoalveolar joints in normal and diseased functional states. Multiscale biomechanics and mechano-biology approaches can provide insights into the functional competence of a diseased relative to a normal dentoalveolar joint. Insights gathered from interdisciplinary and multiscale biomechanics approaches include the following: (i) physiologic loads related to chewing maintain a balance between mineral-forming and-resorbing biochemical cellular events, resulting in gradual stiffness gradients at the periodontal ligament entheses, and, in turn, sustain the overall biomechanics of a normal "healthy" dentoalveolar joint; (ii) pathologic loads resulting from tissue degradation and physical changes to the periodontal complex promote an abrupt stiffness gradient at the periodontal ligament entheses. The shift from gradual to an abrupt stiffness gradient could prompt a shift in the biochemical cascades, exacerbate mechano-responsive biochemical expressions at periodontal ligament entheses farther away from the site of insult, and culminate in joint degradation; (iii) sustained pathologic function on periodontally diseased joints exacerbates degradation of periodontal ligament entheses providing insights into "rescue therapy", such as the use of an adequate "mechanocal dose" to regain joint function; and (iv) spatiotemporal maps of changes in biochemical expressions, and physicochemical properties of strain-dominated affected sites, including the periodontal ligament entheses, can guide anatomy-specific therapeutics for tissue regeneration and/or disease control with the purpose of regaining dentoalveolar joint function. Modulation of occlusal loads could minimize disease progression and potentially assist in regaining functional attachment of ligament to bone and/or ligament to cementum of the dentoalveolar joint. Elucidating mechanisms that drive the breakdown of the functionally active periodontal complex burdened with microbes will provide the required critical insights into regenerative medicine and/or biomimetic approaches that would facilitate rescue/regain of dentoalveolar joint function.
Collapse
Affiliation(s)
- Jeremy D Lin
- Division of Preclinical Education, Biomaterials & Engineering, Department of Preventive and Restorative Dental Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Mark Ryder
- Division of Periodontics, Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Misun Kang
- Division of Preclinical Education, Biomaterials & Engineering, Department of Preventive and Restorative Dental Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Sunita P Ho
- Division of Preclinical Education, Biomaterials & Engineering, Department of Preventive and Restorative Dental Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA.,Department of Urology, School of Medicine, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
126
|
Denes BJ, Ait-Lounis A, Wehrle-Haller B, Kiliaridis S. Core Matrisome Protein Signature During Periodontal Ligament Maturation From Pre-occlusal Eruption to Occlusal Function. Front Physiol 2020; 11:174. [PMID: 32194440 PMCID: PMC7066325 DOI: 10.3389/fphys.2020.00174] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/13/2020] [Indexed: 12/14/2022] Open
Abstract
The pre-occlusal eruption brings the molars into functional occlusion and initiates tensional strains during mastication. We hypothesized that upon establishment of occlusal contact, the periodontal ligament (PDL) undergoes cell and extracellular matrix maturation to adapt to this mechanical function. The PDL of 12 Wistar male rats were laser microdissected to observe the proteomic changes between stages of pre-occlusal eruption, initial occlusal contact and 1-week after occlusion. The proteome was screened by mass spectrometry and confirmed by immunofluorescence. The PDL underwent maturation upon establishment of occlusion. Downregulation of alpha-fetoprotein stem cell marker and protein synthesis markers indicate cell differentiation. Upregulated proteins were components of the extracellular matrix (ECM) and were characterized with the matrisome project database. In particular, periostin, a major protein of the PDL, was induced following occlusal contact and localized around collagen α-1 (III) bundles. This co-localization coincided with organization of collagen fibers in direction of the occlusal forces. Establishment of occlusion coincides with cellular differentiation and the maturation of the PDL. Co-localization of periostin and collagen with subsequent fiber organization may help counteract tensional forces and reinforce the ECM structure. This may be a key mechanism of the PDL to adapt to occlusal forces and maintain structural integrity.
Collapse
Affiliation(s)
- Balazs Jozsef Denes
- Department of Orthodontics, Clinique Universitaire de Médecine Dentaire, University of Geneva, Geneva, Switzerland
| | - Aouatef Ait-Lounis
- Department of Orthodontics, Clinique Universitaire de Médecine Dentaire, University of Geneva, Geneva, Switzerland.,Department of Cell Physiology and Metabolism, Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| | - Bernhard Wehrle-Haller
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| | - Stavros Kiliaridis
- Department of Orthodontics, Clinique Universitaire de Médecine Dentaire, University of Geneva, Geneva, Switzerland
| |
Collapse
|
127
|
Zarei M, Karbasi S, Sari Aslani F, Zare S, Koohi-Hosseinabad O, Tanideh N. In Vitro and In Vivo Evaluation of Poly (3-hydroxybutyrate)/Carbon Nanotubes Electrospun Scaffolds for Periodontal Ligament Tissue Engineering. JOURNAL OF DENTISTRY (SHIRAZ, IRAN) 2020; 21:18-30. [PMID: 32158781 PMCID: PMC7036354 DOI: 10.30476/dentjods.2019.77869] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/11/2019] [Accepted: 04/13/2019] [Indexed: 01/09/2023]
Abstract
STATEMENT OF THE PROBLEM Tissue engineering was an idea, today it has become a potential therapy for several tissues in dentistry, such as periodontal disease and oral mucosa. PURPOSE In this experimental study, periodontal regeneration is one of the earliest clinical disciplines that has achieved therapeutic application in tissue engineering. The aim of the present study was to prepare electrospun Poly (3-hydroxybutyrate) (PHB)/1% Carbon nanotubes (CNTs) scaffolds for periodontal regeneration. MATERIALS AND METHOD 1% w/v of CNTs was added to the polymer solutions and electrospinned. Physical properties of the scaffolds were evaluated by scanning electron microscopy (SEM) and universal testing machine. Chemical characterization of the scaffolds was also assessed by Fourier-transform infrared spectroscopy (FTIR). Biological properties of the scaffolds were also evaluated in vitro by culturing periodontal ligament stem cells (PDLSCs) on the scaffolds for 10 days and in vivo by Implanting the scaffolds in rat model for 5 weeks. RESULTS Results showed that the scaffolds mimicked fibrous connective tissue of the (PDL). CNTs improved the mechanical properties, similar to 23-55 years old human PDL. In vitro biocompatibility study showed more attachment and proliferation of the PDLSCs for PHB/1%CNTs scaffolds compared to the PHB controls. In vivo study showed that CNTs in the scaffolds caused mild foreign body type giant cell reaction, moderate vascularization, and mild inflammation. CONCLUSION The results showed that the PHB/1%CNTs composite scaffolds might be potentially useful in periodontal regeneration.
Collapse
Affiliation(s)
- Moein Zarei
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Karbasi
- Dept. of Biomaterials and Tissue Engineering, School of Advance Technology in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Sari Aslani
- Molecular Dermatology Research Center, Dept. of Pathology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahrokh Zare
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Nader Tanideh
- Stem Cells Technology Research Center, Dept. of Pharmacology, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
128
|
Huang Y, Han Y, Guo R, Liu H, Li X, Jia L, Zheng Y, Li W. Long non-coding RNA FER1L4 promotes osteogenic differentiation of human periodontal ligament stromal cells via miR-874-3p and vascular endothelial growth factor A. Stem Cell Res Ther 2020; 11:5. [PMID: 31900200 PMCID: PMC6942378 DOI: 10.1186/s13287-019-1519-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/12/2019] [Accepted: 12/03/2019] [Indexed: 12/19/2022] Open
Abstract
Background Periodontal ligament stromal cells (PDLSCs) are ideal cell sources for periodontal tissue repair and regeneration, but little is known about what determines their osteogenic capacity. Long non-coding RNAs (lncRNAs) are important regulatory molecules at both transcriptional and post-transcriptional levels. However, their roles in the osteogenic differentiation of PDLSCs are still largely unknown. Methods The expression of lncRNA Fer-1-like family member 4 (FER1L4) during the osteogenic differentiation of PDLSCs was detected by quantitative reverse transcription polymerase chain reaction. Overexpression or knockdown of FER1L4 was used to confirm its regulation of osteogenesis in PDLSCs. Alkaline phosphatase and Alizarin red S staining were used to detect mineral deposition. Dual luciferase reporter assays were used to analyze the binding of miR-874-3p to FER1L4 and vascular endothelial growth factor A (VEGFA). Bone regeneration in critical-sized calvarial defects was assessed in nude mice. New bone formation was analyzed by micro-CT, hematoxylin and eosin staining, Masson’s trichrome staining, and immunohistochemical analyses. Results FER1L4 levels increased gradually during consecutive osteogenic induction of PDLSCs. Overexpression of FER1L4 promoted the osteogenic differentiation of PDLSCs, as revealed by alkaline phosphatase activity, Alizarin red S staining, and the expression of osteogenic markers, whereas FER1L4 knockdown inhibited these processes. Subsequently, we identified a predicted binding site for miR-874-3p on FER1L4 and confirmed a direct interaction between them. Wild-type FER1L4 reporter activity was significantly inhibited by miR-874-3p, whereas mutant FER1L4 reporter was not affected. MiR-874-3p inhibited osteogenic differentiation and reversed the promotion of osteogenesis in PDLSCs by FER1L4. Moreover, miR-874-3p targeted VEGFA, a crucial gene in osteogenic differentiation, whereas FER1L4 upregulated the expression of VEGFA. In vivo, overexpression of FER1L4 led to more bone formation compared to the control group, as demonstrated by micro-CT and the histologic analyses. Conclusion FER1L4 positively regulates the osteogenic differentiation of PDLSCs via miR-874-3p and VEGFA. Our study provides a promising target for enhancing the osteogenic potential of PDLSCs and periodontal regeneration.
Collapse
Affiliation(s)
- Yiping Huang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China
| | - Yineng Han
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China
| | - Runzhi Guo
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China
| | - Hao Liu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China
| | - Xiaobei Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China
| | - Lingfei Jia
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Yunfei Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.
| | - Weiran Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China. .,National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, China.
| |
Collapse
|
129
|
Rosset EM, Trombetta-eSilva J, Hepfer G, Chen P, Yao H, Bradshaw AD. Inhibition of transglutaminase activity in periodontitis rescues periodontal ligament collagen content and architecture. J Periodontal Res 2020; 55:107-115. [PMID: 31552683 PMCID: PMC7184635 DOI: 10.1111/jre.12694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 07/09/2019] [Accepted: 08/03/2019] [Indexed: 01/28/2023]
Abstract
BACKGROUND AND OBJECTIVE Periodontal disease (PD) afflicts approximately 50% of the population in the United States and is characterized by chronic inflammation of the periodontium that can lead to loss of the periodontal ligament through collagen degradation, loss of alveolar bone, and to eventual tooth loss. Previous studies have implicated transglutaminase (TG) activity in promoting thin collagen I fiber morphology and decreased mechanical strength in homeostatic PDL. The aim of this study was to determine whether TG activity influenced collagen assembly in PDL in the setting of periodontal disease. MATERIAL AND METHODS A ligature model was used to induce clinically relevant PD in mice. Mice with ligature were assessed at 5 and 14 days to determine PDL collagen morphology, transglutaminase (TG) activity, and bone loss. The effects of inhibition of TG on PDL were assessed by immunohistochemistry and second-harmonic generation (SHG) to visualize collagen fibers in native tissue. RESULTS Ligature placement around the 2nd molar resulted in significant bone loss and a decrease in total collagen content after 5 days of ligature placement. A significant increase in thin over thick fibers was also demonstrated in mice with ligature at 5 days associated with apparent increases in immunoreactivity for TG2 and for TG-mediated N-ε-γ-glutamyl cross-links in PDL. Inhibition of TG activity increased total collagen and thick collagen fiber content over vehicle control in mice with ligature for 5 days. SHG of PDL was used to visualize and quantify the effects of TG inhibition on enhanced collagen fiber organization in unfixed control and diseased PDL. CONCLUSION These studies support a role of TG in regulating collagen fiber assembly and suggest that strategies to inhibit TG activity in disease might contribute to restoration of PDL tissue integrity.
Collapse
Affiliation(s)
- Emilie Moore Rosset
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | | | - Glenn Hepfer
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Peng Chen
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Hai Yao
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC, USA
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Amy D. Bradshaw
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC, USA
- Gazes Cardiac Research Institute, Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
- Ralph H. Johnson Department of Veterans Affairs Medical Center, Charleston, SC, USA
| |
Collapse
|
130
|
1,25(OH) 2D 3 Differently Affects Immunomodulatory Activities of Mesenchymal Stem Cells Depending on the Presence of TNF-α, IL-1β and IFN-γ. J Clin Med 2019; 8:jcm8122211. [PMID: 31847340 PMCID: PMC6947512 DOI: 10.3390/jcm8122211] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 12/15/2022] Open
Abstract
Periodontal ligament-derived mesenchymal stem cells (hPDLSCs) possess immunomodulatory abilities which are strongly enhanced by various inflammatory cytokines. Vitamin D3 has anti-inflammatory effects on hPDLSCs and immune cells. However, no study to date has directly compared the influence of 1,25(OH)2D3 on the immunomodulatory activities of hPDLSCs in the presence of different cytokines. In the present study, the effects of hPDLSCs treated with tumor necrosis factor (TNF)-α, interleukin (IL)-1β, or interferon (IFN)-γ in the presence of 1,25(OH)2D3 on the proliferation of allogenic CD4+ T lymphocyte or on the functional status of primary CD68+ macrophages were analyzed in coculture models. Additionally, the effects of 1,25(OH)2D3 on TNF-α-, IL-1β-, and IFN-γ-induced gene expression of some immunomodulatory factors in hPDLSCs were compared. Under coculture conditions, 1,25(OH)2D3 increased or decreased CD4+ T lymphocyte proliferation via hPDLSCs, depending on the cytokine. hPDLSCs primed with 1,25(OH)2D3 and different cytokines affected pro- and anti-inflammatory cytokine expression in macrophages variably, depending on the priming cytokine. With one exception, 1,25(OH)2D3 significantly reduced TNF-α-, IL-1β-, and IFN-γ-induced expression of all the investigated immunomediators in hPDLSCs, albeit to different extents. These results suggest that 1,25(OH)2D3 influences the immunomodulatory activities of hPDLSCs depending qualitatively and quantitatively on the presence of certain inflammatory cytokines.
Collapse
|
131
|
Zheng M, Guo J. Nicotinamide‐induced silencing of SIRT1 by miR‐22‐3p increases periodontal ligament stem cell proliferation and differentiation. Cell Biol Int 2019; 44:764-772. [PMID: 31769563 DOI: 10.1002/cbin.11271] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/23/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Minqian Zheng
- Department of Orthodontics, Hospital of Stomatology Fujian Medical University Fuzhou Fujian 350001 China
| | - Jianbin Guo
- Department of Implantology, Hospital of Stomatology Fujian Medical University Fuzhou Fujian 350001 China
| |
Collapse
|
132
|
Dental mesenchymal stem cells and neuro-regeneration: a focus on spinal cord injury. Cell Tissue Res 2019; 379:421-428. [PMID: 31776822 DOI: 10.1007/s00441-019-03109-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 09/22/2019] [Indexed: 02/07/2023]
Abstract
Regenerative medicine is a branch of translational research that aims to reestablish irreparably damaged tissues and organs by stimulating the body's own repair mechanisms via the implantation of stem cells differentiated into specialized cell types. A rich source of adult stem cells is located inside the tooth and is represented by human dental pulp stem cells, or hDPSCs. These cells are characterized by a high proliferative rate, have self-renewal and multi-lineage differentiation properties and are often used for tissue engineering and regenerative medicine. The present review will provide an overview of hDPSCs and related features with a special focus on their potential applications in regenerative medicine of the nervous system, such as, for example, after spinal cord injury. Recent advances in the identification and characterization of dental stem cells and in dental tissue engineering strategies suggest that bioengineering approaches may successfully be used to regenerate districts of the central nervous system, previously considered irreparable.
Collapse
|
133
|
Ashrafi M, Ghalichi F, Mirzakouchaki B, Zoljanahi Oskui I. Numerical simulation of hydro-mechanical coupling of periodontal ligament. Proc Inst Mech Eng H 2019; 234:171-178. [DOI: 10.1177/0954411919887071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Orthodontic tooth movement in the alveolar bone is due to the mechanical response of periodontal ligament to applied forces. Definition of a proper constitutive model of the periodontal ligament to investigate its response to orthodontic loading is required. For this purpose, a three-dimensional finite element model of incisor tooth, periodontal ligament, and bone was built utilizing the hydro-mechanical coupling theory. Tooth displacement in response to orthodontic loading was then investigated, and the effect of different mechanical behaviors assigned to the solid phase of the periodontal ligament was compared. Results showed that where the periodontal ligament was placed in tension, pore volume was filled with fluid intake from the bone, but fluid flow direction was from the periodontal ligament toward the bone where the periodontal ligament was placed in compression. Because of the existence of interaction between solid and fluid phases of the periodontal ligament, considering biphasic material formulation was capable to address its microscopic behavior as well as time-dependent and large deformation behaviors. This article provides beneficial biomechanical data for future dental studies in determination of optimal orthodontic force.
Collapse
Affiliation(s)
- Mehran Ashrafi
- Faculty of Biomedical Engineering, Sahand University of Technology, Tabriz, Iran
| | - Farzan Ghalichi
- Faculty of Biomedical Engineering, Sahand University of Technology, Tabriz, Iran
| | - Behnam Mirzakouchaki
- Orthodontic Department, Tabriz Dental School, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Iman Zoljanahi Oskui
- Faculty of Biomedical Engineering, Sahand University of Technology, Tabriz, Iran
| |
Collapse
|
134
|
Antibiotics Used in Regenerative Endodontics Modify Immune Response of Macrophages to Bacterial Infection. J Endod 2019; 45:1349-1356. [DOI: 10.1016/j.joen.2019.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/08/2019] [Accepted: 08/06/2019] [Indexed: 12/24/2022]
|
135
|
Whitney MR, Sidor CA. Histological and developmental insights into the herbivorous dentition of tapinocephalid therapsids. PLoS One 2019; 14:e0223860. [PMID: 31665173 PMCID: PMC6821052 DOI: 10.1371/journal.pone.0223860] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/30/2019] [Indexed: 11/23/2022] Open
Abstract
Tapinocephalids were one of the earliest therapsid clades to evolve herbivory. In acquiring derived tooth-to-tooth occlusion by means of an exaggerated heel and talon crown morphology, members of this family have long been considered herbivorous, yet little work has been done to describe their dentition. Given the early occurrence of this clade and their acquisition of a dentition with several derived features, tapinocephalids serve as an important clade in understanding adaptations to herbivory as well as macroevolutionary patterns of dental trait acquisition. Here we describe the histology of tapinocephalid jaws and incisors to assess adaptations to herbivory. Our results yield new dental characters for tapinocephalids including a peculiar enamel structure and reduced enamel deposition on the occlusal surface. These traits are convergent with other specialized herbivorous dentitions like those found in ornithischian dinosaurs and ungulates. Furthermore, these results demonstrate that while acquiring some specializations, tapinocephalids also retained plesiomorphic traits like alternate, continuous replacement. We interpret these findings as an example of how different combinations of traits can facilitate a derived and specialized dentition and then discuss their implications in the acquisition of a mammal-like dentition.
Collapse
Affiliation(s)
- Megan. R. Whitney
- Department of Biology and Burke Museum, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| | - Christian A. Sidor
- Department of Biology and Burke Museum, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
136
|
PradeepKumar AR, Shemesh H, Archana D, Versiani MA, Sousa-Neto MD, Leoni GB, Silva-Sousa YT, Kishen A. Root Canal Preparation Does Not Induce Dentinal Microcracks In Vivo. J Endod 2019; 45:1258-1264. [DOI: 10.1016/j.joen.2019.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 06/24/2019] [Accepted: 06/27/2019] [Indexed: 01/05/2023]
|
137
|
Three-dimensional ultrastructural imaging and quantitative analysis of the periodontal ligament. Anat Sci Int 2019; 95:1-11. [DOI: 10.1007/s12565-019-00502-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 09/01/2019] [Indexed: 12/16/2022]
|
138
|
Denes BJ, Bolton C, Illsley CS, Kok WL, Walker JV, Poetsch A, Tredwin C, Kiliaridis S, Hu B. Notch Coordinates Periodontal Ligament Maturation through Regulating Lamin A. J Dent Res 2019; 98:1357-1366. [PMID: 31461625 DOI: 10.1177/0022034519871448] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Tooth eruption is a continuous biological process with dynamic changes at cellular and tissue levels, particularly within the periodontal ligament (PDL). Occlusion completion is a significant physiological landmark of dentition establishment. However, the importance of the involvement of molecular networks engaging in occlusion establishment on the final PDL maturation is still largely unknown. In this study, using rat and mouse molar teeth and a human PDL cell line for RNAseq and proteomic analysis, we systematically screened the key molecular links in regulating PDL maturation before and after occlusion establishment. We discovered Notch, a key molecular pathway in regulating stem cell fate and differentiation, is a major player in the event. Intercepting the Notch pathway by deleting its key canonical transcriptional factor, RBP-Jkappa, using a conditional knockout strategy in the mice delayed PDL maturation. We also identified that Lamin A, a cell nuclear lamina member, is a unique marker of PDL maturation, and its expression is under the control of Notch signaling. Our study therefore provides a deep insight of how PDL maturation is regulated at the molecular level, and we expect the outcomes to be applied for a better understanding of the molecular regulation networks in physiological conditions such as tooth eruption and movement and also for periodontal diseases.
Collapse
Affiliation(s)
- B J Denes
- Department of Orthodontics, University Clinic of Dental Medicine, University of Geneva, Geneva, Switzerland
| | - C Bolton
- Stem Cells & Regenerative Medicine Laboratory, Peninsula Dental School, Faculty of Medicine and Dentistry, University of Plymouth, Plymouth, UK
| | - C S Illsley
- Stem Cells & Regenerative Medicine Laboratory, Peninsula Dental School, Faculty of Medicine and Dentistry, University of Plymouth, Plymouth, UK
| | - W L Kok
- Stem Cells & Regenerative Medicine Laboratory, Peninsula Dental School, Faculty of Medicine and Dentistry, University of Plymouth, Plymouth, UK
| | - J V Walker
- Stem Cells & Regenerative Medicine Laboratory, Peninsula Dental School, Faculty of Medicine and Dentistry, University of Plymouth, Plymouth, UK
| | - A Poetsch
- School of Biomedicine, Faculty of Medicine and Dentistry, University of Plymouth, Plymouth, UK
| | - C Tredwin
- Stem Cells & Regenerative Medicine Laboratory, Peninsula Dental School, Faculty of Medicine and Dentistry, University of Plymouth, Plymouth, UK
| | - S Kiliaridis
- Department of Orthodontics, University Clinic of Dental Medicine, University of Geneva, Geneva, Switzerland
| | - B Hu
- Stem Cells & Regenerative Medicine Laboratory, Peninsula Dental School, Faculty of Medicine and Dentistry, University of Plymouth, Plymouth, UK
| |
Collapse
|
139
|
Hirashima S, Ohta K, Kanazawa T, Togo A, Kakuma T, Kusukawa J, Nakamura KI. Three-dimensional ultrastructural and histomorphological analysis of the periodontal ligament with occlusal hypofunction via focused ion beam/scanning electron microscope tomography. Sci Rep 2019; 9:9520. [PMID: 31266989 PMCID: PMC6606634 DOI: 10.1038/s41598-019-45963-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/18/2019] [Indexed: 12/17/2022] Open
Abstract
The periodontal ligament (PDL) maintains the environment and function of the periodontium. The PDL has been remodelled in accordance with changes in mechanical loading. Three-dimensional (3D) structural data provide essential information regarding PDL function and dysfunction. However, changes in mechanical loading associated with structural changes in the PDL are poorly understood at the mesoscale. This study aimed to investigate 3D ultrastructural and histomorphometric changes in PDL cells and fibres associated with unloading condition (occlusal hypofunction), using focused ion beam/scanning electron microscope tomography, and to quantitatively analyse the structural properties of PDL cells and fibres. PDL cells formed cellular networks upon morphological changes induced via changes in mechanical loading condition. Drastic changes were observed in a horizontal array of cells, with a sparse and disorganised area of collagen bundles. Furthermore, collagen bundles tended to be thinner than those in the control group. FIB/SEM tomography enables easier acquisition of serial ultrastructural images and quantitative 3D data. This method is powerful for revealing 3D architecture in complex tissues. Our results may help elucidate architectural changes in the PDL microenvironment during changes in mechanical loading condition and regeneration, and advance a wide variety of treatments in dentistry.
Collapse
Affiliation(s)
- Shingo Hirashima
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine, Kurume, 830-0011, Japan. .,Dental and Oral Medical Center, Kurume University School of Medicine, Kurume, 830-0011, Japan.
| | - Keisuke Ohta
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine, Kurume, 830-0011, Japan.,Advanced Imaging Research Center, Kurume University School of Medicine, Kurume, 830-0011, Japan
| | - Tomonoshin Kanazawa
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine, Kurume, 830-0011, Japan
| | - Akinobu Togo
- Advanced Imaging Research Center, Kurume University School of Medicine, Kurume, 830-0011, Japan
| | | | - Jingo Kusukawa
- Dental and Oral Medical Center, Kurume University School of Medicine, Kurume, 830-0011, Japan
| | - Kei-Ichiro Nakamura
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine, Kurume, 830-0011, Japan
| |
Collapse
|
140
|
Iwasaki K, Washio K, Meinzer W, Tsumanuma Y, Yano K, Ishikawa I. Application of cell-sheet engineering for new formation of cementum around dental implants. Heliyon 2019; 5:e01991. [PMID: 31338459 PMCID: PMC6626299 DOI: 10.1016/j.heliyon.2019.e01991] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 05/08/2019] [Accepted: 06/18/2019] [Indexed: 01/09/2023] Open
Abstract
Periodontal disease involves the chronic inflammation of tooth supporting periodontal tissues. As the disease progresses, it manifests destruction of periodontal tissues and eventual tooth loss. The regeneration of lost periodontal tissue has been one of the most important subjects in periodontal research. Since their discovery, periodontal ligament stem cells (PDLSCs), have been transplanted into periodontal bony defects to examine their regenerative potential. Periodontal defects were successfully regenerated using PDLSC sheets, which were fabricated by cell sheet engineering in animal models, and for which clinical human trials are underway. To expand the utility of PDLSC sheet, we attempted to construct periodontal tissues around titanium implants with the goal of facilitating the prevention of peri-implantitis. In so doing, we found newly formed cementum-periodontal ligament (PDL) structures on the implant surface. In this mini review, we summarize the literature regarding cell-based periodontal regeneration using PDLSCs, as well as previous trials aimed at forming periodontal tissues around dental implants. Moreover, the recent findings in cementogenesis are reviewed from the perspective of the formation of further stable periodontal attachment structure on dental implant. This mini review aims to summarize the current status of the creation of novel periodontal tissue-bearing dental implants, and to consider its future direction.
Collapse
Affiliation(s)
- Kengo Iwasaki
- Institute of Dental Research, Osaka Dental University, Japan
| | - Kaoru Washio
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Japan
| | - Walter Meinzer
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Japan
| | - Yuka Tsumanuma
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Japan
| | - Kosei Yano
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Japan
| | - Isao Ishikawa
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Japan
| |
Collapse
|
141
|
Li R, Sun J, Yang F, Sun Y, Wu X, Zhou Q, Yu Y, Bi W. Effect of GARP on osteogenic differentiation of bone marrow mesenchymal stem cells via the regulation of TGFβ1 in vitro. PeerJ 2019; 7:e6993. [PMID: 31198639 PMCID: PMC6535220 DOI: 10.7717/peerj.6993] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/20/2019] [Indexed: 12/21/2022] Open
Abstract
Mesenchymal stem cells (MSCs), which have multipotential differentiation and self-renewal potential, are possible cells for tissue engineering. Transforming growth factor β1 (TGFβ1) can be produced by MSCs in an inactive form, and the activation of TGFβ1 functions as an important regulator of osteogenic differentiation in MSCs. Recently, studies showed that Glycoprotein A repetitions predominant (GARP) participated in the activation of latent TGFβ1, but the interaction between GARP and TGFβ1 is still undefined. In our study, we successfully isolated the MSCs from bone marrow of rats, and showed that GARP was detected in bone mesenchymal stem cells (BMSCs). During the osteogenic differentiation of BMSCs, GARP expression was increased over time. To elucidate the interaction between GARP and TGFβ1, we downregulated GARP expression in BMSCs to examine the level of active TGFβ1. We then verified that the downregulation of GARP decreased the secretion of active TGFβ1. Furthermore, osteogenic differentiation experiments, alkaline phosphatase (ALP) activity analyses and Alizarin Red S staining experiments were performed to evaluate the osteogenic capacity. After the downregulation of GARP, ALP activity and Alizarin Red S staining significantly declined and the osteogenic indicators, ALP, Runx2, and OPN, also decreased, both at the mRNA and protein levels. These results demonstrated that downregulated GARP expression resulted in the reduction of TGFβ1 and the attenuation of osteoblast differentiation of BMSCs in vitro.
Collapse
Affiliation(s)
- Ruixue Li
- Department of Stomatology, Fudan University Zhongshan Hospital, Shanghai, Shanghai, China
| | - Jian Sun
- Department of Stomatology, Fudan University Zhongshan Hospital, Shanghai, Shanghai, China
| | - Fei Yang
- Department of Stomatology, Fudan University Zhongshan Hospital, Shanghai, Shanghai, China
| | - Yang Sun
- Department of Stomatology, Fudan University Zhongshan Hospital, Shanghai, Shanghai, China
| | - Xingwen Wu
- Department of Stomatology, Fudan University Zhongshan Hospital, Shanghai, Shanghai, China
| | - Qianrong Zhou
- Department of Stomatology, Fudan University Zhongshan Hospital, Shanghai, Shanghai, China
| | - Youcheng Yu
- Department of Stomatology, Fudan University Zhongshan Hospital, Shanghai, Shanghai, China
| | - Wei Bi
- Department of Stomatology, Fudan University Zhongshan Hospital, Shanghai, Shanghai, China
| |
Collapse
|
142
|
Venza N, Danesi C, Contò D, Fabi F, Mampieri G, Sangiuolo F, Laganà G. Periodontal condition in growing subjects with Marfan Syndrome: a case-control study. PeerJ 2019; 7:e6606. [PMID: 31065451 PMCID: PMC6485202 DOI: 10.7717/peerj.6606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/12/2019] [Indexed: 12/18/2022] Open
Abstract
Background Marfan's syndrome (MFS) is a systemic disorder of connective tissue caused by mutations in the extracellular matrix protein fibrillin-1. Orofacial characteristics may be useful in identification of the syndrome. Severe periodontitis is sometimes observed in MFS patients, but no in-depth information has been reported in Italian groups of growing subjects with MFS. The aim of this study was to analyze the periodontal condition on a group of growing subjects affected by MFS, in comparison with a typically developed control group. Methods A group of 16 subjects with diagnosed MFS were recruited from the Centre for Rare Diseases for Marfan Syndrome and Related Disorders of Tor Vergata University Hospital. The Marfan Group (MG) was compared with a Control Group (CG) composed by 20 nonsyndromic subjects. The periodontal clinical parameters like Marginal Gingival Thickness (GT), Plaque Index (PI), Bleeding On Probing (BOP) and Modified Periodontal Screening and Recording (PSR) were assessed. Results The mean value of PI in MG was 59%, instead in CG it reached 21%. Analysis showed a significant difference between MG and CG also for the BOP. In MG the mean value of BOP attained 36% and in CG it reached 16%. A statistical significant difference of distribution of PSR index between the two groups was found for all sextant examined. Discussion Patients with Marfan syndrome reveal a higher presence of plaque and consequently a generalized inflammation in the oral cavity when compared with a control group.
Collapse
Affiliation(s)
- Nicolò Venza
- Department of Clinical Sciences and Translational Medicine, University of Roma "Tor Vergata", Roma, Italia
| | - Carlotta Danesi
- Department of Clinical Sciences and Translational Medicine, University of Roma "Tor Vergata", Roma, Italia
| | - Diego Contò
- Department of Clinical Sciences and Translational Medicine, University of Roma "Tor Vergata", Roma, Italia
| | - Francesco Fabi
- Laboratory of Medical Genetics, Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Gianluca Mampieri
- Department of Clinical Sciences and Translational Medicine, University of Roma "Tor Vergata", Roma, Italia
| | - Federica Sangiuolo
- Laboratory of Medical Genetics, Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Giuseppina Laganà
- Department of Clinical Sciences and Translational Medicine, University of Roma "Tor Vergata", Roma, Italia
| |
Collapse
|
143
|
Gül Amuk N, Kurt G, Kartal Yandim M, Adan A, Baran Y. A minimally invasive transfer method of mesenchymal stem cells to the intact periodontal ligament of rat teeth: a preliminary study. Turk J Biol 2019; 42:382-391. [PMID: 30930622 PMCID: PMC6438122 DOI: 10.3906/biy-1712-62] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The aim of this study was to introduce a minimally invasive procedure for mesenchymal stem cell (MSC) transfer into the intact periodontal ligament (PDL) of the molar teeth in rats. Ten 12-week-old Wistar albino rats were used for this preliminary study. MSCs were obtained from bones of two animals and were labeled with green fluorescent protein (GFP). Four animals were randomly selected for MSC injection, while 4 animals served as a control group. Samples were prepared for histological analysis, Cox-2 mRNA expression polymerase chain reaction analysis, and fluorescent microscopy evaluation. The number of total cells, number of osteoclastic cells, and Cox-2 mRNA expression levels of the periodontal tissue of teeth were calculated. The number of total cells was increased with MSC injections in PDL significantly (P < 0.001). The number of osteoclastic cells and Cox-2 mRNA expression were found to be similar for the two groups. GFP-labeled MSCs were observed with an expected luminescence on the smear samples of the PDL with transferred MSCs. The results of this preliminary study demonstrate successful evidence of transferring MSCs to intact PDL in a nonsurgical way and offer a minimally invasive procedure for transfer of MSCs to periodontal tissues.
Collapse
Affiliation(s)
- Nisa Gül Amuk
- Department of Orthodontics, Faculty of Dentistry, Erciyes University , Kayseri , Turkey
| | - Gökmen Kurt
- Department of Orthodontics, Faculty of Dentistry, Bezmiâlem Vakıf University , İstanbul , Turkey
| | - Melis Kartal Yandim
- Department of Medical Biology, Faculty of Medicine, İzmir University of Economics , İzmir , Turkey
| | - Aysun Adan
- Department of Molecular Biology and Genetics, Faculty of Life and Natural Sciences, Abdullah Gül University , Kayseri , Turkey.,Department of Molecular Biology and Genetics, Faculty of Science, İzmir Institute of Technology , Urla, İzmir , Turkey
| | - Yusuf Baran
- Department of Molecular Biology and Genetics, Faculty of Science, İzmir Institute of Technology , Urla, İzmir , Turkey
| |
Collapse
|
144
|
Leblanc ARH, Mohr SR, Caldwell MW. Insights into the anatomy and functional morphology of durophagous mosasaurines (Squamata: Mosasauridae) from a new species of Globidens from Morocco. Zool J Linn Soc 2019. [DOI: 10.1093/zoolinnean/zlz008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Durophagous mosasaurs are rare members of Late Cretaceous marine faunal assemblages and new fossil discoveries can shed light on their anatomy, functional morphology and evolutionary history. Here we describe a new species in the durophagous genus Globidens from the Maastrichtian phosphate deposits of Morocco, based on a partial disarticulated skull and cervical vertebral series. This new species shares many anatomical similarities with the only other described Maastrichtian species, G. phosphaticus, but differs in several key features, including the absence of pronounced swellings and sulci on the crushing teeth and the absence of cervical zygosphenes and zygantra. Histological thin sections of a rib from the holotype show that this was not a juvenile individual and reveal osteosclerotic-like bone compactness for the first time in a paddle-bearing mosasaurine. We interpret the highly compact ribs, as well as several peculiarities of the temporal arcade and lower jaws, as adaptations to a diet of benthic, hard-bodied prey.
Collapse
Affiliation(s)
- Aaron R H Leblanc
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Sydney R Mohr
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Michael W Caldwell
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| |
Collapse
|
145
|
Choi JW, Kim HJ, Moon JW, Kang SH, Tak HJ, Lee SH. Compensatory dentoalveolar supraeruption and occlusal plane cant after botulinum-induced hypotrophy of masticatory closing muscles in juvenile rats. Arch Oral Biol 2019; 101:34-42. [PMID: 30875592 DOI: 10.1016/j.archoralbio.2019.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 02/26/2019] [Accepted: 03/03/2019] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The purpose of this study was to investigate changes in the dentoalveolus and occlusal plane associated with the hypotrophy of unilateral masticatory muscles following botulinum toxin (BTX) treatment in the juvenile period of rats. DESIGN We hypothesized that the loss of functional loading of masticatory muscles and occlusal force invites compensatory dentoalveolar supraeruption, accelerating occlusal cant and skeletal asymmetry. In order to confirm this hypothesis, six-week-old male rats (N = 5) were treated with BTX simultaneously at the unilateral masseter, temporalis, and medial pterygoid muscles, with a booster injection after six weeks for the experimental group. The control group (N = 6) had saline injections on both sides at the same sites and on the same schedule. RESULTS After 12 weeks, masseter and medial pterygoid muscles on the BTX side showed hypotrophic change. The mandibular structure was asymmetrical, with decreased size and lateral tilting. The maxillary and mandibular molars were supraerupted from the Frankfort plane or mandibular inferior border with lateral tilt. They accompanied downward occlusal plane cant resulting from the supraerupted maxillary and mandibular molars on the BTX side. The dentoalveolar structural changes included diminished alveolar bone density, narrow periodontal ligament space, and disorganized distribution of periodontal collagen fiber. CONCLUSIONS Unilateral hypotrophy of masticatory muscles affected the growth, symmetry, and structure of the skeletal jaws and dentoalveolus. Our hypothesis about the dentoalveolar compensation, that muscular hypotrophy was closely integrated with dentoalveolar supraeruption and an inclined occlusal plane, was confirmed.
Collapse
Affiliation(s)
- Ji Wook Choi
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Yonsei University, Seoul, South Korea
| | - Hak-Jin Kim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Yonsei University, Seoul, South Korea
| | - Joo Won Moon
- Oral Science Research Center, College of Dentistry, Yonsei University, Seoul, South Korea
| | - Sang-Hoon Kang
- Department of Oral and Maxillofacial Surgery, National Health Insurance Service, Ilsan Hospital, Goyang-si, South Korea
| | - Hye-Jin Tak
- Oral Science Research Center, College of Dentistry, Yonsei University, Seoul, South Korea
| | - Sang-Hwy Lee
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Yonsei University, Seoul, South Korea; Oral Science Research Center, College of Dentistry, Yonsei University, Seoul, South Korea.
| |
Collapse
|
146
|
Panchamanon P, Pavasant P, Leethanakul C. Periostin plays role in force-induced stem cell potential by periodontal ligament stem cells. Cell Biol Int 2019; 43:506-515. [PMID: 30761669 DOI: 10.1002/cbin.11116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 02/10/2019] [Indexed: 01/07/2023]
Abstract
Mechanical stimuli have been shown to play an important role in directing stem cell fate and maintenance of tissue homeostasis. One of the functions of the mechanoresponsive tissue periodontal ligament (PDL) is to withstand the functional forces within the oral cavity. Periodontal ligament stem cells (PDLSCs) derived from periodontal tissue have been demonstrated to be able to respond directly to mechanical forces. However, the mechanisms of action of mechanical force on PDLSCs are not totally understood. The aim of this study was to investigate the mechanisms by which compressive force affects PDLSCs, especially their stemness properties. PDLSCs were established from extracted human third molars; their stem cell characteristics were validated by detecting the expression of stem cell markers and confirming their ability to differentiate into osteogenic and adipogenic lineages. PDLSCs were subjected to various magnitudes of static compressive force (0 [control], 0.5, 1.0, 1.5, or 2 g/cm2 ). Application of 1.0 g/cm2 compressive force significantly upregulated a panel of stem cell marker genes, including NANOG and OCT4. Conversely, higher force magnitudes downregulated these genes. Mechanical loading also upregulated periostin, a matrix protein that plays important roles in tissue morphogenesis. Interestingly, knockdown of periostin using siRNA abolished force-induced stem cell marker expression in PDLSCs. This study suggests a proper magnitude of compressive force could be one important factor involved in the modulation of the pluripotency of PDLSCs through the action of periostin. The precise mechanism by which periostin regulates stemness requires further detailed investigation.
Collapse
Affiliation(s)
- Panita Panchamanon
- Orthodontic Section, Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Prasit Pavasant
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Henry-Dunant Rd, Pathumwan, Bangkok 10330, Thailand
| | - Chidchanok Leethanakul
- Orthodontic Section, Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| |
Collapse
|
147
|
Effects of the Highly COX-2-Selective Analgesic NSAID Etoricoxib on Human Periodontal Ligament Fibroblasts during Compressive Orthodontic Mechanical Strain. Mediators Inflamm 2019; 2019:2514956. [PMID: 30983880 PMCID: PMC6431464 DOI: 10.1155/2019/2514956] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/21/2018] [Accepted: 01/13/2019] [Indexed: 12/18/2022] Open
Abstract
Human periodontal ligament (hPDL) fibroblasts play a major role during periodontitis and orthodontic tooth movement, mediating periodontal inflammation, osteoclastogenesis, and collagen synthesis. The highly COX-2-selective NSAID etoricoxib has a favorable systemic side effect profile and high analgesic efficacy, particularly for orthodontic pain. In this in vitro study, we investigated possible side effects of two clinically relevant etoricoxib concentrations on the expression pattern of mechanically strained hPDL fibroblasts and associated osteoclastogenesis in a model of simulated orthodontic compressive strain occurring during orthodontic tooth movement. hPDL fibroblasts were incubated for 72 h under physiological conditions with etoricoxib at 0 μM, 3.29 μM, and 5.49 μM, corresponding to clinically normal and subtoxic dosages, with and without mechanical strain by compression (2 g/cm2) for the final 48 h, simulating conditions during orthodontic tooth movement in compressive areas of the periodontal ligament. We then determined gene and/or protein expression of COX-2, IL-6, PG-E2, RANK-L, OPG, ALPL, VEGF-A, P4HA1, COL1A2, and FN1 via RT-qPCR, ELISA, and Western blot analyses as well as apoptosis, necrosis, cell viability, and cytotoxicity via FACS, MTT, and LDH assays. In addition, hPDL fibroblast-mediated osteoclastogenesis was assessed by TRAP staining in coculture with RAW267.4 cells for another 72 h. Gene and protein expression of all evaluated factors was significantly induced by the mechanical compressive strain applied. Etoricoxib at 3.29 μM and 5.49 μM significantly inhibited PG-E2 synthesis, but not COX-2 and IL-6 gene expression nor RANK-L-/OPG-mediated osteoclastogenesis or angiogenesis (VEGF-A). Extracellular matrix remodeling (COL1A2, FN1) and bone anabolism (ALPL), by contrast, were significantly stimulated particularly at 5.49 μM. In general, no adverse etoricoxib effects on hPDL fibroblasts regarding apoptosis, necrosis, cell viability, or cytotoxicity were detected. Clinically dosed etoricoxib, that is, a highly selective COX-2 inhibition, did not have substantial effects on hPDL fibroblast-mediated periodontal inflammation, extracellular matrix remodeling, RANK-L/OPG expression, and osteoclastogenesis during simulated orthodontic compressive strain.
Collapse
|
148
|
Force-induced decline of TEA domain family member 1 contributes to osteoclastogenesis via regulation of Osteoprotegerin. Arch Oral Biol 2019; 100:23-32. [PMID: 30771694 DOI: 10.1016/j.archoralbio.2019.01.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 01/06/2023]
Abstract
OBJECTIVE This study aims to investigate the responsiveness of transcription factor TEA domain family member 1 (TEAD1) to mechanical force and its impact on osteoclastogenesis as well as expression of Osteoprotegerin (OPG), an inhibitor for osteoclastogenesis playing crucial roles in mechanical stress-induced bone remodeling and orthodontic tooth movement (OTM). METHODS We first analyzed the correlation between several transcription factors and OPG expression in human periodontal ligament cells (PDLCs). Then dynamic expression changes of TEAD1 with force application were analyzed due to its high correlation with OPG. Loss-of-function experiments were performed to demonstrate the role of TEAD1 in regulation of RANKL/OPG, as well as osteoclastogenesis by tartrate-resistant acid phosphatase (TRAP) staining. Combination of bioinformatics analyzes and chromatin immunoprecipitation assay was utilized to investigate occupancy of TEAD1 on the enhancer elements of OPG and the dynamic change in response to force stimuli. Involvement of Hippo signaling in regulation of OPG was further demonstrated by pharmacologic inhibitors of several components. RESULTS Expression of TEAD1 highly correlates with that of OPG and decreases in response to mechanical force in human PDLCs. Knockdown of TEAD1 downregulates expression of OPG and promotes osteoclast differentiation. Mechanical force induced decreased binding of TEAD1 on an enhancer element ˜22 kilobases upstream of OPG promoter. OPG was also affected by pharmaceutical disruption of Hippo signaling pathway. CONCLUSIONS TEAD1 is a novel mechano-responsive gene and plays an important role in force-induced osteoclastogenesis, which is dependent, as least partially, on transcriptional regulation of OPG.
Collapse
|
149
|
Up-regulated ferritin in periodontitis promotes inflammatory cytokine expression in human periodontal ligament cells through transferrin receptor via ERK/P38 MAPK pathways. Clin Sci (Lond) 2019; 133:135-148. [PMID: 30552136 DOI: 10.1042/cs20180679] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/29/2018] [Accepted: 12/14/2018] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Ferritin, an iron-binding protein, is ubiquitous and highly conserved; it plays a crucial role in inflammation, which is the main symptom of periodontitis. Full-length cDNA library analyses have demonstrated abundant expression of ferritin in human periodontal ligament. The aims of the present study were to explore how ferritin is regulated by local inflammation, and to investigate its functions and mechanisms of action in the process of periodontitis. METHODS Human gingival tissues were collected from periodontitis patients and healthy individuals. Experimental periodontitis was induced by ligature of second molars in mice. The expression of ferritin light polypeptide (FTL) and ferritin heavy polypeptide (FTH) were assessed by immunohistochemistry. Meanwhile, after stimulating human periodontal ligament cells (HPDLCs) with P. gingivalis-lipopolysaccharide (LPS), interleukin (IL)-6, and tumor necrosis factor-α (TNF-α), the expression of FTH and FTL were measured. Then, IL-6 and IL-8 were measured after incubation with different concentrations of apoferritin (iron-free ferritin) and several intracellular signaling pathway inhibitors, or after knockdown of the transferrin receptor. RESULTS Both FTH and FTL were substantially higher in inflamed periodontal tissues than in healthy tissues. The location of the elevated expression correlated well with the extent of inflammatory infiltration. Moreover, expression of FTH and FTL were enhanced after stimulation with P. gingivalis-LPS, IL-6, TNF-α. Apoferritin induced the production of IL-6 and IL-8 in a dose-dependent manner partly through binding to the transferrin receptor and activating ERK/P38 signaling pathways in HPDLCs. CONCLUSIONS Ferritin is up-regulated by inflammation and exhibits cytokine-like activity in HPDLCs inducing a signaling cascade that promotes expression of pro-inflammatory cytokines associated with periodontitis.
Collapse
|
150
|
|