101
|
Torrens-Spence MP, Bobokalonova A, Carballo V, Glinkerman CM, Pluskal T, Shen A, Weng JK. PBS3 and EPS1 Complete Salicylic Acid Biosynthesis from Isochorismate in Arabidopsis. MOLECULAR PLANT 2019; 12:1577-1586. [PMID: 31760159 DOI: 10.1016/j.molp.2019.11.005] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 11/16/2019] [Accepted: 11/17/2019] [Indexed: 05/20/2023]
Abstract
Salicylic acid (SA) is an important phytohormone mediating both local and systemic defense responses in plants. Despite over half a century of research, how plants biosynthesize SA remains unresolved. In Arabidopsis, a major part of SA is derived from isochorismate, a key intermediate produced by the isochorismate synthase, which is reminiscent of SA biosynthesis in bacteria. Whereas bacteria employ an isochorismate pyruvate lyase (IPL) that catalyzes the turnover of isochorismate to pyruvate and SA, plants do not contain an IPL ortholog and generate SA from isochorismate through an unknown mechanism. Combining genetic and biochemical approaches, we delineated the SA biosynthetic pathway downstream of isochorismate in Arabidopsis. We found that PBS3, a GH3 acyl adenylase-family enzyme important for SA accumulation, catalyzes ATP- and Mg2+-dependent conjugation of L-glutamate primarily to the 8-carboxyl of isochorismate and yields the key SA biosynthetic intermediate, isochorismoyl-glutamate A. Moreover, we discovered that EPS1, a BAHD acyltransferase-family protein with a previously implicated role in SA accumulation upon pathogen attack, harbors a noncanonical active site and an unprecedented isochorismoyl-glutamate A pyruvoyl-glutamate lyase activity that produces SA from the isochorismoyl-glutamate A substrate. Together, PBS3 and EPS1 form a two-step metabolic pathway to produce SA from isochorismate in Arabidopsis, which is distinct from how SA is biosynthesized in bacteria. This study closes a major knowledge gap in plant SA metabolism and would help develop new strategies for engineering disease resistance in crop plants.
Collapse
Affiliation(s)
| | - Anastassia Bobokalonova
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Valentina Carballo
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
| | | | - Tomáš Pluskal
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
| | - Amber Shen
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jing-Ke Weng
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
102
|
Till CJ, Vicente J, Zhang H, Oszvald M, Deery MJ, Pastor V, Lilley KS, Ray RV, Theodoulou FL, Holdsworth MJ. The Arabidopsis thaliana N-recognin E3 ligase PROTEOLYSIS1 influences the immune response. PLANT DIRECT 2019; 3:e00194. [PMID: 31891113 PMCID: PMC6933115 DOI: 10.1002/pld3.194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 11/22/2019] [Accepted: 12/02/2019] [Indexed: 05/11/2023]
Abstract
N-degron pathways of ubiquitin-mediated proteolysis (formerly known as the N-end rule pathway) control the stability of substrate proteins dependent on the amino-terminal (Nt) residue. Unlike yeast or mammalian N-recognin E3 ligases, which each recognize several different classes of Nt residues, in Arabidopsis thaliana, N-recognin functions of different N-degron pathways are carried out independently by PROTEOLYSIS (PRT)1, PRT6, and other unknown proteins. PRT1 recognizes type 2 aromatic Nt-destabilizing residues and PRT6 recognizes type 1 basic residues. These two N-recognin functions diverged as separate proteins early in the evolution of plants, before the conquest of the land. We demonstrate that loss of PRT1 function promotes the plant immune system, as mutant prt1-1 plants showed greater apoplastic resistance than WT to infection by the bacterial hemi-biotroph Pseudomonas syringae pv tomato (Pst) DC3000. Quantitative proteomics revealed increased accumulation of proteins associated with specific components of plant defense in the prt1-1 mutant, concomitant with increased accumulation of salicylic acid. The effects of the prt1 mutation were additional to known effects of prt6 in influencing the immune system, in particular, an observed over-accumulation of pipecolic acid (Pip) in the double-mutant prt1-1 prt6-1. These results demonstrate a potential role for PRT1 in controlling aspects of the plant immune system and suggest that PRT1 limits the onset of the defense response via degradation of substrates with type 2 Nt-destabilizing residues.
Collapse
Affiliation(s)
- Christopher J. Till
- School of BiosciencesUniversity of NottinghamLoughboroughUK
- Plant Sciences DepartmentRothamsted ResearchHarpendenUK
| | - Jorge Vicente
- School of BiosciencesUniversity of NottinghamLoughboroughUK
| | - Hongtao Zhang
- Plant Sciences DepartmentRothamsted ResearchHarpendenUK
- Cambridge Centre for ProteomicsDepartment of BiochemistryUniversity of CambridgeCambridgeUK
| | - Maria Oszvald
- Plant Sciences DepartmentRothamsted ResearchHarpendenUK
| | - Michael J. Deery
- Cambridge Centre for ProteomicsDepartment of BiochemistryUniversity of CambridgeCambridgeUK
| | - Victoria Pastor
- Área de Fisiología VegetalDepartamento de Ciencias Agrarias y del Medio NaturalUniversitat Jaume ICastellónSpain
| | - Kathryn S. Lilley
- Cambridge Centre for ProteomicsDepartment of BiochemistryUniversity of CambridgeCambridgeUK
| | - Rumiana V. Ray
- School of BiosciencesUniversity of NottinghamLoughboroughUK
| | | | | |
Collapse
|
103
|
Abstract
Approaches to manipulating disease resistance in plants is expanding exponentially due to advances in our understanding of plant defense mechanisms and new tools for manipulating the plant genome. The application of effective strategies is only limited now by adoption of rapid classical genetic techniques and the acceptance of genetically engineered traits for some problems. The use of genome editing and cis-genetics, where possible, may facilitate applications that otherwise require considerable time or genetic engineering, depending on settling legal definitions of the products. Nonetheless, the variety of approaches to developing disease resistance has never been greater.
Collapse
Affiliation(s)
- Anuj Sharma
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
| | - Jeffrey B. Jones
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
| | - Frank F. White
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
104
|
Ibanez F, Suh JH, Wang Y, Stelinski LL. Long-term, sustained feeding by Asian citrus psyllid disrupts salicylic acid homeostasis in sweet orange. BMC PLANT BIOLOGY 2019; 19:493. [PMID: 31718546 PMCID: PMC6852996 DOI: 10.1186/s12870-019-2114-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 10/31/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND Phloem-feeding insects are known to modulate the salicylic acid (SA) signaling pathway in various plant-insect interaction models. Diaphorina citri is a phloem feeding vector of the deadly phytopathogens, Candidatus Liberibacter americanus and Candidatus Liberibacter asiaticus, and the interactions of D. citri with its host that may modulate plant defenses are not well understood. The objectives of this study were to investigate the molecular mechanisms involved in transcriptional regulation of SA modification and activation of defense-associated responses in sweet orange (Citrus sinensis) exposed to various durations (7-, 14- and 150- days) of continuous feeding by D. citri. RESULTS We quantified expression of genes involved in SA pathway activation and subsequent modification, as well as, associated SA metabolites (SA methyl ester, 2,3-DHBA, and SA 2-O-β-D-glucoside). NPR1 and PR-1 expression was upregulated in plants exposed to continuous feeding by D. citri for 14 days. Expression of BSMT-like, MES1-like and DMR6-like oxygenase, as well as, accumulation of their respective SA metabolites (SA methyl ester, 2,3-DHBA) was significantly higher in plants exposed to continuous feeding by D. citri for 150 days than in those without D. citri infestation. Concomitantly, expression of UGT74F2-like was significantly downregulated and its metabolite, SA 2-β-D-glucoside, was highly accumulated in trees exposed to 150 d of feeding compared to control trees without D. citri. CONCLUSIONS D. citri herbivory differentially regulated transcription and SA-metabolite accumulation in citrus leaves, depending on duration of insect feeding. Our results suggest that prolonged and uninterrupted exposure (150 d) of citrus to D. citri feeding suppressed plant immunity and inhibited growth, which may highlight the importance of vector suppression as part of huanglongbing (HLB) management in citrus.
Collapse
Affiliation(s)
- Freddy Ibanez
- Department of Entomology and Nematology, Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850 USA
| | - Joon Hyuk Suh
- Department of Food Science and Human Nutrition, Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850 USA
| | - Yu Wang
- Department of Food Science and Human Nutrition, Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850 USA
| | - Lukasz L. Stelinski
- Department of Entomology and Nematology, Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850 USA
| |
Collapse
|
105
|
Takeda S, Yoza M, Amano T, Ohshima I, Hirano T, Sato MH, Sakamoto T, Kimura S. Comparative transcriptome analysis of galls from four different host plants suggests the molecular mechanism of gall development. PLoS One 2019; 14:e0223686. [PMID: 31647845 PMCID: PMC6812778 DOI: 10.1371/journal.pone.0223686] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/25/2019] [Indexed: 12/18/2022] Open
Abstract
Galls are plant structures generated by gall–inducing organisms including insects, nematodes, fungi, bacteria and viruses. Those made by insects generally consist of inner callus–like cells surrounded by lignified hard cells, supplying both nutrients and protection to the gall insects living inside. This indicates that gall insects hijack developmental processes in host plants to generate tissues for their own use. Although galls are morphologically diverse, the molecular mechanism for their development remains poorly understood. To identify genes involved in gall development, we performed RNA–sequencing based transcriptome analysis for leaf galls. We examined the young and mature galls of Glochidion obovatum (Phyllanthaceae), induced by the micromoth Caloptilia cecidophora (Lepidoptera: Gracillariidae), the leaf gall from Eurya japonica (Pentaphylacaceae) induced by Borboryctis euryae (Lepidoptera: Gracillariidae), and the strawberry-shaped leaf gall from Artemisia montana (Asteraceae) induced by gall midge Rhopalomyia yomogicola (Oligotrophini: Cecidomyiidae). Gene ontology (GO) analyses suggested that genes related to developmental processes are up–regulated, whereas ones related to photosynthesis are down–regulated in these three galls. Comparison of transcripts in these three galls together with the gall on leaves of Rhus javanica (Anacardiaceae), induced by the aphid Schlechtendalia chinensis (Hemiptera: Aphidoidea), suggested 38 genes commonly up–regulated in galls from different plant species. GO analysis showed that peptide biosynthesis and metabolism are commonly involved in the four different galls. Our results suggest that gall development involves common processes across gall inducers and plant taxa, providing an initial step towards understanding how they manipulate host plant developmental systems.
Collapse
Affiliation(s)
- Seiji Takeda
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
- Biotechnology Research Department, Kyoto Prefectural Agriculture Forestry and Fisheries Technology Center, Seika, Kyoto, Japan
- * E-mail: (ST); (SK)
| | - Makiko Yoza
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Taisuke Amano
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Issei Ohshima
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Tomoko Hirano
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Masa H. Sato
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Tomoaki Sakamoto
- Department of Bioresource and Environmental Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Seisuke Kimura
- Department of Bioresource and Environmental Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
- Department of Industrial Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
- Center for Ecological Evolutionary Developmental Biology, Kyoto Sangyo University, Kyoto, Japan
- * E-mail: (ST); (SK)
| |
Collapse
|
106
|
Fabre F, Vignassa M, Urbach S, Langin T, Bonhomme L. Time-resolved dissection of the molecular crosstalk driving Fusarium head blight in wheat provides new insights into host susceptibility determinism. PLANT, CELL & ENVIRONMENT 2019; 42:2291-2308. [PMID: 30866080 DOI: 10.1111/pce.13549] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 05/20/2023]
Abstract
Fungal plant diseases are controlled by a complex molecular dialogue that involves pathogen effectors able to manipulate plant susceptibility factors at the earliest stages of the interaction. By probing the wheat-Fusarium graminearum pathosystem, we profiled the coregulations of the fungal and plant proteins shaping the molecular responses of a 96-hr-long infection's dynamics. Although no symptoms were yet detectable, fungal biomass swiftly increased along with an extremely diverse set of secreted proteins and candidate effectors supposed to target key plant organelles. Some showed to be early accumulated during the interaction or already present in spores, otherwise stored in germinating spores and detectable in an in vitro F. graminearum exudate. Wheat responses were swiftly set up and were evidenced before any visible symptom. Significant wheat protein abundance changes co-occurred along with the accumulation of putative secreted fungal proteins and predicted effectors. Regulated wheat proteins were closely connected to basal cellular processes occurring during spikelet ontogeny, and particular coregulation patterns were evidenced between chloroplast proteins and fungal proteins harbouring a predicted chloroplast transit peptide. The described plant and fungal coordinated responses provide a resourceful set of data and expand our understanding of the wheat-F. graminearum interaction.
Collapse
Affiliation(s)
- Francis Fabre
- Genetics, Diversity and Ecophysiology of Cereals, UMR 1095, INRA, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Manon Vignassa
- Genetics, Diversity and Ecophysiology of Cereals, UMR 1095, INRA, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Serge Urbach
- Functional Proteomics Platform (FPP), Institute of Functional Genomics (IGF), CNRS UMR 5203 INSERM U661, Montpellier, France
| | - Thierry Langin
- Genetics, Diversity and Ecophysiology of Cereals, UMR 1095, INRA, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Ludovic Bonhomme
- Genetics, Diversity and Ecophysiology of Cereals, UMR 1095, INRA, Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
107
|
Yan H, Sheng M, Wang C, Liu Y, Yang J, Liu F, Xu W, Su Z. AtSPX1-mediated transcriptional regulation during leaf senescence in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 283:238-246. [PMID: 31128694 DOI: 10.1016/j.plantsci.2019.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/26/2019] [Accepted: 03/11/2019] [Indexed: 06/09/2023]
Abstract
Leaf senescence is the final stage of leaf growth, a highly coordinated and complicated process. Phosphorus as an essential macronutrient for plant growth is remobilized from senescing leaves to other vigorous parts of the plant. In this study, through data mining, we found some phosphate starvation induced genes such as AtSPX1, were significantly induced in aging leaves in Arabidopsis. We applied a reverse genetics approach to investigate the phenotypes of transgenic plants and mutant plants, and the results showed that the overexpression of AtSPX1 accelerated leaf senescence, suppressed Pi accumulation, promoted SA production and H2O2 levels in leaves, while the mutant lines of AtSPX1 showed slightly delayed leaf senescence. We conducted RNA-seq-based transcriptome analysis together with GO and GSEA enrichment analyses for transgenic vs. wild-type plants to elucidate the possible underlying regulatory mechanism. The 558 genes that were up-regulated in the overexpression plants 35S::AtSPX1/WT, were significantly enriched in the process of leaf senescence, Pi starvation responses and SA signaling pathways, as were the target genes of some transcription factors such as WRKYs and NACs. In a word, we characterized AtSPX1 as a key regulator, which mediated the crosstalks among leaf senescence, Pi starvation and SA signaling pathways in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Hengyu Yan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Minghao Sheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chunchao Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yue Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiaotong Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Fengxia Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Wenying Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Zhen Su
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
108
|
Dermastia M. Plant Hormones in Phytoplasma Infected Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:477. [PMID: 31057582 PMCID: PMC6478762 DOI: 10.3389/fpls.2019.00477] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 03/28/2019] [Indexed: 05/21/2023]
Abstract
Phytoplasmas are bacterial plant pathogens that need a plant host and an insect vector for their spread and survival. In plants, the physiological responses that phytoplasmas trigger result in symptom development through effects on hormonal, nutritional, and stress signaling pathways, and the interactions between these. In this review, recent advances on the involvement of plant hormones together with their known and deduced roles in plants infected with phytoplasmas are discussed. Several studies have directly, or in many cases indirectly, addressed plant hormone systems in phytoplasma-infected plants. These have provided accumulating evidence that phytoplasmas extensively affect plant hormone pathways. Phytoplasmas thus, with disturbing complex plant hormone networks, suppress plant immunity and modify plant structure, while optimizing their nutrient acquisition and facilitating their colonization of the plants, and their dissemination among plants by their insect vectors.
Collapse
Affiliation(s)
- Marina Dermastia
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| |
Collapse
|
109
|
Yin K, Qiu JL. Genome editing for plant disease resistance: applications and perspectives. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180322. [PMID: 30967029 PMCID: PMC6367152 DOI: 10.1098/rstb.2018.0322] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2018] [Indexed: 12/16/2022] Open
Abstract
Diseases severely affect crop yield and quality, thereby threatening global food security. Genetic improvement of plant disease resistance is essential for sustainable agriculture. Genome editing has been revolutionizing plant biology and biotechnology by enabling precise, targeted genome modifications. Editing provides new methods for genetic improvement of plant disease resistance and accelerates resistance breeding. Here, we first summarize the challenges for breeding resistant crops. Next, we focus on applications of genome editing technology in generating plants with resistance to bacterial, fungal and viral diseases. Finally, we discuss the potential of genome editing for breeding crops that present novel disease resistance in the future. This article is part of the theme issue 'Biotic signalling sheds light on smart pest management'.
Collapse
Affiliation(s)
| | - Jin-Long Qiu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| |
Collapse
|
110
|
Mücke S, Reschke M, Erkes A, Schwietzer CA, Becker S, Streubel J, Morgan RD, Wilson GG, Grau J, Boch J. Transcriptional Reprogramming of Rice Cells by Xanthomonas oryzae TALEs. FRONTIERS IN PLANT SCIENCE 2019; 10:162. [PMID: 30858855 PMCID: PMC6397873 DOI: 10.3389/fpls.2019.00162] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/29/2019] [Indexed: 05/12/2023]
Abstract
Rice-pathogenic Xanthomonas oryzae bacteria cause severe harvest loss and challenge a stable food supply. The pathogen virulence relies strongly on bacterial TALE (transcription activator-like effector) proteins that function as transcriptional activators inside the plant cell. To understand the plant targets of TALEs, we determined the genome sequences of the Indian X. oryzae pv. oryzae (Xoo) type strain ICMP 3125T and the strain PXO142 from the Philippines. Their complete TALE repertoire was analyzed and genome-wide TALE targets in rice were characterized. Integrating computational target predictions and rice transcriptomics data, we were able to verify 12 specifically induced target rice genes. The TALEs of the Xoo strains were reconstructed and expressed in a TALE-free Xoo strain to attribute specific induced genes to individual TALEs. Using reporter assays, we could show that individual TALEs act directly on their target promoters. In particular, we show that TALE classes assigned by AnnoTALE reflect common target genes, and that TALE classes of Xoo and the related pathogen X. oryzae pv. oryzicola share more common target genes than previously believed. Taken together, we establish a detailed picture of TALE-induced plant processes that significantly expands our understanding of X. oryzae virulence strategies and will facilitate the development of novel resistances to overcome this important rice disease.
Collapse
Affiliation(s)
- Stefanie Mücke
- Department of Plant Biotechnology, Institute of Plant Genetics, Leibniz Universität Hannover, Hanover, Germany
| | - Maik Reschke
- Department of Plant Biotechnology, Institute of Plant Genetics, Leibniz Universität Hannover, Hanover, Germany
| | - Annett Erkes
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Claudia-Alice Schwietzer
- Department of Plant Biotechnology, Institute of Plant Genetics, Leibniz Universität Hannover, Hanover, Germany
| | - Sebastian Becker
- Department of Plant Biotechnology, Institute of Plant Genetics, Leibniz Universität Hannover, Hanover, Germany
| | - Jana Streubel
- Department of Plant Biotechnology, Institute of Plant Genetics, Leibniz Universität Hannover, Hanover, Germany
| | | | | | - Jan Grau
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Jens Boch
- Department of Plant Biotechnology, Institute of Plant Genetics, Leibniz Universität Hannover, Hanover, Germany
| |
Collapse
|
111
|
Righini S, Rodriguez EJ, Berosich C, Grotewold E, Casati P, Falcone Ferreyra ML. Apigenin produced by maize flavone synthase I and II protects plants against UV-B-induced damage. PLANT, CELL & ENVIRONMENT 2019; 42:495-508. [PMID: 30160312 DOI: 10.1111/pce.13428] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/14/2018] [Accepted: 08/16/2018] [Indexed: 05/20/2023]
Abstract
Flavones, one of the largest groups of flavonoids, have beneficial effects on human health and are considered of high nutritional value. Previously, we demonstrated that maize type I flavone synthase (ZmFNSI) is one of the enzymes responsible for the synthesis of O-glycosyl flavones in floral tissues. However, in related species such as rice and sorghum, type II FNS enzymes also contribute to flavone biosynthesis. In this work, we provide evidence that maize has both one FNSI and one FNSII flavone synthases. Arabidopsis transgenic plants expressing each FNS enzyme were generated to validate the role of flavones in protecting plants against UV-B radiation. Here, we demostrate that ZmCYP93G7 (FNSII) has flavone synthase activity and is able to complement the Arabidopsis dmr6 mutant, restoring the susceptibility to Pseudomonas syringae. ZmFNSII expression is controlled by the C1/PL1 + R/B anthocyanin transcriptional complexes, and both ZmFNSI and ZmFNSII are regulated by UV-B. Arabidopsis transgenic plants expressing ZmFNSI or ZmFNSII that accumulate apigenin exhibit less UV-B-induced damage than wild-type plants. Together, we show that maize has two FNS-type enzymes that participate in the synthesis of apigenin, conferring protection against UV-B radiation.
Collapse
Affiliation(s)
- Silvana Righini
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Rosario, Argentina
| | - Eduardo José Rodriguez
- Instituto de Biología Molecular y Celular de Rosario, Universidad Nacional de Rosario, Rosario, Argentina
| | - Carla Berosich
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Rosario, Argentina
| | - Erich Grotewold
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Paula Casati
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Rosario, Argentina
| | | |
Collapse
|
112
|
Balancing trade-offs between biotic and abiotic stress responses through leaf age-dependent variation in stress hormone cross-talk. Proc Natl Acad Sci U S A 2019; 116:2364-2373. [PMID: 30674663 PMCID: PMC6369802 DOI: 10.1073/pnas.1817233116] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plants are exposed to conflicting stresses simultaneously in nature. As stress responses are costly, plants likely coordinate these responses to minimize fitness costs. The nature and extent to which plants employ inducible mechanisms to cope with combined physical and biological stresses remains unknown. We identify a genetic mechanism by which leaves of distinct ages differentially control stress-response cross-talk. At the organism level, this mechanism balances stress-response trade-offs to maintain plant growth and reproduction during combined stresses. We also show that this leaf age-dependent stress-response prioritization influences the establishment of plant-associated leaf bacterial communities. This study illustrates the importance of active balancing of stress-response trade-offs for plant fitness maintenance and for interaction with the plant microbiota. In nature, plants must respond to multiple stresses simultaneously, which likely demands cross-talk between stress-response pathways to minimize fitness costs. Here we provide genetic evidence that biotic and abiotic stress responses are differentially prioritized in Arabidopsis thaliana leaves of different ages to maintain growth and reproduction under combined biotic and abiotic stresses. Abiotic stresses, such as high salinity and drought, blunted immune responses in older rosette leaves through the phytohormone abscisic acid signaling, whereas this antagonistic effect was blocked in younger rosette leaves by PBS3, a signaling component of the defense phytohormone salicylic acid. Plants lacking PBS3 exhibited enhanced abiotic stress tolerance at the cost of decreased fitness under combined biotic and abiotic stresses. Together with this role, PBS3 is also indispensable for the establishment of salt stress- and leaf age-dependent phyllosphere bacterial communities. Collectively, our work reveals a mechanism that balances trade-offs upon conflicting stresses at the organism level and identifies a genetic intersection among plant immunity, leaf microbiota, and abiotic stress tolerance.
Collapse
|
113
|
Das A, Sharma N, Prasad M. CRISPR/Cas9: A Novel Weapon in the Arsenal to Combat Plant Diseases. FRONTIERS IN PLANT SCIENCE 2019; 9:2008. [PMID: 30697226 PMCID: PMC6341021 DOI: 10.3389/fpls.2018.02008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 12/31/2018] [Indexed: 05/21/2023]
Abstract
Plant pathogens like virus, bacteria, and fungi incur a huge loss of global productivity. Targeting the dominant R gene resulted in the evolution of resistance in pathogens, which shifted plant pathologists' attention toward host susceptibility factors (or S genes). Herein, the application of sequence-specific nucleases (SSNs) for targeted genome editing are gaining more importance, which utilize the use of meganucleases (MN), zinc finger nucleases (ZFNs), transcription activator-like effector-based nucleases (TALEN) with the latest one namely clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9). The first generation of genome editing technologies, due to their cumbersome nature, is becoming obsolete. Owing to its simple and inexpensive nature the use of CRISPR/Cas9 system has revolutionized targeted genome editing technology. CRISPR/Cas9 system has been exploited for developing resistance against virus, bacteria, and fungi. For resistance to DNA viruses (mainly single-stranded DNA viruses), different parts of the viral genome have been targeted transiently and by the development of transgenic plants. For RNA viruses, mainly the host susceptibility factors and very recently the viral RNA genome itself have been targeted. Fungal and bacterial resistance has been achieved mainly by targeting the host susceptibility genes through the development of transgenics. In spite of these successes CRISPR/Cas9 system suffers from off-targeting. This and other problems associated with this system are being tackled by the continuous discovery/evolution of new variants. Finally, the regulatory standpoint regarding CRISPR/Cas9 will determine the fate of using this versatile tool in developing pathogen resistance in crop plants.
Collapse
Affiliation(s)
| | | | - Manoj Prasad
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
114
|
Abstract
Bacterial spot (BS), caused by four species of Xanthomonas: X. euvesicatoria, X. vesicatoria, X. perforans and X. gardneri in tomato (Solanum lycopersicum L.) results in severe loss in yield and quality by defoliation and the appearance of lesions on fruits, respectively. The combined industry standard for BS control (foliar applications Actigard® rotated with copper plus mancozeb) does not offer sufficient protection, especially when weather conditions favor disease spread. Development of tomato cultivars with BS resistance is thus an important measure to minimize losses. Hypersensitive and non-hypersensitive resistance has been identified in different wild accessions and cultivated tomato relatives and has been transferred to cultivated tomato. However, complete resistance is yet to be obtained. With the advent of next generation sequencing and precise genome editing tools, the genetic regions that confer resistance to bacterial spot can be targeted and enriched through gene pyramiding in a new commercial cultivar which may confer higher degree of horizontal resistance to multiple strains of Xanthomonas causing bacterial spot in tomato.
Collapse
|
115
|
Wang T, Zhang H, Zhu H. CRISPR technology is revolutionizing the improvement of tomato and other fruit crops. HORTICULTURE RESEARCH 2019; 6:77. [PMID: 31240102 PMCID: PMC6570646 DOI: 10.1038/s41438-019-0159-x] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/25/2019] [Accepted: 04/26/2019] [Indexed: 05/06/2023]
Abstract
Fruits are major sources of essential nutrients and serve as staple foods in some areas of the world. The increasing human population and changes in climate experienced worldwide make it urgent to the production of fruit crops with high yield and enhanced adaptation to the environment, for which conventional breeding is unlikely to meet the demand. Fortunately, clustered regularly interspaced short palindromic repeat (CRISPR) technology paves the way toward a new horizon for fruit crop improvement and consequently revolutionizes plant breeding. In this review, the mechanism and optimization of the CRISPR system and its application to fruit crops, including resistance to biotic and abiotic stresses, fruit quality improvement, and domestication are highlighted. Controversies and future perspectives are discussed as well.
Collapse
Affiliation(s)
- Tian Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, 100083 Beijing, China
| | - Hongyan Zhang
- Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, 250014 Jinan, China
| | - Hongliang Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, 100083 Beijing, China
| |
Collapse
|
116
|
Hu T, Wang Y, Wang Q, Dang N, Wang L, Liu C, Zhu J, Zhan X. The tomato 2-oxoglutarate-dependent dioxygenase gene SlF3HL is critical for chilling stress tolerance. HORTICULTURE RESEARCH 2019; 6:45. [PMID: 30962938 PMCID: PMC6441657 DOI: 10.1038/s41438-019-0127-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/27/2019] [Accepted: 01/28/2019] [Indexed: 05/15/2023]
Abstract
Low temperature is a major stress that severely affects plant development, growth, distribution, and productivity. Here, we examined the function of a 2-oxoglutarate-dependent dioxygenase-encoding gene, SlF3HL, in chilling stress responses in tomato (Solanum lycopersicum cv. Alisa Craig [AC]). Knockdown (KD) of SlF3HL (through RNA interference) in tomato led to increased sensitivity to chilling stress as indicated by elevated levels of electrolyte leakage, malondialdehyde (MDA) and reactive oxygen species (ROS). In addition, the KD plants had decreased levels of proline and decreased activities of peroxisome and superoxide dismutase. The expression of four cold-responsive genes was substantially reduced in the KD plants. Furthermore, seedling growth was significantly greater in AC or SlF3HL-overexpression plants than in the KD plants under either normal growth conditions with methyl jasmonate (MeJA) or chilling stress conditions. SlF3HL appears to positively regulate JA accumulation and the expression of JA biosynthetic and signaling genes under chilling stress. Together, these results suggest that SlF3HL is a positive regulator of chilling stress tolerance and functions in the chilling stress tolerance pathways, possibly by regulating JA biosynthesis, JA signaling, and ROS levels.
Collapse
Affiliation(s)
- Tixu Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, No. 3, Taicheng Road, 712100 Yangling, Shaanxi China
| | - Yuqin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, No. 3, Taicheng Road, 712100 Yangling, Shaanxi China
| | - Qiqi Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, No. 3, Taicheng Road, 712100 Yangling, Shaanxi China
| | - Ningning Dang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, No. 3, Taicheng Road, 712100 Yangling, Shaanxi China
| | - Ling Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu China
| | - Chaochao Liu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu China
| | - Jianhua Zhu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu China
- Department of Plant Science and Landscape Architecture, College of Agriculture and Natural Resources, University of Maryland, College Park, MD 20742 USA
| | - Xiangqiang Zhan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, No. 3, Taicheng Road, 712100 Yangling, Shaanxi China
| |
Collapse
|
117
|
In silico Analysis of qBFR4 and qLBL5 in Conferring Quantitative Resistance Against Rice Blast. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2018. [DOI: 10.22207/jpam.12.4.03] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
118
|
Olate E, Jiménez-Gómez JM, Holuigue L, Salinas J. NPR1 mediates a novel regulatory pathway in cold acclimation by interacting with HSFA1 factors. NATURE PLANTS 2018; 4:811-823. [PMID: 30250280 DOI: 10.1038/s41477-018-0254-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 08/16/2018] [Indexed: 05/25/2023]
Abstract
NON-EXPRESSER OF PATHOGENESIS-RELATED GENES 1 (NPR1) is a master regulator of plant response to pathogens that confers immunity through a transcriptional cascade mediated by salicylic acid and TGA transcription factors. Little is known, however, about its implication in plant response to abiotic stress. Here, we provide genetic and molecular evidence supporting the fact that Arabidopsis NPR1 plays an essential role in cold acclimation by regulating cold-induced gene expression independently of salicylic acid and TGA factors. Our results demonstrate that, in response to low temperature, cytoplasmic NPR1 oligomers release monomers that translocate to the nucleus where they interact with heat shock transcription factor 1 (HSFA1) to promote the induction of HSFA1-regulated genes and cold acclimation. These findings unveil an unexpected function for NPR1 in plant response to low temperature, reveal a new regulatory pathway for cold acclimation mediated by NPR1 and HSFA1 factors, and place NPR1 as a central hub integrating cold and pathogen signalling for a better adaptation of plants to an ever-changing environment.
Collapse
Affiliation(s)
- Ema Olate
- Departamento de Biotecnología Microbiana y de Plantas, Centro Investigaciones Biológicas, CSIC, Madrid, Spain
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José M Jiménez-Gómez
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay , Versailles Cedex, France
| | - Loreto Holuigue
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Julio Salinas
- Departamento de Biotecnología Microbiana y de Plantas, Centro Investigaciones Biológicas, CSIC, Madrid, Spain.
| |
Collapse
|
119
|
Klessig DF, Choi HW, Dempsey DA. Systemic Acquired Resistance and Salicylic Acid: Past, Present, and Future. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:871-888. [PMID: 29781762 DOI: 10.1094/mpmi-03-18-0067-cr] [Citation(s) in RCA: 238] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
This article is part of the Distinguished Review Article Series in Conceptual and Methodological Breakthroughs in Molecular Plant-Microbe Interactions. Salicylic acid (SA) is a critical plant hormone that regulates numerous aspects of plant growth and development as well as the activation of defenses against biotic and abiotic stress. Here, we present a historical overview of the progress that has been made to date in elucidating the role of SA in signaling plant immune responses. The ability of plants to develop acquired immunity after pathogen infection was first proposed in 1933. However, most of our knowledge about plant immune signaling was generated over the last three decades, following the discovery that SA is an endogenous defense signal. During this timeframe, researchers have identified i) two pathways through which SA can be synthesized, ii) numerous proteins that regulate SA synthesis and metabolism, and iii) some of the signaling components that function downstream of SA, including a large number of SA targets or receptors. In addition, it has become increasingly evident that SA does not signal immune responses by itself but, rather, as part of an intricate network that involves many other plant hormones. Future efforts to develop a comprehensive understanding of SA-mediated immune signaling will therefore need to close knowledge gaps that exist within the SA pathway itself as well as clarify how crosstalk among the different hormone signaling pathways leads to an immune response that is both robust and optimized for maximal efficacy, depending on the identity of the attacking pathogen.
Collapse
Affiliation(s)
| | - Hyong Woo Choi
- Boyce Thompson Institute, 533 Tower Rd, Ithaca, NY 14853, U.S.A
| | | |
Collapse
|
120
|
Langner T, Kamoun S, Belhaj K. CRISPR Crops: Plant Genome Editing Toward Disease Resistance. ANNUAL REVIEW OF PHYTOPATHOLOGY 2018; 56:479-512. [PMID: 29975607 DOI: 10.1146/annurev-phyto-080417-050158] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Genome editing by sequence-specific nucleases (SSNs) has revolutionized biology by enabling targeted modifications of genomes. Although routine plant genome editing emerged only a few years ago, we are already witnessing the first applications to improve disease resistance. In particular, CRISPR-Cas9 has democratized the use of genome editing in plants thanks to the ease and robustness of this method. Here, we review the recent developments in plant genome editing and its application to enhancing disease resistance against plant pathogens. In the future, bioedited disease resistant crops will become a standard tool in plant breeding.
Collapse
Affiliation(s)
- Thorsten Langner
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom;
| | - Sophien Kamoun
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom;
| | - Khaoula Belhaj
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom;
| |
Collapse
|
121
|
Sun K, van Tuinen A, van Kan JAL, Wolters AMA, Jacobsen E, Visser RGF, Bai Y. Silencing of DND1 in potato and tomato impedes conidial germination, attachment and hyphal growth of Botrytis cinerea. BMC PLANT BIOLOGY 2017; 17:235. [PMID: 29212470 PMCID: PMC5719932 DOI: 10.1186/s12870-017-1184-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 11/22/2017] [Indexed: 05/08/2023]
Abstract
BACKGROUND Botrytis cinerea, a necrotrophic pathogenic fungus, attacks many crops including potato and tomato. Major genes for complete resistance to B. cinerea are not known in plants, but a few quantitative trait loci have been described in tomato. Loss of function of particular susceptibility (S) genes appears to provide a new source of resistance to B. cinerea in Arabidopsis. RESULTS In this study, orthologs of Arabidopsis S genes (DND1, DMR6, DMR1 and PMR4) were silenced by RNAi in potato and tomato (only for DND1). DND1 well-silenced potato and tomato plants showed significantly reduced diameters of B. cinerea lesions as compared to control plants, at all-time points analysed. Reduced lesion diameter was also observed on leaves of DMR6 silenced potato plants but only at 3 days post inoculation (dpi). The DMR1 and PMR4 silenced potato transformants were as susceptible as the control cv Desiree. Microscopic analysis was performed to observe B. cinerea infection progress in DND1 well-silenced potato and tomato leaves. A significantly lower number of B. cinerea conidia remained attached to the leaf surface of DND1 well-silenced potato and tomato plants and the hyphal growth of germlings was hampered. CONCLUSIONS This is the first report of a cytological investigation of Botrytis development on DND1-silenced crop plants. Silencing of DND1 led to reduced susceptibility to Botrytis, which was associated with impediment of conidial germination and attachment as well as hyphal growth. Our results provide new insights regarding the use of S genes in resistance breeding.
Collapse
Affiliation(s)
- Kaile Sun
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Ageeth van Tuinen
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jan A. L. van Kan
- Laboratory of Phytopathology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Anne-Marie A. Wolters
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Evert Jacobsen
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Richard G. F. Visser
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Yuling Bai
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
122
|
Wang Y, Hu Q, Wu Z, Wang H, Han S, Jin Y, Zhou J, Zhang Z, Jiang J, Shen Y, Shi H, Yang W. HISTONE DEACETYLASE 6 represses pathogen defence responses in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2017; 40:2972-2986. [PMID: 28770584 DOI: 10.1111/pce.13047] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 07/23/2017] [Indexed: 05/18/2023]
Abstract
Plant defence mechanisms are suppressed in the absence of pathogen attack to prevent wasted energy and growth inhibition. However, how defence responses are repressed is not well understood. Histone deacetylase 6 (HDA6) is a negative regulator of gene expression, and its role in pathogen defence response in plants is not known. In this study, a novel allele of hda6 (designated as shi5) with spontaneous defence response was isolated from a forward genetics screening in Arabidopsis. The shi5 mutant exhibited increased resistance to hemibiotrophic bacterial pathogen Pst DC3000, constitutively activated expression of pathogen-responsive genes including PR1, PR2, etc. and increased histone acetylation levels at the promoters of most tested genes that were upregulated in shi5. In both wild type and shi5 plants, the expression and histone acetylation of these genes were upregulated by pathogen infection. HDA6 was found to bind to the promoters of these genes under both normal growth conditions and pathogen infection. Our research suggests that HDA6 is a general repressor of pathogen defence response and plays important roles in inhibiting and modulating the expression of pathogen-responsive genes in Arabidopsis.
Collapse
Affiliation(s)
- Yizhong Wang
- School of Life Sciences, Central China Normal University, Wuhan, 43009, Hubei, P.R. China
| | - Qin Hu
- School of Life Sciences, Central China Normal University, Wuhan, 43009, Hubei, P.R. China
| | - Zhenjiang Wu
- School of Life Sciences, Central China Normal University, Wuhan, 43009, Hubei, P.R. China
| | - Hui Wang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Shiming Han
- School of Life Sciences, Central China Normal University, Wuhan, 43009, Hubei, P.R. China
| | - Ye Jin
- School of Life Sciences, Central China Normal University, Wuhan, 43009, Hubei, P.R. China
| | - Jin Zhou
- School of Life Sciences, Central China Normal University, Wuhan, 43009, Hubei, P.R. China
| | - Zhengfeng Zhang
- School of Life Sciences, Central China Normal University, Wuhan, 43009, Hubei, P.R. China
| | - Jiafu Jiang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Yun Shen
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Huazhong Shi
- School of Life Sciences, Central China Normal University, Wuhan, 43009, Hubei, P.R. China
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Wannian Yang
- School of Life Sciences, Central China Normal University, Wuhan, 43009, Hubei, P.R. China
| |
Collapse
|
123
|
Arabidopsis JASMONATE-INDUCED OXYGENASES down-regulate plant immunity by hydroxylation and inactivation of the hormone jasmonic acid. Proc Natl Acad Sci U S A 2017; 114:6388-6393. [PMID: 28559313 DOI: 10.1073/pnas.1701101114] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The phytohormone jasmonic acid (JA) is vital in plant defense and development. Although biosynthesis of JA and activation of JA-responsive gene expression by the bioactive form JA-isoleucine have been well-studied, knowledge on JA metabolism is incomplete. In particular, the enzyme that hydroxylates JA to 12-OH-JA, an inactive form of JA that accumulates after wounding and pathogen attack, is unknown. Here, we report the identification of four paralogous 2-oxoglutarate/Fe(II)-dependent oxygenases in Arabidopsis thaliana as JA hydroxylases and show that they down-regulate JA-dependent responses. Because they are induced by JA we named them JASMONATE-INDUCED OXYGENASES (JOXs). Concurrent mutation of the four genes in a quadruple Arabidopsis mutant resulted in increased defense gene expression and increased resistance to the necrotrophic fungus Botrytis cinerea and the caterpillar Mamestra brassicae In addition, root and shoot growth of the plants was inhibited. Metabolite analysis of leaves showed that loss of function of the four JOX enzymes resulted in overaccumulation of JA and in reduced turnover of JA into 12-OH-JA. Transformation of the quadruple mutant with each JOX gene strongly reduced JA levels, demonstrating that all four JOXs inactivate JA in plants. The in vitro catalysis of 12-OH-JA from JA by recombinant enzyme could be confirmed for three JOXs. The identification of the enzymes responsible for hydroxylation of JA reveals a missing step in JA metabolism, which is important for the inactivation of the hormone and subsequent down-regulation of JA-dependent defenses.
Collapse
|
124
|
Dempsey DA, Klessig DF. How does the multifaceted plant hormone salicylic acid combat disease in plants and are similar mechanisms utilized in humans? BMC Biol 2017; 15:23. [PMID: 28335774 PMCID: PMC5364617 DOI: 10.1186/s12915-017-0364-8] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Salicylic acid (SA) is an important plant hormone that regulates many aspects of plant growth and development, as well as resistance to (a)biotic stress. Efforts to identify SA effector proteins have revealed that SA binds to and alters the activity of multiple plant proteins—this represents a shift from the paradigm that hormones mediate their functions via one or a few receptors. SA and its derivatives also have multiple targets in animals; some of these proteins, like their plant counterparts, are associated with pathological processes. Together, these findings suggest that SA exerts its defense-associated effects in both kingdoms via a large number of targets.
Collapse
|
125
|
Cui H, Gobbato E, Kracher B, Qiu J, Bautor J, Parker JE. A core function of EDS1 with PAD4 is to protect the salicylic acid defense sector in Arabidopsis immunity. THE NEW PHYTOLOGIST 2017; 213:1802-1817. [PMID: 27861989 DOI: 10.1111/nph.14302] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 09/23/2016] [Indexed: 05/19/2023]
Abstract
Plant defenses induced by salicylic acid (SA) are vital for resistance against biotrophic pathogens. In basal and receptor-triggered immunity, SA accumulation is promoted by Enhanced Disease Susceptibility1 with its co-regulator Phytoalexin Deficient4 (EDS1/PAD4). Current models position EDS1/PAD4 upstream of SA but their functional relationship remains unclear. In a genetic and transcriptomic analysis of Arabidopsis autoimmunity caused by constitutive or conditional EDS1/PAD4 overexpression, intrinsic EDS1/PAD4 signaling properties and their relation to SA were uncovered. A core EDS1/PAD4 pathway works in parallel with SA in basal and effector-triggered bacterial immunity. It protects against disabled SA-regulated gene expression and pathogen resistance, and is distinct from a known SA-compensatory route involving MAPK signaling. Results help to explain previously identified EDS1/PAD4 regulated SA-dependent and SA-independent gene expression sectors. Plants have evolved an alternative route for preserving SA-regulated defenses against pathogen or genetic perturbations. In a proposed signaling framework, EDS1 with PAD4, besides promoting SA biosynthesis, maintains important SA-related resistance programs, thereby increasing robustness of the innate immune system.
Collapse
Affiliation(s)
- Haitao Cui
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| | - Enrico Gobbato
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| | - Barbara Kracher
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| | - Jingde Qiu
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| | - Jaqueline Bautor
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| | - Jane E Parker
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| |
Collapse
|
126
|
Toth Z, Winterhagen P, Kalapos B, Su Y, Kovacs L, Kiss E. Expression of a Grapevine NAC Transcription Factor Gene Is Induced in Response to Powdery Mildew Colonization in Salicylic Acid-Independent Manner. Sci Rep 2016; 6:30825. [PMID: 27488171 PMCID: PMC4973223 DOI: 10.1038/srep30825] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 07/07/2016] [Indexed: 02/07/2023] Open
Abstract
Tissue colonization by grape powdery mildew (PM) pathogen Erysiphe necator (Schw.) Burr triggers a major remodeling of the transcriptome in the susceptible grapevine Vitis vinifera L. While changes in the expression of many genes bear the signature of salicylic acid (SA) mediated regulation, the breadth of PM-induced changes suggests the involvement of additional regulatory networks. To explore PM-associated gene regulation mediated by other SA-independent systems, we designed a microarray experiment to distinguish between transcriptome changes induced by E. necator colonization and those triggered by elevated SA levels. We found that the majority of genes responded to both SA and PM, but certain genes were responsive to PM infection alone. Among them, we identified genes of stilbene synthases, PR-10 proteins, and several transcription factors. The microarray results demonstrated that the regulation of these genes is either independent of SA, or dependent, but SA alone is insufficient to bring about their regulation. We inserted the promoter-reporter fusion of a PM-responsive transcription factor gene into a wild-type and two SA-signaling deficient Arabidopsis lines and challenged the resulting transgenic plants with an Arabidopsis-adapted PM pathogen. Our results provide experimental evidence that this grape gene promoter is activated by the pathogen in a SA-independent manner.
Collapse
Affiliation(s)
- Zsofia Toth
- Institute of Genetics and Biotechnology, Szent Istvan University, 2100-Godollo, Hungary
| | - Patrick Winterhagen
- Institute of Crop Science, University of Hohenheim, 70599-Stuttgart, Germany
| | - Balazs Kalapos
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 2462-Martonvasar, Hungary
| | - Yingcai Su
- Department of Mathematics, Missouri State University, 65897-Springfield, USA
| | - Laszlo Kovacs
- Department of Biology, Missouri State University, 65897-Springfield, USA
| | - Erzsebet Kiss
- Institute of Genetics and Biotechnology, Szent Istvan University, 2100-Godollo, Hungary
| |
Collapse
|
127
|
Jiang N, Doseff AI, Grotewold E. Flavones: From Biosynthesis to Health Benefits. PLANTS (BASEL, SWITZERLAND) 2016; 5:E27. [PMID: 27338492 PMCID: PMC4931407 DOI: 10.3390/plants5020027] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/15/2016] [Accepted: 06/16/2016] [Indexed: 12/20/2022]
Abstract
Flavones correspond to a flavonoid subgroup that is widely distributed in the plants, and which can be synthesized by different pathways, depending on whether they contain C- or O-glycosylation and hydroxylated B-ring. Flavones are emerging as very important specialized metabolites involved in plant signaling and defense, as well as key ingredients of the human diet, with significant health benefits. Here, we appraise flavone formation in plants, emphasizing the emerging theme that biosynthesis pathway determines flavone chemistry. Additionally, we briefly review the biological activities of flavones, both from the perspective of the functions that they play in biotic and abiotic plant interactions, as well as their roles as nutraceutical components of the human and animal diet.
Collapse
Affiliation(s)
- Nan Jiang
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH 43210, USA.
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA.
| | - Andrea I Doseff
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA.
- Department of Physiology and Cell Biology, 305B Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA.
| | - Erich Grotewold
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH 43210, USA.
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
128
|
Prezelj N, Covington E, Roitsch T, Gruden K, Fragner L, Weckwerth W, Chersicola M, Vodopivec M, Dermastia M. Metabolic Consequences of Infection of Grapevine (Vitis vinifera L.) cv. "Modra frankinja" with Flavescence Dorée Phytoplasma. FRONTIERS IN PLANT SCIENCE 2016; 7:711. [PMID: 27242887 PMCID: PMC4876132 DOI: 10.3389/fpls.2016.00711] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/09/2016] [Indexed: 05/18/2023]
Abstract
Flavescence dorée, caused by the quarantine phytoplasma FDp, represents the most devastating of the grapevine yellows diseases in Europe. In an integrated study we have explored the FDp-grapevine interaction in infected grapevines of cv. "Modra frankinja" under natural conditions in the vineyard. In FDp-infected leaf vein-enriched tissues, the seasonal transcriptional profiles of 14 genes selected from various metabolic pathways showed an FDp-specific plant response compared to other grapevine yellows and uncovered a new association of the SWEET17a vacuolar transporter of fructose with pathogens. Non-targeted metabolome analysis from leaf vein-enriched tissues identified 22 significantly changed compounds with increased levels during infection. Several metabolites corroborated the gene expression study. Detailed investigation of the dynamics of carbohydrate metabolism revealed significant accumulation of sucrose and starch in the mesophyll of FDp-infected leaves, as well as significant up-regulation of genes involved in their biosynthesis. In addition, infected leaves had high activities of ADP-glucose pyrophosphorylase and, more significantly, sucrose synthase. The data support the conclusion that FDp infection inhibits phloem transport, resulting in accumulation of carbohydrates and secondary metabolites that provoke a source-sink transition and defense response status.
Collapse
Affiliation(s)
- Nina Prezelj
- Department of Biotechnology and Systems Biology, National Institute of BiologyLjubljana, Slovenia
| | - Elizabeth Covington
- Department of Biotechnology and Systems Biology, National Institute of BiologyLjubljana, Slovenia
| | - Thomas Roitsch
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of CopenhagenTaastrup, Denmark
- Global Change Research Centre, Czech Globe AS CR, v.v.i.Drásov, Czech Republic
| | - Kristina Gruden
- Department of Biotechnology and Systems Biology, National Institute of BiologyLjubljana, Slovenia
| | - Lena Fragner
- Department of Ecogenomics and Systems Biology, Faculty of Life Sciences, University of ViennaVienna, Austria
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, Faculty of Life Sciences, University of ViennaVienna, Austria
- Vienna Metabolomics Center (VIME), University of ViennaVienna, Austria
| | - Marko Chersicola
- Department of Biotechnology and Systems Biology, National Institute of BiologyLjubljana, Slovenia
- Jožef Stefan International Postgraduate SchoolLjubljana, Slovenia
| | - Maja Vodopivec
- Department of Biotechnology and Systems Biology, National Institute of BiologyLjubljana, Slovenia
| | - Marina Dermastia
- Department of Biotechnology and Systems Biology, National Institute of BiologyLjubljana, Slovenia
| |
Collapse
|
129
|
Oomycete interactions with plants: infection strategies and resistance principles. Microbiol Mol Biol Rev 2016; 79:263-80. [PMID: 26041933 DOI: 10.1128/mmbr.00010-15] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Oomycota include many economically significant microbial pathogens of crop species. Understanding the mechanisms by which oomycetes infect plants and identifying methods to provide durable resistance are major research goals. Over the last few years, many elicitors that trigger plant immunity have been identified, as well as host genes that mediate susceptibility to oomycete pathogens. The mechanisms behind these processes have subsequently been investigated and many new discoveries made, marking a period of exciting research in the oomycete pathology field. This review provides an introduction to our current knowledge of the pathogenic mechanisms used by oomycetes, including elicitors and effectors, plus an overview of the major principles of host resistance: the established R gene hypothesis and the more recently defined susceptibility (S) gene model. Future directions for development of oomycete-resistant plants are discussed, along with ways that recent discoveries in the field of oomycete-plant interactions are generating novel means of studying how pathogen and symbiont colonizations overlap.
Collapse
|
130
|
Wang Y, Zhou L, Yu X, Stover E, Luo F, Duan Y. Transcriptome Profiling of Huanglongbing (HLB) Tolerant and Susceptible Citrus Plants Reveals the Role of Basal Resistance in HLB Tolerance. FRONTIERS IN PLANT SCIENCE 2016; 7:933. [PMID: 27446161 PMCID: PMC4923198 DOI: 10.3389/fpls.2016.00933] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/13/2016] [Indexed: 05/20/2023]
Abstract
Huanglongbing (HLB) is currently the most destructive disease of citrus worldwide. Although there is no immune cultivar, field tolerance to HLB within citrus and citrus relatives has been observed at the USDA Picos farm at Ft. Pierce, Florida, where plants have been exposed to a very high level of HLB pressure since 2006. In this study, we used RNA-Seq to evaluate expression differences between two closely related cultivars after HLB infection: HLB-tolerant "Jackson" grapefruit-like-hybrid trees and HLB susceptible "Marsh" grapefruit trees. A total of 686 genes were differentially expressed (DE) between the two cultivars. Among them, 247 genes were up-expressed and 439 were down-expressed in tolerant citrus trees. We also identified a total of 619 genes with significant differential expression of alternative splicing isoforms between HLB tolerant and HLB susceptible citrus trees. We analyzed the functional categories of DE genes using two methods, and revealed that multiple pathways have been suppressed or activated in the HLB tolerant citrus trees, which lead to the activation of the basal resistance or immunity of citrus plants. We have experimentally verified the expressions of 14 up-expressed genes and 19 down-expressed genes on HLB-tolerant "Jackson" trees and HLB-susceptible "Marsh" trees using real time PCR. The results showed that the expression of most genes were in agreement with the RNA-Seq results. This study provided new insights into HLB-tolerance and useful guidance for breeding HLB-tolerant citrus in the future.
Collapse
Affiliation(s)
- Yunsheng Wang
- College of Plant Protection, Hunan Agricultural UniversityChangsha, China
- School of Computing, Clemson UniversityClemson, SC, USA
| | - Lijuan Zhou
- U.S. Horticultural Research Laboratory, Agricultural Research ServiceFort Pierce, FL, USA
| | - Xiaoyue Yu
- U.S. Horticultural Research Laboratory, Agricultural Research ServiceFort Pierce, FL, USA
| | - Ed Stover
- U.S. Horticultural Research Laboratory, Agricultural Research ServiceFort Pierce, FL, USA
| | - Feng Luo
- College of Plant Protection, Hunan Agricultural UniversityChangsha, China
- School of Computing, Clemson UniversityClemson, SC, USA
- *Correspondence: Feng Luo
| | - Yongping Duan
- U.S. Horticultural Research Laboratory, Agricultural Research ServiceFort Pierce, FL, USA
- Yongping Duan
| |
Collapse
|
131
|
Asai S, Shirasu K. Plant cells under siege: plant immune system versus pathogen effectors. CURRENT OPINION IN PLANT BIOLOGY 2015; 28:1-8. [PMID: 26343014 DOI: 10.1016/j.pbi.2015.08.008] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 08/18/2015] [Accepted: 08/19/2015] [Indexed: 05/20/2023]
Abstract
Pathogen-secreted effector proteins enable pathogens to manipulate plant immunity for successful infection. To penetrate host apoplastic space, pathogens reopen the stomata. Once the invasion into the apoplast occurs, pathogens deceive the host detection system by deploying apoplastic effectors. Pathogens also deliver an arsenal of cytosolic effectors into the host cells, which undermine host immunity such as salicylic acid (SA)-dependent immunity. Here we summarize recent findings that highlight the functions of the effectors from fungal, oomycete and bacterial pathogens in the key steps of infection at the stomata, in the apoplast, and inside the cell. We also discuss cell type-specific responses in the host during infection and the necessity of further investigation of plant-pathogen interactions at spatial and temporal resolution.
Collapse
Affiliation(s)
- Shuta Asai
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045 Japan.
| | - Ken Shirasu
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045 Japan.
| |
Collapse
|
132
|
Coker TLR, Cevik V, Beynon JL, Gifford ML. Spatial dissection of the Arabidopsis thaliana transcriptional response to downy mildew using Fluorescence Activated Cell Sorting. FRONTIERS IN PLANT SCIENCE 2015; 6:527. [PMID: 26217372 PMCID: PMC4498041 DOI: 10.3389/fpls.2015.00527] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Changes in gene expression form a crucial part of the plant response to infection. In the last decade, whole-leaf expression profiling has played a valuable role in identifying genes and processes that contribute to the interactions between the model plant Arabidopsis thaliana and a diverse range of pathogens. However, with some pathogens such as downy mildew caused by the biotrophic oomycete pathogen Hyaloperonospora arabidopsidis (Hpa), whole-leaf profiling may fail to capture the complete Arabidopsis response encompassing responses of non-infected as well as infected cells within the leaf. Highly localized expression changes that occur in infected cells may be diluted by the comparative abundance of non-infected cells. Furthermore, local and systemic Hpa responses of a differing nature may become conflated. To address this we applied the technique of Fluorescence Activated Cell Sorting (FACS), typically used for analyzing plant abiotic responses, to the study of plant-pathogen interactions. We isolated haustoriated (Hpa-proximal) and non-haustoriated (Hpa-distal) cells from infected seedling samples using FACS, and measured global gene expression. When compared with an uninfected control, 278 transcripts were identified as significantly differentially expressed, the vast majority of which were differentially expressed specifically in Hpa-proximal cells. By comparing our data to previous, whole organ studies, we discovered many highly locally regulated genes that can be implicated as novel in the Hpa response, and that were uncovered for the first time using our sensitive FACS technique.
Collapse
Affiliation(s)
- Timothy L. R. Coker
- Systems Biology Doctoral Training Centre, University of WarwickCoventry, UK
- School of Life Sciences, University of WarwickCoventry, UK
| | - Volkan Cevik
- School of Life Sciences, University of WarwickCoventry, UK
| | - Jim L. Beynon
- School of Life Sciences, University of WarwickCoventry, UK
| | - Miriam L. Gifford
- School of Life Sciences, University of WarwickCoventry, UK
- *Correspondence: Miriam L. Gifford, School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| |
Collapse
|