101
|
Imura E, Shimada-Niwa Y, Nishimura T, Hückesfeld S, Schlegel P, Ohhara Y, Kondo S, Tanimoto H, Cardona A, Pankratz MJ, Niwa R. The Corazonin-PTTH Neuronal Axis Controls Systemic Body Growth by Regulating Basal Ecdysteroid Biosynthesis in Drosophila melanogaster. Curr Biol 2020; 30:2156-2165.e5. [PMID: 32386525 DOI: 10.1016/j.cub.2020.03.050] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/10/2020] [Accepted: 03/19/2020] [Indexed: 12/21/2022]
Abstract
Steroid hormones play key roles in development, growth, and reproduction in various animal phyla [1]. The insect steroid hormone, ecdysteroid, coordinates growth and maturation, represented by molting and metamorphosis [2]. In Drosophila melanogaster, the prothoracicotropic hormone (PTTH)-producing neurons stimulate peak levels of ecdysteroid biosynthesis for maturation [3]. Additionally, recent studies on PTTH signaling indicated that basal levels of ecdysteroid negatively affect systemic growth prior to maturation [4-8]. However, it remains unclear how PTTH signaling is regulated for basal ecdysteroid biosynthesis. Here, we report that Corazonin (Crz)-producing neurons regulate basal ecdysteroid biosynthesis by affecting PTTH neurons. Crz belongs to gonadotropin-releasing hormone (GnRH) superfamily, implying an analogous role in growth and maturation [9]. Inhibition of Crz neuronal activity increased pupal size, whereas it hardly affected pupariation timing. This phenotype resulted from enhanced growth rate and a delay in ecdysteroid elevation during the mid-third instar larval (L3) stage. Interestingly, Crz receptor (CrzR) expression in PTTH neurons was higher during the mid- than the late-L3 stage. Silencing of CrzR in PTTH neurons increased pupal size, phenocopying the inhibition of Crz neuronal activity. When Crz neurons were optogenetically activated, a strong calcium response was observed in PTTH neurons during the mid-L3, but not the late-L3, stage. Furthermore, we found that octopamine neurons contact Crz neurons in the subesophageal zone (SEZ), transmitting signals for systemic growth. Together, our results suggest that the Crz-PTTH neuronal axis modulates ecdysteroid biosynthesis in response to octopamine, uncovering a regulatory neuroendocrine system in the developmental transition from growth to maturation.
Collapse
Affiliation(s)
- Eisuke Imura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Yuko Shimada-Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, 305-8577 Tsukuba, Japan.
| | | | - Sebastian Hückesfeld
- Department of Molecular Brain Physiology and Behavior, LIMES Institute, University of Bonn, Bonn 53115, Germany
| | - Philipp Schlegel
- Department of Molecular Brain Physiology and Behavior, LIMES Institute, University of Bonn, Bonn 53115, Germany
| | - Yuya Ohhara
- School of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Shu Kondo
- Invertebrate Genetics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan
| | - Hiromu Tanimoto
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Albert Cardona
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Michael J Pankratz
- Department of Molecular Brain Physiology and Behavior, LIMES Institute, University of Bonn, Bonn 53115, Germany
| | - Ryusuke Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, 305-8577 Tsukuba, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
| |
Collapse
|
102
|
Toprak U. The Role of Peptide Hormones in Insect Lipid Metabolism. Front Physiol 2020; 11:434. [PMID: 32457651 PMCID: PMC7221030 DOI: 10.3389/fphys.2020.00434] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/08/2020] [Indexed: 12/21/2022] Open
Abstract
Lipids are the primary storage molecules and an essential source of energy in insects during reproduction, prolonged periods of flight, starvation, and diapause. The coordination center for insect lipid metabolism is the fat body, which is analogous to the vertebrate adipose tissue and liver. The fat body is primarily composed of adipocytes, which accumulate triacylglycerols in intracellular lipid droplets. Genomics and proteomics, together with functional analyses, such as RNA interference and CRISPR/Cas9-targeted genome editing, identified various genes involved in lipid metabolism and elucidated their functions. However, the endocrine control of insect lipid metabolism, in particular the roles of peptide hormones in lipogenesis and lipolysis are relatively less-known topics. In the current review, the neuropeptides that directly or indirectly affect insect lipid metabolism are introduced. The primary lipolytic and lipogenic peptide hormones are adipokinetic hormone and the brain insulin-like peptides (ILP2, ILP3, ILP5). Other neuropeptides, such as insulin-growth factor ILP6, neuropeptide F, allatostatin-A, corazonin, leucokinin, tachykinins and limostatin, might stimulate lipolysis, while diapause hormone-pheromone biosynthesis activating neuropeptide, short neuropeptide F, CCHamide-2, and the cytokines Unpaired 1 and Unpaired 2 might induce lipogenesis. Most of these peptides interact with one another, but mostly with insulin signaling, and therefore affect lipid metabolism indirectly. Peptide hormones are also involved in lipid metabolism during reproduction, flight, diapause, starvation, infections and immunity; these are also highlighted. The review concludes with a discussion of the potential of lipid metabolism-related peptide hormones in pest management.
Collapse
Affiliation(s)
- Umut Toprak
- Molecular Entomology Lab., Department of Plant Protection Ankara, Faculty of Agriculture, Ankara University, Ankara, Turkey
| |
Collapse
|
103
|
The AMPK-PP2A axis in insect fat body is activated by 20-hydroxyecdysone to antagonize insulin/IGF signaling and restrict growth rate. Proc Natl Acad Sci U S A 2020; 117:9292-9301. [PMID: 32277029 DOI: 10.1073/pnas.2000963117] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In insects, 20-hydroxyecdysone (20E) limits the growth period by triggering developmental transitions; 20E also modulates the growth rate by antagonizing insulin/insulin-like growth factor signaling (IIS). Previous work has shown that 20E cross-talks with IIS, but the underlying molecular mechanisms are not fully understood. Here we found that, in both the silkworm Bombyx mori and the fruit fly Drosophila melanogaster, 20E antagonized IIS through the AMP-activated protein kinase (AMPK)-protein phosphatase 2A (PP2A) axis in the fat body and suppressed the growth rate. During Bombyx larval molt or Drosophila pupariation, high levels of 20E activate AMPK, a molecular sensor that maintains energy homeostasis in the insect fat body. In turn, AMPK activates PP2A, which further dephosphorylates insulin receptor and protein kinase B (AKT), thus inhibiting IIS. Activation of the AMPK-PP2A axis and inhibition of IIS in the Drosophila fat body reduced food consumption, resulting in the restriction of growth rate and body weight. Overall, our study revealed an important mechanism by which 20E antagonizes IIS in the insect fat body to restrict the larval growth rate, thereby expanding our understanding of the comprehensive regulatory mechanisms of final body size in animals.
Collapse
|
104
|
Cruz J, Martín D, Franch-Marro X. Egfr Signaling Is a Major Regulator of Ecdysone Biosynthesis in the Drosophila Prothoracic Gland. Curr Biol 2020; 30:1547-1554.e4. [DOI: 10.1016/j.cub.2020.01.092] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 12/13/2019] [Accepted: 01/30/2020] [Indexed: 12/21/2022]
|
105
|
Jiang Q, Lu B, Lin D, Huang H, Chen X, Ye H. Role of crustacean female sex hormone (CFSH) in sex differentiation in early juvenile mud crabs, Scylla paramamosain. Gen Comp Endocrinol 2020; 289:113383. [PMID: 31904358 DOI: 10.1016/j.ygcen.2019.113383] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 12/09/2019] [Accepted: 12/31/2019] [Indexed: 10/25/2022]
Abstract
Recent studies have shown that crustacean female sex hormone (CFSH) is involved in the development of reproductive phenotype. In the present study, observation of sexually dimorphic traits revealed that gender could be distinguished from the third stage juveniles onwards in the mud crab, Scylla paramamosain. Sp-cfsh expression levels were analyzed in early juveniles. The results showed that, Sp-cfsh expression levels differed among individuals at post-molt of the first stage and second stage, and significantly different between the two sexes at post-molt of the third stage, which suggested that Sp-cfsh might participate in the sex differentiation in early juveniles. The expression of Sp-cfsh was examined during the molting cycle at the third stage juveniles, and the results showed that it was highest at the pre-molt stage. Based on the results, the expression of Sp-cfsh at pre-molt stage was further analyzed between the sexes from the third stage to the fifth stage, and it was found that the expression of Sp-cfsh was similar between two sexes at the third stage and the fourth stage; whereas at the fifth stage, when the gonopores occurred, the expression of Sp-cfsh significantly increased in females but decreased in males; suggesting that the expression of Sp-cfsh could influence the formation of gonopores. Finally, the role of Sp-cfsh in the reproductive phenotypes was confirmed through RNA interference knockdown. The combined results suggest that CFSH is involved in the regulation of sex differentiation of early juvenile in S. paramamosain.
Collapse
Affiliation(s)
- Qingling Jiang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Bei Lu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Dongdong Lin
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Huiyang Huang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China.
| | - Xuelei Chen
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Haihui Ye
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
106
|
Sudhakar SR, Pathak H, Rehman N, Fernandes J, Vishnu S, Varghese J. Insulin signalling elicits hunger-induced feeding in Drosophila. Dev Biol 2020; 459:87-99. [DOI: 10.1016/j.ydbio.2019.11.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 12/21/2022]
|
107
|
Zeng J, Huynh N, Phelps B, King-Jones K. Snail synchronizes endocycling in a TOR-dependent manner to coordinate entry and escape from endoreplication pausing during the Drosophila critical weight checkpoint. PLoS Biol 2020; 18:e3000609. [PMID: 32097403 PMCID: PMC7041797 DOI: 10.1371/journal.pbio.3000609] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 01/28/2020] [Indexed: 12/30/2022] Open
Abstract
The final body size of any given individual underlies both genetic and environmental constraints. Both mammals and insects use target of rapamycin (TOR) and insulin signaling pathways to coordinate growth with nutrition. In holometabolous insects, the growth period is terminated through a cascade of peptide and steroid hormones that end larval feeding behavior and trigger metamorphosis, a nonfeeding stage during which the larval body plan is remodeled to produce an adult. This irreversible decision, termed the critical weight (CW) checkpoint, ensures that larvae have acquired sufficient nutrients to complete and survive development to adulthood. How insects assess body size via the CW checkpoint is still poorly understood on the molecular level. We show here that the Drosophila transcription factor Snail plays a key role in this process. Before and during the CW checkpoint, snail is highly expressed in the larval prothoracic gland (PG), an endocrine tissue undergoing endoreplication and primarily dedicated to the production of the steroid hormone ecdysone. We observed two Snail peaks in the PG, one before and one after the molt from the second to the third instar. Remarkably, these Snail peaks coincide with two peaks of PG cells entering S phase and a slowing of DNA synthesis between the peaks. Interestingly, the second Snail peak occurs at the exit of the CW checkpoint. Snail levels then decline continuously, and endoreplication becomes nonsynchronized in the PG after the CW checkpoint. This suggests that the synchronization of PG cells into S phase via Snail represents the mechanistic link used to terminate the CW checkpoint. Indeed, PG-specific loss of snail function prior to the CW checkpoint causes larval arrest due to a cessation of endoreplication in PG cells, whereas impairing snail after the CW checkpoint no longer affected endoreplication and further development. During the CW window, starvation or loss of TOR signaling disrupted the formation of Snail peaks and endocycle synchronization, whereas later starvation had no effect on snail expression. Taken together, our data demonstrate that insects use the TOR pathway to assess nutrient status during larval development to regulate Snail in ecdysone-producing cells as an effector protein to coordinate endoreplication and CW attainment. During Drosophila development, the time window when larvae assess their readiness for metamorphosis is marked by slowing of cell growth in the prothoracic gland that produces the molting hormone; cell growth (via DNA endoreplication) then increases, allowing the production of the amount of hormone required to trigger metamorphosis. This study shows that these processes depend on the transcription factor Snail.
Collapse
Affiliation(s)
- Jie Zeng
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Nhan Huynh
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Brian Phelps
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Kirst King-Jones
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
- * E-mail:
| |
Collapse
|
108
|
Ramond E, Petrignani B, Dudzic JP, Boquete J, Poidevin M, Kondo S, Lemaitre B. The adipokine NimrodB5 regulates peripheral hematopoiesis in
Drosophila. FEBS J 2020; 287:3399-3426. [DOI: 10.1111/febs.15237] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 01/08/2020] [Accepted: 01/30/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Elodie Ramond
- Global Health Institute School of Life Science École Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
| | - Bianca Petrignani
- Global Health Institute School of Life Science École Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
| | - Jan Paul Dudzic
- Global Health Institute School of Life Science École Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
| | - Jean‐Philippe Boquete
- Global Health Institute School of Life Science École Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
| | - Mickaël Poidevin
- Centre de Génétique Moléculaire CNRS Université Pierre et Marie Curie Gif‐sur‐Yvette France
| | - Shu Kondo
- Invertebrate Genetics Laboratory Genetic Strains Research Center National Institute of Genetics Mishima Japan
| | - Bruno Lemaitre
- Global Health Institute School of Life Science École Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
| |
Collapse
|
109
|
Delanoue R, Romero NM. Growth and Maturation in Development: A Fly's Perspective. Int J Mol Sci 2020; 21:E1260. [PMID: 32070061 PMCID: PMC7072963 DOI: 10.3390/ijms21041260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/02/2020] [Accepted: 02/10/2020] [Indexed: 01/09/2023] Open
Abstract
In mammals like humans, adult fitness is improved due to resource allocation, investing energy in the developmental growth process during the juvenile period, and in reproduction at the adult stage. Therefore, the attainment of their target body height/size co-occurs with the acquisition of maturation, implying a need for coordination between mechanisms that regulate organismal growth and maturation timing. Insects like Drosophila melanogaster also define their adult body size by the end of the juvenile larval period. Recent studies in the fly have shown evolutionary conservation of the regulatory pathways controlling growth and maturation, suggesting the existence of common coordinator mechanisms between them. In this review, we will present an overview of the significant advancements in the coordination mechanisms ensuring developmental robustness in Drosophila. We will include (i) the characterization of feedback mechanisms between maturation and growth hormones, (ii) the recognition of a relaxin-like peptide Dilp8 as a central processor coordinating juvenile regeneration and time of maturation, and (iii) the identification of a novel coordinator mechanism involving the AstA/KISS system.
Collapse
Affiliation(s)
- Renald Delanoue
- University Côte d’Azur, CNRS, Inserm, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France
| | - Nuria M. Romero
- University Côte d’Azur, CNRS, Inserm, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France
- Universitey Côte d’Azur, INRA, CNRS, Institut Sophia Agrobiotech, 06900 Sophia Antipolis, France
| |
Collapse
|
110
|
Gu SH, Chen CH. Reactive oxygen species-mediated bombyxin signaling in Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 117:103279. [PMID: 31756435 DOI: 10.1016/j.ibmb.2019.103279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/06/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
In the present study, we demonstrated that bombyxin, an insect insulin-like peptide, modulated ecdysteroidogenesis in Bombyx mori prothoracic glands (PGs) through redox signaling. Our results showed that bombyxin treatment resulted in a transient increase in intracellular reactive oxygen species (ROS) concentration, as measured using 2',7'-dichlorofluorescin diacetate (DCFDA), an oxidation-sensitive fluorescent probe. The antioxidant N-acetylcysteine (NAC) abolished the bombyxin-induced increase in fluorescence in Bombyx PGs. Furthermore, bombyxin-induced ROS production was inhibited by mitochondrial oxidative phosphorylation inhibitors (rotenone and antimycin A), indicating mitochondria-mediated ROS production. The stimulation of ROS production in response to bombyxin appears to undergo development-specific changes. We further investigated the action mechanism of bombyxin-stimulated ROS signaling. Results showed that in the presence of either NAC, rotenone, or antimycin A, bombyxin-stimulated phosphorylation of insulin receptor, Akt, and 4E-binding protein (4E-BP) was blocked and bombyxin-stimulated ecdysteroidogenesis in PGs was greatly inhibited. From these results, we conclude that ROS signaling appears to be involved in bombyxin-stimulated ecdysteroidogenesis of PGs in B. mori by modulating the phosphorylation of insulin receptor, Akt, and 4E-BP. To our knowledge, this is the first demonstration of redox regulation in insulin signaling in an insect system.
Collapse
Affiliation(s)
- Shi-Hong Gu
- Department of Biology, National Museum of Natural Science, 1 Kuan-Chien Road, Taichung, 404, Taiwan, ROC.
| | - Chien-Hung Chen
- Chung Hwa University of Medical Technology, 89 Wen-Hwa 1st Road, Jen-Te Township, Tainan County, 717, Taiwan, ROC
| |
Collapse
|
111
|
Abstract
This autobiographical article describes the research career of Lynn M. Riddiford from its early beginnings in a summer program for high school students at Jackson Laboratory to the present "retirement" at the Friday Harbor Laboratories. The emphasis is on her forays into many areas of insect endocrinology, supported by her graduate students and postdoctoral associates. The main theme is the hormonal regulation of metamorphosis, especially the roles of juvenile hormone (JH). The article describes the work of her laboratory first in the elucidation of the endocrinology of the tobacco hornworm, Manduca sexta, and later in the molecular aspects of the regulation of cuticular and pigment proteins and of the ecdysone-induced transcription factor cascade during molting and metamorphosis. Later studies utilized Drosophila melanogaster to answer further questions about the actions of JH.
Collapse
Affiliation(s)
- Lynn M Riddiford
- Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington 98250, USA;
| |
Collapse
|
112
|
Meng X, Zhang N, Yang X, Miao L, Jiang H, Ji C, Xu B, Qian K, Wang J. Sublethal effects of chlorantraniliprole on molting hormone levels and mRNA expressions of three Halloween genes in the rice stem borer, Chilo suppressalis. CHEMOSPHERE 2020; 238:124676. [PMID: 31473531 DOI: 10.1016/j.chemosphere.2019.124676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/23/2019] [Accepted: 08/24/2019] [Indexed: 06/10/2023]
Abstract
While sublethal effects of insecticide on insect development have been widely studied, the underlying mechanisms remain elusive. Our previous studies revealed that sublethal concentrations of chlorantraniliprole significantly increased the juvenile hormone levels and resulted in both prolonged developmental time and reduced fecundity in Chilo suppressalis. In the present study, we evaluated the sublethal effects of chlorantraniliprole on molting hormone (MH) levels and mRNA expressions of three Halloween genes including CsCYP307A1, CsCYP306A1 and CsCYP314A1 in C. suppressalis. The results showed that the MH levels in different developmental stages of C. suppressalis were decreased after exposure to LC10 and LC30 of chlorantraniliprole. However, analysis of temporal expression profiles revealed that the mRNA levels of three Halloween genes were not closely correlated with the ecdysteroid titers in C. suppressalis. Notably, the transcript levels of CsCYP307A1, CsCYP306A1 and CsCYP314A1 were induced after treatment with sublethal concentrations of chlorantraniliprole in specific developmental stages. These results indicated that chlorantraniliprole had adverse effects on insect MH biosynthesis, and in addition to the involvement in MH biosynthesis, CsCYP307A1, CsCYP306A1 and CsCYP314A1 may also play important roles in the detoxification metabolism of chlorantraniliprole in C. suppressalis.
Collapse
Affiliation(s)
- Xiangkun Meng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Nan Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Xuemei Yang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Lijun Miao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Heng Jiang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Caihong Ji
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Beibei Xu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Kun Qian
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Jianjun Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
113
|
Xu T, Jiang X, Denton D, Kumar S. Ecdysone controlled cell and tissue deletion. Cell Death Differ 2020; 27:1-14. [PMID: 31745213 PMCID: PMC7205961 DOI: 10.1038/s41418-019-0456-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 12/24/2022] Open
Abstract
The removal of superfluous and unwanted cells is a critical part of animal development. In insects the steroid hormone ecdysone, the focus of this review, is an essential regulator of developmental transitions, including molting and metamorphosis. Like other steroid hormones, ecdysone works via nuclear hormone receptors to direct spatial and temporal regulation of gene transcription including genes required for cell death. During insect metamorphosis, pulses of ecdysone orchestrate the deletion of obsolete larval tissues, including the larval salivary glands and the midgut. In this review we discuss the molecular machinery and mechanisms of ecdysone-dependent cell and tissue removal, with a focus on studies in Drosophila and Lepidopteran insects.
Collapse
Affiliation(s)
- Tianqi Xu
- Centre for Cancer Biology, University of South Australia and SA Pathology, GPO Box 2471, Adelaide, SA, 5001, Australia
| | - Xin Jiang
- Centre for Cancer Biology, University of South Australia and SA Pathology, GPO Box 2471, Adelaide, SA, 5001, Australia
| | - Donna Denton
- Centre for Cancer Biology, University of South Australia and SA Pathology, GPO Box 2471, Adelaide, SA, 5001, Australia
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia and SA Pathology, GPO Box 2471, Adelaide, SA, 5001, Australia.
| |
Collapse
|
114
|
Galagovsky D, Depetris-Chauvin A, Manière G, Geillon F, Berthelot-Grosjean M, Noirot E, Alves G, Grosjean Y. Sobremesa L-type Amino Acid Transporter Expressed in Glia Is Essential for Proper Timing of Development and Brain Growth. Cell Rep 2019; 24:3156-3166.e4. [PMID: 30231999 PMCID: PMC6167638 DOI: 10.1016/j.celrep.2018.08.067] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 07/13/2018] [Accepted: 08/22/2018] [Indexed: 02/07/2023] Open
Abstract
In Drosophila, ecdysone hormone levels determine the timing of larval development. Its production is regulated by the stereotypical rise in prothoracicotropic hormone (PTTH) levels. Additionally, ecdysone levels can also be modulated by nutrition (specifically by amino acids) through their action on Drosophila insulin-like peptides (Dilps). Moreover, in glia, amino-acid-sensitive production of Dilps regulates brain development. In this work, we describe the function of an SLC7 amino acid transporter, Sobremesa (Sbm). Larvae with reduced Sbm levels in glia remain in third instar for an additional 24 hr. These larvae show reduced brain growth with increased body size but do not show reduction in insulin signaling or production. Interestingly, Sbm downregulation in glia leads to reduced Ecdysone production and a surprising delay in the rise of PTTH levels. Our work highlights Sbm as a modulator of both brain development and the timing of larval development via an amino-acid-sensitive and Dilp-independent function of glia. Glia express the SLC7 amino acid transporter Sobremesa, which controls development Sobremesa downregulation in glia leads to contrasting effects: small brain and big body size Sobremesa downregulation results in reduced ecdysone production Sobremesa downregulation causes a delayed rise in PTTH
Collapse
Affiliation(s)
- Diego Galagovsky
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Ana Depetris-Chauvin
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 21000 Dijon, France; Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Gérard Manière
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Flore Geillon
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Martine Berthelot-Grosjean
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Elodie Noirot
- Plateforme DImaCell, INRA, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Georges Alves
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Yael Grosjean
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 21000 Dijon, France.
| |
Collapse
|
115
|
Lin X, Smagghe G. Roles of the insulin signaling pathway in insect development and organ growth. Peptides 2019; 122:169923. [PMID: 29458057 DOI: 10.1016/j.peptides.2018.02.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 02/13/2018] [Accepted: 02/13/2018] [Indexed: 12/16/2022]
Abstract
Organismal development is a complex process as it requires coordination of many aspects to grow into fit individuals, such as the control of body size and organ growth. Therefore, the mechanisms of precise control of growth are essential for ensuring the growth of organisms at a correct body size and proper organ proportions during development. The control of the growth rate and the duration of growth (or the cessation of growth) are required in size control. The insulin signaling pathway and the elements involved are essential in the control of growth. On the other hand, the ecdysteroid molting hormone determines the duration of growth. The secretion of these hormones is controlled by environmental factors such as nutrition. Moreover, the target of rapamycin (TOR) pathway is considered as a nutrient sensing pathway. Important cross-talks have been shown to exist among these pathways. In this review, we outline the control of body and organ growth by the insulin/TOR signaling pathway, and also the interaction between nutrition via insulin/TOR signaling and ecdysteroids at the coordination of organismal development and organ growth in insects, mainly focusing on the well-studied fruit fly Drosophila melanogaster.
Collapse
Affiliation(s)
- Xianyu Lin
- Department of Crop Protection, Ghent University, 9000 Ghent, Belgium
| | - Guy Smagghe
- Department of Crop Protection, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
116
|
Grantham ME, Shingleton AW, Dudley E, Brisson JA. Expression profiling of winged- and wingless-destined pea aphid embryos implicates insulin/insulin growth factor signaling in morph differences. Evol Dev 2019; 22:257-268. [PMID: 31682317 DOI: 10.1111/ede.12326] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Developmental plasticity allows the matching of adult phenotypes to different environments. Although considerable effort has gone into understanding the evolution and ecology of plasticity, less is known about its developmental genetic basis. We focused on the pea aphid wing polyphenism, in which high- or low-density environments cause viviparous aphid mothers to produce winged or wingless offspring, respectively. Maternally provided ecdysone signals to embryos to be winged or wingless, but it is unknown how embryos respond to that signal. We used transcriptional profiling to investigate the gene expression state of winged-destined (WD) and wingless-destined (WLD) embryos at two developmental stages. We found that embryos differed in a small number of genes, and that gene sets were enriched for the insulin-signaling portion of the FoxO pathway. To look for a global signature of insulin signaling, we examined the size and stage of WD and WLD embryos but found no differences. These data suggest the hypothesis that FoxO signaling is important for morph development in a tissue-specific manner. We posit that maternally supplied ecdysone affects embryonic FoxO signaling, which ultimately plays a role in alternative morph development. Our study is one of an increasing number that implicate insulin signaling in the generation of alternative environmentally induced morphologies.
Collapse
Affiliation(s)
- Mary E Grantham
- Department of Biology, University of Rochester, Rochester, New York
| | | | - Emma Dudley
- Department of Biology, University of Rochester, Rochester, New York
| | | |
Collapse
|
117
|
Lavine MD, Gotoh H, Hayes A, Corley Lavine L. The Insulin Signaling Substrate Chico and the Ecdysone Response Element Broad Both Regulate Growth of the Head Horns in the Asian Rhinoceros Beetle, Trypoxylus dichotomus. Integr Comp Biol 2019; 59:1338-1345. [PMID: 31165143 DOI: 10.1093/icb/icz093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Males of the Asian rhinoceros beetle, Trypoxylus dichotomus, possess exaggerated head and thoracic horns that scale dramatically out of proportion to body size. While RNAi-mediated knockdowns of the insulin receptor suggest that the insulin signaling pathway regulates nutrition-dependent growth including exaggerated horns, the genes that regulate disproportionate growth have yet to be identified. We used RNAi-mediated knockdown of several genes to investigate their potential role in growth and scaling of the sexually dimorphic, exaggerated head horns of T. dichotomus. Knockdown of the insulin signaling substrate chico and the ecdysone response element broad caused significant decreases in head horn length, while having no or minimal effects on other structures such as elytra and tibiae. However, scaling of horns to body size was not affected by either knockdown. In addition, knockdown of phosphatase and tensin homolog, a negative regulator of the insulin signaling pathway, had no significant effects on any trait. Our results do not identify any candidate genes that may specifically mediate the allometric aspect of horn growth, but they do confirm the insulin signaling pathway as a mediator of conditional trait expression, and importantly implicate the ecdysone signaling pathway, possibly in conjunction with insulin signaling, as an additional mediator of horn growth.
Collapse
Affiliation(s)
- Mark D Lavine
- Department of Entomology, Washington State University, Pullman, WA 99164, USA
| | - Hiroki Gotoh
- Faculty of Environmental Earth Sciences, Hokkaido University, Sapporo, Hokkaido 0600810, Japan
| | - Abigail Hayes
- Department of Entomology, Washington State University, Pullman, WA 99164, USA
| | - Laura Corley Lavine
- Department of Entomology, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
118
|
Borreguero-Muñoz N, Fletcher GC, Aguilar-Aragon M, Elbediwy A, Vincent-Mistiaen ZI, Thompson BJ. The Hippo pathway integrates PI3K-Akt signals with mechanical and polarity cues to control tissue growth. PLoS Biol 2019; 17:e3000509. [PMID: 31613895 PMCID: PMC6814241 DOI: 10.1371/journal.pbio.3000509] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 10/25/2019] [Accepted: 10/03/2019] [Indexed: 11/19/2022] Open
Abstract
The Hippo signalling pathway restricts cell proliferation in animal tissues by inhibiting Yes-associated protein (YAP or YAP1) and Transcriptional Activator with a PDZ domain (TAZ or WW-domain-containing transcriptional activator [WWTR1]), coactivators of the Scalloped (Sd or TEAD) DNA-binding transcription factor. Drosophila has a single YAP/TAZ homolog named Yorkie (Yki) that is regulated by Hippo pathway signalling in response to epithelial polarity and tissue mechanics during development. Here, we show that Yki translocates to the nucleus to drive Sd-mediated cell proliferation in the ovarian follicle cell epithelium in response to mechanical stretching caused by the growth of the germline. Importantly, mechanically induced Yki nuclear localisation also requires nutritionally induced insulin/insulin-like growth factor 1 (IGF-1) signalling (IIS) via phosphatidyl inositol-3-kinase (PI3K), phosphoinositide-dependent kinase 1 (PDK1 or PDPK1), and protein kinase B (Akt or PKB) in the follicular epithelium. We find similar results in the developing Drosophila wing, where Yki becomes nuclear in the mechanically stretched cells of the wing pouch during larval feeding, which induces IIS, but translocates to the cytoplasm upon cessation of feeding in the third instar stage. Inactivating Akt prevents nuclear Yki localisation in the wing disc, while ectopic activation of the insulin receptor, PI3K, or Akt/PKB is sufficient to maintain nuclear Yki in mechanically stimulated cells of the wing pouch even after feeding ceases. Finally, IIS also promotes YAP nuclear localisation in response to mechanical cues in mammalian skin epithelia. Thus, the Hippo pathway has a physiological function as an integrator of epithelial cell polarity, tissue mechanics, and nutritional cues to control cell proliferation and tissue growth in both Drosophila and mammals.
Collapse
Affiliation(s)
| | - Georgina C. Fletcher
- Epithelial Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Mario Aguilar-Aragon
- Epithelial Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Ahmed Elbediwy
- Epithelial Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | | | - Barry J. Thompson
- Epithelial Biology Laboratory, The Francis Crick Institute, London, United Kingdom
- EMBL Australia, Department of Cancer Biology & Therapeutics, The John Curtin School of Medical Research, The Australian National University, Acton, Australia
- * E-mail:
| |
Collapse
|
119
|
Leiblich A, Hellberg JEEU, Sekar A, Gandy C, Mendes CC, Redhai S, Mason J, Wainwright M, Marie P, Goberdhan DCI, Hamdy FC, Wilson C. Mating induces switch from hormone-dependent to hormone-independent steroid receptor-mediated growth in Drosophila secondary cells. PLoS Biol 2019; 17:e3000145. [PMID: 31589603 PMCID: PMC6797231 DOI: 10.1371/journal.pbio.3000145] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 10/17/2019] [Accepted: 09/16/2019] [Indexed: 01/19/2023] Open
Abstract
Male reproductive glands like the mammalian prostate and the paired Drosophila melanogaster accessory glands secrete seminal fluid components that enhance fecundity. In humans, the prostate, stimulated by environmentally regulated endocrine and local androgens, grows throughout adult life. We previously showed that in fly accessory glands, secondary cells (SCs) and their nuclei also grow in adults, a process enhanced by mating and controlled by bone morphogenetic protein (BMP) signalling. Here, we demonstrate that BMP-mediated SC growth is dependent on the receptor for the developmental steroid ecdysone, whose concentration is reported to reflect sociosexual experience in adults. BMP signalling appears to regulate ecdysone receptor (EcR) levels via one or more mechanisms involving the EcR's N terminus or the RNA sequence that encodes it. Nuclear growth in virgin males is dependent on ecdysone, some of which is synthesised in SCs. However, mating induces additional BMP-mediated nuclear growth via a cell type-specific form of hormone-independent EcR signalling, which drives genome endoreplication in a subset of adult SCs. Switching to hormone-independent endoreplication after mating allows growth and secretion to be hyperactivated independently of ecdysone levels in SCs, permitting more rapid replenishment of the accessory gland luminal contents. Our data suggest mechanistic parallels between this physiological, behaviour-induced signalling switch and altered pathological signalling associated with prostate cancer progression.
Collapse
Affiliation(s)
- Aaron Leiblich
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | | | - Aashika Sekar
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Carina Gandy
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Claudia C. Mendes
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Siamak Redhai
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - John Mason
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Mark Wainwright
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Pauline Marie
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Deborah C. I. Goberdhan
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Freddie C. Hamdy
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Clive Wilson
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
120
|
Kovalenko EV, Mazina MY, Krasnov AN, Vorobyeva NE. The Drosophila nuclear receptors EcR and ERR jointly regulate the expression of genes involved in carbohydrate metabolism. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 112:103184. [PMID: 31295549 DOI: 10.1016/j.ibmb.2019.103184] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 05/14/2019] [Accepted: 07/06/2019] [Indexed: 06/09/2023]
Abstract
The rate of carbohydrate metabolism is tightly coordinated with developmental transitions in Drosophila, and fluctuates depending on the requirements of a particular developmental stage. These successive metabolic switches result from changes in the expression levels of genes encoding glycolytic, tricarboxylic acid cycle (TCA), and oxidative phosphorylation enzymes. In this report, we describe a repressive action of ecdysone signaling on the expression of glycolytic genes and enzymes of glycogen metabolism in Drosophila development. The basis of this effect is an interaction between the ecdysone receptor (EcR) and the estrogen-related receptor (ERR), a specific regulator of the Drosophila glycolysis. We found an overlapping DNA-binding pattern for the EcR and ERR in the Drosophila S2 cells. EcR was detected at a subset of the ERR target genes responsible for carbohydrate metabolism. The 20-hydroxyecdysone treatment of both the Drosophila larvae and the S2 cells decreased transcriptional levels of ERR targets. We propose a joint action mode for both the EcR and ERR, for at least a subset of the glycolytic genes. We find that both receptors bind to the same regulatory regions and may form or be part of a joint transcriptional regulatory complex in the Drosophila S2 cells.
Collapse
Affiliation(s)
- Elena V Kovalenko
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Marina Yu Mazina
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Aleksey N Krasnov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | | |
Collapse
|
121
|
Yoon DS, Park JC, Park HG, Lee JS, Han J. Effects of atrazine on life parameters, oxidative stress, and ecdysteroid biosynthetic pathway in the marine copepod Tigriopus japonicus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 213:105213. [PMID: 31200332 DOI: 10.1016/j.aquatox.2019.05.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/25/2019] [Accepted: 05/25/2019] [Indexed: 06/09/2023]
Abstract
Atrazine is a widely used pesticide which acts as an endocrine disruptor in various organisms. The aim of this study was to investigate adverse effects of atrazine on life parameters, oxidative stress, and ecdysteroid biosynthetic pathway in the marine copepod Tigriopus japonicus. In T. japonicus, no mortality was shown in response to atrazine up to 20 mg/L in acute toxicity assessment. In nauplii, retardation in the growth and prolonged molting and metamorphosis resulted under chronic exposure of atrazine at 20 mg/L. In addition, body sizes of T. japonicus nauplii were significantly decreased (P < 0.01 in length and P < 0.001 in width) in response to 20 mg/L of atrazine. Furthermore, atrazine induced oxidative stress by the generation of reactive oxygen species at all concentrations compared to the control in the nauplii. Also, significant increase in glutathione-S transferase activity was observed in adult T. japonicus at low concentration of atrazine. To understand effects of atrazine on ecdysteroid biosynthetic pathway-involved genes (e.g., neverland, CYP307E1, CYP306A1, CYP302A1, CYP3022A1 [CYP315A1], CYP314A1, and CYP18D1) were examined with mRNA expressions of ecdysone receptor (EcR) and ultraspiracle (USP) in response to 20 mg/L atrazine in nauplii and adults. In the nauplii, these genes were significantly downregulated (P < 0.05) in response to atrazine, compared to the control but not in the adult T. japonicus. These results suggest that atrazine can interfere in vivo life parameters by oxidative stress-induced retrogression and ecdysteroid biosynthetic pathway in this species.
Collapse
Affiliation(s)
- Deok-Seo Yoon
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jun Chul Park
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Heum Gi Park
- Department of Marine Resource Development, College of Life Sciences, Gangneung-Wonju National University, Gangneung 25457, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Jeonghoon Han
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
122
|
Caccia S, Casartelli M, Tettamanti G. The amazing complexity of insect midgut cells: types, peculiarities, and functions. Cell Tissue Res 2019; 377:505-525. [DOI: 10.1007/s00441-019-03076-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/08/2019] [Indexed: 01/12/2023]
|
123
|
Deshpande SA, Meiselman M, Hice RH, Arensburger P, Rivera-Perez C, Kim DH, Croft RL, Noriega FG, Adams ME. Ecdysis triggering hormone receptors regulate male courtship behavior via antennal lobe interneurons in Drosophila. Gen Comp Endocrinol 2019; 278:79-88. [PMID: 30543770 DOI: 10.1016/j.ygcen.2018.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 12/05/2018] [Accepted: 12/10/2018] [Indexed: 10/27/2022]
Abstract
Ecdysis triggering hormone receptors (ETHR) regulate the behavioral sequence necessary for cuticle shedding. Recent reports have documented functions for ETHR signaling in adult Drosophila melanogaster. In this study, we report that ETHR silencing in local interneurons of the antennal lobes and fruitless neurons leads to sharply increased rates of male-male courtship. RNAseq analysis of ETHR knockdown flies reveals differential expression of genes involved in axon guidance, courtship behavior and chemosensory functions. Our findings indicate an important role for ETHR in regulation of Drosophila courtship behavior through chemosensory processing in the antennal lobe.
Collapse
Affiliation(s)
- Sonali A Deshpande
- Department of Entomology, University of California, Riverside, CA 92521, United States
| | - Matthew Meiselman
- Graduate Program in Cell, Molecular, and Developmental Biology, University of California, Riverside, CA 92521, United States
| | - Robert H Hice
- Department of Entomology, University of California, Riverside, CA 92521, United States
| | - Peter Arensburger
- Department of Biological Sciences, California State Polytechnic University, Pomona, CA 917684, United States
| | - Crisalejandra Rivera-Perez
- Department of Biological Sciences, Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States
| | - Do-Hyoung Kim
- Department of Entomology, University of California, Riverside, CA 92521, United States
| | - Rachel L Croft
- Cell Biology and Neuroscience, University of California, Riverside, CA 92521, United States
| | - Fernando Gabriel Noriega
- Department of Biological Sciences, Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States
| | - Michael E Adams
- Department of Entomology, University of California, Riverside, CA 92521, United States; Cell Biology and Neuroscience, University of California, Riverside, CA 92521, United States.
| |
Collapse
|
124
|
Li C, Liu J, Lü P, Ma S, Zhu K, Gao L, Li B, Chen K. Identification, expression and function of myosin heavy chain family genes in Tribolium castaneum. Genomics 2019; 111:719-728. [DOI: 10.1016/j.ygeno.2018.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 02/07/2023]
|
125
|
Overexpression of BmFoxO inhibited larval growth and promoted glucose synthesis and lipolysis in silkworm. Mol Genet Genomics 2019; 294:1375-1383. [DOI: 10.1007/s00438-019-01550-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/21/2019] [Indexed: 11/25/2022]
|
126
|
Uyehara CM, McKay DJ. Direct and widespread role for the nuclear receptor EcR in mediating the response to ecdysone in Drosophila. Proc Natl Acad Sci U S A 2019; 116:9893-9902. [PMID: 31019084 PMCID: PMC6525475 DOI: 10.1073/pnas.1900343116] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ecdysone pathway was among the first experimental systems employed to study the impact of steroid hormones on the genome. In Drosophila and other insects, ecdysone coordinates developmental transitions, including wholesale transformation of the larva into the adult during metamorphosis. Like other hormones, ecdysone controls gene expression through a nuclear receptor, which functions as a ligand-dependent transcription factor. Although it is clear that ecdysone elicits distinct transcriptional responses within its different target tissues, the role of its receptor, EcR, in regulating target gene expression is incompletely understood. In particular, EcR initiates a cascade of transcription factor expression in response to ecdysone, making it unclear which ecdysone-responsive genes are direct EcR targets. Here, we use the larval-to-prepupal transition of developing wings to examine the role of EcR in gene regulation. Genome-wide DNA binding profiles reveal that EcR exhibits widespread binding across the genome, including at many canonical ecdysone response genes. However, the majority of its binding sites reside at genes with wing-specific functions. We also find that EcR binding is temporally dynamic, with thousands of binding sites changing over time. RNA-seq reveals that EcR acts as both a temporal gate to block precocious entry to the next developmental stage as well as a temporal trigger to promote the subsequent program. Finally, transgenic reporter analysis indicates that EcR regulates not only temporal changes in target enhancer activity but also spatial patterns. Together, these studies define EcR as a multipurpose, direct regulator of gene expression, greatly expanding its role in coordinating developmental transitions.
Collapse
Affiliation(s)
- Christopher M Uyehara
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Daniel J McKay
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599;
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
127
|
Toshniwal AG, Gupta S, Mandal L, Mandal S. ROS Inhibits Cell Growth by Regulating 4EBP and S6K, Independent of TOR, during Development. Dev Cell 2019; 49:473-489.e9. [DOI: 10.1016/j.devcel.2019.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/30/2019] [Accepted: 04/05/2019] [Indexed: 01/08/2023]
|
128
|
A fat-tissue sensor couples growth to oxygen availability by remotely controlling insulin secretion. Nat Commun 2019; 10:1955. [PMID: 31028268 PMCID: PMC6486587 DOI: 10.1038/s41467-019-09943-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 04/10/2019] [Indexed: 12/22/2022] Open
Abstract
Organisms adapt their metabolism and growth to the availability of nutrients and oxygen, which are essential for development, yet the mechanisms by which this adaptation occurs are not fully understood. Here we describe an RNAi-based body-size screen in Drosophila to identify such mechanisms. Among the strongest hits is the fibroblast growth factor receptor homolog breathless necessary for proper development of the tracheal airway system. Breathless deficiency results in tissue hypoxia, sensed primarily in this context by the fat tissue through HIF-1a prolyl hydroxylase (Hph). The fat relays its hypoxic status through release of one or more HIF-1a-dependent humoral factors that inhibit insulin secretion from the brain, thereby restricting systemic growth. Independently of HIF-1a, Hph is also required for nutrient-dependent Target-of-rapamycin (Tor) activation. Our findings show that the fat tissue acts as the primary sensor of nutrient and oxygen levels, directing adaptation of organismal metabolism and growth to environmental conditions. The mechanisms by which organisms adapt their growth according to the availability of oxygen are incompletely understood. Here the authors identify the Drosophila fat body as a tissue regulating growth in response to oxygen sensing via a mechanism involving Hph inhibition, HIF1-a activation and insulin secretion.
Collapse
|
129
|
Liu Y, Ji Y, Li X, Shui G, Huang X. Lipid storage regulator CdsA is essential for Drosophila metamorphosis. J Genet Genomics 2019; 46:231-234. [PMID: 31072795 DOI: 10.1016/j.jgg.2019.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/03/2019] [Accepted: 02/25/2019] [Indexed: 11/25/2022]
Affiliation(s)
- Yuan Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan Ji
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xia Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
130
|
Control of Drosophila Growth and Survival by the Lipid Droplet-Associated Protein CG9186/Sturkopf. Cell Rep 2019; 26:3726-3740.e7. [DOI: 10.1016/j.celrep.2019.02.110] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 05/08/2018] [Accepted: 02/27/2019] [Indexed: 12/20/2022] Open
|
131
|
Triacylglycerol Metabolism in Drosophila melanogaster. Genetics 2019; 210:1163-1184. [PMID: 30523167 DOI: 10.1534/genetics.118.301583] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 09/11/2018] [Indexed: 12/11/2022] Open
Abstract
Triacylglycerol (TAG) is the most important caloric source with respect to energy homeostasis in animals. In addition to its evolutionarily conserved importance as an energy source, TAG turnover is crucial to the metabolism of structural and signaling lipids. These neutral lipids are also key players in development and disease. Here, we review the metabolism of TAG in the Drosophila model system. Recently, the fruit fly has attracted renewed attention in research due to the unique experimental approaches it affords in studying the tissue-autonomous and interorgan regulation of lipid metabolism in vivo Following an overview of the systemic control of fly body fat stores, we will cover lipid anabolic, enzymatic, and regulatory processes, which begin with the dietary lipid breakdown and de novo lipogenesis that results in lipid droplet storage. Next, we focus on lipolytic processes, which mobilize storage TAG to make it metabolically accessible as either an energy source or as a building block for biosynthesis of other lipid classes. Since the buildup and breakdown of fat involves various organs, we highlight avenues of lipid transport, which are at the heart of functional integration of organismic lipid metabolism. Finally, we draw attention to some "missing links" in basic neutral lipid metabolism and conclude with a perspective on how fly research can be exploited to study functional metabolic roles of diverse lipids.
Collapse
|
132
|
Texada MJ, Malita A, Christensen CF, Dall KB, Faergeman NJ, Nagy S, Halberg KA, Rewitz K. Autophagy-Mediated Cholesterol Trafficking Controls Steroid Production. Dev Cell 2019; 48:659-671.e4. [PMID: 30799225 DOI: 10.1016/j.devcel.2019.01.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 12/05/2018] [Accepted: 01/02/2019] [Indexed: 12/14/2022]
Abstract
Steroid hormones are important signaling molecules that regulate growth and drive the development of many cancers. These factors act as long-range signals that systemically regulate the growth of the entire organism, whereas the Hippo/Warts tumor-suppressor pathway acts locally to limit organ growth. We show here that autophagy, a pathway that mediates the degradation of cellular components, also controls steroid production. This process is regulated by Warts (in mammals, LATS1/2) signaling, via its effector microRNA bantam, in response to nutrients. Specifically, autophagy-mediated mobilization and trafficking of the steroid precursor cholesterol from intracellular stores controls the production of the Drosophila steroid ecdysone. Furthermore, we also show that bantam regulates this process via the ecdysone receptor and Tor signaling, identifying pathways through which bantam regulates autophagy and growth. The Warts pathway thus promotes nutrient-dependent systemic growth during development by autophagy-dependent steroid hormone regulation (ASHR). These findings uncover an autophagic trafficking mechanism that regulates steroid production.
Collapse
Affiliation(s)
- Michael J Texada
- Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Alina Malita
- Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | | | - Kathrine B Dall
- Villum Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Nils J Faergeman
- Villum Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Stanislav Nagy
- Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Kenneth A Halberg
- Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Kim Rewitz
- Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark.
| |
Collapse
|
133
|
E93 Integrates Neuroblast Intrinsic State with Developmental Time to Terminate MB Neurogenesis via Autophagy. Curr Biol 2019; 29:750-762.e3. [PMID: 30773368 DOI: 10.1016/j.cub.2019.01.039] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/05/2018] [Accepted: 01/14/2019] [Indexed: 12/17/2022]
Abstract
Most neurogenesis occurs during development, driven by the cell divisions of neural stem cells (NSCs). We use Drosophila to understand how neurogenesis terminates once development is complete, a process critical for neural circuit formation. We identified E93, a steroid-hormone-induced transcription factor that downregulates phosphatidylinositol 3-kinase (PI3K) levels to activate autophagy for elimination of mushroom body (MB) neuroblasts. MB neuroblasts are a subset of Drosophila NSCs that generate neurons important for memory and learning. MB neurogenesis extends into adulthood when E93 is reduced and terminates prematurely when E93 is overexpressed. E93 is expressed in MB neuroblasts during later stages of pupal development only, which includes the time when MB neuroblasts normally terminate their divisions. Cell intrinsic Imp and Syp temporal factors regulate timing of E93 expression in MB neuroblasts, and extrinsic steroid hormone receptor (EcR) activation boosts E93 levels high for termination. Imp inhibits premature expression of E93 in a Syp-dependent manner, and Syp positively regulates E93 to promote neurogenesis termination. Imp and Syp together with E93 form a temporal cassette, which consequently links early developmental neurogenesis with termination. Altogether, E93 functions as a late-acting temporal factor integrating extrinsic hormonal cues linked to developmental timing with neuroblast intrinsic temporal cues to precisely time neurogenesis ending during development.
Collapse
|
134
|
Mirth CK, Shingleton AW. Coordinating Development: How Do Animals Integrate Plastic and Robust Developmental Processes? Front Cell Dev Biol 2019; 7:8. [PMID: 30788342 PMCID: PMC6372504 DOI: 10.3389/fcell.2019.00008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/16/2019] [Indexed: 02/02/2023] Open
Abstract
Our developmental environment significantly affects myriad aspects of our biology, including key life history traits, morphology, physiology, and our susceptibility to disease. This environmentally-induced variation in phenotype is known as plasticity. In many cases, plasticity results from alterations in the rate of synthesis of important developmental hormones. However, while developmental processes like organ growth are sensitive to environmental conditions, others like patterning - the process that generates distinct cell identities - remain robust to perturbation. This is particularly surprising given that the same hormones that regulate organ growth also regulate organ patterning. In this review, we revisit the current approaches that address how organs coordinate their growth and pattern, and outline our hypotheses for understanding how organs achieve correct pattern across a range of sizes.
Collapse
Affiliation(s)
- Christen K Mirth
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| | - Alexander W Shingleton
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
135
|
Abstract
The insect fat body is analogous to vertebrate adipose tissue and liver. In this review, the new and exciting advancements made in fat body biology in the last decade are summarized. Controlled by hormonal and nutritional signals, insect fat body cells undergo mitosis during embryogenesis, endoreplication during the larval stages, and remodeling during metamorphosis and regulate reproduction in adults. Fat body tissues are major sites for nutrient storage, energy metabolism, innate immunity, and detoxification. Recent studies have revealed that the fat body plays a central role in the integration of hormonal and nutritional signals to regulate larval growth, body size, circadian clock, pupal diapause, longevity, feeding behavior, and courtship behavior, partially by releasing fat body signals to remotely control the brain. In addition, the fat body has emerged as a fascinating model for studying metabolic disorders and immune diseases. Potential future directions for fat body biology are also proposed herein.
Collapse
Affiliation(s)
- Sheng Li
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, Guangdong 510631, China; , ,
| | - Xiaoqiang Yu
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, Guangdong 510631, China; , ,
| | - Qili Feng
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, Guangdong 510631, China; , ,
| |
Collapse
|
136
|
Tran HT, Cho E, Jeong S, Jeong EB, Lee HS, Jeong SY, Hwang JS, Kim EY. Makorin 1 Regulates Developmental Timing in Drosophila. Mol Cells 2018; 41:1024-1032. [PMID: 30396233 PMCID: PMC6315317 DOI: 10.14348/molcells.2018.0367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 09/15/2018] [Accepted: 09/25/2018] [Indexed: 12/13/2022] Open
Abstract
The central mechanisms coordinating growth and sexual maturation are well conserved across invertebrates and vertebrates. Although mutations in the gene encoding makorin RING finger protein 3 (mkrn3 ) are associated with central precocious puberty in humans, a causal relationship has not been elucidated. Here, we examined the role of mkrn1, a Drosophila ortholog of mammalian makorin genes, in the regulation of developmental timing. Loss of MKRN1 in mkrn1 exS prolonged the 3rd instar stage and delayed the onset of pupariation, resulting in bigger size pupae. MKRN1 was expressed in the prothoracic gland, where the steroid hormone ecdysone is produced. Furthermore, mkrn1 exS larvae exhibited reduced mRNA levels of phantom, which encodes ecdysone-synthesizing enzyme and E74, which is a downstream target of ecdysone. Collectively, these results indicate that MKRN1 fine-tunes developmental timing and sexual maturation by affecting ecdysone synthesis in Drosophila. Moreover, our study supports the notion that malfunction of makorin gene family member, mkrn3 dysregulates the timing of puberty in mammals.
Collapse
Affiliation(s)
- Hong Thuan Tran
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Kyunggi-do 16499,
Korea
- Department of Brain Science, Ajou University Medical Center, Kyunggi-do 16499,
Korea
| | - Eunjoo Cho
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Kyunggi-do 16499,
Korea
- Department of Brain Science, Ajou University Medical Center, Kyunggi-do 16499,
Korea
| | - Seongsu Jeong
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Kyunggi-do 16499,
Korea
- Department of Brain Science, Ajou University Medical Center, Kyunggi-do 16499,
Korea
| | - Eui Beom Jeong
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Kyunggi-do 16499,
Korea
- Department of Brain Science, Ajou University Medical Center, Kyunggi-do 16499,
Korea
| | - Hae Sang Lee
- Department of Pediatrics, Ajou University Medical Center, Kyunggi-do 16499,
Korea
| | - Seon Yong Jeong
- Department of Medical Genetics, Ajou University Medical Center, Kyunggi-do 16499,
Korea
| | - Jin Soon Hwang
- Department of Pediatrics, Ajou University Medical Center, Kyunggi-do 16499,
Korea
| | - Eun Young Kim
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Kyunggi-do 16499,
Korea
- Department of Brain Science, Ajou University Medical Center, Kyunggi-do 16499,
Korea
| |
Collapse
|
137
|
Casasa S, Moczek AP. Insulin signalling's role in mediating tissue-specific nutritional plasticity and robustness in the horn-polyphenic beetle Onthophagus taurus. Proc Biol Sci 2018; 285:20181631. [PMID: 30963895 PMCID: PMC6304051 DOI: 10.1098/rspb.2018.1631] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/20/2018] [Indexed: 12/22/2022] Open
Abstract
Organisms cope with nutritional variation via developmental plasticity, adjusting trait size to nutrient availability for some traits while enabling others to develop in a nutritionally robust manner. Yet, the developmental mechanisms that regulate organ-specific growth across nutritional gradients remain poorly understood. We assessed the functions of members of the insulin/insulin-like signalling pathway (IIS) in the regulation of nutrition sensitivity and robustness in males of the horn-polyphenic beetle Onthophagus taurus, as well as potential regulatory interactions between IIS and two other growth-regulating pathways: Doublesex and Hedgehog signalling. Using RNA interference (RNAi), we experimentally knocked down both insulin receptors ( InR1 and InR2) and Foxo, a growth inhibitor. We then performed morphometric measurements on horns, a highly nutrition-sensitive trait, and genitalia, a largely nutrition-insensitive trait. Finally, we used quantitative real-time polymerase chain reaction to assess expression levels of doublesex and the Hedgehog signalling gene smoothened following IIS-RNAi. Our results suggest that nutrition responsiveness of both traits is regulated by different IIS components, which transduce nutritional conditions to both Doublesex and Hedgehog pathways, albeit via different IIS pathway members. Combined with previous studies, our findings suggest that separate origins of trait exaggeration among insect lineages were enabled through the independent co-option of IIS, yet via reliance on different components therein.
Collapse
Affiliation(s)
- Sofia Casasa
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | |
Collapse
|
138
|
Yin ZJ, Dong XL, Kang K, Chen H, Dai XY, Wu GA, Zheng L, Yu Y, Zhai YF. FoxO Transcription Factor Regulate Hormone Mediated Signaling on Nymphal Diapause. Front Physiol 2018; 9:1654. [PMID: 30515107 PMCID: PMC6255938 DOI: 10.3389/fphys.2018.01654] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 11/02/2018] [Indexed: 11/13/2022] Open
Abstract
Diapause is a complex physiological adaptation phenotype, and the transcription factor Forkhead-box O (FoxO) is a prime candidate for activating many of its diverse regulatory signaling pathways. Hormone signaling regulates nymphal diapause in Laodelphax striatellus. Here, the function of the FoxO gene isolated from L. striatellus was investigated. After knocking-down LsFoxO in diapausal nymphs using RNA interference, the titers of juvenile hormone III and some cold-tolerance substances decreased significantly, and the duration of the nymphal developmental period was severely shorted to 25.5 days at 20°C under short day-length (10 L:14 D). To determine how LsFoxO affects nymphal diapause, analyses of RNA-sequencing transcriptome data after treatment with LsFoxO–RNA interference was performed. The differentially expressed genes affected carbohydrate, amino acid and fatty acid metabolism, and phosphatidylinositol 3-kinase/protein kinase B signaling pathway. Thus, LsFoxO acts on L. striatellus nymphal diapause and is, therefore, a potential target gene for pest control. This study may lead to new information on the regulation of nymphal diapause in this important pest.
Collapse
Affiliation(s)
- Zhen-Juan Yin
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xiao-Lin Dong
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Kui Kang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hao Chen
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xiao-Yan Dai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Guang-An Wu
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China.,College of Agriculture, Yangtze University, Jingzhou, China
| | - Li Zheng
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yi Yu
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yi-Fan Zhai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China.,College of Agriculture, Yangtze University, Jingzhou, China.,College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
139
|
Hyun S. Body size regulation by maturation steroid hormones: a Drosophila perspective. Front Zool 2018; 15:44. [PMID: 30479644 PMCID: PMC6247710 DOI: 10.1186/s12983-018-0290-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/01/2018] [Indexed: 12/19/2022] Open
Abstract
The mechanism that determines the specific body size of an animal is a fundamental biological question that remains largely unanswered. This aspect is now beginning to be understood in insect models, particularly in Drosophila melanogaster, with studies highlighting the importance of nutrient-responsive growth signaling pathways involving insulin/insulin-like growth factor signaling (IIS) and target of rapamycin (TOR) (IIS/TOR). These pathways operate in animals, from insects to mammals, adjusting the growth rate in response to the nutritional condition of the organism. Organismal growth is closely coupled with the process of developmental maturation mediated by maturation steroid hormones, which is influenced greatly by environmental and nutritional conditions. Recent Drosophila studies have been revealing the mechanisms responsible for this phenomenon. In this review, I summarize some important findings about the steroid hormone regulation of Drosophila body growth, calling attention to the influence of developmental nutritional conditions on animal size determination.
Collapse
Affiliation(s)
- Seogang Hyun
- Department of Life Science, Chung-Ang University, Heukseok-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| |
Collapse
|
140
|
Setiawan L, Pan X, Woods AL, O'Connor MB, Hariharan IK. The BMP2/4 ortholog Dpp can function as an inter-organ signal that regulates developmental timing. Life Sci Alliance 2018; 1:e201800216. [PMID: 30515478 PMCID: PMC6243201 DOI: 10.26508/lsa.201800216] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 12/19/2022] Open
Abstract
Increased local trapping of morphogens within tissues as they grow would reduce circulating levels and can therefore provide a systemic readout of the status of their growth and maturation. Developmental transitions are often triggered by a neuroendocrine axis and can be contingent upon multiple organs achieving sufficient growth and maturation. How the neurodendocrine axis senses the size and maturity of peripheral organs is not known. In Drosophila larvae, metamorphosis is triggered by a sharp increase in the level of the steroid hormone ecdysone, secreted by the prothoracic gland (PG). Here, we show that the BMP2/4 ortholog Dpp can function as a systemic signal to regulate developmental timing. Dpp from peripheral tissues, mostly imaginal discs, can reach the PG and inhibit ecdysone biosynthesis. As the discs grow, reduced Dpp signaling in the PG is observed, consistent with the possibility that Dpp functions in a checkpoint mechanism that prevents metamorphosis when growth is insufficient. Indeed, upon starvation early in the third larval instar, reducing Dpp signaling in the PG abrogates the critical-weight checkpoint which normally prevents pupariation under these conditions. We suggest that increased local trapping of morphogen within tissues as they grow would reduce circulating levels and hence provide a systemic readout of their growth status.
Collapse
Affiliation(s)
- Linda Setiawan
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Xueyang Pan
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Alexis L Woods
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Michael B O'Connor
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Iswar K Hariharan
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| |
Collapse
|
141
|
Jiang S, Dai Y, Lu Y, Fan S, Liu Y, Bodlah MA, Parajulee MN, Chen F. Molecular Evidence for the Fitness of Cotton Aphid, Aphis gossypii in Response to Elevated CO 2 From the Perspective of Feeding Behavior Analysis. Front Physiol 2018; 9:1444. [PMID: 30483140 PMCID: PMC6240613 DOI: 10.3389/fphys.2018.01444] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/24/2018] [Indexed: 11/30/2022] Open
Abstract
Rising atmospheric carbon dioxide (CO2) concentration is likely to influence insect-plant interactions. Aphid, as a typical phloem-feeding herbivorous insect, has shown consistently more positive responses in fitness to elevated CO2 concentrations than those seen in leaf-chewing insects. But, little is known about the mechanism of this performance. In this study, the foliar soluble constituents of cotton and the life history of the cotton aphid Aphis gossypii and its mean relative growth rate (MRGR) and feeding behavior were measured, as well as the relative transcript levels of target genes related appetite, salivary proteins, molting hormone (MH), and juvenile hormone, to investigate the fitness of A. gossypii in response to elevated CO2 (800 ppm vs. 400 ppm). The results indicated that elevated CO2 significantly stimulated the increase in concentrations of soluble proteins in the leaf and sucrose in seedlings. Significant increases in adult longevity, lifespan, fecundity, and MRGR of A. gossypii were found under elevated CO2 in contrast to ambient CO2. Furthermore, the feeding behavior of A. gossypii was significantly affected by elevated CO2, including significant shortening of the time of stylet penetration to phloem position and significant decrease in the mean frequency of xylem phase. It is presumed that the fitness of A. gossypii can be enhanced, resulting from the increases in nutrient sources and potential increase in the duration of phloem ingestion under elevated CO2 in contrast to ambient CO2. In addition, the qPCR results also demonstrated that the genes related to appetite and salivary proteins were significantly upregulated, whereas, the genes related to MH were significantly downregulated under elevated CO2 in contrast to ambient CO2, this is in accordance with the performance of A. gossypii in response to elevated CO2. In conclusion, rise in atmospheric CO2 concentration can enhance the fitness of A. gossypii by increasing their ingestion of higher quantity and higher quality of host plant tissues and by simultaneously upregulating the transcript expression of the genes related to appetite and salivary proteins, and then this may increase the control risk of A. gossypii under conditions of climate change in the future.
Collapse
Affiliation(s)
- Shoulin Jiang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Personnel Department, Qingdao Agricultural University, Qingdao, China
| | - Yang Dai
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yongqing Lu
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Shuqin Fan
- Qidong Agricultural Commission, Qidong, China
| | - Yanmin Liu
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Muhammad Adnan Bodlah
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Megha N. Parajulee
- Texas A&M University AgriLife Research and Extension Center, Lubbock, TX, United States
| | - Fajun Chen
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
142
|
Distinct Roles for Peroxisomal Targeting Signal Receptors Pex5 and Pex7 in Drosophila. Genetics 2018; 211:141-149. [PMID: 30389805 DOI: 10.1534/genetics.118.301628] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 10/26/2018] [Indexed: 12/26/2022] Open
Abstract
Peroxisomes are ubiquitous membrane-enclosed organelles involved in lipid processing and reactive oxygen detoxification. Mutations in human peroxisome biogenesis genes (Peroxin, PEX, or Pex) cause developmental disabilities and often early death. Pex5 and Pex7 are receptors that recognize different peroxisomal targeting signals called PTS1 and PTS2, respectively, and traffic proteins to the peroxisomal matrix. We characterized mutants of Drosophila melanogaster Pex5 and Pex7 and found that adult animals are affected in lipid processing. Pex5 mutants exhibited severe developmental defects in the embryonic nervous system and muscle, similar to what is observed in humans with PEX5 mutations, while Pex7 fly mutants were weakly affected in brain development, suggesting different roles for fly Pex7 and human PEX7. Of note, although no PTS2-containing protein has been identified in Drosophila, Pex7 from Drosophila can function as a bona fide PTS2 receptor because it can rescue targeting of the PTS2-containing protein thiolase to peroxisomes in PEX7 mutant human fibroblasts.
Collapse
|
143
|
Aw WC, Towarnicki SG, Melvin RG, Youngson NA, Garvin MR, Hu Y, Nielsen S, Thomas T, Pickford R, Bustamante S, Vila-Sanjurjo A, Smyth GK, Ballard JWO. Genotype to phenotype: Diet-by-mitochondrial DNA haplotype interactions drive metabolic flexibility and organismal fitness. PLoS Genet 2018; 14:e1007735. [PMID: 30399141 PMCID: PMC6219761 DOI: 10.1371/journal.pgen.1007735] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/02/2018] [Indexed: 02/07/2023] Open
Abstract
Diet may be modified seasonally or by biogeographic, demographic or cultural shifts. It can differentially influence mitochondrial bioenergetics, retrograde signalling to the nuclear genome, and anterograde signalling to mitochondria. All these interactions have the potential to alter the frequencies of mtDNA haplotypes (mitotypes) in nature and may impact human health. In a model laboratory system, we fed four diets varying in Protein: Carbohydrate (P:C) ratio (1:2, 1:4, 1:8 and 1:16 P:C) to four homoplasmic Drosophila melanogaster mitotypes (nuclear genome standardised) and assayed their frequency in population cages. When fed a high protein 1:2 P:C diet, the frequency of flies harbouring Alstonville mtDNA increased. In contrast, when fed the high carbohydrate 1:16 P:C food the incidence of flies harbouring Dahomey mtDNA increased. This result, driven by differences in larval development, was generalisable to the replacement of the laboratory diet with fruits having high and low P:C ratios, perturbation of the nuclear genome and changes to the microbiome. Structural modelling and cellular assays suggested a V161L mutation in the ND4 subunit of complex I of Dahomey mtDNA was mildly deleterious, reduced mitochondrial functions, increased oxidative stress and resulted in an increase in larval development time on the 1:2 P:C diet. The 1:16 P:C diet triggered a cascade of changes in both mitotypes. In Dahomey larvae, increased feeding fuelled increased β-oxidation and the partial bypass of the complex I mutation. Conversely, Alstonville larvae upregulated genes involved with oxidative phosphorylation, increased glycogen metabolism and they were more physically active. We hypothesise that the increased physical activity diverted energy from growth and cell division and thereby slowed development. These data further question the use of mtDNA as an assumed neutral marker in evolutionary and population genetic studies. Moreover, if humans respond similarly, we posit that individuals with specific mtDNA variations may differentially metabolise carbohydrates, which has implications for a variety of diseases including cardiovascular disease, obesity, and perhaps Parkinson's Disease.
Collapse
Affiliation(s)
- Wen C. Aw
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Samuel G. Towarnicki
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Richard G. Melvin
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Neil A. Youngson
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Michael R. Garvin
- School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
| | - Yifang Hu
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Shaun Nielsen
- Centre for Marine Bio-Innovation and School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Torsten Thomas
- Centre for Marine Bio-Innovation and School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Russell Pickford
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Center, The University of New South Wales, Sydney, NSW, Australia
| | - Sonia Bustamante
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Center, The University of New South Wales, Sydney, NSW, Australia
| | - Antón Vila-Sanjurjo
- Grupo GIBE, Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña (UDC), Campus Zapateira s/n, A Coruña, Spain
| | - Gordon K. Smyth
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, Victoria, Australia
| | - J. William O. Ballard
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
144
|
Westfall S, Lomis N, Prakash S. Ferulic Acid Produced by Lactobacillus fermentum Influences Developmental Growth Through a dTOR-Mediated Mechanism. Mol Biotechnol 2018; 61:1-11. [DOI: 10.1007/s12033-018-0119-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
145
|
Tan D, Hu H, Tong X, Han M, Wu S, Ding X, Dai F, Lu C. Comparative Analysis of the Integument Transcriptomes between Stick Mutant and Wild-Type Silkworms. Int J Mol Sci 2018; 19:ijms19103158. [PMID: 30322193 PMCID: PMC6214029 DOI: 10.3390/ijms19103158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/07/2018] [Accepted: 10/10/2018] [Indexed: 11/16/2022] Open
Abstract
In insects, the integument provides mechanical support for the whole body and protects them from infections, physical and chemical injuries, and dehydration. Diversity in integument properties is often related to body shape, behavior, and survival rate. The stick (sk) silkworm is a spontaneous mutant with a stick-like larval body that is firm to the touch and, thus, less flexible. Analysis of the mechanical properties of the cuticles at day 3 of the fifth instar (L5D3) of sk larvae revealed higher storage modulus and lower loss tangent. Transcriptome sequencing identified a total of 19,969 transcripts that were expressed between wild-type Dazao and the sk mutant at L5D2, of which 11,596 transcripts were novel and detected in the integument. Differential expression analyses identified 710 upregulated genes and 1009 downregulated genes in the sk mutant. Gene Ontology (GO) enrichment analysis indicated that four chitin-binding peritrophin A domain genes and a chitinase gene were upregulated, whereas another four chitin-binding peritrophin A domain genes, a trehalase, and nine antimicrobial peptides were downregulated. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that two functional pathways, namely, fructose and mannose metabolism and tyrosine metabolism, were significantly enriched with differentially-expressed transcripts. This study provides a foundation for understanding the molecular mechanisms underlying the development of the stiff exoskeleton in the sk mutant.
Collapse
Affiliation(s)
- Duan Tan
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China.
| | - Hai Hu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China.
| | - Xiaoling Tong
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China.
| | - Minjin Han
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China.
| | - Songyuan Wu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China.
| | - Xin Ding
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China.
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China.
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
146
|
Zheng H, Zhang Y, Chen Y, Guo P, Wang X, Yuan X, Ge W, Yang R, Yan Q, Yang X, Xi Y. Prominin-like, a homolog of mammalian CD133, suppresses di lp6 and TOR signaling to maintain body size and weight in Drosophila. FASEB J 2018; 33:2646-2658. [PMID: 30307770 DOI: 10.1096/fj.201800123r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
CD133 (AC133/prominin-1) has been identified as a stem cell marker and a putative cancer stem cell marker in many solid tumors. Its biologic function and molecular mechanisms remain largely elusive. Here, we show that a fly mutant for prominin-like, a homolog of mammalian CD133, shows a larger body size and excess weight accompanied with higher fat deposits as compared with the wild type. The expression levels of prominin-like are mediated by ecdysone signaling where its protein levels increase dramatically in the fat body during metamorphosis. Prominin-like mutants exhibit higher Drosophila insulin-like peptide 6 (di lp6) levels during nonfeeding stages and increased Akt/ Drosophila target of rapamycin (dTOR) signaling. On an amino acid-restricted diet, prominin-like mutants exhibit a significantly larger body size than the wild type does, similar to that which occurs upon the activation of the dTOR pathway in the fat body. Our data suggest that prominin-like functions by suppressing TOR and dilp6 signaling to control body size and weight. The identification of the physiologic function of prominin-like in Drosophila may provide valuable insight into the understanding of the metabolic function of CD133 in mammals.-Zheng, H., Zhang, Y., Chen, Y., Guo, P., Wang, X., Yuan, X., Ge, W., Yang, R., Yan, Q., Yang, X., Xi, Y. Prominin-like, a homolog of mammalian CD133, suppresses di lp6 and TOR signaling to maintain body size and weight in Drosophila.
Collapse
Affiliation(s)
- Huimei Zheng
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Genetics, Zhejiang University, Hangzhou, China.,Department of Genetics, Zhejiang University School of Medicine, Hangzhou, China.,College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yafei Zhang
- College of Life Sciences, Zhejiang University, Hangzhou, China.,Beijing Genomics Institute, Shanghai, China
| | - Yuchen Chen
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Genetics, Zhejiang University, Hangzhou, China.,Department of Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Pengfei Guo
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Genetics, Zhejiang University, Hangzhou, China.,Department of Genetics, Zhejiang University School of Medicine, Hangzhou, China.,College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xuexiang Wang
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xin Yuan
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Genetics, Zhejiang University, Hangzhou, China.,Department of Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Wanzhong Ge
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Genetics, Zhejiang University, Hangzhou, China.,Department of Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Ru Yang
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China; and
| | - Qingfeng Yan
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xiaohang Yang
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Genetics, Zhejiang University, Hangzhou, China.,Department of Genetics, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University-University of Toronto Joint Institute of Genetics and Genomic Medicine, Zhejiang University, Hangzhou, China
| | - Yongmei Xi
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Genetics, Zhejiang University, Hangzhou, China.,Department of Genetics, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
147
|
Pan J, Di YQ, Li YB, Chen CH, Wang JX, Zhao XF. Insulin and 20-hydroxyecdysone oppose each other in the regulation of phosphoinositide-dependent kinase-1 expression during insect pupation. J Biol Chem 2018; 293:18613-18623. [PMID: 30305395 DOI: 10.1074/jbc.ra118.004891] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/26/2018] [Indexed: 12/17/2022] Open
Abstract
Insulin promotes larval growth of insects by stimulating the synthesis of the steroid hormone 20-hydroxyecdysone (20E), which induces pupation and apoptosis. However, the mechanism underlying the coordinate regulation of insect pupation and apoptosis by these two functionally opposing hormones is still unclear. Here, using the lepidopteran insect and serious agricultural pest Helicoverpa armigera (cotton bollworm) as a model, we report that phosphoinositide-dependent kinase-1 (PDK1) and forkhead box O (FoxO) play key roles in these processes. We found that the transcript levels of the PDK1 gene are increased during the larval feeding stages. Moreover, PDK1 expression was increased by insulin, but repressed by 20E. dsRNA-mediated PDK1 knockdown in the H. armigera larvae delayed pupation and resulted in small pupae and also decreased Akt/protein kinase B expression and increased FoxO expression. Furthermore, the PDK1 knockdown blocked midgut remodeling and decreased 20E levels in the larvae. Of note, injecting larvae with 20E overcame the effect of the PDK1 knockdown and restored midgut remodeling. FoxO overexpression in an H. armigera epidermal cell line (HaEpi) did not induce apoptosis, but promoted autophagy and repressed cell proliferation. These results reveal cross-talk between insulin and 20E and that both hormones oppose each other's activities in the regulation of insect pupation and apoptosis by controlling PDK1 expression and, in turn, FoxO expression. We conclude that sufficiently high 20E levels are a key factor for inducing apoptosis during insect pupation.
Collapse
Affiliation(s)
- Jing Pan
- From the Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Yu-Qin Di
- From the Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Yong-Bo Li
- From the Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Cai-Hua Chen
- From the Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Jin-Xing Wang
- From the Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Xiao-Fan Zhao
- From the Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
148
|
Lafuente E, Duneau D, Beldade P. Genetic basis of thermal plasticity variation in Drosophila melanogaster body size. PLoS Genet 2018; 14:e1007686. [PMID: 30256798 PMCID: PMC6175520 DOI: 10.1371/journal.pgen.1007686] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 10/08/2018] [Accepted: 09/10/2018] [Indexed: 11/18/2022] Open
Abstract
Body size is a quantitative trait that is closely associated to fitness and under the control of both genetic and environmental factors. While developmental plasticity for this and other traits is heritable and under selection, little is known about the genetic basis for variation in plasticity that can provide the raw material for its evolution. We quantified genetic variation for body size plasticity in Drosophila melanogaster by measuring thorax and abdomen length of females reared at two temperatures from a panel representing naturally segregating alleles, the Drosophila Genetic Reference Panel (DGRP). We found variation between genotypes for the levels and direction of thermal plasticity in size of both body parts. We then used a Genome-Wide Association Study (GWAS) approach to unravel the genetic basis of inter-genotype variation in body size plasticity, and used different approaches to validate selected QTLs and to explore potential pleiotropic effects. We found mostly “private QTLs”, with little overlap between the candidate loci underlying variation in plasticity for thorax versus abdomen size, for different properties of the plastic response, and for size versus size plasticity. We also found that the putative functions of plasticity QTLs were diverse and that alleles for higher plasticity were found at lower frequencies in the target population. Importantly, a number of our plasticity QTLs have been targets of selection in other populations. Our data sheds light onto the genetic basis of inter-genotype variation in size plasticity that is necessary for its evolution. Environmental conditions can influence development and lead to the production of phenotypes adjusted to the conditions adults will live in. This developmental plasticity, which can help organisms cope with environmental heterogeneity, is heritable and under selection. Its evolution will depend on available genetic variation. Using a panel of D. melanogaster flies representing naturally segregating alleles, we identified DNA sequence variants associated to variation in thermal plasticity for body size. We found that these variants correspond to a diverse set of functions and that their effects differ between body parts and properties of the thermal response. Our results shed new light onto the long discussed genes for plasticity.
Collapse
Affiliation(s)
- Elvira Lafuente
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- * E-mail: (EL); (PB)
| | - David Duneau
- UMR5174-CNRS, Laboratoire Évolution & Diversité Biologique, Université Paul Sabatier, Toulouse, France
| | - Patrícia Beldade
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- UMR5174-CNRS, Laboratoire Évolution & Diversité Biologique, Université Paul Sabatier, Toulouse, France
- * E-mail: (EL); (PB)
| |
Collapse
|
149
|
Kim D, Jaworski DC, Cheng C, Nair AD, Ganta RR, Herndon N, Brown S, Park Y. The transcriptome of the lone star tick, Amblyomma americanum, reveals molecular changes in response to infection with the pathogen, Ehrlichia chaffeensis. JOURNAL OF ASIA-PACIFIC ENTOMOLOGY 2018; 21:852-863. [PMID: 34316264 PMCID: PMC8312692 DOI: 10.1016/j.aspen.2018.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The lone star tick, Amblyomma americanum, is an obligatory ectoparasite of many vertebrates and the primary vector of Ehrlichia chaffeensis, the causative agent of human monocytic ehrlichiosis. This study aimed to investigate the comparative transcriptomes of A. americanum underlying the processes of pathogen acquisition and of immunity towards the pathogen. Differential expression of the whole body transcripts in six different treatments were compared: females and males that were E. chaffeensis non-exposed, E. chaffeensis-exposed/uninfected, and E. chaffeensis-exposed/infected. The Trinity assembly pipeline produced 140,574 transcripts from trimmed and filtered total raw sequence reads (approximately 117M reads). The gold transcript set of the transcriptome data was established to minimize noise by retaining only transcripts homologous to official peptide sets of Ixodes scapularis and A. americanum ESTs and transcripts covered with high enough frequency from the raw data. Comparison of the gene ontology term enrichment analyses for the six groups tested here revealed an up-regulation of genes for defense responses against the pathogen and for the supply of intracellular Ca++ for pathogen proliferation in the pathogen-exposed ticks. Analyses of differential expression, focused on functional subcategories including immune, sialome, neuropeptides, and G protein-coupled receptor, revealed that E. chaffeensis-exposed ticks exhibited an upregulation of transcripts involved in the immune deficiency (IMD) pathway, antimicrobial peptides, Kunitz, an insulin-like peptide, and bursicon receptor over unexposed ones, while transcripts for metalloprotease were down-regulated in general. This study found that ticks exhibit enhanced expression of genes responsible for defense against E. chaffeensis.
Collapse
Affiliation(s)
- Donghun Kim
- Department of Entomology, Kansas State University, Manhattan, KS 66506, USA
| | - Deborah C. Jaworski
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA
| | - Chuanmin Cheng
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA
| | - Arathy D.S. Nair
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA
| | - Roman R. Ganta
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA
| | - Nic Herndon
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Susan Brown
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
150
|
Ran Z, Shi X, Han F, Li J, Zhang Y, Zhou Y, Yin J, Li R, Zhong J. Expressing MicroRNA Bantam Sponge Drastically Improves the Insecticidal Activity of Baculovirus via Increasing the Level of Ecdysteroid Hormone in Spodoptera exigua Larvae. Front Microbiol 2018; 9:1824. [PMID: 30131792 PMCID: PMC6090145 DOI: 10.3389/fmicb.2018.01824] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/23/2018] [Indexed: 12/19/2022] Open
Abstract
Bantam is a conserved miRNA highly expressed in insects. We previously showed that the antisense inhibitor (antagomiR) of bantam improved the infection by baculovirus Autographa californica nucleopolyhedrovirus (AcMNPV) in Spodoptera exigua and S. litura larvae. Here, we constructed a recombinant AcMNPV (vPH-banS) expressing bantam sponge, an mRNA containing eight antisense binding sites for bantam. Infection with wild type AcMNPV (WT) or the control recombinant virus vPH resulted in a significant increase of bantam level, whereas infection with vPH-banS led to an approximately 40% reduction of bantam in both Sf9 cells and S. exigua larvae. Although, comparable production of budded virus and polyhedra were detected in vPH-banS-, vPH-, and WT-infected Sf9 cells, vPH-banS showed remarkably increased insecticidal activity in S. exigua larvae. The 50% lethal concentration and the median lethal time of vPH-banS was only 1/40 and 1/2, respectively, of both vPH and WT. Further analysis showed that the level of molting hormone 20-hydroxyecdysone (20E) was significantly higher in larvae infected with vPH-banS than those infected with vPH or WT. This was confirmed by the result that the larvae treated with bantam inhibitor also had a markedly increased 20E level. Moreover, feeding larvae with 20E increased the virus-mediated mortality, whereas feeding with juvenile hormone partially reverted the high insecticidal effect of vPH-banS. Together, our results revealed that vPH-banS infection suppresses the level of bantam, and in turn elevates level of 20E in infected insects, resulting in increased susceptibility to baculovirus infection. Our study provided a novel approach to improve a baculovirus bio-insecticide by interfering with a key homeostasis-regulating miRNA of the host.
Collapse
Affiliation(s)
- Zihan Ran
- State Key Laboratory of Genetic Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaojie Shi
- State Key Laboratory of Genetic Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Fangting Han
- State Key Laboratory of Genetic Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Jianbei Li
- State Key Laboratory of Genetic Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Youyi Zhang
- State Key Laboratory of Genetic Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yanjun Zhou
- State Key Laboratory of Genetic Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Juan Yin
- State Key Laboratory of Genetic Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Rui Li
- State Key Laboratory of Genetic Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Jiang Zhong
- State Key Laboratory of Genetic Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|