101
|
Biswas K, Urgel JI, Xu K, Ma J, Sánchez‐Grande A, Mutombo P, Gallardo A, Lauwaet K, Mallada B, Torre B, Matěj A, Gallego JM, Miranda R, Jelínek P, Feng X, Écija D. On‐Surface Synthesis of a Dicationic Diazahexabenzocoronene Derivative on the Au(111) Surface. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Kalyan Biswas
- IMDEA Nanoscience C/ Faraday 9, Campus de Cantoblanco 28049 Madrid Spain
| | - José I. Urgel
- IMDEA Nanoscience C/ Faraday 9, Campus de Cantoblanco 28049 Madrid Spain
| | - Kun Xu
- Center for Advancing Electronics and Faculty of Chemistry and Food Chemistry Technical University of Dresden 01062 Dresden Germany
| | - Ji Ma
- Center for Advancing Electronics and Faculty of Chemistry and Food Chemistry Technical University of Dresden 01062 Dresden Germany
| | - Ana Sánchez‐Grande
- IMDEA Nanoscience C/ Faraday 9, Campus de Cantoblanco 28049 Madrid Spain
| | - Pingo Mutombo
- Institute of Physics of the Czech Academy of Science CZ-16253 Praha Czech Republic
| | - Aurelio Gallardo
- Institute of Physics of the Czech Academy of Science CZ-16253 Praha Czech Republic
- Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University CZ-180 00 Praha Czech Republic
| | - Koen Lauwaet
- IMDEA Nanoscience C/ Faraday 9, Campus de Cantoblanco 28049 Madrid Spain
| | - Benjamin Mallada
- Institute of Physics of the Czech Academy of Science CZ-16253 Praha Czech Republic
- Regional Centre of Advanced Technologies and Materials Palacký University Olomouc CZ-771 46 Olomouc Czech Republic
| | - Bruno Torre
- Institute of Physics of the Czech Academy of Science CZ-16253 Praha Czech Republic
- Regional Centre of Advanced Technologies and Materials Palacký University Olomouc CZ-771 46 Olomouc Czech Republic
| | - Adam Matěj
- Institute of Physics of the Czech Academy of Science CZ-16253 Praha Czech Republic
- Regional Centre of Advanced Technologies and Materials Palacký University Olomouc CZ-771 46 Olomouc Czech Republic
| | - José M. Gallego
- Instituto de Ciencia de Materiales de Madrid, CSIC Cantoblanco 28049 Madrid Spain
| | - Rodolfo Miranda
- IMDEA Nanoscience C/ Faraday 9, Campus de Cantoblanco 28049 Madrid Spain
- Departamento de Física de la Materia Condensada Universidad Autónoma de Madrid 28049 Madrid Spain
| | - Pavel Jelínek
- Institute of Physics of the Czech Academy of Science CZ-16253 Praha Czech Republic
- Regional Centre of Advanced Technologies and Materials Palacký University Olomouc CZ-771 46 Olomouc Czech Republic
| | - Xinliang Feng
- Center for Advancing Electronics and Faculty of Chemistry and Food Chemistry Technical University of Dresden 01062 Dresden Germany
| | - David Écija
- IMDEA Nanoscience C/ Faraday 9, Campus de Cantoblanco 28049 Madrid Spain
| |
Collapse
|
102
|
Biswas K, Urgel JI, Xu K, Ma J, Sánchez‐Grande A, Mutombo P, Gallardo A, Lauwaet K, Mallada B, de la Torre B, Matěj A, Gallego JM, Miranda R, Jelínek P, Feng X, Écija D. On-Surface Synthesis of a Dicationic Diazahexabenzocoronene Derivative on the Au(111) Surface. Angew Chem Int Ed Engl 2021; 60:25551-25556. [PMID: 34546628 PMCID: PMC9298296 DOI: 10.1002/anie.202111863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Indexed: 01/30/2023]
Abstract
The atomically precise control over the size, shape and structure of nanographenes (NGs) or the introduction of heteroatom dopants into their sp2 -carbon lattice confer them valuable electronic, optical and magnetic properties. Herein, we report on the design and synthesis of a hexabenzocoronene derivative embedded with graphitic nitrogen in its honeycomb lattice, achieved via on-surface assisted cyclodehydrogenation on the Au(111) surface. Combined scanning tunnelling microscopy/spectroscopy and non-contact atomic force microscopy investigations unveil the chemical and electronic structures of the obtained dicationic NG. Kelvin probe force microscopy measurements reveal a considerable variation of the local contact potential difference toward lower values with respect to the gold surface, indicative of its positive net charge. Altogether, we introduce the concept of cationic nitrogen doping of NGs on surfaces, opening new avenues for the design of novel carbon nanostructures.
Collapse
Affiliation(s)
- Kalyan Biswas
- IMDEA NanoscienceC/ Faraday 9, Campus de Cantoblanco28049MadridSpain
| | - José I. Urgel
- IMDEA NanoscienceC/ Faraday 9, Campus de Cantoblanco28049MadridSpain
| | - Kun Xu
- Center for Advancing Electronics and Faculty of Chemistry and Food ChemistryTechnical University of Dresden01062DresdenGermany
| | - Ji Ma
- Center for Advancing Electronics and Faculty of Chemistry and Food ChemistryTechnical University of Dresden01062DresdenGermany
| | | | - Pingo Mutombo
- Institute of Physics of the Czech Academy of ScienceCZ-16253PrahaCzech Republic
| | - Aurelio Gallardo
- Institute of Physics of the Czech Academy of ScienceCZ-16253PrahaCzech Republic
- Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles UniversityCZ-180 00PrahaCzech Republic
| | - Koen Lauwaet
- IMDEA NanoscienceC/ Faraday 9, Campus de Cantoblanco28049MadridSpain
| | - Benjamin Mallada
- Institute of Physics of the Czech Academy of ScienceCZ-16253PrahaCzech Republic
- Regional Centre of Advanced Technologies and MaterialsPalacký University OlomoucCZ-771 46OlomoucCzech Republic
| | - Bruno de la Torre
- Institute of Physics of the Czech Academy of ScienceCZ-16253PrahaCzech Republic
- Regional Centre of Advanced Technologies and MaterialsPalacký University OlomoucCZ-771 46OlomoucCzech Republic
| | - Adam Matěj
- Institute of Physics of the Czech Academy of ScienceCZ-16253PrahaCzech Republic
- Regional Centre of Advanced Technologies and MaterialsPalacký University OlomoucCZ-771 46OlomoucCzech Republic
| | - José M. Gallego
- Instituto de Ciencia de Materiales de Madrid, CSICCantoblanco28049MadridSpain
| | - Rodolfo Miranda
- IMDEA NanoscienceC/ Faraday 9, Campus de Cantoblanco28049MadridSpain
- Departamento de Física de la Materia CondensadaUniversidad Autónoma de Madrid28049MadridSpain
| | - Pavel Jelínek
- Institute of Physics of the Czech Academy of ScienceCZ-16253PrahaCzech Republic
- Regional Centre of Advanced Technologies and MaterialsPalacký University OlomoucCZ-771 46OlomoucCzech Republic
| | - Xinliang Feng
- Center for Advancing Electronics and Faculty of Chemistry and Food ChemistryTechnical University of Dresden01062DresdenGermany
| | - David Écija
- IMDEA NanoscienceC/ Faraday 9, Campus de Cantoblanco28049MadridSpain
| |
Collapse
|
103
|
Su L, Yang Z, Wang X, Zou Z, Wang B, Hodes G, Chang N, Suo Y, Ma Z, Wang H, Liu Y, Zhang J, Wang S, Li Y, Yang F, Zhu J, Gao F, Huang W, Liu S. Flexible Diodes/Transistors Based on Tunable p-n-Type Semiconductivity in Graphene/Mn-Co-Ni-O Nanocomposites. RESEARCH 2021; 2021:9802795. [PMID: 34738087 PMCID: PMC8532022 DOI: 10.34133/2021/9802795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 08/11/2021] [Indexed: 11/06/2022]
Abstract
We report a novel Mn-Co-Ni-O (MCN) nanocomposite in which the p-type semiconductivity of Mn-Co-Ni-O can be manipulated by addition of graphene. With an increase of graphene content, the semiconductivity of the nanocomposite can be tuned from p-type through electrically neutral to n-type. The very low effective mass of electrons in graphene facilitates electron tunneling into the MCN, neutralizing holes in the MCN nanoparticles. XPS analysis shows that the multivalent manganese ions in the MCN nanoparticles are chemically reduced by the graphene electrons to lower-valent states. Unlike traditional semiconductor devices, electrons are excited from the filled graphite band into the empty band at the Dirac points from where they move freely in the graphene and tunnel into the MCN. The new composite film demonstrates inherent flexibility, high mobility, short carrier lifetime, and high carrier concentration. This work is useful not only in manufacturing flexible transistors, FETs, and thermosensitive and thermoelectric devices with unique properties but also in providing a new method for future development of 2D-based semiconductors.
Collapse
Affiliation(s)
- Lihong Su
- School of Chemistry and Chemical-Engineering, Northwestern Polytechnical University, Xi'an, 710129 Shaanxi, China.,Dongguan Sanhang Civil-Military Integration Innovation Institute, Dongguan, 52300 Guangdong, China
| | - Zhou Yang
- Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology; Institute for Advanced Energy Materials; School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Xitong Wang
- School of Chemistry and Chemical-Engineering, Northwestern Polytechnical University, Xi'an, 710129 Shaanxi, China.,Dongguan Sanhang Civil-Military Integration Innovation Institute, Dongguan, 52300 Guangdong, China
| | - Ziao Zou
- School of Chemistry and Chemical-Engineering, Northwestern Polytechnical University, Xi'an, 710129 Shaanxi, China
| | - Bo Wang
- School of Chemistry and Chemical-Engineering, Northwestern Polytechnical University, Xi'an, 710129 Shaanxi, China.,School of Aeronautics, Northwestern Polytechnical University, Xi'an, 710072 Shaanxi, China
| | - Gary Hodes
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ninghui Chang
- School of Chemistry and Chemical-Engineering, Northwestern Polytechnical University, Xi'an, 710129 Shaanxi, China
| | - Yongyong Suo
- School of Chemistry and Chemical-Engineering, Northwestern Polytechnical University, Xi'an, 710129 Shaanxi, China.,School of Aeronautics, Northwestern Polytechnical University, Xi'an, 710072 Shaanxi, China
| | - Zhibo Ma
- School of Chemistry and Chemical-Engineering, Northwestern Polytechnical University, Xi'an, 710129 Shaanxi, China.,Key Lab of Micro/Nano Systems for Aerospace, Ministry of Education, Northwestern Polytechnical University, Xi'an, 710129 Shaanxi, China
| | - Haoxu Wang
- Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology; Institute for Advanced Energy Materials; School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China.,University of Queensland, Australian Institute for Bioengineering & Nanotechnology, Nanomaterials Centre, St. Lucia, Qld, Australia
| | - Yucheng Liu
- Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology; Institute for Advanced Energy Materials; School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Junping Zhang
- School of Chemistry and Chemical-Engineering, Northwestern Polytechnical University, Xi'an, 710129 Shaanxi, China
| | - Shuanhu Wang
- School of Chemistry and Chemical-Engineering, Northwestern Polytechnical University, Xi'an, 710129 Shaanxi, China.,School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710129 Shaanxi, China
| | - Yuefei Li
- School of Chemistry and Chemical-Engineering, Northwestern Polytechnical University, Xi'an, 710129 Shaanxi, China.,Dongguan Sanhang Civil-Military Integration Innovation Institute, Dongguan, 52300 Guangdong, China
| | - Fengxia Yang
- School of Chemistry and Chemical-Engineering, Northwestern Polytechnical University, Xi'an, 710129 Shaanxi, China.,Dongguan Sanhang Civil-Military Integration Innovation Institute, Dongguan, 52300 Guangdong, China
| | - Jixin Zhu
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710129 Shaanxi, China
| | - Fei Gao
- Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology; Institute for Advanced Energy Materials; School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Wei Huang
- School of Chemistry and Chemical-Engineering, Northwestern Polytechnical University, Xi'an, 710129 Shaanxi, China.,Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710129 Shaanxi, China
| | - Shengzhong Liu
- Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology; Institute for Advanced Energy Materials; School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
104
|
Zhai W, Xiong T, He Z, Lu S, Lai Z, He Q, Tan C, Zhang H. Nanodots Derived from Layered Materials: Synthesis and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006661. [PMID: 34212432 DOI: 10.1002/adma.202006661] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/01/2020] [Indexed: 06/13/2023]
Abstract
Layered 2D materials, such as graphene, transition metal dichalcogenides, transition metal oxides, black phosphorus, graphitic carbon nitride, hexagonal boron nitride, and MXenes, have attracted intensive attention over the past decades owing to their unique properties and wide applications in electronics, catalysis, energy storage, biomedicine, etc. Further reducing the lateral size of layered 2D materials down to less than 10 nm allows for preparing a new class of nanostructures, namely, nanodots derived from layered materials. Nanodots derived from layered materials not only can exhibit the intriguing properties of nanodots due to the size confinement originating from the ultrasmall size, but also can inherit some unique properties of ultrathin layered 2D materials, making them promising candidates in a wide range of applications, especially in biomedicine and catalysis. Here, a comprehensive summary on the materials categories, advantages, synthesis methods, and potential applications of these nanodots derived from layered materials is provided. Finally, personal insights about the challenges and future directions in this promising research field are also given.
Collapse
Affiliation(s)
- Wei Zhai
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Tengfei Xiong
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Zhen He
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Shiyao Lu
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Zhuangchai Lai
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Qiyuan He
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Chaoliang Tan
- Department of Electrical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, China
| |
Collapse
|
105
|
Electronic, Optical, and Thermoelectric Properties of Bulk and Monolayer Germanium Tellurides. CRYSTALS 2021. [DOI: 10.3390/cryst11111290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Electronic, optical, and thermoelectric properties of germanium tellurides (GeTe) were investigated through a series of first-principles calculations of band structures, absorption coefficients, and thermoelectric transport coefficients. We consider bulk GeTe to consist of cubic and rhombohedral phases, while the two-dimensional (2D) GeTe monolayers can form as a 2D puckered or buckled honeycomb crystals. All of the GeTe variants in the bulk and monolayer shapes are excellent light absorbers in a wide frequency range: (1) bulk cubic GeTe in the near-infrared regime, (2) bulk rhombohedral GeTe and puckered monolayer GeTe in the visible-light regime, and (3) buckled monolayer GeTe in the ultraviolet regime. We also found specifically that the buckled monolayer GeTe exhibits remarkable thermoelectric performance compared to the other GeTe phases due to a combination of electronic band convergence, a moderately wide band gap, and unique 2D density of states from the quantum confinement effect.
Collapse
|
106
|
Mao B, Hodges B, Franklin C, Calatayud DG, Pascu SI. Self-Assembled Materials Incorporating Functional Porphyrins and Carbon Nanoplatforms as Building Blocks for Photovoltaic Energy Applications. Front Chem 2021; 9:727574. [PMID: 34660529 PMCID: PMC8517519 DOI: 10.3389/fchem.2021.727574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/13/2021] [Indexed: 11/13/2022] Open
Abstract
As a primary goal, this review highlights the role of supramolecular interactions in the assembly of new sustainable materials incorporating functional porphyrins and carbon nanoplatforms as building blocks for photovoltaics advancements.
Collapse
Affiliation(s)
- Boyang Mao
- Department of Chemistry, University of Bath, Bath, United Kingdom.,Cambridge Graphene Centre, Engineering Department, University of Cambridge, Cambridge, United Kingdom
| | - Benjamin Hodges
- Department of Chemistry, University of Bath, Bath, United Kingdom.,Centre for Sustainable and Circular Technologies (CSCT), University of Bath, Bath, United Kingdom
| | - Craig Franklin
- Department of Chemistry, University of Bath, Bath, United Kingdom
| | - David G Calatayud
- Department of Chemistry, University of Bath, Bath, United Kingdom.,Department of Electroceramics, Instituto de Ceramica y Vidrio (CSIC), Madrid, Spain
| | - Sofia I Pascu
- Department of Chemistry, University of Bath, Bath, United Kingdom.,Centre for Sustainable and Circular Technologies (CSCT), University of Bath, Bath, United Kingdom
| |
Collapse
|
107
|
Pulingam T, Thong KL, Appaturi JN, Lai CW, Leo BF. Mechanistic actions and contributing factors affecting the antibacterial property and cytotoxicity of graphene oxide. CHEMOSPHERE 2021; 281:130739. [PMID: 34004516 DOI: 10.1016/j.chemosphere.2021.130739] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/25/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Recent advances in the field of nanotechnology contributed to the increasing use of nanomaterials in the engineering, health and biological sectors. Graphene oxide (GO) has great potentials as it could be fine-tuned to be adapted into various applications, especially in the electrical, electronic, industrial and clinical fields. One of the important applications of GO is its use as an antibacterial material due to its promising activity against a broad range of bacteria. However, our understanding of the mechanism of action of GO towards bacteria is still lacking and is often less described. Therefore, a comprehensive overview of bactericidal mechanistic actions of GO and the roles of physicochemical factors including size, aggregation, functionalization and adsorption behavior contributing to its antibacterial activities are described in this review. As the use of GO is expected to increase exponentially in the health sector, the cytotoxicity of GO among the cell lines is also discussed. Thus, this review emphasizes the physicochemical characteristics of GO that can be tailored for optimal antibacterial properties that is of importance to the health industry.
Collapse
Affiliation(s)
- Thiruchelvi Pulingam
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia; Nanotechnology & Catalysis Research Centre (NANOCAT), Institute for Advanced Studies, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kwai Lin Thong
- Nanotechnology & Catalysis Research Centre (NANOCAT), Institute for Advanced Studies, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | | | - Chin Wei Lai
- Nanotechnology & Catalysis Research Centre (NANOCAT), Institute for Advanced Studies, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Bey Fen Leo
- Nanotechnology & Catalysis Research Centre (NANOCAT), Institute for Advanced Studies, University of Malaya, 50603, Kuala Lumpur, Malaysia; Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
108
|
Bafekry A, Faraji M, Fadlallah MM, Jappor HR, Karbasizadeh S, Ghergherehchi M, Sarsari IA, Ziabari AA. Novel two-dimensional AlSb and InSb monolayers with a double-layer honeycomb structure: a first-principles study. Phys Chem Chem Phys 2021; 23:18752-18759. [PMID: 34612413 DOI: 10.1039/d1cp02590b] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this work, motivated by the fabrication of an AlSb monolayer, we have focused on the electronic, mechanical and optical properties of AlSb and InSb monolayers with double-layer honeycomb structures, employing the density functional theory approach. The phonon band structure and cohesive energy confirm the stability of the XSb (X = Al and In) monolayers. The mechanical properties reveal that the XSb monolayers have a brittle nature. Using the GGA + SOC (HSE + SOC) functionals, the bandgap of the AlSb monolayer is predicted to be direct, while InSb has a metallic character using both functionals. We find that XSb (X = Al, In) two-dimensional bodies can absorb ultraviolet light. The present findings suggest several applications of AlSb and InSb monolayers in novel optical and electronic usages.
Collapse
Affiliation(s)
- A Bafekry
- Department of Radiation Application, Shahid Beheshti University, 19839 69411 Tehran, Iran.
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Røst HI, Reed BP, Strand FS, Durk JA, Evans DA, Grubišić-Čabo A, Wan G, Cattelan M, Prieto MJ, Gottlob DM, Tănase LC, de Souza Caldas L, Schmidt T, Tadich A, Cowie BCC, Chellappan RK, Wells JW, Cooil SP. A Simplified Method for Patterning Graphene on Dielectric Layers. ACS APPLIED MATERIALS & INTERFACES 2021; 13:37510-37516. [PMID: 34328712 PMCID: PMC8365599 DOI: 10.1021/acsami.1c09987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
The large-scale formation of patterned, quasi-freestanding graphene structures supported on a dielectric has so far been limited by the need to transfer the graphene onto a suitable substrate and contamination from the associated processing steps. We report μm scale, few-layer graphene structures formed at moderate temperatures (600-700 °C) and supported directly on an interfacial dielectric formed by oxidizing Si layers at the graphene/substrate interface. We show that the thickness of this underlying dielectric support can be tailored further by an additional Si intercalation of the graphene prior to oxidation. This produces quasi-freestanding, patterned graphene on dielectric SiO2 with a tunable thickness on demand, thus facilitating a new pathway to integrated graphene microelectronics.
Collapse
Affiliation(s)
- Håkon I. Røst
- Center
for Quantum Spintronics, Department of Physics, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Benjamen P. Reed
- Department
of Physics, Aberystwyth University, Aberystwyth SY23 3BZ, United Kingdom
| | - Frode S. Strand
- Center
for Quantum Spintronics, Department of Physics, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Joseph A. Durk
- Department
of Physics, Aberystwyth University, Aberystwyth SY23 3BZ, United Kingdom
| | - D. Andrew Evans
- Department
of Physics, Aberystwyth University, Aberystwyth SY23 3BZ, United Kingdom
| | - Antonija Grubišić-Čabo
- School
of Physics & Astronomy, Monash University, 1 Wellington Rd., Clayton, Victoria 3800, Australia
| | - Gary Wan
- School
of Physics, HH Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
| | - Mattia Cattelan
- School
of Chemistry, University of Bristol, Cantocks Close, Bristol BS8 1TS, United
Kingdom
| | - Mauricio J. Prieto
- Department
of Interface Science, Fritz-Haber-Institute
of the Max-Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Daniel M. Gottlob
- Department
of Interface Science, Fritz-Haber-Institute
of the Max-Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Liviu C. Tănase
- Department
of Interface Science, Fritz-Haber-Institute
of the Max-Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Lucas de Souza Caldas
- Department
of Interface Science, Fritz-Haber-Institute
of the Max-Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Thomas Schmidt
- Department
of Interface Science, Fritz-Haber-Institute
of the Max-Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Anton Tadich
- Australian
Synchrotron, 800 Blackburn
Rd., Clayton, Victoria 3168, Australia
| | - Bruce C. C. Cowie
- Australian
Synchrotron, 800 Blackburn
Rd., Clayton, Victoria 3168, Australia
| | - Rajesh Kumar Chellappan
- Center
for Quantum Spintronics, Department of Physics, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Justin W. Wells
- Center
for Quantum Spintronics, Department of Physics, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
- Semiconductor
Physics, Department of Physics, University
of Oslo (UiO), NO-0371 Oslo, Norway
| | - Simon P. Cooil
- Department
of Physics, Aberystwyth University, Aberystwyth SY23 3BZ, United Kingdom
- Semiconductor
Physics, Department of Physics, University
of Oslo (UiO), NO-0371 Oslo, Norway
| |
Collapse
|
110
|
Gamil M, Shaalan NM, Abd El-Moneim A. Fabricating a highly sensitive graphene nanoplatelets resistance-based temperature sensor. SENSOR REVIEW 2021; 41:251-259. [DOI: 10.1108/sr-01-2021-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Purpose
This study aims to present an efficient and reliable graphene nanoplatelets (GNPs)-based temperature sensor.
Design/methodology/approach
A high-quality dispersion of GNPs was dropped by casting method on platinum electrodes deposited on a polyethylene terephthalate (PET) substrate. The GNPs were characterized by scanning electron microscope, Raman spectroscopy and X-ray diffraction spectra to ensure its purity and quality. The temperature sensing behavior of the fabricated sensor was examined by subjecting it to different temperatures, range from room temperature (RT) to 150 °C.
Findings
Excellent resistance linearity with temperature change was achieved. Temperature coefficient of resistance of the fabricated sensor was calculated as 1.4 × 10–3°C. The sensor also showed excellent repeatability and stability for the measured temperature range. Good response and recovery times were evaluated at all the measured temperatures. With measuring the sensor response, the ambient temperature can be determined.
Originality/value
The present work presents a new simply and low cost fabricated temperature sensor based on GNPs working at a wide temperature range.
Collapse
|
111
|
Lan J, Wang Y, Huang B, Xiao Z, Wu P. Application of polyoxometalates in photocatalytic degradation of organic pollutants. NANOSCALE ADVANCES 2021; 3:4646-4658. [PMID: 36134316 PMCID: PMC9417141 DOI: 10.1039/d1na00408e] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/24/2021] [Indexed: 05/30/2023]
Abstract
Organic pollutants are highly toxic, accumulative, and difficult to degrade or eliminate. As a low-cost, high-efficiency and energy-saving environmental purification technology, photocatalytic technology has shown great advantages in solving increasingly serious environmental pollution problems. The development of efficient and durable photocatalysts for the degradation of organic pollutants is the key to the extensive application of photocatalysis technology. Polyoxometalates (POMs) are a kind of discrete metal-oxide clusters with unique photo/electric properties which have shown promising applications in photocatalytic degradation. This review summarizes the recent advances in the design and synthesis of POM-based photocatalysts, as well as their application in the degradation of organic dyes, pesticides and other pollutants. In-depth perspective views are also proposed in this review.
Collapse
Affiliation(s)
- Jin Lan
- Institute of POM-based Materials, Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology Wuhan 430068 China
| | - Yu Wang
- Institute of POM-based Materials, Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology Wuhan 430068 China
| | - Bo Huang
- Institute of POM-based Materials, Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology Wuhan 430068 China
| | - Zicheng Xiao
- Institute of POM-based Materials, Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology Wuhan 430068 China
| | - Pingfan Wu
- Institute of POM-based Materials, Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology Wuhan 430068 China
| |
Collapse
|
112
|
Bhattacharyya S, Akhgar G, Gebert M, Karel J, Edmonds MT, Fuhrer MS. Recent Progress in Proximity Coupling of Magnetism to Topological Insulators. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007795. [PMID: 34185344 DOI: 10.1002/adma.202007795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/11/2021] [Indexed: 05/08/2023]
Abstract
Inducing long-range magnetic order in 3D topological insulators can gap the Dirac-like metallic surface states, leading to exotic new phases such as the quantum anomalous Hall effect or the axion insulator state. These magnetic topological phases can host robust, dissipationless charge and spin currents or unique magnetoelectric behavior, which can be exploited in low-energy electronics and spintronics applications. Although several different strategies have been successfully implemented to realize these states, to date these phenomena have been confined to temperatures below a few Kelvin. This review focuses on one strategy: inducing magnetic order in topological insulators by proximity of magnetic materials, which has the capability for room temperature operation, unlocking the potential of magnetic topological phases for applications. The unique advantages of this strategy, the important physical mechanisms facilitating magnetic proximity effect, and the recent progress to achieve, understand, and harness proximity-coupled magnetic order in topological insulators are discussed. Some emerging new phenomena and applications enabled by proximity coupling of magnetism and topological materials, such as skyrmions and the topological Hall effect, are also highlighted, and the authors conclude with an outlook on remaining challenges and opportunities in the field.
Collapse
Affiliation(s)
- Semonti Bhattacharyya
- School of Physics and Astronomy, Monash University, Victoria, 3800, Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Victoria, 3800, Australia
| | - Golrokh Akhgar
- School of Physics and Astronomy, Monash University, Victoria, 3800, Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Victoria, 3800, Australia
| | - Matthew Gebert
- School of Physics and Astronomy, Monash University, Victoria, 3800, Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Victoria, 3800, Australia
| | - Julie Karel
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Victoria, 3800, Australia
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Mark T Edmonds
- School of Physics and Astronomy, Monash University, Victoria, 3800, Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Victoria, 3800, Australia
| | - Michael S Fuhrer
- School of Physics and Astronomy, Monash University, Victoria, 3800, Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Victoria, 3800, Australia
| |
Collapse
|
113
|
Zheng Y, Huang X, Chen J, Wu K, Wang J, Zhang X. A Review of Conductive Carbon Materials for 3D Printing: Materials, Technologies, Properties, and Applications. MATERIALS 2021; 14:ma14143911. [PMID: 34300829 PMCID: PMC8307564 DOI: 10.3390/ma14143911] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/28/2021] [Accepted: 07/09/2021] [Indexed: 11/25/2022]
Abstract
Carbon material is widely used and has good electrical and thermal conductivity. It is often used as a filler to endow insulating polymer with electrical and thermal conductivity. Three-dimensional printing technology is an advance in modeling and manufacturing technology. From the forming principle, it offers a new production principle of layered manufacturing and layer by layer stacking formation, which fundamentally simplifies the production process and makes large-scale personalized production possible. Conductive carbon materials combined with 3D printing technology have a variety of potential applications, such as multi-shape sensors, wearable devices, supercapacitors, and so on. In this review, carbon black, carbon nanotubes, carbon fiber, graphene, and other common conductive carbon materials are briefly introduced. The working principle, advantages and disadvantages of common 3D printing technology are reviewed. The research situation of 3D printable conductive carbon materials in recent years is further summarized, and the performance characteristics and application prospects of these conductive carbon materials are also discussed. Finally, the potential applications of 3D printable conductive carbon materials are concluded, and the future development direction of 3D printable conductive carbon materials has also been prospected.
Collapse
Affiliation(s)
- Yanling Zheng
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China;
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, China
- Fujian Universities and Colleges Engineering Research Center of Modern Facility Agriculture, Fujian Polytechnic Normal University, Fuzhou 350300, China
| | - Xu Huang
- School of Mechanical & Automotive Engineering, Fujian University of Technology, Fuzhou 350118, China;
| | - Jialiang Chen
- National Garment and Accessories Quality Supervision Testing Center (Fujian), Fujian Provincial Key Laboratory of Textiles Inspection Technology, Fujian Fiber Inspection Center, Fuzhou 350026, China;
| | - Kechen Wu
- Fujian Key Laboratory of Functional Marine Sensing Materials, Minjiang University, Fuzhou 350108, China;
| | - Jianlei Wang
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China;
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Fujian Universities and Colleges Engineering Research Center of Modern Facility Agriculture, Fujian Polytechnic Normal University, Fuzhou 350300, China
- Fujian Key Laboratory of Functional Marine Sensing Materials, Minjiang University, Fuzhou 350108, China;
- Correspondence: (J.W.); (X.Z.)
| | - Xu Zhang
- Innovation Center for Textile Science and Technology, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- Correspondence: (J.W.); (X.Z.)
| |
Collapse
|
114
|
Wang Z, Cheng S, Liu X, Jiang H. Topological kink states in graphene. NANOTECHNOLOGY 2021; 32:402001. [PMID: 34161935 DOI: 10.1088/1361-6528/ac0dd8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Due to the unique band structure, graphene exhibits a number of exotic electronic properties that have not been observed in other materials. Among them, it has been demonstrated that there exist the one-dimensional valley-polarized topological kink states localized in the vicinity of the domain wall of graphene systems, where a bulk energy gap opens due to the inversion symmetry breaking. Notably, the valley-momentum locking nature makes the topological kink states attractive to the property manipulation in valleytronics. This paper systematically reviews both the theoretical research and experimental progress on topological kink states in monolayer graphene, bilayer graphene and graphene-like classical wave systems. Besides, various applications of topological kink states, including the valley filter, current partition, current manipulation, Majorana zero modes and etc, are also introduced.
Collapse
Affiliation(s)
- Zibo Wang
- College of Physics and Electronic Engineering, Sichuan Normal University, Chengdu 610068, People's Republic of China
- Center for Computational Sciences, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Shuguang Cheng
- Department of Physics, Northwest University, Xi'an 710069, People's Republic of China
| | - Xiao Liu
- School of Physical Science and Technology, Soochow University, Suzhou 215006, People's Republic of China
| | - Hua Jiang
- School of Physical Science and Technology, Soochow University, Suzhou 215006, People's Republic of China
- Institute for Advanced Study of Soochow University, Suzhou 215006, People's Republic of China
| |
Collapse
|
115
|
Yan Z, Yang L, Han JM, Li H. Molding fabrication of copper azide/porous graphene with high electrostatic safety by self-assembly of graphene oxide. NANOTECHNOLOGY 2021; 32:385704. [PMID: 34185025 DOI: 10.1088/1361-6528/abc7d5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/05/2020] [Indexed: 06/13/2023]
Abstract
In the wake of the development of micro-initiation systems, traditional lead-based primary explosives hardly satisfy the needs of high energy output. Copper azide (CA), one of the most promising primary explosives, is restricted in practical applications because of its high electrostatic sensitivity and the method of charge in micro-initiation systems. To tackle these issues, two synthetic paths of CA based on a porous graphene skeleton are proposed. First, a viscous homogeneous mixed solution is rapidly frozen in liquid nitrogen to form a spherical copper-containing precursor material. The copper azide/carbon/graphene composite (CA/C/GA) was fabricated by freeze-drying, high-temperature thermal decomposition andin situazidation. Second, A cylindrical copper/graphene gel formed by high-temperature hydrothermal self-assembly is served as a precursor material. Also, hydrogen reduction andin situazidation procedures were utilized to synthesize copper azide@graphene foam (CA@GF). Detailed characterization indicates that the excellent performance of composite materials is ascribed to the excellent electrical and thermal conductivity of graphene material. The electrostatic sensitivities of CA/C/GA and CA@GF were 3.6 mJ and 2.5 mJ, respectively, and the flame sensitivity was 50 cm. The course of fabrication is environmentally friendly and easy to perform and it may be well-matched with the charge of the micro-detonation system.
Collapse
Affiliation(s)
- Zhenzhan Yan
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Li Yang
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Ji-Min Han
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - HaoJie Li
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| |
Collapse
|
116
|
Bhattacharyya U, Pooventhiran T, Thomas R. Adsorption of the drug bempedoic acid over different 2D/3D nanosurfaces and enhancement of Raman activity enabling ultrasensitive detection: First principle analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 254:119630. [PMID: 33684853 DOI: 10.1016/j.saa.2021.119630] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/30/2021] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
The nanocluster-based drug delivery system is of much importance, now days. This manuscript studies the interaction of pristine/substituted/doped GQDs, fullerene, helicene and CNT with bempedoic acid, which is an effective alternative of statins in the treatment of hypercholesteremia. The adsorption energies are calculated at B3LYP-D3/6-311G+(2d,p) level in order to study the adsorption of bempedoic acid over the surfaces of the nanoclusters incorporating Grimme's dispersion correction. Surface enhanced Raman scattering (SERS), which is a sound approach to vibrational spectroscopy, is used in order to detect bempedoic acid. All the studies signify that bempedoic acid can be detected with these nanoclusters and the negative adsorption energies advocate for the possible use of these nanoclusters as effective drug delivery system in case of bempedoic acid. Adsorption energy of bempedoic acid over helicene was found to be the most negative among the mentioned nanocluster systems, while adsorption on the surface of CNT was found to be the least negative.
Collapse
Affiliation(s)
- Utsab Bhattacharyya
- Department of Chemistry, St Berchmans College (Autonomous), Mahatma Gandhi University, Changanassery, Kerala 686101, India
| | - T Pooventhiran
- Department of Chemistry, St Berchmans College (Autonomous), Mahatma Gandhi University, Changanassery, Kerala 686101, India
| | - Renjith Thomas
- Department of Chemistry, St Berchmans College (Autonomous), Mahatma Gandhi University, Changanassery, Kerala 686101, India.
| |
Collapse
|
117
|
Lodge MS, Yang SA, Mukherjee S, Weber B. Atomically Thin Quantum Spin Hall Insulators. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008029. [PMID: 33893669 DOI: 10.1002/adma.202008029] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Atomically thin topological materials are attracting growing attention for their potential to radically transform classical and quantum electronic device concepts. Among them is the quantum spin Hall (QSH) insulator-a 2D state of matter that arises from interplay of topological band inversion and strong spin-orbit coupling, with large tunable bulk bandgaps up to 800 meV and gapless, 1D edge states. Reviewing recent advances in materials science and engineering alongside theoretical description, the QSH materials library is surveyed with focus on the prospects for QSH-based device applications. In particular, theoretical predictions of nontrivial superconducting pairing in the QSH state toward Majorana-based topological quantum computing are discussed, which are the next frontier in QSH materials research.
Collapse
Affiliation(s)
- Michael S Lodge
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Shengyuan A Yang
- Research Laboratory for Quantum Materials, Singapore University of Technology and Design, Singapore, 487372, Singapore
| | - Shantanu Mukherjee
- Department of Physics, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
- Quantum Centres in Diamond and Emergent Materials (QCenDiem)-Group, IIT Madras, Chennai, Tamil Nadu, 600036, India
- Computational Materials Science Group, IIT Madras, Chennai, Tamil Nadu, 600036, India
| | - Bent Weber
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
- Australian Research Council (ARC) Centre of Excellence in Future Low-Energy Electronics Techonologies (FLEET), School of Physics, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
118
|
Alzakia FI, Tan SC. Liquid-Exfoliated 2D Materials for Optoelectronic Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2003864. [PMID: 34105282 PMCID: PMC8188210 DOI: 10.1002/advs.202003864] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/19/2021] [Indexed: 05/14/2023]
Abstract
Two-dimensional (2D) materials have attracted tremendous research attention in recent days due to their extraordinary and unique properties upon exfoliation from the bulk form, which are useful for many applications such as electronics, optoelectronics, catalysis, etc. Liquid exfoliation method of 2D materials offers a facile and low-cost route to produce large quantities of mono- and few-layer 2D nanosheets in a commercially viable way. Optoelectronic devices such as photodetectors fabricated from percolating networks of liquid-exfoliated 2D materials offer advantages compared to conventional devices, including low cost, less complicated process, and higher flexibility, making them more suitable for the next generation wearable devices. This review summarizes the recent progress on metal-semiconductor-metal (MSM) photodetectors fabricated from percolating network of 2D nanosheets obtained from liquid exfoliation methods. In addition, hybrids and mixtures with other photosensitive materials, such as quantum dots, nanowires, nanorods, etc. are also discussed. First, the various methods of liquid exfoliation of 2D materials, size selection methods, and photodetection mechanisms that are responsible for light detection in networks of 2D nanosheets are briefly reviewed. At the end, some potential strategies to further improve the performance the devices are proposed.
Collapse
Affiliation(s)
- Fuad Indra Alzakia
- Department of Materials Science and EngineeringNational University of Singapore9 Engineering drive 1Singapore117574Singapore
| | - Swee Ching Tan
- Department of Materials Science and EngineeringNational University of Singapore9 Engineering drive 1Singapore117574Singapore
| |
Collapse
|
119
|
Xu H, Akbari MK, Zhuiykov S. 2D Semiconductor Nanomaterials and Heterostructures: Controlled Synthesis and Functional Applications. NANOSCALE RESEARCH LETTERS 2021; 16:94. [PMID: 34032946 PMCID: PMC8149775 DOI: 10.1186/s11671-021-03551-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/17/2021] [Indexed: 06/01/2023]
Abstract
Two-dimensional (2D) semiconductors beyond graphene represent the thinnest stable known nanomaterials. Rapid growth of their family and applications during the last decade of the twenty-first century have brought unprecedented opportunities to the advanced nano- and opto-electronic technologies. In this article, we review the latest progress in findings on the developed 2D nanomaterials. Advanced synthesis techniques of these 2D nanomaterials and heterostructures were summarized and their novel applications were discussed. The fabrication techniques include the state-of-the-art developments of the vapor-phase-based deposition methods and novel van der Waals (vdW) exfoliation approaches for fabrication both amorphous and crystalline 2D nanomaterials with a particular focus on the chemical vapor deposition (CVD), atomic layer deposition (ALD) of 2D semiconductors and their heterostructures as well as on vdW exfoliation of 2D surface oxide films of liquid metals.
Collapse
Affiliation(s)
- Hongyan Xu
- School of Materials Science and Engineering, North University of China, Taiyuan, 030051 People’s Republic of China
| | - Mohammad Karbalaei Akbari
- Centre for Environmental and Energy Research, Ghent University Global Campus, 119-5 Songdomunhwa-ro, Yeonsu-gu, Incheon, 21985 South Korea
- Department of Solid State Science, Faculty of Science, Ghent University, Krijgslaan 281/S1, 9000 Ghent, Belgium
| | - Serge Zhuiykov
- School of Materials Science and Engineering, North University of China, Taiyuan, 030051 People’s Republic of China
- Centre for Environmental and Energy Research, Ghent University Global Campus, 119-5 Songdomunhwa-ro, Yeonsu-gu, Incheon, 21985 South Korea
- Department of Solid State Science, Faculty of Science, Ghent University, Krijgslaan 281/S1, 9000 Ghent, Belgium
| |
Collapse
|
120
|
Collomb D, Li P, Bending S. Frontiers of graphene-based Hall-effect sensors. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:243002. [PMID: 33853045 DOI: 10.1088/1361-648x/abf7e2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
Hall sensors have become one of the most used magnetic sensors in recent decades, performing the vital function of providing a magnetic sense that is naturally absent in humans. Various electronic applications have evolved from circuit-integrated Hall sensors due to their low cost, simple linear magnetic field response, ability to operate in a large magnetic field range, high magnetic sensitivity and low electronic noise, in addition to many other advantages. Recent developments in the fabrication and performance of graphene Hall devices promise to open up the realm of Hall sensor applications by not only widening the horizon of current uses through performance improvements, but also driving Hall sensor electronics into entirely new areas. In this review paper we describe the evolution from the traditional selection of Hall device materials to graphene Hall devices, and explore the various applications enabled by them. This includes a summary of the selection of materials and architectures for contemporary micro-to nanoscale Hall sensors. We then turn our attention to introducing graphene and its remarkable physical properties and explore how this impacts the magnetic sensitivity and electronic noise of graphene-based Hall sensors. We summarise the current state-of-the art of research into graphene Hall probes, demonstrating their record-breaking performance. Building on this, we explore the various new application areas graphene Hall sensors are pioneering such as magnetic imaging and non-destructive testing. Finally, we look at recent encouraging results showing that graphene Hall sensors have plenty of room to improve, before then discussing future prospects for industry-level scalable fabrication.
Collapse
Affiliation(s)
- David Collomb
- Department of Physics, University of Bath, Bath, United Kingdom
| | - Penglei Li
- Department of Physics, University of Bath, Bath, United Kingdom
| | - Simon Bending
- Department of Physics, University of Bath, Bath, United Kingdom
| |
Collapse
|
121
|
Effect of Substrate Types on the Structure of Vertical Graphene Prepared by Plasma-Enhanced Chemical Vapor Deposition. NANOMATERIALS 2021; 11:nano11051268. [PMID: 34065870 PMCID: PMC8150807 DOI: 10.3390/nano11051268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/03/2021] [Accepted: 05/08/2021] [Indexed: 11/17/2022]
Abstract
Although the structure of vertical graphene (VG) is important for various applications, the growth mechanism of VG is not yet fully clear. Here, the impacts of electrical conductivity of substrate on the morphology and structure of VG prepared by plasma-enhanced chemical vapor deposition are studied by scanning electron microscopy and Raman spectroscopy. The results show that VG with greater thickness can be grown on substrate with better electrical conductivity in the same growth time. Even though longer deposition time leads to more VG, more defects might develop in VG, especially at the position furthest away from the substrates. The change of morphology and structure of VG is closely correlated with strength of electric field near the substrate surface, which offers a new approach for orderly growing of VG. The discoveries not only shed light on the growth mechanism of VG, but also are beneficial for promoting the applications of VG.
Collapse
|
122
|
Zhang Q, Wu TC, Kuang G, Xie A, Lin N. Investigation of edge states in artificial graphene nano-flakes. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:225003. [PMID: 33607633 DOI: 10.1088/1361-648x/abe819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
Graphene nano-flakes (GNFs) are predicted to host spin-polarized metallic edge states, which are envisioned for exploration of spintronics at the nanometer scale. To date, experimental realization of GNFs is only in its infancy because of the limitation of precise cutting or synthesizing methods at the nanometer scale. Here, we use low temperature scanning tunneling microscope to manipulate coronene molecules on a Cu(111) surface to build artificial triangular and hexagonal GNFs with either zigzag or armchair type of edges. We observe that an electronic state at the Dirac point emerges only in the GNFs with zigzag edges and localizes at the outmost lattice sites. The experimental results agree well with the tight-binding calculations. Our work renders an experimental confirmation of the predicated edge states of the GNFs.
Collapse
Affiliation(s)
- Qiushi Zhang
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, United States of America
| | - Tsz Chun Wu
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| | - Guowen Kuang
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| | - A'yu Xie
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| | - Nian Lin
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| |
Collapse
|
123
|
Du C, Ren Y, Qu Z, Gao L, Zhai Y, Han ST, Zhou Y. Synaptic transistors and neuromorphic systems based on carbon nano-materials. NANOSCALE 2021; 13:7498-7522. [PMID: 33928966 DOI: 10.1039/d1nr00148e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Carbon-based materials possessing a nanometer size and unique electrical properties perfectly address the two critical issues of transistors, the low power consumption and scalability, and are considered as a promising material in next-generation synaptic devices. In this review, carbon-based synaptic transistors were systematically summarized. In the carbon nanotube section, the synthesis of carbon nanotubes, purification of carbon nanotubes, the effect of architecture on the device performance and related carbon nanotube-based devices for neuromorphic computing were discussed. In the graphene section, the synthesis of graphene and its derivative, as well as graphene-based devices for neuromorphic computing, was systematically studied. Finally, the current challenges for carbon-based synaptic transistors were discussed.
Collapse
Affiliation(s)
- Chunyu Du
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yanyun Ren
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Zhiyang Qu
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Lili Gao
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yongbiao Zhai
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Su-Ting Han
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China.
| |
Collapse
|
124
|
Binh NTT, Nguyen CQ, Vu TV, Nguyen CV. Interfacial Electronic Properties and Tunable Contact Types in Graphene/Janus MoGeSiN 4 Heterostructures. J Phys Chem Lett 2021; 12:3934-3940. [PMID: 33872012 DOI: 10.1021/acs.jpclett.1c00682] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Two-dimensional MoSi2N4 is an emerging class of 2D MA2N4 family, which has recently been synthesized in experiment. Herein, we construct ultrathin van der Waals heterostructures between graphene and a new 2D Janus MoGeSiN4 material and investigate their interfacial electronic properties and tunable Schottky barriers and contact types using first-principles calculations. The GR/MoGeSiN4 vdWHs are expected to be energetically favorable and stable. The high carrier mobility in graphene/MoGeSiN4 vdWHs makes them suitable for high-speed nanoelectronic devices. Furthermore, depending on the stacking patterns, either an n-type or a p-type Schottky contact is formed at the GR/MoGeSiN4 interface. The strain engineering and electric field can lead to the transformation from an n-type to a p-type Schottky contact or from Schottky to Ohmic contact in graphene/MoGeSiN4 heterostructure. These findings provide useful guidance for designing controllable Schottky nanodevices based on graphene/MoGeSiN4 heterostructures with high-performance.
Collapse
Affiliation(s)
- Nguyen T T Binh
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
| | - Cuong Q Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- Department of Physics, University of Education, Hue University, Hue 530000, Vietnam
| | - Tuan V Vu
- Division of Computational Physics, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
- Faculty of Electrical & Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| | - Chuong V Nguyen
- Department of Materials Science and Engineering, Le Quy Don Technical University, Hanoi 100000, Vietnam
| |
Collapse
|
125
|
Penev ES, Marzari N, Yakobson BI. Theoretical Prediction of Two-Dimensional Materials, Behavior, and Properties. ACS NANO 2021; 15:5959-5976. [PMID: 33823108 DOI: 10.1021/acsnano.0c10504] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Predictive modeling of two-dimensional (2D) materials is at the crossroad of two current rapidly growing interests: 2D materials per se, massively sought after and explored in experimental laboratories, and materials theoretical-computational models in general, flourishing on a fertile mix of condensed-matter physics and chemistry with advancing computational technology. Here the general methods and specific techniques of modeling are briefly overviewed, along with a somewhat philosophical assessment of what "prediction" is, followed by selected practical examples for 2D materials, from structures and properties, to device functionalities and synthetic routes for their making. We conclude with a brief sketch-outlook of future developments.
Collapse
Affiliation(s)
| | - Nicola Marzari
- Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | | |
Collapse
|
126
|
Nucleation and growth dynamics of graphene grown by radio frequency plasma-enhanced chemical vapor deposition. Sci Rep 2021; 11:6007. [PMID: 33727653 PMCID: PMC7966375 DOI: 10.1038/s41598-021-85537-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/25/2021] [Indexed: 12/21/2022] Open
Abstract
We investigated the nucleation and grain growth of graphene grown on Cu through radio frequency plasma-enhanced chemical vapor deposition (RF-PECVD) at different temperatures. A reasonable shielding method for the placement of copper was employed to achieve graphene by RF-PECVD. The nucleation and growth of graphene grains during PECVD were strongly temperature dependent. A high growth temperature facilitated the growth of polycrystalline graphene grains with a large size (~ 2 μm), whereas low temperature induced the formation of nanocrystalline grains. At a moderate temperature (790 to 850 °C), both nanocrystalline and micron-scale polycrystalline graphene grew simultaneously on Cu within 60 s with 50 W RF plasma power. As the growth time increased, the large graphene grains preferentially nucleated and grew rapidly, followed by the nucleation and growth of nanograins. There was competition between the growth of the two grain sizes. In addition, a model of graphene nucleation and grain growth during PECVD at different temperatures was established.
Collapse
|
127
|
Kumar N, Guin SN, Manna K, Shekhar C, Felser C. Topological Quantum Materials from the Viewpoint of Chemistry. Chem Rev 2021; 121:2780-2815. [PMID: 33151662 PMCID: PMC7953380 DOI: 10.1021/acs.chemrev.0c00732] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Indexed: 11/29/2022]
Abstract
Topology, a mathematical concept, has recently become a popular and truly transdisciplinary topic encompassing condensed matter physics, solid state chemistry, and materials science. Since there is a direct connection between real space, namely atoms, valence electrons, bonds, and orbitals, and reciprocal space, namely bands and Fermi surfaces, via symmetry and topology, classifying topological materials within a single-particle picture is possible. Currently, most materials are classified as trivial insulators, semimetals, and metals or as topological insulators, Dirac and Weyl nodal-line semimetals, and topological metals. The key ingredients for topology are certain symmetries, the inert pair effect of the outer electrons leading to inversion of the conduction and valence bands, and spin-orbit coupling. This review presents the topological concepts related to solids from the viewpoint of a solid-state chemist, summarizes techniques for growing single crystals, and describes basic physical property measurement techniques to characterize topological materials beyond their structure and provide examples of such materials. Finally, a brief outlook on the impact of topology in other areas of chemistry is provided at the end of the article.
Collapse
Affiliation(s)
- Nitesh Kumar
- Max Planck Institute for
Chemical
Physics of Solids, 01187 Dresden, Germany
| | - Satya N. Guin
- Max Planck Institute for
Chemical
Physics of Solids, 01187 Dresden, Germany
| | - Kaustuv Manna
- Max Planck Institute for
Chemical
Physics of Solids, 01187 Dresden, Germany
| | - Chandra Shekhar
- Max Planck Institute for
Chemical
Physics of Solids, 01187 Dresden, Germany
| | - Claudia Felser
- Max Planck Institute for
Chemical
Physics of Solids, 01187 Dresden, Germany
| |
Collapse
|
128
|
Hu R, Liao G, Huang Z, Qiao H, Liu H, Shu Y, Wang B, Qi X. Recent advances of monoelemental 2D materials for photocatalytic applications. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124179. [PMID: 33261976 DOI: 10.1016/j.jhazmat.2020.124179] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 06/12/2023]
Abstract
As a sustainable environmental governance strategy and energy conversion method, photocatalysis has considered to have great potential in this field due to its excellent optical properties and has become one of the most attractive technologies today. Among 2D materials, the emerging two-dimensional (2D) monoelemental materials mainly distributed in the -IIIA, -IVA, -VA and -VIA groups and show excellent performance in solar energy conversion due to their graphene-like 2D atomic structure and unique properties, thereby drawing increasing attention. This review briefly summarizes the preparation processes and fundamental properties of 2D single-element nanomaterials, as well as various modification strategies and adjustment mechanisms to enhance their photocatalytic properties. In particular, this article comprehensively discusses the related practical applications of 2D single-element materials in the field of photocatalysis, including photocatalytic degradation for contaminants removal, photocatalytic pathogen inactivation, photocatalytic fouling control and photocatalytic energy conversion. This review will provide some new opportunities for the rational design of other excellent photocatalysts based on 2D monoelemental materials, as well as present tremendous novel ideas for 2D monoelemental materials in other environmental conservation and energy-related applications, such as supercapacitors, electrocatalysis, solar cells, and so on.
Collapse
Affiliation(s)
- Rong Hu
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, and School of Physics and Optoelectronic, Xiangtan University, Hunan 411105, PR China
| | - GengCheng Liao
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, and School of Physics and Optoelectronic, Xiangtan University, Hunan 411105, PR China
| | - Zongyu Huang
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, and School of Physics and Optoelectronic, Xiangtan University, Hunan 411105, PR China.
| | - Hui Qiao
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, and School of Physics and Optoelectronic, Xiangtan University, Hunan 411105, PR China
| | - Huating Liu
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, and School of Physics and Optoelectronic, Xiangtan University, Hunan 411105, PR China
| | - Yiqing Shu
- College of Physics and Optoelectronic Engineerin, Shenzhen University, Shenzhen 518060, PR China; Faculty of Information Technology Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, PR China
| | - Bing Wang
- College of Physics and Optoelectronic Engineerin, Shenzhen University, Shenzhen 518060, PR China.
| | - Xiang Qi
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, and School of Physics and Optoelectronic, Xiangtan University, Hunan 411105, PR China.
| |
Collapse
|
129
|
Rezaei-Sameti M, Rakhshi M. Density functional theory study on the adsorption of CO on X= (Mn and Tc)-doped graphene sheets in the presence and absence of static electric fields. Mol Phys 2021. [DOI: 10.1080/00268976.2020.1822556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Mahdi Rezaei-Sameti
- Department of Applied Chemistry, Faculty of Science, Malayer University, Malayer, Iran
| | - Mahdi Rakhshi
- Department of Chemistry, University of Kashan, Kashan, Iran
| |
Collapse
|
130
|
Bafekry A, Shahrokhi M, Shafique A, Jappor HR, Shojaei F, Feghhi SAH, Ghergherehchi M, Gogova D. Two-dimensional carbon nitride C 6N nanosheet with egg-comb-like structure and electronic properties of a semimetal. NANOTECHNOLOGY 2021; 32:215702. [PMID: 33339018 DOI: 10.1088/1361-6528/abd50c] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
In this study, the structural, electronic and optical properties of theoretically predicted C6N monolayer structure are investigated by means of Density Functional Theory-based First-Principles Calculations. Phonon band dispersion calculations and molecular dynamics simulations reveal the dynamical and thermal stability of the C6N single-layer structure. We found out that the C6N monolayer has large negative in-plane Poisson's ratios along bothXandYdirection and the both values are almost four times that of the famous-pentagraphene. The electronic structure shows that C6N monolayer is a semi-metal and has a Dirac-point in the BZ. The optical analysis using the random phase approximation method constructed over HSE06 illustrates that the first peak of absorption coefficient of the C6N monolayer along all polarizations is located in theIRrange of spectrum, while the second absorption peak occurs in the visible range, which suggests its potential applications in optical and electronic devices. Interestingly, optically anisotropic character of this system is highly desirable for the design of polarization-sensitive photodetectors. Thermoelectric properties such as Seebeck coefficient, electrical conductivity, electronic thermal conductivity and power factor are investigated as a function of carrier doping at temperatures 300, 400, and 500 K. In general, we predict that the C6N monolayer could be a new platform for study of novel physical properties in two-dimensional semi-metal materials, which may provide new opportunities to realize high-speed low-dissipation devices.
Collapse
Affiliation(s)
- A Bafekry
- Department of Radiation Application, Shahid Beheshti University, Tehran, Iran
- Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - M Shahrokhi
- Department of Physics, Faculty of Science, University of Kurdistan, 66177-15175 Sanandaj, Iran
| | - A Shafique
- Department of Physics, Lahore University of Management Sciences, Lahore, Pakistan
| | - H R Jappor
- Department of Physics, College of Education for Pure Sciences, University of Babylon, Hilla, Iraq
| | - F Shojaei
- Department of Chemistry, Faculty of Sciences, Persian Gulf University, Bushehr 75169, Iran
| | - S A H Feghhi
- Department of Radiation Application, Shahid Beheshti University, Tehran, Iran
| | - M Ghergherehchi
- College of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - D Gogova
- Department of Physics, University of Oslo, P.O. Box 1048, Blindern, Oslo, Norway
| |
Collapse
|
131
|
Li N, Zhang RJ, Zhen Z, Xu ZH, Mu RD, He LM. The effect of catalytic copper pretreatments on CVD graphene growth at different stages. NANOTECHNOLOGY 2021; 32:095607. [PMID: 33217746 DOI: 10.1088/1361-6528/abcc94] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The controllable synthesis of high-quality and large-area graphene by chemical vapor deposition (CVD) remains a challenge nowadays. The massive grain boundaries in graphene grown on polycrystalline Cu by CVD significantly reduce its carrier mobility, limiting its application in high-performance electronic devices. Here, we confirm that the synergetic pretreatment of Cu with electropolishing and surface oxidation is a more efficient way to further suppress the graphene nucleation density (GND) and to accelerate the growth rate of the graphene domain by CVD. With increasing the growth time, we found that the increasing amount of GND and growth rate of the graphene domain were both decreasing during the whole CVD process when the Cu surface was not oxidized. By contrast, they kept growing over time when the Cu surface was pre-oxidized, which suggested that the change trends of the effects on the GND and growth rate between the Cu surface morphology and oxygen were opposite in the CVD process. In addition, not only the domain shape, but the number of graphene domain layers were impacted as well, and a large number of irregular ellipse graphene wafers with dendritic multilayer emerged when the Cu surface was oxidized.
Collapse
Affiliation(s)
- Na Li
- AECC Beijing Institute of Aeronautical Materials, Beijing 10095, People's Republic of China
- Beijing Institute of Graphene Technology Co., Ltd, Beijing 10094, People's Republic of China
| | - Ru-Jing Zhang
- AECC Beijing Institute of Aeronautical Materials, Beijing 10095, People's Republic of China
- Beijing Institute of Graphene Technology Co., Ltd, Beijing 10094, People's Republic of China
| | - Zhen Zhen
- AECC Beijing Institute of Aeronautical Materials, Beijing 10095, People's Republic of China
- Beijing Institute of Graphene Technology Co., Ltd, Beijing 10094, People's Republic of China
| | - Zhen-Hua Xu
- AECC Beijing Institute of Aeronautical Materials, Beijing 10095, People's Republic of China
- Beijing Institute of Graphene Technology Co., Ltd, Beijing 10094, People's Republic of China
| | - Ren-De Mu
- AECC Beijing Institute of Aeronautical Materials, Beijing 10095, People's Republic of China
| | - Li-Min He
- AECC Beijing Institute of Aeronautical Materials, Beijing 10095, People's Republic of China
- Beijing Institute of Graphene Technology Co., Ltd, Beijing 10094, People's Republic of China
| |
Collapse
|
132
|
Cheng N, Chen F, Wang N, Xiao Z, Durkan C, Zhang L, Zhao J. Theoretical estimation of size effects on the electronic transport in tailored graphene nanoribbons. Phys Chem Chem Phys 2021; 23:1727-1737. [PMID: 33427842 DOI: 10.1039/d0cp04638h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Focusing on the potential applications of tailored graphene nanoribbons (t-GNRs), in this work, we systematically study size effects on the electronic transport in t-GNR-based molecular junctions. As a result of the manufacturing error generated during the processing or synthesis of t-GNRs using techniques such as ion beam lithography, the final dimensions of the as-fabricated devices often deviate from the design values, giving rise to a size distribution around the mean value which could considerably affect the device performance. To simulate the effects of the manufacturing error, a series of t-GNR-based junctions with various dimensions have been modelled and systematically investigated using density functional theory (DFT) coupled with the non-equilibrium Green's function (NEGF). For junctions that consist of an acene chain connected with two graphene nanosheets, it is found that the chain length has little influence on the electronic transport and that, on the other hand, the junction conductivity is significantly altered by its width due to the different number and nature of the electron transfer pathways. Furthermore, increasing the width of the junction leads to a clear odd-even variation of decreasing amplitude in its transport behavior. These findings underpin further fundamental and device-based studies of t-GNRs.
Collapse
Affiliation(s)
- Na Cheng
- College of Material and Textile Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Feng Chen
- College of Material and Textile Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Nan Wang
- The Nanoscience Centre, University of Cambridge, Cambridge, UK
| | - Zhuocong Xiao
- The Nanoscience Centre, University of Cambridge, Cambridge, UK
| | - Colm Durkan
- The Nanoscience Centre, University of Cambridge, Cambridge, UK
| | - Liuyue Zhang
- College of Material and Textile Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Jianwei Zhao
- College of Material and Textile Engineering, Jiaxing University, Jiaxing 314001, China.
| |
Collapse
|
133
|
Anam B, Gaston N. Two-dimensional aluminium, gallium, and indium metallic crystals by first-principles design. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:125901. [PMID: 33321476 DOI: 10.1088/1361-648x/abd3d9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
Rapidly emerging two-dimensional (2D) atomic layer crystals exhibit diverse, tunable electronic properties. They appear to be more flexible than 3D crystals with greater versatility and improved functionality in a wide range of potential applications. Among these 2D materials, metallic crystals are relatively unexplored although two allotropes of gallenene (2D gallium) have been synthesized on a range of substrates. Based on these experimental findings, we investigate systematically the group 13 metals using first-principles density functional theory calculations and an unbiased structural search. In this study, the electronic structure, bonding characteristics, and phonon properties of predicted 2D allotropes of group 13 metals are calculated, including the expected effects of strain induced by substrates on the dynamical stability. Theoretical results predict that most group 13 elements have one or more stable 2D allotropes with the preferred allotrope depending on the cell shape relaxation and strain, indicating that the substrate will determine the overall allotrope preferred. This demonstrates a new avenue for the discovery of thermodynamically stable 2D metallic layers, with properties potentially suitable for electronic and optoelectronic applications.
Collapse
Affiliation(s)
- Bushra Anam
- MacDiarmid Institute for Advanced Materials and Nanotechnology, The Department of Physics, University of Auckland, Private Bag 92019, Auckland 1010, New Zealand
| | - Nicola Gaston
- MacDiarmid Institute for Advanced Materials and Nanotechnology, The Department of Physics, University of Auckland, Private Bag 92019, Auckland 1010, New Zealand
| |
Collapse
|
134
|
Fu Q, Mo H, Ostrikov K(K, Gu X, Nan H, Xiao S. Controllable synthesis of SnS2 flakes and MoS2/SnS2 heterostructures by confined-space chemical vapor deposition. CrystEngComm 2021. [DOI: 10.1039/d1ce00075f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A halogen salt-assisted confined-space CVD method is used for the controllable synthesis of SnS2 flakes, which are parallel to the substrate and have the characteristics of better crystallinity and fewer S vacancies.
Collapse
Affiliation(s)
- Quangui Fu
- Engineering Research Center of IoT Technology Applications (Ministry of Education)
- Department of Electronic Engineering
- Jiangnan University
- Wuxi 214122
- China
| | - Haoxin Mo
- Engineering Research Center of IoT Technology Applications (Ministry of Education)
- Department of Electronic Engineering
- Jiangnan University
- Wuxi 214122
- China
| | - Kostya (Ken) Ostrikov
- School of Chemistry
- Physics and Mechanical Engineering and Institute for Future Environments
- Queensland University of Technology
- Brisbane
- Australia
| | - Xiaofeng Gu
- Engineering Research Center of IoT Technology Applications (Ministry of Education)
- Department of Electronic Engineering
- Jiangnan University
- Wuxi 214122
- China
| | - Haiyan Nan
- Engineering Research Center of IoT Technology Applications (Ministry of Education)
- Department of Electronic Engineering
- Jiangnan University
- Wuxi 214122
- China
| | - Shaoqing Xiao
- Engineering Research Center of IoT Technology Applications (Ministry of Education)
- Department of Electronic Engineering
- Jiangnan University
- Wuxi 214122
- China
| |
Collapse
|
135
|
Van On V, Nguyen DK, Guerrero-Sanchez J, Hoat DM. Exploring the electronic band gap of Janus MoSeO and WSeO monolayers and their heterostructures. NEW J CHEM 2021. [DOI: 10.1039/d1nj04427c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Electronic band structure of TMSeO monolayers.
Collapse
Affiliation(s)
- Vo Van On
- Group of Computational Physics and Simulation of Advanced Materials, Institute of Applied Technology, Thu Dau Mot University, Binh Duong Province, Vietnam
| | - Duy Khanh Nguyen
- Group of Computational Physics and Simulation of Advanced Materials, Institute of Applied Technology, Thu Dau Mot University, Binh Duong Province, Vietnam
| | - J. Guerrero-Sanchez
- Universidad Nacional Autónoma de México, Centro de Nanociencias y Nanotecnología, Apartado Postal 14, Ensenada, Baja California, Código Postal 22800, Mexico
| | - D. M. Hoat
- Institute of Theoretical and Applied Research, Duy Tan University, Ha Noi 100000, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
| |
Collapse
|
136
|
Shin JH, Lee MJ, Choi JH, Song JA, Kim TH, Oh BK. Electrochemical H 2O 2 biosensor based on horseradish peroxidase encapsulated protein nanoparticles with reduced graphene oxide-modified gold electrode. NANO CONVERGENCE 2020; 7:39. [PMID: 33330946 PMCID: PMC7744559 DOI: 10.1186/s40580-020-00249-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/06/2020] [Indexed: 05/28/2023]
Abstract
In this study, an electrochemical biosensor composed of a horseradish peroxidase (HRP)-encapsulated protein nanoparticles (HEPNP) was fabricated for the sensitive and selective detection of H2O2. The HEPNP has a three-dimensional structure that can contain a large amount of HRP; therefore, HEPNP can amplify the electrochemical signals necessary for the detection of H2O2. Furthermore, reduced graphene oxide (rGO) was used to increase the efficiency of electron transfer from the HEPNP to an electrode, which could enhance the electrochemical signal. This biosensor showed a sensitive electrochemical performance for detection of H2O2 with signals in the range from 0.01-100 μM, and it could detect low concentrations up to 0.01 μM. Furthermore, this biosensor was operated against interferences from glucose, ascorbic acid, and uric acid. In addition, this fabricated H2O2 biosensor showed selective detection performance in human blood serum. Therefore, the proposed biosensor could promote the sensitive and selective detection of H2O2 in clinical applications.
Collapse
Affiliation(s)
- Jeong-Hyeop Shin
- Department of Chemical & Biomolecular Engineering, Sogang University, Mapo-Gu, Seoul, 04107, South Korea
| | - Myeong-Jun Lee
- Department of Chemical & Biomolecular Engineering, Sogang University, Mapo-Gu, Seoul, 04107, South Korea
| | - Jin-Ha Choi
- Department of Chemical & Biomolecular Engineering, Sogang University, Mapo-Gu, Seoul, 04107, South Korea
| | - Ji-Ae Song
- Department of Chemical & Biomolecular Engineering, Sogang University, Mapo-Gu, Seoul, 04107, South Korea
| | - Tae-Hwan Kim
- Department of Chemical & Biomolecular Engineering, Sogang University, Mapo-Gu, Seoul, 04107, South Korea
| | - Byung-Keun Oh
- Department of Chemical & Biomolecular Engineering, Sogang University, Mapo-Gu, Seoul, 04107, South Korea.
| |
Collapse
|
137
|
Review on Carbon Nanotube Varieties for Healthcare Application: Effect of Preparation Methods and Mechanism Insight. Processes (Basel) 2020. [DOI: 10.3390/pr8121654] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Many potential uses of carbon nanotubes (CNT) in various sectors have created an urge to assess their diverse range of properties pertaining to various applications like catalysis, biosensor, and antimicrobial activity. Increasing studies on the biosensor and antibacterial activity of CNT have prompted tremendous interest in the utilization of the carbon-based nanostructured material as an alternative to currently existing antibiotics. However, the study of bactericidal aspects of this nanomaterial is relatively new and hence the deeper understanding of the various physicochemical characteristics and antimicrobial nature of CNT is extremely wanted. This review covers the effect of framework substitution and explains the understanding of membrane disintegration and oxidative stresses upon nanomaterials for antimicrobial activity. The present article has also reviewed effect of preparation nanoparticle deposition and framework modification on carbon nanotube structure. The recent research on graphene-modified nanomaterials for biosensor applications related to healthcare/clinical applications have also been discussed. Major physicochemical contributing factors such as size, functionalization, high surface area, and aggregation features of CNT assisting in the bacterial killing have nicely been outlined. Hence, the present review explains the supporting information related with Single and multi-walled carbon nanotube and summarized the advantages of functionalized carbon nanotube/graphene-based nanostructured carbon-based materials towards protection and reduction of bacterial/viral infections in the healthcare sector.
Collapse
|
138
|
Wang W, Hou Y, Martinez D, Kurniawan D, Chiang WH, Bartolo P. Carbon Nanomaterials for Electro-Active Structures: A Review. Polymers (Basel) 2020; 12:E2946. [PMID: 33317211 PMCID: PMC7764097 DOI: 10.3390/polym12122946] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 11/18/2022] Open
Abstract
The use of electrically conductive materials to impart electrical properties to substrates for cell attachment proliferation and differentiation represents an important strategy in the field of tissue engineering. This paper discusses the concept of electro-active structures and their roles in tissue engineering, accelerating cell proliferation and differentiation, consequently leading to tissue regeneration. The most relevant carbon-based materials used to produce electro-active structures are presented, and their main advantages and limitations are discussed in detail. Particular emphasis is put on the electrically conductive property, material synthesis and their applications on tissue engineering. Different technologies, allowing the fabrication of two-dimensional and three-dimensional structures in a controlled way, are also presented. Finally, challenges for future research are highlighted. This review shows that electrical stimulation plays an important role in modulating the growth of different types of cells. As highlighted, carbon nanomaterials, especially graphene and carbon nanotubes, have great potential for fabricating electro-active structures due to their exceptional electrical and surface properties, opening new routes for more efficient tissue engineering approaches.
Collapse
Affiliation(s)
- Weiguang Wang
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK; (Y.H.); (P.B.)
| | - Yanhao Hou
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK; (Y.H.); (P.B.)
| | - Dean Martinez
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei E2-514, Taiwan; (D.M.); (D.K.); (W.-H.C.)
| | - Darwin Kurniawan
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei E2-514, Taiwan; (D.M.); (D.K.); (W.-H.C.)
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei E2-514, Taiwan; (D.M.); (D.K.); (W.-H.C.)
| | - Paulo Bartolo
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK; (Y.H.); (P.B.)
| |
Collapse
|
139
|
Rahmati M, Ghafuri H, Ghanbari N, Tajik Z. 1,4 Butanesultone Functionalized Graphitic Carbon Nitride: Efficient Catalysts for the One-Pot Synthesis of 1,4-Dihydropyridine and Polyhydroquinoline Derivative through Hantzsch Reaction. Polycycl Aromat Compd 2020. [DOI: 10.1080/10406638.2020.1852583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Monavar Rahmati
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Hossein Ghafuri
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Nastaran Ghanbari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Zeinab Tajik
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| |
Collapse
|
140
|
Galal A, Hassan HK, Atta NF. Voltammetric Study of the Electrocatalytic Oxidation of Formaldehyde on Pt−Pd Co‐catalyst Supported on Reduced Graphene Oxide
¶. ELECTROANAL 2020. [DOI: 10.1002/elan.202060263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ahmed Galal
- Department of Chemistry Faculty of Science Cairo University 12613 Giza Egypt
| | - Hagar K. Hassan
- Department of Chemistry Faculty of Science Cairo University 12613 Giza Egypt
| | - Nada F. Atta
- Department of Chemistry Faculty of Science Cairo University 12613 Giza Egypt
| |
Collapse
|
141
|
Zhang L, Tang Y, Khan AR, Hasan MM, Wang P, Yan H, Yildirim T, Torres JF, Neupane GP, Zhang Y, Li Q, Lu Y. 2D Materials and Heterostructures at Extreme Pressure. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002697. [PMID: 33344136 PMCID: PMC7740103 DOI: 10.1002/advs.202002697] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/03/2020] [Indexed: 06/02/2023]
Abstract
2D materials possess wide-tuning properties ranging from semiconducting and metallization to superconducting, etc., which are determined by their structure, empowering them to be appealing in optoelectronic and photovoltaic applications. Pressure is an effective and clean tool that allows modifications of the electronic structure, crystal structure, morphologies, and compositions of 2D materials through van der Waals (vdW) interaction engineering. This enables an insightful understanding of the variable vdW interaction induced structural changes, structure-property relations as well as contributes to the versatile implications of 2D materials. Here, the recent progress of high-pressure research toward 2D materials and heterostructures, involving graphene, boron nitride, transition metal dichalcogenides, 2D perovskites, black phosphorene, MXene, and covalent-organic frameworks, using diamond anvil cell is summarized. A detailed analysis of pressurized structure, phonon dynamics, superconducting, metallization, doping together with optical property is performed. Further, the pressure-induced optimized properties and potential applications as well as the vision of engineering the vdW interactions in heterostructures are highlighted. Finally, conclusions and outlook are presented on the way forward.
Collapse
Affiliation(s)
- Linglong Zhang
- Institute of Microscale OptoelectronicsCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
- Research School of Electrical, Energy and Materials EngineeringCollege of Engineering and Computer ScienceThe Australian National UniversityCanberraACT2601Australia
| | - Yilin Tang
- Research School of Electrical, Energy and Materials EngineeringCollege of Engineering and Computer ScienceThe Australian National UniversityCanberraACT2601Australia
| | - Ahmed Raza Khan
- Research School of Electrical, Energy and Materials EngineeringCollege of Engineering and Computer ScienceThe Australian National UniversityCanberraACT2601Australia
| | - Md Mehedi Hasan
- Research School of Electrical, Energy and Materials EngineeringCollege of Engineering and Computer ScienceThe Australian National UniversityCanberraACT2601Australia
| | - Ping Wang
- Research School of Electrical, Energy and Materials EngineeringCollege of Engineering and Computer ScienceThe Australian National UniversityCanberraACT2601Australia
| | - Han Yan
- Research School of Electrical, Energy and Materials EngineeringCollege of Engineering and Computer ScienceThe Australian National UniversityCanberraACT2601Australia
| | - Tanju Yildirim
- Research School of Electrical, Energy and Materials EngineeringCollege of Engineering and Computer ScienceThe Australian National UniversityCanberraACT2601Australia
| | - Juan Felipe Torres
- Research School of Electrical, Energy and Materials EngineeringCollege of Engineering and Computer ScienceThe Australian National UniversityCanberraACT2601Australia
| | - Guru Prakash Neupane
- Research School of Electrical, Energy and Materials EngineeringCollege of Engineering and Computer ScienceThe Australian National UniversityCanberraACT2601Australia
| | - Yupeng Zhang
- Institute of Microscale OptoelectronicsCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Quan Li
- International Center for Computational Methods and SoftwareCollege of PhysicsJilin UniversityChangchun130012China
| | - Yuerui Lu
- Research School of Electrical, Energy and Materials EngineeringCollege of Engineering and Computer ScienceThe Australian National UniversityCanberraACT2601Australia
| |
Collapse
|
142
|
Kumar A, Kumar D. Interaction of Nucleic Acid Bases (NABs) with Graphene (GR) and Boron Nitride Graphene (BNG). J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
143
|
Kafiah F, Laoui T, Abdelsalam E, Atieh MA, Khan Z, Alkasrawi M. Monolayer Graphene Transfer onto Hydrophilic Substrates: A New Protocol Using Electrostatic Charging. MEMBRANES 2020; 10:membranes10110358. [PMID: 33233819 PMCID: PMC7699948 DOI: 10.3390/membranes10110358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/21/2020] [Accepted: 11/10/2020] [Indexed: 11/16/2022]
Abstract
In the present work, we developed a novel method for transferring monolayer graphene onto four different commercial hydrophilic micro/ultra-filtration substrates. The developed method used electrostatic charging to maintain the contact between the graphene and the target substrate intact during the etching step through the wet transfer process. Several measurement/analysis techniques were used in order to evaluate the properties of the surfaces and to assess the quality of the transferred graphene. The techniques included water contact angle (CA), atomic force microscopy (AFM), and field emission scanning electron microscopy (FESEM). Potassium chloride (KCl) ions were used for the transport study through the developed graphene-based membranes. The results revealed that 70% rejection of KCI ions was recorded for the graphene/polyvinylidene difluoride (PVDF1) membrane, followed by 67% rejection for the graphene/polyethersulfone (PES) membrane, and 65% rejection for graphene/PVDF3 membrane. It was revealed that the smoothest substrate was the most effective in rejecting the ions. Although defects such as tears and cracks within the graphene layer were still evolving in this new transfer method, however, the use of Nylon 6,6 interfacial polymerization allowed sealing the tears and cracks within the graphene monolayer. This enhanced the KCl ions rejection of up to 85% through the defect-sealed graphene/polymer composite membranes.
Collapse
Affiliation(s)
- Feras Kafiah
- School of Engineering Technology, Al Hussein Technical University, Amman 11831, Jordan; (F.K.); (E.A.)
| | - Tahar Laoui
- Department of Mechanical and Nuclear Engineering, University of Sharjah, Sharjah 27272, UAE;
- Department of Mechanical Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia;
- Correspondence: (T.L.); (M.A.)
| | - Emad Abdelsalam
- School of Engineering Technology, Al Hussein Technical University, Amman 11831, Jordan; (F.K.); (E.A.)
| | - Muataz Ali Atieh
- Department of Mechanical and Nuclear Engineering, University of Sharjah, Sharjah 27272, UAE;
| | - Zafarullah Khan
- Department of Mechanical Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia;
| | - Malek Alkasrawi
- Department of Engineering, Wisconsin Institute for Sustainable Technology (WIST), College of Natural Resources, University of Wisconsin-Stevens Point, Stevens Point, WI 54481, USA
- Correspondence: (T.L.); (M.A.)
| |
Collapse
|
144
|
Ulčakar L, Mravlje J, Rejec T. Kibble-Zurek Behavior in Disordered Chern Insulators. PHYSICAL REVIEW LETTERS 2020; 125:216601. [PMID: 33274996 DOI: 10.1103/physrevlett.125.216601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 10/29/2020] [Indexed: 06/12/2023]
Abstract
Even though no local order parameter in the sense of the Landau theory exists for topological quantum phase transitions in Chern insulators, the highly nonlocal Berry curvature exhibits critical behavior near a quantum critical point. We investigate the critical properties of its real space analog, the local Chern marker, in weakly disordered Chern insulators. Because of disorder, inhomogeneities appear in the spatial distribution of the local Chern marker. Their size exhibits power-law scaling with the critical exponent matching the one extracted from the Berry curvature of a clean system. We drive the system slowly through such a quantum phase transition. The characteristic size of inhomogeneities in the nonequilibrium postquench state obeys the Kibble-Zurek scaling. In this setting, the local Chern marker thus does behave in a similar way as a local order parameter for a symmetry breaking second order phase transition. The Kibble-Zurek scaling also holds for the inhomogeneities in the spatial distribution of excitations and of the orbital polarization.
Collapse
Affiliation(s)
- Lara Ulčakar
- Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia and Faculty for Mathematics and Physics, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana, Slovenia
| | - Jernej Mravlje
- Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Tomaž Rejec
- Jozef Stefan Institute, Jamova 39, Ljubljana, Slovenia and Faculty for Mathematics and Physics, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
145
|
Rational Design of Binary Alloys for Catalytic Growth of Graphene via Chemical Vapor Deposition. Catalysts 2020. [DOI: 10.3390/catal10111305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Chemical vapor deposition is the most promising technique for the mass production of high-quality graphene, in which the metal substrate plays a crucial role in the catalytic decomposition of the carbon source, assisting the attachment of the active carbon species, and regulating the structure of the graphene film. Due to some drawbacks of single metal substrates, alloy substrates have gradually attracted attention owing to their complementarity in the catalytic growth of graphene. In this review, we focus on the rational design of binary alloys, such as Cu/Ni, Ni/Mo, and Cu/Si, to control the layer numbers and growth rate of graphene. By analyzing the elementary steps of graphene growth, general principles are summarized in terms of the catalytic activity, metal–carbon interactions, carbon solubility, and mutual miscibility. Several challenges in this field are also put forward to inspire the novel design of alloy catalysts and the synthesis of graphene films bearing desirable properties.
Collapse
|
146
|
Lee K, Lee H, Kim Y, Choi J, Ahn JP, Shin DH, Cho YH, Jang HK, Lee SW, Shin J, Ji H, Kim GT. Real-time effect of electron beam on MoS 2 field-effect transistors. NANOTECHNOLOGY 2020; 31:455202. [PMID: 32325431 DOI: 10.1088/1361-6528/ab8c78] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Irradiation of MoS2 field-effect transistors (FETs) fabricated on Si/SiO2 substrates with electron beams (e-beams) below 30 keV creates electron-hole pairs (EHP) in the SiO2, which increase the interface trap density (Nit ) and change the current path in the channel, resulting in performance changes. In situ measurements of the electrical characteristics of the FET performed using a nano-probe system mounted inside a scanning electron microscope show that e-beam irradiation enables both multilayer and monolayer MoS2 channels act as conductors. The e-beams mostly penetrate the channel owing to their large kinetic energy, while the EHPs formed in the SiO2 layer can contribute to the conductance by flowing into the MoS2 channel or inducing the gate bias effect. The analysis of the device parameters in the initial state and the vent-evacuation state after e-beam irradiation can clarify the effect of the interplay between the e-beam-induced EHPs and ambient adsorbates on the carrier behavior, which depends on the thickness of the MoS2 layer. DC and low frequency noise analysis reveals that the e-beam-induced EHPs increase Nit from 109-1010 to 1011 cm-2 eV-1 in both monolayer and multilayer devices, while the interfacial Coulomb scattering parameter αSC increases by three times in the monolayer and decreases to one-tenth of its original value in the multilayer. In other words, an MoS2 layer with a thickness of ∼30 nm is less sensitive to adsorbates by surface screening. Thus, the carrier mobility in the monolayer device decreases from 45.7 to 40 cm2 V-1 s-1, while in the 30 nm-thick multilayer device, it increases from 4.9 to 5.6 cm2 V-1 s-1. This is further evidenced by simulations of the distribution of interface traps and channel carriers in the MoS2 FET before and after e-beam irradiation, demonstrating that Coulomb scattering decreases as the effective channel moves away from the interface.
Collapse
Affiliation(s)
- Kookjin Lee
- School of Electrical Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Real B, Jamadi O, Milićević M, Pernet N, St-Jean P, Ozawa T, Montambaux G, Sagnes I, Lemaître A, Le Gratiet L, Harouri A, Ravets S, Bloch J, Amo A. Semi-Dirac Transport and Anisotropic Localization in Polariton Honeycomb Lattices. PHYSICAL REVIEW LETTERS 2020; 125:186601. [PMID: 33196264 DOI: 10.1103/physrevlett.125.186601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Compression dramatically changes the transport and localization properties of graphene. This is intimately related to the change of symmetry of the Dirac cone when the particle hopping is different along different directions of the lattice. In particular, for a critical compression, a semi-Dirac cone is formed with massless and massive dispersions along perpendicular directions. Here we show direct evidence of the highly anisotropic transport of polaritons in a honeycomb lattice of coupled micropillars implementing a semi-Dirac cone. If we optically induce a vacancylike defect in the lattice, we observe an anisotropically localized polariton distribution in a single sublattice, a consequence of the semi-Dirac dispersion. Our work opens up new horizons for the study of transport and localization in lattices with chiral symmetry and exotic Dirac dispersions.
Collapse
Affiliation(s)
- B Real
- Univ. Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers Atomes et Molécules, F-59000 Lille, France
| | - O Jamadi
- Univ. Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers Atomes et Molécules, F-59000 Lille, France
| | - M Milićević
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 91120, Palaiseau, France
| | - N Pernet
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 91120, Palaiseau, France
| | - P St-Jean
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 91120, Palaiseau, France
| | - T Ozawa
- Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
- Interdisciplinary Theoretical and Mathematical Sciences Program (iTHEMS), RIKEN, Wako, Saitama 351-0198, Japan
| | - G Montambaux
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405, Orsay, France
| | - I Sagnes
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 91120, Palaiseau, France
| | - A Lemaître
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 91120, Palaiseau, France
| | - L Le Gratiet
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 91120, Palaiseau, France
| | - A Harouri
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 91120, Palaiseau, France
| | - S Ravets
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 91120, Palaiseau, France
| | - J Bloch
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 91120, Palaiseau, France
| | - A Amo
- Univ. Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers Atomes et Molécules, F-59000 Lille, France
| |
Collapse
|
148
|
Imran M. Quantizing viscous transport in bilayer graphene. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 33:045603. [PMID: 32947267 DOI: 10.1088/1361-648x/abb9b9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
The momentum transport in ultraclean bilayer graphene is characterized by the viscous transport. In quantizing magnetic field the momentum current passes through the guiding center of the cyclotron orbit. In this study we derive the formula of the quantized Hall viscosity for bilayer graphene. This can be detected in the non-local magnetoresistivity measurements that varies with the quantized step. For weak magnetic field the Landau levels start overlapping and lead to the Shubnikov-de-Haas oscillations, superimposed on the classical formulae, reference Steinberg (1958Phys. Rev.1091486). These oscillations are present in the longitudinal and Hall viscosities.
Collapse
Affiliation(s)
- Muhammad Imran
- Department of Physics, University of Florida, Gainesville, Florida 32611, United States of America
- Department of Physics, Leifson Physics, University of Nevada, Reno, Nevada 89512, United States of America
| |
Collapse
|
149
|
Marconcini P, Macucci M. Effects of A Magnetic Field on the Transport and Noise Properties of a Graphene Ribbon with Antidots. NANOMATERIALS 2020; 10:nano10112098. [PMID: 33113892 PMCID: PMC7690714 DOI: 10.3390/nano10112098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 11/24/2022]
Abstract
We perform a numerical simulation of the effects of an orthogonal magnetic field on charge transport and shot noise in an armchair graphene ribbon with a lattice of antidots. This study relies on our envelope-function based code, in which the presence of antidots is simulated through a nonzero mass term and the magnetic field is introduced with a proper choice of gauge for the vector potential. We observe that by increasing the magnetic field, the energy gap present with no magnetic field progressively disappears, together with features related to commensurability and quantum effects. In particular, we focus on the behavior for high values of the magnetic field: we notice that when it is sufficiently large, the effect of the antidots vanishes and shot noise disappears, as a consequence of the formation of edge states crawling along the boundaries of the structure without experiencing any interaction with the antidots.
Collapse
|
150
|
Iglesias Panuska GA, Centres PM, Ramirez-Pastor AJ. Jamming and percolation of linear k-mers on honeycomb lattices. Phys Rev E 2020; 102:032123. [PMID: 33076027 DOI: 10.1103/physreve.102.032123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/25/2020] [Indexed: 11/07/2022]
Abstract
Numerical simulations and finite-size scaling analysis have been performed to study the jamming and percolation behavior of elongated objects deposited on two-dimensional honeycomb lattices. The depositing particle is modeled as a linear array of length k (so-called k-mer), maximizing the distance between first and last monomers in the chain. The separation between k-mer units is equal to the lattice constant. Hence, k sites are occupied by a k-mer when adsorbed onto the surface. The adsorption process starts with an initial configuration, where all lattice sites are empty. Then, the sites are occupied following a random sequential adsorption mechanism. The process finishes when the jamming state is reached and no more objects can be deposited due to the absence of empty site clusters of appropriate size and shape. Jamming coverage θ_{j,k} and percolation threshold θ_{c,k} were determined for a wide range of values of k (2≤k≤128). The obtained results shows that (i) θ_{j,k} is a decreasing function with increasing k, being θ_{j,k→∞}=0.6007(6) the limit value for infinitely long k-mers; and (ii) θ_{c,k} has a strong dependence on k. It decreases in the range 2≤k<48, goes through a minimum around k=48, and increases smoothly from k=48 up to the largest studied value of k=128. Finally, the precise determination of the critical exponents ν, β, and γ indicates that the model belongs to the same universality class as 2D standard percolation regardless of the value of k considered.
Collapse
Affiliation(s)
- G A Iglesias Panuska
- Departamento de Física, Instituto de Física Aplicada, Universidad Nacional de San Luis-CONICET, Ejército de los Andes 950, D5700HHW, San Luis, Argentina
| | - P M Centres
- Departamento de Física, Instituto de Física Aplicada, Universidad Nacional de San Luis-CONICET, Ejército de los Andes 950, D5700HHW, San Luis, Argentina
| | - A J Ramirez-Pastor
- Departamento de Física, Instituto de Física Aplicada, Universidad Nacional de San Luis-CONICET, Ejército de los Andes 950, D5700HHW, San Luis, Argentina
| |
Collapse
|