101
|
Boosting the Electrocatalytic CO2 Reduction Reaction by Nanostructured Metal Materials via Defects Engineering. NANOMATERIALS 2022; 12:nano12142389. [PMID: 35889615 PMCID: PMC9324018 DOI: 10.3390/nano12142389] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 12/14/2022]
Abstract
Electrocatalytic CO2 reduction reaction (CO2RR) is one of the most effective methods to convert CO2 into useful fuels. Introducing defects into metal nanostructures can effectively improve the catalytic activity and selectivity towards CO2RR. This review provides the recent progress on the use of metal nanomaterials with defects towards electrochemical CO2RR and defects engineering methods. Accompanying these ideas, we introduce the structure of defects characterized by electron microscopy techniques as the characterization and analysis of defects are relatively difficult. Subsequently, we present the intrinsic mechanism of how the defects affect CO2RR performance. Finally, to promote a wide and deep study in this field, the perspectives and challenges concerning defects engineering in metal nanomaterials towards CO2RR are put forward.
Collapse
|
102
|
Controlled Synthesis of High-index Faceted Pt nanocatalysts Directly on Carbon Paper for Methanol Electrooxidation. Electrocatalysis (N Y) 2022. [DOI: 10.1007/s12678-022-00749-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
103
|
Mondal S, Sarkar S, Bagchi D, Das T, Das R, Singh AK, Prasanna PK, Vinod CP, Chakraborty S, Peter SC. Morphology-Tuned Pt 3 Ge Accelerates Water Dissociation to Industrial-Standard Hydrogen Production over a wide pH Range. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202294. [PMID: 35609013 DOI: 10.1002/adma.202202294] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/14/2022] [Indexed: 06/15/2023]
Abstract
The discovery of novel materials for industrial-standard hydrogen production is the present need considering the global energy infrastructure. A novel electrocatalyst, Pt3 Ge, which is engineered with a desired crystallographic facet (202), accelerates hydrogen production by water electrolysis, and records industrially desired operational stability compared to the commercial catalyst platinum is introduced. Pt3 Ge-(202) exhibits low overpotential of 21.7 mV (24.6 mV for Pt/C) and 92 mV for 10 and 200 mA cm-2 current density, respectively in 0.5 m H2 SO4 . It also exhibits remarkable stability of 15 000 accelerated degradation tests cycles (5000 for Pt/C) and exceptional durability of 500 h (@10 mA cm-2 ) in acidic media. Pt3 Ge-(202) also displays low overpotential of 96 mV for 10 mA cm-2 current density in the alkaline medium, rationalizing its hydrogen production ability over a wide pH range required commercial operations. Long-term durability (>75 h in alkaline media) with the industrial level current density (>500 mA cm-2 ) has been demonstrated by utilizing the electrochemical flow reactor. The driving force behind this stupendous performance of Pt3 Ge-(202) has been envisaged by mapping the reaction mechanism, active sites, and charge-transfer kinetics via controlled electrochemical experiments, ex situ X-ray photoelectron spectroscopy, in situ infrared spectroscopy, and in situ X-ray absorption spectroscopy further corroborated by first principles calculations.
Collapse
Affiliation(s)
- Soumi Mondal
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| | - Shreya Sarkar
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| | - Debabrata Bagchi
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| | - Tisita Das
- Materials Theory for Energy Scavenging (MATES) Lab, Harish-Chandra Research Institute (HRI) Allahabad, HBNI, Chhatnag Road, Jhunsi, Prayagraj (Allahabad), 211019, India
| | - Risov Das
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| | - Ashutosh Kumar Singh
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| | - Ponnappa Kechanda Prasanna
- Materials Theory for Energy Scavenging (MATES) Lab, Harish-Chandra Research Institute (HRI) Allahabad, HBNI, Chhatnag Road, Jhunsi, Prayagraj (Allahabad), 211019, India
| | - C P Vinod
- Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 410008, India
| | - Sudip Chakraborty
- Materials Theory for Energy Scavenging (MATES) Lab, Harish-Chandra Research Institute (HRI) Allahabad, HBNI, Chhatnag Road, Jhunsi, Prayagraj (Allahabad), 211019, India
| | - Sebastian C Peter
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| |
Collapse
|
104
|
Pedrazo-Tardajos A, Arslan Irmak E, Kumar V, Sánchez-Iglesias A, Chen Q, Wirix M, Freitag B, Albrecht W, Van Aert S, Liz-Marzán LM, Bals S. Thermal Activation of Gold Atom Diffusion in Au@Pt Nanorods. ACS NANO 2022; 16:9608-9619. [PMID: 35687880 DOI: 10.1021/acsnano.2c02889] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Understanding the thermal stability of bimetallic nanoparticles is of vital importance to preserve their functionalities during their use in a variety of applications. In contrast to well-studied bimetallic systems such as Au@Ag, heat-induced morphological and compositional changes in Au@Pt nanoparticles are insufficiently understood, even though Au@Pt is an important material for catalysis. To investigate the thermal instability of Au@Pt nanorods at temperatures below their bulk melting point, we combined in situ heating with two- and three-dimensional electron microscopy techniques, including three-dimensional energy-dispersive X-ray spectroscopy. The experimental results were used as input for molecular dynamics simulations, to unravel the mechanisms behind the morphological transformation of Au@Pt core-shell nanorods. We conclude that thermal stability is influenced not only by the degree of coverage of Pt on Au but also by structural details of the Pt shell.
Collapse
Affiliation(s)
- Adrián Pedrazo-Tardajos
- EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Ece Arslan Irmak
- EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Vished Kumar
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
| | - Ana Sánchez-Iglesias
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER- BBN), 20014 Donostia-San Sebastián, Spain
| | - Qiongyang Chen
- EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Maarten Wirix
- Thermo Fisher Scientific, Strijp-T, Zwaanstraat 31G, 5651 Eindhoven, The Netherlands
| | - Bert Freitag
- Thermo Fisher Scientific, Strijp-T, Zwaanstraat 31G, 5651 Eindhoven, The Netherlands
| | - Wiebke Albrecht
- EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Sandra Van Aert
- EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER- BBN), 20014 Donostia-San Sebastián, Spain
| | - Sara Bals
- EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| |
Collapse
|
105
|
Chen M, Liu Y, Song T, Wei R, Zhuang X, Yang Y, Liang H. Intermetallic
PdCd
core promoting
CO
tolerance of Pd shell for electrocatalytic formic acid oxidation. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ming‐Xi Chen
- H Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry University of Science and Technology of China Hefei 230026 China
| | - Yue Liu
- Key Laboratory of Fundamental Chemistry of the State Ethnic Commission, School of Chemistry and Environment Southwest Minzu University Chengdu 610041 China
| | - Tian‐Wei Song
- H Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry University of Science and Technology of China Hefei 230026 China
| | - Rui‐Lin Wei
- Key Laboratory of Fundamental Chemistry of the State Ethnic Commission, School of Chemistry and Environment Southwest Minzu University Chengdu 610041 China
| | - Xiao‐Dong Zhuang
- The Meso‐Entropy Matter Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan RD Shanghai 200240 China
| | - Yao‐Yue Yang
- Key Laboratory of Fundamental Chemistry of the State Ethnic Commission, School of Chemistry and Environment Southwest Minzu University Chengdu 610041 China
| | - Hai‐Wei Liang
- H Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry University of Science and Technology of China Hefei 230026 China
| |
Collapse
|
106
|
Sen R, Das S, Nath A, Maharana P, Kar P, Verpoort F, Liang P, Roy S. Electrocatalytic Water Oxidation: An Overview With an Example of Translation From Lab to Market. Front Chem 2022; 10:861604. [PMID: 35646820 PMCID: PMC9131097 DOI: 10.3389/fchem.2022.861604] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/30/2022] [Indexed: 12/03/2022] Open
Abstract
Water oxidation has become very popular due to its prime role in water splitting and metal–air batteries. Thus, the development of efficient, abundant, and economical catalysts, as well as electrode design, is very demanding today. In this review, we have discussed the principles of electrocatalytic water oxidation reaction (WOR), the electrocatalyst and electrode design strategies for the most efficient results, and recent advancement in the oxygen evolution reaction (OER) catalyst design. Finally, we have discussed the use of OER in the Oxygen Maker (OM) design with the example of OM REDOX by Solaire Initiative Private Ltd. The review clearly summarizes the future directions and applications for sustainable energy utilization with the help of water splitting and the way forward to develop better cell designs with electrodes and catalysts for practical applications. We hope this review will offer a basic understanding of the OER process and WOR in general along with the standard parameters to evaluate the performance and encourage more WOR-based profound innovations to make their way from the lab to the market following the example of OM REDOX.
Collapse
Affiliation(s)
- Rakesh Sen
- Eco-Friendly Applied Materials Laboratory (EFAML), Department of Chemical Sciences, Materials Science Centre, Indian Institute of Science Education and Research- Kolkata, Kolkata, India
| | - Supriya Das
- Eco-Friendly Applied Materials Laboratory (EFAML), Department of Chemical Sciences, Materials Science Centre, Indian Institute of Science Education and Research- Kolkata, Kolkata, India
| | - Aritra Nath
- Eco-Friendly Applied Materials Laboratory (EFAML), Department of Chemical Sciences, Materials Science Centre, Indian Institute of Science Education and Research- Kolkata, Kolkata, India
| | - Priyanka Maharana
- Eco-Friendly Applied Materials Laboratory (EFAML), Department of Chemical Sciences, Materials Science Centre, Indian Institute of Science Education and Research- Kolkata, Kolkata, India
| | - Pradipta Kar
- Solaire Initiative Private Limited, Bhubaneshwar and Kolkata, India
| | - Francis Verpoort
- Solaire Initiative Private Limited, Bhubaneshwar and Kolkata, India
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
- Center for Environmental and Energy Research, Ghent University Global Campus, Incheon, South Korea
- *Correspondence: Francis Verpoort, ; Pei Liang, ; Soumyajit Roy,
| | - Pei Liang
- Solaire Initiative Private Limited, Bhubaneshwar and Kolkata, India
- *Correspondence: Francis Verpoort, ; Pei Liang, ; Soumyajit Roy,
| | - Soumyajit Roy
- Eco-Friendly Applied Materials Laboratory (EFAML), Department of Chemical Sciences, Materials Science Centre, Indian Institute of Science Education and Research- Kolkata, Kolkata, India
- Solaire Initiative Private Limited, Bhubaneshwar and Kolkata, India
- *Correspondence: Francis Verpoort, ; Pei Liang, ; Soumyajit Roy,
| |
Collapse
|
107
|
Hu L, Poeppelmeier KR. Synthesis of Perovskite Polyhedron Nanocrystals with Equivalent Facets and the Controlled Growth of Pt Nanoparticles with Differing Surface Concentration of Oxidized Pt4+/Pt2+Species. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
108
|
Wang W, Wang Z, Sun M, Zhang H, Wang H. Ligand-free sub-5 nm platinum nanocatalysts on polydopamine supports: size-controlled synthesis and size-dictated reaction pathway selection. NANOSCALE 2022; 14:5743-5750. [PMID: 35348174 DOI: 10.1039/d2nr00805j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Noble metal nanoparticles exhibit intriguing size-dependent catalytic activities toward a plethora of important chemical reactions. A particularly interesting but rarely explored scenario is that some catalytic molecule-transforming processes may even inter-switch among multiple reaction pathways when the dimensions of a metal nanocatalyst are deliberately tuned within specific size windows. Here, we take full advantage of the adhesive surface properties of polydopamine to kinetically maneuver the surface-mediated nucleation and growth of Pt nanocrystals, which enables us to synthesize polydopamine-supported sub-5 nm Pt nanocatalysts with precisely tunable particle sizes, narrow size distributions, ligand-free clean surfaces, and uniform dispersion over the supports. The success in precisely tuning the particle size of ligand-free Pt nanocatalysts within the sub-5 nm size window provides unique opportunities for us to gain detailed, quantitative insights concerning the intrinsic particle size effects on the pathway selection of catalytic molecular transformations. As exemplified by Pt-catalyzed nitrophenol reduction by ammonia borane, catalytic transfer hydrogenation reactions may inter-switch between two fundamentally distinct bimolecular reaction pathways, specifically the Langmuir-Hinshelwood and the Eley-Rideal mechanisms, as the size of the Pt nanocatalysts varies in the sub-5 nm regime.
Collapse
Affiliation(s)
- Wei Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA.
| | - Zixin Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA.
| | - Mengqi Sun
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA.
| | - Hui Zhang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA.
| | - Hui Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA.
| |
Collapse
|
109
|
Ahmad F, Salem-Bekhit MM, Khan F, Alshehri S, Khan A, Ghoneim MM, Wu HF, Taha EI, Elbagory I. Unique Properties of Surface-Functionalized Nanoparticles for Bio-Application: Functionalization Mechanisms and Importance in Application. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1333. [PMID: 35458041 PMCID: PMC9031869 DOI: 10.3390/nano12081333] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 01/09/2023]
Abstract
This review tries to summarize the purpose of steadily developing surface-functionalized nanoparticles for various bio-applications and represents a fascinating and rapidly growing field of research. Due to their unique properties-such as novel optical, biodegradable, low-toxicity, biocompatibility, size, and highly catalytic features-these materials are considered superior, and it is thus vital to study these systems in a realistic and meaningful way. However, rapid aggregation, oxidation, and other problems are encountered with functionalized nanoparticles, inhibiting their subsequent utilization. Adequate surface modification of nanoparticles with organic and inorganic compounds results in improved physicochemical properties which can overcome these barriers. This review investigates and discusses the iron oxide nanoparticles, gold nanoparticles, platinum nanoparticles, silver nanoparticles, and silica-coated nanoparticles and how their unique properties after fabrication allow for their potential use in a wide range of bio-applications such as nano-based imaging, gene delivery, drug loading, and immunoassays. The different groups of nanoparticles and the advantages of surface functionalization and their applications are highlighted here. In recent years, surface-functionalized nanoparticles have become important materials for a broad range of bio-applications.
Collapse
Affiliation(s)
- Faheem Ahmad
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (F.K.); (A.K.)
| | - Mounir M. Salem-Bekhit
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (E.I.T.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Faryad Khan
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (F.K.); (A.K.)
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (E.I.T.)
| | - Amir Khan
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (F.K.); (A.K.)
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Hui-Fen Wu
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, 70, Lien-Hai Road, Kaohsiung 80424, Taiwan;
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ehab I. Taha
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (E.I.T.)
| | - Ibrahim Elbagory
- College of Pharmacy, Northern Border University, Arar 1321, Saudi Arabia;
| |
Collapse
|
110
|
Electrochemical Synthesis of Plasmonic Nanostructures. Molecules 2022; 27:molecules27082485. [PMID: 35458688 PMCID: PMC9027786 DOI: 10.3390/molecules27082485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/01/2022] [Accepted: 04/08/2022] [Indexed: 11/23/2022] Open
Abstract
Thanks to their tunable and strong interaction with light, plasmonic nanostructures have been investigated for a wide range of applications. In most cases, controlling the electric field enhancement at the metal surface is crucial. This can be achieved by controlling the metal nanostructure size, shape, and location in three dimensions, which is synthetically challenging. Electrochemical methods can provide a reliable, simple, and cost-effective approach to nanostructure metals with a high degree of geometrical freedom. Herein, we review the use of electrochemistry to synthesize metal nanostructures in the context of plasmonics. Both template-free and templated electrochemical syntheses are presented, along with their strengths and limitations. While template-free techniques can be used for the mass production of low-cost but efficient plasmonic substrates, templated approaches offer an unprecedented synthetic control. Thus, a special emphasis is given to templated electrochemical lithographies, which can be used to synthesize complex metal architectures with defined dimensions and compositions in one, two and three dimensions. These techniques provide a spatial resolution down to the sub-10 nanometer range and are particularly successful at synthesizing well-defined metal nanoscale gaps that provide very large electric field enhancements, which are relevant for both fundamental and applied research in plasmonics.
Collapse
|
111
|
Wang C, Wang Z, Mao S, Chen Z, Wang Y. Coordination environment of active sites and their effect on catalytic performance of heterogeneous catalysts. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63924-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
112
|
Electrochemical synthesis of catalytic materials for energy catalysis. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63940-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
113
|
Liu M, Lu B, Yang G, Yuan P, Xia H, Wang Y, Guo K, Zhao S, Liu J, Yu Y, Yan W, Dong C, Zhang J, Mu S. Concave Pt-Zn Nanocubes with High-Index Faceted Pt Skin as Highly Efficient Oxygen Reduction Catalyst. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200147. [PMID: 35199956 PMCID: PMC9036018 DOI: 10.1002/advs.202200147] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Indexed: 06/02/2023]
Abstract
High dosage of expensive Pt to catalyze the sluggish oxygen reduction reaction (ORR) on the cathode severely impedes the commercialization of proton exchange membrane fuel cells. Therefore, it is urgent to cut down the Pt catalyst by efficiently improving the ORR activity while maintaining high durability. Herein, magic concave Pt-Zn nanocubes with high-index faceted Pt skin (Pt78 Zn22 ) are proposed for high-efficiency catalysis toward proton exchange membrane fuel cells. These unique structural features endow the Pt-skin Pt78 Zn22 /KB with a mass activity of 1.18 mA μgPt -1 and a specific activity of 3.64 mA cm-2 for the ORR at 0.9 V (vs RHE). Meanwhile, the H2 -O2 fuel cell assembled by this catalyst delivers an ultrahigh peak power density of ≈1449 mW cm-2 . Both experiments and theoretical calculations show that the electronic structure of the surface is adjusted, thereby shortening the length of the Pt-Pt bond and reducing the adsorption energy of OH*/O* on the Pt surface. This work demonstrates the synergistic effect of the oxidation-resistant metal Zn and the construction of Pt-rich surface engineering. Also, it guides the future development of catalysts for their practical applications in energy conversion technologies and beyond.
Collapse
Affiliation(s)
- Mengli Liu
- College of Materials Science and EngineeringZhengzhou UniversityZhengzhou450000P. R. China
| | - Bang‐An Lu
- College of Materials Science and EngineeringZhengzhou UniversityZhengzhou450000P. R. China
| | - Gege Yang
- College of Materials Science and EngineeringZhengzhou UniversityZhengzhou450000P. R. China
| | - Pengfei Yuan
- International Joint Research Laboratory for Quantum Functional Materials of Henan Provinceand School of Physics and MicroelectronicsZhengzhou UniversityZhengzhou450000P. R. China
| | - Huicong Xia
- College of Materials Science and EngineeringZhengzhou UniversityZhengzhou450000P. R. China
| | - Yajin Wang
- College of Materials Science and EngineeringZhengzhou UniversityZhengzhou450000P. R. China
| | - Kai Guo
- College of Materials Science and EngineeringZhengzhou UniversityZhengzhou450000P. R. China
| | - Shuyan Zhao
- College of Materials Science and EngineeringZhengzhou UniversityZhengzhou450000P. R. China
| | - Jia Liu
- Shanghai Hydrogen Propulsion Technology Co., Ltd.Shanghai200000P. R. China
| | - Yue Yu
- College of Materials Science and EngineeringZhengzhou UniversityZhengzhou450000P. R. China
| | - Wenfu Yan
- State Key Laboratory of Inorganic Synthesis & Preparative ChemistryJilin UniversityChangchun130000P. R. China
| | - Chung‐Li Dong
- Department of PhysicsTamkang UniversityNew Taipei CityTaiwan
| | - Jia‐Nan Zhang
- College of Materials Science and EngineeringZhengzhou UniversityZhengzhou450000P. R. China
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070P. R. China
| |
Collapse
|
114
|
Du D, Geng Q, Ma L, Ren S, Li JX, Dong W, Hua Q, Fan L, Shao R, Wang X, Li C, Yamauchi Y. Mesoporous PdBi nanocages for enhanced electrocatalytic performances by all-direction accessibility and steric site activation. Chem Sci 2022; 13:3819-3825. [PMID: 35432914 PMCID: PMC8966753 DOI: 10.1039/d1sc06314f] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/24/2022] [Indexed: 11/23/2022] Open
Abstract
An effective yet simple approach was developed to synthesize mesoporous PdBi nanocages for electrochemical applications. This technique relies on the subtle utilization of the hydrolysis of a metal salt to generate precipitate cores in situ as templates for navigating the growth of mesoporous shells with the assistance of polymeric micelles. The mesoporous PdBi nanocages are then obtained by excavating vulnerable cores and regulating the crystals of mesoporous metallic skeletons. The resultant mesoporous PdBi nanocages exhibited excellent electrocatalytic performance toward the ethanol oxidation reaction with a mass activity of 3.56 A mg-1_Pd, specific activity of 17.82 mA cm-2 and faradaic efficiency of up to 55.69% for C1 products.
Collapse
Affiliation(s)
- Dawei Du
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 100081 China
| | - Qinghong Geng
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 100081 China
| | - Lian Ma
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 100081 China
| | - Siyu Ren
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 100081 China
| | - Jun-Xuan Li
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 100081 China
| | - Weikang Dong
- Beijing Advanced Innovation Center for Intelligent Robots and Systems and Institute of Engineering Medicine, Beijing Institute of Technology Beijing 100081 China
| | - Qingfeng Hua
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 100081 China
| | - Longlong Fan
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 100081 China
| | - Ruiwen Shao
- Beijing Advanced Innovation Center for Intelligent Robots and Systems and Institute of Engineering Medicine, Beijing Institute of Technology Beijing 100081 China
| | - Xiaoming Wang
- Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Department of Chemistry, Shantou University Shantou 515063 China
| | - Cuiling Li
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 100081 China
| | - Yusuke Yamauchi
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) Tsukuba 305-0044 Japan
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane 4072 Australia
| |
Collapse
|
115
|
Regulating Crystal Facets of MnO2 for Enhancing Peroxymonosulfate Activation to Degrade Pollutants: Performance and Mechanism. Catalysts 2022. [DOI: 10.3390/catal12030342] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
On the catalyst surface, crystal facets with different surface atom arrangements and diverse physicochemical properties lead to distinct catalytic activity. Acquiring a highly reactive facet through surface regulation is an efficient strategy to promote the oxidative decomposition of wastewater organic pollutants via peroxymonosulfate (PMS) activation. However, the mechanism through which crystal facets affect PMS activation is still unclear. In this study, three facet-engineered α-MnO2 with different exposed facets were prepared via a facile hydrothermal route. The prepared 310-MnO2 exhibited superior PMS activation performance to 100-MnO2 and 110-MnO2. Moreover, the 310-MnO2/PMS oxidative system was active over a wide pH range and highly resistant to interfering substances from wastewater. These advantages of the 310-MnO2/PMS system make it highly promising for practical wastewater treatment. Based on quenching experiments, electron paramagnetic resonance (EPR) analysis, solvent exchange, and electrochemical measurements, mediated electron transfer was found to be the dominant nonradical pathway for p-chloroaniline (PCA) degradation. A sulfhydryl group (-SH) masking experiment showed that the highly exposed Mn atoms on the 310-MnO2 surface were sites of PMS activation. In addition, density functional theory (DFT) calculations confirmed that the dominant {310} facet promoted adsorption/activation of PMS, which favored the formation of more metastable complexes on the α-MnO2 surface. The reaction mechanism obtained here clarifies the relationship between PMS activation and crystal facets. This study provides significant insights into the rational design of high-performance catalysts for efficient water remediation.
Collapse
|
116
|
Temperature-Dependent Activity of Gold Nanocatalysts Supported on Activated Carbon in Redox Catalytic Reactions: 5-Hydroxymethylfurfural Oxidation and 4-Nitrophenol Reduction Comparison. Catalysts 2022. [DOI: 10.3390/catal12030323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this study, the temperature-dependent activity of Au/AC nanocatalysts in redox catalytic reactions was investigated. To this end, a series of colloidal gold catalysts supported on activated carbon and titania were prepared by the sol immobilization method employing polyvinyl alcohol as a polymeric stabilizer at different hydrolysis degrees. The as-synthesized materials were widely characterized by spectroscopic analysis (XPS, XRD, and ATR-IR) as well as TEM microscopy and DLS/ELS measurements. Furthermore, 5-hydroxymethylfurfural (HMF) oxidation and 4-nitrophenol (4-NP) reduction were chosen to investigate the catalytic activity as a model reaction for biomass valorization and wastewater remediation. In particular, by fitting the hydrolysis degree with the kinetic data, volcano plots were obtained for both reactions, in which the maximum of the curves was represented relative to hydrolysis intermediate values. However, a comparison of the catalytic performance of the sample Au/AC_PVA-99 (hydrolysis degree of the polymer is 99%) in the two reactions showed a different catalytic behavior, probably due to the detachment of polymer derived from the different reaction temperature chosen between the two reactions. For this reason, several tests were carried out to investigate deeper the observed catalytic trend, focusing on studying the effect of the reaction temperature as well as the effect of support (metal–support interaction) by immobilizing Au colloidal nanoparticles on commercial titania. The kinetic data, combined with the characterization carried out on the catalysts, confirmed that changing the reaction conditions, the PVA behavior on the surface of the catalysts, and, therefore, the reaction outcome, is modified.
Collapse
|
117
|
Zhang Z, Yang G, Wang H, Cao Y, Peng F, Yu H. Controllable Surfactant‐free Synthesis of Colloidal Platinum Nanocuboids Enabled by Bromide Ions and Carbon Monoxide. ChemElectroChem 2022. [DOI: 10.1002/celc.202101726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhanzhan Zhang
- South China University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Guangxing Yang
- South China University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Hongjuan Wang
- South China University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Yonghai Cao
- South China University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Feng Peng
- Guangzhou University School of Chemistry and Chemical Engineering CHINA
| | - Hao Yu
- South China University of Technology School of Chemistry and Chemical Engineering 381 Wushan Rd. 510640 Guangzhou CHINA
| |
Collapse
|
118
|
Liu J, Li F, Zhong C, Hu W. Clean Electrochemical Synthesis of Pd–Pt Bimetallic Dendrites with High Electrocatalytic Performance for the Oxidation of Formic Acid. MATERIALS 2022; 15:ma15041554. [PMID: 35208094 PMCID: PMC8879612 DOI: 10.3390/ma15041554] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/05/2022] [Accepted: 02/16/2022] [Indexed: 02/05/2023]
Abstract
Pd–Pt bimetallic catalysts with a dendritic morphology were in situ synthesized on the surface of a carbon paper via the facile and surfactant-free two step electrochemical method. The effects of the frequency and modification time of the periodic square-wave potential (PSWP) on the morphology of the Pd–Pt bimetallic catalysts were investigated. The obtained Pd–Pt bimetallic catalysts with a dendritic morphology displayed an enhanced catalytic activity of 0.77 A mg−1, almost 2.5 times that of the commercial Pd/C catalyst reported in the literature (0.31 A mg−1) in acidic media. The enhanced catalytic activity of the Pd–Pt bimetallic catalysts with a dendritic morphology towards formic acid oxidation reaction (FAOR) was not only attributed to the large number of atomic defects at the edges of dendrites, but also ascribed to the high utilization of active sites resulting from the “clean” electrochemical preparation method. Besides, during chronoamperometric testing, the current density of the dendritic Pd–Pt bimetallic catalysts for a period of 3000 s was 0.08 A mg−1, even four times that of the commercial Pd/C catalyst reported in the literature (about 0.02 A mg−1).
Collapse
Affiliation(s)
- Jie Liu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China; (J.L.); (F.L.); (W.H.)
| | - Fangchao Li
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China; (J.L.); (F.L.); (W.H.)
| | - Cheng Zhong
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China; (J.L.); (F.L.); (W.H.)
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Correspondence:
| | - Wenbin Hu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China; (J.L.); (F.L.); (W.H.)
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
119
|
Kinetics‐Controlled Synthesis of {100}‐Facet‐Enclosed Gold Quasi‐Square Nanosheets with Curved Edges. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
120
|
Yang Y, Peltier CR, Zeng R, Schimmenti R, Li Q, Huang X, Yan Z, Potsi G, Selhorst R, Lu X, Xu W, Tader M, Soudackov AV, Zhang H, Krumov M, Murray E, Xu P, Hitt J, Xu L, Ko HY, Ernst BG, Bundschu C, Luo A, Markovich D, Hu M, He C, Wang H, Fang J, DiStasio RA, Kourkoutis LF, Singer A, Noonan KJT, Xiao L, Zhuang L, Pivovar BS, Zelenay P, Herrero E, Feliu JM, Suntivich J, Giannelis EP, Hammes-Schiffer S, Arias T, Mavrikakis M, Mallouk TE, Brock JD, Muller DA, DiSalvo FJ, Coates GW, Abruña HD. Electrocatalysis in Alkaline Media and Alkaline Membrane-Based Energy Technologies. Chem Rev 2022; 122:6117-6321. [PMID: 35133808 DOI: 10.1021/acs.chemrev.1c00331] [Citation(s) in RCA: 105] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hydrogen energy-based electrochemical energy conversion technologies offer the promise of enabling a transition of the global energy landscape from fossil fuels to renewable energy. Here, we present a comprehensive review of the fundamentals of electrocatalysis in alkaline media and applications in alkaline-based energy technologies, particularly alkaline fuel cells and water electrolyzers. Anion exchange (alkaline) membrane fuel cells (AEMFCs) enable the use of nonprecious electrocatalysts for the sluggish oxygen reduction reaction (ORR), relative to proton exchange membrane fuel cells (PEMFCs), which require Pt-based electrocatalysts. However, the hydrogen oxidation reaction (HOR) kinetics is significantly slower in alkaline media than in acidic media. Understanding these phenomena requires applying theoretical and experimental methods to unravel molecular-level thermodynamics and kinetics of hydrogen and oxygen electrocatalysis and, particularly, the proton-coupled electron transfer (PCET) process that takes place in a proton-deficient alkaline media. Extensive electrochemical and spectroscopic studies, on single-crystal Pt and metal oxides, have contributed to the development of activity descriptors, as well as the identification of the nature of active sites, and the rate-determining steps of the HOR and ORR. Among these, the structure and reactivity of interfacial water serve as key potential and pH-dependent kinetic factors that are helping elucidate the origins of the HOR and ORR activity differences in acids and bases. Additionally, deliberately modulating and controlling catalyst-support interactions have provided valuable insights for enhancing catalyst accessibility and durability during operation. The design and synthesis of highly conductive and durable alkaline membranes/ionomers have enabled AEMFCs to reach initial performance metrics equal to or higher than those of PEMFCs. We emphasize the importance of using membrane electrode assemblies (MEAs) to integrate the often separately pursued/optimized electrocatalyst/support and membranes/ionomer components. Operando/in situ methods, at multiscales, and ab initio simulations provide a mechanistic understanding of electron, ion, and mass transport at catalyst/ionomer/membrane interfaces and the necessary guidance to achieve fuel cell operation in air over thousands of hours. We hope that this Review will serve as a roadmap for advancing the scientific understanding of the fundamental factors governing electrochemical energy conversion in alkaline media with the ultimate goal of achieving ultralow Pt or precious-metal-free high-performance and durable alkaline fuel cells and related technologies.
Collapse
Affiliation(s)
- Yao Yang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Cheyenne R Peltier
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Rui Zeng
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Roberto Schimmenti
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Qihao Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xin Huang
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - Zhifei Yan
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Georgia Potsi
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Ryan Selhorst
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Xinyao Lu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Weixuan Xu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Mariel Tader
- Department of Physics, Cornell University, Ithaca, New York 14853, United States
| | - Alexander V Soudackov
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Hanguang Zhang
- Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Mihail Krumov
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Ellen Murray
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Pengtao Xu
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Jeremy Hitt
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Linxi Xu
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Hsin-Yu Ko
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Brian G Ernst
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Colin Bundschu
- Department of Physics, Cornell University, Ithaca, New York 14853, United States
| | - Aileen Luo
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Danielle Markovich
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - Meixue Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Cheng He
- Chemical and Materials Science Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Hongsen Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jiye Fang
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Robert A DiStasio
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Lena F Kourkoutis
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States.,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| | - Andrej Singer
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Kevin J T Noonan
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Li Xiao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Lin Zhuang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Bryan S Pivovar
- Chemical and Materials Science Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Piotr Zelenay
- Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Enrique Herrero
- Instituto de Electroquímica, Universidad de Alicante, Alicante E-03080, Spain
| | - Juan M Feliu
- Instituto de Electroquímica, Universidad de Alicante, Alicante E-03080, Spain
| | - Jin Suntivich
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States.,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| | - Emmanuel P Giannelis
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | | | - Tomás Arias
- Department of Physics, Cornell University, Ithaca, New York 14853, United States
| | - Manos Mavrikakis
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Thomas E Mallouk
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Joel D Brock
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - David A Muller
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States.,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| | - Francis J DiSalvo
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Geoffrey W Coates
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Héctor D Abruña
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States.,Center for Alkaline Based Energy Solutions (CABES), Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
121
|
Electrochemical synthesis of Tetrahexahedral Cu nanocrystals with high-index facets for efficient nitrate electroreduction. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
122
|
Zhong H, Wang T, Mo Y, Li D, Zheng C, Chen Y. Three-dimensional stacked graphite sheets with exposed edge-defects as Pt-based catalyst support. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139602] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
123
|
Tong F, Cui C, Liang X, Wang Z, Liu Y, Wang P, Cheng H, Dai Y, Zheng Z, Huang B. Boosting hot electrons transfer via laser-induced atomic redistribution for plasmon-enhanced nitroreduction and single-particle study. J Catal 2022. [DOI: 10.1016/j.jcat.2022.01.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
124
|
Lou YY, Xiao C, Fang J, Sheng T, Ji L, Zheng Q, Xu BB, Tian N, Sun SG. High activity of step sites on Pd nanocatalysts in electrocatalytic dechlorination. Phys Chem Chem Phys 2022; 24:3896-3904. [PMID: 35089296 DOI: 10.1039/d1cp04975e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The role of step sites on nanocatalysts in the electrocatalytic dechlorination reaction (ECDR) was studied using 3 Pd nanocatalysts with different densities of step sites, which decreased in the order of: tetrahexahedral Pd{310} nanocrystals (THH Pd{310} NCs) > commercial Pd nanoparticles (Pd black) > cubic Pd{100} NCs. The two well-defined Pd NCs served as model catalysts and were prepared through the electrochemical square-wave potential (SWP) method. The toxic herbicide alachlor was first employed in this study as an objective probe to determine the dechlorination performance, which was quantified by the alachlor removal (Rala), the current efficiency (CEala), and the dechlorination selectivity (Sdes). The experimental results demonstrated that the THH Pd{310} NCs with abundant step sites exhibited much higher electrocatalytic performance compared to the cubic Pd{100} NCs with terrace sites. The combination of cyclic voltammetry studies, electrochemical in situ FTIR analysis, and density functional theory (DFT) calculations revealed that the adsorbed CO bond and generated on the step sites could lower the C-Cl bond splitting barrier, leading to a high ECDR efficiency. Other chlorinated organics with an activated carbon atom were also investigated, which revealed that the superiority of the step sites toward Cl-C bond breaking was particular to the compounds with CO bonds. This study provides a deep understanding of high actvitiy of step sites on Pd NCs in EHDC and a strategy to improve this important environmental electrocatalysis process.
Collapse
Affiliation(s)
- Yao-Yin Lou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Chi Xiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Jiayi Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Tian Sheng
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Lifei Ji
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Qizheng Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Bin-Bin Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Na Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Shi-Gang Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
125
|
Wang B, Zhang F. Main Descriptors To Correlate Structures with the Performances of Electrocatalysts. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Bin Wang
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy The Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) Dalian Institute of Chemical Physics Chinese Academy of Sciences 457# Zhongshan Road Dalian 116023 Liaoning China
- Center for Advanced Materials Research School of Materials and Chemical Engineering Zhongyuan University of Technology 41# Zhongyuan Road Zhengzhou 450007 Henan China
| | - Fuxiang Zhang
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy The Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) Dalian Institute of Chemical Physics Chinese Academy of Sciences 457# Zhongshan Road Dalian 116023 Liaoning China
| |
Collapse
|
126
|
Bai F, He Y, Xu L, Wang Y, Wang Y, Hao Z, Li F. Improved ORR/OER bifunctional catalytic performance of amorphous manganese oxides prepared by photochemical metal-organic deposition. RSC Adv 2022; 12:2408-2415. [PMID: 35425262 PMCID: PMC8979087 DOI: 10.1039/d1ra08618a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/10/2022] [Indexed: 11/21/2022] Open
Abstract
Transition metal oxide nanomaterials or nanocomposites containing transition metal oxides have the potential to replace traditional catalysts for electrochemical applications, photocatalysis, and energy storage. Amorphous manganese oxide catalysts were prepared via photochemical metal-organic deposition (PMOD). Through XRD, SEM-EDS, Raman spectroscopy, FTIR spectroscopy, HRTEM-EDS, and XPS, we confirmed that amorphous manganese oxide catalysts were successfully prepared. Amorphous catalysts prepared with different photolysis times were compared in terms of their performance for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), and catalyst MnO x -PMOD48 showed the best performance because of its high Mn3+ proportion and electrochemically active surface area. MnO x -PMOD48 showed better ORR/OER performance than the crystalline MnO x and MnO x /Ti4O7 catalysts from our previous work. Following our previous work on crystalline manganese oxide catalysts, we added Ti4O7 during the PMOD process with 48 h of treatment and obtained the amorphous catalyst MnO x /Ti4O7-PMOD. MnO x /Ti4O7-PMOD was supported by Ti4O7 particles, which led to improved stability. The ORR/OER catalytic activity of MnO x /Ti4O7-PMOD was better than that of crystalline catalyst MnO x /Ti4O7-300, which was the best crystalline catalyst in our previous work. We also compared lithium-oxygen batteries assembled with MnO x /Ti4O7-PMOD and MnO x /Ti4O7-300. The battery performance tests confirmed that the amorphous manganese catalyst had better ORR/OER bifunctional catalytic performance than the crystalline manganese catalyst because of its high defect state with more abundant edge active sites and more surface-exposed catalytic active sites.
Collapse
Affiliation(s)
- Fan Bai
- Faculty of Environment and Life Sciences, Beijing University of Technology Beijing 100124 P. R. China
| | - Yuxiu He
- Beijing Office of Metrohm China Ltd Beijing 100085 P. R. China
| | - Lincheng Xu
- Faculty of Environment and Life Sciences, Beijing University of Technology Beijing 100124 P. R. China
- College of Chemistry, Baotou Teachers College Bao Tou 014030 P. R. China
| | - Yue Wang
- Faculty of Environment and Life Sciences, Beijing University of Technology Beijing 100124 P. R. China
| | - Yan Wang
- Faculty of Environment and Life Sciences, Beijing University of Technology Beijing 100124 P. R. China
| | - Zhanzhong Hao
- College of Chemistry, Baotou Teachers College Bao Tou 014030 P. R. China
| | - Fan Li
- Faculty of Environment and Life Sciences, Beijing University of Technology Beijing 100124 P. R. China
| |
Collapse
|
127
|
Progress in the Development of Electrodeposited Catalysts for Direct Liquid Fuel Cell Applications. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12010501] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Fuel cells are a key enabling technology for the future economy, thereby providing power to portable, stationary, and transportation applications, which can be considered an important contributor towards reducing the high dependencies on fossil fuels. Electrocatalyst plays a vital role in improving the performance of the low temperature fuel cells. Noble metals (Pt, Pd) supported on carbon have shown promising performance owing to their high catalytic activity for both electroreduction and electrooxidation and have good stability. Catalyst preparation by electrodeposition is considered to be simple in terms of operation and scalability with relatively low cost to obtain high purity metal deposits. This review emphasises the role of electrodeposition as a cost-effective method for synthesising fuel cell catalysts, summarising the progress in the electrodeposited Pt and Pd catalysts for direct liquid fuel cells (DLFCs). Moreover, this review also discusses the technological advances made utilising these catalysts in the past three decades, and the factors that impede the technological advancement of the electrodeposition process are presented. The challenges and the fundamental research strategies needed to achieve the commercial potential of electrodeposition as an economical, efficient methodology for synthesising fuel cells catalysts are outlined with the necessary raw materials considering current and future savings scenario.
Collapse
|
128
|
Taherkhani F, Fortunelli A. Chemical ordering and temperature effects on the thermal conductivity of Ag–Au and Ag–Pd bimetallic bulk and nanocluster systems. NEW J CHEM 2022. [DOI: 10.1039/d2nj02899a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Understanding the heat transfer mechanisms in bimetallic nanoparticles, e.g. to promote heat transfer in a nanofluid, is a significant problem for industrial and fluid mechanics related applications.
Collapse
Affiliation(s)
- Farid Taherkhani
- Departments of Production Engineering, Universität Bremen, Bibliothekstraße 1, 28359, Germany
- Universtät Bremen, Energiespeicher-und Energiewandlersysteme, Bibliotechkstraße 1, Bremen, 28359, Germany
| | - Alessandro Fortunelli
- CNR-ICCOM, Istituto per la Chimica dei Composti Organometallici del Consiglio Nazionale delle Ricerche, via G. Moruzzi 1, 56124, Pisa, Italy
| |
Collapse
|
129
|
Huang K, Crooks RM. Enhanced electrocatalytic activity of Cu-modified, high-index single Pt NPs for formic acid oxidation. Chem Sci 2022; 13:12479-12490. [PMID: 36349269 PMCID: PMC9628932 DOI: 10.1039/d2sc03433f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 10/10/2022] [Indexed: 11/28/2022] Open
Abstract
A key goal of nanoparticle-based catalysis research is to correlate the structure of nanoparticles (NPs) to their catalytic function. The most common approach for achieving this goal is to synthesize ensembles of NPs, characterize the ensemble, and then evaluate its catalytic properties. This approach is effective, but it excludes the certainty of structural heterogeneity in the NP ensemble. One means of addressing this shortcoming is to carry out analyses on individual NPs. This approach makes it possible to establish direct correlations between structures of single NPs and, in the case reported here, their electrocatalytic properties. Accordingly, we report on enhanced electrocatalytic formic acid oxidation (FAO) activity using individual Cu-modified, high-indexed Pt NPs. The results show that the Cu-modified Pt NPs exhibit significantly higher currents for FAO than the Pt-only analogs. The increased activity is enabled by the Cu submonolayer on the highly stepped Pt surface, which enhances the direct FAO pathway but not the indirect pathway which proceeds via surface-absorbed CO*. Single-crystal Pt nanoparticles with a diameter of ∼200 nm were electrosynthesized, covered with a single monolayer of Cu, and then fully characterized. The resulting materials exhibit excellent electrocatalytic properties for formic acid oxidation.![]()
Collapse
Affiliation(s)
- Ke Huang
- Department of Chemistry, Texas Materials Institute, The University of Texas at Austin, 100 E. 24th St., Stop A1590, Austin, Texas, 78712, USA
| | - Richard M. Crooks
- Department of Chemistry, Texas Materials Institute, The University of Texas at Austin, 100 E. 24th St., Stop A1590, Austin, Texas, 78712, USA
| |
Collapse
|
130
|
Zhou M, Liu J, Ling C, Ge Y, Chen B, Tan C, Fan Z, Huang J, Chen J, Liu Z, Huang Z, Ge J, Cheng H, Chen Y, Dai L, Yin P, Zhang X, Yun Q, Wang J, Zhang H. Synthesis of Pd 3 Sn and PdCuSn Nanorods with L1 2 Phase for Highly Efficient Electrocatalytic Ethanol Oxidation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106115. [PMID: 34601769 DOI: 10.1002/adma.202106115] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/16/2021] [Indexed: 06/13/2023]
Abstract
The crystal phase of nanomaterials is one of the key parameters determining their physicochemical properties and performance in various applications. However, it still remains a great challenge to synthesize nanomaterials with different crystal phases while maintaining the same composition, size, and morphology. Here, a facile, one-pot, wet-chemical method is reported to synthesize Pd3 Sn nanorods with comparable size and morphology but different crystal phases, that is, an ordered intermetallic and a disordered alloy with L12 and face-centered cubic (fcc) phases, respectively. The crystal phase of the as-synthesized Pd3 Sn nanorods is easily tuned by altering the types of tin precursors and solvents. Moreover, the approach can also be used to synthesize ternary PdCuSn nanorods with the L12 crystal phase. When used as electrocatalysts, the L12 Pd3 Sn nanorods exhibit superior electrocatalytic performance toward the ethanol oxidation reaction (EOR) compared to their fcc counterpart. Impressively, compared to the L12 Pd3 Sn nanorods, the ternary L12 PdCuSn nanorods exhibit more enhanced electrocatalytic performance toward the EOR, yielding a high mass current density up to 6.22 A mgPd -1 , which is superior to the commercial Pd/C catalyst and among the best reported Pd-based EOR electrocatalysts.
Collapse
Affiliation(s)
- Ming Zhou
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jiawei Liu
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Chongyi Ling
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
- School of Physics, Southeast University, Nanjing, 211189, China
| | - Yiyao Ge
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Bo Chen
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Chaoliang Tan
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, China
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Jingtao Huang
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Junze Chen
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhengqing Liu
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an, 710000, China
| | - Zhiqi Huang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Jingjie Ge
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Hongfei Cheng
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ye Chen
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Lei Dai
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials, Henan University, Kaifeng, 475004, China
| | - Pengfei Yin
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Xiao Zhang
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Qinbai Yun
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Jinlan Wang
- School of Physics, Southeast University, Nanjing, 211189, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| |
Collapse
|
131
|
Zeng BF, Wei JY, Zhang XG, Liang QM, Hu S, Wang G, Lei ZC, Zhao SQ, Zhang HW, Shi J, Hong W, Tian ZQ, Yang Y. In situ lattice tuning of quasi-single-crystal surfaces for continuous electrochemical modulation. Chem Sci 2022; 13:7765-7772. [PMID: 35865890 PMCID: PMC9258404 DOI: 10.1039/d2sc01868c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/18/2022] [Indexed: 12/02/2022] Open
Abstract
The ability to control the atomic-level structure of a solid represents a straightforward strategy for fabricating high-performance catalysts and semiconductor materials. Herein we explore the capability of the mechanically controllable surface strain method in adjusting the surface structure of a gold film. Underpotential deposition measurements provide a quantitative and ultrasensitive approach for monitoring the evolution of surface structures. The electrochemical activities of the quasi-single-crystalline gold films are enhanced productively by controlling the surface tension, resulting in a more positive potential for copper deposition. Our method provides an effective way to tune the atom arrangement of solid surfaces with sub-angstrom precision and to achieve a reduction in power consumption, which has vast applications in electrocatalysis, molecular electronics, and materials science. We reported a new method capable of adjusting the lattice structure of solid surfaces with sub-angstrom precision and achieved in situ and continuous control over electrochemical activity.![]()
Collapse
Affiliation(s)
- Biao-Feng Zeng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, IKKEM, Xiamen University, Xiamen 361005, China
| | - Jun-Ying Wei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, IKKEM, Xiamen University, Xiamen 361005, China
| | - Xia-Guang Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, IKKEM, Xiamen University, Xiamen 361005, China
| | - Qing-Man Liang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, IKKEM, Xiamen University, Xiamen 361005, China
| | - Shu Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, IKKEM, Xiamen University, Xiamen 361005, China
| | - Gan Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, IKKEM, Xiamen University, Xiamen 361005, China
| | - Zhi-Chao Lei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, IKKEM, Xiamen University, Xiamen 361005, China
| | - Shi-Qiang Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, IKKEM, Xiamen University, Xiamen 361005, China
| | - He-Wei Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, IKKEM, Xiamen University, Xiamen 361005, China
| | - Jia Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, IKKEM, Xiamen University, Xiamen 361005, China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, IKKEM, Xiamen University, Xiamen 361005, China
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, IKKEM, Xiamen University, Xiamen 361005, China
| | - Yang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering, IKKEM, Xiamen University, Xiamen 361005, China
| |
Collapse
|
132
|
Xu X, Smajic J, Li KH, Min JW, Lei Y, Davaasuren B, He X, Zhang X, Ooi BS, Costa PMFJ, Alshareef HN. Lattice Orientation Heredity in the Transformation of 2D Epitaxial Films. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105190. [PMID: 34761821 DOI: 10.1002/adma.202105190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/30/2021] [Indexed: 06/13/2023]
Abstract
The ability to control lattice orientation is often an essential requirement in the growth of both 2D van der Waals (vdW) layered and nonlayered thin films. Here, a unique and universal phenomenon termed "lattice orientation heredity" (LOH) is reported. LOH enables product films (including 2D-layered materials) to inherit the lattice orientation from reactant films in a chemical conversion process, excluding the requirement on the substrate lattice order. The process universality is demonstrated by investigating the lattice transformations in the carbonization, nitridation, and sulfurization of epitaxial MoO2 , ZnO, and In2 O3 thin films. Their resultant compounds all inherit the mono-oriented crystal feature from their precursor oxides, including 2D vdW-layered semiconductors (e.g., MoS2 ), metallic films (e.g., MXene-like Mo2 C and MoN), wide-bandgap semiconductors (e.g., hexagonal ZnS), and ferroelectric semiconductors (e.g., In2 S3 ). Using LOH-grown MoN as a seeding layer, mono-oriented GaN is achieved on an amorphous quartz substrate. The LOH process presents a universal strategy capable of growing epitaxial thin films (including 2D vdW-layered materials) not only on single-crystalline but also on noncrystalline substrates.
Collapse
Affiliation(s)
- Xiangming Xu
- Materials Science and Engineering, Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Jasmin Smajic
- Materials Science and Engineering, Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Kuang-Hui Li
- Photonics Laboratory, Computer, Electrical, and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Jung-Wook Min
- Photonics Laboratory, Computer, Electrical, and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Yongjiu Lei
- Materials Science and Engineering, Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Bambar Davaasuren
- Core Laboratories, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Xin He
- Materials Science and Engineering, Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Xixiang Zhang
- Materials Science and Engineering, Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Boon S Ooi
- Photonics Laboratory, Computer, Electrical, and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Pedro M F J Costa
- Materials Science and Engineering, Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Husam N Alshareef
- Materials Science and Engineering, Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
133
|
Jiang B, Tian D, Qiu Y, Song X, Zhang Y, Sun X, Huang H, Zhao C, Guo Z, Fan L, Zhang N. High-Index Faceted Nanocrystals as Highly Efficient Bifunctional Electrocatalysts for High-Performance Lithium-Sulfur Batteries. NANO-MICRO LETTERS 2021; 14:40. [PMID: 34950984 PMCID: PMC8702595 DOI: 10.1007/s40820-021-00769-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/07/2021] [Indexed: 05/29/2023]
Abstract
Precisely regulating of the surface structure of crystalline materials to improve their catalytic activity for lithium polysulfides is urgently needed for high-performance lithium-sulfur (Li-S) batteries. Herein, high-index faceted iron oxide (Fe2O3) nanocrystals anchored on reduced graphene oxide are developed as highly efficient bifunctional electrocatalysts, effectively improving the electrochemical performance of Li-S batteries. The theoretical and experimental results all indicate that high-index Fe2O3 crystal facets with abundant unsaturated coordinated Fe sites not only have strong adsorption capacity to anchor polysulfides but also have high catalytic activity to facilitate the redox transformation of polysulfides and reduce the decomposition energy barrier of Li2S. The Li-S batteries with these bifunctional electrocatalysts exhibit high initial capacity of 1521 mAh g-1 at 0.1 C and excellent cycling performance with a low capacity fading of 0.025% per cycle during 1600 cycles at 2 C. Even with a high sulfur loading of 9.41 mg cm-2, a remarkable areal capacity of 7.61 mAh cm-2 was maintained after 85 cycles. This work provides a new strategy to improve the catalytic activity of nanocrystals through the crystal facet engineering, deepening the comprehending of facet-dependent activity of catalysts in Li-S chemistry, affording a novel perspective for the design of advanced sulfur electrodes.
Collapse
Affiliation(s)
- Bo Jiang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Da Tian
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Yue Qiu
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Xueqin Song
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Yu Zhang
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Xun Sun
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Huihuang Huang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Chenghao Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Zhikun Guo
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Lishuang Fan
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China.
- Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin, 150001, People's Republic of China.
| | - Naiqing Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China.
- Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin, 150001, People's Republic of China.
| |
Collapse
|
134
|
Chen Y, Liu Z, Qiu X, Liu X. Individual concave twin ZnO microdisks with optical resonances. Chem Commun (Camb) 2021; 58:116-119. [PMID: 34881753 DOI: 10.1039/d1cc05332a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We synthesized concave twin ZnO microdisks, whose outer surfaces are entirely enclosed by high-energy facets. Different from hexagonal planar WGM microdisks, individual concave twin ZnO microdisks show Fabry-Pérot resonances and anisotropic photoluminescence properties at room temperature.
Collapse
Affiliation(s)
- Yumin Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China. .,CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China. .,Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhen Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.
| | - Xiaohui Qiu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xinfeng Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
135
|
Dachraoui W, Henninen TR, Keller D, Erni R. Multi-step atomic mechanism of platinum nanocrystals nucleation and growth revealed by in-situ liquid cell STEM. Sci Rep 2021; 11:23965. [PMID: 34907274 PMCID: PMC8671505 DOI: 10.1038/s41598-021-03455-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/03/2021] [Indexed: 11/09/2022] Open
Abstract
The understanding of crystal growth mechanisms has broadened substantially. One significant advancement is based in the conception that the interaction between particles plays an important role in the growth of nanomaterials. This is in contrast to the classical model, which neglects this process. Direct imaging of such processes at atomic-level in liquid-phase is essential for establishing new theoretical models that encompass the full complexity of realistic scenarios and eventually allow for tailoring nanoparticle growth. Here, we investigate at atomic-scale the exact growth mechanisms of platinum nanocrystals from single atom to final crystals by in-situ liquid phase scanning transmission electron microscopy. We show that, after nucleation, the nanocrystals grow via two main stages: atomic attachment in the first stage, where the particles initially grow by attachment of the atoms until depletion of the surrounding zone. Thereafter, follows the second stage of growth, which is based on particle attachment by different atomic pathways to finally form mature nanoparticles. The atomic mechanisms underlying these growth pathways are distinctly different and have different driving forces and kinetics as evidenced by our experimental observations.
Collapse
Affiliation(s)
- Walid Dachraoui
- Electron Microscopy Center, Empa--Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland.
| | - Trond R Henninen
- Electron Microscopy Center, Empa--Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland
| | - Debora Keller
- Electron Microscopy Center, Empa--Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland
| | - Rolf Erni
- Electron Microscopy Center, Empa--Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland.
| |
Collapse
|
136
|
Khan MAR, Mamun MSA, Ara MH. Review on platinum nanoparticles: Synthesis, characterization, and applications. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106840] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
137
|
Su S, Siretanu I, van den Ende D, Mei B, Mul G, Mugele F. Facet-Dependent Surface Charge and Hydration of Semiconducting Nanoparticles at Variable pH. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2106229. [PMID: 34609757 PMCID: PMC11468202 DOI: 10.1002/adma.202106229] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Understanding structure and function of solid-liquid interfaces is essential for the development of nanomaterials for various applications including heterogeneous catalysis in liquid phase processes and water splitting for storage of renewable electricity. The characteristic anisotropy of crystalline nanoparticles is believed to be essential for their performance but remains poorly understood and difficult to characterize. Dual scale atomic force microscopy is used to measure electrostatic and hydration forces of faceted semiconducting SrTiO3 nanoparticles in aqueous electrolyte at variable pH. The following are demonstrated: the ability to quantify strongly facet-dependent surface charges yielding isoelectric points of the dominant {100} and {110} facets that differ by as much as 2 pH units; facet-dependent accumulation of oppositely charged (SiO2 ) particles; and that atomic scale defects can be resolved but are in fact rare for the samples investigated. Atomically resolved images and facet-dependent oscillatory hydration forces suggest a microscopic charge generation mechanism that explains colloidal scale electrostatic forces.
Collapse
Affiliation(s)
- Shaoqiang Su
- Physics of Complex Fluids Group and MESA+ Institute, Faculty of Science and Technology, University of Twente, P.O. Box 217, Enschede, 7500 AE, The Netherlands
| | - Igor Siretanu
- Physics of Complex Fluids Group and MESA+ Institute, Faculty of Science and Technology, University of Twente, P.O. Box 217, Enschede, 7500 AE, The Netherlands
| | - Dirk van den Ende
- Physics of Complex Fluids Group and MESA+ Institute, Faculty of Science and Technology, University of Twente, P.O. Box 217, Enschede, 7500 AE, The Netherlands
| | - Bastian Mei
- Photocatalytic Synthesis Group and MESA+ Institute, Faculty of Science and Technology, University of Twente, P.O. Box 217, Enschede, 7500 AE, The Netherlands
| | - Guido Mul
- Photocatalytic Synthesis Group and MESA+ Institute, Faculty of Science and Technology, University of Twente, P.O. Box 217, Enschede, 7500 AE, The Netherlands
| | - Frieder Mugele
- Physics of Complex Fluids Group and MESA+ Institute, Faculty of Science and Technology, University of Twente, P.O. Box 217, Enschede, 7500 AE, The Netherlands
| |
Collapse
|
138
|
Huang K, Shin K, Henkelman G, Crooks RM. Correlating Surface Structures and Electrochemical Activity Using Shape-Controlled Single-Pt Nanoparticles. ACS NANO 2021; 15:17926-17937. [PMID: 34730934 DOI: 10.1021/acsnano.1c06281] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We report a method for synthesizing and studying shape-controlled, single Pt nanoparticles (NPs) supported on carbon nanoelectrodes. The key advance is that the synthetic method makes it possible to produce single, electrochemically active NPs with a vast range of crystal structures and sizes. Equally important, the NPs can be fully characterized, and, therefore, the electrochemical properties of the NPs can be directly correlated to the size and structure of a single shape. This makes it possible to directly correlate experimental results to first-principles theory. Because just one well-characterized NP is analyzed at a time, the difficulty of applying a theoretical analysis to an ensemble of NPs having different sizes and structures is avoided. In this article, we report on two specific Pt NP shapes having sizes on the order of 200 nm: concave hexoctahedral (HOH) and concave trapezohedral (TPH). The former has {15 6 1} facets and the latter {10 1 1} facets. The electrochemical properties of these single NPs for the formic acid oxidation (FAO) reaction are compared to those of a single, spherical polycrystalline Pt NP of the same size. Finally, density functional theory, performed prior to the electrochemical studies, were used to interpret the experimental results of the FAO experiments.
Collapse
|
139
|
Agrawal K, Naik AA, Chaudhary S, Parvatalu D, Santhanam V. Prudent Practices in ex situ Durability Analysis Using Cyclic Voltammetry for Platinum-based Electrocatalysts. Chem Asian J 2021; 16:3311-3325. [PMID: 34459539 DOI: 10.1002/asia.202100746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/29/2021] [Indexed: 11/07/2022]
Abstract
Platinum (Pt)-based electrocatalysts are at the vanguard of research initiatives to meet activity and durability targets for promoting large-scale adoption of fuel cell vehicles. Ex situ characterization of electrocatalyst activity and durability using cyclic voltammetry (CV) has a steep learning curve. Thus, many researchers who do not receive formal training in electrochemistry are left unsure how to proceed. Herein, we identify and compile prudent practices for reliable assessment of ECSA values with examples from our research on nanoscale catalytic films formed by the self-terminating electrodeposition of Pt. Starting with a conceptual framework to understand typical features in the CV of reversible redox couples, we present prudent practices in acquiring CV data aimed at nonelectrochemists. We then highlight specific features related to ECSA computation from Pt CV. Finally, we suggest safeguards that help avoid missteps and achieve repeatable results while conducting ex situ durability tests that extend over days.
Collapse
Affiliation(s)
- Khantesh Agrawal
- Department of Chemical Engineering, Indian Insitute of Sicence (IISc) Bangalore, Near CV Raman Avenue, Bangalore, Karnataka, 560012, India
| | - Adarsh Ajith Naik
- Department of Chemical Engineering, Indian Insitute of Sicence (IISc) Bangalore, Near CV Raman Avenue, Bangalore, Karnataka, 560012, India
| | - Saroj Chaudhary
- ONGC Energy Centre, Phase-II IEOT Complex, ONGC Panvel, Maharashtra, 410221, India
| | - Damaraju Parvatalu
- ONGC Energy Centre, Phase-II IEOT Complex, ONGC Panvel, Maharashtra, 410221, India
| | - Venugopal Santhanam
- Department of Chemical Engineering, Indian Insitute of Sicence (IISc) Bangalore, Near CV Raman Avenue, Bangalore, Karnataka, 560012, India
| |
Collapse
|
140
|
High-index faceted Pt-Ru alloy concave nanocubes with enhancing ethanol and CO electro-oxidation. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
141
|
Li C, Yan S, Fang J. Construction of Lattice Strain in Bimetallic Nanostructures and Its Effectiveness in Electrochemical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102244. [PMID: 34363320 DOI: 10.1002/smll.202102244] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Bimetallic nanocrystals (NCs), associated with various surface functions such as ligand effect, ensemble effect, and strain effect, exhibit superior electrocatalytic properties. The stress-induced surface strain effect can alter binding strength between the surface active sites and reactants as well as their intermediates, and the electrochemical performance of bimetallic NCs can be significantly facilitated by the lattice-strain modification via their morphologies, sizes, shell-thickness, surface defectiveness as well as compositions. In this review, an overview of fundamental principles, characterization techniques, and quantitative determination of the surface lattice strain is provided. Various strategies and synthesis efforts on creating lattice-strain-engineered bimetallic NCs, including the de-alloying process, atomic layer-by-layer deposition, thermal treatment evolution, one-pot synthesis, and other efforts are also discussed. It is further outlined how the lattice strain effect promotes electrochemical catalysis through the selected case studies. The reactions on oxygen reduction reaction, small molecular oxidation, water splitting reaction, and electrochemical carbon dioxide reduction reactions are focused. In particular, studies of lattice strain arisen from core-shell nanostructure and defectiveness are highlighted. Lastly, the potential challenges are summarized and the prospects of lattice-strain-based engineering on bimetallic nanocatalysts with suggestion and guidance of the future electrocatalyst design are envisioned.
Collapse
Affiliation(s)
- Can Li
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY, 13902, USA
| | - Shaohui Yan
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY, 13902, USA
| | - Jiye Fang
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY, 13902, USA
| |
Collapse
|
142
|
Zhao L, Guo Y, Fu C, Luo L, Wei G, Shen S, Zhang J. Electrodeposited PtNi nanoparticles towards oxygen reduction reaction: A study on nucleation and growth mechanism. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(21)63860-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
143
|
Zhang T, Pu H, Dai H, Dong K, Wang K, Zhou L, Wang Y, Deng Y. Electrodeposition of a Three-Dimensional Nanostructure Composed of 2D Maple Leaf-like Rh Nanosheets for Formic Acid Oxidation. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Te Zhang
- School of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308, Qingdao 266071, China
| | - Houkang Pu
- School of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308, Qingdao 266071, China
| | - Huizhen Dai
- School of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308, Qingdao 266071, China
| | - Kaiyu Dong
- School of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308, Qingdao 266071, China
| | - Kuankuan Wang
- School of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308, Qingdao 266071, China
| | - Luming Zhou
- School of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308, Qingdao 266071, China
| | - Yingying Wang
- Qingdao Hengxing University of Science and Technology, Jiushui East Road 588, Qingdao 266100, China
| | - Yujia Deng
- School of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308, Qingdao 266071, China
| |
Collapse
|
144
|
Watanabe J, Tanaka Y, Maeda Y, Harada Y, Hirokawa Y, Kawakita H, Ohto K, Morisada S. Surfactant-Assisted Synthesis of Pt Nanocubes Using Poly( N-isopropylacrylamide) Nanogels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11859-11868. [PMID: 34583506 DOI: 10.1021/acs.langmuir.1c01873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Poly(N-isopropylacrylamide) (PNIPAM) nanogels were prepared by emulsion polymerization using sodium dodecyl sulfate (SDS) and employed as a capping agent in platinum nanoparticle (Pt NP) synthesis by liquid-phase reduction with hydrogen gas. When the PNIPAM nanogels were used without removing SDS, that is, a slight amount of SDS was included in the reaction solution, Pt nanocubes (NCs) were predominantly produced (>80%). The proportion of the resultant Pt NCs was much higher than that obtained using the PNIPAM linear polymer (∼60%). To clarify the effects of the three-dimensional polymer network and SDS, we synthesized Pt NPs using the PNIPAM nanogel without SDS (SDS-free PNIPAM nanogel) and found that Pt NCs are rarely formed, and most NPs obtained have an irregular shape. When only SDS was used as a capping agent, NCs were hardly obtained, but other polyhedral NPs were formed. Furthermore, the use of SDS together with the PNIPAM polymer led to the decrease in the proportion of the Pt NCs compared with that obtained using only the linear polymer. These results indicate that the enhancement of the Pt NC proportion using the PNIPAM nanogel with SDS is attributable to not only the three-dimensional polymer network of the PNIPAM nanogel but also the assist of SDS as a capping agent.
Collapse
Affiliation(s)
- Jun Watanabe
- Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
| | - Yoshiaki Tanaka
- Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
| | - Yuusuke Maeda
- Department of Chemistry and Applied Chemistry, Saga University, 1 Honjo, Saga 840-8502, Japan
| | - Yusuke Harada
- Department of Chemistry and Applied Chemistry, Saga University, 1 Honjo, Saga 840-8502, Japan
| | - Yoshitsugu Hirokawa
- Department of Materials Science, The University of Shiga Prefecture, 2500 Hassaka, Hikone, Shiga 522-8533, Japan
| | - Hidetaka Kawakita
- Department of Chemistry and Applied Chemistry, Saga University, 1 Honjo, Saga 840-8502, Japan
| | - Keisuke Ohto
- Department of Chemistry and Applied Chemistry, Saga University, 1 Honjo, Saga 840-8502, Japan
| | - Shintaro Morisada
- Department of Chemistry and Applied Chemistry, Saga University, 1 Honjo, Saga 840-8502, Japan
| |
Collapse
|
145
|
Wu T, Sun M, Huang B. Atomic‐Strain Mapping of High‐Index Facets in Late‐Transition‐Metal Nanoparticles for Electrocatalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tong Wu
- Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University, Hung Hom Kowloon Hong Kong SAR China
| | - Mingzi Sun
- Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University, Hung Hom Kowloon Hong Kong SAR China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University, Hung Hom Kowloon Hong Kong SAR China
| |
Collapse
|
146
|
Wu T, Sun M, Huang B. Atomic-Strain Mapping of High-Index Facets in Late-Transition-Metal Nanoparticles for Electrocatalysis. Angew Chem Int Ed Engl 2021; 60:22996-23001. [PMID: 34431602 DOI: 10.1002/anie.202110636] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Indexed: 11/06/2022]
Abstract
Although high-index facets (HIF) endows excellent catalytic activity through undercoordinated sites with strain effect, current characterizations techniques still cannot unravel the detailed strain distributions to understand the origins of electroactivity. Nevertheless, theoretical principles to quantify the structural features and their effects on catalytic activity improvements on HIFs are still lacking, which renders the experimental efforts laborious. In this work, we explore the quantification of surface structural features and establish a database of atomic strain distributions for the late-transition metal HIF nanoparticle models. The surface reactivities of the nanoparticles have been examined by adsorption energy calculations and their correlations with structural features are observed. Our proposed theoretical principles on surface characterizations of high-index facets nanomaterials will promote the design and synthesis of efficient transition metal based electrocatalysts.
Collapse
Affiliation(s)
- Tong Wu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Mingzi Sun
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| |
Collapse
|
147
|
Modelling ADF STEM images using elliptical Gaussian peaks and its effects on the quantification of structure parameters in the presence of sample tilt. Ultramicroscopy 2021; 230:113391. [PMID: 34600202 DOI: 10.1016/j.ultramic.2021.113391] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/03/2021] [Accepted: 09/09/2021] [Indexed: 11/20/2022]
Abstract
A small sample tilt away from a main zone axis orientation results in an elongation of the atomic columns in ADF STEM images. An often posed research question is therefore whether the ADF STEM image intensities of tilted nanomaterials should be quantified using a parametric imaging model consisting of elliptical rather than the currently used symmetrical peaks. To this purpose, simulated ADF STEM images corresponding to different amounts of sample tilt are studied using a parametric imaging model that consists of superimposed 2D elliptical Gaussian peaks on the one hand and symmetrical Gaussian peaks on the other hand. We investigate the quantification of structural parameters such as atomic column positions and scattering cross sections using both parametric imaging models. In this manner, we quantitatively study what can be gained from this elliptical model for quantitative ADF STEM, despite the increased parameter space and computational effort. Although a qualitative improvement can be achieved, no significant quantitative improvement in the estimated structure parameters is achieved by the elliptical model as compared to the symmetrical model. The decrease in scattering cross sections with increasing sample tilt is even identical for both types of parametric imaging models. This impedes direct comparison with zone axis image simulations. Nonetheless, we demonstrate how reliable atom-counting can still be achieved in the presence of small sample tilt.
Collapse
|
148
|
Dai Y, Men Y, Wang J, Liu S, Li S, Li Y, Wang K, Li Z. Tailoring the morphology and crystal facet of Mn3O4 for highly efficient catalytic combustion of ethanol. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
149
|
Yang N, Peng L, Li L, Li J, Liao Q, Shao M, Wei Z. Theoretically probing the possible degradation mechanisms of an FeNC catalyst during the oxygen reduction reaction. Chem Sci 2021; 12:12476-12484. [PMID: 34603679 PMCID: PMC8480425 DOI: 10.1039/d1sc02901k] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/05/2021] [Indexed: 01/31/2023] Open
Abstract
For the FeNC catalyst widely used in the oxygen reduction reaction (ORR), its instability under fuel cell (FC) operating conditions has become the biggest obstacle during its practical application. The complexity of the degradation process of the FeNC catalyst in FCs poses a huge challenge when it comes to revealing the underlying degradation mechanism that directly leads to the decay in ORR activity. Herein, using density functional theory (DFT) and ab initio molecular dynamics (AIMD) approaches and the FeN4 moiety as an active site, we find that during catalyzing the ORR, Fe site oxidation in the form of *Fe(OH)2, in which 2OH* species are adsorbed on Fe on the same side of the FeN4 plane, results in the successive protonation of N and then permanent damage to the FeN4 moiety, which causes the leaching of the Fe site in the form of Fe(OH)2 species and a sharp irreversible decline in the ORR activity. However, other types of OH* adsorption on Fe in the form of HO*FeOH and *FeOH intermediates cannot cause the protonation of N or any breaking of Fe-N bonds in the FeN4 moiety, only inducing the blocking of the Fe site. Meanwhile, based on the competitive relationship between catalyzing the ORR and Fe site oxidation, we propose a trade-off potential (U RHE TMOR) to describe the anti-oxidation abilities of the TM site in the TMN X moiety during the ORR.
Collapse
Affiliation(s)
- Na Yang
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, School of Chemistry and Chemical Engineering, Chongqing University Shazhengjie 174 Chongqing 400044 China +86 2365678945.,Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Waterloo Institute for Sustainable Energy, Universit of Waterloo Waterloo ON N2L 3G1 Canada.,School of Information and Optoelectronic Science and Engineering, South China Normal University Guangzhou 510006 China
| | - Lanlan Peng
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, School of Chemistry and Chemical Engineering, Chongqing University Shazhengjie 174 Chongqing 400044 China +86 2365678945
| | - Li Li
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, School of Chemistry and Chemical Engineering, Chongqing University Shazhengjie 174 Chongqing 400044 China +86 2365678945
| | - Jing Li
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, School of Chemistry and Chemical Engineering, Chongqing University Shazhengjie 174 Chongqing 400044 China +86 2365678945
| | - Qiang Liao
- The Key Laboratory of Low-Grade Energy Utilization Technologies and Systems Chongqing 400044 China
| | - Minhua Shao
- Department of Chemical and Bimolecular Engineering, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong
| | - Zidong Wei
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, School of Chemistry and Chemical Engineering, Chongqing University Shazhengjie 174 Chongqing 400044 China +86 2365678945
| |
Collapse
|
150
|
Wang B, Zhang F. Main Descriptors To Correlate Structures with the Performances of Electrocatalysts. Angew Chem Int Ed Engl 2021; 61:e202111026. [PMID: 34587345 DOI: 10.1002/anie.202111026] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/27/2021] [Indexed: 01/05/2023]
Abstract
Traditional trial and error approaches to search for hydrogen/oxygen redox catalysts with high activity and stability are typically tedious and inefficient. There is an urgent need to identify the most important parameters that determine the catalytic performance and so enable the development of design strategies for catalysts. In the past decades, several descriptors have been developed to unravel structure-performance relationships. This Minireview summarizes reactivity descriptors in electrocatalysis including adsorption energy descriptors involving reaction intermediates, electronic descriptors represented by a d-band center, structural descriptors, and universal descriptors, and discusses their merits/limitations. Understanding the trends in electrocatalytic performance and predicting promising catalytic materials using reactivity descriptors should enable the rational construction of catalysts. Artificial intelligence and machine learning have also been adopted to discover new and advanced descriptors. Finally, linear scaling relationships are analyzed and several strategies proposed to circumvent the established scaling relationships and overcome the constraints imposed on the catalytic performance.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457# Zhongshan Road, Dalian 116023, Liaoning, China.,Center for Advanced Materials Research, School of Materials and Chemical Engineering, Zhongyuan University of Technology, 41# Zhongyuan Road, Zhengzhou, 450007, Henan, China
| | - Fuxiang Zhang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457# Zhongshan Road, Dalian 116023, Liaoning, China
| |
Collapse
|