101
|
Starr TN, Picton LK, Thornton JW. Alternative evolutionary histories in the sequence space of an ancient protein. Nature 2017; 549:409-413. [PMID: 28902834 PMCID: PMC6214350 DOI: 10.1038/nature23902] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/08/2017] [Indexed: 12/28/2022]
Abstract
To understand why molecular evolution turned out as it did, we must characterize not only the path that evolution followed across the space of possible molecular sequences but also the many alternative trajectories that could have been taken but were not. A large-scale comparison of real and possible histories would establish whether the outcome of evolution represents an optimal state driven by natural selection or the contingent product of historical chance events; it would also reveal how the underlying distribution of functions across sequence space shaped historical evolution. Here we combine ancestral protein reconstruction with deep mutational scanning to characterize alternative histories in the sequence space around an ancient transcription factor, which evolved a novel biological function through well-characterized mechanisms. We find hundreds of alternative protein sequences that use diverse biochemical mechanisms to perform the derived function at least as well as the historical outcome. These alternatives all require prior permissive substitutions that do not enhance the derived function, but not all require the same permissive changes that occurred during history. We find that if evolution had begun from a different starting point within the network of sequences encoding the ancestral function, outcomes with different genetic and biochemical forms would probably have resulted; this contingency arises from the distribution of functional variants in sequence space and epistasis between residues. Our results illuminate the topology of the vast space of possibilities from which history sampled one path, highlighting how the outcome of evolution depends on a serial chain of compounding chance events.
Collapse
Affiliation(s)
- Tyler N Starr
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, USA
| | - Lora K Picton
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637, USA
| | - Joseph W Thornton
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637, USA
- Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
102
|
Bury NR. The evolution, structure and function of the ray finned fish (Actinopterygii) glucocorticoid receptors. Gen Comp Endocrinol 2017; 251:4-11. [PMID: 27838382 DOI: 10.1016/j.ygcen.2016.06.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 06/20/2016] [Accepted: 06/28/2016] [Indexed: 01/31/2023]
Abstract
Basal ray-finned fish (Actinopterygii) possess a single glucocorticoid receptor (GR) and when compared to the lobe-finned vertebrate (Sarcopterygii) GR possess nine additional amino acids between the zinc-finger of the DNA binding domain. A whole genome duplication event which occurred between 320 and 350MYA in the teleost lineage following the split from the basal ray-finned fish resulted in 2 GRs: one GR group, GR1, has retained the 9 amino acids insert whereas the other group, GR2, has not. The exception to this is the zebrafish, that have lost one of the GRs, but they do possess 2 GRs with a splice variant that lacks the C-terminal portion of the GR to form GRβ which acts as a dominant-repressor of the wildtype GR. Another splice variant sees the basal ray-finned GR and teleost GR1 without the 9 amino acids insert. The molecular basis for GRs retention is beginning to be unravelled. In Pantadon buchholzi, rainbow trout, carp, marine and Japanese medaka GR2 is more sensitive to glucocorticoids (GC), thus potentially playing a more significant role in regulating gene expression at basal circulatory GC concentrations. However, this division in GC sensitivity is not seen in other species. The few studies to evaluate the significance of the 9 amino acid insert have shown that it affect maximal transactivational activity the extent to which is dependent on the number of glucocorticoid response elements (GREs) present in the reporter plasmid. The retention of these GRs would suggest there was an evolutionary advantage, which saw the development of a complex regulatory process to mediate the actions of the glucocorticoids.
Collapse
Affiliation(s)
- Nic R Bury
- King's College London, Diabetes and Nutritional Sciences Division, Franklin Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom; University of Suffolk, Faculty of Health and Science, James Hehir Building, University Quays, Ipswich IP3 0AQ, Suffolk, United Kingdom.
| |
Collapse
|
103
|
Di Palma F, Tramontano A. Dynamics behind affinity maturation of an anti-HCMV antibody family influencing antigen binding. FEBS Lett 2017; 591:2936-2950. [PMID: 28771696 DOI: 10.1002/1873-3468.12774] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/18/2017] [Accepted: 07/24/2017] [Indexed: 12/24/2022]
Abstract
The investigation of antibody affinity maturation and its effects on antigen binding is important with respect to understanding the regulation of the immune response. To shed light on this crucial process, we analyzed two Igs neutralizing the human cytomegalovirus: the primary germline antibody M2J1 and its related mature antibody 8F9. Both antibodies target the AD-2S1 epitope of the gB envelope protein and are considered to establish similar interactions with the cognate antigen. We used molecular dynamics simulations to understand the effect of mutations on the antibody-antigen interactions. The results provide a qualitative explanation for the increased 8F9 peptide affinity compared with that of M2J1. The emerging atomistic-detailed description of these complexes reveals the molecular effects of the somatic hypermutations occurring during affinity maturation.
Collapse
Affiliation(s)
| | - Anna Tramontano
- Department of Physics, Sapienza - Università di Roma, Italy.,Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Roma, Italy
| |
Collapse
|
104
|
Tessier CJG, Emlaw JR, Cao ZQ, Pérez-Areales FJ, Salameh JPJ, Prinston JE, McNulty MS, daCosta CJB. Back to the future: Rational maps for exploring acetylcholine receptor space and time. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1522-1528. [PMID: 28844740 DOI: 10.1016/j.bbapap.2017.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/09/2017] [Accepted: 08/11/2017] [Indexed: 12/27/2022]
Abstract
Global functions of nicotinic acetylcholine receptors, such as subunit cooperativity and compatibility, likely emerge from a network of amino acid residues distributed across the entire pentameric complex. Identification of such networks has stymied traditional approaches to acetylcholine receptor structure and function, likely due to the cryptic interdependency of their underlying amino acid residues. An emerging evolutionary biochemistry approach, which traces the evolutionary history of acetylcholine receptor subunits, allows for rational mapping of acetylcholine receptor sequence space, and offers new hope for uncovering the amino acid origins of these enigmatic properties.
Collapse
Affiliation(s)
- Christian J G Tessier
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, 10 Marie-Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Johnathon R Emlaw
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, 10 Marie-Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Zhuo Qian Cao
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, 10 Marie-Curie, Ottawa, Ontario K1N 6N5, Canada
| | - F Javier Pérez-Areales
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, 10 Marie-Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Jean-Paul J Salameh
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, 10 Marie-Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Jethro E Prinston
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, 10 Marie-Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Melissa S McNulty
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, 10 Marie-Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Corrie J B daCosta
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, 10 Marie-Curie, Ottawa, Ontario K1N 6N5, Canada.
| |
Collapse
|
105
|
Wachter RM. Photoconvertible Fluorescent Proteins and the Role of Dynamics in Protein Evolution. Int J Mol Sci 2017; 18:ijms18081792. [PMID: 32962314 PMCID: PMC5578180 DOI: 10.3390/ijms18081792] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/11/2017] [Accepted: 08/17/2017] [Indexed: 12/12/2022] Open
Abstract
Photoconvertible fluorescent proteins (pcFPs) constitute a large group of fluorescent proteins related to green fluorescent protein (GFP) that, when exposed to blue light, bear the capability of irreversibly switching their emission color from green to red. Not surprisingly, this fascinating class of FPs has found numerous applications, in particular for the visualization of biological processes. A detailed understanding of the photoconversion mechanism appears indispensable in the design of improved variants for applications such as super-resolution imaging. In this article, recent work is reviewed that involves using pcFPs as a model system for studying protein dynamics. Evidence has been provided that the evolution of pcFPs from a green ancestor involved the natural selection for altered dynamical features of the beta-barrel fold. It appears that photoconversion may be the outcome of a long-range positional shift of a fold-anchoring region. A relatively stiff, rigid element appears to have migrated away from the chromophore-bearing section to the opposite edge of the barrel, thereby endowing pcFPs with increased active site flexibility while keeping the fold intact. In this way, the stage was set for the coupling of light absorption with subsequent chemical transformations. The emerging mechanistic model suggests that highly specific dynamic motions are linked to key chemical steps, preparing the system for a concerted deprotonation and β-elimination reaction that enlarges the chromophore's π-conjugation to generate red color.
Collapse
Affiliation(s)
- Rebekka M Wachter
- School of Molecular Sciences and Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
106
|
Achoch M, Dorantes-Gilardi R, Wymant C, Feverati G, Salamatian K, Vuillon L, Lesieur C. Protein structural robustness to mutations: an in silico investigation. Phys Chem Chem Phys 2017; 18:13770-80. [PMID: 26688116 DOI: 10.1039/c5cp06091e] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteins possess qualities of robustness and adaptability to perturbations such as mutations, but occasionally fail to withstand them, resulting in loss of function. Herein, the structural impact of mutations is investigated independently of the functional impact. Primarily, we aim at understanding the mechanisms of structural robustness pre-requisite for functional integrity. The structural changes due to mutations propagate from the site of mutation to residues much more distant than typical scales of chemical interactions, following a cascade mechanism. This can trigger dramatic changes or subtle ones, consistent with a loss of function and disease or the emergence of new functions. Robustness is enhanced by changes producing alternative structures, in good agreement with the view that proteins are dynamic objects fulfilling their functions from a set of conformations. This result, robust alternative structures, is also coherent with epistasis or rescue mutations, or more generally, with non-additive mutational effects and compensatory mutations. To achieve this study, we developed the first algorithm, referred to as Amino Acid Rank (AAR), which follows the structural changes associated with mutations from the site of the mutation to the entire protein structure and quantifies the changes so that mutations can be ranked accordingly. Assessing the paths of changes opens the possibility of assuming secondary mutations for compensatory mechanisms.
Collapse
Affiliation(s)
- Mounia Achoch
- Laboratoire d'informatique Systèmes, Traitement de l'information et de la Connaissance (LISTIC), Université de Savoie, Annecy le Vieux, France
| | - Rodrigo Dorantes-Gilardi
- Laboratoire de Mathématiques (LAMA UMR 5127), Université Savoie Mont Blanc, CNRS, Le Bourget du Lac, France
| | - Chris Wymant
- Medical Research Council Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Giovanni Feverati
- Federation de recherche Fr3405, Modelisation, Simulations, Interactions Fondamentales, Annecy-le-Vieux, France
| | - Kave Salamatian
- Laboratoire d'informatique Systèmes, Traitement de l'information et de la Connaissance (LISTIC), Université de Savoie, Annecy le Vieux, France
| | - Laurent Vuillon
- Laboratoire de Mathématiques (LAMA UMR 5127), Université Savoie Mont Blanc, CNRS, Le Bourget du Lac, France
| | - Claire Lesieur
- CNRS-UCBL, IXXI-ENS-Lyon, Laboratoire AMPERE, Lyon, France.
| |
Collapse
|
107
|
Akanuma S. Characterization of Reconstructed Ancestral Proteins Suggests a Change in Temperature of the Ancient Biosphere. Life (Basel) 2017; 7:life7030033. [PMID: 28783077 PMCID: PMC5617958 DOI: 10.3390/life7030033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/02/2017] [Accepted: 08/03/2017] [Indexed: 01/02/2023] Open
Abstract
Understanding the evolution of ancestral life, and especially the ability of some organisms to flourish in the variable environments experienced in Earth’s early biosphere, requires knowledge of the characteristics and the environment of these ancestral organisms. Information about early life and environmental conditions has been obtained from fossil records and geological surveys. Recent advances in phylogenetic analysis, and an increasing number of protein sequences available in public databases, have made it possible to infer ancestral protein sequences possessed by ancient organisms. However, the in silico studies that assess the ancestral base content of ribosomal RNAs, the frequency of each amino acid in ancestral proteins, and estimate the environmental temperatures of ancient organisms, show conflicting results. The characterization of ancestral proteins reconstructed in vitro suggests that ancient organisms had very thermally stable proteins, and therefore were thermophilic or hyperthermophilic. Experimental data supports the idea that only thermophilic ancestors survived the catastrophic increase in temperature of the biosphere that was likely associated with meteorite impacts during the early history of Earth. In addition, by expanding the timescale and including more ancestral proteins for reconstruction, it appears as though the Earth’s surface temperature gradually decreased over time, from Archean to present.
Collapse
Affiliation(s)
- Satoshi Akanuma
- Faculty of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama 359-1192, Japan.
| |
Collapse
|
108
|
Prinston JE, Emlaw JR, Dextraze MF, Tessier CJG, Pérez-Areales FJ, McNulty MS, daCosta CJB. Ancestral Reconstruction Approach to Acetylcholine Receptor Structure and Function. Structure 2017; 25:1295-1302.e3. [PMID: 28689969 DOI: 10.1016/j.str.2017.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/10/2017] [Accepted: 06/08/2017] [Indexed: 12/23/2022]
Abstract
Acetylcholine receptors (AChRs) are members of a superfamily of proteins called pentameric ligand-gated ion channels, which are found in almost all forms of life and thus have a rich evolutionary history. Muscle-type AChRs are heteropentameric complexes assembled from four related subunits (α, β, δ, and ɛ). Here we reconstruct the amino acid sequence of a β subunit ancestor shared by humans and cartilaginous fishes (i.e., Torpedo). Then, by resurrecting this ancestral β subunit and co-expressing it with human α, δ, and ɛ subunits, we show that despite 132 substitutions, the ancestral subunit is capable of forming human/ancestral hybrid AChRs. Whole-cell currents demonstrate that the agonist acetylcholine has reduced potency for hybrid receptors, while single-channel recordings reveal that hybrid receptors display reduced conductance and open probability. Our results outline a promising strategy for studies of AChR evolution aimed at identifying the amino acid origins of AChR structure and function.
Collapse
Affiliation(s)
- Jethro E Prinston
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, 10 Marie-Curie, Ottawa, ON K1N 6N5, Canada
| | - Johnathon R Emlaw
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, 10 Marie-Curie, Ottawa, ON K1N 6N5, Canada
| | - Mathieu F Dextraze
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, 10 Marie-Curie, Ottawa, ON K1N 6N5, Canada
| | - Christian J G Tessier
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, 10 Marie-Curie, Ottawa, ON K1N 6N5, Canada
| | - F Javier Pérez-Areales
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, 10 Marie-Curie, Ottawa, ON K1N 6N5, Canada
| | - Melissa S McNulty
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, 10 Marie-Curie, Ottawa, ON K1N 6N5, Canada
| | - Corrie J B daCosta
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, 10 Marie-Curie, Ottawa, ON K1N 6N5, Canada.
| |
Collapse
|
109
|
Shibata S. 30 YEARS OF THE MINERALOCORTICOID RECEPTOR: Mineralocorticoid receptor and NaCl transport mechanisms in the renal distal nephron. J Endocrinol 2017; 234:T35-T47. [PMID: 28341694 DOI: 10.1530/joe-16-0669] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 03/24/2017] [Indexed: 01/06/2023]
Abstract
A key role of aldosterone and mineralocorticoid receptor is to regulate fluid volume and K+ homeostasis in the body by acting on the renal distal nephron. Global responses of the kidney to elevated aldosterone levels are determined by the coordinate action of different constituent tubule cells, including principal cells, intercalated cells and distal convoluted tubule cells. Recent studies on genetic mutations causing aldosterone overproduction have identified the molecules involved in aldosterone biosynthesis in the adrenal gland, and there is also increasing evidence for mechanisms and signaling pathways regulating the balance between renal NaCl reabsorption and K+ secretion, the two major effects of aldosterone. In particular, recent studies have demonstrated that mineralocorticoid receptor in intercalated cells is selectively regulated by phosphorylation, which prevents ligand binding and activation. Moreover, the ubiquitin ligase complex composed of Kelch-like 3 and Cullin 3 acts downstream of angiotensin II and plasma K+ alterations, regulating Na-Cl cotransporter independently of aldosterone in distal convoluted tubule cells. These and other effects are integrated to produce appropriate kidney responses in a high-aldosterone state, and are implicated in fluid and electrolyte disorders in humans. This review summarizes the current knowledge on mechanisms modulating mineralocorticoid receptor and its downstream effectors in the distal nephron.
Collapse
Affiliation(s)
- Shigeru Shibata
- Division of NephrologyDepartment of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
- Division of Clinical EpigeneticsResearch Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan
| |
Collapse
|
110
|
Babkova P, Sebestova E, Brezovsky J, Chaloupkova R, Damborsky J. Ancestral Haloalkane Dehalogenases Show Robustness and Unique Substrate Specificity. Chembiochem 2017; 18:1448-1456. [PMID: 28419658 DOI: 10.1002/cbic.201700197] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Indexed: 11/08/2022]
Abstract
Ancestral sequence reconstruction (ASR) represents a powerful approach for empirical testing structure-function relationships of diverse proteins. We employed ASR to predict sequences of five ancestral haloalkane dehalogenases (HLDs) from the HLD-II subfamily. Genes encoding the inferred ancestral sequences were synthesized and expressed in Escherichia coli, and the resurrected ancestral enzymes (AncHLD1-5) were experimentally characterized. Strikingly, the ancestral HLDs exhibited significantly enhanced thermodynamic stability compared to extant enzymes (ΔTm up to 24 °C), as well as higher specific activities with preference for short multi-substituted halogenated substrates. Moreover, multivariate statistical analysis revealed a shift in the substrate specificity profiles of AncHLD1 and AncHLD2. This is extremely difficult to achieve by rational protein engineering. The study highlights that ASR is an efficient approach for the development of novel biocatalysts and robust templates for directed evolution.
Collapse
Affiliation(s)
- Petra Babkova
- Loschmidt Laboratories, Department of Experimental Biology and, Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic
| | - Eva Sebestova
- Loschmidt Laboratories, Department of Experimental Biology and, Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00, Brno, Czech Republic
| | - Jan Brezovsky
- Loschmidt Laboratories, Department of Experimental Biology and, Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic
| | - Radka Chaloupkova
- Loschmidt Laboratories, Department of Experimental Biology and, Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and, Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic
| |
Collapse
|
111
|
Exploring the past and the future of protein evolution with ancestral sequence reconstruction: the 'retro' approach to protein engineering. Biochem J 2017; 474:1-19. [PMID: 28008088 DOI: 10.1042/bcj20160507] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 11/07/2016] [Accepted: 11/10/2016] [Indexed: 12/22/2022]
Abstract
A central goal in molecular evolution is to understand the ways in which genes and proteins evolve in response to changing environments. In the absence of intact DNA from fossils, ancestral sequence reconstruction (ASR) can be used to infer the evolutionary precursors of extant proteins. To date, ancestral proteins belonging to eubacteria, archaea, yeast and vertebrates have been inferred that have been hypothesized to date from between several million to over 3 billion years ago. ASR has yielded insights into the early history of life on Earth and the evolution of proteins and macromolecular complexes. Recently, however, ASR has developed from a tool for testing hypotheses about protein evolution to a useful means for designing novel proteins. The strength of this approach lies in the ability to infer ancestral sequences encoding proteins that have desirable properties compared with contemporary forms, particularly thermostability and broad substrate range, making them good starting points for laboratory evolution. Developments in technologies for DNA sequencing and synthesis and computational phylogenetic analysis have led to an escalation in the number of ancient proteins resurrected in the last decade and greatly facilitated the use of ASR in the burgeoning field of synthetic biology. However, the primary challenge of ASR remains in accurately inferring ancestral states, despite the uncertainty arising from evolutionary models, incomplete sequences and limited phylogenetic trees. This review will focus, firstly, on the use of ASR to uncover links between sequence and phenotype and, secondly, on the practical application of ASR in protein engineering.
Collapse
|
112
|
Abstract
A central goal in biochemistry is to explain the causes of protein sequence, structure, and function. Mainstream approaches seek to rationalize sequence and structure in terms of their effects on function and to identify function's underlying determinants by comparing related proteins to each other. Although productive, both strategies suffer from intrinsic limitations that have left important aspects of many proteins unexplained. These limits can be overcome by reconstructing ancient proteins, experimentally characterizing their properties, and retracing their evolution through time. This approach has proven to be a powerful means for discovering how historical changes in sequence produced the functions, structures, and other physical/chemical characteristics of modern proteins. It has also illuminated whether protein features evolved because of functional optimization, historical constraint, or blind chance. Here we review recent studies employing ancestral protein reconstruction and show how they have produced new knowledge not only of molecular evolutionary processes but also of the underlying determinants of modern proteins' physical, chemical, and biological properties.
Collapse
Affiliation(s)
- Georg K A Hochberg
- Department of Ecology and Evolution, University of Chicago, Illinois 60637;
| | - Joseph W Thornton
- Department of Ecology and Evolution, University of Chicago, Illinois 60637;
- Department of Human Genetics, University of Chicago, Illinois 60637
| |
Collapse
|
113
|
Abstract
BACKGROUND Despite the long-anticipated possibility of putting sequence alignment on the same footing as statistical phylogenetics, theorists have struggled to develop time-dependent evolutionary models for indels that are as tractable as the analogous models for substitution events. MAIN TEXT This paper discusses progress in the area of insertion-deletion models, in view of recent work by Ezawa (BMC Bioinformatics 17:304, 2016); (BMC Bioinformatics 17:397, 2016); (BMC Bioinformatics 17:457, 2016) on the calculation of time-dependent gap length distributions in pairwise alignments, and current approaches for extending these approaches from ancestor-descendant pairs to phylogenetic trees. CONCLUSIONS While approximations that use finite-state machines (Pair HMMs and transducers) currently represent the most practical approach to problems such as sequence alignment and phylogeny, more rigorous approaches that work directly with the matrix exponential of the underlying continuous-time Markov chain also show promise, especially in view of recent advances.
Collapse
Affiliation(s)
- Ian H. Holmes
- 0000 0001 2181 7878grid.47840.3fDept of Bioengineering, University of California, Berkeley, 94720 USA
| |
Collapse
|
114
|
Hague MT, Feldman CR, Brodie ED, Brodie ED. Convergent adaptation to dangerous prey proceeds through the same first‐step mutation in the garter snake
Thamnophis sirtalis. Evolution 2017; 71:1504-1518. [DOI: 10.1111/evo.13244] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/24/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Michael T.J. Hague
- Department of Biology University of Virginia Charlottesville Virginia 22904
| | | | | | - Edmund D. Brodie
- Department of Biology University of Virginia Charlottesville Virginia 22904
| |
Collapse
|
115
|
Weikum ER, Okafor CD, D'Agostino EH, Colucci JK, Ortlund EA. Structural Analysis of the Glucocorticoid Receptor Ligand-Binding Domain in Complex with Triamcinolone Acetonide and a Fragment of the Atypical Coregulator, Small Heterodimer Partner. Mol Pharmacol 2017; 92:12-21. [PMID: 28396564 DOI: 10.1124/mol.117.108506] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/06/2017] [Indexed: 12/13/2022] Open
Abstract
The synthetic glucocorticoids (GCs) dexamethasone, mometasone furoate, and triamcinolone acetonide are pharmaceutical mainstays to treat chronic inflammatory diseases. These drugs bind to the glucocorticoid receptor (GR), a ligand-activated transcription factor and member of the nuclear receptor superfamily. The GR is widely recognized as a therapeutic target for its ability to counter proinflammatory signaling. Despite the popularity of GCs in the clinic, long-term use leads to numerous side effects, driving the need for new and improved drugs with less off-target pharmacology. X-ray crystal structures have played an important role in the drug-design process, permitting the characterization of robust structure-function relationships. However, steroid receptor ligand-binding domains (LBDs) are inherently unstable, and their crystallization requires extensive mutagenesis to enhance expression and crystallization. Here, we use an ancestral variant of GR as a tool to generate a high-resolution crystal structure of GR in complex with the potent glucocorticoid triamcinolone acetonide (TA) and a fragment of the small heterodimer partner (SHP). Using structural analysis, molecular dynamics, and biochemistry, we show that TA increases intramolecular contacts within the LBD to drive affinity and enhance stability of the receptor-ligand complex. These data support the emerging theme that ligand-induced receptor conformational dynamics at the mouth of the pocket play a major role in steroid receptor activation. This work also represents the first GR structure in complex with SHP, which has been suggested to play a role in modulating hepatic GR function.
Collapse
Affiliation(s)
- Emily R Weikum
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia
| | - C Denise Okafor
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia
| | - Emma H D'Agostino
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia
| | - Jennifer K Colucci
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia
| | - Eric A Ortlund
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
116
|
Wünsche A, Dinh DM, Satterwhite RS, Arenas CD, Stoebel DM, Cooper TF. Diminishing-returns epistasis decreases adaptability along an evolutionary trajectory. Nat Ecol Evol 2017; 1:61. [PMID: 28812657 DOI: 10.1038/s41559-016-0061] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 12/19/2016] [Indexed: 12/15/2022]
Abstract
Populations evolving in constant environments exhibit declining adaptability. Understanding the basis of this pattern could reveal underlying processes determining the repeatability of evolutionary outcomes. In principle, declining adaptability can be due to a decrease in the effect size of beneficial mutations, a decrease in the rate at which they occur, or some combination of both. By evolving Escherichia coli populations started from different steps along a single evolutionary trajectory, we show that declining adaptability is best explained by a decrease in the size of available beneficial mutations. This pattern reflected the dominant influence of negative genetic interactions that caused new beneficial mutations to confer smaller benefits in fitter genotypes. Genome sequencing revealed that starting genotypes that were more similar to one another did not exhibit greater similarity in terms of new beneficial mutations, supporting the view that epistasis acts globally, having a greater influence on the effect than on the identity of available mutations along an adaptive trajectory. Our findings provide support for a general mechanism that leads to predictable phenotypic evolutionary trajectories.
Collapse
Affiliation(s)
- Andrea Wünsche
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204, USA
| | - Duy M Dinh
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204, USA
| | - Rebecca S Satterwhite
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204, USA
| | - Carolina Diaz Arenas
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204, USA
| | - Daniel M Stoebel
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204, USA
| | - Tim F Cooper
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204, USA
| |
Collapse
|
117
|
Cheema J, Faraldos JA, O'Maille PE. REVIEW: Epistasis and dominance in the emergence of catalytic function as exemplified by the evolution of plant terpene synthases. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 255:29-38. [PMID: 28131339 DOI: 10.1016/j.plantsci.2016.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 10/17/2016] [Accepted: 11/12/2016] [Indexed: 06/06/2023]
Abstract
Epistasis, the interaction between mutations and the genetic background, is a pervasive force in evolution that is difficult to predict yet derives from a simple principle - biological systems are interconnected. Therefore, one effect may be intimately linked to another, hence interdependent. Untangling epistatic interactions between and within genes is a vibrant area of research. Deriving a mechanistic understanding of epistasis is a major challenge. Particularly, elucidating how epistasis can attenuate the effects of otherwise dominant mutations that control phenotypes. Using the emergence of terpene cyclization in specialized metabolism as an excellent example, this review describes the process of discovery and interpretation of dominance and epistasis in relation to current efforts. Specifically, we outline experimental approaches to isolating epistatic networks of mutations in protein structure, formally quantifying epistatic interactions, then building biochemical models with chemical mechanisms in efforts to achieve an understanding of the physical basis for epistasis. From these models we describe informed conjectures about past evolutionary events that underlie the emergence, divergence and specialization of terpene synthases to illustrate key principles of the constraining forces of epistasis in enzyme function.
Collapse
Affiliation(s)
- Jitender Cheema
- John Innes Centre, Computational and Systems Biology, Norwich Research Park, Norwich NR4 7UH, UK.
| | - Juan A Faraldos
- John Innes Centre, Department of Metabolic Biology, Norwich Research Park, Norwich NR4 7UH, UK.
| | - Paul E O'Maille
- John Innes Centre, Department of Metabolic Biology, Norwich Research Park, Norwich NR4 7UH, UK; Institute of Food Research, Food & Health Programme, Norwich Research Park, Norwich NR4 7UA, UK.
| |
Collapse
|
118
|
Berger M, Rehwinkel H, Schmees N, Schäcke H, Edman K, Wissler L, Reichel A, Jaroch S. Discovery of new selective glucocorticoid receptor agonist leads. Bioorg Med Chem Lett 2017; 27:437-442. [DOI: 10.1016/j.bmcl.2016.12.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/15/2016] [Accepted: 12/18/2016] [Indexed: 10/20/2022]
|
119
|
Eick GN, Bridgham JT, Anderson DP, Harms MJ, Thornton JW. Robustness of Reconstructed Ancestral Protein Functions to Statistical Uncertainty. Mol Biol Evol 2017; 34:247-261. [PMID: 27795231 PMCID: PMC6095102 DOI: 10.1093/molbev/msw223] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Hypotheses about the functions of ancient proteins and the effects of historical mutations on them are often tested using ancestral protein reconstruction (APR)-phylogenetic inference of ancestral sequences followed by synthesis and experimental characterization. Usually, some sequence sites are ambiguously reconstructed, with two or more statistically plausible states. The extent to which the inferred functions and mutational effects are robust to uncertainty about the ancestral sequence has not been studied systematically. To address this issue, we reconstructed ancestral proteins in three domain families that have different functions, architectures, and degrees of uncertainty; we then experimentally characterized the functional robustness of these proteins when uncertainty was incorporated using several approaches, including sampling amino acid states from the posterior distribution at each site and incorporating the alternative amino acid state at every ambiguous site in the sequence into a single "worst plausible case" protein. In every case, qualitative conclusions about the ancestral proteins' functions and the effects of key historical mutations were robust to sequence uncertainty, with similar functions observed even when scores of alternate amino acids were incorporated. There was some variation in quantitative descriptors of function among plausible sequences, suggesting that experimentally characterizing robustness is particularly important when quantitative estimates of ancient biochemical parameters are desired. The worst plausible case method appears to provide an efficient strategy for characterizing the functional robustness of ancestral proteins to large amounts of sequence uncertainty. Sampling from the posterior distribution sometimes produced artifactually nonfunctional proteins for sequences reconstructed with substantial ambiguity.
Collapse
Affiliation(s)
- Geeta N Eick
- Institute of Ecology & Evolutionary Biology, University of Oregon, Eugene, OR
- Department of Anthropology, University of Oregon, Eugene, OR
| | - Jamie T Bridgham
- Institute of Ecology & Evolutionary Biology, University of Oregon, Eugene, OR
| | - Douglas P Anderson
- Institute of Ecology & Evolutionary Biology, University of Oregon, Eugene, OR
- Institute of Molecular Biology, University of Oregon, Eugene, OR
| | - Michael J Harms
- Institute of Ecology & Evolutionary Biology, University of Oregon, Eugene, OR
- Institute of Molecular Biology, University of Oregon, Eugene, OR
| | - Joseph W Thornton
- Department of Ecology & Evolution and Department of Human Genetics, University of Chicago, Chicago, IL
| |
Collapse
|
120
|
Holinski A, Heyn K, Merkl R, Sterner R. Combining ancestral sequence reconstruction with protein design to identify an interface hotspot in a key metabolic enzyme complex. Proteins 2017; 85:312-321. [PMID: 27936490 DOI: 10.1002/prot.25225] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/08/2016] [Accepted: 11/21/2016] [Indexed: 01/20/2023]
Abstract
It is important to identify hotspot residues that determine protein-protein interactions in interfaces of macromolecular complexes. We have applied a combination of ancestral sequence reconstruction and protein design to identify hotspots within imidazole glycerol phosphate synthase (ImGPS). ImGPS is a key metabolic enzyme complex, which links histidine and de novo purine biosynthesis and consists of the cyclase subunit HisF and the glutaminase subunit HisH. Initial fluorescence titration experiments showed that HisH from Zymomonas mobilis (zmHisH) binds with high affinity to the reconstructed HisF from the last universal common ancestor (LUCA-HisF) but not to HisF from Pyrobaculum arsenaticum (paHisF), which differ by 103 residues. Subsequent titration experiments with a reconstructed evolutionary intermediate linking LUCA-HisF and paHisF and inspection of the subunit interface of a contemporary ImGPS allowed us to narrow down the differences crucial for zmHisH binding to nine amino acids of HisF. Homology modeling and in silico mutagenesis studies suggested that at most two of these nine HisF residues are crucial for zmHisH binding. These computational results were verified by experimental site-directed mutagenesis, which finally enabled us to pinpoint a single amino acid residue in HisF that is decisive for high-affinity binding of zmHisH. Our work shows that the identification of protein interface hotspots can be very efficient when reconstructed proteins with different binding properties are included in the analysis. Proteins 2017; 85:312-321. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alexandra Holinski
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, D-93040, Germany
| | - Kristina Heyn
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, D-93040, Germany
| | - Rainer Merkl
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, D-93040, Germany
| | - Reinhard Sterner
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, D-93040, Germany
| |
Collapse
|
121
|
Redondo RAF, de Vladar HP, Włodarski T, Bollback JP. Evolutionary interplay between structure, energy and epistasis in the coat protein of the ϕX174 phage family. J R Soc Interface 2017; 14:20160139. [PMID: 28053111 PMCID: PMC5310724 DOI: 10.1098/rsif.2016.0139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 11/29/2016] [Indexed: 01/01/2023] Open
Abstract
Viral capsids are structurally constrained by interactions among the amino acids (AAs) of their constituent proteins. Therefore, epistasis is expected to evolve among physically interacting sites and to influence the rates of substitution. To study the evolution of epistasis, we focused on the major structural protein of the ϕX174 phage family by first reconstructing the ancestral protein sequences of 18 species using a Bayesian statistical framework. The inferred ancestral reconstruction differed at eight AAs, for a total of 256 possible ancestral haplotypes. For each ancestral haplotype and the extant species, we estimated, in silico, the distribution of free energies and epistasis of the capsid structure. We found that free energy has not significantly increased but epistasis has. We decomposed epistasis up to fifth order and found that higher-order epistasis sometimes compensates pairwise interactions making the free energy seem additive. The dN/dS ratio is low, suggesting strong purifying selection, and that structure is under stabilizing selection. We synthesized phages carrying ancestral haplotypes of the coat protein gene and measured their fitness experimentally. Our findings indicate that stabilizing mutations can have higher fitness, and that fitness optima do not necessarily coincide with energy minima.
Collapse
Affiliation(s)
| | - Harold P de Vladar
- IST Austria, Am Campus 1, 3400 Klosterneuburg, Austria
- Center for the Conceptual Foundations of Science, Parmenides Foundation, 82049 Pullach, Germany
| | - Tomasz Włodarski
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | | |
Collapse
|
122
|
Carter CW. Coding of Class I and II Aminoacyl-tRNA Synthetases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 966:103-148. [PMID: 28828732 PMCID: PMC5927602 DOI: 10.1007/5584_2017_93] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The aminoacyl-tRNA synthetases and their cognate transfer RNAs translate the universal genetic code. The twenty canonical amino acids are sufficiently diverse to create a selective advantage for dividing amino acid activation between two distinct, apparently unrelated superfamilies of synthetases, Class I amino acids being generally larger and less polar, Class II amino acids smaller and more polar. Biochemical, bioinformatic, and protein engineering experiments support the hypothesis that the two Classes descended from opposite strands of the same ancestral gene. Parallel experimental deconstructions of Class I and II synthetases reveal parallel losses in catalytic proficiency at two novel modular levels-protozymes and Urzymes-associated with the evolution of catalytic activity. Bi-directional coding supports an important unification of the proteome; affords a genetic relatedness metric-middle base-pairing frequencies in sense/antisense alignments-that probes more deeply into the evolutionary history of translation than do single multiple sequence alignments; and has facilitated the analysis of hitherto unknown coding relationships in tRNA sequences. Reconstruction of native synthetases by modular thermodynamic cycles facilitated by domain engineering emphasizes the subtlety associated with achieving high specificity, shedding new light on allosteric relationships in contemporary synthetases. Synthetase Urzyme structural biology suggests that they are catalytically-active molten globules, broadening the potential manifold of polypeptide catalysts accessible to primitive genetic coding and motivating revisions of the origins of catalysis. Finally, bi-directional genetic coding of some of the oldest genes in the proteome places major limitations on the likelihood that any RNA World preceded the origins of coded proteins.
Collapse
Affiliation(s)
- Charles W Carter
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7260, USA.
| |
Collapse
|
123
|
Sugrue E, Scott C, Jackson CJ. Constrained evolution of a bispecific enzyme: lessons for biocatalyst design. Org Biomol Chem 2017; 15:937-946. [DOI: 10.1039/c6ob02355j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Analysis of the natural evolution of bispecificity in triazine hydrolase highlights the importance of epistasis in protein engineering and evolution.
Collapse
Affiliation(s)
- E. Sugrue
- Research School of Chemistry
- Australian National University
- Canberra
- Australia
| | - C. Scott
- Commonwealth Scientific and Industrial Research Organisation
- Canberra
- Australia
| | - C. J. Jackson
- Research School of Chemistry
- Australian National University
- Canberra
- Australia
| |
Collapse
|
124
|
Nshogozabahizi JC, Dench J, Aris-Brosou S. Widespread Historical Contingency in Influenza Viruses. Genetics 2017; 205:409-420. [PMID: 28049709 PMCID: PMC5223518 DOI: 10.1534/genetics.116.193979] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 11/04/2016] [Indexed: 11/18/2022] Open
Abstract
In systems biology and genomics, epistasis characterizes the impact that a substitution at a particular location in a genome can have on a substitution at another location. This phenomenon is often implicated in the evolution of drug resistance or to explain why particular "disease-causing" mutations do not have the same outcome in all individuals. Hence, uncovering these mutations and their locations in a genome is a central question in biology. However, epistasis is notoriously difficult to uncover, especially in fast-evolving organisms. Here, we present a novel statistical approach that replies on a model developed in ecology and that we adapt to analyze genetic data in fast-evolving systems such as the influenza A virus. We validate the approach using a two-pronged strategy: extensive simulations demonstrate a low-to-moderate sensitivity with excellent specificity and precision, while analyses of experimentally validated data recover known interactions, including in a eukaryotic system. We further evaluate the ability of our approach to detect correlated evolution during antigenic shifts or at the emergence of drug resistance. We show that in all cases, correlated evolution is prevalent in influenza A viruses, involving many pairs of sites linked together in chains; a hallmark of historical contingency. Strikingly, interacting sites are separated by large physical distances, which entails either long-range conformational changes or functional tradeoffs, for which we find support with the emergence of drug resistance. Our work paves a new way for the unbiased detection of epistasis in a wide range of organisms by performing whole-genome scans.
Collapse
Affiliation(s)
| | - Jonathan Dench
- Department of Biology, University of Ottawa, Ontario K1N 6N5, Canada
| | - Stéphane Aris-Brosou
- Department of Biology, University of Ottawa, Ontario K1N 6N5, Canada
- Department of Mathematics and Statistics, University of Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
125
|
Transient Duplication-Dependent Divergence and Horizontal Transfer Underlie the Evolutionary Dynamics of Bacterial Cell-Cell Signaling. PLoS Biol 2016; 14:e2000330. [PMID: 28033323 PMCID: PMC5199041 DOI: 10.1371/journal.pbio.2000330] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 12/02/2016] [Indexed: 01/01/2023] Open
Abstract
Evolutionary expansion of signaling pathway families often underlies the evolution of regulatory complexity. Expansion requires the acquisition of a novel homologous pathway and the diversification of pathway specificity. Acquisition can occur either vertically, by duplication, or through horizontal transfer, while divergence of specificity is thought to occur through a promiscuous protein intermediate. The way by which these mechanisms shape the evolution of rapidly diverging signaling families is unclear. Here, we examine this question using the highly diversified Rap-Phr cell-cell signaling system, which has undergone massive expansion in the genus Bacillus. To this end, genomic sequence analysis of >300 Bacilli genomes was combined with experimental analysis of the interaction of Rap receptors with Phr autoinducers and downstream targets. Rap-Phr expansion is shown to have occurred independently in multiple Bacillus lineages, with >80 different putative rap-phr alleles evolving in the Bacillius subtilis group alone. The specificity of many rap-phr alleles and the rapid gain and loss of Rap targets are experimentally demonstrated. Strikingly, both horizontal and vertical processes were shown to participate in this expansion, each with a distinct role. Horizontal gene transfer governs the acquisition of already diverged rap-phr alleles, while intralocus duplication and divergence of the phr gene create the promiscuous intermediate required for the divergence of Rap-Phr specificity. Our results suggest a novel role for transient gene duplication and divergence during evolutionary shifts in specificity.
Collapse
|
126
|
Abstract
Glucocorticoid hormones (GC) regulate essential physiological functions including energy homeostasis, embryonic and postembryonic development, and the stress response. From the biomedical perspective, GC have garnered a tremendous amount of attention as highly potent anti-inflammatory and immunosuppressive medications indispensable in the clinic. GC signal through the GC receptor (GR), a ligand-dependent transcription factor whose structure, DNA binding, and the molecular partners that it employs to regulate transcription have been under intense investigation for decades. In particular, next-generation sequencing-based approaches have revolutionized the field by introducing a unified platform for a simultaneous genome-wide analysis of cellular activities at the level of RNA production, binding of transcription factors to DNA and RNA, and chromatin landscape and topology. Here we describe fundamental concepts of GC/GR function as established through traditional molecular and in vivo approaches and focus on the novel insights of GC biology that have emerged over the last 10 years from the rapidly expanding arsenal of system-wide genomic methodologies.
Collapse
Affiliation(s)
- Maria A Sacta
- Hospital for Special Surgery, The David Rosensweig Genomics Center, New York, NY 10021; .,Weill Cornell/Rockefeller/Sloan Kettering MD/PhD program, New York, NY 10021
| | - Yurii Chinenov
- Hospital for Special Surgery, The David Rosensweig Genomics Center, New York, NY 10021;
| | - Inez Rogatsky
- Hospital for Special Surgery, The David Rosensweig Genomics Center, New York, NY 10021; .,Weill Cornell/Rockefeller/Sloan Kettering MD/PhD program, New York, NY 10021
| |
Collapse
|
127
|
Haddox HK, Dingens AS, Bloom JD. Experimental Estimation of the Effects of All Amino-Acid Mutations to HIV's Envelope Protein on Viral Replication in Cell Culture. PLoS Pathog 2016; 12:e1006114. [PMID: 27959955 PMCID: PMC5189966 DOI: 10.1371/journal.ppat.1006114] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/27/2016] [Accepted: 12/07/2016] [Indexed: 11/18/2022] Open
Abstract
HIV is notorious for its capacity to evade immunity and anti-viral drugs through rapid sequence evolution. Knowledge of the functional effects of mutations to HIV is critical for understanding this evolution. HIV's most rapidly evolving protein is its envelope (Env). Here we use deep mutational scanning to experimentally estimate the effects of all amino-acid mutations to Env on viral replication in cell culture. Most mutations are under purifying selection in our experiments, although a few sites experience strong selection for mutations that enhance HIV's replication in cell culture. We compare our experimental measurements of each site's preference for each amino acid to the actual frequencies of these amino acids in naturally occurring HIV sequences. Our measured amino-acid preferences correlate with amino-acid frequencies in natural sequences for most sites. However, our measured preferences are less concordant with natural amino-acid frequencies at surface-exposed sites that are subject to pressures absent from our experiments such as antibody selection. Our data enable us to quantify the inherent mutational tolerance of each site in Env. We show that the epitopes of broadly neutralizing antibodies have a significantly reduced inherent capacity to tolerate mutations, rigorously validating a pervasive idea in the field. Overall, our results help disentangle the role of inherent functional constraints and external selection pressures in shaping Env's evolution.
Collapse
Affiliation(s)
- Hugh K. Haddox
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Molecular and Cellular Biology PhD Program, University of Washington, Seattle, Washington, United States of America
| | - Adam S. Dingens
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Molecular and Cellular Biology PhD Program, University of Washington, Seattle, Washington, United States of America
| | - Jesse D. Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| |
Collapse
|
128
|
Sioupouli G, Lambrinidis G, Mikros E, Amillis S, Diallinas G. Cryptic purine transporters inAspergillus nidulansreveal the role of specific residues in the evolution of specificity in the NCS1 family. Mol Microbiol 2016; 103:319-332. [DOI: 10.1111/mmi.13559] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Georgia Sioupouli
- Department of Biology; National and Kapodistrian University of Athens, Panepistimioupolis; Athens 15784 Greece
| | - George Lambrinidis
- Department of Pharmacy; National and Kapodistrian University of Athens, Panepistimioupolis; Athens 15771 Greece
| | - Emmanuel Mikros
- Department of Pharmacy; National and Kapodistrian University of Athens, Panepistimioupolis; Athens 15771 Greece
| | - Sotiris Amillis
- Department of Biology; National and Kapodistrian University of Athens, Panepistimioupolis; Athens 15784 Greece
| | - George Diallinas
- Department of Biology; National and Kapodistrian University of Athens, Panepistimioupolis; Athens 15784 Greece
| |
Collapse
|
129
|
Nelson ED, Grishin NV. Long-Range Epistasis Mediated by Structural Change in a Model of Ligand Binding Proteins. PLoS One 2016; 11:e0166739. [PMID: 27870911 PMCID: PMC5117711 DOI: 10.1371/journal.pone.0166739] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/02/2016] [Indexed: 11/17/2022] Open
Abstract
Recent analyses of amino acid mutations in proteins reveal that mutations at many pairs of sites are epistatic-i.e., their effects on fitness are non-additive-the combined effect of two mutations being significantly larger or smaller than the sum of their effects considered independently. Interestingly, epistatic sites are not necessarily near each other in the folded structure of a protein, and may even be located on opposite sides of a molecule. However, the mechanistic reasons for long-range epistasis remain obscure. Here, we study long-range epistasis in proteins using a previously developed model in which off-lattice polymers are evolved under ligand binding constraints. Epistatic effects in the model are qualitatively similar to those recently reported for small proteins, and many are long-range. We find that a major reason for long-range epistasis is conformational change-a recurrent theme in both positive and negative epistasis being the transfer, or exchange of material between the ordered nucleus, which supports the binding site, and the liquid-like surface of a folded molecule. These local transitions in phase and folded structure are largely responsible for long-range epistasis in our model.
Collapse
Affiliation(s)
- Erik D Nelson
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Room ND10.124, Dallas, Texas, United States of America
| | - Nick V Grishin
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Room ND10.124, Dallas, Texas, United States of America
| |
Collapse
|
130
|
Pugh C, Kolaczkowski O, Manny A, Korithoski B, Kolaczkowski B. Resurrecting ancestral structural dynamics of an antiviral immune receptor: adaptive binding pocket reorganization repeatedly shifts RNA preference. BMC Evol Biol 2016; 16:241. [PMID: 27825296 PMCID: PMC5101713 DOI: 10.1186/s12862-016-0818-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 10/28/2016] [Indexed: 02/07/2023] Open
Abstract
Background Although resurrecting ancestral proteins is a powerful tool for understanding the molecular-functional evolution of gene families, nearly all studies have examined proteins functioning in relatively stable biological processes. The extent to which more dynamic systems obey the same ‘rules’ governing stable processes is unclear. Here we present the first detailed investigation of the functional evolution of the RIG-like receptors (RLRs), a family of innate immune receptors that detect viral RNA in the cytoplasm. Results Using kinetic binding assays and molecular dynamics simulations of ancestral proteins, we demonstrate how a small number of adaptive protein-coding changes repeatedly shifted the RNA preference of RLRs throughout animal evolution by reorganizing the shape and electrostatic distribution across the RNA binding pocket, altering the hydrogen bond network between the RLR and its RNA target. In contrast to observations of proteins involved in metabolism and development, we find that RLR-RNA preference ‘flip flopped’ between two functional states, and shifts in RNA preference were not always coupled to gene duplications or speciation events. We demonstrate at least one reversion of RLR-RNA preference from a derived to an ancestral function through a novel structural mechanism, indicating multiple structural implementations of similar functions. Conclusions Our results suggest a model in which frequent shifts in selection pressures imposed by an evolutionary arms race preclude the long-term functional optimization observed in stable biological systems. As a result, the evolutionary dynamics of immune receptors may be less constrained by structural epistasis and historical contingency. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0818-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Charles Pugh
- Department of Microbiology & Cell Science and Institute for Food and Agricultural Sciences, University of Florida, Gainesville, USA
| | - Oralia Kolaczkowski
- Department of Microbiology & Cell Science and Institute for Food and Agricultural Sciences, University of Florida, Gainesville, USA
| | - Austin Manny
- Department of Microbiology & Cell Science and Institute for Food and Agricultural Sciences, University of Florida, Gainesville, USA
| | - Bryan Korithoski
- Department of Microbiology & Cell Science and Institute for Food and Agricultural Sciences, University of Florida, Gainesville, USA
| | - Bryan Kolaczkowski
- Department of Microbiology & Cell Science and Institute for Food and Agricultural Sciences, University of Florida, Gainesville, USA. .,Genetics Institute, University of Florida, Gainesville, USA.
| |
Collapse
|
131
|
Bershtein S, Serohijos AW, Shakhnovich EI. Bridging the physical scales in evolutionary biology: from protein sequence space to fitness of organisms and populations. Curr Opin Struct Biol 2016; 42:31-40. [PMID: 27810574 DOI: 10.1016/j.sbi.2016.10.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/14/2016] [Indexed: 01/11/2023]
Abstract
Bridging the gap between the molecular properties of proteins and organismal/population fitness is essential for understanding evolutionary processes. This task requires the integration of the several physical scales of biological organization, each defined by a distinct set of mechanisms and constraints, into a single unifying model. The molecular scale is dominated by the constraints imposed by the physico-chemical properties of proteins and their substrates, which give rise to trade-offs and epistatic (non-additive) effects of mutations. At the systems scale, biological networks modulate protein expression and can either buffer or enhance the fitness effects of mutations. The population scale is influenced by the mutational input, selection regimes, and stochastic changes affecting the size and structure of populations, which eventually determine the evolutionary fate of mutations. Here, we summarize the recent advances in theory, computer simulations, and experiments that advance our understanding of the links between various physical scales in biology.
Collapse
Affiliation(s)
- Shimon Bershtein
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84501, Israel
| | - Adrian Wr Serohijos
- Département de Biochimie, Centre Robert-Cedergren en Bioinformatique & Génomique, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Eugene I Shakhnovich
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, United States.
| |
Collapse
|
132
|
Mineralocorticoid receptor as a therapeutic target in chronic kidney disease and hypertension. Hypertens Res 2016; 40:221-225. [DOI: 10.1038/hr.2016.137] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 09/08/2016] [Accepted: 09/08/2016] [Indexed: 01/29/2023]
|
133
|
Polster R, Petropoulos CJ, Bonhoeffer S, Guillaume F. Epistasis and Pleiotropy Affect the Modularity of the Genotype-Phenotype Map of Cross-Resistance in HIV-1. Mol Biol Evol 2016; 33:3213-3225. [PMID: 27678053 PMCID: PMC5100054 DOI: 10.1093/molbev/msw206] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The genotype–phenotype (GP) map is a central concept in evolutionary biology as it describes the mapping of molecular genetic variation onto phenotypic trait variation. Our understanding of that mapping remains partial, especially when trying to link functional clustering of pleiotropic gene effects with patterns of phenotypic trait co-variation. Only on rare occasions have studies been able to fully explore that link and tend to show poor correspondence between modular structures within the GP map and among phenotypes. By dissecting the structure of the GP map of the replicative capacity of HIV-1 in 15 drug environments, we provide a detailed view of that mapping from mutational pleiotropic variation to phenotypic co-variation, including epistatic effects of a set of amino-acid substitutions in the reverse transcriptase and protease genes. We show that epistasis increases the pleiotropic degree of single mutations and provides modularity to the GP map of drug resistance in HIV-1. Moreover, modules of epistatic pleiotropic effects within the GP map match the phenotypic modules of correlated replicative capacity among drug classes. Epistasis thus increases the evolvability of cross-resistance in HIV by providing more drug- and class-specific pleiotropic profiles to the main effects of the mutations. We discuss the implications for the evolution of cross-resistance in HIV.
Collapse
Affiliation(s)
- Robert Polster
- ETH Zürich, Institute of Integrative Biology, Universitätsstr. 16, Zürich, Switzerland
| | | | - Sebastian Bonhoeffer
- ETH Zürich, Institute of Integrative Biology, Universitätsstr. 16, Zürich, Switzerland
| | - Frédéric Guillaume
- ETH Zürich, Institute of Integrative Biology, Universitätsstr. 16, Zürich, Switzerland .,Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
| |
Collapse
|
134
|
Campbell E, Kaltenbach M, Correy GJ, Carr PD, Porebski BT, Livingstone EK, Afriat-Jurnou L, Buckle AM, Weik M, Hollfelder F, Tokuriki N, Jackson CJ. The role of protein dynamics in the evolution of new enzyme function. Nat Chem Biol 2016; 12:944-950. [PMID: 27618189 DOI: 10.1038/nchembio.2175] [Citation(s) in RCA: 217] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 06/17/2016] [Indexed: 11/09/2022]
Abstract
Enzymes must be ordered to allow the stabilization of transition states by their active sites, yet dynamic enough to adopt alternative conformations suited to other steps in their catalytic cycles. The biophysical principles that determine how specific protein dynamics evolve and how remote mutations affect catalytic activity are poorly understood. Here we examine a 'molecular fossil record' that was recently obtained during the laboratory evolution of a phosphotriesterase from Pseudomonas diminuta to an arylesterase. Analysis of the structures and dynamics of nine protein variants along this trajectory, and three rationally designed variants, reveals cycles of structural destabilization and repair, evolutionary pressure to 'freeze out' unproductive motions and sampling of distinct conformations with specific catalytic properties in bi-functional intermediates. This work establishes that changes to the conformational landscapes of proteins are an essential aspect of molecular evolution and that change in function can be achieved through enrichment of preexisting conformational sub-states.
Collapse
Affiliation(s)
- Eleanor Campbell
- Research School of Chemistry, Australian National University, Canberra, Australia
| | - Miriam Kaltenbach
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Galen J Correy
- Research School of Chemistry, Australian National University, Canberra, Australia
| | - Paul D Carr
- Research School of Chemistry, Australian National University, Canberra, Australia
| | - Benjamin T Porebski
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Emma K Livingstone
- Research School of Chemistry, Australian National University, Canberra, Australia
| | - Livnat Afriat-Jurnou
- Research School of Chemistry, Australian National University, Canberra, Australia
| | - Ashley M Buckle
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Martin Weik
- Institut de Biologie Structurale, University Grenoble Alpes, Commissariat à l'Energie Atomique and Centre National de la Recherche Scientifique, Grenoble, France
| | | | - Nobuhiko Tokuriki
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Canberra, Australia
| |
Collapse
|
135
|
Structure of a Highly Active Cephalopod S-crystallin Mutant: New Molecular Evidence for Evolution from an Active Enzyme into Lens-Refractive Protein. Sci Rep 2016; 6:31176. [PMID: 27499004 PMCID: PMC4976375 DOI: 10.1038/srep31176] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/13/2016] [Indexed: 11/12/2022] Open
Abstract
Crystallins are found widely in animal lenses and have important functions due to their refractive properties. In the coleoid cephalopods, a lens with a graded refractive index provides good vision and is required for survival. Cephalopod S-crystallin is thought to have evolved from glutathione S-transferase (GST) with various homologs differentially expressed in the lens. However, there is no direct structural information that helps to delineate the mechanisms by which S-crystallin could have evolved. Here we report the structural and biochemical characterization of novel S-crystallin-glutathione complex. The 2.35-Å crystal structure of a S-crystallin mutant from Octopus vulgaris reveals an active-site architecture that is different from that of GST. S-crystallin has a preference for glutathione binding, although almost lost its GST enzymatic activity. We’ve also identified four historical mutations that are able to produce a “GST-like” S-crystallin that has regained activity. This protein recapitulates the evolution of S-crystallin from GST. Protein stability studies suggest that S-crystallin is stabilized by glutathione binding to prevent its aggregation; this contrasts with GST-σ, which do not possess this protection. We suggest that a tradeoff between enzyme activity and the stability of the lens protein might have been one of the major driving force behind lens evolution.
Collapse
|
136
|
Bonett RM. Analyzing endocrine system conservation and evolution. Gen Comp Endocrinol 2016; 234:3-9. [PMID: 26972153 DOI: 10.1016/j.ygcen.2016.03.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 11/26/2022]
Abstract
Analyzing variation in rates of evolution can provide important insights into the factors that constrain trait evolution, as well as those that promote diversification. Metazoan endocrine systems exhibit apparent variation in evolutionary rates of their constituent components at multiple levels, yet relatively few studies have quantified these patterns and analyzed them in a phylogenetic context. This may be in part due to historical and current data limitations for many endocrine components and taxonomic groups. However, recent technological advancements such as high-throughput sequencing provide the opportunity to collect large-scale comparative data sets for even non-model species. Such ventures will produce a fertile data landscape for evolutionary analyses of nucleic acid and amino acid based endocrine components. Here I summarize evolutionary rate analyses that can be applied to categorical and continuous endocrine traits, and also those for nucleic acid and protein-based components. I emphasize analyses that could be used to test whether other variables (e.g., ecology, ontogenetic timing of expression, etc.) are related to patterns of rate variation and endocrine component diversification. The application of phylogenetic-based rate analyses to comparative endocrine data will greatly enhance our understanding of the factors that have shaped endocrine system evolution.
Collapse
Affiliation(s)
- Ronald M Bonett
- Department of Biological Science, University of Tulsa, Tulsa, OK 74104, USA.
| |
Collapse
|
137
|
Clarke DN, Miller PW, Lowe CJ, Weis WI, Nelson WJ. Characterization of the Cadherin-Catenin Complex of the Sea Anemone Nematostella vectensis and Implications for the Evolution of Metazoan Cell-Cell Adhesion. Mol Biol Evol 2016; 33:2016-29. [PMID: 27189570 PMCID: PMC4948710 DOI: 10.1093/molbev/msw084] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The cadherin-catenin complex (CCC) mediates cell-cell adhesion in bilaterian animals by linking extracellular cadherin-based adhesions to the actin cytoskeleton. However, it is unknown whether the basic organization of the complex is conserved across all metazoans. We tested whether protein interactions and actin-binding properties of the CCC are conserved in a nonbilaterian animal, the sea anemone Nematostella vectensis We demonstrated that N. vectensis has a complete repertoire of cadherin-catenin proteins, including two classical cadherins, one α-catenin, and one β-catenin. Using size-exclusion chromatography and multi-angle light scattering, we showed that α-catenin and β-catenin formed a heterodimer that bound N. vectensis Cadherin-1 and -2. Nematostella vectensis α-catenin bound F-actin with equivalent affinity as either a monomer or an α/β-catenin heterodimer, and its affinity for F-actin was, in part, regulated by a novel insert between the N- and C-terminal domains. Nematostella vectensis α-catenin inhibited Arp2/3 complex-mediated nucleation of actin filaments, a regulatory property previously thought to be unique to mammalian αE-catenin. Thus, despite significant differences in sequence, the key interactions of the CCC are conserved between bilaterians and cnidarians, indicating that the core function of the CCC as a link between cell adhesions and the actin cytoskeleton is ancestral in the eumetazoans.
Collapse
Affiliation(s)
| | - Phillip W Miller
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine
| | | | - William I Weis
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine Department of Structural Biology, Stanford University School of Medicine
| | - William James Nelson
- Department of Biology, Stanford University Department of Molecular and Cellular Physiology, Stanford University School of Medicine
| |
Collapse
|
138
|
Hanson-Smith V, Johnson A. PhyloBot: A Web Portal for Automated Phylogenetics, Ancestral Sequence Reconstruction, and Exploration of Mutational Trajectories. PLoS Comput Biol 2016; 12:e1004976. [PMID: 27472806 PMCID: PMC4966924 DOI: 10.1371/journal.pcbi.1004976] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 05/12/2016] [Indexed: 11/17/2022] Open
Abstract
The method of phylogenetic ancestral sequence reconstruction is a powerful approach for studying evolutionary relationships among protein sequence, structure, and function. In particular, this approach allows investigators to (1) reconstruct and “resurrect” (that is, synthesize in vivo or in vitro) extinct proteins to study how they differ from modern proteins, (2) identify key amino acid changes that, over evolutionary timescales, have altered the function of the protein, and (3) order historical events in the evolution of protein function. Widespread use of this approach has been slow among molecular biologists, in part because the methods require significant computational expertise. Here we present PhyloBot, a web-based software tool that makes ancestral sequence reconstruction easy. Designed for non-experts, it integrates all the necessary software into a single user interface. Additionally, PhyloBot provides interactive tools to explore evolutionary trajectories between ancestors, enabling the rapid generation of hypotheses that can be tested using genetic or biochemical approaches. Early versions of this software were used in previous studies to discover genetic mechanisms underlying the functions of diverse protein families, including V-ATPase ion pumps, DNA-binding transcription regulators, and serine/threonine protein kinases. PhyloBot runs in a web browser, and is available at the following URL: http://www.phylobot.com. The software is implemented in Python using the Django web framework, and runs on elastic cloud computing resources from Amazon Web Services. Users can create and submit jobs on our free server (at the URL listed above), or use our open-source code to launch their own PhyloBot server.
Collapse
Affiliation(s)
- Victor Hanson-Smith
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
| | - Alexander Johnson
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
| |
Collapse
|
139
|
Guzzetti D, Lebrun A, Subileau M, Grousseau E, Dubreucq E, Drone J. A Catalytically Competent Terpene Synthase Inferred Using Ancestral Sequence Reconstruction Strategy. ACS Catal 2016. [DOI: 10.1021/acscatal.6b01332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daniele Guzzetti
- Ingénierie
des Agropolymères et Technologies Emergentes, UMR IATE, SupAgro/INRA/CIRAD/UM, 2 Place Pierre Viala, 34060 Montpellier, France
| | - Aurélien Lebrun
- Laboratoire
de
Mesures Physiques, Place Eugène
Bataillon, 34095 Montpellier, France
| | - Maeva Subileau
- Ingénierie
des Agropolymères et Technologies Emergentes, UMR IATE, SupAgro/INRA/CIRAD/UM, 2 Place Pierre Viala, 34060 Montpellier, France
| | - Estelle Grousseau
- Ingénierie
des Agropolymères et Technologies Emergentes, UMR IATE, SupAgro/INRA/CIRAD/UM, 2 Place Pierre Viala, 34060 Montpellier, France
| | - Eric Dubreucq
- Ingénierie
des Agropolymères et Technologies Emergentes, UMR IATE, SupAgro/INRA/CIRAD/UM, 2 Place Pierre Viala, 34060 Montpellier, France
| | - Jullien Drone
- Ingénierie
des Agropolymères et Technologies Emergentes, UMR IATE, SupAgro/INRA/CIRAD/UM, 2 Place Pierre Viala, 34060 Montpellier, France
- École Nationale
Supérieure de Chimie Montpellier, 8 Rue de l′École Normale, 34296 Montpellier, France
| |
Collapse
|
140
|
Starr TN, Thornton JW. Epistasis in protein evolution. Protein Sci 2016; 25:1204-18. [PMID: 26833806 PMCID: PMC4918427 DOI: 10.1002/pro.2897] [Citation(s) in RCA: 323] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/25/2016] [Accepted: 01/27/2016] [Indexed: 01/18/2023]
Abstract
The structure, function, and evolution of proteins depend on physical and genetic interactions among amino acids. Recent studies have used new strategies to explore the prevalence, biochemical mechanisms, and evolutionary implications of these interactions-called epistasis-within proteins. Here we describe an emerging picture of pervasive epistasis in which the physical and biological effects of mutations change over the course of evolution in a lineage-specific fashion. Epistasis can restrict the trajectories available to an evolving protein or open new paths to sequences and functions that would otherwise have been inaccessible. We describe two broad classes of epistatic interactions, which arise from different physical mechanisms and have different effects on evolutionary processes. Specific epistasis-in which one mutation influences the phenotypic effect of few other mutations-is caused by direct and indirect physical interactions between mutations, which nonadditively change the protein's physical properties, such as conformation, stability, or affinity for ligands. In contrast, nonspecific epistasis describes mutations that modify the effect of many others; these typically behave additively with respect to the physical properties of a protein but exhibit epistasis because of a nonlinear relationship between the physical properties and their biological effects, such as function or fitness. Both types of interaction are rampant, but specific epistasis has stronger effects on the rate and outcomes of evolution, because it imposes stricter constraints and modulates evolutionary potential more dramatically; it therefore makes evolution more contingent on low-probability historical events and leaves stronger marks on the sequences, structures, and functions of protein families.
Collapse
Affiliation(s)
- Tyler N Starr
- Graduate Program in Biochemistry and Molecular Biophysics, University of Chicago, Chicago, Illinois, 60637
| | - Joseph W Thornton
- Departments of Ecology and Evolution and Human Genetics, University of Chicago, Chicago, Illinois, 60637
| |
Collapse
|
141
|
Sedeek KEM, Whittle E, Guthörl D, Grossniklaus U, Shanklin J, Schlüter PM. Amino Acid Change in an Orchid Desaturase Enables Mimicry of the Pollinator's Sex Pheromone. Curr Biol 2016; 26:1505-11. [PMID: 27212404 DOI: 10.1016/j.cub.2016.04.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/02/2016] [Accepted: 04/04/2016] [Indexed: 12/16/2022]
Abstract
Mimicry illustrates the power of selection to produce phenotypic convergence in biology [1]. A striking example is the imitation of female insects by plants that are pollinated by sexual deception of males of the same insect species [2-4]. This involves mimicry of visual, tactile, and chemical signals of females [2-7], especially their sex pheromones [8-11]. The Mediterranean orchid Ophrys exaltata employs chemical mimicry of cuticular hydrocarbons, particularly the 7-alkenes, in an insect sex pheromone to attract and elicit mating behavior in its pollinators, males of the cellophane bee Colletes cunicularius [11-13]. A difference in alkene double-bond positions is responsible for reproductive isolation between O. exaltata and closely related species, such as O. sphegodes [13-16]. We show that these 7-alkenes are likely determined by the action of the stearoyl-acyl-carrier-protein desaturase (SAD) homolog SAD5. After gene duplication, changes in subcellular localization relative to the ancestral housekeeping desaturase may have allowed proto-SAD5's reaction products to undergo further biosynthesis to both 7- and 9-alkenes. Such ancestral coproduction of two alkene classes may have led to pollinator-mediated deleterious pleiotropy. Despite possible evolutionary intermediates with reduced activity, amino acid changes at the bottom of the substrate-binding cavity have conferred enzyme specificity for 7-alkene biosynthesis by preventing the binding of longer-chained fatty acid (FA) precursors by the enzyme. This change in desaturase function enabled the orchid to perfect its chemical mimicry of pollinator sex pheromones by escape from deleterious pleiotropy, supporting a role of pleiotropy in determining the possible trajectories of adaptive evolution.
Collapse
Affiliation(s)
- Khalid E M Sedeek
- Department of Systematic and Evolutionary Botany and Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Edward Whittle
- Department of Biology, Brookhaven National Laboratory, 50 Bell Avenue, Upton, NY 11973, USA
| | - Daniela Guthörl
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - John Shanklin
- Department of Biology, Brookhaven National Laboratory, 50 Bell Avenue, Upton, NY 11973, USA
| | - Philipp M Schlüter
- Department of Systematic and Evolutionary Botany and Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland.
| |
Collapse
|
142
|
Both Epistasis and Diversifying Selection Drive the Structural Evolution of the Ebola Virus Glycoprotein Mucin-Like Domain. J Virol 2016; 90:5475-5484. [PMID: 27009964 DOI: 10.1128/jvi.00322-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 03/18/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Throughout the last 3 decades, Ebola virus (EBOV) outbreaks have been confined to isolated areas within Central Africa; however, the 2014 variant reached unprecedented transmission and mortality rates. While the outbreak was still under way, it was reported that the variant leading up to this outbreak evolved faster than previous EBOV variants, but evidence for diversifying selection was undetermined. Here, we test this selection hypothesis and show that while previous EBOV outbreaks were preceded by bursts of diversification, evidence for site-specific diversifying selection during the emergence of the 2014 EBOV clade is weak. However, we show strong evidence supporting an interplay between selection and correlated evolution (epistasis), particularly in the mucin-like domain (MLD) of the EBOV glycoprotein. By reconstructing ancestral structures of the MLD, we further propose a structural mechanism explaining how the substitutions that accumulated between 1918 and 1969 distorted the MLD, while more recent epistatic substitutions restored part of the structure, with the most recent substitution being adaptive. We suggest that it is this complex interplay between weak selection, epistasis, and structural constraints that has shaped the evolution of the 2014 EBOV variant. IMPORTANCE The role that selection plays in the emergence of viral epidemics remains debated, particularly in the context of the 2014 EBOV outbreak. Most critically, should such evidence exist, it is generally unclear how this relates to function and increased virulence. Here, we show that the viral lineage leading up to the 2014 outbreak underwent a complex interplay between selection and correlated evolution (epistasis) in a protein region that is critical for immune evasion. We then reconstructed the three-dimensional structure of this domain and showed that the initial mutations in this lineage deformed the structure, while subsequent mutations restored part of the structure. Along this mutational path, the first and last mutations were adaptive, while the intervening ones were epistatic. Altogether, we provide a mechanistic model that explains how selection and epistasis acted on the structural constraints that materialized during the 2014 EBOV outbreak.
Collapse
|
143
|
Affiliation(s)
- Friedrich C. Luft
- From Experimental and Clinical Research Center and Charité Medical Faculty, Berlin, Germany; and Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
144
|
Abstract
To what extent is the convergent evolution of protein function attributable to convergent or parallel changes at the amino acid level? The mutations that contribute to adaptive protein evolution may represent a biased subset of all possible beneficial mutations owing to mutation bias and/or variation in the magnitude of deleterious pleiotropy. A key finding is that the fitness effects of amino acid mutations are often conditional on genetic background. This context dependence (epistasis) can reduce the probability of convergence and parallelism because it reduces the number of possible mutations that are unconditionally acceptable in divergent genetic backgrounds. Here, I review factors that influence the probability of replicated evolution at the molecular level.
Collapse
Affiliation(s)
- Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588, USA
| |
Collapse
|
145
|
Gupta A, Adami C. Strong Selection Significantly Increases Epistatic Interactions in the Long-Term Evolution of a Protein. PLoS Genet 2016; 12:e1005960. [PMID: 27028897 PMCID: PMC4814079 DOI: 10.1371/journal.pgen.1005960] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 03/06/2016] [Indexed: 11/18/2022] Open
Abstract
Epistatic interactions between residues determine a protein’s adaptability and shape its evolutionary trajectory. When a protein experiences a changed environment, it is under strong selection to find a peak in the new fitness landscape. It has been shown that strong selection increases epistatic interactions as well as the ruggedness of the fitness landscape, but little is known about how the epistatic interactions change under selection in the long-term evolution of a protein. Here we analyze the evolution of epistasis in the protease of the human immunodeficiency virus type 1 (HIV-1) using protease sequences collected for almost a decade from both treated and untreated patients, to understand how epistasis changes and how those changes impact the long-term evolvability of a protein. We use an information-theoretic proxy for epistasis that quantifies the co-variation between sites, and show that positive information is a necessary (but not sufficient) condition that detects epistasis in most cases. We analyze the “fossils” of the evolutionary trajectories of the protein contained in the sequence data, and show that epistasis continues to enrich under strong selection, but not for proteins whose environment is unchanged. The increase in epistasis compensates for the information loss due to sequence variability brought about by treatment, and facilitates adaptation in the increasingly rugged fitness landscape of treatment. While epistasis is thought to enhance evolvability via valley-crossing early-on in adaptation, it can hinder adaptation later when the landscape has turned rugged. However, we find no evidence that the HIV-1 protease has reached its potential for evolution after 9 years of adapting to a drug environment that itself is constantly changing. We suggest that the mechanism of encoding new information into pairwise interactions is central to protein evolution not just in HIV-1 protease, but for any protein adapting to a changing environment. Evolution is often viewed as a process that occurs “mutation by mutation”, suggesting that the effect of each mutation is independent of that of others. However, in reality the effect of a mutation often depends on the context of other mutations, a dependence known as “epistasis”. Even though epistasis can constrain protein evolution, it is actually very common. Such interactions are particularly pervasive in proteins that evolve resistance to a drug via mutations that create defects, and that must be repaired with compensatory mutations. We study how epistasis between protein residues evolves over time in a new and changing environment, and compare these findings to protein evolution in a constant environment. We analyze the sequences of the human immunodeficiency virus type 1 (HIV-1) protease enzyme collected over a period of 9 years from patients treated with anti-viral drugs (as well as from patients that went untreated), and find that epistasis between residues continues to increase as more potent anti-viral drugs enter the market, while epistasis is unchanging in the proteins exposed to a constant environment. Yet, the proteins adapting to the changing landscape do not appear to be constrained by the epistatic interactions and continue to manage to evade new drugs.
Collapse
Affiliation(s)
- Aditi Gupta
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan, United States of America
| | - Christoph Adami
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan, United States of America
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| |
Collapse
|
146
|
Intramolecular allosteric communication in dopamine D2 receptor revealed by evolutionary amino acid covariation. Proc Natl Acad Sci U S A 2016; 113:3539-44. [PMID: 26979958 DOI: 10.1073/pnas.1516579113] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The structural basis of allosteric signaling in G protein-coupled receptors (GPCRs) is important in guiding design of therapeutics and understanding phenotypic consequences of genetic variation. The Evolutionary Trace (ET) algorithm previously proved effective in redesigning receptors to mimic the ligand specificities of functionally distinct homologs. We now expand ET to consider mutual information, with validation in GPCR structure and dopamine D2 receptor (D2R) function. The new algorithm, called ET-MIp, identifies evolutionarily relevant patterns of amino acid covariations. The improved predictions of structural proximity and D2R mutagenesis demonstrate that ET-MIp predicts functional interactions between residue pairs, particularly potency and efficacy of activation by dopamine. Remarkably, although most of the residue pairs chosen for mutagenesis are neither in the binding pocket nor in contact with each other, many exhibited functional interactions, implying at-a-distance coupling. The functional interaction between the coupled pairs correlated best with the evolutionary coupling potential derived from dopamine receptor sequences rather than with broader sets of GPCR sequences. These data suggest that the allosteric communication responsible for dopamine responses is resolved by ET-MIp and best discerned within a short evolutionary distance. Most double mutants restored dopamine response to wild-type levels, also suggesting that tight regulation of the response to dopamine drove the coevolution and intramolecular communications between coupled residues. Our approach provides a general tool to identify evolutionary covariation patterns in small sets of close sequence homologs and to translate them into functional linkages between residues.
Collapse
|
147
|
Kav B, Öztürk M, Kabakçιoğlu A. Function changing mutations in glucocorticoid receptor evolution correlate with their relevance to mode coupling. Proteins 2016; 84:655-65. [PMID: 26873882 DOI: 10.1002/prot.25014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 01/14/2016] [Accepted: 01/25/2016] [Indexed: 12/16/2022]
Abstract
Nonlinear effects in protein dynamics are expected to play role in function, particularly of allosteric nature, by facilitating energy transfer between vibrational modes. A recently proposed method focusing on the non-Gaussian shape of the configurational population near equilibrium projects this information onto real space in order to identify the aminoacids relevant to function. We here apply this method to three ancestral proteins in glucocorticoid receptor (GR) family and show that the mutations that restrict functional activity during GR evolution correlate significantly with locations that are highlighted by the nonlinear contribution to the near-native configurational distribution. Our findings demonstrate that the analysis of nonlinear effects in protein dynamics can be harnessed into a predictive tool for functional site determination.
Collapse
Affiliation(s)
- Batuhan Kav
- Department of Theory & Biosystems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, Potsdam, 14476, Germany.,Colleges of Sciences, Koç University, Sar Iyer, İstanbul, 34450, Turkey
| | - Murat Öztürk
- Colleges of Sciences, Koç University, Sar Iyer, İstanbul, 34450, Turkey.,School of Informatics and Computing, Bioinformatics Track, Indiana University, Bloomington, Indiana, 47405, USA
| | - Alkan Kabakçιoğlu
- Colleges of Sciences, Koç University, Sar Iyer, İstanbul, 34450, Turkey
| |
Collapse
|
148
|
Shibata S. Context-dependent mechanisms modulating aldosterone signaling in the kidney. Clin Exp Nephrol 2016; 20:663-670. [PMID: 26846783 DOI: 10.1007/s10157-016-1232-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/08/2016] [Indexed: 12/16/2022]
Abstract
The aldosterone-mineralocorticoid receptor (MR) system serves as the major regulator of fluid homeostasis, and is an important drug target for the treatment of hypertension, heart failure, and chronic kidney disease. While the ligand aldosterone plays a central role in facilitating MR activity, recent studies have revealed that MR signaling is modulated through distinct mechanisms at the levels of the receptor and the downstream targets. Notably, phosphorylation of the ligand-binding domain in MR regulates the ability of the receptor to bind to ligand in renal intercalated cells, providing an additional layer of regulation that allows the cell-selective control of MR signaling. These mechanisms are involved in the context-dependent effects of aldosterone in the distal nephron. In this article, the recent progress in the understanding of mechanisms regulating the action of aldosterone is discussed, focusing on the connecting tubules and collecting duct in the kidney.
Collapse
Affiliation(s)
- Shigeru Shibata
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan. .,Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan.
| |
Collapse
|
149
|
Clifton BE, Jackson CJ. Ancestral Protein Reconstruction Yields Insights into Adaptive Evolution of Binding Specificity in Solute-Binding Proteins. Cell Chem Biol 2016; 23:236-245. [PMID: 26853627 DOI: 10.1016/j.chembiol.2015.12.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/30/2015] [Accepted: 12/19/2015] [Indexed: 11/15/2022]
Abstract
The promiscuous functions of proteins are an important reservoir of functional novelty in protein evolution, but the molecular basis for binding promiscuity remains elusive. We used ancestral protein reconstruction to experimentally characterize evolutionary intermediates in the functional expansion of the polar amino acid-binding protein family, which has evolved to bind a variety of amino acids with high affinity and specificity. High-resolution crystal structures of an ancestral arginine-binding protein in complex with l-arginine and l-glutamine show that the promiscuous binding of l-glutamine is enabled by multi-scale conformational plasticity, water-mediated interactions, and selection of an alternative conformational substate productive for l-glutamine binding. Evolution of specialized glutamine-binding proteins from this ancestral protein was achieved by displacement of water molecules from the protein-ligand interface, reducing the entropic penalty associated with the promiscuous interaction. These results provide a structural and thermodynamic basis for the co-option of a promiscuous interaction in the evolution of binding specificity.
Collapse
Affiliation(s)
- Ben E Clifton
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
150
|
Distal substitutions drive divergent DNA specificity among paralogous transcription factors through subdivision of conformational space. Proc Natl Acad Sci U S A 2015; 113:326-31. [PMID: 26715749 DOI: 10.1073/pnas.1518960113] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Many genomes contain families of paralogs--proteins with divergent function that evolved from a common ancestral gene after a duplication event. To understand how paralogous transcription factors evolve divergent DNA specificities, we examined how the glucocorticoid receptor and its paralogs evolved to bind activating response elements [(+)GREs] and negative glucocorticoid response elements (nGREs). We show that binding to nGREs is a property of the glucocorticoid receptor (GR) DNA-binding domain (DBD) not shared by other members of the steroid receptor family. Using phylogenetic, structural, biochemical, and molecular dynamics techniques, we show that the ancestral DBD from which GR and its paralogs evolved was capable of binding both nGRE and (+)GRE sequences because of the ancestral DBD's ability to assume multiple DNA-bound conformations. Subsequent amino acid substitutions in duplicated daughter genes selectively restricted protein conformational space, causing this dual DNA-binding specificity to be selectively enhanced in the GR lineage and lost in all others. Key substitutions that determined the receptors' response element-binding specificity were far from the proteins' DNA-binding interface and interacted epistatically to change the DBD's function through DNA-induced allosteric mechanisms. These amino acid substitutions subdivided both the conformational and functional space of the ancestral DBD among the present-day receptors, allowing a paralogous family of transcription factors to control disparate transcriptional programs despite high sequence identity.
Collapse
|