101
|
Tamarozzi ER, Giuliatti S. Understanding the Role of Intrinsic Disorder of Viral Proteins in the Oncogenicity of Different Types of HPV. Int J Mol Sci 2018; 19:ijms19010198. [PMID: 29315236 PMCID: PMC5796147 DOI: 10.3390/ijms19010198] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/06/2018] [Accepted: 01/07/2018] [Indexed: 12/21/2022] Open
Abstract
Intrinsic disorder is very important in the biological function of several proteins, and is directly linked to their foldability during interaction with their targets. There is a close relationship between the intrinsically disordered proteins and the process of carcinogenesis involving viral pathogens. Among these pathogens, we have highlighted the human papillomavirus (HPV) in this study. HPV is currently among the most common sexually transmitted infections, besides being the cause of several types of cancer. HPVs are divided into two groups, called high- and low-risk, based on their oncogenic potential. The high-risk HPV E6 protein has been the target of much research, in seeking treatments against HPV, due to its direct involvement in the process of cell cycle control. To understand the role of intrinsic disorder of the viral proteins in the oncogenic potential of different HPV types, the structural characteristics of intrinsically disordered regions of high and low-risk HPV E6 proteins were analyzed. In silico analyses of primary sequences, prediction of tertiary structures, and analyses of molecular dynamics allowed the observation of the behavior of such disordered regions in these proteins, thereby proving a direct relationship of structural variation with the degree of oncogenicity of HPVs. The results obtained may contribute to the development of new therapies, targeting the E6 oncoprotein, for the treatment of HPV-associated diseases.
Collapse
Affiliation(s)
- Elvira Regina Tamarozzi
- Department of Genetics, School of Medicine of Ribeirão Preto, University of São Paulo, Sao Paulo 14049-900, Brazil.
| | - Silvana Giuliatti
- Department of Genetics, School of Medicine of Ribeirão Preto, University of São Paulo, Sao Paulo 14049-900, Brazil.
| |
Collapse
|
102
|
A novel intracellular antibody against the E6 oncoprotein impairs growth of human papillomavirus 16-positive tumor cells in mouse models. Oncotarget 2017; 7:15539-53. [PMID: 26788990 PMCID: PMC4941259 DOI: 10.18632/oncotarget.6925] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 01/04/2016] [Indexed: 02/06/2023] Open
Abstract
Single-chain variable fragments (scFvs) expressed as “intracellular antibodies” (intrabodies) can target intracellular antigens to hamper their function efficaciously and specifically. Here we use an intrabody targeting the E6 oncoprotein of Human papillomavirus 16 (HPV16) to address the issue of a non-invasive therapy for HPV cancer patients. A scFv against the HPV16 E6 was selected by Intracellular Antibody Capture Technology and expressed as I7nuc in the nucleus of HPV16-positive SiHa, HPV-negative C33A and 293T cells. Colocalization of I7nuc and recombinant E6 was observed in different cell compartments, obtaining evidence of E6 delocalization ascribable to I7nuc. In SiHa cells, I7nuc expressed by pLNCX retroviral vector was able to partially inhibit degradation of the main E6 target p53, and induced p53 accumulation in nucleus. When analyzing in vitro activity on cell proliferation and survival, I7nuc was able to decrease growth inducing late apoptosis and necrosis of SiHa cells. Finally, I7nuc antitumor activity was demonstrated in two pre-clinical models of HPV tumors. C57BL/6 mice were injected subcutaneously with HPV16-positive TC-1 or C3 tumor cells, infected with pLNCX retroviral vector expressing or non-expressing I7nuc. All the mice injected with I7nuc-expressing cells showed a clear delay in tumor onset; 60% and 40% of mice receiving TC-1 and C3 cells, respectively, remained tumor-free for 17 weeks of follow-up, whereas 100% of the controls were tumor-bearing 20 days post-inoculum. Our data support the therapeutic potential of E6-targeted I7nuc against HPV tumors.
Collapse
|
103
|
Brimer N, Drews CM, Vande Pol SB. Association of papillomavirus E6 proteins with either MAML1 or E6AP clusters E6 proteins by structure, function, and evolutionary relatedness. PLoS Pathog 2017; 13:e1006781. [PMID: 29281732 PMCID: PMC5760104 DOI: 10.1371/journal.ppat.1006781] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/09/2018] [Accepted: 11/29/2017] [Indexed: 01/11/2023] Open
Abstract
Papillomavirus E6 proteins bind to LXXLL peptide motifs displayed on targeted cellular proteins. Alpha genus HPV E6 proteins associate with the cellular ubiquitin ligase E6AP (UBE3A), by binding to an LXXLL peptide (ELTLQELLGEE) displayed by E6AP, thereby stimulating E6AP ubiquitin ligase activity. Beta, Gamma, and Delta genera E6 proteins bind a similar LXXLL peptide (WMSDLDDLLGS) on the cellular transcriptional co-activator MAML1 and thereby repress Notch signaling. We expressed 45 different animal and human E6 proteins from diverse papillomavirus genera to ascertain the overall preference of E6 proteins for E6AP or MAML1. E6 proteins from all HPV genera except Alpha preferentially interacted with MAML1 over E6AP. Among animal papillomaviruses, E6 proteins from certain ungulate (SsPV1 from pigs) and cetacean (porpoises and dolphins) hosts functionally resembled Alpha genus HPV by binding and targeting the degradation of E6AP. Beta genus HPV E6 proteins functionally clustered with Delta, Pi, Tau, Gamma, Chi, Mu, Lambda, Iota, Dyokappa, Rho, and Dyolambda E6 proteins to bind and repress MAML1. None of the tested E6 proteins physically and functionally interacted with both MAML1 and E6AP, indicating an evolutionary split. Further, interaction of an E6 protein was insufficient to activate degradation of E6AP, indicating that E6 proteins that target E6AP co-evolved to separately acquire both binding and triggering of ubiquitin ligase activation. E6 proteins with similar biological function clustered together in phylogenetic trees and shared structural features. This suggests that the divergence of E6 proteins from either MAML1 or E6AP binding preference is a major event in papillomavirus evolution.
Collapse
Affiliation(s)
- Nicole Brimer
- Department of Pathology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Camille M. Drews
- Department of Pathology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Scott B. Vande Pol
- Department of Pathology, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
104
|
Abstract
Preclinical infection model systems are extremely valuable tools to aid in our understanding of Human Papillomavirus (HPV) biology, disease progression, prevention, and treatments. In this context, rodent papillomaviruses and their respective infection models are useful tools but remain underutilized resources in the field of papillomavirus biology. Two rodent papillomaviruses, MnPV1, which infects the Mastomys species of multimammate rats, and MmuPV1, which infects laboratory mice, are currently the most studied rodent PVs. Both of these viruses cause malignancy in the skin and can provide attractive infection models to study the lesser understood cutaneous papillomaviruses that have been frequently associated with HPV-related skin cancers. Of these, MmuPV1 is the first reported rodent papillomavirus that can naturally infect the laboratory strain of mice. MmuPV1 is an attractive model virus to study papillomavirus pathogenesis because of the ubiquitous availability of lab mice and the fact that this mouse species is genetically modifiable. In this review, we have summarized the knowledge we have gained about PV biology from the study of rodent papillomaviruses and point out the remaining gaps that can provide new research opportunities.
Collapse
|
105
|
A unique surface on Pat1 C-terminal domain directly interacts with Dcp2 decapping enzyme and Xrn1 5'-3' mRNA exonuclease in yeast. Proc Natl Acad Sci U S A 2017; 114:E9493-E9501. [PMID: 29078363 DOI: 10.1073/pnas.1711680114] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The Pat1 protein is a central player of eukaryotic mRNA decay that has also been implicated in translational control. It is commonly considered a central platform responsible for the recruitment of several RNA decay factors. We demonstrate here that a yeast-specific C-terminal region from Pat1 interacts with several short motifs, named helical leucine-rich motifs (HLMs), spread in the long C-terminal region of yeast Dcp2 decapping enzyme. Structures of Pat1-HLM complexes reveal the basis for HLM recognition by Pat1. We also identify a HLM present in yeast Xrn1, the main 5'-3' exonuclease involved in mRNA decay. We show further that the ability of yeast Pat1 to bind HLMs is required for efficient growth and normal mRNA decay. Overall, our analyses indicate that yeast Pat1 uses a single binding surface to successively recruit several mRNA decay factors and show that interaction between those factors is highly polymorphic between species.
Collapse
|
106
|
Van Doorslaer K, Ruoppolo V, Schmidt A, Lescroël A, Jongsomjit D, Elrod M, Kraberger S, Stainton D, Dugger KM, Ballard G, Ainley DG, Varsani A. Unique genome organization of non-mammalian papillomaviruses provides insights into the evolution of viral early proteins. Virus Evol 2017; 3:vex027. [PMID: 29026649 PMCID: PMC5632515 DOI: 10.1093/ve/vex027] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The family Papillomaviridae contains more than 320 papillomavirus types, with most having been identified as infecting skin and mucosal epithelium in mammalian hosts. To date, only nine non-mammalian papillomaviruses have been described from birds (n = 5), a fish (n = 1), a snake (n = 1), and turtles (n = 2). The identification of papillomaviruses in sauropsids and a sparid fish suggests that early ancestors of papillomaviruses were already infecting the earliest Euteleostomi. The Euteleostomi clade includes more than 90 per cent of the living vertebrate species, and progeny virus could have been passed on to all members of this clade, inhabiting virtually every habitat on the planet. As part of this study, we isolated a novel papillomavirus from a 16-year-old female Adélie penguin (Pygoscelis adeliae) from Cape Crozier, Ross Island (Antarctica). The new papillomavirus shares ∼64 per cent genome-wide identity to a previously described Adélie penguin papillomavirus. Phylogenetic analyses show that the non-mammalian viruses (expect the python, Morelia spilota, associated papillomavirus) cluster near the base of the papillomavirus evolutionary tree. A papillomavirus isolated from an avian host (Northern fulmar; Fulmarus glacialis), like the two turtle papillomaviruses, lacks a putative E9 protein that is found in all other avian papillomaviruses. Furthermore, the Northern fulmar papillomavirus has an E7 more similar to the mammalian viruses than the other avian papillomaviruses. Typical E6 proteins of mammalian papillomaviruses have two Zinc finger motifs, whereas the sauropsid papillomaviruses only have one such motif. Furthermore, this motif is absent in the fish papillomavirus. Thus, it is highly likely that the most recent common ancestor of the mammalian and sauropsid papillomaviruses had a single motif E6. It appears that a motif duplication resulted in mammalian papillomaviruses having a double Zinc finger motif in E6. We estimated the divergence time between Northern fulmar-associated papillomavirus and the other Sauropsid papillomaviruses be to around 250 million years ago, during the Paleozoic-Mesozoic transition and our analysis dates the root of the papillomavirus tree between 400 and 600 million years ago. Our analysis shows evidence for niche adaptation and that these non-mammalian viruses have highly divergent E6 and E7 proteins, providing insights into the evolution of the early viral (onco-)proteins.
Collapse
Affiliation(s)
| | - Valeria Ruoppolo
- Laboratório de Patologia Comparada de Animais Selvagens (LAPCOM), Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | - Annie Schmidt
- Point Blue Conservation Science, Petaluma, CA 94954, USA
| | - Amelie Lescroël
- Point Blue Conservation Science, Petaluma, CA 94954, USA.,Centre d'Ecologie Fonctionnelle et Evolutive - CNRS, UMR 5175, Montpellier, France
| | | | - Megan Elrod
- Point Blue Conservation Science, Petaluma, CA 94954, USA
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Daisy Stainton
- School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Katie M Dugger
- U.S. Geological Survey, Oregon Cooperative Fish and Wildlife Research Unit, Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR 97331, USA
| | - Grant Ballard
- Point Blue Conservation Science, Petaluma, CA 94954, USA
| | | | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life sciences, Arizona State University, Tempe, AZ 85287, USA.,Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Observatory, Cape Town, 7925, South Africa
| |
Collapse
|
107
|
Mirabello L, Yeager M, Yu K, Clifford GM, Xiao Y, Zhu B, Cullen M, Boland JF, Wentzensen N, Nelson CW, Raine-Bennett T, Chen Z, Bass S, Song L, Yang Q, Steinberg M, Burdett L, Dean M, Roberson D, Mitchell J, Lorey T, Franceschi S, Castle PE, Walker J, Zuna R, Kreimer AR, Beachler DC, Hildesheim A, Gonzalez P, Porras C, Burk RD, Schiffman M. HPV16 E7 Genetic Conservation Is Critical to Carcinogenesis. Cell 2017; 170:1164-1174.e6. [PMID: 28886384 PMCID: PMC5674785 DOI: 10.1016/j.cell.2017.08.001] [Citation(s) in RCA: 200] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/05/2017] [Accepted: 08/01/2017] [Indexed: 12/29/2022]
Abstract
Although most cervical human papillomavirus type 16 (HPV16) infections become undetectable within 1-2 years, persistent HPV16 causes half of all cervical cancers. We used a novel HPV whole-genome sequencing technique to evaluate an exceptionally large collection of 5,570 HPV16-infected case-control samples to determine whether viral genetic variation influences risk of cervical precancer and cancer. We observed thousands of unique HPV16 genomes; very few women shared the identical HPV16 sequence, which should stimulate a careful re-evaluation of the clinical implications of HPV mutation rates, transmission, clearance, and persistence. In case-control analyses, HPV16 in the controls had significantly more amino acid changing variants throughout the genome. Strikingly, E7 was devoid of variants in precancers/cancers compared to higher levels in the controls; we confirmed this in cancers from around the world. Strict conservation of the 98 amino acids of E7, which disrupts Rb function, is critical for HPV16 carcinogenesis, presenting a highly specific target for etiologic and therapeutic research.
Collapse
Affiliation(s)
- Lisa Mirabello
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA.
| | - Meredith Yeager
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA; Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Kai Yu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Gary M Clifford
- Infections and Cancer Epidemiology Group, International Agency for Research on Cancer 150, Cours Albert Thomas, 69372 Lyon Cedex 08, France
| | - Yanzi Xiao
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Bin Zhu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Michael Cullen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA; Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Joseph F Boland
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA; Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Nicolas Wentzensen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Chase W Nelson
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York City, NY, USA
| | - Tina Raine-Bennett
- Women's Health Research Institute, Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Zigui Chen
- Department of Microbiology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Sara Bass
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA; Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Lei Song
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA; Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Qi Yang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA; Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Mia Steinberg
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA; Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Laurie Burdett
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA; Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Michael Dean
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - David Roberson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA; Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Jason Mitchell
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA; Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Thomas Lorey
- Regional Laboratory, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Silvia Franceschi
- Infections and Cancer Epidemiology Group, International Agency for Research on Cancer 150, Cours Albert Thomas, 69372 Lyon Cedex 08, France
| | - Philip E Castle
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Joan Walker
- University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rosemary Zuna
- University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Aimée R Kreimer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Daniel C Beachler
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA; HealthCore Inc., Safety and Epidemiology, Wilmington, DE, USA
| | - Allan Hildesheim
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Paula Gonzalez
- Agencia Costarricense de Investigaciones Biomédicas (ACIB), former Proyecto Epidemiológico Guanacaste, Fundación INCIENSA, Guanacaste, Costa Rica
| | - Carolina Porras
- Agencia Costarricense de Investigaciones Biomédicas (ACIB), former Proyecto Epidemiológico Guanacaste, Fundación INCIENSA, Guanacaste, Costa Rica
| | - Robert D Burk
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA; Departments of Pediatrics, Microbiology and Immunology, and Obstetrics & Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Mark Schiffman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
108
|
Poirson J, Biquand E, Straub ML, Cassonnet P, Nominé Y, Jones L, van der Werf S, Travé G, Zanier K, Jacob Y, Demeret C, Masson M. Mapping the interactome of HPV E6 and E7 oncoproteins with the ubiquitin-proteasome system. FEBS J 2017; 284:3171-3201. [PMID: 28786561 DOI: 10.1111/febs.14193] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/27/2017] [Accepted: 08/03/2017] [Indexed: 12/11/2022]
Abstract
Protein ubiquitination and its reverse reaction, deubiquitination, regulate protein stability, protein binding activity, and their subcellular localization. These reactions are catalyzed by the enzymes E1, E2, and E3 ubiquitin (Ub) ligases and deubiquitinases (DUBs). The Ub-proteasome system (UPS) is targeted by viruses for the sake of their replication and to escape host immune response. To identify novel partners of human papillomavirus 16 (HPV16) E6 and E7 proteins, we assembled and screened a library of 590 cDNAs related to the UPS by using the Gaussia princeps luciferase protein complementation assay. HPV16 E6 was found to bind to the homology to E6AP C terminus-type Ub ligase (E6AP), three really interesting new gene (RING)-type Ub ligases (MGRN1, LNX3, LNX4), and the DUB Ub-specific protease 15 (USP15). Except for E6AP, the binding of UPS factors did not require the LxxLL-binding pocket of HPV16 E6. LNX3 bound preferentially to all high-risk mucosal HPV E6 tested, whereas LNX4 bound specifically to HPV16 E6. HPV16 E7 was found to bind to several broad-complex tramtrack and bric-a-brac domain-containing proteins (such as TNFAIP1/KCTD13) that are potential substrate adaptors of Cullin 3-RING Ub ligases, to RING-type Ub ligases implicated in innate immunity (RNF135, TRIM32, TRAF2, TRAF5), to the substrate adaptor DCAF15 of Cullin 4-RING Ub ligase and to some DUBs (USP29, USP33). The binding to UPS factors did not require the LxCxE motif but rather the C-terminal region of HPV16 E7 protein. The identified UPS factors interacted with most of E7 proteins across different HPV types. This study establishes a strategy for the rapid identification of interactions between host or pathogen proteins and the human ubiquitination system.
Collapse
Affiliation(s)
- Juline Poirson
- Ecole Supérieure de Biotechnologie Strasbourg, UMR-7242, CNRS, Université de Strasbourg, Illkirch, France
| | - Elise Biquand
- UMR 3569, CNRS, Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, Université Paris Diderot, Paris, France
| | - Marie-Laure Straub
- Ecole Supérieure de Biotechnologie Strasbourg, UMR-7242, CNRS, Université de Strasbourg, Illkirch, France
| | - Patricia Cassonnet
- UMR 3569, CNRS, Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, Université Paris Diderot, Paris, France
| | - Yves Nominé
- UMR 7104-Inserm U964, CNRS, IGBMC-CBI, Equipe labellisée Ligue 2015, Illkirch, France
| | - Louis Jones
- Biostatistiques et biologie intégrative (C3BI), Institut Pasteur, Centre de bioinformatique, Paris, France
| | - Sylvie van der Werf
- UMR 3569, CNRS, Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, Université Paris Diderot, Paris, France
| | - Gilles Travé
- UMR 7104-Inserm U964, CNRS, IGBMC-CBI, Equipe labellisée Ligue 2015, Illkirch, France
| | - Katia Zanier
- Ecole Supérieure de Biotechnologie Strasbourg, UMR-7242, CNRS, Université de Strasbourg, Illkirch, France
| | - Yves Jacob
- UMR 3569, CNRS, Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, Université Paris Diderot, Paris, France
| | - Caroline Demeret
- UMR 3569, CNRS, Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, Université Paris Diderot, Paris, France
| | - Murielle Masson
- Ecole Supérieure de Biotechnologie Strasbourg, UMR-7242, CNRS, Université de Strasbourg, Illkirch, France
| |
Collapse
|
109
|
Hoppe-Seyler K, Bossler F, Braun JA, Herrmann AL, Hoppe-Seyler F. The HPV E6/E7 Oncogenes: Key Factors for Viral Carcinogenesis and Therapeutic Targets. Trends Microbiol 2017; 26:158-168. [PMID: 28823569 DOI: 10.1016/j.tim.2017.07.007] [Citation(s) in RCA: 276] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/12/2017] [Accepted: 07/28/2017] [Indexed: 10/19/2022]
Abstract
Human papillomavirus (HPV)-induced cancers are expected to remain a major health problem worldwide for decades. The growth of HPV-positive cancer cells depends on the sustained expression of the viral E6 and E7 oncogenes which act in concert with still poorly defined cellular alterations. E6/E7 constitute attractive therapeutic targets since E6/E7 inhibition rapidly induces senescence in HPV-positive cancer cells. This cellular response is linked to the reconstitution of the antiproliferative p53 and pRb pathways, and to prosenescent mTOR signaling. Hypoxic HPV-positive cancer cells could be a major obstacle for treatment strategies targeting E6/E7 since they downregulate E6/E7 but evade senescence through hypoxia-induced mTOR impairment. Prospective E6/E7 inhibitors may therefore benefit from a combination with treatment strategies directed against hypoxic tumor cells.
Collapse
Affiliation(s)
- Karin Hoppe-Seyler
- Molecular Therapy of Virus-Associated Cancers, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| | - Felicitas Bossler
- Molecular Therapy of Virus-Associated Cancers, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| | - Julia A Braun
- Molecular Therapy of Virus-Associated Cancers, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| | - Anja L Herrmann
- Molecular Therapy of Virus-Associated Cancers, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| | - Felix Hoppe-Seyler
- Molecular Therapy of Virus-Associated Cancers, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany.
| |
Collapse
|
110
|
Cutaneous HPV8 and MmuPV1 E6 Proteins Target the NOTCH and TGF-β Tumor Suppressors to Inhibit Differentiation and Sustain Keratinocyte Proliferation. PLoS Pathog 2017; 13:e1006171. [PMID: 28107544 PMCID: PMC5287491 DOI: 10.1371/journal.ppat.1006171] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 02/01/2017] [Accepted: 01/06/2017] [Indexed: 12/12/2022] Open
Abstract
Cutaneous beta-papillomaviruses are associated with non-melanoma skin cancers that arise in patients who suffer from a rare genetic disorder, Epidermodysplasia verruciformis (EV) or after immunosuppression following organ transplantation. Recent studies have shown that the E6 proteins of the cancer associated beta human papillomavirus (HPV) 5 and HPV8 inhibit NOTCH and TGF-β signaling. However, it is unclear whether disruption of these pathways may contribute to cutaneous HPV pathogenesis and carcinogenesis. A recently identified papillomavirus, MmuPV1, infects laboratory mouse strains and causes cutaneous skin warts that can progress to squamous cell carcinoma. To determine whether MmuPV1 may be an appropriate model to mechanistically dissect the molecular contributions of cutaneous HPV infections to skin carcinogenesis, we investigated whether MmuPV1 E6 shares biological and biochemical activities with HPV8 E6. We report that the HPV8 and MmuPV1 E6 proteins share the ability to bind to the MAML1 and SMAD2/SMAD3 transcriptional cofactors of NOTCH and TGF-beta signaling, respectively. Moreover, we demonstrate that these cutaneous papillomavirus E6 proteins inhibit these two tumor suppressor pathways and that this ability is linked to delayed differentiation and sustained proliferation of differentiating keratinocytes. Furthermore, we demonstrate that the ability of MmuPV1 E6 to bind MAML1 is necessary for papilloma formation in experimentally infected mice. Our results, therefore, suggest that experimental MmuPV1 infection in mice will be a robust and useful experimental system to model key aspects of cutaneous HPV infection, pathogenesis and carcinogenesis.
Collapse
|
111
|
Proteomic analysis of the gamma human papillomavirus type 197 E6 and E7 associated cellular proteins. Virology 2016; 500:71-81. [PMID: 27771561 DOI: 10.1016/j.virol.2016.10.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/07/2016] [Accepted: 10/12/2016] [Indexed: 12/26/2022]
Abstract
Gamma HPV197 was the most frequently identified HPV when human skin cancer specimens were analyzed by deep sequencing (Arroyo Muhr et al., Int. J. Cancer 136: 2546-55, 2015). To gain insight into the biological activities of HPV197, we investigated the cellular interactomes of HPV197 E6 and E7. HPV197 E6 protein interacts with a broad spectrum of cellular LXXLL domain proteins, including UBE3A and MAML1. HPV197 E6 also binds and inhibits the TP53 tumor suppressor and interacts with the CCR4-NOT ubiquitin ligase and deadenylation complex. Despite lacking a canonical retinoblastoma (RB1) tumor suppressor binding site, HPV197 E7 binds RB1 and activates E2F transcription. Hence, HPV197 E6 and E7 proteins interact with a similar set of cellular proteins as E6 and E7 proteins encoded by HPVs that have been linked to human carcinogenesis and/or have transforming activities in vitro.
Collapse
|
112
|
Tomaić V. Functional Roles of E6 and E7 Oncoproteins in HPV-Induced Malignancies at Diverse Anatomical Sites. Cancers (Basel) 2016; 8:cancers8100095. [PMID: 27775564 PMCID: PMC5082385 DOI: 10.3390/cancers8100095] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/15/2016] [Accepted: 10/08/2016] [Indexed: 01/13/2023] Open
Abstract
Approximately 200 human papillomaviruses (HPVs) infect human epithelial cells, of which the alpha and beta types have been the most extensively studied. Alpha HPV types mainly infect mucosal epithelia and a small group of these causes over 600,000 cancers per year worldwide at various anatomical sites, especially anogenital and head-and-neck cancers. Of these the most important is cervical cancer, which is the leading cause of cancer-related death in women in many parts of the world. Beta HPV types infect cutaneous epithelia and may contribute towards the initiation of non-melanoma skin cancers. HPVs encode two oncoproteins, E6 and E7, which are directly responsible for the development of HPV-induced carcinogenesis. They do this cooperatively by targeting diverse cellular pathways involved in the regulation of cell cycle control, of apoptosis and of cell polarity control networks. In this review, the biological consequences of papillomavirus targeting of various cellular substrates at diverse anatomical sites in the development of HPV-induced malignancies are highlighted.
Collapse
Affiliation(s)
- Vjekoslav Tomaić
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34149 Trieste, Italy.
- Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia.
| |
Collapse
|
113
|
Molecular archeological evidence in support of the repeated loss of a papillomavirus gene. Sci Rep 2016; 6:33028. [PMID: 27604338 PMCID: PMC5015084 DOI: 10.1038/srep33028] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 08/16/2016] [Indexed: 11/08/2022] Open
Abstract
It is becoming clear that, in addition to gene gain, the loss of genes may be an important evolutionary mechanism for many organisms. However, gene loss is often associated with an increased mutation rate, thus quickly erasing evidence from the genome. The analysis of evolutionarily related sequences can provide empirical evidence for gene loss events. This paper analyzes the sequences of over 300 genetically distinct papillomaviruses and provides evidence for a role of gene loss during the evolution of certain papillomavirus genomes. Phylogenetic analysis suggests that the viral E6 gene was lost at least twice. Despite belonging to distant papillomaviral genera, these viruses lacking a canonical E6 protein may potentially encode a highly hydrophobic protein from an overlapping open reading frame, which we designate E10. Evolutionary pressure working on this alternative frame, may explain why, despite having lost the E6 open reading frame between 20 and 60 million years ago, evidence of an E6-like protein is conserved.
Collapse
|
114
|
Padash Barmchi M, Gilbert M, Thomas M, Banks L, Zhang B, Auld VJ. A Drosophila Model of HPV E6-Induced Malignancy Reveals Essential Roles for Magi and the Insulin Receptor. PLoS Pathog 2016; 12:e1005789. [PMID: 27537218 PMCID: PMC4990329 DOI: 10.1371/journal.ppat.1005789] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 07/06/2016] [Indexed: 02/06/2023] Open
Abstract
Cervical cancer is one of the leading causes of cancer death in women worldwide. The causative agents of cervical cancers, high-risk human papillomaviruses (HPVs), cause cancer through the action of two oncoproteins, E6 and E7. The E6 oncoprotein cooperates with an E3 ubiquitin ligase (UBE3A) to target the p53 tumour suppressor and important polarity and junctional PDZ proteins for proteasomal degradation, activities that are believed to contribute towards malignancy. However, the causative link between degradation of PDZ proteins and E6-mediated malignancy is largely unknown. We have developed an in vivo model of HPV E6-mediated cellular transformation using the genetic model organism, Drosophila melanogaster. Co-expression of E6 and human UBE3A in wing and eye epithelia results in severe morphological abnormalities. Furthermore, E6, via its PDZ-binding motif and in cooperation with UBE3A, targets a suite of PDZ proteins that are conserved in human and Drosophila, including Magi, Dlg and Scribble. Similar to human epithelia, Drosophila Magi is a major degradation target. Magi overexpression rescues the cellular abnormalities caused by E6+UBE3A coexpression and this activity of Magi is PDZ domain-dependent. Drosophila p53 was not targeted by E6+UBE3A, and E6+UBE3A activity alone is not sufficient to induce tumorigenesis, which only occurs when E6+UBE3A are expressed in conjunction with activated/oncogenic forms of Ras or Notch. Finally, through a genetic screen we have identified the insulin receptor signaling pathway as being required for E6+UBE3A induced hyperplasia. Our results suggest a highly conserved mechanism of HPV E6 mediated cellular transformation, and establish a powerful genetic model to identify and understand the cellular mechanisms that underlie HPV E6-induced malignancy. Human papillomaviruses (HPV) are the causative agents of cervical cancer, one of the leading causes of cancer death in women worldwide. The E6 oncoprotein encoded by HPV has been implicated in the progression of primary tumors to metastatic disease and we have developed a new model in the fruit fly (Drosophila melanogaster) to study the cellular effects of E6. The E6 protein recruits an E3 ubiquitin ligase (UBE3A) to induce the degradation of a number of cellular proteins, including members of the MAGUK family of scaffolding proteins that control the structure and polarity of epithelial cells: Dlg, Scribble and Magi. Expression of E6 and human UBE3A in the wing and eye of Drosophila disrupted these tissues. Similar to human cells we found that Drosophila Magi was a major E6 degradation target and that overexpression of Magi rescued the tissue disruption. However, Drosophila p53 was not degraded by E6/UBE3A, making our fly model potentially useful for studying the p53-independent activities of the E6+UBE3A complex. When we paired E6 expression with oncogenic proteins, including activated Ras, we observed that epithelia were transformed into mesechymal-like cells that left the epithelium and spread through the body. As a test of the potential of our system, we carried out a pilot genetic screen and identified the insulin receptor as a strong modulator of the E6-mediated disruption of Drosophila tissues. Therefore, we have developed a new system and approach to help us better understand the mechanisms that underlie how HPV infection leads to cell transformation and cancer.
Collapse
Affiliation(s)
- Mojgan Padash Barmchi
- Department of Zoology, University of British Columbia, Vancouver, Canada
- Department of Biology, University of Oklahoma, Norman, Oklahoma, United States of America
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
- * E-mail: (MPB); (BZ); (VJA)
| | - Mary Gilbert
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Miranda Thomas
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Lawrence Banks
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Bing Zhang
- Department of Biology, University of Oklahoma, Norman, Oklahoma, United States of America
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
- * E-mail: (MPB); (BZ); (VJA)
| | - Vanessa J. Auld
- Department of Zoology, University of British Columbia, Vancouver, Canada
- * E-mail: (MPB); (BZ); (VJA)
| |
Collapse
|
115
|
Peptide Derivatives of 1,2-Dihydro-3-Methyl-2-Oxoquinoxaline-6-Carboxylic Acid: Synthesis and Evaluation of Antimicrobial, Antifungal and Antiviral Potential. Pharm Chem J 2016. [DOI: 10.1007/s11094-016-1447-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
116
|
Illiano E, Demurtas OC, Massa S, Di Bonito P, Consalvi V, Chiaraluce R, Zanotto C, De Giuli Morghen C, Radaelli A, Venuti A, Franconi R. Production of functional, stable, unmutated recombinant human papillomavirus E6 oncoprotein: implications for HPV-tumor diagnosis and therapy. J Transl Med 2016; 14:224. [PMID: 27465494 PMCID: PMC4963926 DOI: 10.1186/s12967-016-0978-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/13/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND High-risk human papillomaviruses (HR-HPVs) types 16 and 18 are the main etiological agents of cervical cancer, with more than 550,000 new cases each year worldwide. HPVs are also associated with other ano-genital and head-and-neck tumors. The HR-HPV E6 and E7 oncoproteins are responsible for onset and maintenance of the cell transformation state, and they represent appropriate targets for development of diagnostic and therapeutic tools. METHODS The unmutated E6 gene from HPV16 and HPV18 and from low-risk HPV11 was cloned in a prokaryotic expression vector for expression of the Histidine-tagged E6 protein (His6-E6), according to a novel procedure. The structural properties were determined using circular dichroism and fluorescence spectroscopy. His6-E6 oncoprotein immunogenicity was assessed in a mouse model, and its functionality was determined using in vitro GST pull-down and protein degradation assays. RESULTS The His6-tagged E6 proteins from HPV16, HPV18, and HPV11 E6 genes, without any further modification in the amino-acid sequence, were produced in bacteria as soluble and stable molecules. Structural analyses of HPV16 His6-E6 suggests that it maintains correct folding and conformational properties. C57BL/6 mice immunized with HPV16 His6-E6 developed significant humoral immune responses. The E6 proteins from HPV16, HPV18, and HPV11 were purified according to a new procedure, and investigated for protein-protein interactions. HR-HPV His6-E6 bound p53, the PDZ1 motif from MAGI-1 proteins, the human discs large tumor suppressor, and the human ubiquitin ligase E6-associated protein, thus suggesting that it is biologically active. The purified HR-HPV E6 proteins also targeted the MAGI-3 and p53 proteins for degradation. CONCLUSIONS This new procedure generates a stable, unmutated HPV16 E6 protein, which maintains the E6 properties in in vitro binding assays. This will be useful for basic studies, and for development of diagnostic kits and immunotherapies in preclinical mouse models of HPV-related tumorigenesis.
Collapse
Affiliation(s)
- Elena Illiano
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy.,Laboratory of Biomedical Technologies (SSPT-TECS-TEB), Department for Sustainability, Division of Health Protection Technologies, Italian National Agency for New Technologies, Energy and the Environment (ENEA), 'Casaccia' Research Centre, Via Anguillarese 301, 00123, Rome, Italy
| | - Olivia Costantina Demurtas
- Laboratory of Biotechnology (SSPT-BIOAG-BIOTEC), Department for Sustainability, Division Biotechnology and Agroindustry, Italian National Agency for New Technologies, Energy and the Environment (ENEA), 'Casaccia' Research Centre, Via Anguillarese 301, 00123 Rome, Italy
| | - Silvia Massa
- Laboratory of Biotechnology (SSPT-BIOAG-BIOTEC), Department for Sustainability, Division Biotechnology and Agroindustry, Italian National Agency for New Technologies, Energy and the Environment (ENEA), 'Casaccia' Research Centre, Via Anguillarese 301, 00123 Rome, Italy
| | - Paola Di Bonito
- Department of Infectious Diseases, Istituto Superiore Sanità, Viale Regina Elena 299, 00185, Rome, Italy
| | - Valerio Consalvi
- 'A. Rossi Fanelli' Department of Biochemical Sciences, University of Rome 'La Sapienza', P.le Aldo Moro 5, 00185, Rome, Italy
| | - Roberta Chiaraluce
- 'A. Rossi Fanelli' Department of Biochemical Sciences, University of Rome 'La Sapienza', P.le Aldo Moro 5, 00185, Rome, Italy
| | - Carlo Zanotto
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Via Vanvitelli 32, 20129, Milan, Italy
| | - Carlo De Giuli Morghen
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Via Vanvitelli 32, 20129, Milan, Italy.,Catholic University 'Our Lady of Good Counsel', Tirana, Albania
| | - Antonia Radaelli
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy.,Cellular and Molecular Pharmacology Section, CNR Institute of Neurosciences, University of Milan, 20129, Milan, Italy
| | - Aldo Venuti
- HPV-UNIT, Ridait Department, Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy.
| | - Rosella Franconi
- Laboratory of Biomedical Technologies (SSPT-TECS-TEB), Department for Sustainability, Division of Health Protection Technologies, Italian National Agency for New Technologies, Energy and the Environment (ENEA), 'Casaccia' Research Centre, Via Anguillarese 301, 00123, Rome, Italy.
| |
Collapse
|
117
|
Affiliation(s)
- Gilles Travé
- a Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg , Illkirch , France
| | - Katia Zanier
- b Biotechnologie et Signalisation Cellulaire (UMR 7242), Ecole Superieure de Biotechnologie de Strasbourg , Illkirch , France
| |
Collapse
|
118
|
Viarisio D, Müller-Decker K, Zanna P, Kloz U, Aengeneyndt B, Accardi R, Flechtenmacher C, Gissmann L, Tommasino M. Novel ß-HPV49 Transgenic Mouse Model of Upper Digestive Tract Cancer. Cancer Res 2016; 76:4216-25. [DOI: 10.1158/0008-5472.can-16-0370] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/04/2016] [Indexed: 11/16/2022]
|
119
|
Mir RA, Lovelace J, Schafer NP, Simone PD, Kellezi A, Kolar C, Spagnol G, Sorgen PL, Band H, Band V, Borgstahl GEO. Biophysical characterization and modeling of human Ecdysoneless (ECD) protein supports a scaffolding function. AIMS BIOPHYSICS 2016; 3:195-208. [PMID: 28492064 PMCID: PMC5421643 DOI: 10.3934/biophy.2016.1.195] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The human homolog of Drosophila ecdysoneless protein (ECD) is a p53 binding protein that stabilizes and enhances p53 functions. Homozygous deletion of mouse Ecd is early embryonic lethal and Ecd deletion delays G1-S cell cycle progression. Importantly, ECD directly interacts with the Rb tumor suppressor and competes with the E2F transcription factor for binding to Rb. Further studies demonstrated ECD is overexpressed in breast and pancreatic cancers and its overexpression correlates with poor patient survival. ECD overexpression together with Ras induces cellular transformation through upregulation of autophagy. Recently we demonstrated that CK2 mediated phosphorylation of ECD and interaction with R2TP complex are important for its cell cycle regulatory function. Considering that ECD is a component of multiprotein complexes and its crystal structure is unknown, we characterized ECD structure by circular dichroism measurements and sequence analysis software. These analyses suggest that the majority of ECD is composed of α-helices. Furthermore, small angle X-ray scattering (SAXS) analysis showed that deletion fragments, ECD(1-432) and ECD(1-534), are both well-folded and reveals that the first 400 residues are globular and the next 100 residues are in an extended cylindrical structure. Taking all these results together, we speculate that ECD acts like a structural hub or scaffolding protein in its association with its protein partners. In the future, the hypothetical model presented here for ECD will need to be tested experimentally.
Collapse
Affiliation(s)
- Riyaz A Mir
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jeff Lovelace
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Nicholas P Schafer
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Peter D Simone
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Admir Kellezi
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Carol Kolar
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Gaelle Spagnol
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Paul L Sorgen
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Hamid Band
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Vimla Band
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Gloria E O Borgstahl
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
120
|
Rietz A, Petrov DP, Bartolowits M, DeSmet M, Davisson VJ, Androphy EJ. Molecular Probing of the HPV-16 E6 Protein Alpha Helix Binding Groove with Small Molecule Inhibitors. PLoS One 2016; 11:e0149845. [PMID: 26915086 PMCID: PMC4767726 DOI: 10.1371/journal.pone.0149845] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 02/05/2016] [Indexed: 12/30/2022] Open
Abstract
The human papillomavirus (HPV) HPV E6 protein has emerged as a central oncoprotein in HPV-associated cancers in which sustained expression is required for tumor progression. A majority of the E6 protein interactions within the human proteome use an alpha-helix groove interface for binding. The UBE3A/E6AP HECT domain ubiquitin ligase binds E6 at this helix-groove interface. This enables formation of a trimeric complex with p53, resulting in destruction of this tumor suppressor. While recent x-ray crystal structures are useful, examples of small molecule probes that can modulate protein interactions at this interface are limited. To develop insights useful for potential structure-based design of ligands for HPV E6, a series of 2,6-disubstituted benzopyranones were prepared and tested as competitive antagonists of E6-E6AP helix-groove interactions. These small molecule probes were used in both binding and functional assays to evaluate recognition features of the E6 protein. Evidence for an ionic functional group interaction within the helix groove was implicated by the structure-activity among the highest affinity ligands. The molecular topographies of these protein-ligand interactions were evaluated by comparing the binding and activities of single amino acid E6 mutants with the results of molecular dynamic simulations. A group of arginine residues that form a rim-cap over the E6 helix groove offer compensatory roles in binding and recognition of the small molecule probes. The flexibility and impact on the overall helix-groove shape dictated by these residues offer new insights for structure-based targeting of HPV E6.
Collapse
Affiliation(s)
- Anne Rietz
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Dino P. Petrov
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, United States of America
| | - Matthew Bartolowits
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, United States of America
| | - Marsha DeSmet
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - V. Jo Davisson
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, United States of America
| | - Elliot J. Androphy
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
121
|
Wang J, Dupuis C, Tyring SK, Underbrink MP. Sterile α Motif Domain Containing 9 Is a Novel Cellular Interacting Partner to Low-Risk Type Human Papillomavirus E6 Proteins. PLoS One 2016; 11:e0149859. [PMID: 26901061 PMCID: PMC4764768 DOI: 10.1371/journal.pone.0149859] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 02/05/2016] [Indexed: 11/18/2022] Open
Abstract
Low-risk type human papillomavirus (HPV) 6 and 11 infection causes recurrent respiratory papillomatosis (RRP) and genital warts. RRP is the most common benign tumor of the larynx in children with frequent relapses. Repeated surgeries are often needed to improve vocal function and prevent life-threatening respiratory obstruction. Currently, there are no effective treatments available to completely eliminate these diseases, largely due to limited knowledge regarding their viral molecular pathogenesis. HPV E6 proteins contribute to cell immortalization by interacting with a variety of cellular proteins, which have been well studied for the high-risk type HPVs related to cancer progression. However, the functions of low-risk HPV E6 proteins are largely unknown. In this study, we report GST-pulldown coupled mass spectrometry analysis with low-risk HPV E6 proteins that identified sterile alpha motif domain containing 9 (SAMD9) as a novel interacting partner. We then confirmed the interaction between HPV-E6 and SAMD9 using co-immunoprecipitation, proximity ligation assay, and confocal immunofluorescence staining. The SAMD9 gene is down-regulated in a variety of neoplasms and deleteriously mutated in normophosphatemic familial tumoral calcinosis. Interestingly, SAMD9 also has antiviral functions against poxvirus. Our study adds to the limited knowledge of the molecular properties of low-risk HPVs and describes new potential functions for the low-risk HPV E6 protein.
Collapse
Affiliation(s)
- Jia Wang
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Crystal Dupuis
- Department of Otolaryngology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Stephen K. Tyring
- Department of Dermatology, University of Texas Health Science Center, Houston, Texas, United States of America
| | - Michael P. Underbrink
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Otolaryngology, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
122
|
Martinez-Zapien D, Ruiz FX, Poirson J, Mitschler A, Ramirez J, Forster A, Cousido-Siah A, Masson M, Vande Pol S, Podjarny A, Travé G, Zanier K. Structure of the E6/E6AP/p53 complex required for HPV-mediated degradation of p53. Nature 2016; 529:541-5. [PMID: 26789255 PMCID: PMC4853763 DOI: 10.1038/nature16481] [Citation(s) in RCA: 324] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/23/2015] [Indexed: 02/06/2023]
Abstract
The p53 pro-apoptotic tumor suppressor is mutated or functionally altered in most cancers. In epithelial tumors induced by “high-risk” mucosal Human Papillomaviruses (hrm-HPVs), including human cervical carcinoma and a growing number of head-and-neck cancers 1, p53 is degraded by the viral oncoprotein E6 2. In this process, E6 binds to a short LxxLL consensus sequence within the cellular ubiquitin ligase E6AP 3. Subsequently, the E6/E6AP heterodimer recruits and degrades p53 4. Neither E6 nor E6AP are separately able to recruit p53 3,5, and the precise mode of assembly of E6, E6AP and p53 is unknown. Here, we solved the crystal structure of a ternary complex comprising full-length HPV16 E6, the LxxLL motif of E6AP and the core domain of p53. The LxxLL motif of E6AP renders the conformation of E6 competent for interaction with p53 by structuring a p53-binding cleft on E6. Mutagenesis of critical positions at the E6-p53 interface disrupts p53 degradation. The E6-binding site of p53 is distal from previously described DNA- and protein-binding surfaces of the core domain. This suggests that, in principle, E6 may avoid competition with cellular factors by targeting both free and bound p53 molecules. The E6/E6AP/p53 complex represents a prototype of viral hijacking of both the ubiquitin-mediated protein degradation pathway and the p53 tumor suppressor pathway. The present structure provides a framework for the design of inhibitory therapeutic strategies against HPV-mediated oncogenesis.
Collapse
Affiliation(s)
- Denise Martinez-Zapien
- Equipe labellisée Ligue, Biotechnologie et signalisation cellulaire UMR 7242, Ecole Superieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, BP 10413, F-67412 Illkirch, France
| | - Francesc Xavier Ruiz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)/INSERM U964/CNRS UMR 7104/Université de Strasbourg, 1 rue Laurent Fries, BP 10142, F-67404 Illkirch, France
| | - Juline Poirson
- Equipe labellisée Ligue, Biotechnologie et signalisation cellulaire UMR 7242, Ecole Superieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, BP 10413, F-67412 Illkirch, France
| | - André Mitschler
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)/INSERM U964/CNRS UMR 7104/Université de Strasbourg, 1 rue Laurent Fries, BP 10142, F-67404 Illkirch, France
| | - Juan Ramirez
- Equipe labellisée Ligue, Biotechnologie et signalisation cellulaire UMR 7242, Ecole Superieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, BP 10413, F-67412 Illkirch, France
| | - Anne Forster
- Equipe labellisée Ligue, Biotechnologie et signalisation cellulaire UMR 7242, Ecole Superieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, BP 10413, F-67412 Illkirch, France
| | - Alexandra Cousido-Siah
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)/INSERM U964/CNRS UMR 7104/Université de Strasbourg, 1 rue Laurent Fries, BP 10142, F-67404 Illkirch, France
| | - Murielle Masson
- Equipe labellisée Ligue, Biotechnologie et signalisation cellulaire UMR 7242, Ecole Superieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, BP 10413, F-67412 Illkirch, France
| | - Scott Vande Pol
- Department of Pathology, University of Virginia, PO Box 800904, Charlottesville, Virginia 22908-0904, USA
| | - Alberto Podjarny
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)/INSERM U964/CNRS UMR 7104/Université de Strasbourg, 1 rue Laurent Fries, BP 10142, F-67404 Illkirch, France
| | - Gilles Travé
- Equipe labellisée Ligue, Biotechnologie et signalisation cellulaire UMR 7242, Ecole Superieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, BP 10413, F-67412 Illkirch, France
| | - Katia Zanier
- Equipe labellisée Ligue, Biotechnologie et signalisation cellulaire UMR 7242, Ecole Superieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, BP 10413, F-67412 Illkirch, France
| |
Collapse
|
123
|
Waugh DS. Crystal structures of MBP fusion proteins. Protein Sci 2016; 25:559-71. [PMID: 26682969 DOI: 10.1002/pro.2863] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 12/16/2015] [Indexed: 02/06/2023]
Abstract
Although chaperone-assisted protein crystallization remains a comparatively rare undertaking, the number of crystal structures of polypeptides fused to maltose-binding protein (MBP) that have been deposited in the Protein Data Bank (PDB) has grown dramatically during the past decade. Altogether, 102 fusion protein structures were detected by Basic Local Alignment Search Tool (BLAST) analysis. Collectively, these structures comprise a range of sizes, space groups, and resolutions that are typical of the PDB as a whole. While most of these MBP fusion proteins were equipped with short inter-domain linkers to increase their rigidity, fusion proteins with long linkers have also been crystallized. In some cases, surface entropy reduction mutations in MBP appear to have facilitated the formation of crystals. A comparison of the structures of fused and unfused proteins, where both are available, reveals that MBP-mediated structural distortions are very rare.
Collapse
Affiliation(s)
- David S Waugh
- Protein Engineering Section, Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Frederick, Maryland, 21702-1201
| |
Collapse
|
124
|
Mutagenic Potential ofBos taurus Papillomavirus Type 1 E6 Recombinant Protein: First Description. BIOMED RESEARCH INTERNATIONAL 2015; 2015:806361. [PMID: 26783529 PMCID: PMC4689895 DOI: 10.1155/2015/806361] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 10/07/2015] [Accepted: 10/15/2015] [Indexed: 01/16/2023]
Abstract
Bovine papillomavirus (BPV) is considered a useful model to study HPV oncogenic process. BPV interacts with the host chromatin, resulting in DNA damage, which is attributed to E5, E6, and E7 viral oncoproteins activity. However, the oncogenic mechanisms of BPV E6 oncoprotein per se remain unknown. This study aimed to evaluate the mutagenic potential of Bos taurus papillomavirus type 1 (BPV-1) E6 recombinant oncoprotein by the cytokinesis-block micronucleus assay (CBMNA) and comet assay (CA). Peripheral blood samples of five calves were collected. Samples were subjected to molecular diagnosis, which did not reveal presence of BPV sequences. Samples were treated with 1 μg/mL of BPV-1 E6 oncoprotein and 50 μg/mL of cyclophosphamide (positive control). Negative controls were not submitted to any treatment. The samples were submitted to the CBMNA and CA. The results showed that BPV E6 oncoprotein induces clastogenesis per se, which is indicative of genomic instability. These results allowed better understanding the mechanism of cancer promotion associated with the BPV E6 oncoprotein and revealed that this oncoprotein can induce carcinogenesis per se. E6 recombinant oncoprotein has been suggested as a possible vaccine candidate. Results pointed out that BPV E6 recombinant oncoprotein modifications are required to use it as vaccine.
Collapse
|
125
|
Papillomavirus E6 Oncoproteins Take Common Structural Approaches to Solve Different Biological Problems. PLoS Pathog 2015; 11:e1005138. [PMID: 26470018 PMCID: PMC4607424 DOI: 10.1371/journal.ppat.1005138] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
126
|
Shah M, Anwar MA, Park S, Jafri SS, Choi S. In silico mechanistic analysis of IRF3 inactivation and high-risk HPV E6 species-dependent drug response. Sci Rep 2015; 5:13446. [PMID: 26289783 PMCID: PMC4542336 DOI: 10.1038/srep13446] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 08/03/2015] [Indexed: 02/04/2023] Open
Abstract
The high-risk human papillomavirus E6 (hrHPV E6) protein has been widely studied due to its implication in cervical cancer. In response to viral threat, activated kinases phosphorylate the IRF3 autoinhibitory domain, inducing type1 interferon production. HPV circumvents the antiviral response through the possible E6 interaction with IRF3 and abrogates p53's apoptotic activity by recruiting E6-associated protein. However, the molecular mechanism of IRF3 inactivation by hrHPV E6 has not yet been delineated. Therefore, we explored this mechanism through in silico examination of protein-protein and protein-ligand docking, binding energy differences, and computational alanine mutagenesis. Our results suggested that the LxxLL motifs of IRF3 binds within the hydrophobic pocket of E6, precluding Ser-patch phosphorylation, necessary for IRF3 activation and interferon induction. This model was further supported by molecular dynamics simulation. Furthermore, protein-ligand docking and drug resistance modeling revealed that the polar patches in the pocket of E6, which are crucial for complex stability and ligand binding, are inconsistent among hrHPV species. Such variabilities pose a risk of treatment failure owing to point mutations that might render drugs ineffective, and allude to multi-drug therapy. Overall, this study reveals a novel perspective of innate immune suppression in HPV infections and suggests a plausible therapeutic intervention.
Collapse
Affiliation(s)
- Masaud Shah
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea
| | - Muhammad Ayaz Anwar
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea
| | - Seolhee Park
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea
| | - Syyada Samra Jafri
- The Center of Excellence in Molecular Biology, University of the Punjab, Lahore, 54890, Pakistan
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea
| |
Collapse
|
127
|
Abstract
Human papillomavirus (HPV), a life-threatening infection, is the leading cause of cancer mortality among women worldwide and needs for designing anticancerous drugs. In the present study, we explored specific novel inhibitors against E6 oncoprotein of high-risk HPV 16, known to inactivate tumor suppressor p53 protein. A homology model of HPV 16 E6 was built and validated using bioinformatics approach. A total of 5000 drug-like compounds were downloaded from ZINC database based on the properties similar to the known inhibitor Jaceosidin (5,7-dihydroxy-2-(4-hydroxy-3-methoxyphenyl)-6-methoxy-4H-chromen-4-one). Virtual-ligand-screening approaches were applied to screen appropriate drug-like compounds using molecular docking program AutoDock Vina in PyRx 0.8, and five best novel drug-like compounds were identified as potential competitive inhibitors against HPV 16 E6 compared to Jaceosidin. Two among these five identified most potential inhibitors, N-[(5-methyl-1H-benzimidazol-2-yl)methyl]-4-oxo-3,4-dihydrophthalazine-1-carboxamide and 6-[3-(3-fluoro-4-methyl-phenyl)-1,2,4-oxadiazol-5-yl]-1,4-dihydroquinoxaline-2,3-dione, were found to interact with E6 with binding energy of [Formula: see text] and [Formula: see text] kcal/mol, respectively, and form H-bonds with p53 binding site of E6 protein residues 113-122 (CQKPLCPEEK). These two inhibitors may help restoration of p53 functioning. The bioinformatics approach extends a promising platform for developing anticancerous competitive inhibitors targeting high-risk HPV 16.
Collapse
|
128
|
Stutz C, Reinz E, Honegger A, Bulkescher J, Schweizer J, Zanier K, Travé G, Lohrey C, Hoppe-Seyler K, Hoppe-Seyler F. Intracellular Analysis of the Interaction between the Human Papillomavirus Type 16 E6 Oncoprotein and Inhibitory Peptides. PLoS One 2015; 10:e0132339. [PMID: 26151636 PMCID: PMC4495056 DOI: 10.1371/journal.pone.0132339] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 06/12/2015] [Indexed: 12/13/2022] Open
Abstract
Oncogenic types of human papillomaviruses (HPVs) cause cervical cancer and other malignancies in humans. The HPV E6 oncoprotein is considered to be an attractive therapeutic target since its inhibition can lead to the apoptotic cell death of HPV-positive cancer cells. The HPV type 16 (HPV16) E6-binding peptide pep11, and variants thereof, induce cell death specifically in HPV16-positive cancer cells. Although they do not encompass the LxxLL binding motif found in cellular HPV16 E6 interaction partners, such as E6AP, the pep11 variants strongly bind to HPV16 E6 by contacting the recently identified E6AP binding pocket. Thus, these peptides can serve as prototype E6-inhibitory molecules which target the E6AP pocket. We here analyzed their intracellular interaction with HPV16 E6. By comprehensive intracellular binding studies and GST pull-down assays, we show that E6-binding competent pep11 variants induce the formation of a trimeric complex, consisting of pep11, HPV16 E6 and p53. These findings indicate that peptides, which do not contain the LxxLL motif, can reshape E6 to enable its interaction with p53. The formation of the trimeric HPV16 E6 / peptide / p53 complex was associated with an increase of endogenous HPV16 E6 protein amounts. Yet, total cellular p53 amounts were also increased, indicating that the E6 / E6AP-mediated degradation of p53 is blocked. These findings suggest that inhibition of oncogenic activities by targeting the E6AP pocket on HPV16 E6 could be a strategy for therapeutic intervention.
Collapse
Affiliation(s)
- Christina Stutz
- Molecular Therapy of Virus-Associated Cancers (F065), Program Infection and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Eileen Reinz
- Molecular Therapy of Virus-Associated Cancers (F065), Program Infection and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Anja Honegger
- Molecular Therapy of Virus-Associated Cancers (F065), Program Infection and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Julia Bulkescher
- Molecular Therapy of Virus-Associated Cancers (F065), Program Infection and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | | | - Katia Zanier
- Institut de Recherche de l’École de Biotechnologie de Strasbourg (IREBS), 67412 Illkirch, France
| | - Gilles Travé
- Institut de Recherche de l’École de Biotechnologie de Strasbourg (IREBS), 67412 Illkirch, France
| | - Claudia Lohrey
- Molecular Therapy of Virus-Associated Cancers (F065), Program Infection and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Karin Hoppe-Seyler
- Molecular Therapy of Virus-Associated Cancers (F065), Program Infection and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Felix Hoppe-Seyler
- Molecular Therapy of Virus-Associated Cancers (F065), Program Infection and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- * E-mail:
| |
Collapse
|
129
|
Ganti K, Broniarczyk J, Manoubi W, Massimi P, Mittal S, Pim D, Szalmas A, Thatte J, Thomas M, Tomaić V, Banks L. The Human Papillomavirus E6 PDZ Binding Motif: From Life Cycle to Malignancy. Viruses 2015; 7:3530-51. [PMID: 26147797 PMCID: PMC4517114 DOI: 10.3390/v7072785] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/24/2015] [Accepted: 06/25/2015] [Indexed: 01/01/2023] Open
Abstract
Cancer-causing HPV E6 oncoproteins are characterized by the presence of a PDZ binding motif (PBM) at their extreme carboxy terminus. It was long thought that this region of E6 had a sole function to confer interaction with a defined set of cellular substrates. However, more recent studies have shown that the E6 PBM has a complex pattern of regulation, whereby phosphorylation within the PBM can regulate interaction with two classes of cellular proteins: those containing PDZ domains and the members of the 14-3-3 family of proteins. In this review, we explore the roles that the PBM and its ligands play in the virus life cycle, and subsequently how these can inadvertently contribute towards the development of malignancy. We also explore how subtle alterations in cellular signal transduction pathways might result in aberrant E6 phosphorylation, which in turn might contribute towards disease progression.
Collapse
Affiliation(s)
- Ketaki Ganti
- International Center for Genetic Engineering and Biotechnology, Area Science Park, Padriciano 99, Trieste 34149, Italy.
| | - Justyna Broniarczyk
- International Center for Genetic Engineering and Biotechnology, Area Science Park, Padriciano 99, Trieste 34149, Italy.
| | - Wiem Manoubi
- International Center for Genetic Engineering and Biotechnology, Area Science Park, Padriciano 99, Trieste 34149, Italy.
| | - Paola Massimi
- International Center for Genetic Engineering and Biotechnology, Area Science Park, Padriciano 99, Trieste 34149, Italy.
| | - Suruchi Mittal
- International Center for Genetic Engineering and Biotechnology, Area Science Park, Padriciano 99, Trieste 34149, Italy.
| | - David Pim
- International Center for Genetic Engineering and Biotechnology, Area Science Park, Padriciano 99, Trieste 34149, Italy.
| | - Anita Szalmas
- International Center for Genetic Engineering and Biotechnology, Area Science Park, Padriciano 99, Trieste 34149, Italy.
| | - Jayashree Thatte
- International Center for Genetic Engineering and Biotechnology, Area Science Park, Padriciano 99, Trieste 34149, Italy.
| | - Miranda Thomas
- International Center for Genetic Engineering and Biotechnology, Area Science Park, Padriciano 99, Trieste 34149, Italy.
| | - Vjekoslav Tomaić
- International Center for Genetic Engineering and Biotechnology, Area Science Park, Padriciano 99, Trieste 34149, Italy.
| | - Lawrence Banks
- International Center for Genetic Engineering and Biotechnology, Area Science Park, Padriciano 99, Trieste 34149, Italy.
| |
Collapse
|
130
|
Convergent evolution and mimicry of protein linear motifs in host–pathogen interactions. Curr Opin Struct Biol 2015; 32:91-101. [DOI: 10.1016/j.sbi.2015.03.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/09/2015] [Accepted: 03/15/2015] [Indexed: 12/21/2022]
|
131
|
Ramirez J, Poirson J, Foltz C, Chebaro Y, Schrapp M, Meyer A, Bonetta A, Forster A, Jacob Y, Masson M, Deryckère F, Travé G. Targeting the Two Oncogenic Functional Sites of the HPV E6 Oncoprotein with a High-Affinity Bivalent Ligand. Angew Chem Int Ed Engl 2015; 54:7958-62. [PMID: 26014966 PMCID: PMC4512291 DOI: 10.1002/anie.201502646] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Indexed: 02/06/2023]
Abstract
The E6 oncoproteins of high-risk mucosal (hrm) human papillomaviruses (HPVs) contain a pocket that captures LxxLL motifs and a C-terminal motif that recruits PDZ domains, with both functions being crucial for HPV-induced oncogenesis. A chimeric protein was built by fusing a PDZ domain and an LxxLL motif, both known to bind E6. NMR spectroscopy, calorimetry and a mammalian protein complementation assay converged to show that the resulting PDZ-LxxLL chimera is a bivalent nanomolar ligand of E6, while its separated PDZ and LxxLL components are only micromolar binders. The chimera binds to all of the hrm-HPV E6 proteins tested but not to low-risk mucosal or cutaneous HPV E6. Adenovirus-mediated expression of the chimera specifically induces the death of HPV-positive cells, concomitant with increased levels of the tumour suppressor P53, its transcriptional target p21, and the apoptosis marker cleaved caspase 3. The bifunctional PDZ-LxxLL chimera opens new perspectives for the diagnosis and treatment of HPV-induced cancers.
Collapse
Affiliation(s)
- Juan Ramirez
- Oncoprotein Team, Équipe Labellisée Ligue 2015, UMR CNRS-UDS 7242, École Supérieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, BP 10413, F-67412 Illkirch (France)
| | - Juline Poirson
- Oncoprotein Team, Équipe Labellisée Ligue 2015, UMR CNRS-UDS 7242, École Supérieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, BP 10413, F-67412 Illkirch (France)
| | - Clémence Foltz
- Oncoprotein Team, Équipe Labellisée Ligue 2015, UMR CNRS-UDS 7242, École Supérieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, BP 10413, F-67412 Illkirch (France)
| | | | - Maxime Schrapp
- Oncoprotein Team, Équipe Labellisée Ligue 2015, UMR CNRS-UDS 7242, École Supérieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, BP 10413, F-67412 Illkirch (France)
| | - Amandine Meyer
- Oncoprotein Team, Équipe Labellisée Ligue 2015, UMR CNRS-UDS 7242, École Supérieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, BP 10413, F-67412 Illkirch (France)
| | - Anaëlle Bonetta
- Oncoprotein Team, Équipe Labellisée Ligue 2015, UMR CNRS-UDS 7242, École Supérieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, BP 10413, F-67412 Illkirch (France)
| | - Anne Forster
- Oncoprotein Team, Équipe Labellisée Ligue 2015, UMR CNRS-UDS 7242, École Supérieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, BP 10413, F-67412 Illkirch (France)
| | - Yves Jacob
- Institut Pasteur, Unité de Génétique Moléculaire des Virus à ARN, Département de Virologie & UMR CNRS 3569, Paris (France)
| | - Murielle Masson
- Oncoprotein Team, Équipe Labellisée Ligue 2015, UMR CNRS-UDS 7242, École Supérieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, BP 10413, F-67412 Illkirch (France)
| | - François Deryckère
- Oncoprotein Team, Équipe Labellisée Ligue 2015, UMR CNRS-UDS 7242, École Supérieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, BP 10413, F-67412 Illkirch (France)
| | - Gilles Travé
- Oncoprotein Team, Équipe Labellisée Ligue 2015, UMR CNRS-UDS 7242, École Supérieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, BP 10413, F-67412 Illkirch (France).
| |
Collapse
|
132
|
Targeting the Two Oncogenic Functional Sites of the HPV E6 Oncoprotein with a High-Affinity Bivalent Ligand. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201502646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
133
|
Zhang L, Wu J, Ling MT, Zhao L, Zhao KN. The role of the PI3K/Akt/mTOR signalling pathway in human cancers induced by infection with human papillomaviruses. Mol Cancer 2015; 14:87. [PMID: 26022660 PMCID: PMC4498560 DOI: 10.1186/s12943-015-0361-x] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 04/06/2015] [Indexed: 01/08/2023] Open
Abstract
Infection with Human papillomaviruses (HPVs) leads to the development of a wide-range of cancers, accounting for 5% of all human cancers. A prominent example is cervical cancer, one of the leading causes of cancer death in women worldwide. It has been well established that tumor development and progression induced by HPV infection is driven by the sustained expression of two oncogenes E6 and E7. The expression of E6 and E7 not only inhibits the tumor suppressors p53 and Rb, but also alters additional signalling pathways that may be equally important for transformation. Among these pathways, the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signalling cascade plays a very important role in HPV-induced carcinogenesis by acting through multiple cellular and molecular events. In this review, we summarize the frequent amplification of PI3K/Akt/mTOR signals in HPV-induced cancers and discuss how HPV oncogenes E6/E7/E5 activate the PI3K/Akt/mTOR signalling pathway to modulate tumor initiation and progression and affect patient outcome. Improvement of our understanding of the mechanism by which the PI3K/Akt/mTOR signalling pathway contributes to the immortalization and carcinogenesis of HPV-transduced cells will assist in devising novel strategies for preventing and treating HPV-induced cancers.
Collapse
Affiliation(s)
- Lifang Zhang
- Institute of Molecular Virology and Immunology, Wenzhou Medical University, Wenzhou, 325035 , Zhejiang, PR China.
| | - Jianhong Wu
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, 37 Kent Street, Woolloongabba, Brisbane, 4102, QLD, Australia.
- Current address: Department of Gastric Cancer and Soft Tissue Sarcomas Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China.
| | - Ming Tat Ling
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, 37 Kent Street, Woolloongabba, Brisbane, 4102, QLD, Australia.
| | - Liang Zhao
- The University of Queensland, Brisbane, 4072, QLD, Australia.
| | - Kong-Nan Zhao
- Institute of Molecular Virology and Immunology, Wenzhou Medical University, Wenzhou, 325035 , Zhejiang, PR China.
- Centre for Kidney Disease Research-Venomics Research, The University of Queensland School of Medicine, Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane, 4102, QLD, Australia.
| |
Collapse
|
134
|
Karlsson OA, Ramirez J, Öberg D, Malmqvist T, Engström Å, Friberg M, Chi CN, Widersten M, Travé G, Nilsson MTI, Jemth P. Design of a PDZbody, a bivalent binder of the E6 protein from human papillomavirus. Sci Rep 2015; 5:9382. [PMID: 25797137 PMCID: PMC4369733 DOI: 10.1038/srep09382] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/20/2015] [Indexed: 01/04/2023] Open
Abstract
Chronic infection by high risk human papillomavirus (HPV) strains may lead to cancer. Expression of the two viral oncoproteins E6 and E7 is largely responsible for immortalization of infected cells. The HPV E6 is a small (approximately 150 residues) two domain protein that interacts with a number of cellular proteins including the ubiquitin ligase E6-associated protein (E6AP) and several PDZ-domain containing proteins. Our aim was to design a high-affinity binder for HPV E6 by linking two of its cellular targets. First, we improved the affinity of the second PDZ domain from SAP97 for the C-terminus of HPV E6 from the high-risk strain HPV18 using phage display. Second, we added a helix from E6AP to the N-terminus of the optimized PDZ variant, creating a chimeric bivalent binder, denoted PDZbody. Full-length HPV E6 proteins are difficult to express and purify. Nevertheless, we could measure the affinity of the PDZbody for E6 from another high-risk strain, HPV16 (Kd = 65 nM). Finally, the PDZbody was used to co-immunoprecipitate E6 protein from HPV18-immortalized HeLa cells, confirming the interaction between PDZbody and HPV18 E6 in a cellular context.
Collapse
Affiliation(s)
- O Andreas Karlsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, SE-75123 Uppsala, Sweden
| | - Juan Ramirez
- Biotechnologie et Signalisation Cellulaire UMR 7242, Ecole Supérieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, BP 10413, F-67412 Illkirch, France
| | - Daniel Öberg
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, SE-75123 Uppsala, Sweden
| | - Tony Malmqvist
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, SE-75123 Uppsala, Sweden
| | - Åke Engström
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, SE-75123 Uppsala, Sweden
| | - Maria Friberg
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, SE-75123 Uppsala, Sweden
| | - Celestine N Chi
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, SE-75123 Uppsala, Sweden
| | - Mikael Widersten
- Department of Chemistry-BMC, Uppsala University, Box 576, SE-751 23 Uppsala, Sweden
| | - Gilles Travé
- Biotechnologie et Signalisation Cellulaire UMR 7242, Ecole Supérieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, BP 10413, F-67412 Illkirch, France
| | - Mikael T I Nilsson
- Department of Chemistry-BMC, Uppsala University, Box 576, SE-751 23 Uppsala, Sweden
| | - Per Jemth
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, SE-75123 Uppsala, Sweden
| |
Collapse
|
135
|
E6^E7, a novel splice isoform protein of human papillomavirus 16, stabilizes viral E6 and E7 oncoproteins via HSP90 and GRP78. mBio 2015; 6:e02068-14. [PMID: 25691589 PMCID: PMC4337564 DOI: 10.1128/mbio.02068-14] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Transcripts of human papillomavirus 16 (HPV16) E6 and E7 oncogenes undergo alternative RNA splicing to produce multiple splice isoforms. However, the importance of these splice isoforms is poorly understood. Here we report a critical role of E6^E7, a novel isoform containing the 41 N-terminal amino acid (aa) residues of E6 and the 38 C-terminal aa residues of E7, in the regulation of E6 and E7 stability. Through mass spectrometric analysis, we identified that HSP90 and GRP78, which are frequently upregulated in cervical cancer tissues, are two E6^E7-interacting proteins responsible for the stability and function of E6^E7, E6, and E7. Although GRP78 and HSP90 do not bind each other, GRP78, but not HSP90, interacts with E6 and E7. E6^E7 protein, in addition to self-binding, interacts with E6 and E7 in the presence of GRP78 and HSP90, leading to the stabilization of E6 and E7 by prolonging the half-life of each protein. Knocking down E6^E7 expression in HPV16-positive CaSki cells by a splice junction-specific small interfering RNA (siRNA) destabilizes E6 and E7 and prevents cell growth. The same is true for the cells with a GRP78 knockdown or in the presence of an HSP90 inhibitor. Moreover, mapping and alignment analyses for splicing elements in 36 alpha-HPVs (α-HPVs) suggest the possible expression of E6^E7 mostly by other oncogenic or possibly oncogenic α-HPVs (HPV18, -30, -31, -39, -42, -45, -56, -59, -70, and -73). HPV18 E6^E7 is detectable in HPV18-positive HeLa cells and HPV18-infected raft tissues. All together, our data indicate that viral E6^E7 and cellular GRP78 or HSP90 might be novel targets for cervical cancer therapy. HPV16 is the most prevalent HPV genotype, being responsible for 60% of invasive cervical cancer cases worldwide. What makes HPV16 so potent in the development of cervical cancer remains a mystery. We discovered in this study that, besides producing two well-known oncoproteins, E6 and E7, seen in other high-risk HPVs, HPV16 produces E6^E7, a novel splice isoform of E6 and E7. E6^E7, in addition to self-interacting, binds cellular chaperone proteins, HSP90 and GRP78, and viral E6 and E7 to increase the steady-state levels and half-lives of viral oncoproteins, leading to cell proliferation. The splicing cis elements in the regulation of HPV16 E6^E7 production are highly conserved in 11 oncogenic or possibly oncogenic HPVs, and we confirmed the production of HPV18 E6^E7 in HPV18-infected cells. This study provides new insight into the mechanism of splicing, the interplay between different products of the polycistronic viral message, and the role of the host chaperones as they function.
Collapse
|
136
|
Kumar S, Jena L, Mohod K, Daf S, Varma AK. Virtual screening for potential inhibitors of high-risk human papillomavirus 16 E6 protein. Interdiscip Sci 2015. [PMID: 25663107 DOI: 10.1007/s12539-013-0213-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 06/24/2014] [Accepted: 09/11/2014] [Indexed: 09/29/2022]
Abstract
Human papillomavirus (HPV), a life-threatening infection is the leading cause of cancer mortality among women worldwide and needs for designing anti-cancerous drugs. In the present study, we explored specific novel inhibitors against E6 onco-protein of high risk HPV 16, known to inactivate tumor suppressor p53 protein. A homology model of HPV 16 E6 was built and validated using bioinformatics approach. A total of 5000 drug like compounds were downloaded from ZINC database based on the properties similar to the known inhibitor Jaceosidin (5, 7-Dihydroxy-2-(4-hydroxy-3-methoxyphenyl)-6-methoxy-4H-chromen-4-one). Virtual-ligand-screenings approaches were applied to screen appropriate drug like compounds using molecular docking program Auto Dock Vina in PyRx 0.8 and 5 best novel drug-like compounds were identified as potential competitive inhibitors against HPV 16 E6 compared to Jaceosidin. Two amongst these 5 identified most potential inhibitors, N-[(5-methyl-1Hbenzimidazol-2-yl)methyl]-4-oxo-3, 4-dihydrophthalazine-1-carboxamide and 6-[3-(3-fluoro-4-methyl-phenyl)-1, 2, 4-oxadiazol-5-yl]-1, 4-dihydroquinoxaline-2, 3-dione were found to interact with E6 with binding energy of -7.7 and -7.0 Kcal/mol respectively and form H-bonds with p53 binding site of E6 protein residues 113-122 (CQKPLCPEEK). These two inhibitors may help restoration of p53 functioning. The Bioinformatics approach extends a promising platform for developing anti-cancerous competitive inhibitors targeting high-risk HPV 16.
Collapse
Affiliation(s)
- Satish Kumar
- Biochemistry & Bioinformatics Centre, Mahatma Gandhi Institute of Medical Sciences, Sevagram, India,
| | | | | | | | | |
Collapse
|
137
|
Zanier K, Stutz C, Kintscher S, Reinz E, Sehr P, Bulkescher J, Hoppe-Seyler K, Travé G, Hoppe-Seyler F. The E6AP binding pocket of the HPV16 E6 oncoprotein provides a docking site for a small inhibitory peptide unrelated to E6AP, indicating druggability of E6. PLoS One 2014; 9:e112514. [PMID: 25383876 PMCID: PMC4226571 DOI: 10.1371/journal.pone.0112514] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 10/03/2014] [Indexed: 12/11/2022] Open
Abstract
The HPV E6 oncoprotein maintains the malignant phenotype of HPV-positive cancer cells and represents an attractive therapeutic target. E6 forms a complex with the cellular E6AP ubiquitin ligase, ultimately leading to p53 degradation. The recently elucidated x-ray structure of a HPV16 E6/E6AP complex showed that HPV16 E6 forms a distinct binding pocket for E6AP. This discovery raises the question whether the E6AP binding pocket is druggable, i. e. whether it provides a docking site for functional E6 inhibitors. To address these issues, we performed a detailed analysis of the HPV16 E6 interactions with two small peptides: (i) E6APpep, corresponding to the E6 binding domain of E6AP, and (ii) pep11**, a peptide that binds to HPV16 E6 and, in contrast to E6APpep, induces apoptosis, specifically in HPV16-positive cancer cells. Surface plasmon resonance, NMR chemical shift perturbation, and mammalian two-hybrid analyses coupled to mutagenesis indicate that E6APpep contacts HPV16 E6 amino acid residues within the E6AP pocket, both in vitro and intracellularly. Many of these amino acids were also important for binding to pep11**, suggesting that the binding sites for the two peptides on HPV16 E6 overlap. Yet, few E6 amino acids were differentially involved which may contribute to the higher binding affinity of pep11**. Data from the HPV16 E6/pep11** interaction allowed the rational design of single amino acid exchanges in HPV18 and HPV31 E6 that enabled their binding to pep11**. Taken together, these results suggest that E6 molecular surfaces mediating E6APpep binding can also accommodate pro-apoptotic peptides that belong to different sequence families. As proof of concept, this study provides the first experimental evidence that the E6AP binding pocket is druggable, opening new possibilities for rational, structure-based drug design.
Collapse
Affiliation(s)
- Katia Zanier
- Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg (IREBS), 67412, Illkirch, France
- * E-mail: (KZ); (FHS)
| | - Christina Stutz
- Molecular Therapy of Virus-Associated Cancers (F065), Program Infection and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Susanne Kintscher
- Molecular Therapy of Virus-Associated Cancers (F065), Program Infection and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Eileen Reinz
- Molecular Therapy of Virus-Associated Cancers (F065), Program Infection and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Peter Sehr
- EMBL-DKFZ Chemical Biology Core Facility, European Molecular Biology Laboratory (EMBL), 69117, Heidelberg, Germany
| | - Julia Bulkescher
- Molecular Therapy of Virus-Associated Cancers (F065), Program Infection and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Karin Hoppe-Seyler
- Molecular Therapy of Virus-Associated Cancers (F065), Program Infection and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Gilles Travé
- Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg (IREBS), 67412, Illkirch, France
| | - Felix Hoppe-Seyler
- Molecular Therapy of Virus-Associated Cancers (F065), Program Infection and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- * E-mail: (KZ); (FHS)
| |
Collapse
|
138
|
Ajiro M, Zheng ZM. Oncogenes and RNA splicing of human tumor viruses. Emerg Microbes Infect 2014; 3:e63. [PMID: 26038756 PMCID: PMC4185361 DOI: 10.1038/emi.2014.62] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 06/29/2014] [Accepted: 06/29/2014] [Indexed: 02/07/2023]
Abstract
Approximately 10.8% of human cancers are associated with infection by an oncogenic virus. These viruses include human papillomavirus (HPV), Epstein–Barr virus (EBV), Merkel cell polyomavirus (MCV), human T-cell leukemia virus 1 (HTLV-1), Kaposi's sarcoma-associated herpesvirus (KSHV), hepatitis C virus (HCV) and hepatitis B virus (HBV). These oncogenic viruses, with the exception of HCV, require the host RNA splicing machinery in order to exercise their oncogenic activities, a strategy that allows the viruses to efficiently export and stabilize viral RNA and to produce spliced RNA isoforms from a bicistronic or polycistronic RNA transcript for efficient protein translation. Infection with a tumor virus affects the expression of host genes, including host RNA splicing factors, which play a key role in regulating viral RNA splicing of oncogene transcripts. A current prospective focus is to explore how alternative RNA splicing and the expression of viral oncogenes take place in a cell- or tissue-specific manner in virus-induced human carcinogenesis.
Collapse
Affiliation(s)
- Masahiko Ajiro
- Tumor Virus RNA Biology Section, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Frederick, MD 21702, USA
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Frederick, MD 21702, USA
| |
Collapse
|
139
|
Tewari KS, Monk BJ. New Strategies in Advanced Cervical Cancer: From Angiogenesis Blockade to Immunotherapy. Clin Cancer Res 2014; 20:5349-58. [DOI: 10.1158/1078-0432.ccr-14-1099] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
140
|
How to find a leucine in a haystack? Structure, ligand recognition and regulation of leucine-aspartic acid (LD) motifs. Biochem J 2014; 460:317-29. [PMID: 24870021 DOI: 10.1042/bj20140298] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
LD motifs (leucine-aspartic acid motifs) are short helical protein-protein interaction motifs that have emerged as key players in connecting cell adhesion with cell motility and survival. LD motifs are required for embryogenesis, wound healing and the evolution of multicellularity. LD motifs also play roles in disease, such as in cancer metastasis or viral infection. First described in the paxillin family of scaffolding proteins, LD motifs and similar acidic LXXLL interaction motifs have been discovered in several other proteins, whereas 16 proteins have been reported to contain LDBDs (LD motif-binding domains). Collectively, structural and functional analyses have revealed a surprising multivalency in LD motif interactions and a wide diversity in LDBD architectures. In the present review, we summarize the molecular basis for function, regulation and selectivity of LD motif interactions that has emerged from more than a decade of research. This overview highlights the intricate multi-level regulation and the inherently noisy and heterogeneous nature of signalling through short protein-protein interaction motifs.
Collapse
|
141
|
Saez NJ, Nozach H, Blemont M, Vincentelli R. High throughput quantitative expression screening and purification applied to recombinant disulfide-rich venom proteins produced in E. coli. J Vis Exp 2014:e51464. [PMID: 25146501 PMCID: PMC4692350 DOI: 10.3791/51464] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Escherichia coli (E. coli) is the most widely used expression system for the production of recombinant proteins for structural and functional studies. However, purifying proteins is sometimes challenging since many proteins are expressed in an insoluble form. When working with difficult or multiple targets it is therefore recommended to use high throughput (HTP) protein expression screening on a small scale (1-4 ml cultures) to quickly identify conditions for soluble expression. To cope with the various structural genomics programs of the lab, a quantitative (within a range of 0.1-100 mg/L culture of recombinant protein) and HTP protein expression screening protocol was implemented and validated on thousands of proteins. The protocols were automated with the use of a liquid handling robot but can also be performed manually without specialized equipment. Disulfide-rich venom proteins are gaining increasing recognition for their potential as therapeutic drug leads. They can be highly potent and selective, but their complex disulfide bond networks make them challenging to produce. As a member of the FP7 European Venomics project (www.venomics.eu), our challenge is to develop successful production strategies with the aim of producing thousands of novel venom proteins for functional characterization. Aided by the redox properties of disulfide bond isomerase DsbC, we adapted our HTP production pipeline for the expression of oxidized, functional venom peptides in the E. coli cytoplasm. The protocols are also applicable to the production of diverse disulfide-rich proteins. Here we demonstrate our pipeline applied to the production of animal venom proteins. With the protocols described herein it is likely that soluble disulfide-rich proteins will be obtained in as little as a week. Even from a small scale, there is the potential to use the purified proteins for validating the oxidation state by mass spectrometry, for characterization in pilot studies, or for sensitive micro-assays.
Collapse
Affiliation(s)
- Natalie J Saez
- Architecture et Fonction des Macromolécules Biologiques (AFMB), Aix-Marseille Université
| | - Hervé Nozach
- iBiTec-S, Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), Commissariat à l'énergie atomique et aux énergies alternatives (CEA) Saclay, France
| | - Marilyne Blemont
- Architecture et Fonction des Macromolécules Biologiques (AFMB), Aix-Marseille Université
| | - Renaud Vincentelli
- Architecture et Fonction des Macromolécules Biologiques (AFMB), Aix-Marseille Université;
| |
Collapse
|
142
|
Kumar S, Jena L, Galande S, Daf S, Mohod K, Varma AK. Elucidating Molecular Interactions of Natural Inhibitors with HPV-16 E6 Oncoprotein through Docking Analysis. Genomics Inform 2014; 12:64-70. [PMID: 25031569 PMCID: PMC4099350 DOI: 10.5808/gi.2014.12.2.64] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 05/16/2014] [Accepted: 05/22/2014] [Indexed: 02/05/2023] Open
Abstract
Human papillomavirus (HPV) infection is the leading cause of cancer mortality among women worldwide. The life-threatening infection caused by HPV demands the need for designing anticancerous drugs. In the recent years, different compounds from natural origins, such as carrageenan, curcumin, epigallocatechin gallate, indole-3-carbinol, jaceosidin, and withaferin, have been used as a hopeful source of anticancer therapy. These compounds have been shown to suppress HPV infection by different researchers. In the present study, we explored these natural inhibitors against E6 oncoprotein of high-risk HPV-16, which is known to inactivate the p53 tumor suppressor protein. A robust homology model of HPV-16 E6 was built to anticipate the interaction mechanism of E6 oncoprotein with natural inhibitory molecules using a structure-based drug designing approach. Docking analysis showed the interaction of these natural compounds with the p53-binding site of E6 protein residues 113-122 (CQKPLCPEEK) and helped the restoration of p53 functioning. Docking analysis, besides helping in silico validation of natural compounds, also helps understand molecular mechanisms of protein-ligand interactions.
Collapse
Affiliation(s)
- Satish Kumar
- Bioinformatics Centre & Biochemistry, Mahatma Gandhi Institute of Medical Sciences, Sevagram 442-102, India
| | - Lingaraja Jena
- Bioinformatics Centre & Biochemistry, Mahatma Gandhi Institute of Medical Sciences, Sevagram 442-102, India
| | - Sneha Galande
- Bioinformatics Centre & Biochemistry, Mahatma Gandhi Institute of Medical Sciences, Sevagram 442-102, India
| | - Sangeeta Daf
- Datta Meghe Institute of Medical Sciences (Deemed University), Nagpur 440-022, India
| | - Kanchan Mohod
- Bioinformatics Centre & Biochemistry, Mahatma Gandhi Institute of Medical Sciences, Sevagram 442-102, India
| | - Ashok K Varma
- Advanced Centre for Treatment, Research & Education in Cancer, Khargar, Navi Mumbai 410-210, India
| |
Collapse
|
143
|
Interactions between E6, FAK, and GIT1 at paxillin LD4 are necessary for transformation by bovine papillomavirus 1 E6. J Virol 2014; 88:9927-33. [PMID: 24942580 DOI: 10.1128/jvi.00552-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Bovine papillomavirus 1 E6 interacts with two similar proteins that regulate cell attachment and cell migration called paxillin (PXN) and HIC-5 (also known as HIC5, ARA55, HIC-5, TSC-5, and TGFB1I1). Despite the similarity between HIC-5 and paxillin, paxillin is required for E6 to transform mouse embryo fibroblasts while HIC-5 is not. Using mutants of paxillin, we found that dynamic competitive interactions between E6, focal adhesion kinase, and the GIT1 ARF-GAP protein for binding to paxillin are required but not sufficient for transformation by E6. Using mutants of paxillin and chimeric proteins between HIC-5 and paxillin, we demonstrate that a critical difference between HIC-5 and paxillin is within the LIM domains of paxillin that do not directly interact with E6. Mutational analysis indicates that at least six distinct domains of paxillin are required for E6 transformation. IMPORTANCE Papillomaviruses cause epitheliomas in vertebrates through the actions of virus-encoded oncoproteins. Despite the immense diversity of papillomavirus types, our understanding of the mechanisms by which the virus-encoded E6 oncoproteins contribute to cell transformation is restricted to human papillomavirus types that are associated with cancer. Bovine papillomavirus 1 (BPV-1) E6 has served as a model system for studies of E6 structure and function. This study examines the mechanisms by which BPV-1 E6 association with the cellular focal adhesion adapter protein paxillin contributes to cell transformation and extends our knowledge of the diverse mechanisms by which papillomaviruses transform host cells.
Collapse
|
144
|
Gossan NC, Zhang F, Guo B, Jin D, Yoshitane H, Yao A, Glossop N, Zhang YQ, Fukada Y, Meng QJ. The E3 ubiquitin ligase UBE3A is an integral component of the molecular circadian clock through regulating the BMAL1 transcription factor. Nucleic Acids Res 2014; 42:5765-75. [PMID: 24728990 PMCID: PMC4027211 DOI: 10.1093/nar/gku225] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 03/02/2014] [Accepted: 03/06/2014] [Indexed: 11/28/2022] Open
Abstract
Post-translational modifications (such as ubiquitination) of clock proteins are critical in maintaining the precision and robustness of the evolutionarily conserved circadian clock. Ubiquitination of the core clock transcription factor BMAL1 (brain and muscle Arnt-like 1) has recently been reported. However, it remains unknown whether BMAL1 ubiquitination affects circadian pacemaking and what ubiquitin ligase(s) is involved. Here, we show that activating UBE3A (by expressing viral oncogenes E6/E7) disrupts circadian oscillations in mouse embryonic fibroblasts, measured using PER2::Luc dynamics, and rhythms in endogenous messenger ribonucleic acid and protein levels of BMAL1. Over-expression of E6/E7 reduced the level of BMAL1, increasing its ubiquitination and proteasomal degradation. UBE3A could bind to and degrade BMAL1 in a ubiquitin ligase-dependent manner. This occurred both in the presence and absence of E6/E7. We provide in vitro (knockdown/over-expression in mammalian cells) and in vivo (genetic manipulation in Drosophila) evidence for an endogenous role of UBE3A in regulating circadian dynamics and rhythmic locomotor behaviour. Together, our data reveal an essential and conserved role of UBE3A in the regulation of the circadian system in mammals and flies and identify a novel mechanistic link between oncogene E6/E7-mediated cell transformation and circadian (BMAL1) disruption.
Collapse
Affiliation(s)
- Nicole C Gossan
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Feng Zhang
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Baoqiang Guo
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Ding Jin
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Hikari Yoshitane
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Aiyu Yao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Nick Glossop
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Yong Q Zhang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yoshitaka Fukada
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Qing-Jun Meng
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| |
Collapse
|
145
|
Systemic therapy in squamous cell carcinoma of the vulva: Current status and future directions. Gynecol Oncol 2014; 132:780-9. [DOI: 10.1016/j.ygyno.2013.11.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 11/11/2013] [Accepted: 11/20/2013] [Indexed: 02/01/2023]
|
146
|
A new NMR technique to probe protein–ligand interaction. J Pharm Biomed Anal 2014; 89:18-23. [DOI: 10.1016/j.jpba.2013.10.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 10/14/2013] [Accepted: 10/16/2013] [Indexed: 11/20/2022]
|
147
|
Saez NJ, Vincentelli R. High-throughput expression screening and purification of recombinant proteins in E. coli. Methods Mol Biol 2014; 1091:33-53. [PMID: 24203323 DOI: 10.1007/978-1-62703-691-7_3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The protocols outlined in this chapter allow for the small-scale test expression of a single or multiple proteins concurrently using several expression conditions to identify optimal strategies for producing soluble, stable proteins. The protocols can be performed manually without the need for specialized equipment, or can be translated to robotic platforms. The high-throughput protocols begin with transformation in a 96-well format, followed by small-scale test expression using auto-induction medium in a 24-well format, finishing with purification in a 96-well format. Even from such a small scale, there is the potential to use the purified proteins for characterization in pilot studies, for sensitive micro-assays, or for the quick detection of and differentiation of the expected size and oxidation state of the protein by mass spectrometry.
Collapse
Affiliation(s)
- Natalie J Saez
- Architecture et Fonction des Macromolécules Biologiques, Aix Marseille Université, Marseille, France
| | | |
Collapse
|
148
|
Chen S, Liao C, Lai Y, Fan Y, Lu G, Wang H, Zhang X, Lin MCM, Leng S, Kung HF. De-oncogenic HPV E6/E7 vaccine gets enhanced antigenicity and promotes tumoricidal synergy with cisplatin. Acta Biochim Biophys Sin (Shanghai) 2014; 46:6-14. [PMID: 24240707 DOI: 10.1093/abbs/gmt121] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In order to develop more effective therapeutic vaccines against cancers with high-risk human papillomavirus (HPV) infection, it is crucial to enhance the immunogenicity, eliminate the oncogenicity of oncoproteins, and take a combination of E7- and E6-containing vaccines. It has been shown recently that PE(ΔIII)-E7-KDEL3 (E7), a fusion protein containing the HPV16 oncoprotein E7 and the translocation domain of Pseudomonas aeruginosa exotoxin A, is effective against TC-1 tumor cells inoculated in mice, therefore, we engineered PE(ΔIII)-E6-CRL-KDEL3 (E6), the de-oncogenic versions of the E7 and E6 fusion proteins [i.e. PE(ΔIII)-E7(d)-KDEL3, E7(d), and PE(ΔIII)-E6(d)-CRL-KDEL3, E6(d)] and tested the immunoefficacies of these fusion proteins as mono- and bivalent vaccines. Results indicated that the E7(d) get higher immunogenicity than its wild type and the E6 fusion proteins augmented the immunogenicity and antitumor effects of their E7 counterparts. Furthermore, the bivalent vaccine system E7(d) plus E6(d), in the presence of cisplatin, showed the best tumoristatic and tumoricidal effects against established tumors in vivo. Therefore, it can be concluded that this novel therapeutic vaccine system, upon further optimization, may shed new light on clinical management of HPV-related carcinomas.
Collapse
Affiliation(s)
- Shaochun Chen
- Department of Anatomy and Histoembryology, Kunming Medical University, Kunming 650500, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Cherry JJ, Rietz A, Malinkevich A, Liu Y, Xie M, Bartolowits M, Davisson VJ, Baleja JD, Androphy EJ. Structure based identification and characterization of flavonoids that disrupt human papillomavirus-16 E6 function. PLoS One 2013; 8:e84506. [PMID: 24376816 PMCID: PMC3871595 DOI: 10.1371/journal.pone.0084506] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 11/20/2013] [Indexed: 02/07/2023] Open
Abstract
Expression and function of the human papillomavirus (HPV) early protein 6 (E6) is necessary for viral replication and oncogenesis in cervical cancers. HPV E6 targets the tumor suppressor protein p53 for degradation. To achieve this, "high-risk" HPV E6 proteins bind to and modify the target specificity of the ubiquitin ligase E6AP (E6 associated protein). This E6-dependent loss of p53 enables the virus to bypass host cell defenses and facilitates virally induced activation of the cell cycle progression during viral replication. Disruption of the interaction between E6 and E6AP and stabilization of p53 should decrease viability and proliferation of HPV positive cells. A new in vitro high-throughput binding assay was developed to assay binding between HPV-16 E6 and E6AP and to identify compounds that inhibit this interaction. The compound luteolin emerged from the screen and a library of novel flavones based on its structure was synthesized and characterized using this in vitro binding assay. The compounds identified in this study disrupt the E6/E6AP interaction, increase the levels of p53 and p21(Cip1/Waf1), and decrease proliferation of HPV positive cell lines. The new class of flavonoid E6 inhibitors displays a high degree of specificity for HPV positive cells. Docking analyses suggest that these compounds bind in a hydrophobic pocket at the interface between E6 and E6AP and mimic the leucines in the conserved α-helical motif of E6AP. The activity and specificity of these compounds represent a promising new lead for development as an antiviral therapy in the treatment of HPV infection and cervical cancer.
Collapse
Affiliation(s)
- Jonathan J. Cherry
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Anne Rietz
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Anna Malinkevich
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Yuqi Liu
- Department of Biochemistry, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Meng Xie
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Matthew Bartolowits
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University College of Pharmacy, West Lafayette, Indiana, United States of America
| | - V. Jo Davisson
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University College of Pharmacy, West Lafayette, Indiana, United States of America
| | - James D. Baleja
- Department of Biochemistry, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Elliot J. Androphy
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
150
|
Tommasino M. The human papillomavirus family and its role in carcinogenesis. Semin Cancer Biol 2013; 26:13-21. [PMID: 24316445 DOI: 10.1016/j.semcancer.2013.11.002] [Citation(s) in RCA: 261] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 11/22/2013] [Accepted: 11/27/2013] [Indexed: 01/17/2023]
Abstract
Human papillomaviruses (HPVs) are a family of small double-stranded DNA viruses that have a tropism for the epithelia of the genital and upper respiratory tracts and for the skin. Approximately 150 HPV types have been discovered so far, which are classified into several genera based on their DNA sequence. Approximately 15 high-risk mucosal HPV types are clearly associated with cervical cancer; HPV16 and HPV18 are the most carcinogenic since they are responsible for approximately 50% and 20% of all cervical cancers worldwide, respectively. It is now also clear that these viruses are linked to a subset of other genital cancers, as well as head and neck cancers. Due to their high level of carcinogenic activity, HPV16 and HPV18 are the most studied HPV types so far. Biological studies have highlighted the key roles in cellular transformation of the products of two viral early genes, E6 and E7. Many of the mechanisms of E6 and E7 in subverting the regulation of fundamental cellular events have been fully characterized, contributing not only to our knowledge of how the oncogenic viruses promote cancer development but also to our understanding of basic cell biology. Despite HPV research resulting in extraordinary achievements in the last four decades, significantly improving the screening and prophylaxis of HPV-induced lesions, additional research is necessary to characterize the biology and epidemiology of the vast number of HPV types that have been poorly investigated so far, with a final aim of clarifying their potential roles in other human diseases.
Collapse
Affiliation(s)
- Massimo Tommasino
- Infections and Cancer Biology Group, International Agency for Research on Cancer - World Health Organization, 150 Cours Albert-Thomas, 69372 Lyon cedex 08, France.
| |
Collapse
|