101
|
Li D, Wang H, Chen J, Wu Q. Fluorinated Polymer Donors for Nonfullerene Organic Solar Cells. Chemistry 2024; 30:e202303155. [PMID: 38018363 DOI: 10.1002/chem.202303155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 11/30/2023]
Abstract
The rapid development of narrow-bandgap nonfullerene acceptors (NFAs) has boosted the efficiency of organic solar cells (OSCs) over 19 %. The new features of high-performance NFAs, such as visible-NIR light absorption, moderate the highest occupied molecular orbitals (HOMO), and high crystallinity, require polymer donors with matching physical properties. This emphasizes the importance of methods that can effectively tune the physical properties of polymers. Owning to very small atom size and strongest electronegativity, the fluorination has been proved the most efficient strategy to regulate the physical properties of polymer donors, including frontier energy level, absorption coefficient, dielectric constant, crystallinity and charge transport. Owing to the success of fluorination strategy, the vast majority of high-performance polymer donors possess one or more fluorine atoms. In this review, the fluorination synthetic methods, the synthetic route of well-known fluorinated building blocks, the fluorinated polymers which are categorized by the type of donor or acceptor units, and the relationships between the polymer structures, properties, and photovoltaic performances are comprehensively surveyed. We hope this review could provide the readers a deeper insight into fluorination strategy and lay a strong foundation for future innovation of fluorinated polymers.
Collapse
Affiliation(s)
- Dongyan Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou, Guangdong, 515063, China
| | - Huijuan Wang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou, Guangdong, 515063, China
| | - Jinming Chen
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou, Guangdong, 515063, China
| | - Qinghe Wu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou, Guangdong, 515063, China
| |
Collapse
|
102
|
Tameev AR, Aleksandrov AE, Sayarov IR, Pozin SI, Lypenko DA, Dmitriev AV, Nekrasova NV, Chernyadyev AY, Tsivadze AY. Charge Carrier Mobility in Poly(N,N'-bis-4-butylphenyl-N,N'-bisphenyl)benzidine Composites with Electron Acceptor Molecules. Polymers (Basel) 2024; 16:570. [PMID: 38475254 DOI: 10.3390/polym16050570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/10/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
Polymer composites based on poly(N,N'-bis-4-butylphenyl-N,N'-bisphenyl)benzidine (poly-TPD) with PCBM and copper(II) pyropheophorbide derivative (Cu-PP) were developed. In thin films of the poly-TPD and Cu-PP composites, the charge carrier mobility was investigated for the first time. In the ternary poly-TPD:PCBM:Cu-PP composite, the electron and hole mobilities are the most balanced compared to binary composites and the photoconductivity is enhanced due to the sensitization by Cu-PP in blue and red spectral ranges. The new composites are promising for use in the development of photodetectors.
Collapse
Affiliation(s)
- Alexey R Tameev
- Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, Leninsky Prosp., 31, Bld. 4, 119071 Moscow, Russia
| | - Alexey E Aleksandrov
- Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, Leninsky Prosp., 31, Bld. 4, 119071 Moscow, Russia
| | - Ildar R Sayarov
- Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, Leninsky Prosp., 31, Bld. 4, 119071 Moscow, Russia
| | - Sergey I Pozin
- Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, Leninsky Prosp., 31, Bld. 4, 119071 Moscow, Russia
| | - Dmitry A Lypenko
- Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, Leninsky Prosp., 31, Bld. 4, 119071 Moscow, Russia
| | - Artem V Dmitriev
- Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, Leninsky Prosp., 31, Bld. 4, 119071 Moscow, Russia
| | - Natalia V Nekrasova
- Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, Leninsky Prosp., 31, Bld. 4, 119071 Moscow, Russia
| | - Andrey Yu Chernyadyev
- Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, Leninsky Prosp., 31, Bld. 4, 119071 Moscow, Russia
| | - Aslan Yu Tsivadze
- Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, Leninsky Prosp., 31, Bld. 4, 119071 Moscow, Russia
| |
Collapse
|
103
|
Zhu Y, He D, Wang C, Han X, Liu Z, Wang K, Zhang J, Shen X, Li J, Lin Y, Wang C, He Y, Zhao F. Suppressing Exciton-Vibration Coupling to Prolong Exciton Lifetime of Nonfullerene Acceptors Enables High-Efficiency Organic Solar Cells. Angew Chem Int Ed Engl 2024; 63:e202316227. [PMID: 38179837 DOI: 10.1002/anie.202316227] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 01/06/2024]
Abstract
The limited exciton lifetime (τ, generally <1 ns) leads to short exciton diffusion length (LD ) of organic semiconductors, which is the bottleneck issue impeding the further improvement of power conversion efficiencies (PCEs) for organic solar cells (OSCs). However, efficient strategies to prolong intrinsic τ are rare and vague. Herein, we propose a facile method to efficiently reduce vibrational frequency of molecular skeleton and suppress exciton-vibration coupling to decrease non-radiative decay rate and thus prolong τ via deuterating nonfullerene acceptors. The τ remarkably increases from 0.90 ns (non-deuterated L8-BO) to 1.35 ns (deuterated L8-BO-D), which is the record for organic photovoltaic materials. Besides, the inhibited molecular vibration improves molecular planarity of L8-BO-D for enhanced exciton diffusion coefficient. Consequently, the LD increases from 7.9 nm (L8-BO) to 10.7 nm (L8-BO-D). The prolonged LD of L8-BO-D enables PM6 : L8-BO-D-based bulk heterojunction OSCs to acquire higher PCEs of 18.5 % with more efficient exciton dissociation and weaker charge carrier recombination than PM6 : L8-BO-based counterparts. Moreover, benefiting from the prolonged LD , D18/L8-BO-D-based pseudo-planar heterojunction OSCs achieve an impressive PCE of 19.3 %, which is among the highest values. This work provides an efficient strategy to increase the τ and thus LD of organic semiconductors, boosting PCEs of OSCs.
Collapse
Affiliation(s)
- Yufan Zhu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, P. R. China
| | - Dan He
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Chong Wang
- University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids and Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xiao Han
- University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zesheng Liu
- University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids and Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Ke Wang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, P. R. China
| | - Jianqi Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Xingxing Shen
- College of Chemical Engineering, Hebei Normal University of Science & Technology, Qinhuangdao, 066004, P. R. China
| | - Jie Li
- University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids and Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yuze Lin
- University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids and Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Chunru Wang
- University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids and Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yuehui He
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, P. R. China
| | - Fuwen Zhao
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, P. R. China
| |
Collapse
|
104
|
Coane CV, Romanelli M, Dall'Osto G, Di Felice R, Corni S. Unraveling the mechanism of tip-enhanced molecular energy transfer. Commun Chem 2024; 7:32. [PMID: 38360897 PMCID: PMC10869822 DOI: 10.1038/s42004-024-01118-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 02/01/2024] [Indexed: 02/17/2024] Open
Abstract
Electronic Energy Transfer (EET) between chromophores is fundamental in many natural light-harvesting complexes, serving as a critical step for solar energy funneling in photosynthetic plants and bacteria. The complicated role of the environment in mediating this process in natural architectures has been addressed by recent scanning tunneling microscope experiments involving EET between two molecules supported on a solid substrate. These measurements demonstrated that EET in such conditions has peculiar features, such as a steep dependence on the donor-acceptor distance, reminiscent of a short-range mechanism more than of a Förster-like process. By using state of the art hybrid ab initio/electromagnetic modeling, here we provide a comprehensive theoretical analysis of tip-enhanced EET. In particular, we show that this process can be understood as a complex interplay of electromagnetic-based molecular plasmonic processes, whose result may effectively mimic short range effects. Therefore, the established identification of an exponential decay with Dexter-like effects does not hold for tip-enhanced EET, and accurate electromagnetic modeling is needed to identify the EET mechanism.
Collapse
Affiliation(s)
- Colin V Coane
- Department of Chemical Sciences, University of Padova, via Marzolo 1, Padova, Italy
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, 90089, USA
| | - Marco Romanelli
- Department of Chemical Sciences, University of Padova, via Marzolo 1, Padova, Italy
| | - Giulia Dall'Osto
- Department of Chemical Sciences, University of Padova, via Marzolo 1, Padova, Italy
| | - Rosa Di Felice
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, 90089, USA.
- CNR Institute of Nanoscience, via Campi 213/A, Modena, Italy.
| | - Stefano Corni
- Department of Chemical Sciences, University of Padova, via Marzolo 1, Padova, Italy.
- CNR Institute of Nanoscience, via Campi 213/A, Modena, Italy.
| |
Collapse
|
105
|
Zhuo MP, Wei X, Li YY, Shi YL, He GP, Su H, Zhang KQ, Guan JP, Wang XD, Wu Y, Liao LS. Visualizing the interfacial-layer-based epitaxial growth process toward organic core-shell architectures. Nat Commun 2024; 15:1130. [PMID: 38326331 PMCID: PMC10850097 DOI: 10.1038/s41467-024-45262-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 01/18/2024] [Indexed: 02/09/2024] Open
Abstract
Organic heterostructures (OHTs) with the desired geometry organization on micro/nanoscale have undergone rapid progress in nanoscience and nanotechnology. However, it is a significant challenge to elucidate the epitaxial-growth process for various OHTs composed of organic units with a lattice mismatching ratio of > 3%, which is unimaginable for inorganic heterostructures. Herein, we have demonstrated a vivid visualization of the morphology evolution of epitaxial-growth based on a doped interfacial-layer, which facilitates the comprehensive understanding of the hierarchical self-assembly of core-shell OHT with precise spatial configuration. Significantly, the barcoded OHT with periodic shells obviously illustrate the shell epitaxial-growth from tips to center parts along the seeded rods for forming the core-shell OHT. Furthermore, the diameter, length, and number of periodic shells were modulated by finely tuning the stoichiometric ratio, crystalline time, and temperature, respectively. This epitaxial-growth process could be generalized to organic systems with facile chemical/structural compatibility for forming the desired OHTs.
Collapse
Affiliation(s)
- Ming-Peng Zhuo
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
- Technical Institute of Physics and Chemistry Chinese Academy of Sciences, Beijing, 100190, China
- China National Textile and Apparel Council Key Laboratory for Silk Functional Materials and Technology, National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Xiao Wei
- Technical Institute of Physics and Chemistry Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuan-Yuan Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
- China National Textile and Apparel Council Key Laboratory for Silk Functional Materials and Technology, National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Ying-Li Shi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Guang-Peng He
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Huixue Su
- Technical Institute of Physics and Chemistry Chinese Academy of Sciences, Beijing, 100190, China
| | - Ke-Qin Zhang
- China National Textile and Apparel Council Key Laboratory for Silk Functional Materials and Technology, National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jin-Ping Guan
- China National Textile and Apparel Council Key Laboratory for Silk Functional Materials and Technology, National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Xue-Dong Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China.
| | - Yuchen Wu
- Technical Institute of Physics and Chemistry Chinese Academy of Sciences, Beijing, 100190, China.
| | - Liang-Sheng Liao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China.
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, 999078, Macau SAR, China.
| |
Collapse
|
106
|
Yang N, Zhang T, Wang S, An C, Seibt S, Wang G, Wang J, Yang Y, Wang W, Xiao Y, Yao H, Zhang S, Ma W, Hou J. An Ortho-Bisalkyloxylated Benzene-Based Fully Non-fused Electron Acceptor for Efficient Organic Photovoltaic Cells. SMALL METHODS 2024; 8:e2300036. [PMID: 37092533 DOI: 10.1002/smtd.202300036] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/19/2023] [Indexed: 05/03/2023]
Abstract
To develop the low-cost nonfullerene acceptors (NFAs), two fully non-fused NFAs (TBT-2 and TBT-6) with ortho-bis((2-ethylhexyl)oxy)benzene unit and different side chains onto thiophene-bridges are synthesized through highly efficient synthetic procedures. Both acceptors show good planarity, low optical gaps (≈1.51 eV), and deep highest occupied molecular orbital levels (≤-5.77 eV). More importantly, the single-crystal structure of TBT-2 shows compact molecular arrangement due to the existence of intramolecular interactions between adjacent aromatic units and strong π-π stacking between intermolecular terminal groups. When the two acceptors are fabricated organic photovoltaic (OPV) cells by combining with a wide optical gap polymer donor, the TBT-6 with strong crystallization forms large domain sizes in bulk heterojunction (BHJ) blend. As a result, the TBT-6-based OPV cell shows a low power conversion efficiency (PCE) of 9.53%. In contrast, the TBT-2 with proper crystallization facilitates morphological optimization in the BHJ blend. Consequently, the TBT-2-based OPV cell gives an outstanding PCE of 13.25%, which is one of the best values among OPV cells with similar optical gaps. Overall, this work provides a practical molecular design strategy for developing high-performance and low-cost electron acceptors.
Collapse
Affiliation(s)
- Ni Yang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shijie Wang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Cunbin An
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
| | - Susanne Seibt
- Australian Synchrotron, ANSTO, Clayton, Victoria, 3168, Australia
| | - Guanlin Wang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingwen Wang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Yang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenxuan Wang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Xiao
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huifeng Yao
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
| | - Shaoqing Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jianhui Hou
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
107
|
Xiao Y, Yao H, Chen Z, Yang N, Song CE, Wang J, Li Z, Yu Y, Ryu DH, Shin WS, Hao X, Hou J. Morphology Control for Efficient Nonfused Acceptor-Based Organic Photovoltaic Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305631. [PMID: 37752745 DOI: 10.1002/smll.202305631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/06/2023] [Indexed: 09/28/2023]
Abstract
Non-fused electron acceptors have huge advantages in fabricating low-cost organic photovoltaic (OPV) cells. However, morphology control is a challenge as non-fused C─C single bonds bring more molecular conformations. Here, by selecting two typical polymer donors, PBDB-TF and PBQx-TF, the blend morphologies and its impacts on the power conversion efficiencies (PCEs) of non-fused acceptor-based OPV cells are studied. A selenium-containing non-fused acceptor named ASe-5 is designed. The results suggest that PBQx-TF has a lower miscibility with ASe-5 when compared with PBDB-TF. Additionally, the polymer networks may form earlier in the PBQx-TF:ASe-5 blend film due to stronger preaggregation performance, leading to a more obvious phase separation. The PBQx-TF:ASe-5 blend film shows faster charge transfer and suppressed charge recombination. As a result, the PBQx-TF:ASe-5-based device records a good PCE of 14.7% with a higher fill factor (FF) of 0.744, while the PBDB-TF:ASe-5-based device only obtains a moderate PCE of 12.3% with a relatively low FF of 0.662. The work demonstrates that the selection of donors plays a crucial role in controlling the blend morphology and thus improving the PCEs of non-fused acceptor-based OPV cells.
Collapse
Affiliation(s)
- Yang Xiao
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huifeng Yao
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Zhihao Chen
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ni Yang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chang Eun Song
- Advanced Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeongro, Yuseong-gu, Daejeon, 34114, South Korea
| | - Jingwen Wang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zi Li
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yue Yu
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Du Hyeon Ryu
- Advanced Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeongro, Yuseong-gu, Daejeon, 34114, South Korea
| | - Won Suk Shin
- Advanced Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeongro, Yuseong-gu, Daejeon, 34114, South Korea
| | - Xiaotao Hao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Jianhui Hou
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
108
|
Zhang M, Chang B, Zhang R, Li S, Liu X, Zeng L, Chen Q, Wang L, Yang L, Wang H, Liu J, Gao F, Zhang ZG. Tethered Small-Molecule Acceptor Refines Hierarchical Morphology in Ternary Polymer Solar Cells: Enhanced Stability and 19% Efficiency. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308606. [PMID: 37816121 DOI: 10.1002/adma.202308606] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/04/2023] [Indexed: 10/12/2023]
Abstract
Polymer solar cells (PSCs) are promising for efficient solar energy conversion, but achieving high efficiency and device longevity within a bulk-heterojunction (BHJ) structure remains a challenge. Traditional small-molecule acceptors (SMAs) in the BHJ blend show thermodynamic instability affecting the morphology. In contrast, tethered SMAs exhibit higher glass transition temperatures, mitigating these concerns. Yet, they might not integrate well with polymer donors, causing pronounced phase separation and overpurification of mixed domains. Herein, a novel ternary device is introduced that uses DY-P2EH, a tethered dimeric SMA with conjugated side-chains as host acceptor, and BTP-ec9, a monomeric SMA as secondary acceptor, which respectively possess hypomiscibility and hypermiscibility with the polymer donor PM6. This unique combination affords a parallel-connected ternary BHJ blend, leading to a hierarchical and stable morphology. The ternary device achieves a remarkable fill factor of 80.61% and an impressive power conversion efficiency of 19.09%. Furthermore, the ternary device exhibits exceptional stability, retaining over 85% of its initial efficiency even after enduring 1100 h of thermal stress at 85 °C. These findings highlight the potential advantage of tethered SMAs in the design of ternary devices with a refined hierarchical structure for more efficient and durable solar energy conversion technologies.
Collapse
Affiliation(s)
- Ming Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Bowen Chang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Rui Zhang
- Department of Physics, Biomolecular and organic electronics, Chemistry and Biology (IFM), Linköping University, Linköping, SE-58183, Sweden
| | - Shangyu Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xinpeng Liu
- School of Electronics and Information, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Liang Zeng
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qi Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Li Wang
- Department of Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of, Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Liangrong Yang
- Department of Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Haiqiao Wang
- Beijing Engineering Research Center for the Synthesis and Applications of Waterborne Polymers, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jiangang Liu
- School of Electronics and Information, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Feng Gao
- Department of Physics, Biomolecular and organic electronics, Chemistry and Biology (IFM), Linköping University, Linköping, SE-58183, Sweden
| | - Zhi-Guo Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
109
|
Zhou D, Wang Y, Yang S, Quan J, Deng J, Wang J, Li Y, Tong Y, Wang Q, Chen L. Recent Advances of Benzodithiophene-Based Donor Materials for Organic Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306854. [PMID: 37828639 DOI: 10.1002/smll.202306854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/24/2023] [Indexed: 10/14/2023]
Abstract
Recently, the power conversion efficiency (PCE) of organic solar cells (OSCs) has increased dramatically, making a big step toward the industrial application of OSCs. Among numerous OSCs, benzodithiophene (BDT)-based OSCs stand out in achieving efficient PCE. Notably, single-junction OSCs using BDT-based polymers as donor materials have completed a PCE of over 19%, indicating a dramatic potential for preparing high-performance large-scale OSCs. This paper reviews the recent progress of OSCs based on BDT polymer donor materials (PDMs). The development of BDT-based OSCs is concisely summarized. Meanwhile, the relationship between the structure of PDMs and the performance of OSCs is further described in this review. Besides, the development and prospect of single junction OSCs are also discussed.
Collapse
Affiliation(s)
- Dan Zhou
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Yanyan Wang
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Shu Yang
- College of Chemical Engineering, Hebei Normal University of Science & Technology, Qinhuangdao, 066004, China
| | - Jianwei Quan
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Jiawei Deng
- Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Jianru Wang
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Yubing Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Yongfen Tong
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Qian Wang
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Lie Chen
- Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| |
Collapse
|
110
|
Wan Q, Thompson BC. Control of Properties through Hydrogen Bonding Interactions in Conjugated Polymers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305356. [PMID: 37946703 PMCID: PMC10885672 DOI: 10.1002/advs.202305356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/22/2023] [Indexed: 11/12/2023]
Abstract
Molecular design is crucial for endowing conjugated polymers (CPs) with unique properties and enhanced electronic performance. Introducing Hydrogen-bonding (H-bonding) into CPs has been a broadly exploited, yet still emerging strategy capable of tuning a range of properties encompassing solubility, crystallinity, electronic properties, solid-state morphology, and stability, as well as mechanical properties and self-healing properties. Different H-bonding groups can be utilized to tailor CPs properties based on the applications of interest. This review provides an overview of classes of H-bonding CPs (assorted by the different H-bond functional groups), the synthetic methods to introduce the corresponding H-bond functional groups and the impact of H-bonding in CPs on corresponding electronic and materials properties. Recent advances in addressing the trade-off between electronic performance and mechanical durability are also highlighted. Furthermore, insights into future directions and prospects for H-bonded CPs are discussed.
Collapse
Affiliation(s)
- Qingpei Wan
- Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, CA, 90089-1661, USA
| | - Barry C Thompson
- Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, CA, 90089-1661, USA
| |
Collapse
|
111
|
Liu C, Fu Y, Zhou J, Wang L, Guo C, Cheng J, Sun W, Chen C, Zhou J, Liu D, Li W, Wang T. Alkoxythiophene-Directed Fibrillization of Polymer Donor for Efficient Organic Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308608. [PMID: 37996989 DOI: 10.1002/adma.202308608] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/24/2023] [Indexed: 11/25/2023]
Abstract
Realizing fibrillar molecular framework is highly encouraged in organic solar cells (OSCs) due to the merit of efficient charge carrier transport. This is however mainly achieved via the chemical structural design of photovoltaic semiconductors. In this work, through the utilization of three alkoxythiophene additives, T-2OMe, T-OEH, and T-2OEH, the intermolecular interactions among a series of BDT-type polymer donors, i.e., PM6, D18, PBDB-T, and PTB7-Th, are tuned to self-assemble into nanofibrils during solution casting. X-ray technique and molecular dynamics simulation reveal that the alkoxythiophene with (2-ethylhexyl)oxy (─OEH) chains can attach on the 2-ethylhexyl (EH) chains of these polymer donors and promote their self-assembly into 1D nanofibrils, in their neat films as well as photovoltaic blends with L8-BO. By adapting these fibrillar polymer donors to construct pseudo-bulk heterojunction (P-BHJ) OSCs via layer-by-layer deposition, generally improved device performance is seen, with power conversion efficiencies enhanced from 18.2% to 19.2% (certified 18.96%) and from 17.9% to 18.7% for the PM6/L8-BO and D18/L8-BO devices, respectively. This work provides a physical approach to promote the fibrillar charge transport channels for efficient photovoltaics.
Collapse
Affiliation(s)
- Chenhao Liu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Yiwei Fu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Jinpeng Zhou
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Liang Wang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Chuanhang Guo
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Jingchao Cheng
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Wei Sun
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Chen Chen
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Jing Zhou
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Dan Liu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Wei Li
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Tao Wang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
- School of Materials and Microelectronics, Wuhan University of Technology, Wuhan, 430070, China
| |
Collapse
|
112
|
Zhang KN, Du XY, Yan L, Pu YJ, Tajima K, Wang X, Hao XT. Organic Photovoltaic Stability: Understanding the Role of Engineering Exciton and Charge Carrier Dynamics from Recent Progress. SMALL METHODS 2024; 8:e2300397. [PMID: 37204077 DOI: 10.1002/smtd.202300397] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/25/2023] [Indexed: 05/20/2023]
Abstract
Benefiting from the synergistic development of material design, device engineering, and the mechanistic understanding of device physics, the certified power conversion efficiencies (PCEs) of single-junction non-fullerene organic solar cells (OSCs) have already reached a very high value of exceeding 19%. However, in addition to PCEs, the poor stability is now a challenging obstacle for commercial applications of organic photovoltaics (OPVs). Herein, recent progress made in exploring operational mechanisms, anomalous photoelectric behaviors, and improving long-term stability in non-fullerene OSCs are highlighted from a novel and previously largely undiscussed perspective of engineering exciton and charge carrier pathways. Considering the intrinsic connection among multiple temporal-scale photocarrier dynamics, multi-length scale morphologies, and photovoltaic performance in OPVs, this review delineates and establishes a comprehensive and in-depth property-function relationship for evaluating the actual device stability. Moreover, this review has also provided some valuable photophysical insights into employing the advanced characterization techniques such as transient absorption spectroscopy and time-resolved fluorescence imagings. Finally, some of the remaining major challenges related to this topic are proposed toward the further advances of enhancing long-term operational stability in non-fullerene OSCs.
Collapse
Affiliation(s)
- Kang-Ning Zhang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Xiao-Yan Du
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Lei Yan
- Academy for Advanced Interdisciplinary Studies and Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Yong-Jin Pu
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Keisuke Tajima
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Xingzhu Wang
- Academy for Advanced Interdisciplinary Studies and Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
- School of Electrical Engineering, University of South China, Hengyang, 421001, P. R. China
| | - Xiao-Tao Hao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
- ARC Centre of Excellence in Exciton Science, School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
113
|
Rasool S, Yeop J, An NG, Kim JW, Kim JY. Role of Charge-Carrier Dynamics Toward the Fabrication of Efficient Air-Processed Organic Solar Cells. SMALL METHODS 2024; 8:e2300578. [PMID: 37649231 DOI: 10.1002/smtd.202300578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/10/2023] [Indexed: 09/01/2023]
Abstract
Over the past couple of decades, immense research has been carried out to understand the photo-physics of an organic solar cell (OSC) that is important to enhance its efficiency and stability. Since OSCs undergoes complex photophysical phenomenon, studying these factors has led to designing new materials and implementing new strategies to improve efficiency in OSCs. In this regard, the invention of the non-fullerene acceptorshas greatly revolutionized the understanding of the fundamental processes occurring in OSCs. However, such vital fundamental research from device physics perspectives is carried out on glovebox (GB) processed OSCs and there is a scarcity of research on air-processed (AP) OSCs. This review will focus on charge carrier dynamics such as exciton diffusion, exciton dissociation, charge-transfer states, significance of highest occupied molecular orbital-offsets, and hole-transfer efficiencies of GB-OSCs and compare them with the available data from the AP-OSCs. Finally, key requirements for the fabrication of efficient AP-OSCs will be presented from a charge-carrier dynamics perspective. The key aspects from the charge-carrier dynamics view to fabricate efficient OSCs either from GB or air are provided.
Collapse
Affiliation(s)
- Shafket Rasool
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
| | - Jiwoo Yeop
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
| | - Na Gyeong An
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
- Department of Chemical and Biological Engineering, Monash University, Victoria, 3800, Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Manufacturing, Clayton, Victoria, 3168, Australia
| | - Jae Won Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
| | - Jin Young Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
- Graduate School of Carbon Neutrality, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
| |
Collapse
|
114
|
Yamada M. Perspectives on push-pull chromophores derived from click-type [2 + 2] cycloaddition-retroelectrocyclization reactions of electron-rich alkynes and electron-deficient alkenes. Beilstein J Org Chem 2024; 20:125-154. [PMID: 38292046 PMCID: PMC10825803 DOI: 10.3762/bjoc.20.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
Various push-pull chromophores can be synthesized in a single and atom-economical step through [2 + 2] cycloaddition-retroelectrocyclization (CA-RE) reactions involving diverse electron-rich alkynes and electron-deficient alkenes. In this review, a comprehensive investigation of the recent and noteworthy advancements in the research on push-pull chromophores prepared via the [2 + 2] CA-RE reaction is conducted. In particular, an overview of the physicochemical properties of the family of these compounds that have been investigated is provided to clarify their potential for future applications.
Collapse
Affiliation(s)
- Michio Yamada
- Department of Chemistry, Tokyo Gakugei University, Nukuikitamachi 4-1-1, Koganei, Tokyo 184-8501, Japan
| |
Collapse
|
115
|
Liu F, Jiang Y, Xu R, Su W, Wang S, Zhang Y, Liu K, Xu S, Zhang W, Yi Y, Ma W, Zhu X. Nonfullerene Acceptor Featuring Unique Self-Regulation Effect for Organic Solar Cells with 19 % Efficiency. Angew Chem Int Ed Engl 2024; 63:e202313791. [PMID: 38050643 DOI: 10.1002/anie.202313791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/16/2023] [Accepted: 12/04/2023] [Indexed: 12/06/2023]
Abstract
The blend nanomorphology of electron-donor (D) and -acceptor (A) materials is of vital importance to achieving highly efficient organic solar cells. Exogenous additives especially aromatic additives are always needed to further optimize the nanomorphology of blend films, which is hardly compatible with industrial manufacture. Herein, we proposed a unique approach to meticulously modulate the aggregation behavior of NFAs in both crystal and thin film nanomorphology via self-regulation effect. Nonfullerene acceptor Z9 was designed and synthesized by tethering phenyl groups on the inner side chains of the Y6 backbone. Compared with Y6, the tethered phenyl groups participated in the molecular aggregation via the π-π stacking of phenyl-phenyl and phenyl-2-(5,6-difluoro-3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (IC-2F) groups, which induced 3D charge transport with phenyl-mediated super-exchange electron coupling. Moreover, ordered molecular packing with suitable phase separation was observed in Z9-based blend films. High power conversion efficiencies (PCEs) of 19.0 % (certified PCE of 18.6 %) for Z9-based devices were achieved without additives, indicating the great potential of the self-regulation strategy in NFA design.
Collapse
Affiliation(s)
- Feng Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Yuanyuan Jiang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Renjie Xu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wenli Su
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing, 100875, China
| | - Shijie Wang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yaogang Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kerui Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shengjie Xu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing, 100875, China
| | - Yuanping Yi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiaozhang Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
116
|
Zhou L, Feng RR, Zhang W, Gai F. Triple-Bond Vibrations: Emerging Applications in Energy and Biological Sciences. J Phys Chem Lett 2024; 15:187-200. [PMID: 38156972 DOI: 10.1021/acs.jpclett.3c02619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Triple bonds, such as that formed between two carbon atoms (i.e., C≡C) or that formed between one carbon atom and one nitrogen atom (i.e., C≡N), afford unique chemical bonding and hence vibrational characteristics. As such, they are not only frequently used to construct molecules with tailored chemical and/or physical properties but also employed as vibrational probes to provide site-specific chemical and/or physical information at the molecular level. Herein, we offer our perspective on the emerging applications of various triple-bond vibrations in energy and biological sciences with a focus on C≡C and C≡N triple bonds.
Collapse
Affiliation(s)
- Liang Zhou
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
| | - Ran-Ran Feng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
| | - Feng Gai
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
117
|
Fan B, Gao H, Jen AKY. Biaxially Conjugated Materials for Organic Solar Cells. ACS NANO 2024; 18:136-154. [PMID: 38146694 DOI: 10.1021/acsnano.3c11193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Organic solar cells (OSCs) represent one of the most important emerging photovoltaic technologies that can implement solar energy conversion efficiently. The chemical structure of organic semiconductors deployed in the active layer of OSCs plays a critical role in the photovoltaic performance and chemical/physical stability of relevant devices. With the structure innovation of organic semiconductors, especially nonfullerene acceptors (NFAs), the performance of OSCs have been promoted rapidly in recent years, with state-of-the-art power conversion efficiencies (PCEs) exceeding 19.5%. Compared with other photovoltaics like perovskite, the shortcoming of OSCs mainly lies in the high nonradiative recombination loss. However, the photocurrent density is superior in OSCs owing to the easy modulation of the NFA band gap toward the near-infrared region. In these regards, the effort to further boost the PCE of OSCs to achieve a milestone >21% should be devoted to reducing the nonradiative loss while further broadening the absorption band. Developing organic semiconductors with biaxially extended conjugated structures has provided a potential solution to achieve these goals. Herein, we summarize the design rules and performance progress of biaxially extended conjugated materials for OSCs. The descriptions are divided into two major categories, i.e., polymers and NFAs. For p-type polymers, we focus on the biaxial conjugation on some representative building blocks, e.g., polythiophene, triphenylamine, and quinoxaline. Whereas for n-type polymers, some structures with large conjugated planes in the normal direction are presented. We also elaborate on the biaxial conjugation strategies in NFAs with modification site at either the π-core or side-group. The general structure-property relationships are further retrieved within these materials, with focus on the short-wavelength absorption and nonradiative energy loss. Finally, we provide an outlook for the further structure modification strategies of biaxially conjugated materials toward highly efficient, stable, and industry-compatible OSCs.
Collapse
Affiliation(s)
- Baobing Fan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Institute of Clean Energy, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Huanhuan Gao
- Institute of Clean Energy, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- College of New Energy, Xi'an Shiyou University, Shaanxi, Xi'an 710065, China
- Department of Material Science & Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Alex K-Y Jen
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Institute of Clean Energy, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Department of Material Science & Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Department of Materials Science & Engineering, University of Washington, Seattle, Washington 98195 United States
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| |
Collapse
|
118
|
He D, Li Y, Zhao F, Lin Y. Trap suppression in ordered organic photovoltaic heterojunctions. Chem Commun (Camb) 2024; 60:364-373. [PMID: 38099599 DOI: 10.1039/d3cc05559k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The high trap density (generally 1016-1018 cm-3) in organic solar cells (OSCs) brings about the localization of charge carriers and reduced charge carrier lifetime, mainly due to the weak intermolecular interactions of organic semiconductors resulting in their relatively poor crystallinity, which leads to low charge carrier mobilities and intense non-radiative recombination, thus impeding the further improvement of power conversion efficiencies (PCEs). Therefore, trap suppression is crucial to boost the performance of OSCs, and improving the crystallinity of donor/acceptor materials and enhancing the molecular order in devices can contribute to the trap suppression in OSCs. In this feature article, we summarize the recent advances of trap suppression in OSCs by material design and device engineering, and further outline possible development directions for trap suppression to enhance PCEs of OSCs.
Collapse
Affiliation(s)
- Dan He
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Yawen Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Fuwen Zhao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| | - Yuze Lin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
119
|
Garratt D, Matthews M, Marangos J. Toward ultrafast soft x-ray spectroscopy of organic photovoltaic devices. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2024; 11:010901. [PMID: 38250136 PMCID: PMC10799687 DOI: 10.1063/4.0000214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/17/2023] [Indexed: 01/23/2024]
Abstract
Novel ultrafast x-ray sources based on high harmonic generation and at x-ray free electron lasers are opening up new opportunities to resolve complex ultrafast processes in condensed phase systems with exceptional temporal resolution and atomic site specificity. In this perspective, we present techniques for resolving charge localization, transfer, and separation processes in organic semiconductors and organic photovoltaic devices with time-resolved soft x-ray spectroscopy. We review recent results in ultrafast soft x-ray spectroscopy of these systems and discuss routes to overcome the technical challenges in performing time-resolved x-ray experiments on photosensitive materials with poor thermal conductivity and low pump intensity thresholds for nonlinear effects.
Collapse
|
120
|
Han L, He F. Design guidance for improved organic solar cells: both from materials and devices. Sci Bull (Beijing) 2023; 68:2910-2914. [PMID: 37949738 DOI: 10.1016/j.scib.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Affiliation(s)
- Liang Han
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Feng He
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
121
|
Borges I, Guimarães RMPO, Monteiro-de-Castro G, Rosa NMP, Nieman R, Lischka H, Aquino AJA. A comprehensive analysis of charge transfer effects on donor-pyrene (bridge)-acceptor systems using different substituents. J Comput Chem 2023; 44:2424-2436. [PMID: 37638684 DOI: 10.1002/jcc.27208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 08/29/2023]
Abstract
The alternant polycyclic aromatic hydrocarbon pyrene has photophysical properties that can be tuned with different donor and acceptor substituents. Recently, a D (donor)-Pyrene (bridge)-A (acceptor) system, DPA, with the electron donor N,N-dimethylaniline (DMA), and the electron acceptor trifluoromethylphenyl (TFM), was investigated by means of time-resolved spectroscopic measurements (J. Phys. Chem. Lett. 2021, 12, 2226-2231). DPA shows great promise for potential applications in organic electronic devices. In this work, we used the ab initio second-order algebraic diagrammatic construction method ADC(2) to investigate the excited-state properties of a series of analogous DPA systems, including the originally synthesized DPAs. The additionally investigated substituents were amino, fluorine, and methoxy as donors and nitrile and nitro groups as acceptors. The focus of this work was on characterizing the lowest excited singlet states regarding charge transfer (CT) and local excitation (LE) characters. For the DMA-pyrene-TFM system, the ADC(2) calculations show two initial electronic states relevant for interpreting the photodynamics. The bright S1 state is locally excited within the pyrene moiety, and an S2 state is localized ~0.5 eV above S1 and characterized as a donor to pyrene CT state. HOMO and LUMO energies were employed to assess the efficiency of the DPA compounds for organic photovoltaics (OPVs). HOMO-LUMO and optical gaps were used to estimate power conversion and light-harvesting efficiencies for practical applications in organic solar cells. Considering the systems using smaller D/A substituents, compounds with the strong acceptor NO2 substituent group show enhanced CT and promising properties for use in OPVs. Some of the other compounds with small substituents are also found to be competitive in this regard.
Collapse
Affiliation(s)
- Itamar Borges
- Departamento de Química, Instituto Militar de Engenharia (IME), Rio de Janeiro, Brazil
| | | | | | - Nathália M P Rosa
- Departamento de Química, Instituto Militar de Engenharia (IME), Rio de Janeiro, Brazil
| | - Reed Nieman
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Hans Lischka
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Adelia J A Aquino
- Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
122
|
Yang X, Shao Y, Wang S, Chen M, Xiao B, Sun R, Min J. Processability Considerations for Next-Generation Organic Photovoltaic Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2307863. [PMID: 38048536 DOI: 10.1002/adma.202307863] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/26/2023] [Indexed: 12/06/2023]
Abstract
The evolution of organic semiconductors for organic photovoltaics (OPVs) has resulted in unforeseen outcomes. This has provided substitute choices of photoactive layer materials, which effectively convert sunlight into electricity. Recently developed OPV materials have narrowed down the gaps in efficiency, stability, and cost in devices. Records now show power conversion efficiency in single-junction devices closing to 20%. Despite this, there is still a gap between the currently developed OPV materials and those that meet the requirements of practical applications, especially the solution processability issue widely concerned in the field of OPVs. Based on the general rule that structure determines properties, methodologies to enhance the processability of OPV materials are reviewed and explored from the perspective of material design and views on the further development of processable OPV materials are presented. Considering the current dilemma that the existing evaluation indicators cannot reflect the industrial processability of OPV materials, a more complete set of key performance indicators are proposed for their processability considerations. The purpose of this perspective is to raise awareness of the boundary conditions that exist in industrial OPV manufacturing and to provide guidance for academic research that aspires to contribute to technological advancements.
Collapse
Affiliation(s)
- Xinrong Yang
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Yiming Shao
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Shanshan Wang
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Mingxia Chen
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Bo Xiao
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Rui Sun
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Jie Min
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
123
|
Xu Z, Li S, Huang F, He T, Jia X, Liang H, Guo Y, Long G, Kan B, Yao Z, Li C, Wan X, Chen Y. Propeller vs Quasi-Planar 6-Cantilever Small Molecular Platforms with Extremely Two-Dimensional Conjugated Extension. Angew Chem Int Ed Engl 2023; 62:e202311686. [PMID: 37858963 DOI: 10.1002/anie.202311686] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 10/21/2023]
Abstract
Two exotic 6-cantilever small molecular platforms, characteristic of quite different molecular configurations of propeller and quasi-plane, are established by extremely two-dimensional conjugated extension. When applied in small molecular acceptors, the only two cases of CH25 and CH26 that could contain six terminals and such broad conjugated backbones have been afforded thus far, rendering featured absorptions, small reorganization and exciton binding energies. Moreover, their distinctive but completely different molecular geometries result in sharply contrasting nanoscale film morphologies. Finally, CH26 contributes to the best device efficiency of 15.41 % among acceptors with six terminals, demonstrating two pioneered yet highly promising 6-cantilever molecular innovation platforms.
Collapse
Affiliation(s)
- Zheng Xu
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), Tianjin Key Laboratory of functional polymer materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Shitong Li
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), Tianjin Key Laboratory of functional polymer materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Fangfang Huang
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), Tianjin Key Laboratory of functional polymer materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Tengfei He
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), Tianjin Key Laboratory of functional polymer materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xinyuan Jia
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), Tianjin Key Laboratory of functional polymer materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Huazhe Liang
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), Tianjin Key Laboratory of functional polymer materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yaxiao Guo
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin, 300387, China
| | - Guankui Long
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Bin Kan
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Zhaoyang Yao
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), Tianjin Key Laboratory of functional polymer materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Chenxi Li
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), Tianjin Key Laboratory of functional polymer materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiangjian Wan
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), Tianjin Key Laboratory of functional polymer materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yongsheng Chen
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), Tianjin Key Laboratory of functional polymer materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
124
|
Hu Z, Xie J, Yu J, Zhang Y, Cai H, Bai Y, Zhang K, Liu C, Huang F, Cao Y. B─N Covalent Bond-Based Nonfullerene Electron Acceptors for Efficient Organic Solar Cells. Macromol Rapid Commun 2023; 44:e2300381. [PMID: 37798917 DOI: 10.1002/marc.202300381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/14/2023] [Indexed: 10/07/2023]
Abstract
The optoelectronic properties and photovoltaic performance of nonfullerene electron acceptors (NFEAs) in organic solar cells (OSCs) are greatly influenced by the rational structure regulation of the central core unit. This study introduces a novel type of six-membered fused electron-donating core containing B─N covalent bonds to construct acceptor-donor-acceptor (A-D-A)-type NFEAs. By modulating the branching alkyl chains on the nitrogen atom, two NFEAs, BN910 and BN1014, are synthesized and characterized. Both molecules exhibit strong near-infrared absorption, narrow bandgaps (≈1.45 eV), appropriate energy levels, and tunable molecular packing behaviors, positioning them as promising candidates for efficient NFEAs in OSCs. The investigation reveals that BN1014, with longer and C2-branched alkyl chains, demonstrates superior intermolecular packing and morphology within active layers, leading to enhanced exciton dissociation, improved charge transfer, and reduced charge recombination in OSCs. As a result, a power conversion efficiency (PCE) of 10.02% is achieved for D18:BN1014-based binary OSCs. Notably, BN1014 can be utilized as the third component in the D18:DT-Y6 binary system to fabricate the ternary OSCs, and a PCE of 17.65% is achieved, outperforming 17.05% of D18:DT-Y6-based binary OSCs. These findings highlight the potential of heteroarenes featuring B─N covalent bonds for constructing high-efficiency NFEAs in OSCs.
Collapse
Affiliation(s)
- Zhengwei Hu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Juxuan Xie
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Jiangkai Yu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yi Zhang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Houji Cai
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yuanqing Bai
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Kai Zhang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Chunchen Liu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Fei Huang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yong Cao
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
125
|
Ji X, Wang T, Fu Q, Liu D, Wu Z, Zhang M, Woo HY, Liu Y. Deciphering the Effects of Molecular Dipole Moments on the Photovoltaic Performance of Organic Solar Cells. Macromol Rapid Commun 2023; 44:e2300213. [PMID: 37230735 DOI: 10.1002/marc.202300213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/11/2023] [Indexed: 05/27/2023]
Abstract
The dielectronic constant of organic semiconductor materials is directly related to its molecule dipole moment, which can be used to guide the design of high-performance organic photovoltaic materials. Herein, two isomeric small molecule acceptors, ANDT-2F and CNDT-2F, are designed and synthesized by using the electron localization effect of alkoxy in different positions of naphthalene. It is found that the axisymmetric ANDT-2F exhibits a larger dipole moment, which can improve exciton dissociation and charge generation efficiencies due to the strong intramolecular charge transfer effect, resulting in the higher photovoltaic performance of devices. Moreover, PBDB-T:ANDT-2F blend film exhibits larger and more balanced hole and electron mobility as well as nanoscale phase separation due to the favorable miscibility. As a result, the optimized device based on axisymmetric ANDT-2F shows a JSC of 21.30 mA cm-2 , an FF of 66.21%, and a power conversion energy of 12.13%, higher than that of centrosymmetric CNDT-2F-based device. This work provides important implications for designing and synthesizing efficient organic photovoltaic materials by tuning their dipole moment.
Collapse
Affiliation(s)
- Xiaofei Ji
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
- The Interdisciplinary Research Center Shanghai Advanced Research Institute Chinese Academy of Sciences 99 Haike Road, Zhangjiang Hi-Tech Park Pudong, Shanghai, 201210, China
| | - Ting Wang
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
- Shaanxi Coal Chemical Industry Technology Research Institute Co. LTD, Xi'an, 710076, China
| | - Qiang Fu
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Dongxue Liu
- Institute of Science and Technology, China Three Gorges Corporation, Beijing, 100038, China
| | - Ziang Wu
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Mingtao Zhang
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Han Young Woo
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Yongsheng Liu
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| |
Collapse
|
126
|
Meskers SCJ. The Exciton Model for Molecular Materials: Past, Present and Future? Chemphyschem 2023:e202300666. [PMID: 38010974 DOI: 10.1002/cphc.202300666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/09/2023] [Indexed: 11/29/2023]
Abstract
In assemblies of identical molecules or chromophores, electronic excitations can be described as excitons, bound electron-hole pairs that can move from site to site as a pair in a coherent manner. The understanding of excitons is crucial when trying to engineer favorable photophysical properties through structuring organic molecular matter. In recent decades, limitations of the concept of an exciton have become clear. The exciton can hybridize with phonon and photons. To clarify these issues, the exciton is discussed within the broader context of the gauge properties of the electromagnetic force.
Collapse
Affiliation(s)
- Stefan C J Meskers
- Molecular Materials and Nanosystems Institute for Complex Molecular Systems, Department of Chemical Engineering and Chemistry, Eindhoven university of Technology, 5600 MB, Eindhoven, The Netherlands
| |
Collapse
|
127
|
Wang WW, Zhao X, Ehara M. Mechanistic Studies of Regiocontrolled Bisaddition of Fullerenes Driven by Oriented External Electric Fields. J Org Chem 2023; 88:15783-15789. [PMID: 37938999 DOI: 10.1021/acs.joc.3c01850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The challenge of achieving regioselective multifunctionalization on highly symmetric C60 and C70 fullerenes persists as a significant hurdle. In this study, we present a novel approach involving the participation of an oriented external electric field (OEEF) to facilitate the regioselective formation of bisadducts in C60/C70 fullerenes. These products are obtained through consecutive Diels-Alder cycloaddition reactions. We constructed the field strength-barrier relationship and elucidated the OEEF-driven modulation mechanisms quantitatively. Leveraging the interplay between molecular dipoles and electric fields, the diverse reactions at distinct sites exhibit varying degrees of sensitivity to the applied electric fields, thereby leading to a pronounced regioselectivity in the bisaddition process. Our proposition suggests that the angle formed between the bonding direction (referred to as the reaction axis) and the external field can conveniently function as a predictive descriptor for the reactivity of different sites on the fullerene surface when subjected to electric fields.
Collapse
Affiliation(s)
- Wei-Wei Wang
- Shaanxi Key Laboratory of High-Orbits-Electron Materials and Protection Technology for Aerospace, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, China
| | - Xiang Zhao
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Masahiro Ehara
- Research Center for Computational Science, Institute for Molecular Science, Okazaki 444-8585, Japan
| |
Collapse
|
128
|
Li Q, Liao X, Sun Y, Xu Y, Liu S, Wang LM, Cao Z, Zhan X, Zhu T, Xiao B, Cai YP, Huang F. Intermolecular Interactions, Morphology, and Photovoltaic Patterns in p-i-n Heterojunction Solar Cells With Fluorine-Substituted Organic Photovoltaic Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2308165. [PMID: 37968247 DOI: 10.1002/smll.202308165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/25/2023] [Indexed: 11/17/2023]
Abstract
During the layer-by-layer (LBL) processing of polymer solar cells (PSCs), the swelling and molecule interdiffusion are essential for achieving precise, controllable vertical morphology, and thus efficient PSCs. However, the influencing mechanism of material properties on morphology and correlated device performance has not been paid much attention. Herein, a series of fluorinated/non-fluorinated polymer donors (PBDB-T and PBDB-TF) and non-fullerene acceptors (ITIC, IT-2F, and IT-4F) are employed to investigate the performance of LBL devices. The impacts of fluorine substitution on the repulsion and miscibility between the donor and acceptor, as well as the molecular arrangement of the donor/acceptor and the vertical distribution of the LBL devices are systematically explored by the measurement of donor/acceptor Flory-Huggins interaction parameters, spectroscopic ellipsometry, and neutron reflectivity, respectively. With efficient charge transfer due to the ideal vertical and horizon morphology properties, devices based on PBDB-TF/IT-4F exhibit the highest fill factors (FFs) as well as champion power conversion efficiencies (PCEs). With this guidance, high-performance LBL devices with PCE of 17.2%, 18.5%, and 19.1% are obtained by the fluorinated blend of PBDB-TF/Y6, PBDB-TF/L8-BO, and D18/L8-BO respectively.
Collapse
Affiliation(s)
- Qingduan Li
- School of Chemistry, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, South China Normal University (SCNU), Guangzhou, 510006, P. R. China
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), Flexible Display Materials and Technology Co-Innovation Centre of Hubei Province, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan, 430056, P. R. China
| | - Xiaolan Liao
- School of Chemistry, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, South China Normal University (SCNU), Guangzhou, 510006, P. R. China
| | - Yun Sun
- School of Chemistry, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, South China Normal University (SCNU), Guangzhou, 510006, P. R. China
| | - Yuanjie Xu
- School of Chemistry, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, South China Normal University (SCNU), Guangzhou, 510006, P. R. China
| | - Shengjian Liu
- School of Chemistry, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, South China Normal University (SCNU), Guangzhou, 510006, P. R. China
| | - Li-Ming Wang
- Spallation Neutron Source Science Center, Dongguan, 523803, P. R. China
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhixiong Cao
- School of Medical Information Engineering, Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Xiaozhi Zhan
- Spallation Neutron Source Science Center, Dongguan, 523803, P. R. China
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tao Zhu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Biao Xiao
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), Flexible Display Materials and Technology Co-Innovation Centre of Hubei Province, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan, 430056, P. R. China
| | - Yue-Peng Cai
- School of Chemistry, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, South China Normal University (SCNU), Guangzhou, 510006, P. R. China
| | - Fei Huang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology (SCUT), Guangzhou, 510640, P. R. China
| |
Collapse
|
129
|
Gu X, Zhang X, Huang H. Oligomerized Fused-Ring Electron Acceptors for Efficient and Stable Organic Solar Cells. Angew Chem Int Ed Engl 2023; 62:e202308496. [PMID: 37436426 DOI: 10.1002/anie.202308496] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 07/13/2023]
Abstract
Organic solar cells (OSCs) have attracted wide research attention in the past decades. Very recently, oligomerized fused-ring electron acceptors (OFREAs) have emerged as a promising alternative to small-molecular/polymeric acceptor-based OSCs due to their unique advantages such as well-defined structures, batch reproducibility, good film formation, low diffusion coefficient, and excellent stability. So far, rapid advances have been made in the development of OFREAs consisting of directly/rigidly/flexibly linked oligomers and fused ones. In this Minireview, we systematically summarized the recent research progress of OFREAs, including structural diversity, synthesis approach, molecular conformation and packing, and long-term stability. Finally, we conclude with future perspectives on the challenges to be addressed and potential research directions. We believe that this Minireview will encourage the development of novel OFREAs for OSC applications.
Collapse
Affiliation(s)
- Xiaobin Gu
- College of Materials Science and Opto-Electronic Technology & Center of Materials Science and Optoelectronics Engineering & CAS Center for Excellence in Topological Quantum Computation & CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Xin Zhang
- College of Materials Science and Opto-Electronic Technology & Center of Materials Science and Optoelectronics Engineering & CAS Center for Excellence in Topological Quantum Computation & CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Hui Huang
- College of Materials Science and Opto-Electronic Technology & Center of Materials Science and Optoelectronics Engineering & CAS Center for Excellence in Topological Quantum Computation & CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 101408, China
| |
Collapse
|
130
|
Zhang XX, Yu XF, Xiao B. Comparative Study of the Optical and Electronic Properties of Y6 Derivatives: A Theoretical Study. J Phys Chem A 2023; 127:9291-9301. [PMID: 37906699 DOI: 10.1021/acs.jpca.3c06000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
A series of Y-series nonfullerene acceptors (Y-NFAs) including symmetric acceptors (Y6 and TTY6) as well as asymmetric acceptors (KY6, TY6, and KTY6) have been constructed, and the electronic structure, electronic properties, and excited-state properties have been comparatively studied. The optoelectronic properties, interfacial charge-transfer (CT) mechanism, and interfacial CT rate for the solar cells composed of PM6 as the donor and Y6 derivatives as the acceptors are investigated further. We show that asymmetric Y6 derivatives have high molecular planarity, strong and wide absorption spectra, and large intramolecular charge transfer (ICT). For the solar cells, the complexes of Y6 derivatives show increased open-circuit voltage, larger fill factor, and smaller energy loss compared to Y6. In addition, the complexes of Y6 derivatives have more charge-transfer states than Y6 in the low-energy region, such that there are multiple ways for CT generations, such as hot excitation, intermolecular electric field (IEF), and direct excitation. The detailed CT mechanism as well as interfacial CT rate depends on the type of complexes, and all Y6 derivatives have a similar magnitude of charge-transfer rate to the one of Y6. This work not only reveals the differences in performance between symmetric and asymmetric NFA but also reveals that proper terminal tuning is an effective way to improve photovoltaic properties.
Collapse
Affiliation(s)
- Xiao-Xue Zhang
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, People's Republic of China
| | - Xue-Fang Yu
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, People's Republic of China
| | - Bo Xiao
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, People's Republic of China
| |
Collapse
|
131
|
Zaima T, Ota W, Haruta N, Uejima M, Ohkita H, Sato T. Spontaneous-Symmetry-Breaking Charge Separation Induced by Pseudo-Jahn-Teller Distortion in Organic Photovoltaic Material. J Phys Chem Lett 2023; 14:9706-9712. [PMID: 37877625 DOI: 10.1021/acs.jpclett.3c02527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
The driving force of charge separation in the initial photovoltaic conversion process is theoretically investigated using ITIC, a nonfullerene acceptor material for organic photovoltaic devices. The density functional theory calculations show that the pseudo-Jahn-Teller (PJT) distortion of the S1 excimer state induces spontaneous symmetry-breaking charge separation between the identical ITIC molecules even without the asymmetry of the surrounding environment. The strong PJT effect arises from the vibronic coupling between the pseudodegenerate S1 and S2 excited states with different irreducible representations (irreps), i.e., Au for S1 and Ag for S2, via the asymmetric vibrational mode with the Au irrep. The vibrational mode responsible for the spontaneous polarization, which is opposite in one ITIC monomer and the other, is the intramolecular C-C stretching vibration between the core IT and terminal IC units. These results suggest that controlling the PJT effect can improve the charge separation efficiency of the initial photovoltaic conversion process.
Collapse
Affiliation(s)
- Takeaki Zaima
- Fukui Institute for Fundamental Chemistry, Kyoto University, Takano Nishibiraki-cho 34-4, Sakyo-ku, Kyoto 606-8103, Japan
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Wataru Ota
- Fukui Institute for Fundamental Chemistry, Kyoto University, Takano Nishibiraki-cho 34-4, Sakyo-ku, Kyoto 606-8103, Japan
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Naoki Haruta
- Fukui Institute for Fundamental Chemistry, Kyoto University, Takano Nishibiraki-cho 34-4, Sakyo-ku, Kyoto 606-8103, Japan
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Motoyuki Uejima
- MOLFEX, Inc., Takano Nishibiraki-cho 34-4, Sakyo-ku, Kyoto 606-8103, Japan
| | - Hideo Ohkita
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tohru Sato
- Fukui Institute for Fundamental Chemistry, Kyoto University, Takano Nishibiraki-cho 34-4, Sakyo-ku, Kyoto 606-8103, Japan
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
132
|
Yao Z, Cao X, Bi X, He T, Li Y, Jia X, Liang H, Guo Y, Long G, Kan B, Li C, Wan X, Chen Y. Complete Peripheral Fluorination of the Small-Molecule Acceptor in Organic Solar Cells Yields Efficiency over 19 . Angew Chem Int Ed Engl 2023; 62:e202312630. [PMID: 37704576 DOI: 10.1002/anie.202312630] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/13/2023] [Accepted: 09/13/2023] [Indexed: 09/15/2023]
Abstract
Due to the intrinsically flexible molecular skeletons and loose aggregations, organic semiconductors, like small molecular acceptors (SMAs) in organic solar cells (OSCs), greatly suffer from larger structural/packing disorders and weaker intermolecular interactions comparing to their inorganic counterparts, further leading to hindered exciton diffusion/dissociation and charge carrier migration in resulting OSCs. To overcome this challenge, complete peripheral fluorination was performed on basis of a two-dimensional (2D) conjugation extended molecular platform of CH-series SMAs, rendering an acceptor of CH8F with eight fluorine atoms surrounding the molecular backbone. Benefitting from the broad 2D backbone, more importantly, strengthened fluorine-induced secondary interactions, CH8F and its D18 blends afford much enhanced and more ordered molecular packings accompanying with enlarged dielectric constants, reduced exciton binding energies and more obvious fibrillary networks comparing to CH6F controls. Consequently, D18:CH8F-based OSCs reached an excellent efficiency of 18.80 %, much better than that of 17.91 % for CH6F-based ones. More excitingly, by employing D18-Cl that possesses a highly similar structure to D18 as a third component, the highest efficiency of 19.28 % for CH-series SMAs-based OSCs has been achieved so far. Our work demonstrates the dramatical structural multiformity of CH-series SMAs, meanwhile, their high potential for constructing record-breaking OSCs through peripheral fine-tuning.
Collapse
Affiliation(s)
- Zhaoyang Yao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiangjian Cao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xingqi Bi
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Tengfei He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yu Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xinyuan Jia
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Huazhe Liang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yaxiao Guo
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin, 300387, China
| | - Guankui Long
- School of Materials Science and Engineering, National Institute for Advanced Materials, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300350, China
| | - Bin Kan
- School of Materials Science and Engineering, National Institute for Advanced Materials, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300350, China
| | - Chenxi Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiangjian Wan
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yongsheng Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
133
|
Xiao J, Wang Y, Yuan L, Long Y, Jiang Z, Liu Q, Gu D, Li W, Tai H, Jiang Y. Stabilizing Non-Fullerene Organic Photodiodes through Interface Engineering Enabled by a Tin Ion-Chelated Polymer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302976. [PMID: 37541299 PMCID: PMC10558641 DOI: 10.1002/advs.202302976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/02/2023] [Indexed: 08/06/2023]
Abstract
The recent emergence of non-fullerene acceptors (NFAs) has energized the field of organic photodiodes (OPDs) and made major breakthroughs in their critical photoelectric characteristics. Yet, stabilizing inverted NF-OPDs remains challenging because of the intrinsic degradation induced by improper interfaces. Herein, a tin ion-chelated polyethyleneimine ethoxylated (denoted as PEIE-Sn) is proposed as a generic cathode interfacial layer (CIL) of NF-OPDs. The chelation between tin ions and nitrogen/oxygen atoms in PEIE-Sn contributes to the interface compatibility with efficient NFAs. The PEIE-Sn can effectively endow the devices with optimized cascade alignment and reduced interface defects. Consequently, the PEIE-Sn-OPD exhibits properties of anti-environmental interference, suppressed dark current, and accelerated interfacial electron extraction and transmission. As a result, the unencapsulated PEIE-Sn-OPD delivers high specific detection and fast response speed and shows only slight attenuation in photoelectric performance after exposure to air, light, and heat. Its superior performance outperforms the incumbent typical counterparts (ZnO, SnO2 , and PEIE as the CILs) from metrics of both stability and photoelectric characteristics. This finding suggests a promising strategy for stabilizing NF-OPDs by designing appropriate interface layers.
Collapse
Affiliation(s)
- Jianhua Xiao
- State Key Laboratory of Electronic Thin Films and Integrated DevicesSchool of Optoelectronic Science and EngineeringUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Yang Wang
- State Key Laboratory of Electronic Thin Films and Integrated DevicesSchool of Optoelectronic Science and EngineeringUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Liu Yuan
- State Key Laboratory of Electronic Thin Films and Integrated DevicesSchool of Optoelectronic Science and EngineeringUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Yin Long
- State Key Laboratory of Electronic Thin Films and Integrated DevicesSchool of Optoelectronic Science and EngineeringUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Zhi Jiang
- Innovative Center for Flexible Devices (iFLEX)School of Materials Science and EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - Qingxia Liu
- State Key Laboratory of Electronic Thin Films and Integrated DevicesSchool of Optoelectronic Science and EngineeringUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Deen Gu
- State Key Laboratory of Electronic Thin Films and Integrated DevicesSchool of Optoelectronic Science and EngineeringUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Weizhi Li
- State Key Laboratory of Electronic Thin Films and Integrated DevicesSchool of Optoelectronic Science and EngineeringUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Huiling Tai
- State Key Laboratory of Electronic Thin Films and Integrated DevicesSchool of Optoelectronic Science and EngineeringUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Yadong Jiang
- State Key Laboratory of Electronic Thin Films and Integrated DevicesSchool of Optoelectronic Science and EngineeringUniversity of Electronic Science and Technology of ChinaChengdu610054China
| |
Collapse
|
134
|
Su X, Hou X, Zhang Q, Xie Z, Wei Z, Liu L. 3D-Heterojunction Based on Embedded Perovskite Micro-Sized Single Crystals for Fast Photomultiplier Photodetectors with Broad/Narrowband Dual-Mode. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303964. [PMID: 37377121 DOI: 10.1002/adma.202303964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/24/2023] [Indexed: 06/29/2023]
Abstract
A fast photomultiplier photodetector with a broad/narrowband dual mode is implemented using a new 3D heterostructure based on embedded perovskite micro-sized single crystals. Because the single-crystal size is smaller than the electrode size, the active layer can be divided into a perovskite microcrystalline part for charge transport and a polymer-embedded part for charge storage. This induces an additional radial interface in the 3D heterojunction structure, and allows a photogenerated built-in electric field in the radial direction, especially when the energy levels between the perovskite and embedding polymer are similar. This type of heterojunction has a small radial capacitance that can effectively reduce carrier quenching and accelerate the carrier response. By controlling the applied bias direction, up to 300-1000% external quantum efficiency (EQE) and microsecond response can be achieved not only in the wide range of ultraviolet to visible light from 320 to 550 nm, but also in the narrow-band response with a full width at half minimum (FWHM) of 20 nm. This shows great potential for applications in integrated multifunctional photodetectors.
Collapse
Affiliation(s)
- Xiaojun Su
- State Key Laboratory of High Power Semiconductor Lasers, Changchun University of Science and Technology, Changchun, 130022, P. R. China
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Xuehua Hou
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Qinglei Zhang
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Zengqi Xie
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Zhipeng Wei
- State Key Laboratory of High Power Semiconductor Lasers, Changchun University of Science and Technology, Changchun, 130022, P. R. China
| | - Linlin Liu
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
135
|
Zhang CR, Yu HY, Zhang ML, Liu XM, Chen YH, Liu ZJ, Wu YZ, Chen HS. Modulating the organic photovoltaic properties of non-fullerene acceptors by molecular modification based on Y6: a theoretical study. Phys Chem Chem Phys 2023; 25:25465-25479. [PMID: 37712300 DOI: 10.1039/d3cp02520a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Developing non-fullerene acceptors (NFAs) by modifying the backbone, side chains and end groups is the most important strategy to improve the power conversion efficiency of organic solar cells (OSCs). Among numerous developed NFAs, Y6 and its derivatives are famous NFAs in the OSC field due to their good performance. Herein, in order to understand the mechanism of tuning the photovoltaic performance by modifying the Y6's center backbone, π-spacer and side-chains, we selected the PM6:Y6 OSC as a reference and systematically studied PM6:AQx-2, PM6:Y6-T, PM6:Y6-2T, PM6:Y6-O, PM6:Y6-1O and PM6:Y6-2O OSC systems based on extensive quantum chemistry calculations. The results indicate that introducing quinoxaline to substitute thiadiazole in the backbone induces a blue-shift of absorption spectra, reduces the charge transfer (CT) distance (Δd) and average electrostatic potential (ESP), and increases the singlet-triplet energy gap (ΔEST), CT excitation energy and the number of CT states in low-lying excitations. Inserting thienyl and dithiophenyl as π spacers generates a red-shift of absorption spectra, enlarges Δd and average ESP, and reduces ΔEST and the number of CT states. Introducing furo[3,2-b]furan for substituting one thieno[3,2-b]thiophene unit in the Y6's backbone causes a red-shift of absorption spectra and increases ΔEST, Δd and average ESP as well as CT excitation energy. Introducing alkoxyl as a side chain results in a blue-shift of absorption spectra, and increases ΔEST, Δd, average ESP, CT excitation energy and the number of CT states. The rate constants calculated using Marcus theory suggest that all the molecular modifications of Y6 reduce the exciton dissociation and charge recombination rates at the heterojunction interface, while introducing furo[3,2-b]furan and alkoxyl enlarges CT rates.
Collapse
Affiliation(s)
- Cai-Rong Zhang
- Department of Applied Physics, Lanzhou University of Technology, Lanzhou, Gansu 730050, China.
| | - Hai-Yuan Yu
- Department of Applied Physics, Lanzhou University of Technology, Lanzhou, Gansu 730050, China.
| | - Mei-Ling Zhang
- Department of Applied Physics, Lanzhou University of Technology, Lanzhou, Gansu 730050, China.
| | - Xiao-Meng Liu
- Department of Applied Physics, Lanzhou University of Technology, Lanzhou, Gansu 730050, China.
| | - Yu-Hong Chen
- Department of Applied Physics, Lanzhou University of Technology, Lanzhou, Gansu 730050, China.
| | - Zi-Jiang Liu
- School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - You-Zhi Wu
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
| | - Hong-Shan Chen
- College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| |
Collapse
|
136
|
Li X, Tang A, Wang H, Wang Z, Du M, Guo Q, Guo Q, Zhou E. Benzotriazole-Based 3D Four-Arm Small Molecules Enable 19.1 % Efficiency for PM6 : Y6-Based Ternary Organic Solar Cells. Angew Chem Int Ed Engl 2023; 62:e202306847. [PMID: 37565778 DOI: 10.1002/anie.202306847] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/21/2023] [Accepted: 08/08/2023] [Indexed: 08/12/2023]
Abstract
A third component featuring a planar backbone structure similar to the binary host molecule has been the preferred ingredient for improving the photovoltaic performance of ternary organic solar cells (OSCs). In this work, we explored a new avenue that introduces 3D-structured molecules as guest acceptors. Spirobifluorene (SF) is chosen as the core to combine with three different terminal-modified (rhodanine, thiazolidinedione, and dicyano-substituted rhodanine) benzotriazole (BTA) units, affording three four-arm molecules, SF-BTA1, SF-BTA2, and SF-BTA3, respectively. After adding these three materials to the classical system PM6 : Y6, the resulting ternary devices obtained ultra-high power-conversion efficiencies (PCEs) of 19.1 %, 18.7 %, and 18.8 %, respectively, compared with the binary OSCs (PCE=17.4 %). SF-BTA1-3 can work as energy donors to increase charge generation via energy transfer. In addition, the charge transfer between PM6 and SF-BTA1-3 also acts to enhance charge generation. Introducing SF-BTA1-3 could form acceptor alloys to modify the molecular energy level and inhibit the self-aggregation of Y6, thereby reducing energy loss and balancing charge transport. Our success in 3D multi-arm materials as the third component shows good universality and brings a new perspective. The further functional development of multi-arm materials could make OSCs more stable and efficient.
Collapse
Affiliation(s)
- Xiangyu Li
- Henan Institute of Advanced Technology, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Ailing Tang
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Helin Wang
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zongtao Wang
- Henan Institute of Advanced Technology, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Mengzhen Du
- Henan Institute of Advanced Technology, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Qiang Guo
- Henan Institute of Advanced Technology, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Qing Guo
- Henan Institute of Advanced Technology, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Erjun Zhou
- Henan Institute of Advanced Technology, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- National Center for Nanoscience and Technology, Beijing, 100190, China
| |
Collapse
|
137
|
Qiu D, Lai X, Lai H, Pu M, Rehman T, Zhu Y, He F. Trifluoromethylation in the Design and Synthesis of High-Performance Wide Bandgap Polymer Donors for Quasiplanar Heterojunction Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41590-41597. [PMID: 37610376 DOI: 10.1021/acsami.3c10038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
New strategies for the molecular design to construct efficient electron-deficient units for D-A-type donor copolymers are urgently needed. Halogenation of electron-deficient units (A) has been shown to be the most effective strategy reported to date with which to produce high-performance donor polymers. Herein, we have constructed two different trifluoromethyl-substituted polymer donors, PBQP-CF3 and PBQ-CF3. The trifluoromethylation process typically involves complex protocols, which are not widely used in the synthesis of polymer donors. Accordingly, we have developed a single-step, one-pot synthesis of the new trifluoromethyl-substituted electron-deficient unit (A) of PBQ-CF3. The strong electron-withdrawing ability of the trifluoromethyl group ensures deeper highest occupied molecular orbital (HOMO) energy levels, and the non-covalent bonding interactions of the fluorine atoms are beneficial to the regulation of aggregation properties. Thus, both of the trifluoromethyl-substituted polymer donors obtained much higher power conversion efficiency (PCE) than PBDP-H (6.66%). PBQ-CF3 exhibits a deeper HOMO energy level, better aggregation behavior, and higher hole mobility than PBQP-CF3. PBQ-CF3-based quasiplanar heterojunction (Q-PHJ) devices therefore achieve simultaneously enhanced open-circuit voltage (VOC), short-circuit current density (JSC), and fill factor (FF) and an impressive PCE (16.02%), which is much higher than that obtained by PBQP-CF3-based devices (12.57%). This work reveals a promising path to synthesis of the trifluoromethylation polymer donors and demonstrates that the trifluoromethylation strategy can be used to enhance the photovoltaic performance.
Collapse
Affiliation(s)
- Dongsheng Qiu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, People's Republic of China
| | - Xue Lai
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, People's Republic of China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, People's Republic of China
| | - Hanjian Lai
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, People's Republic of China
| | - Mingrui Pu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, People's Republic of China
| | - Tahir Rehman
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, People's Republic of China
| | - Yulin Zhu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, People's Republic of China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, People's Republic of China
| | - Feng He
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, People's Republic of China
- Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, People's Republic of China
| |
Collapse
|
138
|
Zheng Y, Zhao J, Liang H, Zhao Z, Kan Z. Double-Dipole Induced by Incorporating Nitrogen-Bromine Hybrid Cathode Interlayers Leads to Suppressed Current Leakage and Enhanced Charge Extraction in Non-Fullerene Organic Solar Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302460. [PMID: 37401166 PMCID: PMC10502809 DOI: 10.1002/advs.202302460] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/31/2023] [Indexed: 07/05/2023]
Abstract
The cathode interlayer plays a vital role in organic solar cells, which can modify the work function of electrodes, lower the electron extraction barriers, smooth the surface of the active layer, and remove solvent residuals. However, the development of organic cathode interlayer lags behind the rapidly improved organic solar cells because their intrinsic high surface tension can lead to poor contact with the active layers. Herein, a double-dipole strategy is proposed to enhance the properties of organic cathode interlayers, which is induced by incorporating nitrogen- and bromine-containing interlayer materials. To verify this approach, the state-of-the-art active layer composed of PM6:Y6 and two prototypical cathode interlayer materials, PDIN and PFN-Br is selected. Using the cathode interlayer PDIN: PFN-Br (0.9:0.1, in wt.%) in the devices can reduce the electrode work function, suppress the dark current leakage, and improve charge extractions, leading to enhanced short circuit current density and fill factor. The bromine ions tend to break from PFN-Br and form a new chemical bond with the silver electrode, which can adsorb extra dipoles directed from the interlayer to silver. These findings on the double-dipole strategy provide insights into the hybrid cathode interlayers for efficient non-fullerene organic solar cells.
Collapse
Affiliation(s)
- Yangchao Zheng
- Center on Nanoenergy ResearchGuangxi Colleges and Universities Key Laboratory of Blue Energy and Systems IntegrationCarbon Peak and Neutrality Science and Technology Development InstituteSchool of Physical Science & TechnologyGuangxi UniversityNanning530004China
| | - Jingjing Zhao
- Center on Nanoenergy ResearchGuangxi Colleges and Universities Key Laboratory of Blue Energy and Systems IntegrationCarbon Peak and Neutrality Science and Technology Development InstituteSchool of Physical Science & TechnologyGuangxi UniversityNanning530004China
| | - Huanpeng Liang
- Center on Nanoenergy ResearchGuangxi Colleges and Universities Key Laboratory of Blue Energy and Systems IntegrationCarbon Peak and Neutrality Science and Technology Development InstituteSchool of Physical Science & TechnologyGuangxi UniversityNanning530004China
| | - Zhenmin Zhao
- Center on Nanoenergy ResearchGuangxi Colleges and Universities Key Laboratory of Blue Energy and Systems IntegrationCarbon Peak and Neutrality Science and Technology Development InstituteSchool of Physical Science & TechnologyGuangxi UniversityNanning530004China
| | - Zhipeng Kan
- Center on Nanoenergy ResearchGuangxi Colleges and Universities Key Laboratory of Blue Energy and Systems IntegrationCarbon Peak and Neutrality Science and Technology Development InstituteSchool of Physical Science & TechnologyGuangxi UniversityNanning530004China
- State Key Laboratory of Featured Metal Materials and Life‐cycle Safety for Composite StructuresNanning530004China
| |
Collapse
|
139
|
Fu H, Zhang M, Zhang Y, Wang Q, Xu Z, Zhou Q, Li Z, Bai Y, Li Y, Zhang ZG. Modular-Approach Synthesis of Giant Molecule Acceptors via Lewis-Acid-Catalyzed Knoevenagel Condensation for Stable Polymer Solar Cells. Angew Chem Int Ed Engl 2023; 62:e202306303. [PMID: 37322862 DOI: 10.1002/anie.202306303] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/17/2023]
Abstract
The operational stability of polymer solar cells is a critical concern with respect to the thermodynamic relaxation of acceptor-donor-acceptor (A-D-A) or A-DA'D-A structured small-molecule acceptors (SMAs) within their blends with polymer donors. Giant molecule acceptors (GMAs) bearing SMAs as subunits offer a solution to this issue, while their classical synthesis via the Stille coupling suffers from low reaction efficiency and difficulty in obtaining mono-brominated SMA, rendering the approach impractical for their large-scale and low-cost preparation. In this study, we present a simple and cost-effective solution to this challenge through Lewis acid-catalyzed Knoevenagel condensation with boron trifluoride etherate (BF3 ⋅ OEt2 ) as catalyst. We demonstrated that the coupling of the monoaldehyde-terminated A-D-CHO unit and the methylene-based A-link-A (or its silyl enol ether counterpart) substrates can be quantitatively achieved within 30 minutes in the presence of acetic anhydride, affording a variety of GMAs connected via the flexible and conjugated linkers. The photophysical properties was fully studied, yielding a high device efficiency of over 18 %. Our findings offer a promising alternative for the modular synthesis of GMAs with high yields, easier work up, and the widespread application of such methodology will undoubtedly accelerate the progress of stable polymer solar cells.
Collapse
Affiliation(s)
- Hongyuan Fu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Ming Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Youdi Zhang
- College of Chemistry, Key Laboratory of Advanced Green Functional Materials, Changchun Normal University, 130032, Changchun, China
| | - Qingyuan Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Zheng'ao Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Qiuju Zhou
- Analysis & Testing Center, Xinyang Normal University, 464000, Xinyang, Henan, China
| | - Zhengkai Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Yang Bai
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Yongfang Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Zhi-Guo Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| |
Collapse
|
140
|
Li Q, Wang R, Yu T, Wang X, Zhang ZG, Zhang Y, Xiao M, Zhang C. Long-Range Charge Separation Enabled by Intramoiety Delocalized Excitations in Copolymer Donors in Organic Photovoltaic Blends. J Phys Chem Lett 2023; 14:7498-7506. [PMID: 37581453 DOI: 10.1021/acs.jpclett.3c01861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
For over two decades, most high-performance organic photovoltaics (OPVs) have been made with donor:acceptor bulk heterojunctions with domain sizes limited by exciton diffusion, where charge separation mostly takes place through the dissociation of the interfacial charge-transfer (xCT) excitons. Recently, nonfullerene acceptor (NFA)-based OPVs have shown excellent compatibility to device structures with large domains in active layers. However, it remains elusive how the excitations that are distant from the interfaces are converted into free charges. Here, we report the identification of a new charge separation channel in model copolymer/NFA blends mediated by intra-moiety delocalized excitations in both planar heterojunctions and donor-enriched bulk heterojunctions. The delocalized excitations induced by interchromophore electronic interactions in copolymer donors mediate the long-range charge separation and dissociate into free charges without forming the bound xCT states first, releasing the constraints associated with the short exciton diffusion length in organic materials. The long-range charge separation mechanism uncovered in this work, in cooperation with the short-range xCT-mediated pathway, holds the potential to further optimize OPVs with diverse device structures.
Collapse
Affiliation(s)
- Qian Li
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Rui Wang
- College of Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
- Key Laboratory of Aerospace Information Materials and Physics (NUAA), MIIT, Nanjing 211106, China
| | - Tao Yu
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Xiaoyong Wang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Zhi-Guo Zhang
- State Key Laboratory of Organic/Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuan Zhang
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Min Xiao
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China
- Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Chunfeng Zhang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China
- Institute of Materials Engineering, Nanjing University, Nantong, Jiangsu 226001, China
| |
Collapse
|
141
|
Song G, Feng W, Li Y, Liang H, Li Z, Kan B, Wan X, Yao Z, Li C, Chen Y. Extending Se substitution to the limit: from 5S to 5Se in high-efficiency non-fullerene acceptors. Chem Commun (Camb) 2023; 59:10307-10310. [PMID: 37548238 DOI: 10.1039/d3cc02560h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Based on the newly synthesized seleno[3,2-b]selenophene unit, two near-infrared non-fullerene acceptors (NFAs) of 4Se and 5Se are constructed by replacing four or all sulfurs with selenium in high-efficiency Y-series NFAs. Consequently, binary devices based on 4Se and 5Se afford PCEs of 15.17% and 15.23%, respectively, with a photoelectric response approaching 1000 nm. More excitingly, the energy loss of the 5Se-based device was as low as 0.477 eV along with almost the smallest non-radiative loss of ∼0.15 eV thus far.
Collapse
Affiliation(s)
- Guangkun Song
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wanying Feng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yu Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Huazhe Liang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhixiang Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Bin Kan
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Xiangjian Wan
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhaoyang Yao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chenxi Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yongsheng Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
142
|
Ham G, Lee D, Park C, Cha H. Charge Carrier Dynamics in Non-Fullerene Acceptor-Based Organic Solar Cells: Investigating the Influence of Processing Additives Using Transient Absorption Spectroscopy. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5712. [PMID: 37630003 PMCID: PMC10456882 DOI: 10.3390/ma16165712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023]
Abstract
In this study, we present a comprehensive investigation into the charge generation mechanism in bulk-heterojunction organic solar cells employing non-fullerene acceptors (NFAs) both with and without the presence of processing additives. While photovoltaic devices based on Y6 or BTP-eC9 have shown remarkable power conversion efficiencies, the underlying charge generation mechanism in polymer:NFA blends remains poorly understood. To shed light on this, we employ transient absorption (TA) spectroscopy to elucidate the charge transfer pathway within a blend of the donor polymer PM6 and NFAs. Interestingly, the charge carrier lifetimes of neat Y6 and BTP-eC9 are comparable, both reaching up to 20 ns. However, the PM6:BTP-eC9 blend exhibits substantially higher charge carrier generation and a longer carrier lifetime compared to PM6:Y6 blend films, leading to superior performance. By comparing TA data obtained from PM6:Y6 or PM6:BTP-eC9 blend films with and without processing additives, we observe significantly enhanced charge carrier generation and prolonged charge carrier lifetimes in the presence of these additives. These findings underscore the potential of manipulating excited species as a promising avenue for further enhancing the performance of organic solar cells. Moreover, this understanding contributes to the advancement of NFA-based systems and the optimization of charge transfer processes in polymer:NFA blends.
Collapse
Affiliation(s)
- Gayoung Ham
- Department of Energy Convergence and Climate Change, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Damin Lee
- Department of Hydrogen and Renewable Energy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Changwoo Park
- Department of Hydrogen and Renewable Energy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyojung Cha
- Department of Energy Convergence and Climate Change, Kyungpook National University, Daegu 41566, Republic of Korea
- Department of Hydrogen and Renewable Energy, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
143
|
Sowa JK, Allen TC, Rossky PJ. Accumulation and ordering of P3HT oligomers at the liquid-vapor interface with implications for thin-film morphology. Phys Chem Chem Phys 2023; 25:20808-20816. [PMID: 37493614 DOI: 10.1039/d3cp02718j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
The morphology of semiconducting polymer thin films is known to have a profound effect on their opto-electronic properties. Although considerable efforts have been made to control and understand the processes which influence the structures of these systems, it remains largely unclear what physical factors determine the arrangement of polymer chains in spin-cast films. Here, we investigate the role that the liquid-vapor interfaces in chlorobenzene solutions of poly(3-hexylthiophene) [P3HT] play in the conformational geometries adopted by the polymers. Using all-atom molecular dynamics (MD), and supported by toy-model simulations, we demonstrate that, with increasing concentration, P3HT oligomers in solution exhibit a strong propensity for the liquid-vapor interface. Due to the differential solubility of the backbone and side chains of the oligomers, in the vicinity of this interface, hexyl chains and the thiophene rings, have a clear orientational preference with respect to the liquid surface. At high concentrations, we additionally establish a substantial degree of inter-oligomer alignment and thiophene ring stacking near the interface. Our results broadly concur with the limited existing experimental evidence and we suggest that the interfacial structure can act as a template for film structure. We argue that the differences in solvent affinity of the side chain and backbone moieties are the driving force for the anisotropic orientations of the polymers near the interface. This finer grained description contrasts with the usual monolithic characterization of polymer units. Since this phenomenon can be controlled by concurrent chemical design and the choice of solvents, this work establishes a fabrication principle which may be useful to develop more highly functional polymer films.
Collapse
Affiliation(s)
- Jakub K Sowa
- Department of Chemistry, Rice University, Houston, TX 77005, USA.
| | - Thomas C Allen
- Department of Chemistry, Rice University, Houston, TX 77005, USA.
| | - Peter J Rossky
- Department of Chemistry, Rice University, Houston, TX 77005, USA.
| |
Collapse
|
144
|
Jin R, Zhang X, Xin J, Xiao W. Molecular design of D-π-A-π-D small molecule donor materials with narrow energy gap for organic solar cells applications. J Mol Model 2023; 29:273. [PMID: 37542668 DOI: 10.1007/s00894-023-05680-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/30/2023] [Indexed: 08/07/2023]
Abstract
CONTEXT Developing novel materials present a great challenge to improve the photovoltaic performance of organic solar cells (OSCs). In this paper, we designed a series of the donor-π bridge-acceptor-π bridge-donor (D-π-A-π-D) structure molecules. These molecules consist of diketopyrrolopyrrole (DPP) moiety as core, 9-hexyl-carbazole moiety as terminal groups, and different planar electron-rich aromatic groups as π-bridges. The density functional theory (DFT) and time-dependent DFT (TD-DFT) computations showed that the frontier molecular orbital (FMO) energy levels, energy gaps, electron-driving forces (ΔEL-L), open-circuit voltage (Voc), fill factor (FF), reorganization energy (λ), exciton binding energy (Eb), and absorption spectra of the designed molecules can be effectively adjusted by the introduction of different π-bridges. The designed molecules have narrow energy gap and strong absorption spectra, which are beneficial for improving the photoelectric conversion efficiency of organic solar cells. In addition, the designed molecules possess large ΔEL-L, large Voc, and FF values and low Eb when the typical fullerene derivatives are used as acceptors. The FMO energy levels of the designed molecules can provide match well with the typical fullerene acceptors PC61BM, bisPC61BM, and PC71BM. Our results suggest that the designed molecules are expected to be promising donor materials for OSCs. METHODS All DFT and TD-DFT calculations were carried out using the Gaussian 09 code. The computational technique chosen was the hybrid functional B3LYP and the 6-31G(d,p) basis set. The benzene and chloroform solvent effects have been considered using the polarized continuum model (PCM) at the TD-DFT level. The simulated absorption spectra of designed molecules were plotted by using the GaussSum 1.0 program.
Collapse
Affiliation(s)
- Ruifa Jin
- College of Chemistry and Life Sciences, Chifeng University, Chifeng, 024000, China.
- Inner Mongolia Key Laboratory of Photoelectric Functional Materials, Chifeng University, Chifeng, 024000, China.
| | - Xinhao Zhang
- College of Chemistry and Life Sciences, Chifeng University, Chifeng, 024000, China
- Inner Mongolia Key Laboratory of Photoelectric Functional Materials, Chifeng University, Chifeng, 024000, China
| | - Jingfan Xin
- College of Chemistry and Life Sciences, Chifeng University, Chifeng, 024000, China
- Inner Mongolia Key Laboratory of Photoelectric Functional Materials, Chifeng University, Chifeng, 024000, China
| | - Wenmin Xiao
- College of Chemistry and Life Sciences, Chifeng University, Chifeng, 024000, China
- Inner Mongolia Key Laboratory of Photoelectric Functional Materials, Chifeng University, Chifeng, 024000, China
| |
Collapse
|
145
|
Zheng Z, Wang J, Ren J, Wang S, Wang Y, Ma W, Zheng L, Li H, Tang Y, Zhang S, Hou J. Rational control of meniscus-guided coating for organic photovoltaics. SCIENCE ADVANCES 2023; 9:eadg9021. [PMID: 37531425 PMCID: PMC10396288 DOI: 10.1126/sciadv.adg9021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 06/29/2023] [Indexed: 08/04/2023]
Abstract
Meniscus-guided coating exhibiting outstanding depositing accuracy, functional diversity, and operating convenience is widely used in printing process of photovoltaic electronics. However, current studies about hydrodynamic behaviors of bulk heterojunction ink are still superficial, and the key dynamic parameter dominating film formation is still not found. Here, we establish the principle of accurately evaluate the Hamaker constant and reveal the critical effect of precursor film length in determining flow evolution, the polymer aggregation, and final morphology. A shorter precursor film is beneficial to restraining chain relaxation, enhancing molecular orientation and mobility. On the basis of our precursor film-length prediction method proposed in this work, the optimal coating speed can be accurately traced. Last, a 18.39% power conversion efficiency has been achieved in 3-cm2 cell based on bulk heterojunction fabricated by blade coating, which shows few reduce from 19.40% in a 0.04-cm2 cell based on spin coating.
Collapse
Affiliation(s)
- Zhong Zheng
- School of Chemistry and Biology Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Jianqiu Wang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Junzhen Ren
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences Beijing 100049, P. R. China
| | - Shijie Wang
- Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yafei Wang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences Beijing 100049, P. R. China
| | - Wei Ma
- Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Lei Zheng
- Shanghai Polytechnic University, Shanghai 201209, P. R. China
| | - Hao Li
- School of Chemistry and Biology Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yanjie Tang
- School of Chemistry and Biology Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Shaoqing Zhang
- School of Chemistry and Biology Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Jianhui Hou
- School of Chemistry and Biology Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences Beijing 100049, P. R. China
| |
Collapse
|
146
|
Fan B, Zhong W, Gao W, Fu H, Lin FR, Wong RWY, Liu M, Zhu C, Wang C, Yip HL, Liu F, Jen AKY. Understanding the Role of Removable Solid Additives: Selective Interaction Contributes to Vertical Component Distributions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302861. [PMID: 37164341 DOI: 10.1002/adma.202302861] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/09/2023] [Indexed: 05/12/2023]
Abstract
Sequentially deposited organic solar cells (SD-OSCs) have attracted great attention owing to their ability in achieving a more favorable, vertically phase-separated morphology to avoid the accumulation of counter charges at absorber/transporting layer interfaces. However, the processing of SD-OSCs is still quite challenging in preventing the penetration of small-molecule acceptors into the polymer donor layer via erosion or swelling. Herein, solid additives (SAs) with varied electrostatic potential distributions and steric hinderance are introduced into SD-OSCs to investigate the effect of evaporation dynamics and selective interaction on vertical component distribution. Multiple modelings indicate that the π-π interaction dominates the interactions between aromatic SAs and active layer components. Among them, p-dibromobenzene shows a stronger interaction with the donor while 2-chloronaphthalene (2-CN) interacts more preferably with acceptor. Combining the depth-dependent morphological study aided by multiple X-ray scattering methods, it is concluded that the evaporation of SAs can drive the stronger-interaction component upward to the surface, while having minor impact on the overall molecular packing. Ultimately, the 2-CN-treated devices with reduced acceptor concentration at the bottom surface deliver a high power conversion efficiency of 19.2%, demonstrating the effectiveness of applying selective interactions to improve the vertical morphology of OSCs by using SAs with proper structure.
Collapse
Affiliation(s)
- Baobing Fan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
- Institute of Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
| | - Wenkai Zhong
- Frontiers Science Center for Transformative Molecules, In-Situ Center for Physical Science and Center of Hydrogen Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Wei Gao
- Institute of Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
- Department of Material Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
| | - Huiting Fu
- Institute of Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
- Department of Material Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
| | - Francis R Lin
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
- Institute of Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
| | - Reese W-Y Wong
- Department of Material Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
| | - Ming Liu
- Institute of Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
- Department of Material Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
| | - Chenhui Zhu
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Cheng Wang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Hin-Lap Yip
- Institute of Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
- Department of Material Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
| | - Feng Liu
- Frontiers Science Center for Transformative Molecules, In-Situ Center for Physical Science and Center of Hydrogen Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Alex K-Y Jen
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
- Institute of Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
- Department of Material Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
147
|
Sharif R, Khalid A, Ahmad SW, Rehman A, Qutab HG, Akhtar HH, Mahmood K, Afzal S, Saleem F. A comprehensive review of the current progresses and material advances in perovskite solar cells. NANOSCALE ADVANCES 2023; 5:3803-3833. [PMID: 37496623 PMCID: PMC10367966 DOI: 10.1039/d3na00319a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/20/2023] [Indexed: 07/28/2023]
Abstract
Recently, perovskite solar cells (PSCs) have attracted ample consideration from the photovoltaic community owing to their continually-increasing power conversion efficiency (PCE), viable solution-processed methods, and inexpensive materials ingredients. Over the past few years, the performance of perovskite-based devices has exceeded 25% due to superior perovskite films achieved using low-temperature synthesis procedures along with evolving appropriate interface and electrode-materials. The current review provides comprehensive knowledge to enhance the performance and materials advances for perovskite solar cells. The latest progress in terms of perovskite crystal structure, device construction, fabrication procedures, and challenges are thoroughly discussed. Also discussed are the different layers such as ETLs and buffer-layers employed in perovskite solar-cells, seeing their transmittance, carrier mobility, and band gap potentials in commercialization. Generally, this review delivers a critical assessment of the improvements, prospects, and trials of PSCs.
Collapse
Affiliation(s)
- Rabia Sharif
- Department of Chemical & Polymer Engineering, University of Engineering & Technology Lahore Faisalabad Campus, 3½ Km. Khurrianwala - Makkuana By-Pass Faisalabad Pakistan
| | - Arshi Khalid
- Department of Humanities & Basic Sciences, University of Engineering & Technology Lahore Faisalabad Campus, 3½ Km. Khurrianwala - Makkuana By-Pass Faisalabad Pakistan
| | - Syed Waqas Ahmad
- Department of Chemical & Polymer Engineering, University of Engineering & Technology Lahore Faisalabad Campus, 3½ Km. Khurrianwala - Makkuana By-Pass Faisalabad Pakistan
| | - Abdul Rehman
- Department of Chemical & Polymer Engineering, University of Engineering & Technology Lahore Faisalabad Campus, 3½ Km. Khurrianwala - Makkuana By-Pass Faisalabad Pakistan
| | - Haji Ghulam Qutab
- Department of Chemical & Polymer Engineering, University of Engineering & Technology Lahore Faisalabad Campus, 3½ Km. Khurrianwala - Makkuana By-Pass Faisalabad Pakistan
| | - Hafiz Husnain Akhtar
- Department of Chemical & Polymer Engineering, University of Engineering & Technology Lahore Faisalabad Campus, 3½ Km. Khurrianwala - Makkuana By-Pass Faisalabad Pakistan
| | - Khalid Mahmood
- Department of Chemical & Polymer Engineering, University of Engineering & Technology Lahore Faisalabad Campus, 3½ Km. Khurrianwala - Makkuana By-Pass Faisalabad Pakistan
| | - Shabana Afzal
- Department of Basic Sciences, Humanities Muhammad Nawaz Shareef University of Engineering and Technology Multan Pakistan
| | - Faisal Saleem
- Department of Chemical & Polymer Engineering, University of Engineering & Technology Lahore Faisalabad Campus, 3½ Km. Khurrianwala - Makkuana By-Pass Faisalabad Pakistan
| |
Collapse
|
148
|
Doust Mohammadi M, Abbas F, Arshad M, Shafiq F, Louis H, Unimuke TO, Rasaki ME. Increasing the Photovoltaic Power of the Organic Solar Cells by Structural Modification of the R-P2F-Based Materials. J Mol Model 2023; 29:237. [PMID: 37420131 DOI: 10.1007/s00894-023-05652-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/05/2023] [Indexed: 07/09/2023]
Abstract
CONTEXT The present study aims to improve the performance of optoelectronics and photovoltaics by constructing an acceptor-donor-acceptor (A-D-A) molecule with a fullerene-free acceptor moiety. The study utilizes malononitrile and selenidazole derivatives to tailor the molecule for enhanced photovoltaic abilities. The study analyzes molecular properties and parameters like charge density, charge transport, UV absorption spectra, exciton binding energies, and electron density difference maps to determine the effectiveness of the tailored derivatives. METHODS To optimize the geometric structures, the study used four different functionals (B3LYP, CAM-B3LYP, MPW1PW91, and ɷB97XD) along with a double zeta valence basis set 6-31G(d, p) basis set. The study compared the results of the tailored derivatives with a reference molecule (R-P2F) to determine improvements in performance. The light harvesting efficiency of the molecules was analyzed by performing simulations in the gas and solvent phases (chloroform) based on the spectral overlap between the solar irradiance and the absorption spectra of the molecules. The open-circuit voltage (VOC) of each molecule was also analyzed, representing the maximum voltage that can be obtained from the cell under illuminated conditions. The findings indicated that the M1-P2F designed derivative is a more effective, with energy gap of 2.14 eV, and suitable candidate for non-fullerene organic solar cell application, based on various analyses such as power conversion efficiency, quantum chemical reactivity parameters, and electronic features.
Collapse
Affiliation(s)
| | - Faheem Abbas
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, People's Republic of China
- Department of Chemistry, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Arshad
- Department of Chemistry, National Sun Yat-Sen University, 70 Lien-Hai Road, Kaohsiung, 80424, Taiwan
| | - Faiza Shafiq
- Department of Chemistry, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Hitler Louis
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, P.M.B 1115, Nigeria
| | - Tomsmith O Unimuke
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, P.M.B 1115, Nigeria
| | - Michael E Rasaki
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, P.M.B 1115, Nigeria
| |
Collapse
|
149
|
Mao P, Li H, Shan X, Davis M, Tang T, Zhang Y, Tong X, Xin Y, Cheng J, Li L, Yu Z. Stretchable Photodiodes with Polymer-Engineered Semiconductor Nanowires for Wearable Photoplethysmography. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37406185 DOI: 10.1021/acsami.3c04494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Healthcare systems worldwide have been stressed to provide sufficient resources to serve the increasing and aging population in our society. The situation became more challenging at the time of pandemic. Technology advancement, especially the adoption of wearable health monitoring devices, has provided an important supplement to current clinical equipment. Most health monitoring devices are rigid, however, human tissues are soft. Such a difference has prohibited intimate contact between the two and jeopardized wearing comfortableness, which hurdles measurement accuracy especially during longtime usage. Here, we report a soft and stretchable photodiode that can conformally adhere onto the human body without any pressure and measure cardiovascular variables for an extended period with higher reliability than commercial devices. The photodiode used a composite light absorber consisting of an organic bulk heterojunction embedded into an elastic polymer matrix. It is discovered that the elastic polymer matrix not only improves the morphology of the bulk heterojunction for obtaining the desired mechanical properties but also alters its electronic band structure and improves the electrical properties that lead to a reduced dark current and enhanced photovoltage in the stretchable photodiode. The work has demonstrated high fidelity measurements and longtime monitoring of heat rate variability and oxygen saturation, potentially enabling next-generation wearable photoplethysmography devices for point-of-care diagnosis of cardiovascular diseases in a more accessible and affordable way.
Collapse
Affiliation(s)
- Pengsu Mao
- Department of Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310, United States
- High-Performance Materials Institute, Florida State University, Tallahassee, Florida 32310, United States
| | - Haoran Li
- Department of Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310, United States
- High-Performance Materials Institute, Florida State University, Tallahassee, Florida 32310, United States
| | - Xin Shan
- Department of Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310, United States
- High-Performance Materials Institute, Florida State University, Tallahassee, Florida 32310, United States
| | - Melissa Davis
- Department of Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310, United States
- High-Performance Materials Institute, Florida State University, Tallahassee, Florida 32310, United States
| | - Te Tang
- Department of Psychology and Program in Neuroscience, Florida State University, 1107 W. Call St., Tallahassee, Florida 32306, United States
| | - Yugang Zhang
- Center for Functional Nanomaterials, Brookhaven National Laboratories, 735 Brookhaven Avenue, Upton, New York 11973, United States
| | - Xiao Tong
- Center for Functional Nanomaterials, Brookhaven National Laboratories, 735 Brookhaven Avenue, Upton, New York 11973, United States
| | - Yan Xin
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Jiang Cheng
- School of Materials Science and Engineering, Chongqing University of Arts and Sciences, Chongqing 402160, P. R. China
| | - Lu Li
- School of Materials Science and Engineering, Chongqing University of Arts and Sciences, Chongqing 402160, P. R. China
| | - Zhibin Yu
- Department of Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310, United States
- High-Performance Materials Institute, Florida State University, Tallahassee, Florida 32310, United States
| |
Collapse
|
150
|
Wang A, Kang Y, Hou C, Li R, Song Y, Dong Q. Melt blending crystallization regulating balanced nanodomains in efficient and scalable coating processed organic solar cells. Sci Bull (Beijing) 2023; 68:1153-1161. [PMID: 37211491 DOI: 10.1016/j.scib.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/18/2023] [Accepted: 05/02/2023] [Indexed: 05/23/2023]
Abstract
The miscibility between active layer donors (D) and acceptors (A) is a key factor impeding the development of organic photovoltaics (OPVs) toward higher performance and large-area production. In this study, melt blending crystallization (MBC) was used to accomplish molecular-level blending and highly oriented crystallization in bulk heterojunction (BHJ) films realized by a scalable blade coating process, which increased the D/A contact area and provided sufficient exciton diffusion and dissociation. At the same time, the highly organized and balanced crystalline nanodomain structures permitted dissociated carriers to be efficiently transmitted and collected, resulting in significantly enhanced short-circuit current density, fill factor, and efficiency of the device by means of optimum melting temperature and quenching rates. The method can be simply incorporated into current efficient OPV material systems and achieve a device performance comparable to the best values. The blade-coating-processed PM6/IT-4F MBC devices achieved an efficiency of 13.86% in a small-area device and 11.48% in a large-area device. A power conversion efficiency (PCE) of 17.17% was obtained in PM6:BTP-BO-4F devices, and a PCE of 16.14% was acquired in PM6:Y6 devices.
Collapse
Affiliation(s)
- Anran Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Yifei Kang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Chunqing Hou
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Rong Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Yilong Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Qingfeng Dong
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|