101
|
Discovery of a potent and highly selective transforming growth factor β receptor-associated kinase 1 (TAK1) inhibitor by structure based drug design (SBDD). Bioorg Med Chem 2016; 24:4206-4217. [DOI: 10.1016/j.bmc.2016.07.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/04/2016] [Accepted: 07/05/2016] [Indexed: 11/23/2022]
|
102
|
The role of TGF-β-activated kinase 1 in db/db mice and high glucose-induced macrophage. Int Immunopharmacol 2016; 38:120-31. [DOI: 10.1016/j.intimp.2016.05.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 04/16/2016] [Accepted: 05/25/2016] [Indexed: 11/20/2022]
|
103
|
Wade E, Daniel P, Jenkins Z, McInerney-Leo A, Leo P, Morgan T, Addor M, Adès L, Bertola D, Bohring A, Carter E, Cho TJ, Duba HC, Fletcher E, Kim C, Krakow D, Morava E, Neuhann T, Superti-Furga A, Veenstra-Knol I, Wieczorek D, Wilson L, Hennekam R, Sutherland-Smith A, Strom T, Wilkie A, Brown M, Duncan E, Markie D, Robertson S. Mutations in MAP3K7 that Alter the Activity of the TAK1 Signaling Complex Cause Frontometaphyseal Dysplasia. Am J Hum Genet 2016; 99:392-406. [PMID: 27426733 DOI: 10.1016/j.ajhg.2016.05.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/22/2016] [Indexed: 12/29/2022] Open
Abstract
Frontometaphyseal dysplasia (FMD) is a progressive sclerosing skeletal dysplasia affecting the long bones and skull. The cause of FMD in some individuals is gain-of-function mutations in FLNA, although how these mutations result in a hyperostotic phenotype remains unknown. Approximately one half of individuals with FMD have no identified mutation in FLNA and are phenotypically very similar to individuals with FLNA mutations, except for an increased tendency to form keloid scars. Using whole-exome sequencing and targeted Sanger sequencing in 19 FMD-affected individuals with no identifiable FLNA mutation, we identified mutations in two genes-MAP3K7, encoding transforming growth factor β (TGF-β)-activated kinase (TAK1), and TAB2, encoding TAK1-associated binding protein 2 (TAB2). Four mutations were found in MAP3K7, including one highly recurrent (n = 15) de novo mutation (c.1454C>T [ p.Pro485Leu]) proximal to the coiled-coil domain of TAK1 and three missense mutations affecting the kinase domain (c.208G>C [p.Glu70Gln], c.299T>A [p.Val100Glu], and c.502G>C [p.Gly168Arg]). Notably, the subjects with the latter three mutations had a milder FMD phenotype. An additional de novo mutation was found in TAB2 (c.1705G>A, p.Glu569Lys). The recurrent mutation does not destabilize TAK1, or impair its ability to homodimerize or bind TAB2, but it does increase TAK1 autophosphorylation and alter the activity of more than one signaling pathway regulated by the TAK1 kinase complex. These findings show that dysregulation of the TAK1 complex produces a close phenocopy of FMD caused by FLNA mutations. Furthermore, they suggest that the pathogenesis of some of the filaminopathies caused by FLNA mutations might be mediated by misregulation of signaling coordinated through the TAK1 signaling complex.
Collapse
|
104
|
Carrier M, Joint M, Lutzing R, Page A, Rochette-Egly C. Phosphoproteome and Transcriptome of RA-Responsive and RA-Resistant Breast Cancer Cell Lines. PLoS One 2016; 11:e0157290. [PMID: 27362937 PMCID: PMC4928811 DOI: 10.1371/journal.pone.0157290] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 05/26/2016] [Indexed: 01/21/2023] Open
Abstract
Retinoic acid (RA), the main active vitamin A metabolite, controls multiple biological processes such as cell proliferation and differentiation through genomic programs and kinase cascades activation. Due to these properties, RA has proven anti-cancer capacity. Several breast cancer cells respond to the antiproliferative effects of RA, while others are RA-resistant. However, the overall signaling and transcriptional pathways that are altered in such cells have not been elucidated. Here, in a large-scale analysis of the phosphoproteins and in a genome-wide analysis of the RA-regulated genes, we compared two human breast cancer cell lines, a RA-responsive one, the MCF7 cell line, and a RA-resistant one, the BT474 cell line, which depicts several alterations of the “kinome”. Using high-resolution nano-LC-LTQ-Orbitrap mass spectrometry associated to phosphopeptide enrichment, we found that several proteins involved in signaling and in transcription, are differentially phosphorylated before and after RA addition. The paradigm of these proteins is the RA receptor α (RARα), which was phosphorylated in MCF7 cells but not in BT474 cells after RA addition. The panel of the RA-regulated genes was also different. Overall our results indicate that RA resistance might correlate with the deregulation of the phosphoproteome with consequences on gene expression.
Collapse
Affiliation(s)
- Marilyn Carrier
- Department of Functional Genomics and Cancer, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), INSERM, U964, CNRS, UMR7104, Université de Strasbourg, 1 rue Laurent Fries, BP 10142, 67404 Illkirch Cedex, Strasbourg, France
| | - Mathilde Joint
- Proteomics Platform, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), INSERM, U964, CNRS, UMR7104, Université de Strasbourg, 1 rue Laurent Fries, BP 10142, 67404 Illkirch Cedex, Strasbourg, France
| | - Régis Lutzing
- Department of Functional Genomics and Cancer, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), INSERM, U964, CNRS, UMR7104, Université de Strasbourg, 1 rue Laurent Fries, BP 10142, 67404 Illkirch Cedex, Strasbourg, France
| | - Adeline Page
- Proteomics Platform, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), INSERM, U964, CNRS, UMR7104, Université de Strasbourg, 1 rue Laurent Fries, BP 10142, 67404 Illkirch Cedex, Strasbourg, France
| | - Cécile Rochette-Egly
- Department of Functional Genomics and Cancer, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), INSERM, U964, CNRS, UMR7104, Université de Strasbourg, 1 rue Laurent Fries, BP 10142, 67404 Illkirch Cedex, Strasbourg, France
- * E-mail:
| |
Collapse
|
105
|
Zhang Y, O'Keefe RJ, Jonason JH. BMP-TAK1 (MAP3K7) Induces Adipocyte Differentiation Through PPARγ Signaling. J Cell Biochem 2016; 118:204-210. [PMID: 27293199 DOI: 10.1002/jcb.25626] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 02/05/2023]
Abstract
BMPs have been shown to promote adipocyte differentiation through SMAD-dependent signaling. However, the role of TGF-β-activated kinase 1 (TAK1) in non-canonical BMP signaling in adipocyte differentiation remains unclear. Here, we show that TAK1 inhibition decreases lipid accumulation in C3H10T1/2 mesenchymal stem cells (MSCs) induced to differentiate into adipocytes. TAK1 knockdown by siRNA further confirms that TAK1 is required for adipocyte commitment of MSCs. Additionally, TAK1 knockdown inhibits adipogenesis of 3T3-L1 preadipocytes, indicating that TAK1 is not only needed for adipocyte commitment, but also required for adipocyte terminal differentiation. Furthermore, TAK1 ablation specifically in adipocytes reduced high fat diet-induced weight gain and improved glucose tolerance. Mechanistically, we demonstrate that TAK1 is required for PPARγ transactivation and promotes PPARγ transcriptional activity synergistically with TAK1 binding protein 1 (TAB1). Collectively, our results demonstrate that TAK1 plays a critical role in BMP-mediated adipocyte differentiation. J. Cell. Biochem. 118: 204-210, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yongchun Zhang
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, New York 14642.,Department of Biochemistry and Biophysics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, New York 14642.,Center for Human Development and Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, New York 10032
| | - Regis J O'Keefe
- Department of Orthopaedic Surgery, Washington University School of Medicine, 660 Euclid Avenue, St. Louis, Missouri 63110
| | - Jennifer H Jonason
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, New York 14642.,Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, New York 14642
| |
Collapse
|
106
|
Wang S, Li H, Lǚ K, Qian Z, Weng S, He J, Li C. Identification and characterization of transforming growth factor β-activated kinase 1 from Litopenaeus vannamei involved in anti-bacterial host defense. FISH & SHELLFISH IMMUNOLOGY 2016; 52:278-288. [PMID: 27033469 DOI: 10.1016/j.fsi.2016.03.149] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 03/22/2016] [Indexed: 06/05/2023]
Abstract
LvTAK1, a member of transforming growth factor β-activated kinase 1 (TAK1) families, has been identified from Litopenaeus vannamei in this study. The full length of LvTAK1 is 2670 bp, including a 2277 bp open reading frame (ORF) that encoded a putative protein of 758 amino acids with a calculated molecular weight of ∼83.4 kDa LvTAK1 expression was most abundant in muscles and was up-regulated in gills after LPS, Vibrio parahaemolyticus, Staphylococcus aureus, Poly (I:C) and WSSV challenge. Both in vivo and in vitro experiments indicated that LvTAK1 could activate the expression of several antimicrobial peptide genes (AMPs). In addition, the dsRNA-mediated knockdown of LvTAK1 enhanced the susceptibility of shrimps to Vibrio parahaemolyticus, a kind of Gram-negative bacteria. These results suggested LvTAK1 played important roles in anti-bacterial infection. CoIP and subcellular localization assay demonstrated that LvTAK1 could interact with its binding protein LvTAB2, a key component of IMD pathway. Moreover, over-expression of LvTAK1 in Drosophila S2 cell could strongly induce the promoter activity of Diptericin (Dpt), a typical AMP which is used to read out of the activation of IMD pathway. These findings suggested that LvTAK1 could function as a component of IMD pathway. Interestingly, with the over-expression of LvTAK1 in S2 cell, the promoter activity of Metchnikowin (Mtk), a main target gene of Toll/Dif pathway, was up-regulated over 30 times, suggesting that LvTAK1 may also take part in signal transduction of the Toll pathway. In conclusion, we provided some evidences that the involvement of LvTAK1 in the regulation of both Toll and IMD pathways, as well as innate immune against bacterial infection in shrimp.
Collapse
Affiliation(s)
- Sheng Wang
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Haoyang Li
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Kai Lǚ
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Zhe Qian
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Shaoping Weng
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Jianguo He
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China; School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), PR China.
| | - Chaozheng Li
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China; School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), PR China.
| |
Collapse
|
107
|
Identification and characterization of a TAB1 gene involved in innate immunity of amphioxus (Branchiostoma belcheri). Gene 2016; 575:294-302. [DOI: 10.1016/j.gene.2015.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/06/2015] [Accepted: 09/01/2015] [Indexed: 11/21/2022]
|
108
|
Ogura Y, Hindi SM, Sato S, Xiong G, Akira S, Kumar A. TAK1 modulates satellite stem cell homeostasis and skeletal muscle repair. Nat Commun 2015; 6:10123. [PMID: 26648529 PMCID: PMC4682113 DOI: 10.1038/ncomms10123] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 11/04/2015] [Indexed: 01/07/2023] Open
Abstract
Satellite cells are resident adult stem cells that are required for regeneration of skeletal muscle. However, signalling mechanisms that regulate satellite cell function are less understood. Here we demonstrate that transforming growth factor-β-activated kinase 1 (TAK1) is important in satellite stem cell homeostasis and function. Inactivation of TAK1 in satellite cells inhibits muscle regeneration in adult mice. TAK1 is essential for satellite cell proliferation and its inactivation causes precocious differentiation. Moreover, TAK1-deficient satellite cells exhibit increased oxidative stress and undergo spontaneous cell death, primarily through necroptosis. TAK1 is required for the activation of NF-κB and JNK in satellite cells. Forced activation of NF-κB improves survival and proliferation of TAK1-deficient satellite cells. Furthermore, TAK1-mediated activation of JNK is essential to prevent oxidative stress and precocious differentiation of satellite cells. Collectively, our study suggests that TAK1 is required for maintaining the pool of satellite stem cells and for regenerative myogenesis.
Collapse
Affiliation(s)
- Yuji Ogura
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | - Sajedah M Hindi
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | - Shuichi Sato
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | - Guangyan Xiong
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | - Shizuo Akira
- Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Ashok Kumar
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| |
Collapse
|
109
|
Ye L, Jiang WG. Bone morphogenetic proteins in tumour associated angiogenesis and implication in cancer therapies. Cancer Lett 2015; 380:586-597. [PMID: 26639195 DOI: 10.1016/j.canlet.2015.10.036] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/17/2015] [Accepted: 10/12/2015] [Indexed: 02/09/2023]
Abstract
Bone morphogenetic protein (BMP) belongs to transforming growth factor-β superfamily. To date, more than 20 BMPs have been identified in humans. BMPs play a critical role in embryonic and postnatal development, and also in maintaining homeostasis in different organs and tissues by regulating cell differentiation, proliferation, survival and motility. They play important roles in the development and progression of certain malignancies, including prostate cancer, breast cancer, lung cancer, etc. Recently, more evidence shows that BMPs are also involved in tumour associated angiogenesis. For example BMP can either directly regulate the functions of vascular endothelial cells or indirectly influence the angiogenesis via regulation of angiogenic factors, such as vascular endothelial growth factor (VEGF). Such crosstalk can also be reflected in the interaction with other angiogenic factors, like hepatocyte growth factor (HGF) and basic fibroblast growth factor (bFGF). All these factors are involved in the orchestration of the angiogenic process during tumour development and progression. Review of the relevant studies will provide a comprehensive prospective on current understanding and shed light on the corresponding therapeutic opportunity.
Collapse
Affiliation(s)
- Lin Ye
- Metastasis & Angiogenesis Research Group, Cardiff University-Peking University Cancer Institute, Institute of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK.
| | - Wen G Jiang
- Metastasis & Angiogenesis Research Group, Cardiff University-Peking University Cancer Institute, Institute of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| |
Collapse
|
110
|
TAK1 Regulates Myocardial Response to Pathological Stress via NFAT, NFκB, and Bnip3 Pathways. Sci Rep 2015; 5:16626. [PMID: 26564789 PMCID: PMC4643217 DOI: 10.1038/srep16626] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/16/2015] [Indexed: 01/19/2023] Open
Abstract
TAK1 (TGFβ-activated kinase-1) signaling is essential in regulating a number of important biological functions, including innate immunity, inflammatory response, cell growth and differentiation, and myocardial homeostasis. The precise role of TAK1 in the adult heart under pathological conditions remains largely unknown. Importantly, we observed that TAK1 is upregulated during compensatory hypertrophy but downregulated in end-stage heart failure. Here we generated transgenic mice with inducible expression of an active TAK1 mutant (TAK1ΔN) in the adult heart. TAK1ΔN transgenic mice developed greater cardiac hypertrophy compared with control mice after transverse aortic constriction (TAC), which was largely blocked by ablation of calcineurin Aβ. Expression of TAK1ΔN also promoted NFAT (nuclear factor of activated T-cells) transcriptional activity in luciferase reporter mice at baseline, which was further enhanced after TAC. Our results revealed that activation of TAK1 promoted adaptive cardiac hypertrophy through a cross-talk between calcineurin-NFAT and IKK-NFκB pathways. More significantly, adult-onset inducible expression of TAK1ΔN protected the myocardium from adverse remodeling and heart failure after myocardial infarction or long-term pressure overload, by preventing cardiac cell death and fibrosis. Mechanistically, TAK1 exerts its cardioprotective effect through activation of NFAT/NFκB, downregulation of Bnip3, and inhibition of cardiac cell death.
Collapse
|
111
|
Friend K, Brooks HA, Propson NE, Thomson JA, Kimble J. Embryonic Stem Cell Growth Factors Regulate eIF2α Phosphorylation. PLoS One 2015; 10:e0139076. [PMID: 26406898 PMCID: PMC4583406 DOI: 10.1371/journal.pone.0139076] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 09/09/2015] [Indexed: 12/18/2022] Open
Abstract
Growth factors and transcription factors are well known to regulate pluripotent stem cells, but less is known about translational control in stem cells. Here, we use embryonic stem cells (ESCs) to investigate a connection between ESC growth factors and eIF2α-mediated translational control (eIF2α phosphorylation promotes protein expression from mRNAs with upstream open-reading frames, or uORFs). We find abundant phosphorylated P-eIF2α (P-eIF2α) in both pluripotent mouse and human ESCs, but little P-eIF2α in ESCs triggered to differentiate. We show that the growth factors LIF (leukemia inhibitory factor) and BMP4 (bone morphogenic protein 4) both maintain P-eIF2α in mESCs, but use distinct mechanisms: LIF inhibits an eIF2α phosphatase whereas BMP4 activates an eIF2α kinase. The mRNAs encoding the pluripotency factors Nanog and c-Myc possess uORFs while Oct4 mRNA does not. We find that salubrinal, a chemical that increases eIF2α phosphorylation, promotes Nanog and c-Myc expression, but not Oct4 expression. These experiments connect ESC growth factors to eIF2α phosphorylation and suggest a chemical substitute for LIF to enhance Nanog and c-Myc expression.
Collapse
Affiliation(s)
- Kyle Friend
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, United States of America
- Department of Chemistry and Biochemistry, Washington and Lee University, Lexington, Virginia, 24450, United States of America
- * E-mail: (KF); (JK)
| | - Hunter A. Brooks
- Department of Chemistry and Biochemistry, Washington and Lee University, Lexington, Virginia, 24450, United States of America
| | - Nicholas E. Propson
- The Morgridge Institute for Research, 309 North Orchard Street, Madison, Wisconsin, 53715, United States of America
| | - James A. Thomson
- The Morgridge Institute for Research, 309 North Orchard Street, Madison, Wisconsin, 53715, United States of America
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, 53706, United States of America
| | - Judith Kimble
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, United States of America
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, Wisconsin, 53706, United States of America
- * E-mail: (KF); (JK)
| |
Collapse
|
112
|
Dysregulated Inflammatory Signaling upon Charcot-Marie-Tooth Type 1C Mutation of SIMPLE Protein. Mol Cell Biol 2015; 35:2464-78. [PMID: 25963657 DOI: 10.1128/mcb.00300-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Endosomal trafficking is a key mechanism to modulate signal propagation and cross talk. Ubiquitin adaptors, along with endosomal sorting complex required for transport (ESCRT) complexes, are also integrated to terminate ligand-receptor activation in late endosomes and multivesicular bodies (MVBs). Within these pathways, we recently demonstrated that the protein SIMPLE is a novel player in MVB regulation. SIMPLE is also clinically important and its mutation accounts for the Charcot-Marie-Tooth type 1C (CMT1C) disease. MVB defects of mutation and deletion of SIMPLE, however, are distinct. Here, we show that MVB defects found in mutation but not deletion of SIMPLE lead to impaired turnover and accumulation of ESCRT-0 protein Hrs punctain late endosomes. We further uncover increased colocalization of ubiquitin ligase TRAF6 and Hrs in late endosomes. Upon stimulation with interkeukin-1 or transforming growth factor , prolonged activation of p38 kinase/JNK is detected, while nuclear accumulation of NF-κB and phosphorylation of SMAD2 is reduced with CMT1C mutation. The aberrant kinetics we observed in inflammatory signaling may contribute to increased tumor susceptibility and changes in the levels of chemokines/cytokines that result from CMT1C mutation. We propose that altered endosomal trafficking due to malformations of MVBs and subsequent atypical signaling kinetic may account for a toxic gain of function in CMT1C pathogenesis.
Collapse
|
113
|
Chen IT, Hsu PH, Hsu WC, Chen NJ, Tseng PH. Polyubiquitination of Transforming Growth Factor β-activated Kinase 1 (TAK1) at Lysine 562 Residue Regulates TLR4-mediated JNK and p38 MAPK Activation. Sci Rep 2015; 5:12300. [PMID: 26189595 PMCID: PMC4507259 DOI: 10.1038/srep12300] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 06/22/2015] [Indexed: 12/31/2022] Open
Abstract
Toll-like receptor 4 (TLR4) plays an important role in innate immunity by eliciting inflammation. Upon receptor engagement, transforming growth factor β-activated kinase 1 (TAK1) is an essential mediator that transmits a signal from the receptor to downstream effectors, IκB kinase (IKK) and the mitogen-activated protein kinases (MAPKs), which control the production of inflammatory cytokines. However, the association between phosphorylation and ubiquitination of TAK1 is not yet clear. Here, we examined the crosstalk between phosphorylation and polyubiquitination of TAK1 and further investigated the mechanism of distinct activation of MAPKs and IKK. Inhibition of TAK1 phosphorylation enhanced Lys63-linked polyubiquitination of TAK1. Conversely, ubiquitin modification was counteracted by phospho-mimic TAK1 mutant, T(184,187)D. Moreover, using LC-MS analysis, Lys562 of TAK1 was identified as a novel Lys63-linked ubiquitination site and as the key residue in the feedback regulation. Mutation of Lys562 of TAK1 leads to a decrease in TAK1 phosphorylation and specific inhibition of the MAPK pathway, but has no effect on formation of the TAK1-containing complex. Our findings demonstrate a feedback loop for phosphorylation and ubiquitination of TAK1, indicating a dynamic regulation between TAK1 polyubiquitiantion and phosphorylated activation, and the molecular mechanism by which IKK and MAPKs are differentially activated in the TLR4 pathway.
Collapse
Affiliation(s)
- I-Ting Chen
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, National Yang-Ming University, Taipei 11221, Taiwan (ROC)
| | - Pang-Hung Hsu
- 1] Institute of Biochemistry and Molecular Biology, School of Life Sciences, National Yang-Ming University, Taipei 11221, Taiwan (ROC) [2] Institute of Bioscience and Biotechnology, College of Life Sciences, National Taiwan Ocean University, Keelung20224, Taiwan (ROC)
| | - Wan-Ching Hsu
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, National Yang-Ming University, Taipei 11221, Taiwan (ROC)
| | - Nien-Jung Chen
- 1] Institute of Microbiology and Immunology, School of Life Sciences, National Yang-Ming University, Taipei 11221, Taiwan (ROC) [2] Infection and Immunity Research Center, National Yang-Ming University, Taipei 11221, Taiwan (ROC)
| | - Ping-Hui Tseng
- 1] Institute of Biochemistry and Molecular Biology, School of Life Sciences, National Yang-Ming University, Taipei 11221, Taiwan (ROC) [2] Infection and Immunity Research Center, National Yang-Ming University, Taipei 11221, Taiwan (ROC)
| |
Collapse
|
114
|
Glycogen synthase kinase 3β ubiquitination by TRAF6 regulates TLR3-mediated pro-inflammatory cytokine production. Nat Commun 2015; 6:6765. [PMID: 25828701 PMCID: PMC4396377 DOI: 10.1038/ncomms7765] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 02/25/2015] [Indexed: 12/13/2022] Open
Abstract
TRAF6 is critical for the production of inflammatory cytokines in various TLR-mediated signalling pathways. However, it is poorly understood how TRAF6 regulates TLR3 responses. Here we demonstrate that GSK3β interacts with TRAF6 and positively regulates the TLR3-mediated signalling. Suppression of GSK3β expression or its kinase activity drastically reduces the production of inflammatory cytokines and the induction of c-Fos by decreasing ERK and p38 phosphorylation. GSK3β physically associates with TRAF6 in a TLR3 ligand poly I:C-dependent manner. TRAF6 is determined to be a direct E3 ligase for GSK3β, and TRAF6-mediated GSK3β ubiquitination is essential for poly I:C-dependent cytokine production by promoting the TLR3 adaptor protein TRIF-assembled signalling complex. GSK3β is a molecular hub implicated in regulation of cell metabolism, migration, proliferation and survival. Here the authors show that GSK3β regulates inflammatory cytokine production by promoting the assembly of a signalling platform downstream of TLR3, a sensor of viral infection.
Collapse
|
115
|
Pesce M, Franceschelli S, Ferrone A, De Lutiis MA, Patruno A, Grilli A, Felaco M, Speranza L. Verbascoside down-regulates some pro-inflammatory signal transduction pathways by increasing the activity of tyrosine phosphatase SHP-1 in the U937 cell line. J Cell Mol Med 2015; 19:1548-56. [PMID: 25807993 PMCID: PMC4511353 DOI: 10.1111/jcmm.12524] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 12/02/2014] [Indexed: 11/29/2022] Open
Abstract
Polyphenols are the major components of many traditional herbal remedies, which exhibit several beneficial effects including anti-inflammation and antioxidant properties. Src homology region 2 domain-containing phosphatase-1 (SHP-1) is a redox sensitive protein tyrosine phosphatase that negatively influences downstream signalling molecules, such as mitogen-activated protein kinases, thereby inhibiting inflammatory signalling induced by lipopolysaccharide (LPS). Because a role of transforming growth factor β-activated kinase-1 (TAK1) in the upstream regulation of JNK molecule has been well demonstrated, we conjectured that SHP-1 could mediate the anti-inflammatory effect of verbascoside through the regulation of TAK-1/JNK/AP-1 signalling in the U937 cell line. Our results demonstrate that verbascoside increased the phosphorylation of SHP-1, by attenuating the activation of TAK-1/JNK/AP-1 signalling. This leads to a reduction in the expression and activity of both COX and NOS. Moreover, SHP-1 depletion deletes verbascoside inhibitory effects on pro-inflammatory molecules induced by LPS. Our data confirm that SHP-1 plays a critical role in restoring the physiological mechanisms of inducible proteins such as COX2 and iNOS, and that the down-regulation of TAK-1/JNK/AP-1 signalling by targeting SHP-1 should be considered as a new therapeutic strategy for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Mirko Pesce
- Department of Psychological, Humanistic and Territorial Sciences, University G. D'Annunzio, Chieti, Italy
| | - Sara Franceschelli
- Department of Medicine and Science of Aging, University G. D'Annunzio, Chieti, Italy
| | - Alessio Ferrone
- Department of Medicine and Science of Aging, University G. D'Annunzio, Chieti, Italy
| | - Maria Anna De Lutiis
- Department of Medicine and Science of Aging, University G. D'Annunzio, Chieti, Italy
| | - Antonia Patruno
- Department of Medicine and Science of Aging, University G. D'Annunzio, Chieti, Italy
| | - Alfredo Grilli
- Department of Psychological, Humanistic and Territorial Sciences, University G. D'Annunzio, Chieti, Italy
| | - Mario Felaco
- Department of Medicine and Science of Aging, University G. D'Annunzio, Chieti, Italy
| | - Lorenza Speranza
- Department of Medicine and Science of Aging, University G. D'Annunzio, Chieti, Italy
| |
Collapse
|
116
|
Theivanthiran B, Kathania M, Zeng M, Anguiano E, Basrur V, Vandergriff T, Pascual V, Wei WZ, Massoumi R, Venuprasad K. The E3 ubiquitin ligase Itch inhibits p38α signaling and skin inflammation through the ubiquitylation of Tab1. Sci Signal 2015; 8:ra22. [PMID: 25714464 DOI: 10.1126/scisignal.2005903] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Deficiency in the E3 ubiquitin ligase Itch causes a skin-scratching phenotype in mice. We found that there was increased phosphorylation and activation of the mitogen-activated protein kinase p38α in spontaneous and experimentally induced skin lesions of Itch-deficient (Itch-/-) mice. Itch bound directly to the TGF-β-activated kinase 1-binding protein 1 (Tab1) through a conserved PPXY motif and inhibited the activation of p38α. Knockdown of Tab1 by short hairpin RNA attenuated the prolonged p38α phosphorylation exhibited by Itch-/- cells. Similarly, reconstitution of Itch-/- cells with wild-type Itch, but not the ligase-deficient Itch-C830A mutant, inhibited the phosphorylation and activation of p38α. Compared to the skin of wild-type mice, the skin of Itch-/- mice contained increased amounts of the mRNAs of proinflammatory cytokines, including tumor necrosis factor (TNF), interleukin-6 (IL-6), IL-1β, IL-11, and IL-19. Inhibition of p38 or blocking the interaction between p38α and Tab1 with a cell-permeable peptide substantially attenuated skin inflammation in Itch-/- mice. These findings provide insight into how Itch-mediated regulatory mechanisms prevent chronic skin inflammation, which could be exploited therapeutically.
Collapse
Affiliation(s)
| | - Mahesh Kathania
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, TX 75204, USA
| | - Minghui Zeng
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, TX 75204, USA
| | - Esperanza Anguiano
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, TX 75204, USA
| | - Venkatesha Basrur
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Travis Vandergriff
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Virginia Pascual
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, TX 75204, USA
| | - Wei-Zen Wei
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Ramin Massoumi
- Department of Laboratory Medicine, Lund University, Medicon Village, SE-22381 Lund, Sweden
| | - K Venuprasad
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, TX 75204, USA.
| |
Collapse
|
117
|
Antileishmanial effect of 18β-glycyrrhetinic acid is mediated by Toll-like receptor-dependent canonical and noncanonical p38 activation. Antimicrob Agents Chemother 2015; 59:2531-9. [PMID: 25691644 DOI: 10.1128/aac.03997-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 02/05/2015] [Indexed: 01/08/2023] Open
Abstract
18β-Glycyrrhetinic acid (GRA), a natural immunomodulator, greatly reduced the parasite load in experimental visceral leishmaniasis through nitric oxide (NO) upregulation, proinflammatory cytokine expression, and NF-κB activation. For the GRA-mediated effect, the primary kinase responsible was found to be p38, and analysis of phosphorylation kinetics as well as studies with dominant-negative (DN) constructs revealed mitogen-activated protein kinase kinase 3 (MKK3) and MKK6 as the immediate upstream regulators of p38. However, detection of remnant p38 kinase activity in the presence of both DN MKK3 and MKK6 suggested alternative pathways of p38 activation. That residual p38 activity was attributed to an autophosphorylation event ensured by the transforming growth factor β-activated kinase 1 (TAK1)-binding protein 1 (TAB1)-p38 interaction and was completely abolished upon pretreatment with SB203580 in DN MKK3/6 double-transfected macrophage cells. Further upstream signaling evaluation by way of phosphorylation kinetics and transfection studies with DN constructs identified TAK1, myeloid differentiation factor 88 (MyD88), interleukin 1 receptor (IL-1R)-activated kinase 1 (IRAK1), and tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6) as important contributors to GRA-mediated macrophage activation. Finally, gene knockdown studies revealed Toll-like receptor 2 (TLR2) and TLR4 as the membrane receptors associated with GRA-mediated antileishmanial activity. Together, the results of this study brought mechanistic insight into the antileishmanial activity of GRA, which is dependent on the TLR2/4-MyD88 signaling axis, leading to MKK3/6-mediated canonical and TAB1-mediated noncanonical p38 activation.
Collapse
|
118
|
Li YW, Li X, Wang Z, Mo ZQ, Dan XM, Luo XC, Li AX. Orange-spotted grouper Epinephelus coioides Tak1: molecular identification, expression analysis and functional study. JOURNAL OF FISH BIOLOGY 2015; 86:417-430. [PMID: 25677752 DOI: 10.1111/jfb.12550] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 09/18/2014] [Indexed: 06/04/2023]
Abstract
In this study, the complementary (c)DNA sequence encoding orange-spotted grouper Epinephelus coioides Tak1 (ectak1) was cloned, which has an open reading frame of 1728 bp that encodes 575 amino acids (aa). Sequence analysis indicated that Ectak1 contains two characteristic conserved domains, i.e. an N-terminal serine-threonine protein kinase catalytic domain (27-275 aa) and a C-terminal coiled-coil region (499-562 aa). Ectak1 shares high sequence identity with Tak1 from other fish species, especially those of Nile tilapia Oreochromis niloticus (96%) and zebra mbuna Maylandia zebra (96%). ectak1 transcripts were expressed broadly in all of the tissues tested, but ectak1 expression was reduced mainly in the local infection sites (skin and gill) after infection with Cryptocaryon irritans. Intracellular localization analysis showed that Ectak1 was distributed mainly in the cytoplasm. A luciferase reporter assay showed that Ectak1 significantly impaired the NF-κB activity induced by E. coioides Myd88 and Traf6. Overall, these results suggest that Ectak1 functions to reduce the activity of NF-κB induced by toll-like receptor (TLR) signal molecules in HEK-293T cells, and it might have an important role in host defences against parasitic infections.
Collapse
Affiliation(s)
- Y W Li
- Key Laboratory of Aquatic Product Safety (Sun Yat-Sen University), Ministry of Education/State Key Laboratory of Biocontrol, The School of Life Sciences, Sun Yat-sen University, 135 Xingang West Street, Haizhu District, Guangzhou 510275, Guangdong Province, The People's Republic of China
| | - X Li
- Key Laboratory of Aquatic Product Safety (Sun Yat-Sen University), Ministry of Education/State Key Laboratory of Biocontrol, The School of Life Sciences, Sun Yat-sen University, 135 Xingang West Street, Haizhu District, Guangzhou 510275, Guangdong Province, The People's Republic of China
| | - Z Wang
- Key Laboratory of Aquatic Product Safety (Sun Yat-Sen University), Ministry of Education/State Key Laboratory of Biocontrol, The School of Life Sciences, Sun Yat-sen University, 135 Xingang West Street, Haizhu District, Guangzhou 510275, Guangdong Province, The People's Republic of China
| | - Z Q Mo
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China
| | - X M Dan
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China
| | - X C Luo
- School of Bioscience and Biotechnology, South China University of Technology, Guangzhou 510006, Guangdong Province, PR China
| | - A X Li
- Key Laboratory of Aquatic Product Safety (Sun Yat-Sen University), Ministry of Education/State Key Laboratory of Biocontrol, The School of Life Sciences, Sun Yat-sen University, 135 Xingang West Street, Haizhu District, Guangzhou 510275, Guangdong Province, The People's Republic of China
| |
Collapse
|
119
|
Suddason T, Gallagher E. A RING to rule them all? Insights into the Map3k1 PHD motif provide a new mechanistic understanding into the diverse roles of Map3k1. Cell Death Differ 2015; 22:540-8. [PMID: 25613373 PMCID: PMC4356348 DOI: 10.1038/cdd.2014.239] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 12/15/2014] [Accepted: 12/17/2014] [Indexed: 12/26/2022] Open
Abstract
Despite the sizable number of components that comprise Mapk cascades, Map3k1 is the only element that contains both a kinase domain and a plant homeodomain (PHD) motif, allowing Map3k1 to regulate the protein phosphorylation and ubiquitin proteasome systems. As such, Map3k1 has complex roles in the regulation of cell death, survival, migration and differentiation. Numerous mouse and human genetic analyses have demonstrated that Map3k1 is of critical importance for the immune system, cardiac tissue, testis, wound healing, tumorigenesis and cancer. Recent gene knockin of Map3k1 to mutate the E2 binding site within the Map3k1 PHD motif and high throughput ubiquitin protein array screening for Map3k1 PHD motif substrates provide critical novel insights into Map3k1 PHD motif signal transduction and bring a brand-new understanding to Map3k1 signaling in mammalian biology.
Collapse
Affiliation(s)
- T Suddason
- Department of Medicine, Imperial College London, Du Cane Road, London, UK
| | - E Gallagher
- Department of Medicine, Imperial College London, Du Cane Road, London, UK
| |
Collapse
|
120
|
Zhang H, Kovacs-Nolan J, Kodera T, Eto Y, Mine Y. γ-Glutamyl cysteine and γ-glutamyl valine inhibit TNF-α signaling in intestinal epithelial cells and reduce inflammation in a mouse model of colitis via allosteric activation of the calcium-sensing receptor. Biochim Biophys Acta Mol Basis Dis 2015; 1852:792-804. [PMID: 25558818 DOI: 10.1016/j.bbadis.2014.12.023] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 12/16/2014] [Accepted: 12/27/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND The extracellular calcium-sensing receptor (CaSR) is distributed throughout the gastrointestinal tract, and its activation has been shown to promote intestinal homeostasis, suggesting that CaSR may be a promising target for novel therapies to prevent chronic intestinal inflammation such as inflammatory bowel disease (IBD). The γ-glutamyl dipeptides γ-glutamyl cysteine (γ-EC) and γ-glutamyl valine (γ-EV) are dietary flavor enhancing compounds, and have been shown to activate CaSR via allosteric ligand binding. The aim of this study was to examine the anti-inflammatory effects of γ-EC and γ-EV in vitro in intestinal epithelial cells and in a mouse model of intestinal inflammation. RESULTS In vitro, treatment of Caco-2 cells with γ-EC and γ-EV resulted in the CaSR-mediated reduction of TNF-α-stimulated pro-inflammatory cytokines and chemokines including IL-8, IL-6, and IL-1β, and inhibited phosphorylation of JNK and IκBα, while increasing expression of IL-10. In vivo, using a mouse model of dextran sodium sulfate (DSS)-induced colitis, γ-EC and γ-EV treatment ameliorated DSS-induced clinical signs, weight loss, colon shortening and histological damage. Moreover, γ-EC and γ-EV reduced the expression of TNF-α, IL-6, INF-γ, IL-1β, and IL-17, and increased the expression of IL-10 in the colon, in a CaSR-dependent manner. The CaSR-mediated anti-inflammatory effects of γ-EC were abrogated in β-arrestin2 knock-down Caco-2 cells, and involvement of β-arrestin2 was found to inhibit TNF-α-dependent signaling via cross-talk with the TNF-α receptor (TNFR). CONCLUSIONS Thus CaSR activation by γ-EC and γ-EV can aid in maintaining intestinal homeostasis and reducing inflammation in chronic inflammatory conditions such as IBD.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Food Science, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | - Tomohiro Kodera
- Ajinomoto Co. Ltd., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki, Kanagawa 210-8681, Japan
| | - Yuzuru Eto
- Ajinomoto Co. Ltd., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki, Kanagawa 210-8681, Japan
| | - Yoshinori Mine
- Department of Food Science, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
121
|
Abstract
The mitogen activated protein kinase kinase kinase transforming growth factor-β-activated kinase 1 (TAK1) has emerged as an interesting therapeutic target for inflammatory diseases and cancer. TAK1 is a tightly regulated kinase that represents a key signaling node in cellular responses to inflammatory stimuli, modulating both expression of inflammatory mediators and cell death. The first inhibitors described for TAK1 exploit the active site cysteine residue found in this kinase, but more recently both type I ATP hinge-binding inhibitors and type II DFG-out inhibitors have been described. This article will review the emerging role of TAK1 kinase in inflammation, the current state of the art for small molecule inhibitor development and opportunities for chemical biology approaches.
Collapse
|
122
|
Yang J, McNamara LE, Gadegaard N, Alakpa EV, Burgess KV, Meek RMD, Dalby MJ. Nanotopographical induction of osteogenesis through adhesion, bone morphogenic protein cosignaling, and regulation of microRNAs. ACS NANO 2014; 8:9941-53. [PMID: 25227207 DOI: 10.1021/nn504767g] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
It is emerging that nanotopographical information can be used to induce osteogenesis from mesenchymal stromal cells from the bone marrow, and it is hoped that this nanoscale bioactivity can be utilized to engineer next generation implants. However, the osteogenic mechanism of surfaces is currently poorly understood. In this report, we investigate mechanism and implicate bone morphogenic protein (BMP) in up-regulation of RUNX2 and show that RUNX2 and its regulatory miRNAs are BMP sensitive. Our data demonstrate that osteogenic nanotopography promotes colocalization of integrins and BMP2 receptors in order to enhance osteogenic activity and that vitronectin is important in this interface. This provides insight that topographical regulation of adhesion can have effects on signaling cascades outside of cytoskeletal signaling and that adhesions can have roles in augmenting BMP signaling.
Collapse
Affiliation(s)
- Jingli Yang
- Centre for Cell Engineering, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Joseph Black Building, University of Glasgow , Glasgow, G12 8QQ, U.K
| | | | | | | | | | | | | |
Collapse
|
123
|
Charlaftis N, Suddason T, Wu X, Anwar S, Karin M, Gallagher E. The MEKK1 PHD ubiquitinates TAB1 to activate MAPKs in response to cytokines. EMBO J 2014; 33:2581-96. [PMID: 25260751 PMCID: PMC4282369 DOI: 10.15252/embj.201488351] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Unlike the other MAP3Ks, MEKK1 (encoded by Map3k1) contains a PHD motif. To understand the role of this motif, we have created a knockin mutant of mouse Map3k1 (Map3k1mPHD) with an inactive PHD motif. Map3k1mPHD ES cells demonstrate that the MEKK1 PHD controls p38 and JNK activation during TGF-β, EGF and microtubule disruption signalling, but does not affect MAPK responses to hyperosmotic stress. Protein microarray profiling identified the adaptor TAB1 as a PHD substrate, and TGF-β- or EGF-stimulated Map3k1mPHD ES cells exhibit defective non-canonical ubiquitination of MEKK1 and TAB1. The MEKK1 PHD binds and mediates the transfer of Lys63-linked poly-Ub, using the conjugating enzyme UBE2N, onto TAB1 to regulate TAK1 and MAPK activation by TGF-β and EGF. Both the MEKK1 PHD and TAB1 are critical for ES-cell differentiation and tumourigenesis. Map3k1mPHD/+ mice exhibit aberrant cardiac tissue, B-cell development, testis and T-cell signalling.
Collapse
Affiliation(s)
| | - Tesha Suddason
- Department of Medicine, Imperial College London, London, UK
| | - Xuefeng Wu
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, University of California San Diego School of Medicine, San Diego, CA, USA
| | - Saba Anwar
- Department of Medicine, Imperial College London, London, UK
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, University of California San Diego School of Medicine, San Diego, CA, USA
| | - Ewen Gallagher
- Department of Medicine, Imperial College London, London, UK
| |
Collapse
|
124
|
The kinase p38 activated by the metabolic regulator AMPK and scaffold TAB1 drives the senescence of human T cells. Nat Immunol 2014; 15:965-72. [PMID: 25151490 PMCID: PMC4190666 DOI: 10.1038/ni.2981] [Citation(s) in RCA: 241] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 07/29/2014] [Indexed: 12/12/2022]
Abstract
In T lymphocytes, p38 MAP kinase (MAPK) regulates pleiotropic functions and is activated by canonical MAPK signaling or the alternative T cell receptor (TCR) activation pathway. Here we show that senescent human T cells lack the canonical and alternative pathways of p38 activation, but spontaneously engage the metabolic master regulator AMPK to trigger p38 recruitment to the scaffold TAB1 causing p38 auto-phosphorylation. Signaling via this pathway inhibits telomerase activity, T cell proliferation and expression of key components of the TCR signalosome. Our findings identify an unrecognized mode of p38 activation in T cells driven by intracellular changes such as low-nutrient and DNA-damage signaling (‘intra-sensory’ pathway). The proliferative defect of senescent T cells is reversed by blocking AMPK-TAB1-dependent p38 activation.
Collapse
|
125
|
TAK1 control of cell death. Cell Death Differ 2014; 21:1667-76. [PMID: 25146924 DOI: 10.1038/cdd.2014.123] [Citation(s) in RCA: 222] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 07/09/2014] [Accepted: 07/13/2014] [Indexed: 12/15/2022] Open
Abstract
Programmed cell death, a physiologic process for removing cells, is critically important in normal development and for elimination of damaged cells. Conversely, unattended cell death contributes to a variety of human disease pathogenesis. Thus, precise understanding of molecular mechanisms underlying control of cell death is important and relevant to public health. Recent studies emphasize that transforming growth factor-β-activated kinase 1 (TAK1) is a central regulator of cell death and is activated through a diverse set of intra- and extracellular stimuli. The physiologic importance of TAK1 and TAK1-binding proteins in cell survival and death has been demonstrated using a number of genetically engineered mice. These studies uncover an indispensable role of TAK1 and its binding proteins for maintenance of cell viability and tissue homeostasis in a variety of organs. TAK1 is known to control cell viability and inflammation through activating downstream effectors such as NF-κB and mitogen-activated protein kinases (MAPKs). It is also emerging that TAK1 regulates cell survival not solely through NF-κB but also through NF-κB-independent pathways such as oxidative stress and receptor-interacting protein kinase 1 (RIPK1) kinase activity-dependent pathway. Moreover, recent studies have identified TAK1's seemingly paradoxical role to induce programmed necrosis, also referred to as necroptosis. This review summarizes the consequences of TAK1 deficiency in different cell and tissue types from the perspective of cell death and also focuses on the mechanism by which TAK1 complex inhibits or promotes programmed cell death. This review serves to synthesize our current understanding of TAK1 in cell survival and death to identify promising directions for future research and TAK1's potential relevance to human disease pathogenesis.
Collapse
|
126
|
Xiao Y, Jin J, Chang M, Nakaya M, Hu H, Zou Q, Zhou X, Brittain GC, Cheng X, Sun SC. TPL2 mediates autoimmune inflammation through activation of the TAK1 axis of IL-17 signaling. ACTA ACUST UNITED AC 2014; 211:1689-702. [PMID: 24980047 PMCID: PMC4113941 DOI: 10.1084/jem.20132640] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
TPL2 is required for Th17-mediated neuroinflammation during EAE by regulating the TAK1 signaling axis downstream of the IL-17R in astrocytes. Development of autoimmune diseases, such as multiple sclerosis and experimental autoimmune encephalomyelitis (EAE), involves the inflammatory action of Th1 and Th17 cells, but the underlying signaling mechanism is incompletely understood. We show that the kinase TPL2 is a crucial mediator of EAE and is required for the pathological action of Th17 cells. TPL2 serves as a master kinase mediating the activation of multiple downstream pathways stimulated by the Th17 signature cytokine IL-17. TPL2 acts by linking the IL-17 receptor signal to the activation of TAK1, which involves a dynamic mechanism of TPL2–TAK1 interaction and TPL2-mediated phosphorylation and catalytic activation of TAK1. These results suggest that TPL2 mediates TAK1 axis of IL-17 signaling, thereby promoting autoimmune neuroinflammation.
Collapse
Affiliation(s)
- Yichuan Xiao
- Department of Immunology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Jin Jin
- Department of Immunology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Mikyoung Chang
- Department of Immunology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Mako Nakaya
- Department of Immunology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Hongbo Hu
- Department of Immunology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Qiang Zou
- Department of Immunology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Xiaofei Zhou
- Department of Immunology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - George C Brittain
- Department of Immunology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Xuhong Cheng
- Department of Immunology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Shao-Cong Sun
- Department of Immunology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030 The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030
| |
Collapse
|
127
|
Harada G, Neng Q, Fujiki T, Katakura Y. Molecular mechanisms for the p38-induced cellular senescence in normal human fibroblast. J Biochem 2014; 156:283-90. [DOI: 10.1093/jb/mvu040] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
128
|
Liu R, Lin Y, Jia R, Geng Y, Liang C, Tan J, Qiao W. HIV-1 Vpr stimulates NF-κB and AP-1 signaling by activating TAK1. Retrovirology 2014; 11:45. [PMID: 24912525 PMCID: PMC4057933 DOI: 10.1186/1742-4690-11-45] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 05/20/2014] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The Vpr protein of human immunodeficiency virus type 1 (HIV-1) plays an important role in viral replication. It has been reported that Vpr stimulates the nuclear factor-κB (NF-κB) and activator protein 1 (AP-1) signaling pathways, and thereby regulates viral and host cell gene expression. However, the molecular mechanism behind this function of Vpr is not fully understood. RESULTS Here, we have identified transforming growth factor-β-activated kinase 1 (TAK1) as the important upstream signaling molecule that Vpr associates with in order to activate NF-κB and AP-1 signaling. HIV-1 virion-associated Vpr is able to stimulate phosphorylation of TAK1. This activity of Vpr depends on its association with TAK1, since the S79A Vpr mutant lost interaction with TAK1 and was unable to activate TAK1. This association allows Vpr to promote the interaction of TAB3 with TAK1 and increase the polyubiquitination of TAK1, which renders TAK1 phosphorylation. In further support of the key role of TAK1 in this function of Vpr, knockdown of endogenous TAK1 significantly attenuated the ability of Vpr to activate NF-κB and AP-1 as well as the ability to stimulate HIV-1 LTR promoter. CONCLUSIONS HIV-1 Vpr enhances the phosphorylation and polyubiquitination of TAK1, and as a result, activates NF-κB and AP-1 signaling pathways and stimulates HIV-1 LTR promoter.
Collapse
Affiliation(s)
| | | | | | | | | | - Juan Tan
- Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education) and Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin 300071, China.
| | | |
Collapse
|
129
|
Zhao F, Li YW, Pan HJ, Shi CB, Luo XC, Li AX, Wu SQ. TAK1-binding proteins (TAB1 and TAB2) in grass carp (Ctenopharyngodon idella): identification, characterization, and expression analysis after infection with Ichthyophthirius multifiliis. FISH & SHELLFISH IMMUNOLOGY 2014; 38:389-399. [PMID: 24747054 DOI: 10.1016/j.fsi.2014.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 04/04/2014] [Accepted: 04/08/2014] [Indexed: 06/03/2023]
Abstract
Transforming growth factor-β activated kinase-1 (TAK1) is a key regulatory molecule in toll-like receptor (TLR), interleukin-1 (IL-1), and tumor necrosis factor (TNF) signaling pathways. The activation of TAK1 is specifically regulated by two TAK1-binding proteins, TAB1 and TAB2. However, the roles of TAB1 and TAB2 in fish have not been reported to date. In the present study, TAB1 (CiTAB1) and TAB2 (CiTAB2) in grass carp (Ctenopharyngodon idella) were identified and characterized, and their expression profiles were analyzed after fish were infected with the pathogenic ciliate Ichthyophthirius multifiliis. The full-length CiTAB1 cDNA is 1949 bp long with an open reading frame (ORF) of 1497 bp that encodes a putative protein of 498 amino acids containing a typical PP2Cc domain. The full-length CiTAB2 cDNA is 2967 bp long and contains an ORF of 2178 bp encoding a putative protein of 725 amino acids. Protein structure analysis revealed that CiTAB2 consists of three main structural domains: an N-terminal CUE domain, a coiled-coil domain, and a C-terminal ZnF domain. Multiple sequence alignment showed that CiTAB1 and CiTAB2 share high sequence identity with other known TAB1 and TAB2 proteins, and several conserved phosphorylation sites and an O-GlcNAc site were deduced in CiTAB1. Phylogenetic tree analysis demonstrated that CiTAB1 and CiTAB2 have the closest evolutionary relationship with TAB1 and TAB2 of Danio rerio, respectively. CiTAB1 and CiTAB2 were both widely expressed in all examined tissues with the highest levels in the heart and liver, respectively. After infection with I. multifiliis, the expressions of CiTAB1 and CiTAB2 were both significantly up-regulated in all tested tissues at most time points, which indicates that these proteins may be involved in the host immune response against I. multifiliis infection.
Collapse
Affiliation(s)
- Fei Zhao
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, PR China; State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Yan-Wei Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China.
| | - Hou-Jun Pan
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, PR China
| | - Cun-Bin Shi
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, PR China
| | - Xiao-Chun Luo
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, PR China
| | - An-Xing Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Shu-Qin Wu
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, PR China.
| |
Collapse
|
130
|
Nuzzo PV, Buzzatti G, Ricci F, Rubagotti A, Argellati F, Zinoli L, Boccardo F. Periostin: a novel prognostic and therapeutic target for genitourinary cancer? Clin Genitourin Cancer 2014; 12:301-11. [PMID: 24656869 DOI: 10.1016/j.clgc.2014.02.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/29/2014] [Accepted: 02/12/2014] [Indexed: 01/21/2023]
Abstract
Many of the cellular abnormalities present in solid tumors are structural in nature and involve the proteins of the extracellular matrix (ECM). Periostin is a protein produced and secreted by the fibroblasts as a component of the ECM where it is involved in regulating intercellular adhesion. The expression of periostin has an important physiological role during embryogenesis and growth, namely at the level of bone, dental, and cardiac tissues. Many studies indicate that periostin plays an important role for tumor progression in various types of cancer, such as colon, lung, head and neck, breast, ovarian, and prostate. To the best of our knowledge, a limited number of studies have investigated periostin expression in urogenital cancer, such as prostate, bladder, penile, and renal cancer, and no studies were performed in testis cancer. In this review article, we summarize the most recent knowledge of periostin, its genetic and protein structure, and the role of the different isoforms identified and sequenced so far. In particular, we focus our attention on the role of this protein in genitourinary tumors, trying to emphasize the role not only as a possible prognostic marker, but also as a possible target for the development of future anticancer therapies.
Collapse
Affiliation(s)
- Pier Vitale Nuzzo
- Academic Unit of Medical Oncology (Medical Oncology B), University of Genoa, School of Medicine, Genoa, Italy; Department of Internal Medicine, University of Genoa, School of Medicine, Genoa, Italy
| | - Giulia Buzzatti
- Academic Unit of Medical Oncology (Medical Oncology B), University of Genoa, School of Medicine, Genoa, Italy; Department of Internal Medicine, University of Genoa, School of Medicine, Genoa, Italy
| | - Francesco Ricci
- Academic Unit of Medical Oncology (Medical Oncology B), University of Genoa, School of Medicine, Genoa, Italy; IRCCS San Martino University Hospital - IST National Cancer Research Institute, Genoa, Italy
| | - Alessandra Rubagotti
- Academic Unit of Medical Oncology (Medical Oncology B), University of Genoa, School of Medicine, Genoa, Italy; Department of Internal Medicine, University of Genoa, School of Medicine, Genoa, Italy; IRCCS San Martino University Hospital - IST National Cancer Research Institute, Genoa, Italy
| | - Francesca Argellati
- Academic Unit of Medical Oncology (Medical Oncology B), University of Genoa, School of Medicine, Genoa, Italy; IRCCS San Martino University Hospital - IST National Cancer Research Institute, Genoa, Italy
| | - Linda Zinoli
- Academic Unit of Medical Oncology (Medical Oncology B), University of Genoa, School of Medicine, Genoa, Italy; Department of Internal Medicine, University of Genoa, School of Medicine, Genoa, Italy; IRCCS San Martino University Hospital - IST National Cancer Research Institute, Genoa, Italy
| | - Francesco Boccardo
- Academic Unit of Medical Oncology (Medical Oncology B), University of Genoa, School of Medicine, Genoa, Italy; Department of Internal Medicine, University of Genoa, School of Medicine, Genoa, Italy; IRCCS San Martino University Hospital - IST National Cancer Research Institute, Genoa, Italy.
| |
Collapse
|
131
|
Abstract
TGF-β-activated kinase 1 (TAK1 or MAP3K7) is an intracellular hub molecule that regulates both nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways that play key roles in development, cell survival, immune response, metabolism, and carcinogenesis. TAK1 activity is tightly regulated by its binding proteins, TAB1 and TAB2/TAB3, as well as by post-translational modification including ubiquitination and phosphorylation. Accumulating evidence demonstrates that TAK1 plays a role in tumor initiation, progression, and metastasis as a tumor prompter or tumor suppressor. An understanding of the role of TAK1 in liver physiology and diseases is required for the development of therapeutic agencies targeting TAK1. In this review, we highlight the activation mechanism and pathophysiological roles of TAK1 in the liver.
Collapse
|
132
|
Lu Y, Zhang Y, Li L, Feng X, Ding S, Zheng W, Li J, Shen P. TAB1: A Target of Triptolide in Macrophages. ACTA ACUST UNITED AC 2014; 21:246-56. [DOI: 10.1016/j.chembiol.2013.12.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 11/21/2013] [Accepted: 12/02/2013] [Indexed: 12/22/2022]
|
133
|
Abstract
A highly diverse set of protein kinases functions as early responders in the mitogen- and stress-activated protein kinase (MAPK/SAPK) signaling pathways. For instance, humans possess 14 MAPK kinase kinases (MAP3Ks) that activate Jun kinase (JNK) signaling downstream. A major challenge is to decipher the selective and redundant functions of these upstream MAP3Ks. Taking advantage of the relative simplicity of Drosophila melanogaster as a model system, we assessed MAP3K signaling specificity in several JNK-dependent processes during development and stress response. Our approach was to generate molecular chimeras between two MAP3K family members, the mixed lineage kinase, Slpr, and the TGF-β activated kinase, Tak1, which share 32% amino acid identity across the kinase domain but otherwise differ in sequence and domain structure, and then test the contributions of various domains for protein localization, complementation of mutants, and activation of signaling. We found that overexpression of the wild-type kinases stimulated JNK signaling in alternate contexts, so cells were capable of responding to both MAP3Ks, but with distinct outcomes. Relative to wild-type, the catalytic domain swaps compensated weakly or not at all, despite having a shared substrate, the JNK kinase Hep. Tak1 C-terminal domain-containing constructs were inhibitory in Tak1 signaling contexts, including tumor necrosis factor-dependent cell death and innate immune signaling; however, depressing antimicrobial gene expression did not necessarily cause phenotypic susceptibility to infection. These same constructs were neutral in the context of Slpr-dependent developmental signaling, reflecting differential subcellular protein localization and by inference, point of activation. Altogether, our findings suggest that the selective deployment of a particular MAP3K can be attributed in part to its inherent sequence differences, cellular localization, and binding partner availability.
Collapse
|
134
|
Quantitative proteomic dissection of a native 14-3-3ε interacting protein complex associated with hepatocellular carcinoma. Amino Acids 2013; 46:841-52. [DOI: 10.1007/s00726-013-1644-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 12/11/2013] [Indexed: 12/18/2022]
|
135
|
S6K1 negatively regulates TAK1 activity in the toll-like receptor signaling pathway. Mol Cell Biol 2013; 34:510-21. [PMID: 24277938 DOI: 10.1128/mcb.01225-13] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transforming growth factor β (TGF-β)-activated kinase 1 (TAK1) is a key regulator in the signals transduced by proinflammatory cytokines and Toll-like receptors (TLRs). The regulatory mechanism of TAK1 in response to various tissue types and stimuli remains incompletely understood. Here, we show that ribosomal S6 kinase 1 (S6K1) negatively regulates TLR-mediated signals by inhibiting TAK1 activity. S6K1 overexpression causes a marked reduction in NF-κB and AP-1 activity induced by stimulation of TLR2 or TLR4. In contrast, S6K1(-/-) and S6K1 knockdown cells display enhanced production of inflammatory cytokines. Moreover, S6K1(-/-) mice exhibit decreased survival in response to challenge with lipopolysaccharide (LPS). We found that S6K1 inhibits TAK1 kinase activity by interfering with the interaction between TAK1 and TAB1, which is a key regulator protein for TAK1 catalytic function. Upon stimulation with TLR ligands, S6K1 deficiency causes a marked increase in TAK1 kinase activity that in turn induces a substantial enhancement of NF-κB-dependent gene expression, indicating that S6K1 is negatively involved in the TLR signaling pathway by the inhibition of TAK1 activity. Our findings contribute to understanding the molecular pathogenesis of the impaired immune responses seen in type 2 diabetes, where S6K1 plays a key role both in driving insulin resistance and modulating TLR signaling.
Collapse
|
136
|
Lv L, Wan C, Chen B, Li M, Liu Y, Ni T, Yang Y, Liu Y, Cong X, Mao G, Xue Q. Nemo-Like Kinase (NLK) Inhibits the Progression of NSCLC via Negatively Modulating WNT Signaling Pathway. J Cell Biochem 2013; 115:81-92. [PMID: 23904219 DOI: 10.1002/jcb.24635] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 07/24/2013] [Indexed: 12/31/2022]
Affiliation(s)
- Liting Lv
- Department of Oncology; Affiliated Hospital of Nantong University; Nantong 226001 Jiangsu China
| | - Chunhua Wan
- Department of Public Health; Nantong University; Nantong 226001 Jiangsu China
| | - Buyou Chen
- Department of Oncology; Affiliated Hospital of Nantong University; Nantong 226001 Jiangsu China
| | - Mei Li
- Department of Oncology; Affiliated Hospital of Nantong University; Nantong 226001 Jiangsu China
| | - Yifei Liu
- Department of Pathology; Affiliated Hospital of Nantong University; Nantong 226001 Jiangsu China
| | - Tingting Ni
- Department of Oncology; Affiliated Hospital of Nantong University; Nantong 226001 Jiangsu China
| | - Yi Yang
- Department of Oncology; Affiliated Hospital of Nantong University; Nantong 226001 Jiangsu China
| | - Yanhua Liu
- Department of Gastroenterology; Affiliated Hospital of Nantong University; Nantong 226001 Jiangsu China
| | - Xia Cong
- Department of Gastroenterology; Affiliated Hospital of Nantong University; Nantong 226001 Jiangsu China
| | - Guoxin Mao
- Department of Oncology; Affiliated Hospital of Nantong University; Nantong 226001 Jiangsu China
| | - Qun Xue
- Department of Thoracic Surgery; Affiliated Hospital of Nantong University; Nantong 226001 Jiangsu China
| |
Collapse
|
137
|
TAB2, an important upstream adaptor of interleukin-1 signaling pathway, is subject to SUMOylation. Mol Cell Biochem 2013; 385:69-77. [PMID: 24096733 DOI: 10.1007/s11010-013-1815-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 09/13/2013] [Indexed: 10/26/2022]
Abstract
SUMOylation has been considered as an important mechanism to regulate multiple cellular processes, including inflammation. TAB2 (TAK1-binding protein 2) is an upstream adaptor protein in the IL-1 signaling pathway. Covalent modifications of TAB2 have not been well studied. In this study, we demonstrated that TAB2 could be modified by SUMO. Using Ubc9 (SUMO-conjugating enzyme) fusion and mutation analysis, we identified evolutionarily conserved lysine 329 as the major SUMOylation site of TAB2. PIAS3, a SUMO E3 ligase, preferentially interacted with and promoted its SUMOylation. Interestingly, block of SUMOylation by mutation of lysine 329 enhanced the activity of TAB2, as reflected by AP-1 luciferase reporter assays. Taken together, these results suggest that SUMOylation may serve as a novel mechanism for the regulation of TAB2.
Collapse
|
138
|
Ataie-Kachoie P, Badar S, Morris DL, Pourgholami MH. Minocycline targets the NF-κB Nexus through suppression of TGF-β1-TAK1-IκB signaling in ovarian cancer. Mol Cancer Res 2013; 11:1279-1291. [PMID: 23858099 DOI: 10.1158/1541-7786.mcr-13-0239] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Substantial evidence supports the critical role of NF-κB in ovarian cancer. Minocycline, a tetracycline, has been shown to exhibit beneficial effects in this malignancy through regulation of a cohort of genes that overlap significantly with the NF-κB transcriptome. Here, it was examined whether or not the molecular mechanism could be attributed to modulation of NF-κB signaling using a combination of in vitro and in vivo models. Minocycline suppressed constitutive NF-κB activation in OVCAR-3 and SKOV-3 ovarian carcinoma cells and was correlated with attenuation of IκBα kinase (IKK) activation, IκBα phosphorylation and degradation, and p65 phosphorylation and nuclear translocation. The inhibition of IKK was found to be associated with suppression of TGF-β-activated-kinase-1 (TAK1) activation and its dissociation from TAK1-binding-protein-1 (TAB1), an indispensable functional mediator between TGF-β and TAK1. Further studies demonstrated that minocycline downregulated TGF-β1 expression. Enforced TGF-β1 expression induced NF-κB activity, and minocycline rescued this effect. Consistent with this finding, TGF-β1 knockdown suppressed NF-κB activation and abrogated the inhibitory effect of minocycline on this transcription factor. These results suggest that the minocycline-induced suppression of NF-κB activity is mediated, in part, through inhibition of TGF-β1. Furthermore, the influence of minocycline on NF-κB pathway activation was examined in female nude mice harboring intraperitoneal OVCAR-3 tumors. Both acute and chronic administration of minocycline led to suppression of p65 phosphorylation and nuclear translocation accompanied by downregulation of NF-κB activity and endogenous protein levels of its target gene products. These data reveal the therapeutic potential of minocycline as an agent targeting the pro-oncogenic TGF-β-NF-κB axis in ovarian cancer. IMPLICATIONS This preclinical study lends support to the notion that ovarian cancer management would benefit from administration of minocycline.
Collapse
Affiliation(s)
- Parvin Ataie-Kachoie
- Professor and Head of Department of Surgery, Level 3 Pitney Building, St. George Hospital, Gray St., Kogarah, Sydney, NSW 2217, Australia.
| | | | | | | |
Collapse
|
139
|
Kharitidi D, Manteghi S, Pause A. Pseudophosphatases: methods of analysis and physiological functions. Methods 2013; 65:207-18. [PMID: 24064037 DOI: 10.1016/j.ymeth.2013.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/20/2013] [Accepted: 09/11/2013] [Indexed: 01/27/2023] Open
Abstract
Protein tyrosine phosphatases (PTPs) are key enzymes in the regulation of cellular homeostasis and signaling pathways. Strikingly, not all PTPs bear enzymatic activity. A considerable fraction of PTPs are enzymatically inactive and are known as pseudophosphatases. Despite the lack of activity they execute pivotal roles in development, cell biology and human disease. The present review is focused on the methods used to identify pseudophosphatases, their targets, and physiological roles. We present a strategy for detailed enzymatic analysis of inactive PTPs, regulation of inactive PTP domains and identification of binding partners. Furthermore, we provide a detailed overview of human pseudophosphatases and discuss their regulation of cellular processes and functions in human pathologies.
Collapse
Affiliation(s)
- Dmitri Kharitidi
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, 3655, Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada.
| | - Sanaz Manteghi
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, 3655, Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada.
| | - Arnim Pause
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, 3655, Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada.
| |
Collapse
|
140
|
NF-kappaB mediated transcriptional repression of acid modifying hormone gastrin. PLoS One 2013; 8:e73409. [PMID: 24009751 PMCID: PMC3751843 DOI: 10.1371/journal.pone.0073409] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 07/24/2013] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori is a major pathogen associated with the development of gastroduodenal diseases. It has been reported that H. pylori induced pro-inflammatory cytokine IL1B is one of the various modulators of acid secretion in the gut. Earlier we reported that IL1B-activated NFkB down-regulates gastrin, the major hormonal regulator of acid secretion. In this study, the probable pathway by which IL1B induces NFkB and affects gastrin expression has been elucidated. IL1B-treated AGS cells showed nine-fold activation of MyD88 followed by phosphorylation of TAK1 within 15 min of IL1B treatment. Furthermore, it was observed that activated TAK1 significantly up-regulates the NFkB subunits p50 and p65. Ectopic expression of NFkB p65 in AGS cells resulted in about nine-fold transcriptional repression of gastrin both in the presence and absence of IL1B. The S536A mutant of NFkB p65 is significantly less effective in repressing gastrin. These observations show that a functional NFkB p65 is important for IL1B-mediated repression of gastrin. ChIP assays revealed the presence of HDAC1 and NFkB p65 along with NCoR on the gastrin promoter. Thus, the study provides mechanistic insight into the IL1B-mediated gastrin repression via NFkB.
Collapse
|
141
|
Zhu Y, Regunath K, Jacq X, Prives C. Cisplatin causes cell death via TAB1 regulation of p53/MDM2/MDMX circuitry. Genes Dev 2013; 27:1739-51. [PMID: 23934659 PMCID: PMC3759692 DOI: 10.1101/gad.212258.112] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The interdependence of p53 and MDM2 is critical for proper cell survival and cell death. Zhu et al. find that TAB1, an activator of TAK1 and p38α, inhibits the E3 ligase activity of MDM2 toward p53 and its homolog, MDMX. Cisplatin-induced cell death is mitigated by TAB1 knockdown. TAB1 stabilizes MDMX and activates p38α to phosphorylate p53, allowing p53 target induction. TAB1 levels are relatively low in cisplatin-resistant clones of ovarian cells and in ovarian tumors, implicating TAB1 as a tumor suppressor. The interdependence of p53 and MDM2 is critical for proper cell survival and cell death and, when altered, can lead to tumorigenesis. Mitogen-activated protein kinase (MAPK) signaling pathways function in a wide variety of cellular processes, including cell growth, migration, differentiation, and death. Here we discovered that transforming growth factor β-activated kinase 1 (TAK1)-binding protein 1 (TAB1), an activator of TAK1 and of p38α, associates with and inhibits the E3 ligase activity of MDM2 toward p53 and its homolog, MDMX. Depletion of TAB1 inhibits MDM2 siRNA-mediated p53 accumulation and p21 induction, partially rescuing cell cycle arrest induced by MDM2 ablation. Interestingly, of several agents commonly used as DNA-damaging therapeutics, only cell death caused by cisplatin is mitigated by knockdown of TAB1. Two mechanisms are required for TAB1 to regulate apoptosis in cisplatin-treated cells. First, p38α is activated by TAB1 to phosphorylate p53 N-terminal sites, leading to selective induction of p53 targets such as NOXA. Second, MDMX is stabilized in a TAB1-dependent manner and is required for cell death after cisplatin treatment. Interestingly TAB1 levels are relatively low in cisplatin-resistant clones of ovarian cells and in ovarian patient's tumors compared with normal ovarian tissue. Together, our results indicate that TAB1 is a potential tumor suppressor that serves as a functional link between p53–MDM2 circuitry and a key MAPK signaling pathway.
Collapse
Affiliation(s)
- Yan Zhu
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | | | |
Collapse
|
142
|
Discovery and optimization of 7-aminofuro[2,3-c]pyridine inhibitors of TAK1. Bioorg Med Chem Lett 2013; 23:4517-22. [DOI: 10.1016/j.bmcl.2013.06.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 06/10/2013] [Accepted: 06/17/2013] [Indexed: 11/19/2022]
|
143
|
SAD kinases sculpt axonal arbors of sensory neurons through long- and short-term responses to neurotrophin signals. Neuron 2013; 79:39-53. [PMID: 23790753 DOI: 10.1016/j.neuron.2013.05.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2013] [Indexed: 11/20/2022]
Abstract
Extrinsic cues activate intrinsic signaling mechanisms to pattern neuronal shape and connectivity. We showed previously that three cytoplasmic Ser/Thr kinases, LKB1, SAD-A, and SAD-B, control early axon-dendrite polarization in forebrain neurons. Here, we assess their role in other neuronal types. We found that all three kinases are dispensable for axon formation outside of the cortex but that SAD kinases are required for formation of central axonal arbors by subsets of sensory neurons. The requirement for SAD kinases is most prominent in NT-3 dependent neurons. SAD kinases transduce NT-3 signals in two ways through distinct pathways. First, sustained NT-3/TrkC signaling increases SAD protein levels. Second, short-duration NT-3/TrkC signals transiently activate SADs by inducing dephosphorylation of C-terminal domains, thereby allowing activating phosphorylation of the kinase domain. We propose that SAD kinases integrate long- and short-duration signals from extrinsic cues to sculpt axon arbors within the CNS.
Collapse
|
144
|
Zhao F, Li YW, Pan HJ, Wu SQ, Shi CB, Luo XC, Li AX. Grass carp (Ctenopharyngodon idella) TRAF6 and TAK1: molecular cloning and expression analysis after Ichthyophthirius multifiliis infection. FISH & SHELLFISH IMMUNOLOGY 2013; 34:1514-1523. [PMID: 23542602 DOI: 10.1016/j.fsi.2013.03.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/01/2013] [Accepted: 03/11/2013] [Indexed: 06/02/2023]
Abstract
Ichthyophthirius multifiliis, a pathogenic ciliate parasite, infects almost all freshwater fish species and causes significant economic losses. Tumor necrosis factor receptor-associated factor 6 (TRAF6) and transforming growth factor-β-activated kinase 1 (TAK1) are two important signaling molecules involved in toll-like receptor (TLR) signal transduction. To date, the roles of TRAF6 and TAK1 in host defense against fish parasites are still poorly understood. In the present study, TRAF6 (CiTRAF6) and TAK1 (CiTAK1) were identified from grass carp (Ctenopharyngodon idella). The full-length cDNA sequence of CiTRAF6 (2250 bp) includes an open reading frame (ORF) of 1629 bp, which shows a high similarity to that of Cyprinus carpio TRAF6 and encodes a putative protein of 542 amino acids containing one RING domain, two zinc fingers, one coiled-coil region, and one MATH domain. The full-length CiTAK1 cDNA sequence is 2768 bp and includes an ORF of 1626 bp that encodes a putative protein of 541 amino acids containing a conserved serine/threonine protein kinase catalytic domain and a coiled-coil region. Phylogenetic analysis showed that CiTRAF6 and CiTAK1 were clustered with TRAF6 and TAK1 of other teleosts, respectively. CiTRAF6 and CiTAK1 were both constitutively expressed in all examined tissues but with varied expression levels. The highest expressions of CiTRAF6 and CiTAK1 were in the head kidney and spleen, respectively. The expression profiles of CiTRAF6 and CiTAK1 were detected in grass carp after I. multifiliis infection. Expressions of both genes were significantly up-regulated in the skin, gill, head kidney, and spleen at most time points after infection, indicating that CiTRAF6 and CiTAK1 may play essential roles in grass carp defense against I. multifiliis.
Collapse
Affiliation(s)
- Fei Zhao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Haizhu District, Guangzhou, Guangdong Province 510275, PR China
| | | | | | | | | | | | | |
Collapse
|
145
|
Luo C, Qu H, Wang J, Wang Y, Ma J, Li C, Yang C, Hu X, Li N, Shu D. Genetic parameters and genome-wide association study of hyperpigmentation of the visceral peritoneum in chickens. BMC Genomics 2013; 14:334. [PMID: 23679099 PMCID: PMC3663821 DOI: 10.1186/1471-2164-14-334] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 05/07/2013] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Hyperpigmentation of the visceral peritoneum (HVP) has recently garnered much attention in the poultry industry because of the possible risk to the health of affected animals and the damage it causes to the appearance of commercial chicken carcasses. However, the heritable characters of HVP remain unclear. The objective of this study was to investigate the genetic parameters of HVP by genome-wide association study (GWAS) in chickens. RESULTS HVP was found to be influenced by genetic factors, with a heritability score of 0.33. HVP had positive genetic correlations with growth and carcass traits, such as leg muscle weight (rg = 0.34), but had negative genetic correlations with immune traits, such as the antibody response to Newcastle disease virus (rg = -0.42). The GWAS for HVP using 39,833 single nucleotide polymorphisms indicated the genetic factors associated with HVP displayed an additive effect rather than a dominance effect. In addition, we determined that three genomic regions, involving the 50.5-54.0 Mb region of chicken (Gallus gallus) chromosome 1 (GGA1), the 58.5-60.5 Mb region of GGA1, and the 10.5-12.0 Mb region of GGA20, were strongly associated (P < 6.28 × 10-7) with HVP in chickens. Variants in these regions explained >50% of additive genetic variance for HVP. This study also confirmed that expression of BMP7, which codes for a bone morphogenetic protein and is located in one of the candidate regions, was significantly higher in the visceral peritoneum of Huiyang Beard chickens with HVP than in that of chickens without pigmentation (P < 0.05). CONCLUSIONS HVP is a quantitative trait with moderate heritability. Genomic variants resulting in HVP were identified on GGA1 and GGA20, and expression of the BMP7 gene appears to be upregulated in HVP-affected chickens. Findings from this study should be used as a basis for further functional validation of candidate genes involved in HVP.
Collapse
Affiliation(s)
- Chenglong Luo
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Wushan, Tianhe District, Guangzhou, Guangdong, 510640, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, 510640, China
| | - Hao Qu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Wushan, Tianhe District, Guangzhou, Guangdong, 510640, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, 510640, China
| | - Jie Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Wushan, Tianhe District, Guangzhou, Guangdong, 510640, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, 510640, China
| | - Yan Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Wushan, Tianhe District, Guangzhou, Guangdong, 510640, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, 510640, China
| | - Jie Ma
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Wushan, Tianhe District, Guangzhou, Guangdong, 510640, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, 510640, China
| | - Chunyu Li
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Wushan, Tianhe District, Guangzhou, Guangdong, 510640, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, 510640, China
| | - Chunfen Yang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Wushan, Tianhe District, Guangzhou, Guangdong, 510640, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, 510640, China
| | - Xiaoxiang Hu
- State Key Laboratory for Agro-Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Ning Li
- State Key Laboratory for Agro-Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Dingming Shu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Wushan, Tianhe District, Guangzhou, Guangdong, 510640, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, 510640, China
| |
Collapse
|
146
|
Ajibade AA, Wang HY, Wang RF. Cell type-specific function of TAK1 in innate immune signaling. Trends Immunol 2013; 34:307-16. [PMID: 23664135 DOI: 10.1016/j.it.2013.03.007] [Citation(s) in RCA: 302] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 03/29/2013] [Indexed: 12/14/2022]
Abstract
Transforming growth factor β-activated kinase 1 (TAK1 or MAP3K7) is a key signaling component of nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. Activation of TAK1 is tightly regulated through its binding partners and protein modifications. Although TAK1 functions as an essential and positive regulator of innate immune signaling and apoptosis in mouse embryonic fibroblasts (MEFs), T cells, and other cells, it negatively regulates cell development and activation of proinflammatory signaling pathways in neutrophils. However, the molecular mechanisms responsible for the opposite roles of TAK1 in different cell types remain to be addressed. In this article, we discuss the latest progresses in our understanding of TAK1 regulation, function, and mechanisms in a cell-type specific manner.
Collapse
Affiliation(s)
- Adebusola A Ajibade
- Center for Inflammation and Epigenetics, The Methodist Hospital Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA
| | | | | |
Collapse
|
147
|
Li X, Yang X, Liu Y, Gong N, Yao W, Chen P, Qin J, Jin H, Li J, Chu R, Shan L, Zhang R, Zhang W, Wang H. Japonicone A Suppresses Growth of Burkitt Lymphoma Cells through Its Effect on NF-κB. Clin Cancer Res 2013; 19:2917-28. [DOI: 10.1158/1078-0432.ccr-12-3258] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
148
|
Abstract
NF-κB (nuclear factor kappa B) family transcription factors are master regulators of immune and inflammatory processes in response to both injury and infection. In the latent state, NF-κBs are sequestered in the cytosol by their inhibitor IκB (inhibitor of NF-κB) proteins. Upon stimulations of innate immune receptors such as Toll-like receptors and cytokine receptors such as those in the TNF (tumor necrosis factor) receptor superfamily, a series of membrane proximal events lead to the activation of the IKK (IκB kinase). Phosphorylation of IκBs results in their proteasomal degradation and the release of NF-κB for nuclear translocation and activation of gene transcription. Here, we review the plethora of structural studies in these NF-κB activation pathways, including the TRAF (TNF receptor-associated factor) proteins, IKK, NF-κB, ubiquitin ligases, and deubiquitinating enzymes. Although these structures only provide snapshots of isolated processes, an emerging picture is that these signaling cascades coalesce into large oligomeric signaling complexes, or signalosomes, for signal propagation.
Collapse
Affiliation(s)
- Johanna Napetschnig
- Department of Biochemistry, Weill Cornell Medical College, New York, New York 10021, USA
| | | |
Collapse
|
149
|
Tang S, Bao H, Zhang Y, Yao J, Yang P, Chen X. 14-3-3ε mediates the cell fate decision-making pathways in response of hepatocellular carcinoma to Bleomycin-induced DNA damage. PLoS One 2013; 8:e55268. [PMID: 23472066 PMCID: PMC3589417 DOI: 10.1371/journal.pone.0055268] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 12/27/2012] [Indexed: 11/30/2022] Open
Abstract
Background Lack of understanding of the response of hepatocellular carcinoma (HCC) to anticancer drugs causes the high mortality of HCC patients. Bleomycin (BLM) that induces DNA damage is clinically used for cancer therapy, while the mechanism underlying BLM-induced DNA damage response (DDR) in HCC cells remains ambiguous. Given that 14-3-3 proteins are broadly involved in regulation of diverse biological processes (BPs)/pathways, we investigate how a 14-3-3 isoform coordinates particular BPs/pathways in BLM-induced DDR in HCC. Methodology/Principal Findings Using dual-tagging quantitative proteomic approach, we dissected the 14-3-3ε interactome formed during BLM-induced DDR, which revealed that 14-3-3ε via its associations with multiple pathway-specific proteins coordinates multiple pathways including chromosome remodeling, DNA/RNA binding/processing, DNA repair, protein ubiquitination/degradation, cell cycle arrest, signal transduction and apoptosis. Further, “zoom-in” investigation of the 14-3-3ε interacting network indicated that the BLM-induced interaction between 14-3-3ε and a MAP kinase TAK1 plays a critical role in determining cell propensity of apoptosis. Functional characterization of this interaction further revealed that BLM triggers site-specific phosphorylations in the kinase domain of TAK1. These BLM-induced changes of phosphorylations directly correlate to the strength of the TAK1 binding to 14-3-3ε, which govern the phosphorylation-dependent TAK1 activation. The enhanced 14-3-3ε-TAK1 association then inhibits the anti-apoptotic activity of TAK1, which ultimately promotes BLM-induced apoptosis in HCC cells. In a data-dependent manner, we then derived a mechanistic model where 14-3-3ε plays the pivotal role in integrating diverse biological pathways for cellular DDR to BLM in HCC. Conclusions Our data demonstrated on a systems view that 14-3-3ε coordinates multiple biological pathways involved in BLM-induced DDR in HCC cells. Specifically, 14-3-3ε associates with TAK1 in a phosphorylation-dependent manner to determine the cell fate of BLM-treated HCC cells. Not only individual proteins but also those critical links in the network could be the potential targets for BLM-mediated therapeutic intervention of HCC.
Collapse
Affiliation(s)
- Siwei Tang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Huimin Bao
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yang Zhang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jun Yao
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Pengyuan Yang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xian Chen
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
150
|
Li Y, Tian D. Correlation between apoptosis and TGF-β1 expression in the mucosal epithelium of rat small intestine in a cold stress state. Exp Ther Med 2013; 5:1456-1460. [PMID: 23737898 PMCID: PMC3671846 DOI: 10.3892/etm.2013.983] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 01/28/2013] [Indexed: 12/26/2022] Open
Abstract
The aim of this study was to investigate the correlation between the expression of transforming growth factor-β1 (TGF-β1) in the mucosal tissue of rat small intestine and the apoptosis of epithelial cells in the small intestine in a cold-restraint stress state. Immunohistochemistry was used to detect the expression of TGF-β1. Terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL) and DNA agarose gel electrophoresis were used to detect apoptosis. After 8 and 12 h of cold-restraint stress, the positive expression rate of TGF-β1 in the rat small intestine epithelial tissue was 59.09 and 54.16%, respectively. The apoptotic index (AI) of the rat small intestine epithelial cells was 25.69±8.09 and 19.65±6.61%, respectively. The positive expression rate of TGF-β1 in the epithelial tissue of the rat small intestine was positively correlated with the AI of the epithelial cells (r=0.980, P<0.05). The epithelial cells of the rat small intestine exhibited apoptosis under cold-restraint stress. TGF-β1 is one of the key factors that induces apoptosis of the epithelial cells of the rat small intestine.
Collapse
Affiliation(s)
- Yongjun Li
- Department of Gastroenterology, The First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang 832006
| | | |
Collapse
|