101
|
Skwarecki AS, Nowak MG, Milewska MJ. Synthetic strategies in construction of organic macromolecular carrier-drug conjugates. Org Biomol Chem 2020; 18:5764-5783. [PMID: 32677650 DOI: 10.1039/d0ob01101k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Many metabolic inhibitors, considered potential antimicrobial or anticancer drug candidates, exhibit very limited ability to cross the biological membranes of target cells. The restricted cellular penetration of those molecules is often due to their highhydrophilicity. One of the possible solutions to this problem is a conjugation of an inhibitor with a molecular organic nanocarrier. The conjugate thus formed should be able to penetrate the membrane(s) by direct translocation, endocytosis or active transport mechanisms and once internalized, the active component could reach its intracellular target, either after release from the conjugate or in an intact form. Several such nanocarriers have been proposed so far, including macromolecular systems, carbon nanotubes and dendrimers. Herein, we present a comprehensive review of the current status of rational design and synthesis of macromolecular organic nanocarrier-drug conjugates, with special attention focused on the mode of coupling of a nanocarrier moiety with a "cargo" molecule through linking fragments of non-cleavable or cleavable type.
Collapse
Affiliation(s)
- Andrzej S Skwarecki
- Department of Pharmaceutical Technology and Biochemistry, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233 Gdańsk, Poland.
| | - Michał G Nowak
- Department of Organic Chemistry, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233 Gdańsk, Poland
| | - Maria J Milewska
- Department of Organic Chemistry, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233 Gdańsk, Poland
| |
Collapse
|
102
|
Jha R, Singh A, Sharma P, Fuloria NK. Smart carbon nanotubes for drug delivery system: A comprehensive study. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101811] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
103
|
Kumar M, Kumar P, Bhadauria SS. Interlaminar fracture toughness and fatigue fracture of continuous fiber-reinforced polymer composites with carbon-based nanoreinforcements: a review. POLYM-PLAST TECH MAT 2020. [DOI: 10.1080/25740881.2020.1719142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Millan Kumar
- Department of Mechanical Engineering, Dr. B R Ambedkar National Institute of Technology, Jalandhar, India
| | - Pramod Kumar
- Department of Mechanical Engineering, Dr. B R Ambedkar National Institute of Technology, Jalandhar, India
| | - Shailendra Singh Bhadauria
- Department of Industrial & Production Engineering, Dr. B R Ambedkar National Institute of Technology, Jalandhar, India
| |
Collapse
|
104
|
Carbon nanotubes (CNTs) production from catalytic pyrolysis of waste plastics: The influence of catalyst and reaction pressure. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.01.058] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
105
|
Sam A, Hartkamp R, Kumar Kannam S, Babu JS, Sathian SP, Daivis PJ, Todd BD. Fast transport of water in carbon nanotubes: a review of current accomplishments and challenges. MOLECULAR SIMULATION 2020. [DOI: 10.1080/08927022.2020.1782401] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Alan Sam
- Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai, India
| | - Remco Hartkamp
- Process and Energy Department, Delft University of Technology, Delft, The Netherlands
| | - Sridhar Kumar Kannam
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, Australia
| | - Jeetu S. Babu
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri, India
| | - Sarith P. Sathian
- Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai, India
| | - Peter J. Daivis
- School of Applied Sciences, RMIT University, Melbourne, Australia
| | - B. D. Todd
- Department of Mathematics, Swinburne University of Technology, Melbourne, Australia
| |
Collapse
|
106
|
Montanheiro TLDA, Ribas RG, Montagna LS, Menezes BRCD, Schatkoski VM, Rodrigues KF, Thim GP. A brief review concerning the latest advances in the influence of nanoparticle reinforcement into polymeric-matrix biomaterials. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:1869-1893. [PMID: 32579490 DOI: 10.1080/09205063.2020.1781527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nanoparticles (NPs) have been studied for a wide variety of applications, due to the elevated surface area and outstanding properties. Several types of NPs are available nowadays, each one with particular characteristics and challenges. Bionanocomposites, especially composed by polymer matrices, are gaining attention in the biomedical field. Although, several studies have shown the potential of adding NPs into these materials, some investigation is still needed until their clinical use for in vivo application is consummated. Besides that, is essential to evaluate whether the addition of nanoparticles changes the matrix property. In this review, we summarize the latest advances concerning polymeric bionanocomposites incorporated with organic (polymeric, cellulosic, carbon-based), and inorganic (metallic, magnetics, and metal oxide) NPs.
Collapse
Affiliation(s)
- Thaís Larissa do Amaral Montanheiro
- Plasmas and Processes Laboratory (LPP), Division of Fundamental Sciences, Technological Institute of Aeronautics (ITA), São José dos Campos, São Paulo, Brazil
| | - Renata Guimarães Ribas
- Plasmas and Processes Laboratory (LPP), Division of Fundamental Sciences, Technological Institute of Aeronautics (ITA), São José dos Campos, São Paulo, Brazil
| | - Larissa Stieven Montagna
- Technology Laboratory of Polymers and Biopolymers (TecPBio), Institute of Science and Technology, Federal University of São Paulo (UNIFESP), São José dos Campos, São Paulo, Brazil
| | - Beatriz Rossi Canuto de Menezes
- Plasmas and Processes Laboratory (LPP), Division of Fundamental Sciences, Technological Institute of Aeronautics (ITA), São José dos Campos, São Paulo, Brazil
| | - Vanessa Modelski Schatkoski
- Plasmas and Processes Laboratory (LPP), Division of Fundamental Sciences, Technological Institute of Aeronautics (ITA), São José dos Campos, São Paulo, Brazil
| | - Karla Faquine Rodrigues
- Plasmas and Processes Laboratory (LPP), Division of Fundamental Sciences, Technological Institute of Aeronautics (ITA), São José dos Campos, São Paulo, Brazil
| | - Gilmar Patrocínio Thim
- Plasmas and Processes Laboratory (LPP), Division of Fundamental Sciences, Technological Institute of Aeronautics (ITA), São José dos Campos, São Paulo, Brazil
| |
Collapse
|
107
|
Kekez S, Kubica J. Connecting concrete technology and machine learning: proposal for application of ANNs and CNT/concrete composites in structural health monitoring. RSC Adv 2020; 10:23038-23048. [PMID: 35520311 PMCID: PMC9054925 DOI: 10.1039/d0ra03450a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/05/2020] [Indexed: 11/21/2022] Open
Abstract
Carbon nanotube/concrete composite possesses piezoresistivity i.e. self-sensing capability of concrete structures even in large scale. By incorporating smart materials in the structural health monitoring systems the issue of incompatibility between monitored structure and the sensor is surpassed since the concrete element fulfills both functions. Machine learning is an attractive tool to reduce model complexity, so artificial neural networks have been successfully used for a variety of applications including structural analysis and materials science. The idea of using smart materials can become more attractive by building a neural network able to predict properties of the specific nanomodified concrete, making it more cost-friendly and open for unexperienced engineers. This paper reviews previous research work which is exploring the properties of CNTs and their influence on concrete, and the use of artificial neural networks in concrete technology and structural health monitoring. Mix design of CNT/concrete composite materials combined with the application of precisely trained artificial neural networks represents a new direction in the evolution of structural health monitoring of concrete structures.
Collapse
Affiliation(s)
- Sofija Kekez
- Silesian University of Technology Akademicka 2A 44-100 Gliwice Poland
| | - Jan Kubica
- Silesian University of Technology Akademicka 2A 44-100 Gliwice Poland
| |
Collapse
|
108
|
Bahare Osaghi, Fariba Safa. Cloud Point Extraction in Presence of Multi-walled Carbon Nanotubes for Removal of Direct Green 26 from Aqueous Solutions: Optimization by Box-Behnken Design and Desirability Functions. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820060167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
109
|
Bai W, Chu D, Wang F, He Y. Research on Fluidization Performance of Different Tapered Fluidized Bed Reactors for Fluidizing Carbon Nanotubes. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wenjuan Bai
- Shandong Engineering Laboratory for Preparation and Application of High-performance Carbon-Materials, College of Electromechanical Engineering, Qingdao University of Science and Technology, Shandong Province 266061, China
| | - Dianming Chu
- Shandong Engineering Laboratory for Preparation and Application of High-performance Carbon-Materials, College of Electromechanical Engineering, Qingdao University of Science and Technology, Shandong Province 266061, China
| | - Fei Wang
- Shandong Engineering Laboratory for Preparation and Application of High-performance Carbon-Materials, College of Electromechanical Engineering, Qingdao University of Science and Technology, Shandong Province 266061, China
| | - Yan He
- Shandong Engineering Laboratory for Preparation and Application of High-performance Carbon-Materials, College of Electromechanical Engineering, Qingdao University of Science and Technology, Shandong Province 266061, China
| |
Collapse
|
110
|
Wang S, Wu T, Lin J, Ji Y, Yan S, Pei Y, Xie S, Zong B, Qiao M. Iron–Potassium on Single-Walled Carbon Nanotubes as Efficient Catalyst for CO2 Hydrogenation to Heavy Olefins. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00810] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shunwu Wang
- Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P.R. China
| | - Tijun Wu
- Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P.R. China
| | - Jun Lin
- Key Laboratory of Nuclear Analysis Techniques, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, P.R. China
| | - Yushan Ji
- Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P.R. China
| | - Shirun Yan
- Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P.R. China
| | - Yan Pei
- Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P.R. China
| | - Songhai Xie
- Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P.R. China
| | - Baoning Zong
- State Key Laboratory of Catalytic Materials and Chemical Engineering, Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, P.R. China
| | - Minghua Qiao
- Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P.R. China
| |
Collapse
|
111
|
Wang P, Zheng Y, Inoue T, Xiang R, Shawky A, Watanabe M, Anisimov A, Kauppinen EI, Chiashi S, Maruyama S. Enhanced In-Plane Thermal Conductance of Thin Films Composed of Coaxially Combined Single-Walled Carbon Nanotubes and Boron Nitride Nanotubes. ACS NANO 2020; 14:4298-4305. [PMID: 32271541 DOI: 10.1021/acsnano.9b09754] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Carbon nanotubes (CNTs) and boron nitride nanotubes (BNNTs) are one-dimensional materials with high thermal conductivity and similar crystal structures. Additionally, BNNTs feature higher thermal stability in air than CNTs. In this work, a single-walled carbon nanotube (SWCNT) film was used as a template to synthesize a BNNT coating by the chemical vapor deposition (CVD) method to form a coaxial heterostructure. Then, a contact-free steady-state infrared (IR) method was adopted to measure the in-plane sheet thermal conductance of the as-synthesized film. The heterostructured SWCNT-BNNT film demonstrates an enhanced sheet thermal conductance compared with the bare SWCNT film. The increase in sheet thermal conductance shows a reverse relationship with SWCNT film transparency. An enhancement of over 80% (from ∼3.6 to ∼6.4 μW·K-1·sq-1) is attained when the BNNT coating is applied to an SWCNT film with a transparency of 87%. This increase is achieved by BNNTs serving as an additional thermal conducting path. The relationship between the thermal conductance increase and transparency of the SWCNT film is studied by a structured modeling of the SWCNT film. We also discuss the effect of annealing on the thermal conductance of SWCNTs before BNNT growth. Along with the preservation of high electrical conductance, the enhanced thermal conductance of the heterostructured SWCNT-BNNT films makes them a promising building block for thermal and optoelectronic applications.
Collapse
Affiliation(s)
- Pengyingkai Wang
- Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yongjia Zheng
- Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Taiki Inoue
- Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Rong Xiang
- Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Ahmed Shawky
- Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Nanomaterials and Nanotechnology Department, Advanced Materials Division, Central Metallurgical R&D Institute (CMRDI), P.O. Box 87 Helwan, Cairo 11421, Egypt
| | - Makoto Watanabe
- Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | | | - Esko I Kauppinen
- Department of Applied Physics, Aalto University School of Science, 15100, Aalto FI-00076, Finland
| | - Shohei Chiashi
- Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shigeo Maruyama
- Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Energy NanoEngineering Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 1-2-1 Namiki, Tsukuba 305-8654, Japan
| |
Collapse
|
112
|
Hines R, Hajilounezhad T, Love-Baker C, Koerner G, Maschmann MR. Growth and Mechanics of Heterogeneous, 3D Carbon Nanotube Forest Microstructures Formed by Sequential Selective-Area Synthesis. ACS APPLIED MATERIALS & INTERFACES 2020; 12:17893-17900. [PMID: 32208632 DOI: 10.1021/acsami.0c03082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Three-dimensional carbon nanotube (CNT) forest microstructures are synthesized using sequenced, site-specific synthesis techniques. Thin-film layers of Al2O3 and Al2O3/Fe are patterned to support film-catalyst and floating-catalyst chemical vapor deposition (CVD) in specific areas. Al2O3 regions support only floating-catalyst CVD, whereas regions of layered Al2O3/Fe support both film- and floating-catalyst CNT growth. Sequenced application of the two CVD methods produced heterogeneous 3D CNT forest microstructures, including regions of only film-catalyst CNTs, only floating-catalyst CNTs, and vertically stacked layers of each. The compressive mechanical behavior of the heterogeneous CNT forests was evaluated, with the stacked layers exhibiting two distinct buckling plateaus. Finite element simulation of the stacked layers demonstrated that the relatively soft film-catalyst CNT forests were nearly fully buckled prior to large-scale deformation of the bottom floating-catalyst CNT forests.
Collapse
Affiliation(s)
- Ryan Hines
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Taher Hajilounezhad
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Cole Love-Baker
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Gordon Koerner
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Matthew R Maschmann
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
113
|
Abstract
Structure evolution and mechanical response of the carbon nanotube (CNT) bundle under lateral biaxial compression is investigated in plane strain conditions using the chain model. In this model, tensile and bending rigidity of CTN walls, and the van der Waals interactions between them are taken into account. Initially the bundle in cross section is a triangular lattice of circular zigzag CNTs. Under increasing strain control compression, several structure transformations are observed. Firstly, the second-order phase transition leads to the crystalline structure with doubled translational cell. Then the first-order phase transition takes place with the appearance of collapsed CNTs. Further compression results in increase of the fraction of collapsed CNTs at nearly constant compressive stress and eventually all CNTs collapse. It is found that the potential energy of the CNT bundle during deformation changes mainly due to bending of CNT walls, while the contribution from the walls tension-compression and from the van der Waals energies is considerably smaller.
Collapse
|
114
|
Luo Y, Liang W, Ma W, Wang P, Zhu T, Xue S, Yuan Z, Gao H, Chen Y, Wang Y. Cardanol-derived cationic surfactants enabling the superior antibacterial activity of single-walled carbon nanotubes. NANOTECHNOLOGY 2020; 31:265603. [PMID: 32106102 DOI: 10.1088/1361-6528/ab7aa4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) are potential antibacterial material, and their antibacterial activity in aqueous solutions depends on efficient surfactants to create strong interactions between well-dispersed SWCNTs and bacterial cells. Here, we designed and synthesized a new family of cationic surfactants by introducing different positively charged hydrophilic heads, i.e. -(CH2)6N+(CH3)3Br-, -(CH2)2N+(CH3)3Br- and -(CH2)2N+PyridineBr-, to cardanol obtained from cashew nut shell liquid. These surfactants can efficiently disperse SWCNTs in aqueous solutions because benzene rings and olefin chains in cardanol enable their strong π-stacking on SWCNTs. A much higher fraction of SWCNTs can be dispersed individually compared to the commonly used surfactant, dodecylbenzene-sulfonate sodium (SDBS). SWCNTs dispersed in the cardanol-derived surfactants demonstrate significantly improved antibacterial activity. At the concentration of 0.5 wt%, their minimum inhibitory concentration is 0.33 and 0.02 μg ml-1 against E. coli and S. aureus, respectively, which is only 0.8%-1.5% of that of SDBS-dispersed SWCNTs. The strong antibacterial activity can be attributed to both better dispersion of SWCNTs and positive charges introduced by hydrophilic heads, which are attracted to negatively charged bacterial cell surfaces. These cardanol-derived surfactants are promising as sustainable surfactants for enabling various SWCNT applications.
Collapse
Affiliation(s)
- Yuna Luo
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Patel DK, Kim HB, Dutta SD, Ganguly K, Lim KT. Carbon Nanotubes-Based Nanomaterials and Their Agricultural and Biotechnological Applications. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1679. [PMID: 32260227 PMCID: PMC7178645 DOI: 10.3390/ma13071679] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022]
Abstract
Carbon nanotubes (CNTs) are considered a promising nanomaterial for diverse applications owing to their attractive physicochemical properties such as high surface area, superior mechanical and thermal strength, electrochemical activity, and so on. Different techniques like arc discharge, laser vaporization, chemical vapor deposition (CVD), and vapor phase growth are explored for the synthesis of CNTs. Each technique has advantages and disadvantages. The physicochemical properties of the synthesized CNTs are profoundly affected by the techniques used in the synthesis process. Here, we briefly described the standard methods applied in the synthesis of CNTs and their use in the agricultural and biotechnological fields. Notably, better seed germination or plant growth was noted in the presence of CNTs than the control. However, the exact mechanism of action is still unclear. Significant improvements in the electrochemical performances have been observed in CNTs-doped electrodes than those of pure. CNTs or their derivatives are also utilized in wastewater treatment. The high surface area and the presence of different functional groups in the functionalized CNTs facilitate the better adsorption of toxic metal ions or other chemical moieties. CNTs or their derivatives can be applied for the storage of hydrogen as an energy source. It has been observed that the temperature widely influences the hydrogen storage ability of CNTs. This review paper highlighted some recent development on electrochemical platforms over single-walled CNTs (SWCNTs), multi-walled CNTs (MWCNTs), and nanocomposites as a promising biomaterial in the field of agriculture and biotechnology. It is possible to tune the properties of carbon-based nanomaterials by functionalization of their structure to use as an engineering toolkit for different applications, including agricultural and biotechnological fields.
Collapse
Affiliation(s)
- Dinesh K Patel
- Department of Biosystems Engineering, The Institute of Forest Science, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Hye-Been Kim
- Department of Biosystems Engineering, The Institute of Forest Science, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, The Institute of Forest Science, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, The Institute of Forest Science, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, The Institute of Forest Science, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
116
|
Lee Y, Knothe A, Overweg H, Eich M, Gold C, Kurzmann A, Klasovika V, Taniguchi T, Wantanabe K, Fal'ko V, Ihn T, Ensslin K, Rickhaus P. Tunable Valley Splitting due to Topological Orbital Magnetic Moment in Bilayer Graphene Quantum Point Contacts. PHYSICAL REVIEW LETTERS 2020; 124:126802. [PMID: 32281833 DOI: 10.1103/physrevlett.124.126802] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/28/2020] [Indexed: 05/21/2023]
Abstract
In multivalley semiconductors, the valley degree of freedom can be potentially used to store, manipulate, and read quantum information, but its control remains challenging. The valleys in bilayer graphene can be addressed by a perpendicular magnetic field which couples by the valley g factor g_{v}. However, control over g_{v} has not been demonstrated yet. We experimentally determine the energy spectrum of a quantum point contact realized by a suitable gate geometry in bilayer graphene. Using finite bias spectroscopy, we measure the energy scales arising from the lateral confinement as well as the Zeeman splitting and find a spin g factor g_{s}∼2. g_{v} can be tuned by a factor of 3 using vertical electric fields, g_{v}∼40-120. The results are quantitatively explained by a calculation considering topological magnetic moment and its dependence on confinement and the vertical displacement field.
Collapse
Affiliation(s)
- Yongjin Lee
- Department of Physics, ETH Zurich, Otto-Stern-Weg 1, 8093 Zurich, Switzerland
| | - Angelika Knothe
- National Graphene Institute, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Hiske Overweg
- Department of Physics, ETH Zurich, Otto-Stern-Weg 1, 8093 Zurich, Switzerland
| | - Marius Eich
- Department of Physics, ETH Zurich, Otto-Stern-Weg 1, 8093 Zurich, Switzerland
| | - Carolin Gold
- Department of Physics, ETH Zurich, Otto-Stern-Weg 1, 8093 Zurich, Switzerland
| | - Annika Kurzmann
- Department of Physics, ETH Zurich, Otto-Stern-Weg 1, 8093 Zurich, Switzerland
| | - Veronika Klasovika
- Department of Physics, ETH Zurich, Otto-Stern-Weg 1, 8093 Zurich, Switzerland
| | - Takashi Taniguchi
- National Institute for Material Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Kenji Wantanabe
- National Institute for Material Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Vladimir Fal'ko
- National Graphene Institute, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Thomas Ihn
- Department of Physics, ETH Zurich, Otto-Stern-Weg 1, 8093 Zurich, Switzerland
| | - Klaus Ensslin
- Department of Physics, ETH Zurich, Otto-Stern-Weg 1, 8093 Zurich, Switzerland
| | - Peter Rickhaus
- Department of Physics, ETH Zurich, Otto-Stern-Weg 1, 8093 Zurich, Switzerland
| |
Collapse
|
117
|
Uttekar PS, Lakade SH, Beldar VK, Harde MT. Facile synthesis of multi-walled carbon nanotube via folic acid grafted nanoparticle for precise delivery of doxorubicin. IET Nanobiotechnol 2020; 13:688-696. [PMID: 31573537 DOI: 10.1049/iet-nbt.2018.5421] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The motive of work was to develop a multi-walled carbon nanoplatform through facile method for transportation of potential anticancer drug doxorubicin (DOX). Folic acid (FA)-ethylene diamine (EDA) anchored and acid functionalised MWCNTs were covalently grafted with DOX via π-π stacking interaction. The resultant composite was corroborated by 1H NMR, FTIR, XRD, EDX, SEM, and DSC study. The drug entrapment efficiency of FA-conjugated MWCNT was found high and stability study revealed its suitability in biological system. FA-EDA-MWCNTs-DOX conjugate demonstrated a significant in vitro anticancer activity on human breast cancer MCF-7 cells. MTT study revealed the lesser cytotoxicity of folate-conjugated MWCNTs. The obtained results demonstrated the targeting specificity of FA-conjugate via overexpressed folate receptor deemed greater scientific value to overcome multidrug protection during cancer therapy. The proposed strategy is a gentle contribution towards development of biocompatible targeted drug delivery and offers potential to address the current challenges in cancer therapy.
Collapse
Affiliation(s)
- Pravin S Uttekar
- Department of Pharmaceutics, PES's Modern College of Pharmacy, Sector No. 21, Yamuna Nagar, Nigdi, Pune, (M.S), India
| | - Sameer H Lakade
- Department of Pharmaceutics, RMD Institute of Pharmaceutical Education & Research, Pune, (M.S), India.
| | - Vijay K Beldar
- Department of Pharmaceutics, PES's Modern College of Pharmacy, Sector No. 21, Yamuna Nagar, Nigdi, Pune, (M.S), India
| | - Minal T Harde
- Department of Pharmaceutical Chemistry, PES's Modern College of Pharmacy, Sector No. 21, Yamuna Nagar, Nigdi, Pune, (M.S), India
| |
Collapse
|
118
|
Chandel VS, Wang G, Talha M. Advances in modelling and analysis of nano structures: a review. NANOTECHNOLOGY REVIEWS 2020; 9:230-258. [DOI: 10.1515/ntrev-2020-0020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
AbstractNanostructures are widely used in nano and micro-sized systems and devices such as biosensors, nano actuators, nano-probes, and nano-electro-mechanical systems. The complete understanding of the mechanical behavior of nanostructures is crucial for the design of nanodevices and systems. Therefore, the flexural, stability and vibration analysis of various nanostructures such as nanowires, nanotubes, nanobeams, nanoplates, graphene sheets and nanoshells has received a great attention in recent years. The focus has been made, to present the structural analysis of nanostructures under thermo-magneto-electro-mechanical loadings under various boundary and environmental conditions. This paper also provides an overview of analytical modeling methods, fabrication procedures, key challenges and future scopes of development in the direction of analysis of such structures, which will be helpful for appropriate design and analysis of nanodevices for the application in the various fields of nanotechnology.
Collapse
Affiliation(s)
- Vikram Singh Chandel
- School of Engineering, Indian Institute of Technology Mandi , Himachal Pradesh 175005 , India
| | - Guannan Wang
- Department of Civil Engineering, Zhejiang University , Hangzhou 310058 , China
| | - Mohammad Talha
- School of Engineering, Indian Institute of Technology Mandi , Himachal Pradesh 175005 , India
| |
Collapse
|
119
|
Jalili V, Barkhordari A, Ghiasvand A. New extraction media in microextraction techniques. A review of reviews. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104386] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
120
|
Chen S, Qiu L, Cheng HM. Carbon-Based Fibers for Advanced Electrochemical Energy Storage Devices. Chem Rev 2020; 120:2811-2878. [DOI: 10.1021/acs.chemrev.9b00466] [Citation(s) in RCA: 213] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Shaohua Chen
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, P. R. China
| | - Ling Qiu
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, P. R. China
| | - Hui-Ming Cheng
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, P. R. China
- Shenyang National Laboratory for Materials Sciences, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, P. R. China
- Advanced Technology Institute (ATI), University of Surrey, Guildford, Surrey GU2 7XH, England
| |
Collapse
|
121
|
Huang HT, Zhu L, Ward MD, Wang T, Chen B, Chaloux BL, Wang Q, Biswas A, Gray JL, Kuei B, Cody GD, Epshteyn A, Crespi VH, Badding JV, Strobel TA. Nanoarchitecture through Strained Molecules: Cubane-Derived Scaffolds and the Smallest Carbon Nanothreads. J Am Chem Soc 2020; 142:17944-17955. [PMID: 31961671 DOI: 10.1021/jacs.9b12352] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Relative to the rich library of small-molecule organics, few examples of ordered extended (i.e., nonmolecular) hydrocarbon networks are known. In particular, sp3 bonded, diamond-like materials represent appealing targets because of their desirable mechanical, thermal, and optical properties. While many covalent organic frameworks (COFs)-extended, covalently bonded, and porous structures-have been realized through molecular architecture with exceptional control, the design and synthesis of dense, covalent extended solids has been a longstanding challenge. Here we report the preparation of a sp3-bonded, low-dimensional hydrocarbon synthesized via high-pressure, solid-state diradical polymerization of cubane (C8H8), which is a saturated, but immensely strained, cage-like molecule. Experimental measurements show that the obtained product is crystalline with three-dimensional order that appears to largely preserve the basic structural topology of the cubane molecular precursor and exhibits high hardness (comparable to fused quartz) and thermal stability up to 300 °C. Among the plausible theoretical candidate structures, one-dimensional carbon scaffolds comprising six- and four-membered rings that pack within a pseudosquare lattice provide the best agreement with experimental data. These diamond-like molecular rods with extraordinarily small thickness are among the smallest members in the carbon nanothread family, and calculations indicate one of the stiffest one-dimensional systems known. These results present opportunities for the synthesis of purely sp3-bonded extended solids formed through the strain release of saturated molecules, as opposed to only unsaturated precursors.
Collapse
Affiliation(s)
| | - Li Zhu
- Geophysical Laboratory, Carnegie Institution for Science, 5251 Broad Branch Road Northwest, Washington, DC 20015, United States
| | - Matthew D Ward
- Geophysical Laboratory, Carnegie Institution for Science, 5251 Broad Branch Road Northwest, Washington, DC 20015, United States
| | | | | | - Brian L Chaloux
- Chemistry Division, U.S. Naval Research Laboratory, Washington, DC 20375, United States
| | - Qianqian Wang
- Geophysical Laboratory, Carnegie Institution for Science, 5251 Broad Branch Road Northwest, Washington, DC 20015, United States
| | | | | | | | - George D Cody
- Geophysical Laboratory, Carnegie Institution for Science, 5251 Broad Branch Road Northwest, Washington, DC 20015, United States
| | - Albert Epshteyn
- Chemistry Division, U.S. Naval Research Laboratory, Washington, DC 20375, United States
| | | | | | - Timothy A Strobel
- Geophysical Laboratory, Carnegie Institution for Science, 5251 Broad Branch Road Northwest, Washington, DC 20015, United States
| |
Collapse
|
122
|
Karandish M, Fardindoost S, Pazuki G. A Novel Approach in Sorting Chirality Species of Single-Wall Carbon Nanotubes Based on an Aqueous Two-Phase System of Polymer-Salt. Sci Rep 2020; 10:2025. [PMID: 32029877 PMCID: PMC7005278 DOI: 10.1038/s41598-020-58993-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/23/2020] [Indexed: 11/08/2022] Open
Abstract
Sorting of distinct (n, m) chirality species of single-wall carbon nanotubes (SWCNTs) is essential for progress in technical applications in the field of electronic and optic devices. The purpose of this study is to investigate the isolation of single-wall carbon nanotubes based on diameters/chirality in a polymer-salt (polyethylene glycol and sodium citrate) aqueous two-phase system (ATPS) a substitute for common polymer-polymer (polyethylene glycol and dextran) system. The ATPS based on polymer-salt used instead of the common polymer-polymer system due to low viscosity, reduced surface tension, and lower cost of sodium citrate compared to the dextran. For this purpose, the ratio of concentrations of polyethylene glycol to sodium citrate as well as the effect of temperature on the isolation are both investigated and the selectivity and the recovery estimated approximately. The absorbance spectra from both top and bottom phases at different polymer and salt contents and at different temperatures show that by using this system in optimal conditions of polymer to salt ratio of 2:1 at temperature of 20 °C, a suitable separation of nanotubes with 85% yield of the chiral groups of 9 and 10 can be obtained.
Collapse
Affiliation(s)
- Marziyeh Karandish
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | | | - Gholamreza Pazuki
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| |
Collapse
|
123
|
Zhang Y, Ng SW, Lu X, Zheng Z. Solution-Processed Transparent Electrodes for Emerging Thin-Film Solar Cells. Chem Rev 2020; 120:2049-2122. [DOI: 10.1021/acs.chemrev.9b00483] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yaokang Zhang
- Laboratory for Advanced Interfacial Materials and Devices and Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, China
| | - Sze-Wing Ng
- Laboratory for Advanced Interfacial Materials and Devices and Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xi Lu
- Laboratory for Advanced Interfacial Materials and Devices and Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, China
| | - Zijian Zheng
- Laboratory for Advanced Interfacial Materials and Devices and Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
124
|
Rosli NAH, Loh KS, Wong WY, Yunus RM, Lee TK, Ahmad A, Chong ST. Review of Chitosan-Based Polymers as Proton Exchange Membranes and Roles of Chitosan-Supported Ionic Liquids. Int J Mol Sci 2020; 21:ijms21020632. [PMID: 31963607 PMCID: PMC7014316 DOI: 10.3390/ijms21020632] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/04/2019] [Accepted: 12/11/2019] [Indexed: 02/02/2023] Open
Abstract
Perfluorosulphonic acid-based membranes such as Nafion are widely used in fuel cell applications. However, these membranes have several drawbacks, including high expense, non-eco-friendliness, and low proton conductivity under anhydrous conditions. Biopolymer-based membranes, such as chitosan (CS), cellulose, and carrageenan, are popular. They have been introduced and are being studied as alternative materials for enhancing fuel cell performance, because they are environmentally friendly and economical. Modifications that will enhance the proton conductivity of biopolymer-based membranes have been performed. Ionic liquids, which are good electrolytes, are studied for their potential to improve the ionic conductivity and thermal stability of fuel cell applications. This review summarizes the development and evolution of CS biopolymer-based membranes and ionic liquids in fuel cell applications over the past decade. It also focuses on the improved performances of fuel cell applications using biopolymer-based membranes and ionic liquids as promising clean energy.
Collapse
Affiliation(s)
- Nur Adiera Hanna Rosli
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Selangor, Malaysia; (N.A.H.R.); (W.Y.W.); (R.M.Y.)
| | - Kee Shyuan Loh
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Selangor, Malaysia; (N.A.H.R.); (W.Y.W.); (R.M.Y.)
- Correspondence:
| | - Wai Yin Wong
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Selangor, Malaysia; (N.A.H.R.); (W.Y.W.); (R.M.Y.)
| | - Rozan Mohamad Yunus
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Selangor, Malaysia; (N.A.H.R.); (W.Y.W.); (R.M.Y.)
| | - Tian Khoon Lee
- Department of Chemistry–Ångström Laboratory, Uppsala University, Box 538, SE-751 21 Uppsala, Sweden;
| | - Azizan Ahmad
- Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Selangor, Malaysia;
| | - Seng Tong Chong
- College of Energy Economics and Social Sciences, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia;
| |
Collapse
|
125
|
Mondal K, Maitra T, Srivastava AK, Pawar G, McMurtrey MD, Sharma A. 110th Anniversary: Particle Size Effect on Enhanced Graphitization and Electrical Conductivity of Suspended Gold/Carbon Composite Nanofibers. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06592] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Kunal Mondal
- Materials Science and Engineering Department, Idaho National Laboratory, Idaho Falls, Idaho 83415, United States
| | - Tanmoy Maitra
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur-208016, Uttar Pradesh India
- FT Technologies, Sunbury House, Brookland Close, Sunbury-on-Thames TW16 7DX, U.K
| | - Alok Kumar Srivastava
- Defence Materials and Stores R & D Establishment (DRDO), GT Road, Kanpur 208013, Uttar Pradesh India
| | - Gorakh Pawar
- Materials Science and Engineering Department, Idaho National Laboratory, Idaho Falls, Idaho 83415, United States
| | - Michael D. McMurtrey
- Materials Science and Engineering Department, Idaho National Laboratory, Idaho Falls, Idaho 83415, United States
| | - Ashutosh Sharma
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur-208016, Uttar Pradesh India
| |
Collapse
|
126
|
Park JH, Lee HJ, Cho JY, Jeong S, Kim HY, Kim JH, Seo SH, Jeong HJ, Jeong SY, Lee GW, Han JT. Highly Exfoliated and Functionalized Single-Walled Carbon Nanotubes as Fast-Charging, High-Capacity Cathodes for Rechargeable Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2020; 12:1322-1329. [PMID: 31840977 DOI: 10.1021/acsami.9b17311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Compared with traditional metal-oxide lithium-ion battery (LIB) cathodes, nanocarbon-based cathode materials have received much attention for potential application in LIBs because of their superior power density and long-term cyclability. However, their lithium-ion storage capacity needs further improvement for practical applications, and the trade-off between capacity and conductivity, when oxygen functional groups as lithium-ion storage sites are introduced to the nanocarbon materials, needs to be addressed. Here, we report a sequential oxidation-reduction process for the synthesis of single-walled carbon nanotubes (SWCNTs) for LIB cathodes with fast charging, long-term cyclability, and high gravimetric capacity. A LIB cathode based on highly exfoliated (dbundle < 10 nm) and oxygen-functionalized single-walled carbon nanotubes is obtained via the modified Brodie's method using fuming nitric acid and a mild oxidant (B-SWCNTs). Post treatment including horn sonication and hydrogen thermal reduction developed surface defects and removed the unnecessary C-O groups, resulting in an increase in the Li-ion storage capacity. The B-SWCNTs exhibit a high reversible gravimetric capacity of 344 mA h g-1 at 0.1 A g-1 without noticeable capacity fading after 1000 cycles. Furthermore, it delivers a high gravimetric energy density of 797 W h kgelectrode-1 at a low gravimetric power density of 300 W kgelectrode-1 and retains its high gravimetric energy density of ∼100 W h kgelectrode-1 at a high gravimetric power of 105 W kgelectrode-1. These results suggest that the highly exfoliated, oxygen-functionalized single-walled carbon nanotubes can be applied to LIBs designed for high-rate operations and long cycling.
Collapse
Affiliation(s)
- Jong Hwan Park
- Nano Hybrid Technology Research Center, Electrical Materials Research Division , Korea Electrotechnology Research Institute (KERI) , Changwon 51543 , Republic of Korea
| | - Hye Jung Lee
- Nano Hybrid Technology Research Center, Electrical Materials Research Division , Korea Electrotechnology Research Institute (KERI) , Changwon 51543 , Republic of Korea
| | - Joon Young Cho
- Department of Electro-Functionality Material Engineering , University of Science and Technology (UST) , Changwon 51543 , Republic of Korea
| | - Sooyeon Jeong
- Nano Hybrid Technology Research Center, Electrical Materials Research Division , Korea Electrotechnology Research Institute (KERI) , Changwon 51543 , Republic of Korea
| | - Ho Young Kim
- Nano Hybrid Technology Research Center, Electrical Materials Research Division , Korea Electrotechnology Research Institute (KERI) , Changwon 51543 , Republic of Korea
| | - Jung Hoon Kim
- Nano Hybrid Technology Research Center, Electrical Materials Research Division , Korea Electrotechnology Research Institute (KERI) , Changwon 51543 , Republic of Korea
| | - Seon Hee Seo
- Nano Hybrid Technology Research Center, Electrical Materials Research Division , Korea Electrotechnology Research Institute (KERI) , Changwon 51543 , Republic of Korea
| | - Hee Jin Jeong
- Nano Hybrid Technology Research Center, Electrical Materials Research Division , Korea Electrotechnology Research Institute (KERI) , Changwon 51543 , Republic of Korea
| | - Seung Yol Jeong
- Nano Hybrid Technology Research Center, Electrical Materials Research Division , Korea Electrotechnology Research Institute (KERI) , Changwon 51543 , Republic of Korea
- Department of Electro-Functionality Material Engineering , University of Science and Technology (UST) , Changwon 51543 , Republic of Korea
| | - Geon-Woong Lee
- Nano Hybrid Technology Research Center, Electrical Materials Research Division , Korea Electrotechnology Research Institute (KERI) , Changwon 51543 , Republic of Korea
| | - Joong Tark Han
- Nano Hybrid Technology Research Center, Electrical Materials Research Division , Korea Electrotechnology Research Institute (KERI) , Changwon 51543 , Republic of Korea
- Department of Electro-Functionality Material Engineering , University of Science and Technology (UST) , Changwon 51543 , Republic of Korea
| |
Collapse
|
127
|
Salamatov IN, Yatsenko DA, Khasin AA. Determination of the Diameter Distribution Function of Single-Wall Carbon Nanotubes by the X-Ray Diffraction Data. J STRUCT CHEM+ 2020. [DOI: 10.1134/s0022476619120175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
128
|
Xiong M, Gao Z, Luo K, Ling F, Gao Y, Chen C, Yu D, Zhao Z, Wei S. Three metallic BN polymorphs: 1D multi-threaded conduction in a 3D network. Phys Chem Chem Phys 2020; 22:489-496. [PMID: 31822871 DOI: 10.1039/c9cp05860e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, three novel metallic sp2/sp3-hybridized boron nitride (BN) polymorphs are proposed by first-principles calculations. One of them, denoted as tP-BN, is predicted based on the evolutionary particle swarm structural search. tP-BN is composed of two interlocked rings forming a tube-like 3D network. The stability and band structure calculations show that tP-BN is metastable and metallic at zero pressure. Calculations for the density of states and electron orbitals confirm that the metallicity originates from the sp2-hybridized B and N atoms, forming 1D linear conductive channels in the 3D network. According to the relationship between the atomic structure and electronic properties, another two 3D metastable metallic sp2/sp3-hybridized BN structures are constructed manually. Electronic property calculations show that both of these structures have 1D conductive channels along different axes. The polymorphs predicted in this study enrich the structures and provide a different picture of the conductive mechanism of BN compounds.
Collapse
Affiliation(s)
- Mei Xiong
- National Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials, Henan University of Science and Technology, Luoyang 471003, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Münich PW, Pfäffli M, Volland M, Liu SX, Häner R, Guldi DM. Amphiphilic anthanthrene trimers that exfoliate graphite and individualize single wall carbon nanotubes. NANOSCALE 2020; 12:956-966. [PMID: 31840702 DOI: 10.1039/c9nr08062g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A phosphodiester-linked dialkynyl substituted anthanthrene trimer (1) has been designed and synthesized. Its graphene ribbon like structure is expected to facilitate interactions with nanographene (NG) and single wall carbon nanotubes (SWCNT) to yield novel and stable carbon-based nanomaterials. Interactions with trimer 1 lead to exfoliation of NG and to the individualization of SWCNTs. Phosphate groups, in general, and their negative charges, in particular, render the resulting nanomaterials soluble in ethanol, which is ecologically favourable over DMF required for the processing of pristine NG or SWCNTs. The newly formed nanomaterials were probed by complementary spectroscopic and microscopic techniques. Of particular importance were transient absorption and fluorescence excitation measurements, which revealed an efficient energy transfer within the carbon-based nanomaterials.
Collapse
Affiliation(s)
- Peter W Münich
- Department of Chemistry and Pharmacy and Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany.
| | | | | | | | | | | |
Collapse
|
130
|
Cao Y, Wang Y, Dong Z, Zhang X, Xiao C, Li G. Synthesis of a magnetic core–shell carbon nanotube@MgNi2FeO4.5 nanotube composite. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-019-00867-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
131
|
Shao H, Wu YC, Lin Z, Taberna PL, Simon P. Nanoporous carbon for electrochemical capacitive energy storage. Chem Soc Rev 2020; 49:3005-3039. [DOI: 10.1039/d0cs00059k] [Citation(s) in RCA: 213] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review summarizes the recent advances of nanoporous carbon materials in the application of EDLCs, including a better understanding of the charge storage mechanisms by combining the advanced techniques and simulations methods.
Collapse
Affiliation(s)
- Hui Shao
- Université Paul Sabatier
- CIRIMAT UMR CNRS 5085
- 31062 Toulouse
- France
- Réseau sur le Stockage Electrochimique de l'Energie (RS2E)
| | - Yih-Chyng Wu
- Université Paul Sabatier
- CIRIMAT UMR CNRS 5085
- 31062 Toulouse
- France
- Réseau sur le Stockage Electrochimique de l'Energie (RS2E)
| | - Zifeng Lin
- College of Materials Science and Engineering
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Pierre-Louis Taberna
- Université Paul Sabatier
- CIRIMAT UMR CNRS 5085
- 31062 Toulouse
- France
- Réseau sur le Stockage Electrochimique de l'Energie (RS2E)
| | - Patrice Simon
- Université Paul Sabatier
- CIRIMAT UMR CNRS 5085
- 31062 Toulouse
- France
- Réseau sur le Stockage Electrochimique de l'Energie (RS2E)
| |
Collapse
|
132
|
Low-temperature synthesis of sp 2 carbon nanomaterials. Sci Bull (Beijing) 2019; 64:1817-1829. [PMID: 36659578 DOI: 10.1016/j.scib.2019.10.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 01/21/2023]
Abstract
sp2 carbon nanomaterials are mainly composed of sp2-hybridized carbon atoms in the form of a hexagonal network. Due to the π bonds formed by unpaired electrons, sp2 carbon nanomaterials possess excellent electronic, mechanical, and optical properties, which have attracted great attention in recent years. As the advanced sp2 carbon nanomaterials, graphene and carbon nanotubes (CNTs) have great potential in electronics, sensors, energy storage and conversion devices, etc. The low-temperature synthesis of graphene and CNTs are indispensable to promote the practical industrial application. Furthermore, graphene and CNTs can even be expected to directly grow on the flexible plastic that cannot bear high temperature, expanding bright prospects for applications in emerging flexible nanotechnology. An in-depth understanding of the formation mechanism of sp2 carbon nanomaterials is beneficial for reducing the growth temperature and satisfying the demands of industrial production in an economical and low-cost way. In this review, we discuss the main strategies and the related mechanisms in low-temperature synthesis of graphene and CNTs, including the selection of precursors with high reactivity, the design of catalyst, and the introduction of additional energy for the pre-decomposition of precursors. Furthermore, challenges and outlooks are highlighted for further progress in the practical industrial application.
Collapse
|
133
|
Singh R, Chakravarty A, Mishra S, Prajapati RC, Dutta J, Bhat IK, Pandel U, Biswas SK, Muraleedharan K. AlN-SWCNT Metacomposites Having Tunable Negative Permittivity in Radio and Microwave Frequencies. ACS APPLIED MATERIALS & INTERFACES 2019; 11:48212-48220. [PMID: 31829543 DOI: 10.1021/acsami.9b15909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Discovery of plasmon resonance and negative permittivity in carbon allotropes at much lower frequencies than those of metals has evoked interest to develop random metacomposites by suitable means of addition of these dispersoids in an overall dielectric matrix. Random metacomposites have always the advantage for their easy preparation techniques over those of their regular arrayed artificial counterpart. However, thermal management during the heat generation by electromagnetic attenuation in metamaterials is not yet studied well. The present communication discusses the dielectric permittivities and loss parameters of aluminum nitride-single-wall carbon nanotube (AlN-SWCNT) composites considering high thermal conductivities of both materials. The composites are dense and have been prepared by a standard powder technological method using hot pressing at 1850 °C under a nitrogen atmosphere. Increase in the negative permittivity value with SWCNT concentration (1, 3, and 6 vol %) in the composites had been observed at low frequencies. Characterization of the materials with Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and microstructure analysis by scanning and transmission electron microscopy (TEM) revealed the survivability of the SWCNTs and the nature of the matrix-filler interface. Plasmonic resonance following Drude's law could be observed at much lower plasma frequencies than that of pure SWCNT and for very little SWCNT addition. Exhibition of the negative permittivity has been explained with relation to the microstructure of the composites observed from field emission scanning electron micrographs (FESEM), TEM images, and the equivalent circuit model. High energy conversion efficiency is expected in these composites due to the possession of dual functionalities like high thermal conductivity as well as high negative permittivity, which should ensure the application of these materials in wave filter, cloaking device, supercapacitors, and wireless communication.
Collapse
Affiliation(s)
- Ravindra Singh
- Malaviya National Institute of Technology , Jaipur 302017 , India
| | - Amrita Chakravarty
- CSIR-Central Glass & Ceramics Research Institute , Kolkata 700032 , India
| | - Shubhankar Mishra
- CSIR-Central Glass & Ceramics Research Institute , Kolkata 700032 , India
| | | | - Jit Dutta
- Malaviya National Institute of Technology , Jaipur 302017 , India
| | - Inder K Bhat
- Malaviya National Institute of Technology , Jaipur 302017 , India
| | - Upender Pandel
- Malaviya National Institute of Technology , Jaipur 302017 , India
| | - Sampad K Biswas
- Malaviya National Institute of Technology , Jaipur 302017 , India
| | | |
Collapse
|
134
|
Construction of Ni@Pt/N-doped nanoporous carbon, derived from pyrolysis of nickel metal organic framework, and application for HER in alkaline and acidic solutions. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134895] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
135
|
Mo JH, Kim KC, Jang KS. Well-dispersed carbon nanotube/polymer composite films and application to electromagnetic interference shielding. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.07.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
136
|
Chain Model for Carbon Nanotube Bundle under Plane Strain Conditions. MATERIALS 2019; 12:ma12233951. [PMID: 31795238 PMCID: PMC6926488 DOI: 10.3390/ma12233951] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 11/19/2019] [Accepted: 11/22/2019] [Indexed: 12/02/2022]
Abstract
Carbon nanotubes (CNTs) have record high tensile strength and Young’s modulus, which makes them ideal for making super strong yarns, ropes, fillers for composites, solid lubricants, etc. The mechanical properties of CNT bundles have been addressed in a number of experimental and theoretical studies. The development of efficient computational methods for solving this problem is an important step in the design of new CNT-based materials. In the present study, an atomistic chain model is proposed to analyze the mechanical response of CNT bundles under plane strain conditions. The model takes into account the tensile and bending rigidity of the CNT wall, as well as the van der Waals interactions between walls. Due to the discrete character of the model, it is able to describe large curvature of the CNT wall and the fracture of the walls at very high pressures, where both of these problems are difficult to address in frame of continuum mechanics models. As an example, equilibrium structures of CNT crystal under biaxial, strain controlled loading are obtained and their thermal stability is analyzed. The obtained results agree well with previously reported data. In addition, a new equilibrium structure with four SNTs in a translational cell is reported. The model offered here can be applied with great efficiency to the analysis of the mechanical properties of CNT bundles composed of single-walled or multi-walled CNTs under plane strain conditions due to considerable reduction in the number of degrees of freedom.
Collapse
|
137
|
Qiu Y, Wu X, Wang M, Fan L, Tian D, Guan B, Tang D, Zhang N. 3D Hierarchical CNT‐Based Host with High Sulfur Loading for Lithium‐Sulfur Batteries. ChemElectroChem 2019. [DOI: 10.1002/celc.201901609] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yue Qiu
- State Key Laboratory of Urban Water Resource and Environment; School of Chemistry and Chemical EngineeringHarbin Institute of Technology Harbin, Heilongjiang 150090 P.R. China
| | - Xian Wu
- State Key Laboratory of Urban Water Resource and Environment; School of Chemistry and Chemical EngineeringHarbin Institute of Technology Harbin, Heilongjiang 150090 P.R. China
| | - Maoxu Wang
- State Key Laboratory of Urban Water Resource and Environment; School of Chemistry and Chemical EngineeringHarbin Institute of Technology Harbin, Heilongjiang 150090 P.R. China
| | - Lishuang Fan
- State Key Laboratory of Urban Water Resource and Environment; School of Chemistry and Chemical EngineeringHarbin Institute of Technology Harbin, Heilongjiang 150090 P.R. China
| | - Da Tian
- State Key Laboratory of Urban Water Resource and Environment; School of Chemistry and Chemical EngineeringHarbin Institute of Technology Harbin, Heilongjiang 150090 P.R. China
| | - Bin Guan
- State Key Laboratory of Urban Water Resource and Environment; School of Chemistry and Chemical EngineeringHarbin Institute of Technology Harbin, Heilongjiang 150090 P.R. China
| | - Dongyan Tang
- State Key Laboratory of Urban Water Resource and Environment; School of Chemistry and Chemical EngineeringHarbin Institute of Technology Harbin, Heilongjiang 150090 P.R. China
| | - Naiqing Zhang
- State Key Laboratory of Urban Water Resource and Environment; School of Chemistry and Chemical EngineeringHarbin Institute of Technology Harbin, Heilongjiang 150090 P.R. China
- Academy of Fundamental and Interdisciplinary SciencesHarbin Institute of Technology Harbin, Heilongjiang 150090 P.R. China
| |
Collapse
|
138
|
Wang Y, Ben T, Qiu S, Valtchev V. Aligned High Density Semi‐Conductive Ultra‐Small Single‐Walled Carbon Nanotubes. ChemistrySelect 2019. [DOI: 10.1002/slct.201904178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yun Wang
- Zhuhai College of Jilin University, Zhuhai China
| | - Teng Ben
- Zhuhai College of Jilin University, Zhuhai China
- Department of ChemistryJilin University, Changchun China
| | - Shilun Qiu
- Zhuhai College of Jilin University, Zhuhai China
- Department of ChemistryJilin University, Changchun China
| | - Valentin Valtchev
- Department of ChemistryJilin University, Changchun China
- Normandie UnivENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie, 6 Marechal Juin 14050 Caen France
| |
Collapse
|
139
|
Saheb N, Hayat U, Hassan SF. Recent Advances and Future Prospects in Spark Plasma Sintered Alumina Hybrid Nanocomposites. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1607. [PMID: 31726768 PMCID: PMC6915451 DOI: 10.3390/nano9111607] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/24/2019] [Accepted: 10/31/2019] [Indexed: 11/24/2022]
Abstract
Although ceramics have many advantages when compared to metals in specific applications, they could be more widely applied if their low properties (fracture toughness, strength, and electrical and thermal conductivities) are improved. Reinforcing ceramics by two nano-phases that have different morphologies and/or properties, called the hybrid microstructure design, has been implemented to develop hybrid ceramic nanocomposites with tailored nanostructures, improved mechanical properties, and enhanced functionalities. The use of the novel spark plasma sintering (SPS) process allowed for the sintering of hybrid ceramic nanocomposite materials to maintain high relative density while also preserving the small grain size of the matrix. As a result, hybrid nanocomposite materials that have better mechanical and functional properties than those of either conventional composites or nanocomposites were produced. The development of hybrid ceramic nanocomposites is in its early stage and it is expected to continue attracting the interest of the scientific community. In the present paper, the progress made in the development of alumina hybrid nanocomposites, using spark plasma sintering, and their properties are reviewed. In addition, the current challenges and potential applications are highlighted. Finally, future prospects for developing alumina hybrid nanocomposites that have better performance are set.
Collapse
Affiliation(s)
- Nouari Saheb
- Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia; (U.H.); (S.F.H.)
| | | | | |
Collapse
|
140
|
Design and Implementation of Ternary Logic Integrated Circuits by Using Novel Two-Dimensional Materials. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9204212] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
With the approaching end of Moore’s Law (that the number of transistors in a dense integrated circuit doubles every two years), the logic data density in modern binary digital integrated circuits can hardly be further improved due to the physical limitation. In this aspect, ternary logic (0, 1, 2) is a promising substitute to binary (0, 1) because of its higher number of logic states. In this work, we carry out a systematical study on the emerging two-dimensional (2D) materials (MoS2 and Black Phosphorus)-based ternary logic from individual ternary logic devices to large scale ternary integrated circuits. Various ternary logic devices, including the standard ternary inverter (STI), negative ternary inverter (NTI), positive ternary inverter (PTI) and especially the ternary decrement cycling inverter (DCI), have been successfully implemented using the 2D materials. Then, by taking advantage of the optimized ternary adder algorithm and the novel ternary cycling inverter, we design a novel ternary ripple-carry adder with great circuitry simplicity. Our design shows about a 50% reduction in the required number of transistors compared to the existing ternary technology. This work paves a new way for the ternary integrated circuits design, and shows potential to fulfill higher logic data density and a smaller chip area in the future.
Collapse
|
141
|
Wang P, Luo W, Guo N, Wang L, Jia D, Zhao Z, Zhang S, Xu M. Nitrogen and oxygen co-doped hierarchical porous carbon for high performance supercapacitor electrodes. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.05.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
142
|
Barnett CJ, Evans C, McCormack JE, Gowenlock CE, Dunstan P, Orbaek White A, Barron AR. Experimental Measurement of Angular and Overlap Dependence of Conduction between Carbon Nanotubes of Identical Chirality and Diameter. NANO LETTERS 2019; 19:4861-4865. [PMID: 31265785 DOI: 10.1021/acs.nanolett.9b00025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Measurement of the angular and overlap dependence of the conduction between two identical carbon nanotubes (CNTs), with the same diameter and chirality, has only been possible through theoretical calculations; however, our observation of increased resistance adjacent to the junction between two CNTs facilitates such measurements. Since electrical resistance was found to increase with increased diameter ratio, applying 10 V to one of dissimilar diameter CNTs results in cleavage at the junction. Manipulation of the resulting identical CNTs (created by cutting a single CNT) allows for the direct measurement of the angular and parallel overlap conduction. Angular (13° < θ < 63°) dependence shows two minima (22° and 44°) and a maximum at 30°, and conduction between parallel CNTs increases with overall tip separation but shows a sinusoidal relationship with contact length, consistent with the concept of atomic scale registry.
Collapse
Affiliation(s)
- Chris J Barnett
- Energy Safety Research Institute , Swansea University , Bay Campus , Swansea , SA1 8EN , Wales, U.K
| | - Christopher Evans
- Department of Physics, College of Science , Swansea University , Singleton Park , Swansea SA2 8PP , U.K
| | - James E McCormack
- Energy Safety Research Institute , Swansea University , Bay Campus , Swansea , SA1 8EN , Wales, U.K
| | - Cathren E Gowenlock
- Energy Safety Research Institute , Swansea University , Bay Campus , Swansea , SA1 8EN , Wales, U.K
| | - Peter Dunstan
- Department of Physics, College of Science , Swansea University , Singleton Park , Swansea SA2 8PP , U.K
| | - Alvin Orbaek White
- Energy Safety Research Institute , Swansea University , Bay Campus , Swansea , SA1 8EN , Wales, U.K
| | - Andrew R Barron
- Energy Safety Research Institute , Swansea University , Bay Campus , Swansea , SA1 8EN , Wales, U.K
- Department of Materials Science and Nanoengineering , Rice University , Houston , Texas 77007 , United States
- Department of Chemistry , Rice University , Houston , Texas 77007 , United States
| |
Collapse
|
143
|
Altun A, Apetrei RM, Camurlu P. The effect of copolymerization and carbon nanoelements on the performance of poly(2,5-di(thienyl)pyrrole) biosensors. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110069. [PMID: 31546439 DOI: 10.1016/j.msec.2019.110069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/04/2019] [Accepted: 08/09/2019] [Indexed: 11/30/2022]
Abstract
The development of biosensing interfaces based on copolymerization of benzenamine-2,5-di(thienyl)pyrrole (SNS-An) with 3,4-ethylenedioxythiophene (EDOT) is reported. Both homopolymer P(SNS-An) and copolymer P(SNS-An-co-EDOT) films were prepared and evaluated, in terms of biosensing efficiency, upon incorporation of carbon nanoelements (carbon nanotubes and fullerene) and cross-linking of glucose oxidase. The copolymer revealed superior performance as a biosensing interface as compared to the homopolymer structure or previously reported P(SNS) biosensors. The analytical characteristics and stability studies were performed both at cathodic potential, monitoring O2 consumption, as a result of catalytic reaction of glucose oxidase towards glucose and at anodic potential, following the oxidation of the H2O2 produced during the catalytic reaction. Whilst the measurements on the positive side offered an extended linear range (0.01-5.0 mM), the negative side provided sensitivity up to 104.96 μA/mMcm-1 within a shorter range. Detection limits were as low as 1.9 μM with Km value of 0.49 mM. Lastly, the most performant biosensing platforms, including copolymeric structure and CNTs were employed for analysis in real samples.
Collapse
Affiliation(s)
- Ayhan Altun
- Akdeniz University, Department of Chemistry, 07058 Antalya, Turkey; Muş Alparslan University, Department of Chemistry, 49100 Muş, Turkey
| | - Roxana-Mihaela Apetrei
- Akdeniz University, Department of Chemistry, 07058 Antalya, Turkey; 'Dunarea de Jos' University of Galati, Domneasca Street, 47, Galati RO-800008, Romania
| | - Pinar Camurlu
- Akdeniz University, Department of Chemistry, 07058 Antalya, Turkey.
| |
Collapse
|
144
|
Mariappan N. Current trends in Nanotechnology applications in surgical specialties and orthopedic surgery. ACTA ACUST UNITED AC 2019. [DOI: 10.13005/bpj/1739] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nanotechnology is manipulation of matter on atomic, molecular and supramolecular scale. It has extensive range of applications in various branches of science including molecular biology, Health and medicine, materials, electronics, transportation, drugs and drug delivery, chemical sensing, space exploration, energy, environment, sensors, diagnostics, microfabrication, organic chemistry and biomaterials. Nanotechnology involves innovations in drug delivery,fabric design, reactivity and strength of material and molecular manufacturing. Nanotechnology applications are spread over almost all surgical specialties and have revolutionized treatment of various medical and surgical conditions. Clinically relevant applications of nanotechnology in surgical specialties include development of surgical instruments, suture materials, imaging, targeted drug therapy, visualization methods and wound healing techniques. Management of burn wounds and scar is an important application of nanotechnology.Prevention, diagnosis, and treatment of various orthopedic conditions are crucial aspects of technology for functional recovery of patients. Improvement in standard of patient care,clinical trials, research, and development of medical equipments for safe use are improved with nanotechnology. They have a potential for long-term good results in a variety of surgical specialties including orthopedic surgery in the years to come.
Collapse
Affiliation(s)
- N. Mariappan
- Department of Hand Surgery, Sri Ramachandra Medical College and Research Institute, Sri Ramachandra University (deemed), Porur, Chennai, India
| |
Collapse
|
145
|
Carvalho CR, Silva-Correia J, Oliveira JM, Reis RL. Nanotechnology in peripheral nerve repair and reconstruction. Adv Drug Deliv Rev 2019; 148:308-343. [PMID: 30639255 DOI: 10.1016/j.addr.2019.01.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/20/2018] [Accepted: 01/05/2019] [Indexed: 02/07/2023]
Affiliation(s)
- Cristiana R Carvalho
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, 4805-017 Barco, Guimarães, Portugal
| | - Joana Silva-Correia
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joaquim M Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, 4805-017 Barco, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, 4805-017 Barco, Guimarães, Portugal.
| |
Collapse
|
146
|
Ersan G, Kaya Y, Ersan MS, Apul OG, Karanfil T. Adsorption kinetics and aggregation for three classes of carbonaceous adsorbents in the presence of natural organic matter. CHEMOSPHERE 2019; 229:515-524. [PMID: 31100622 DOI: 10.1016/j.chemosphere.2019.05.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 04/29/2019] [Accepted: 05/02/2019] [Indexed: 06/09/2023]
Abstract
In this study, adsorption kinetics of phenanthrene (PNT) and trichloroethylene (TCE) by a graphene nanosheet (GNS), a graphene oxide nanosheet (GO), a single-walled carbon nanotube (SWCNT), a multi-walled carbon nanotube (MWCNT), and two coal based activated carbons (ACs) (F400 and HD3000) were examined in distilled and deionized water (DDW) and under natural organic matter (NOM) preloading conditions. The results showed the times needed for the adsorption of PNT and TCE to reach apparent equilibrium (i.e., ≤3% change per day) followed the order of GO ≥ MWCNT > GNS > SWCNT ∼ HD3000∼F400 and SWCNT > GNS ∼ HD3000 > F400 ∼ MWCNT > GO, respectively. The pseudo second order model successfully represented kinetics data for three classes of carbonaceous adsorbents. The Weber-Morris intraparticle diffusion model indicated three steps adsorption process for PNT and two step adsorption for TCE. In addition, the times needed to reach apparent equilibrium for the adsorption of PNT and TCE in the presence of hydrophobic (HPO) and hydrophilic (HPI) NOM solutions increased for all adsorbents (except for GO). In general, both NOM showed similar impacts on the adsorption rates of PNT and TCE. Aggregation of both GNS and CNTs rapidly occurred during initial couple hours of contact time during preloading, and spiking both PNT and TCE further increased their aggregation.
Collapse
Affiliation(s)
- Gamze Ersan
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC, 29625, USA; Department of Environmental Engineering, Istanbul University-Cerrahpasa, Istanbul, 34320, Turkey
| | - Yasemin Kaya
- Department of Environmental Engineering, Istanbul University-Cerrahpasa, Istanbul, 34320, Turkey
| | - Mahmut S Ersan
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC, 29625, USA
| | - Onur G Apul
- Department of Civil and Environmental Engineering, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Tanju Karanfil
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC, 29625, USA.
| |
Collapse
|
147
|
Venkataraman A, Amadi EV, Chen Y, Papadopoulos C. Carbon Nanotube Assembly and Integration for Applications. NANOSCALE RESEARCH LETTERS 2019; 14:220. [PMID: 31263975 PMCID: PMC6603253 DOI: 10.1186/s11671-019-3046-3] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 06/10/2019] [Indexed: 05/02/2023]
Abstract
Carbon nanotubes (CNTs) have attracted significant interest due to their unique combination of properties including high mechanical strength, large aspect ratios, high surface area, distinct optical characteristics, high thermal and electrical conductivity, which make them suitable for a wide range of applications in areas from electronics (transistors, energy production and storage) to biotechnology (imaging, sensors, actuators and drug delivery) and other applications (displays, photonics, composites and multi-functional coatings/films). Controlled growth, assembly and integration of CNTs is essential for the practical realization of current and future nanotube applications. This review focuses on progress to date in the field of CNT assembly and integration for various applications. CNT synthesis based on arc-discharge, laser ablation and chemical vapor deposition (CVD) including details of tip-growth and base-growth models are first introduced. Advances in CNT structural control (chirality, diameter and junctions) using methods such as catalyst conditioning, cloning, seed-, and template-based growth are then explored in detail, followed by post-growth CNT purification techniques using selective surface chemistry, gel chromatography and density gradient centrifugation. Various assembly and integration techniques for multiple CNTs based on catalyst patterning, forest growth and composites are considered along with their alignment/placement onto different substrates using photolithography, transfer printing and different solution-based techniques such as inkjet printing, dielectrophoresis (DEP) and spin coating. Finally, some of the challenges in current and emerging applications of CNTs in fields such as energy storage, transistors, tissue engineering, drug delivery, electronic cryptographic keys and sensors are considered.
Collapse
Affiliation(s)
- Anusha Venkataraman
- Department of Electrical and Computer Engineering, University of Victoria, P.O. Box 1700 STN CSC, Victoria, BC V8W 2Y2 Canada
| | - Eberechukwu Victoria Amadi
- Department of Electrical and Computer Engineering, University of Victoria, P.O. Box 1700 STN CSC, Victoria, BC V8W 2Y2 Canada
| | - Yingduo Chen
- Department of Electrical and Computer Engineering, University of Victoria, P.O. Box 1700 STN CSC, Victoria, BC V8W 2Y2 Canada
| | - Chris Papadopoulos
- Department of Electrical and Computer Engineering, University of Victoria, P.O. Box 1700 STN CSC, Victoria, BC V8W 2Y2 Canada
| |
Collapse
|
148
|
Shi Y, Liang X. Novel carbon microtube based solid acid from pampas grass stick for biodiesel synthesis from waste oils. JOURNAL OF SAUDI CHEMICAL SOCIETY 2019. [DOI: 10.1016/j.jscs.2018.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
149
|
Review on the Electrical Resistance/Conductivity of Carbon Fiber Reinforced Polymer. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9112390] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Carbon fiber reinforced polymer (CFRP) plays an important role in many fields, especially in aviation and civil industries. The electrical conductivity of CFRP is critical for its electrical behavior, such as its lightning strike vulnerability, electromagnetic shielding ability, and potential uses for self-sensing. In addition, the electrical conductivity is related to the mechanical integrity. Therefore, electrical properties can be measured as an indication when detecting delamination and other defects in CFRP. This review provides a comprehensive basis for readers to grasp recent research progresses on electrical behaviors of CFRP.
Collapse
|
150
|
A Review of Geometry, Construction and Modelling for Carbon Nanotori. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9112301] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
After the discovery of circular formations of single walled carbon nanotubes called fullerene crop circles, their structure has become one of the most researched amongst carbon nanostructures due to their particular interesting physical properties. Several experiments and simulations have been conducted to understand these intriguing objects, including their formation and their hidden characteristics. It is scientifically conceivable that these crop circles, nowadays referred to as carbon nanotori, can be formed by experimentally bending carbon nanotubes into ring shaped structures or by connecting several sections of carbon nanotubes. Toroidal carbon nanotubes are likely to have many applications, especially in electricity and magnetism. In this review, geometry, construction, modelling and possible applications are discussed and the existing known analytical expressions, as obtained from the Lennard-Jones potential and the continuum approximation, for their interaction energies with other nanostructures are summarised.
Collapse
|