101
|
Zhou X. How do kinases contribute to tonicity-dependent regulation of the transcription factor NFAT5? World J Nephrol 2016; 5:20-32. [PMID: 26788461 PMCID: PMC4707165 DOI: 10.5527/wjn.v5.i1.20] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/12/2015] [Accepted: 12/11/2015] [Indexed: 02/06/2023] Open
Abstract
NFAT5 plays a critical role in maintaining the renal functions. Its dis-regulation in the kidney leads to or is associated with certain renal diseases or disorders, most notably the urinary concentration defect. Hypertonicity, which the kidney medulla is normally exposed to, activates NFAT5 through phosphorylation of a signaling molecule or NFAT5 itself. Hypotonicity inhibits NFAT5 through a similar mechanism. More than a dozen of protein and lipid kinases have been identified to contribute to tonicity-dependent regulation of NFAT5. Hypertonicity activates NFAT5 by increasing its nuclear localization and transactivating activity in the early phase and protein abundance in the late phase. The known mechanism for inhibition of NFAT5 by hypotonicity is a decrease of nuclear NFAT5. The present article reviews the effect of each kinase on NFAT5 nuclear localization, transactivation and protein abundance, and the relationship among these kinases, if known. Cyclosporine A and tacrolimus suppress immune reactions by inhibiting the phosphatase calcineurin-dependent activation of NFAT1. It is hoped that this review would stimulate the interest to seek explanations from the NFAT5 regulatory pathways for certain clinical presentations and to explore novel therapeutic approaches based on the pathways. On the basic science front, this review raises two interesting questions. The first one is how these kinases can specifically signal to NFAT5 in the context of hypertonicity or hypotonicity, because they also regulate other cellular activities and even opposite activities in some cases. The second one is why these many kinases, some of which might have redundant functions, are needed to regulate NFAT5 activity. This review reiterates the concept of signaling through cooperation. Cells need these kinases working in a coordinated way to provide the signaling specificity that is lacking in the individual one. Redundancy in regulation of NFAT5 is a critical strategy for cells to maintain robustness against hypertonic or hypotonic stress.
Collapse
|
102
|
Akiba Y, Mizuta A, Kakihara Y, Nakata J, Nihara J, Saito I, Egusa H, Saeki M. The inhibitors of cyclin-dependent kinases and GSK-3β enhance osteoclastogenesis. Biochem Biophys Rep 2015; 5:253-258. [PMID: 28955831 PMCID: PMC5600418 DOI: 10.1016/j.bbrep.2015.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 11/24/2015] [Accepted: 12/28/2015] [Indexed: 11/25/2022] Open
Abstract
Osteoclasts are multinucleated cells with bone resorption activity that is crucial for bone remodeling. RANK‐RANKL (receptor activator of nuclear factor κB ligand) signaling has been shown as a main signal pathway for osteoclast differentiation. However, the molecular mechanism and the factors regulating osteoclastogenesis remain to be fully understood. In this study, we performed a chemical genetic screen, and identified a Cdks/GSK-3β (cyclin-dependent kinases/glycogen synthase kinase 3β) inhibitor, kenpaullone, and two Cdks inhibitors, olomoucine and roscovitine, all of which significantly enhance osteoclastogenesis of RAW264.7 cells by upregulating NFATc1 (nuclear factor of activated T cells, cytoplasmic 1) levels. We also determined that the all three compounds increase the number of osteoclast differentiated from murine bone marrow cells. Furthermore, the three inhibitors, especially kenpaullone, promoted maturation of cathepsin K, suggesting that the resorption activity of the resultant osteoclasts is also activated. Our findings indicate that inhibition of GSK-3β and/or Cdks enhance osteoclastogenesis by modulating the RANK–RANKL signaling pathway. We performed a chemical genetic screen to identify drugs which modulate osteoclastogenesis. The screening determined a Cdk/GSK-3β inhibitor, kenpaullone, and two Cdk inhibitors, olomoucine and roscovitine, as activators of osteoclastogenesis. The kenpaullone, olomoucine, and roscovitine induce an enhanced osteoclastogenesis by upregulating NFATc1 and mature cathepsin K levels.
Collapse
Affiliation(s)
- Yosuke Akiba
- Division of Bio-Prosthodontics, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuoku, Niigata 951-8514, Japan
| | - Akiko Mizuta
- Department of Pharmacology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshito Kakihara
- Division of Dental Pharmacology, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkochodori, Chuoku, Niigata 951-8514, Japan
| | - Juri Nakata
- Division of Dental Pharmacology, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkochodori, Chuoku, Niigata 951-8514, Japan.,Division of Orthodontics, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuoku, Niigata 951-8514, Japan
| | - Jun Nihara
- Division of Orthodontics, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuoku, Niigata 951-8514, Japan
| | - Isao Saito
- Division of Orthodontics, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuoku, Niigata 951-8514, Japan
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Makio Saeki
- Division of Dental Pharmacology, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkochodori, Chuoku, Niigata 951-8514, Japan
| |
Collapse
|
103
|
Dynamic Trk and G Protein Signalings Regulate Dopaminergic Neurodifferentiation in Human Trophoblast Stem Cells. PLoS One 2015; 10:e0143852. [PMID: 26606046 PMCID: PMC4659658 DOI: 10.1371/journal.pone.0143852] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 11/09/2015] [Indexed: 12/18/2022] Open
Abstract
Understanding the mechanisms in the generation of neural stem cells from pluripotent stem cells is a fundamental step towards successful management of neurodegenerative diseases in translational medicine. Albeit all-trans retinoic acid (RA) has been associated with axon outgrowth and nerve regeneration, the maintenance of differentiated neurons, the association with degenerative disease like Parkinson's disease, and its regulatory molecular mechanism from pluripotent stem cells to neural stem cells remain fragmented. We have previously reported that RA is capable of differentiation of human trophoblast stem cells to dopamine (DA) committed progenitor cells. Intracranial implantation of such neural progenitor cells into the 6-OHDA-lesioned substantia nigra pars compacta successfully regenerates dopaminergic neurons and integrity of the nigrostriatal pathway, ameliorating the behavioral deficits in the Parkinson’s disease rat model. Here, we demonstrated a dynamic molecular network in systematic analysis by addressing spatiotemporal molecular expression, intracellular protein-protein interaction and inhibition, imaging study, and genetic expression to explore the regulatory mechanisms of RA induction in the differentiation of human trophoblast stem cells to DA committed progenitor cells. We focused on the tyrosine receptor kinase (Trk), G proteins, canonical Wnt2B/β-catenin, genomic and non-genomic RA signaling transductions with Tyrosine hydroxylase (TH) gene expression as the differentiation endpoint. We found that at the early stage, integration of TrkA and G protein signalings aims for axonogenesis and morphogenesis, involving the novel RXRα/Gαq/11 and RARβ/Gβ signaling pathways. While at the later stage, five distinct signaling pathways together with epigenetic histone modifications emerged to regulate expression of TH, a precursor of dopamine. RA induction generated DA committed progenitor cells in one day. Our results provided substantial mechanistic evidence that human trophoblast stem cell-derived neural stem cells can potentially be used for neurobiological study, drug discovery, and as an alternative source of cell-based therapy in neurodegenerative diseases like Parkinson’s disease.
Collapse
|
104
|
Weber S, Meyer-Roxlau S, Wagner M, Dobrev D, El-Armouche A. Counteracting Protein Kinase Activity in the Heart: The Multiple Roles of Protein Phosphatases. Front Pharmacol 2015; 6:270. [PMID: 26617522 PMCID: PMC4643138 DOI: 10.3389/fphar.2015.00270] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/28/2015] [Indexed: 12/19/2022] Open
Abstract
Decades of cardiovascular research have shown that variable and flexible levels of protein phosphorylation are necessary to maintain cardiac function. A delicate balance between phosphorylated and dephosphorylated states of proteins is guaranteed by a complex interplay of protein kinases (PKs) and phosphatases. Serine/threonine phosphatases, in particular members of the protein phosphatase (PP) family govern dephosphorylation of the majority of these cardiac proteins. Recent findings have however shown that PPs do not only dephosphorylate previously phosphorylated proteins as a passive control mechanism but are capable to actively control PK activity via different direct and indirect signaling pathways. These control mechanisms can take place on (epi-)genetic, (post-)transcriptional, and (post-)translational levels. In addition PPs themselves are targets of a plethora of proteinaceous interaction partner regulating their endogenous activity, thus adding another level of complexity and feedback control toward this system. Finally, novel approaches are underway to achieve spatiotemporal pharmacologic control of PPs which in turn can be used to fine-tune misleaded PK activity in heart disease. Taken together, this review comprehensively summarizes the major aspects of PP-mediated PK regulation and discusses the subsequent consequences of deregulated PP activity for cardiovascular diseases in depth.
Collapse
Affiliation(s)
- Silvio Weber
- Department of Pharmacology and Toxicology, Dresden University of Technology , Dresden, Germany
| | - Stefanie Meyer-Roxlau
- Department of Pharmacology and Toxicology, Dresden University of Technology , Dresden, Germany
| | - Michael Wagner
- Department of Pharmacology and Toxicology, Dresden University of Technology , Dresden, Germany
| | - Dobromir Dobrev
- Institute of Pharmacology, Faculty of Medicine, West German Heart and Vascular Center , Essen, Germany
| | - Ali El-Armouche
- Department of Pharmacology and Toxicology, Dresden University of Technology , Dresden, Germany
| |
Collapse
|
105
|
Shen W, Taylor B, Jin Q, Nguyen-Tran V, Meeusen S, Zhang YQ, Kamireddy A, Swafford A, Powers AF, Walker J, Lamb J, Bursalaya B, DiDonato M, Harb G, Qiu M, Filippi CM, Deaton L, Turk CN, Suarez-Pinzon WL, Liu Y, Hao X, Mo T, Yan S, Li J, Herman AE, Hering BJ, Wu T, Martin Seidel H, McNamara P, Glynne R, Laffitte B. Inhibition of DYRK1A and GSK3B induces human β-cell proliferation. Nat Commun 2015; 6:8372. [PMID: 26496802 PMCID: PMC4639830 DOI: 10.1038/ncomms9372] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 08/14/2015] [Indexed: 12/28/2022] Open
Abstract
Insufficient pancreatic β-cell mass or function results in diabetes mellitus. While significant progress has been made in regulating insulin secretion from β-cells in diabetic patients, no pharmacological agents have been described that increase β-cell replication in humans. Here we report aminopyrazine compounds that stimulate robust β-cell proliferation in adult primary islets, most likely as a result of combined inhibition of DYRK1A and GSK3B. Aminopyrazine-treated human islets retain functionality in vitro and after transplantation into diabetic mice. Oral dosing of these compounds in diabetic mice induces β-cell proliferation, increases β-cell mass and insulin content, and improves glycaemic control. Biochemical, genetic and cell biology data point to Dyrk1a as the key molecular target. This study supports the feasibility of treating diabetes with an oral therapy to restore β-cell mass, and highlights a tractable pathway for future drug discovery efforts.
Collapse
Affiliation(s)
- Weijun Shen
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, USA
| | - Brandon Taylor
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, USA
| | - Qihui Jin
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, USA
| | - Van Nguyen-Tran
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, USA
| | - Shelly Meeusen
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, USA
| | - You-Qing Zhang
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, USA
| | - Anwesh Kamireddy
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, USA
| | - Austin Swafford
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, USA
| | - Andrew F. Powers
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, USA
| | - John Walker
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, USA
| | - John Lamb
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, USA
| | - Badry Bursalaya
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, USA
| | - Michael DiDonato
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, USA
| | - George Harb
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, USA
| | - Minhua Qiu
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, USA
| | - Christophe M. Filippi
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, USA
| | - Lisa Deaton
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, USA
| | - Carolina N. Turk
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, USA
| | - Wilma L. Suarez-Pinzon
- Department of Surgery and Schulze Diabetes Institute, University of Minnesota, 420 Delaware Street SE, Minneapolis, Minnesota 55455, USA
| | - Yahu Liu
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, USA
| | - Xueshi Hao
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, USA
| | - Tingting Mo
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, USA
| | - Shanshan Yan
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, USA
| | - Jing Li
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, USA
| | - Ann E. Herman
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, USA
| | - Bernhard J. Hering
- Department of Surgery and Schulze Diabetes Institute, University of Minnesota, 420 Delaware Street SE, Minneapolis, Minnesota 55455, USA
| | - Tom Wu
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, USA
| | - H. Martin Seidel
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, USA
| | - Peter McNamara
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, USA
| | - Richard Glynne
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, USA
| | - Bryan Laffitte
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, USA
| |
Collapse
|
106
|
Mandal CC, Das F, Ganapathy S, Harris SE, Choudhury GG, Ghosh-Choudhury N. Bone Morphogenetic Protein-2 (BMP-2) Activates NFATc1 Transcription Factor via an Autoregulatory Loop Involving Smad/Akt/Ca2+ Signaling. J Biol Chem 2015; 291:1148-61. [PMID: 26472929 DOI: 10.1074/jbc.m115.668939] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Indexed: 11/06/2022] Open
Abstract
Bone remodeling is controlled by dual actions of osteoclasts (OCs) and osteoblasts (OBs). The calcium-sensitive nuclear factor of activated T cells (NFAT) c1 transcription factor, as an OC signature gene, regulates differentiation of OCs downstream of bone morphogenetic protein-2 (BMP-2)-stimulated osteoblast-coded factors. To analyze a functional link between BMP-2 and NFATc1, we analyzed bones from OB-specific BMP-2 knock-out mice for NFATc1 expression by immunohistochemical staining and found significant reduction in NFATc1 expression. This indicated a requirement of BMP-2 for NFATc1 expression in OBs. We showed that BMP-2, via the receptor-specific Smad pathway, regulates expression of NFATc1 in OBs. Phosphatidylinositol 3-kinase/Akt signaling acting downstream of BMP-2 also drives NFATc1 expression and transcriptional activation. Under the basal condition, NFATc1 is phosphorylated. Activation of NFAT requires dephosphorylation by the calcium-dependent serine/threonine phosphatase calcineurin. We examined the role of calcium in BMP-2-stimulated regulation of NFATc1 in osteoblasts. 1,2Bis(2aminophenoxy)ethaneN,N,N',N'-tetraacetic acid acetoxymethyl ester, an inhibitor of intracellular calcium abundance, blocked BMP-2-induced transcription of NFATc1. Interestingly, BMP-2 induced calcium release from intracellular stores and increased calcineurin phosphatase activity, resulting in NFATc1 nuclear translocation. Cyclosporin A, which inhibits calcineurin upstream of NFATc1, blocked BMP-2-induced NFATc1 mRNA and protein expression. Expression of NFATc1 directly increased its transcription and VIVIT peptide, an inhibitor of NFATc1, suppressed BMP-2-stimulated NFATc1 transcription, confirming its autoregulation. Together, these data show a role of NFATc1 downstream of BMP-2 in mouse bone development and provide novel evidence for the presence of a cross-talk among Smad, phosphatidylinositol 3-kinase/Akt, and Ca(2+) signaling for BMP-2-induced NFATc1 expression through an autoregulatory loop.
Collapse
Affiliation(s)
| | | | | | - Stephen E Harris
- Periodontics, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Goutam Ghosh Choudhury
- Medicine, and From Veterans Affairs Research and Geriatric Research Education and Clinical Center, South Texas Veterans Health Care System and
| | | |
Collapse
|
107
|
Oh JH, Lee JY, Joung SH, Oh YT, Kim HS, Lee NK. Insulin enhances RANKL-induced osteoclastogenesis via ERK1/2 activation and induction of NFATc1 and Atp6v0d2. Cell Signal 2015; 27:2325-31. [PMID: 26343857 DOI: 10.1016/j.cellsig.2015.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 08/21/2015] [Accepted: 09/02/2015] [Indexed: 10/23/2022]
Abstract
Insulin is one of the main factors affecting bone and energy metabolism, however, the direct effect of insulin on osteoclast differentiation remains unclear. Thus, in order to help elucidate that puzzle, the authors investigated the roles and regulatory mechanisms of insulin on osteoclasts differentiation. Co-stimulation with insulin and RANKL significantly enhanced the number of larger (>100 μm) osteoclastic cells and of TRAP-positive multinucleated cells compared with treatment by RANKL alone. Conversely, the insulin receptor shRNA markedly decreased osteoclast differentiation induced by insulin and RANKL. Insulin treatment significantly activated ERK1/2 MAP kinase as well as markedly induced the expression of NFATc1, an osteoclast marker gene, and Atp6v0d2, an osteoclast fusion-related gene. The pretreatment of PD98059, an ERK1/2 inhibitor, or insulin receptor shRNA effectively suppressed osteoclast differentiation and, in addition, blocked the expression of NFATc1 and Atp6vod2 induced by insulin stimulation. These data reveal insights into the regulation of osteoclast differentiation and fusion through ERK1/2 activation and the induction of NFATc1 and Atp6v0d2 by insulin.
Collapse
Affiliation(s)
- Ju Hee Oh
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan-Si, Chungnam 336-745, Republic of Korea; Department of Medical Science, College of Medical Sciences, Soonchunhyang University, Asan-Si, Chungnam 336-745, Republic of Korea
| | - Jae Yoon Lee
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan-Si, Chungnam 336-745, Republic of Korea
| | - Seung Hee Joung
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan-Si, Chungnam 336-745, Republic of Korea
| | - Yoon Taek Oh
- Department of Medical Science, College of Medical Sciences, Soonchunhyang University, Asan-Si, Chungnam 336-745, Republic of Korea
| | - Hong Sung Kim
- Department of Biomedical Laboratory Science, Korea Nazarene University, Cheonan-Si, Chungnam 331-718, Republic of Korea
| | - Na Kyung Lee
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan-Si, Chungnam 336-745, Republic of Korea; Department of Medical Science, College of Medical Sciences, Soonchunhyang University, Asan-Si, Chungnam 336-745, Republic of Korea.
| |
Collapse
|
108
|
Hami J, Karimi R, Haghir H, Gholamin M, Sadr-Nabavi A. Diabetes in Pregnancy Adversely Affects the Expression of Glycogen Synthase Kinase-3β in the Hippocampus of Rat Neonates. J Mol Neurosci 2015; 57:273-81. [PMID: 26242887 DOI: 10.1007/s12031-015-0617-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 07/07/2015] [Indexed: 12/18/2022]
Abstract
Diabetes during pregnancy causes a wide range of neurodevelopmental and neurocognitive abnormalities in offspring. Glycogen synthase kinase-3 (GSK-3) is widely expressed during brain development and regulates multiple cellular processes, and its dysregulation is implicated in the pathogenesis of diverse neurodegenerative and psychological diseases. This study was designed to examine the effects of maternal diabetes on GSK-3β messenger RNA (mRNA) expression and phosphorylation in the developing rat hippocampus. Female rats were maintained diabetic from a week before pregnancy through parturition, and male offspring was killed immediately after birth. We found a significant bilateral upregulation of GSK-3β mRNA expression in the hippocampus of pups born to diabetic mothers at P0, compared to controls. Moreover, at the same time point, there was a marked bilateral increase in the phosphorylation level of GSK-3β in the diabetic group. Unlike phosphorylation levels, there was a significant upregulation in hippocampal GSK-3β mRNA expression in the insulin-treated group, when compared to controls. The present study revealed that diabetes during pregnancy strongly influences the regulation of GSK-3β in the right/left developing hippocampi. These dysregulations may be part of the cascade of events through which diabetes during pregnancy affects the newborn's hippocampal structure and function.
Collapse
Affiliation(s)
- Javad Hami
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Razieh Karimi
- Medical Genetics Research Center (MGRC), School of Medicine, Mashhad University of Medical Sciences (MUMS), Mashhad, Iran.,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences (MUMS), Azadi Square, Mashhad, Iran
| | - Hossein Haghir
- Medical Genetics Research Center (MGRC), School of Medicine, Mashhad University of Medical Sciences (MUMS), Mashhad, Iran.,Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences (MUMS), Mashhad, Iran
| | - Mehran Gholamin
- Division of Human Genetics, Immunology Research Center, Avicenna Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ariane Sadr-Nabavi
- Medical Genetics Research Center (MGRC), School of Medicine, Mashhad University of Medical Sciences (MUMS), Mashhad, Iran. .,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences (MUMS), Azadi Square, Mashhad, Iran. .,Molecular Medicine Research Department, Iranian Academic Centers for Education, Culture and Research (ACECR)-Khorasan Razavi Branch, Mashhad, Iran.
| |
Collapse
|
109
|
Zoccarato A, Surdo NC, Aronsen JM, Fields LA, Mancuso L, Dodoni G, Stangherlin A, Livie C, Jiang H, Sin YY, Gesellchen F, Terrin A, Baillie GS, Nicklin SA, Graham D, Szabo-Fresnais N, Krall J, Vandeput F, Movsesian M, Furlan L, Corsetti V, Hamilton G, Lefkimmiatis K, Sjaastad I, Zaccolo M. Cardiac Hypertrophy Is Inhibited by a Local Pool of cAMP Regulated by Phosphodiesterase 2. Circ Res 2015; 117:707-19. [PMID: 26243800 DOI: 10.1161/circresaha.114.305892] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 08/04/2015] [Indexed: 12/25/2022]
Abstract
RATIONALE Chronic elevation of 3'-5'-cyclic adenosine monophosphate (cAMP) levels has been associated with cardiac remodeling and cardiac hypertrophy. However, enhancement of particular aspects of cAMP/protein kinase A signaling seems to be beneficial for the failing heart. cAMP is a pleiotropic second messenger with the ability to generate multiple functional outcomes in response to different extracellular stimuli with strict fidelity, a feature that relies on the spatial segregation of the cAMP pathway components in signaling microdomains. OBJECTIVE How individual cAMP microdomains affect cardiac pathophysiology remains largely to be established. The cAMP-degrading enzymes phosphodiesterases (PDEs) play a key role in shaping local changes in cAMP. Here we investigated the effect of specific inhibition of selected PDEs on cardiac myocyte hypertrophic growth. METHODS AND RESULTS Using pharmacological and genetic manipulation of PDE activity, we found that the rise in cAMP resulting from inhibition of PDE3 and PDE4 induces hypertrophy, whereas increasing cAMP levels via PDE2 inhibition is antihypertrophic. By real-time imaging of cAMP levels in intact myocytes and selective displacement of protein kinase A isoforms, we demonstrate that the antihypertrophic effect of PDE2 inhibition involves the generation of a local pool of cAMP and activation of a protein kinase A type II subset, leading to phosphorylation of the nuclear factor of activated T cells. CONCLUSIONS Different cAMP pools have opposing effects on cardiac myocyte cell size. PDE2 emerges as a novel key regulator of cardiac hypertrophy in vitro and in vivo, and its inhibition may have therapeutic applications.
Collapse
Affiliation(s)
- Anna Zoccarato
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Nicoletta C Surdo
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Jan M Aronsen
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Laura A Fields
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Luisa Mancuso
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Giuliano Dodoni
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Alessandra Stangherlin
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Craig Livie
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - He Jiang
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Yuan Yan Sin
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Frank Gesellchen
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Anna Terrin
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - George S Baillie
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Stuart A Nicklin
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Delyth Graham
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Nicolas Szabo-Fresnais
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Judith Krall
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Fabrice Vandeput
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Matthew Movsesian
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Leonardo Furlan
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Veronica Corsetti
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Graham Hamilton
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Konstantinos Lefkimmiatis
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Ivar Sjaastad
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.)
| | - Manuela Zaccolo
- From the Institute of Neuroscience and Psychology (A.Z., L.A.F., A.S., C.L., H.J., F.G., A.T., G.H., M.Z.) and Institute of Cardiovascular and Medical Sciences (Y.Y.S., G.S.B., S.A.N., D.G.), University of Glasgow, Glasgow, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (N.C.S., K.L., M.Z.); Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway (J.M.A., I.S.); Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy (L.M., G.D., A.T., L.F., V.C.); Cardiology Section, VA Salt Lake City Health Care System and Cardiovascular Medicine Division, University of Utah School of Medicine, Salt Lake City, UT (N.S.-F., J.K., F.V., M.M.); Bjorknes College, Oslo, Norway (J.M.A.); and BHF Centre of Research Excellence, Oxford, UK (K.L., M.Z.).
| |
Collapse
|
110
|
NK cell function triggered by multiple activating receptors is negatively regulated by glycogen synthase kinase-3β. Cell Signal 2015; 27:1731-41. [PMID: 26022178 DOI: 10.1016/j.cellsig.2015.05.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/15/2015] [Accepted: 05/19/2015] [Indexed: 12/20/2022]
Abstract
Activation of NK cells is triggered by combined signals from multiple activating receptors that belong to different families. Several NK cell activating receptors have been identified, but their role in the regulation of effector functions is primarily understood in the context of their individual engagement. Therefore, little is known about the signaling pathways broadly implicated by the multiple NK cell activation cues. Here we provide evidence pointing to glycogen synthase kinase (GSK)-3β as a negative regulator of multiple NK cell activating signals. Using an activation model that combines NKG2D and 2B4 and tests different signaling molecules, we found that GSK-3 undergoes inhibitory phosphorylation at regulatory serine residues by the engagement of NKG2D and 2B4, either individually or in combination. The extent of such phosphorylation was closely correlated with the degree of NK cell activation. NK cell functions, such as cytokine production and cytotoxicity, were consistently enhanced by the knockdown of GSK-3β or its inhibition with different pharmacological inhibitors, whereas inhibition of the GSK-3α isoform had no effect. In addition, NK cell function was augmented by the overexpression of a catalytically inactive form of GSK-3β. Importantly, the regulation of NK cell function by GSK-3β was common to diverse activating receptors that signal through both ITAM and non-ITAM pathways. Thus, our results suggest that GSK-3β negatively regulates NK cell activation and that modulation of GSK-3β function could be used to enhance NK cell activation.
Collapse
|
111
|
Balogh A, Németh M, Koloszár I, Markó L, Przybyl L, Jinno K, Szigeti C, Heffer M, Gebhardt M, Szeberényi J, Müller DN, Sétáló G, Pap M. Overexpression of CREB protein protects from tunicamycin-induced apoptosis in various rat cell types. Apoptosis 2015; 19:1080-98. [PMID: 24722832 DOI: 10.1007/s10495-014-0986-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Endoplasmic reticulum (ER) stress plays an essential role in unfolded protein response induced apoptosis contributing to several pathological conditions. Glycogen synthase kinase-3β (GSK-3β) plays a central role in several apoptotic signaling, including ER stress, as the active form of GSK-3β induces apoptosis. The phosphorylation of cAMP responsive element (CRE) binding protein (CREB) Ser-133 (S133) residue is the end-point of various signaling pathways, like growth factor signaling, while the Ser-129 (S129) residue is phosphorylated by GSK-3β. The significance of the ubiquitously expressed transcription factor CREB is demonstrated in prolonged, tunicamycin (TM)-induced ER stress in this study. In the experiments wild-type (wt) CREB, S129Ala, S133Ala or S129Ala-S133Ala mutant CREB expressing PC12 rat pheochromocytoma cell lines showed increased survival under TM-evoked prolonged ER stress compared to wtPC12 cells. After TM treatment ER stress was activated in all PC12 cell types. Lithium and SB-216763, the selective, well-known inhibitors of GSK-3β, decreased TM-induced apoptosis and promoted cell survival. The proapoptotic BH3-only Bcl-2 family member Bcl-2-interacting mediator of cell death (Bim) level was decreased in the different CREB overexpressing PC12 cells as a result of TM treatment. CREB overexpression also inhibited the sequestration of Bim protein from tubulin molecules, as it was demonstrated in wtPC12 cells. Transient expression of wtCREB diminished TM-induced apoptosis in wtPC12, Rat-1 and primary rat vascular smooth muscle cells. These findings demonstrate a novel role of CREB in different cell types as a potent protector against ER stress.
Collapse
Affiliation(s)
- András Balogh
- Department of Medical Biology, University of Pécs Medical School, Szigeti 12, Pecs, 7624, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Zhang J, He S, Wang Y, Brulois K, Lan K, Jung JU, Feng P. Herpesviral G protein-coupled receptors activate NFAT to induce tumor formation via inhibiting the SERCA calcium ATPase. PLoS Pathog 2015; 11:e1004768. [PMID: 25811856 PMCID: PMC4374719 DOI: 10.1371/journal.ppat.1004768] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/27/2015] [Indexed: 11/24/2022] Open
Abstract
G protein-coupled receptors (GPCRs) constitute the largest family of proteins that transmit signal to regulate an array of fundamental biological processes. Viruses deploy diverse tactics to hijack and harness intracellular signaling events induced by GPCR. Herpesviruses encode multiple GPCR homologues that are implicated in viral pathogenesis. Cellular GPCRs are primarily regulated by their cognate ligands, while herpesviral GPCRs constitutively activate downstream signaling cascades, including the nuclear factor of activated T cells (NFAT) pathway. However, the roles of NFAT activation and mechanism thereof in viral GPCR tumorigenesis remain unknown. Here we report that GPCRs of human Kaposi’s sarcoma-associated herpesvirus (kGPCR) and cytomegalovirus (US28) shortcut NFAT activation by inhibiting the sarcoplasmic reticulum calcium ATPase (SERCA), which is necessary for viral GPCR tumorigenesis. Biochemical approaches, entailing pharmacological inhibitors and protein purification, demonstrate that viral GPCRs target SERCA2 to increase cytosolic calcium concentration. As such, NFAT activation induced by vGPCRs was exceedingly sensitive to cyclosporine A that targets calcineurin, but resistant to inhibition upstream of ER calcium release. Gene expression profiling identified a signature of NFAT activation in endothelial cells expressing viral GPCRs. The expression of NFAT-dependent genes was up-regulated in tumors derived from tva-kGPCR mouse and human KS. Employing recombinant kGPCR-deficient KSHV, we showed that kGPCR was critical for NFAT-dependent gene expression in KSHV lytic replication. Finally, cyclosporine A treatment diminished NFAT-dependent gene expression and tumor formation induced by viral GPCRs. These findings reveal essential roles of NFAT activation in viral GPCR tumorigenesis and a mechanism of “constitutive” NFAT activation by viral GPCRs. G protein-coupled receptors (GPCRs) constitute the largest family of proteins that transmit signal across plasma membrane. Herpesviral GPCRs (vGPCRs) activate diverse signaling cascades and are implicated in viral pathogenesis (e.g., tumor development). In contrast to cellular GPCRs that are chiefly regulated via cognate ligand-association, vGPCRs are constitutively active independent of ligand-binding. vGPCRs provide useful tools to dissect signal transduction from plasma membrane receptors to nuclear transcription factors. To probe the activation of nuclear factor of T cells (NFAT), we demonstrate that vGPCRs target the ER calcium ATPase to increase cytosolic calcium concentration and activate NFAT. Inhibition of NFAT activation impairs tumor formation induced by vGPCRs, implying the antitumor therapeutic potential via disabling NFAT activation.
Collapse
Affiliation(s)
- Junjie Zhang
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Shanping He
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Yi Wang
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Kevin Brulois
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Ke Lan
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Jae U. Jung
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Pinghui Feng
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
113
|
Wnt3a signal pathways activate MyoD expression by targeting cis-elements inside and outside its distal enhancer. Biosci Rep 2015; 35:BSR20140177. [PMID: 25651906 PMCID: PMC4370097 DOI: 10.1042/bsr20140177] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Wnt proteins are secreted cytokines and several Wnts are expressed in the developing somites and surrounding tissues. Without proper Wnt stimulation, the organization of the dermomyotome and myotome can become defective. These Wnt signals received by somitic cells can lead to activation of Pax3/Pax7 and myogenic regulatory factors (MRFs), especially Myf5 and MyoD. However, it is currently unknown whether Wnts activate Myf5 and MyoD through direct targeting of their cis-regulatory elements or via indirect pathways. To clarify this issue, in the present study, we tested the regulation of MyoD cis-regulatory elements by Wnt3a secreted from human embryonic kidney (HEK)-293T cells. We found that Wnt3a activated the MyoD proximal 6.0k promoter (P6P) only marginally, but highly enhanced the activity of the composite P6P plus distal enhancer (DE) reporter through canonical and non-canonical pathways. Further screening of the intervening fragments between the DE and the P6P identified a strong Wnt-response element (WRE) in the upstream −8 to −9k region (L fragment) that acted independently of the DE, but was dependent on the P6P. Deletion of a Pax3/Pax7-targeted site in the L fragment significantly reduced its response to Wnt3a, implying that Wnt3a activates the L fragment partially through Pax3/Pax7 action. Binding of β-catenin and Pax7 to their target sites in the DE and the L fragment respectively was also demonstrated by ChIP. These observations demonstrated the first time that Wnt3a can directly activate MyoD expression through targeting cis-elements in the DE and the L fragment. We found that Wnt3a can directly activate MyoD expression through targeting cis-elements in the distal enhancer and in the upstream −8 to −9k region. A novel Pax3/Pax7-involved pathway and both canonical and non-canonical Wnt pathways are involved in this activation.
Collapse
|
114
|
Shou J, Jing J, Xie J, You L, Jing Z, Yao J, Han W, Pan H. Nuclear factor of activated T cells in cancer development and treatment. Cancer Lett 2015; 361:174-84. [PMID: 25766658 DOI: 10.1016/j.canlet.2015.03.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/04/2015] [Accepted: 03/04/2015] [Indexed: 01/03/2023]
Abstract
Since nuclear factor of activated T cells (NFAT) was first identified as a transcription factor in T cells, various NFAT isoforms have been discovered and investigated. Accumulating studies have suggested that NFATs are involved in many aspects of cancer, including carcinogenesis, cancer cell proliferation, metastasis, drug resistance and tumor microenvironment. Different NFAT isoforms have distinct functions in different cancers. The exact function of NFAT in cancer or the tumor microenvironment is context dependent. In this review, we summarize our current knowledge of NFAT regulation and function in cancer development and treatment. NFATs have emerged as a potential target for cancer prevention and therapy.
Collapse
Affiliation(s)
- Jiawei Shou
- Department of Medical Oncology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jing Jing
- Department of Medical Oncology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jiansheng Xie
- Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liangkun You
- Department of Medical Oncology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhao Jing
- Department of Medical Oncology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Junlin Yao
- Department of Medical Oncology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Weidong Han
- Department of Medical Oncology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Hongming Pan
- Department of Medical Oncology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
115
|
Koide N, Kaneda A, Yokochi T, Umezawa K. Inhibition of RANKL- and LPS-induced osteoclast differentiations by novel NF-κB inhibitor DTCM-glutarimide. Int Immunopharmacol 2015; 25:162-8. [DOI: 10.1016/j.intimp.2015.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 01/05/2015] [Accepted: 01/05/2015] [Indexed: 01/11/2023]
|
116
|
Fernández-Martínez P, Zahonero C, Sánchez-Gómez P. DYRK1A: the double-edged kinase as a protagonist in cell growth and tumorigenesis. Mol Cell Oncol 2015; 2:e970048. [PMID: 27308401 PMCID: PMC4905233 DOI: 10.4161/23723548.2014.970048] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 09/03/2014] [Accepted: 09/03/2014] [Indexed: 01/12/2023]
Abstract
DYRK1A (dual-specificity tyrosine-regulated kinase 1A) is a kinase with multiple implications for embryonic development, especially in the nervous system where it regulates the balance between proliferation and differentiation of neural progenitors. The DYRK1A gene is located in the Down syndrome critical region and may play a significant role in the developmental brain defects, early neurodegeneration, and cancer susceptibility of individuals with this syndrome. DYRK1A is also expressed in adults, where it might participate in the regulation of cell cycle, survival, and tumorigenesis, thus representing a potential therapeutic target for certain types of cancer. However, the final readout of DYRK1A overexpression or inhibition depends strongly on the cellular context, as it has both tumor suppressor and oncogenic activities. Here, we will discuss the functions and substrates of DYRK1A associated with the control of cell growth and tumorigenesis with a focus on the potential use of DYRK1A inhibitors in cancer therapy.
Collapse
Affiliation(s)
- P Fernández-Martínez
- Instituto de Medicina Molecular Aplicada; Universidad CEU-San Pablo ; Madrid, Spain
| | - C Zahonero
- Neuro-oncology Unit; Instituto de Salud Carlos III-UFIEC ; Madrid, Spain
| | - P Sánchez-Gómez
- Neuro-oncology Unit; Instituto de Salud Carlos III-UFIEC ; Madrid, Spain
| |
Collapse
|
117
|
Song WJ, Song EAC, Jung MS, Choi SH, Baik HH, Jin BK, Kim JH, Chung SH. Phosphorylation and inactivation of glycogen synthase kinase 3β (GSK3β) by dual-specificity tyrosine phosphorylation-regulated kinase 1A (Dyrk1A). J Biol Chem 2015; 290:2321-33. [PMID: 25477508 PMCID: PMC4303684 DOI: 10.1074/jbc.m114.594952] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 11/14/2014] [Indexed: 12/27/2022] Open
Abstract
Glycogen synthase kinase 3β (GSK3β) participates in many cellular processes, and its dysregulation has been implicated in a wide range of diseases such as obesity, type 2 diabetes, cancer, and Alzheimer disease. Inactivation of GSK3β by phosphorylation at specific residues is a primary mechanism by which this constitutively active kinase is controlled. However, the regulatory mechanism of GSK3β is not fully understood. Dual-specificity tyrosine phosphorylation-regulated kinase 1A (Dyrk1A) has multiple biological functions that occur as the result of phosphorylation of diverse proteins that are involved in metabolism, synaptic function, and neurodegeneration. Here we show that GSK3β directly interacts with and is phosphorylated by Dyrk1A. Dyrk1A-mediated phosphorylation at the Thr(356) residue inhibits GSK3β activity. Dyrk1A transgenic (TG) mice are lean and resistant to diet-induced obesity because of reduced fat mass, which shows an inverse correlation with the effect of GSK3β on obesity. This result suggests a potential in vivo association between GSK3β and Dyrk1A regarding the mechanism underlying obesity. The level of Thr(P)(356)-GSK3β was higher in the white adipose tissue of Dyrk1A TG mice compared with control mice. GSK3β activity was differentially regulated by phosphorylation at different sites in adipose tissue depending on the type of diet the mice were fed. Furthermore, overexpression of Dyrk1A suppressed the expression of adipogenic proteins, including peroxisome proliferator-activated receptor γ, in 3T3-L1 cells and in young Dyrk1A TG mice fed a chow diet. Taken together, these results reveal a novel regulatory mechanism for GSK3β activity and indicate that overexpression of Dyrk1A may contribute to the obesity-resistant phenotype through phosphorylation and inactivation of GSK3β.
Collapse
Affiliation(s)
- Woo-Joo Song
- From the Department of Biochemistry and Molecular Biology, Neurodegeneration Control Research Center, School of Medicine, the Institute for Brain Science and Technology, Inje University, Busan 614-735, Korea
| | - Eun-Ah Christine Song
- From the Department of Biochemistry and Molecular Biology, Neurodegeneration Control Research Center, School of Medicine, the Institute for Brain Science and Technology, Inje University, Busan 614-735, Korea
| | - Min-Su Jung
- the Institute for Brain Science and Technology, Inje University, Busan 614-735, Korea
| | - Sun-Hee Choi
- the Institute for Brain Science and Technology, Inje University, Busan 614-735, Korea
| | - Hyung-Hwan Baik
- From the Department of Biochemistry and Molecular Biology, Neurodegeneration Control Research Center, School of Medicine
| | - Byung Kwan Jin
- From the Department of Biochemistry and Molecular Biology, Neurodegeneration Control Research Center, School of Medicine
| | - Jeong Hee Kim
- Department of Oral Biochemistry and Molecular Biology, School of Dentistry, and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul 130-701, Korea and
| | - Sul-Hee Chung
- From the Department of Biochemistry and Molecular Biology, Neurodegeneration Control Research Center, School of Medicine, the Institute for Brain Science and Technology, Inje University, Busan 614-735, Korea
| |
Collapse
|
118
|
O’Neill C, Li Y, Jin X. Survival Signalling in the Preimplantation Embryo. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 843:129-49. [DOI: 10.1007/978-1-4939-2480-6_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
119
|
Abstract
Osteoclasts are unique cells that degrade the bone matrix. These large multinucleated cells differentiate from the monocyte/macrophage lineage upon stimulation by two essential cytokines, macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-kappa B (NF-κB) ligand (RANKL). Activation of transcription factors such as microphthalmia transcription factor (MITF), c-Fos, NF-κB, and nuclear factor-activated T cells c1 (NFATc1) is required for sufficient osteoclast differentiation. In particular, NFATc1 plays the role of a master transcription regulator of osteoclast differentiation. To date, several mechanisms, including transcription, methylation, ubiquitination, acetylation, and non-coding RNAs, have been shown to regulate expression and activation of NFATc1. In this review, we have summarized the various mechanisms that control NFATc1 regulation during osteoclast differentiation.
Collapse
Affiliation(s)
- Jung Ha Kim
- Department of Pharmacology, Medical Research Center for Gene Regulation, Chonnam National University Medical School, Gwangju, Korea
| | - Nacksung Kim
- Department of Pharmacology, Medical Research Center for Gene Regulation, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
120
|
Kim MS, Shutov LP, Gnanasekaran A, Lin Z, Rysted JE, Ulrich JD, Usachev YM. Nerve growth factor (NGF) regulates activity of nuclear factor of activated T-cells (NFAT) in neurons via the phosphatidylinositol 3-kinase (PI3K)-Akt-glycogen synthase kinase 3β (GSK3β) pathway. J Biol Chem 2014; 289:31349-60. [PMID: 25231981 DOI: 10.1074/jbc.m114.587188] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The Ca(2+)/calcineurin-dependent transcription factor nuclear factor of activated T-cells (NFAT) plays an important role in regulating many neuronal functions, including excitability, axonal growth, synaptogenesis, and neuronal survival. NFAT can be activated by action potential firing or depolarization that leads to Ca(2+)/calcineurin-dependent dephosphorylation of NFAT and its translocation to the nucleus. Recent data suggest that NFAT and NFAT-dependent functions in neurons can also be potently regulated by NGF and other neurotrophins. However, the mechanisms of NFAT regulation by neurotrophins are not well understood. Here, we show that in dorsal root ganglion sensory neurons, NGF markedly facilitates NFAT-mediated gene expression induced by mild depolarization. The effects of NGF were not associated with changes in [Ca(2+)]i and were independent of phospholipase C activity. Instead, the facilitatory effect of NGF depended on activation of the PI3K/Akt pathway downstream of the TrkA receptor and on inhibition of glycogen synthase kinase 3β (GSK3β), a protein kinase known to phosphorylate NFAT and promote its nuclear export. Knockdown or knockout of NFATc3 eliminated this facilitatory effect. Simultaneous monitoring of EGFP-NFATc3 nuclear translocation and [Ca(2+)]i changes in dorsal root ganglion neurons indicated that NGF slowed the rate of NFATc3 nuclear export but did not affect its nuclear import rate. Collectively, our data suggest that NGF facilitates depolarization-induced NFAT activation by stimulating PI3K/Akt signaling, inactivating GSK3β, and thereby slowing NFATc3 export from the nucleus. We propose that NFAT serves as an integrator of neurotrophin action and depolarization-driven calcium signaling to regulate neuronal gene expression.
Collapse
Affiliation(s)
- Man-Su Kim
- From the Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242 and the College of Pharmacy, Inje University, Gimhae 621-749, Korea
| | - Leonid P Shutov
- From the Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242 and
| | - Aswini Gnanasekaran
- From the Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242 and
| | - Zhihong Lin
- From the Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242 and
| | - Jacob E Rysted
- From the Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242 and
| | - Jason D Ulrich
- From the Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242 and
| | - Yuriy M Usachev
- From the Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242 and
| |
Collapse
|
121
|
Levin-Gromiko U, Koshelev V, Kushnir P, Fedida-Metula S, Voronov E, Fishman D. Amplified lipid rafts of malignant cells constitute a target for inhibition of aberrantly active NFAT and melanoma tumor growth by the aminobisphosphonate zoledronic acid. Carcinogenesis 2014; 35:2555-66. [DOI: 10.1093/carcin/bgu178] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
122
|
Cisneros-Barroso E, Yance-Chávez T, Kito A, Sugiura R, Gómez-Hierro A, Giménez-Zaragoza D, Aligue R. Negative feedback regulation of calcineurin-dependent Prz1 transcription factor by the CaMKK-CaMK1 axis in fission yeast. Nucleic Acids Res 2014; 42:9573-87. [PMID: 25081204 PMCID: PMC4150787 DOI: 10.1093/nar/gku684] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Calcium signals trigger the translocation of the Prz1 transcription factor from the cytoplasm to the nucleus. The process is regulated by the calcium-activated phosphatase calcineurin, which activates Prz1 thereby maintaining active transcription during calcium signalling. When calcium signalling ceases, Prz1 is inactivated by phosphorylation and exported to the cytoplasm. In budding yeast and mammalian cells, different kinases have been reported to counter calcineurin activity and regulate nuclear export. Here, we show that the Ca(2+)/calmodulin-dependent kinase Cmk1 is first phosphorylated and activated by the newly identified kinase CaMKK2 homologue, Ckk2, in response to Ca(2+). Then, active Cmk1 binds, phosphorylates and inactivates Prz1 transcription activity whilst at the same time cmk1 expression is enhanced by Prz1 in response to Ca(2+). Furthermore, Cdc25 phosphatase is also phosphorylated by Cmk1, inducing cell cycle arrest in response to an increase in Ca(2+). Moreover, cmk1 deletion shows a high tolerance to chronic exposure to Ca(2+), due to the lack of cell cycle inhibition and elevated Prz1 activity. This work reveals that Cmk1 kinase activated by the newly identified Ckk2 counteracts calcineurin function by negatively regulating Prz1 activity which in turn is involved in activating cmk1 gene transcription. These results are the first insights into Cmk1 and Ckk2 function in Schizosaccharomyces pombe.
Collapse
Affiliation(s)
- Eugenia Cisneros-Barroso
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona 08036, Catalunya, Spain
| | - Tula Yance-Chávez
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona 08036, Catalunya, Spain
| | - Ayako Kito
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, Kowakae, Higashi-Osaka 577-8502, Japan
| | - Reiko Sugiura
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, Kowakae, Higashi-Osaka 577-8502, Japan
| | - Alba Gómez-Hierro
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona 08036, Catalunya, Spain
| | - David Giménez-Zaragoza
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona 08036, Catalunya, Spain
| | - Rosa Aligue
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona 08036, Catalunya, Spain
| |
Collapse
|
123
|
Qin JJ, Nag S, Wang W, Zhou J, Zhang WD, Wang H, Zhang R. NFAT as cancer target: mission possible? Biochim Biophys Acta Rev Cancer 2014; 1846:297-311. [PMID: 25072963 DOI: 10.1016/j.bbcan.2014.07.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 07/17/2014] [Accepted: 07/22/2014] [Indexed: 12/30/2022]
Abstract
The NFAT signaling pathway regulates various aspects of cellular functions; NFAT acts as a calcium sensor, integrating calcium signaling with other pathways involved in development and growth, immune response, and inflammatory response. The NFAT family of transcription factors regulates diverse cellular functions such as cell survival, proliferation, migration, invasion, and angiogenesis. The NFAT isoforms are constitutively activated and overexpressed in several cancer types wherein they transactivate downstream targets that play important roles in cancer development and progression. Though the NFAT family has been conclusively proved to be pivotal in cancer progression, the different isoforms play distinct roles in different cellular contexts. In this review, our discussion is focused on the mechanisms that drive the activation of various NFAT isoforms in cancer. Additionally, we analyze the potential of NFAT as a valid target for cancer prevention and therapy.
Collapse
Affiliation(s)
- Jiang-Jiang Qin
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Subhasree Nag
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Wei Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Jianwei Zhou
- Department of Molecular Cell Biology and Toxicology, Cancer Center, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 210029, PR China
| | - Wei-Dong Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Hui Wang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, PR China; Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing 100021, PR China
| | - Ruiwen Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
| |
Collapse
|
124
|
Mehta S, Aye-Han NN, Ganesan A, Oldach L, Gorshkov K, Zhang J. Calmodulin-controlled spatial decoding of oscillatory Ca2+ signals by calcineurin. eLife 2014; 3:e03765. [PMID: 25056880 PMCID: PMC4141273 DOI: 10.7554/elife.03765] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Calcineurin is responsible for mediating a wide variety of cellular processes in response to dynamic calcium (Ca(2+)) signals, yet the precise mechanisms involved in the spatiotemporal control of calcineurin signaling are poorly understood. Here, we use genetically encoded fluorescent biosensors to directly probe the role of cytosolic Ca(2+) oscillations in modulating calcineurin activity dynamics in insulin-secreting MIN6 β-cells. We show that Ca(2+) oscillations induce distinct temporal patterns of calcineurin activity in the cytosol and plasma membrane vs at the ER and mitochondria in these cells. Furthermore, we found that these differential calcineurin activity patterns are determined by variations in the subcellular distribution of calmodulin (CaM), indicating that CaM plays an active role in shaping both the spatial and temporal aspects of calcineurin signaling. Together, our findings provide new insights into the mechanisms by which oscillatory signals are decoded to generate specific functional outputs within different cellular compartments.
Collapse
Affiliation(s)
- Sohum Mehta
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Nwe-Nwe Aye-Han
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Ambhighainath Ganesan
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, United States
| | - Laurel Oldach
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Kirill Gorshkov
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Jin Zhang
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, United States The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, United States Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
125
|
GSK3β promotes the differentiation of oligodendrocyte precursor cells via β-catenin-mediated transcriptional regulation. Mol Neurobiol 2014; 50:507-19. [PMID: 24691545 DOI: 10.1007/s12035-014-8678-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 03/11/2014] [Indexed: 12/24/2022]
Abstract
Oligodendrocytes are generated by the differentiation and maturation of oligodendrocyte precursor cells (OPCs). The failure of OPC differentiation is a major cause of demyelinating diseases; thus, identifying the molecular mechanisms that affect OPC differentiation is critical for understanding the myelination process and repairing after demyelination. Although prevailing evidence shows that OPC differentiation is a highly coordinated process controlled by multiple extrinsic and intrinsic factors, such as growth factors, axon signals, and transcription factors, the intracellular signaling in OPC differentiation is still unclear. Here, we showed that glycogen synthase kinase 3β (GSK3β) is an essential positive modulator of OPC differentiation. Both pharmacologic inhibition and knockdown of GSK3β remarkably suppressed OPC differentiation. Terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assays and Ki67 staining showed that the effect of GSK3β on OPC differentiation was not via cell death. Conversely, activated GSK3β was sufficient to promote OPC differentiation. Our results also demonstrated that the transcription of myelin genes was regulated by GSK3β inhibition, accompanying accumulated nuclear β-catenin, and reduced the expression of transcriptional factors that are relevant to the expression of myelin genes. Taken together, our study identified GSK3β as a profound positive regulator of OPC differentiation, suggesting that GSK3β may contribute to the inefficient regeneration of oligodendrocytes and myelin repair after demyelination.
Collapse
|
126
|
Maurer U, Preiss F, Brauns-Schubert P, Schlicher L, Charvet C. GSK-3 – at the crossroads of cell death and survival. J Cell Sci 2014; 127:1369-78. [DOI: 10.1242/jcs.138057] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
ABSTRACT
Glycogen synthase kinase 3 (GSK-3) is involved in various signaling pathways controlling metabolism, differentiation and immunity, as well as cell death and survival. GSK-3 targets transcription factors, regulates the activity of metabolic and signaling enzymes, and controls the half-life of proteins by earmarking them for degradation. GSK-3 is unique in its mode of substrate recognition and the regulation of its kinase activity, which is repressed by pro-survival phosphoinositide 3-kinase (PI3K)–AKT signaling. In turn, GSK-3 exhibits pro-apoptotic functions when the PI3K–AKT pathway is inactive. Nevertheless, as GSK-3 is crucially involved in many signaling pathways, its role in cell death regulation is not uniform, and in some situations it promotes cell survival. In this Commentary, we focus on the various aspects of GSK-3 in the regulation of cell death and survival. We discuss the effects of GSK-3 on the regulation of proteins of the BCL-2 family, through which GSK-3 exhibits pro-apoptotic activity. We also highlight the pro-survival activities of GSK-3, which are observed in the context of nuclear factor κB (NFκB) signaling, and we discuss how GSK-3, by impacting on cell death and survival, might play a role in diseases such as cancer.
Collapse
Affiliation(s)
- Ulrich Maurer
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Stefan Meier Strasse 17, 79104 Freiburg, Germany
- Spemann Graduate School for Biology and Medicine (SGBM), Albert-Ludwigs-University Freiburg, Albertstrasse 19a, 79104 Freiburg, Germany
- BIOSS, Centre for Biological Signaling Studies, Hebelstrasse 2, 79104 Freiburg, Germany
| | - Florian Preiss
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Stefan Meier Strasse 17, 79104 Freiburg, Germany
- Spemann Graduate School for Biology and Medicine (SGBM), Albert-Ludwigs-University Freiburg, Albertstrasse 19a, 79104 Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestrasse 1, Freiburg, Germany
| | - Prisca Brauns-Schubert
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Stefan Meier Strasse 17, 79104 Freiburg, Germany
- Spemann Graduate School for Biology and Medicine (SGBM), Albert-Ludwigs-University Freiburg, Albertstrasse 19a, 79104 Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestrasse 1, Freiburg, Germany
| | - Lisa Schlicher
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Stefan Meier Strasse 17, 79104 Freiburg, Germany
- Spemann Graduate School for Biology and Medicine (SGBM), Albert-Ludwigs-University Freiburg, Albertstrasse 19a, 79104 Freiburg, Germany
- BIOSS, Centre for Biological Signaling Studies, Hebelstrasse 2, 79104 Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestrasse 1, Freiburg, Germany
| | - Céline Charvet
- Inserm, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Univ Paris Descartes, Paris, France
| |
Collapse
|
127
|
Abstract
Calcium ions are ubiquitous intracellular messengers. An increase in the cytosolic Ca(2+) concentration activates many proteins, including calmodulin and the Ca(2+)/calmodulin-dependent protein phosphatase calcineurin. The phosphatase is conserved from yeast to humans (except in plants), and many target proteins of calcineurin have been identified. The most prominent and best-investigated targets, however, are the transcription factors NFAT (nuclear factor of activated T cells) in mammals and Crz1 (calcineurin-responsive zinc finger 1) in yeast. In recent years, many orthologues of Crz1 have been identified and characterized in various species of fungi, amoebae, and other lower eukaryotes. It has been shown that the functions of calcineurin-Crz1 signaling, ranging from ion homeostasis through cell wall biogenesis to the building of filamentous structures, are conserved in the different organisms. Furthermore, frequency-modulated gene expression through Crz1 has been discovered as a striking new mechanism by which cells can coordinate their response to a signal. In this review, I focus on the latest findings concerning calcineurin-Crz1 signaling in fungi, amoebae and other lower eukaryotes. I discuss the potential of Crz1 and its orthologues as putative drug targets, and I also discuss possible parallels with calcineurin-NFAT signaling in mammals.
Collapse
|
128
|
Walther S, Awad S, Lonchyna VA, Blatter LA. NFAT transcription factor regulation by urocortin II in cardiac myocytes and heart failure. Am J Physiol Heart Circ Physiol 2014; 306:H856-66. [PMID: 24441548 DOI: 10.1152/ajpheart.00353.2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Urocortin II (UcnII), a cardioactive peptide with beneficial effects in normal and failing hearts, is also arrhythmogenic and prohypertrophic. We demonstrated that cardiac effects are mediated by a phosphatidylinositol-3 kinase (PI3K)/Akt kinase (Akt)/endothelial nitric oxide synthase (eNOS)/nitric oxide (NO) signaling pathways. Nuclear factor of activated T-cells (NFAT) transcription factors play a key role in the regulation of gene expression in cardiac development, maintenance of an adult differentiated cardiac phenotype, and remodeling processes in cardiac hypertrophy and heart failure (HF). We tested the hypothesis that UcnII differentially regulates NFAT activity in cardiac myocytes from both normal and failing hearts through the PI3K/Akt/eNOS/NO pathway. Isoforms NFATc1 and NFATc3 revealed different basal subcellular distribution in normal and HF rabbit ventricular myocytes with a nuclear NFATc1 and a cytosolic localization of NFATc3. However, in HF, the nuclear localization of NFATc1 was less pronounced, whereas the nuclear occupancy of NFATc3 was increased. In normal myocytes, UcnII induced nuclear export of NFATc1 and attenuated NFAT-dependent transcriptional activity but did not affect the distribution of NFATc3. In HF UcnII facilitated nuclear export of both isoforms and reduced transcriptional activity. NFAT regulation was mediated by a PI3K/Akt/eNOS/NO signaling cascade that converged on the activation of several kinases, including glycogen synthase kinase-3β (GSK3β), c-Jun NH2-terminal kinase (JNK), p38 mitogen-activated kinase (p38), and PKG, resulting in phosphorylation, deactivation, and nuclear export of NFAT. In conclusion, while NFATc1 and NFATc3 reveal distinct subcellular distribution patterns, both are regulated by the UcnII-PI3K/Akt/eNOS/NO pathway that converges on the activation of NFAT kinases and NFAT inactivation. The data reconcile cardioprotective and prohypertrophic UcnII effects mediated by different NFAT isoforms.
Collapse
Affiliation(s)
- Stefanie Walther
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, Illinois
| | | | | | | |
Collapse
|
129
|
Schmitt E, Klein M, Bopp T. Th9 cells, new players in adaptive immunity. Trends Immunol 2013; 35:61-8. [PMID: 24215739 DOI: 10.1016/j.it.2013.10.004] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 10/10/2013] [Accepted: 10/13/2013] [Indexed: 02/08/2023]
Abstract
Upon antigen-specific stimulation, naïve CD4⁺ T cells have the potential to differentiate into various T helper (Th) cell subsets. Earlier models of Th cell differentiation focused on IFN-γ-producing Th1 cells and IL-4-secreting Th2 cells. The discovery of additional CD4⁺ Th cell subsets has extended our understanding of Th cell differentiation beyond this dichotomy. Among these is the recently described Th9 cell subset, which preferentially produces interleukin (IL)-9. Here, we review the latest developments in Th9 cell development and differentiation, focusing on contributing environmental signals, and discuss potential physiological and pathophysiological functions of these cells. We describe the challenges inherent to unambiguously defining roles for Th9 cells using the available experimental animal models, and suggest new experimental models to address these concerns.
Collapse
Affiliation(s)
- Edgar Schmitt
- Institute for Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, Building 708, 55131 Mainz, Germany
| | - Matthias Klein
- Institute for Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, Building 708, 55131 Mainz, Germany
| | - Tobias Bopp
- Institute for Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, Building 708, 55131 Mainz, Germany.
| |
Collapse
|
130
|
Pan MG, Xiong Y, Chen F. NFAT gene family in inflammation and cancer. Curr Mol Med 2013; 13:543-54. [PMID: 22950383 DOI: 10.2174/1566524011313040007] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 08/04/2012] [Accepted: 08/10/2012] [Indexed: 01/28/2023]
Abstract
Calcineurin-NFAT signaling is critical for numerous aspects of vertebrate function during and after embryonic development. Initially discovered in T cells, the NFAT gene family, consisting of five members, regulates immune system, inflammatory response, angiogenesis, cardiac valve formation, myocardial development, axonal guidance, skeletal muscle development, bone homeostasis, development and metastasis of cancer, and many other biological processes. In this review we will focus on the NFAT literature relevant to the two closely related pathological systems: inflammation and cancer.
Collapse
Affiliation(s)
- M-G Pan
- Division of Oncology and Hematology, Kaiser Permanente Medical Center, Santa Clara, CA 95051, USA.
| | | | | |
Collapse
|
131
|
Song X, Hu J, Jin P, Chen L, Ma F. Identification and evolution of an NFAT gene involving Branchiostoma belcheri innate immunity. Genomics 2013; 102:355-62. [DOI: 10.1016/j.ygeno.2013.04.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 04/28/2013] [Accepted: 04/29/2013] [Indexed: 10/26/2022]
|
132
|
Lee Y, Kim HJ, Park CK, Kim YG, Lee HJ, Kim JY, Kim HH. MicroRNA-124 regulates osteoclast differentiation. Bone 2013; 56:383-9. [PMID: 23867221 DOI: 10.1016/j.bone.2013.07.007] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/24/2013] [Accepted: 07/02/2013] [Indexed: 12/25/2022]
Abstract
Osteoclasts are specialized cells for bone-resorption originated from precursors of macrophage/monocyte lineage. The receptor activator of NFκB ligand (RANKL) initiates osteoclast differentiation, in which nuclear factor of activated T cell cytoplasmic 1 (NFATc1) plays a key role as a master transcription factor. In the present report, we show that microRNA-124 (miR-124) regulates osteoclastogenesis of mouse bone marrow macrophages (BMMs) by suppressing NFATc1 expression. On the other hand, synthetic inhibitor that binds specifically to miR-124 enhanced osteoclast differentiation and NFATc1 expression. The overexpression of a constitutively active form of NFATc1 prevented the inhibitory effect of miR-124 on osteoclastogenesis. Finally, miR-124 also affected the proliferation and motility of osteoclast precursors, the latter coinciding with the reduced expression of RhoA and Rac1. These findings not only reveal unprecedented role of miR-124 in osteoclastogenesis but also suggest a novel mode of regulation of NFATc1 in osteoclasts.
Collapse
Affiliation(s)
- Youngkyun Lee
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu 700-412, Republic of Korea.
| | | | | | | | | | | | | |
Collapse
|
133
|
Zheng H, Li W, Wang Y, Xie T, Cai Y, Wang Z, Jiang B. miR-23a inhibits E-cadherin expression and is regulated by AP-1 and NFAT4 complex during Fas-induced EMT in gastrointestinal cancer. Carcinogenesis 2013; 35:173-83. [PMID: 23929433 DOI: 10.1093/carcin/bgt274] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Fas signaling has been shown to induce the epithelial-mesenchymal transition (EMT) to promote gastrointestinal (GI) cancer metastasis, but the involvement of microRNA in this mechanism remains unknown. We found that Fas ligand (FasL) treatment inhibited E-cadherin expression and promoted cell invasion by upregulation of miR-23a, but overexpression of the miR-23a inhibitor could partially block this activity. FasL-induced extracellular signal-regulated kinase/mitogen-activated protein kinase signaling activated the activator protein 1 (AP-1) complex and repressed glycogen synthase kinase-3β activity, which contributed to nuclear translocation of AP-1 and nuclear factor of activated T cells (NFAT4). Nuclear accumulation and interaction of AP-1 and NFAT4 and subsequent binding to the miR-23a promoter led to increased miR-23a expression. Inhibition of Fas signaling by downregulation of the Fas receptor led to a decrease in miR-23a expression and cell invasion ability in vivo and in vitro, as well as an increase in E-cadherin. Evaluation of human GI precancerous and cancer specimens showed that the expression of FasL and miR-23a increased, whereas the expression of E-cadherin decreased during GI cancer progression. A significant correlation was noted between any two of these three molecules. An EMT phenotype was shown to correlate with an advanced cancer stage and worse prognosis. Taken together, our results show that miR-23a participates in the mechanism of the FasL-induced EMT process and may serve as a potential therapeutic target for cancer metastasis.
Collapse
Affiliation(s)
- Haoxuan Zheng
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | | | | | | | | | | | | |
Collapse
|
134
|
Hernández-Ortiz P, Espeso EA. Phospho-regulation and nucleocytoplasmic trafficking of CrzA in response to calcium and alkaline-pH stress in Aspergillus nidulans. Mol Microbiol 2013; 89:532-51. [PMID: 23772954 DOI: 10.1111/mmi.12294] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2013] [Indexed: 12/20/2022]
Abstract
Tolerance to abiotic stresses by microorganisms require of appropriate signalling and regulatory pathways. Calcineurin phosphatases mediate calcium-dependent signalling pathways which are widely distributed among phylogeny. In Saccharomyces cerevisiae, calcineurin mediates the post-translational modification of downstream effectors, most of them transcription factors, being the best-characterized calcineurin-regulated zinc-finger factor 1, Crz1p. Here we study the signalling process of CrzA, a filamentous fungal Crz orthologue, in response to calcium and ambient-pH alkalinization. In Aspergillus nidulans resting cells CrzA locates in the cytoplasm being excluded from nuclei. CrzA is a phospho-protein and upon calcium, manganese or alkaline-pH stresses, accumulates in nuclei in a calcineurin-dependent manner. Functional analysis of CrzA defined the presence of a nuclear-export and two nuclear-localization signals as well as a PSINVE sequence that constitutes the major calcineurin-docking domain. First 450 amino acids of CrzA contain these functional motifs and in this region is where phosphorylated residues locate. Different phosphorylation steps are identified in CrzA and activities of casein kinase 1 homologue, CkiA, and of glycogen synthase kinase-3β, identified for the first time here as GskA, are involved. The phospho-signalling process and nucleocytoplasmic trafficking of CrzA shows similarities to those described in yeast for Crz1p homologues and of NFATs in mammals.
Collapse
Affiliation(s)
- Patricia Hernández-Ortiz
- Department of Cellular and Molecular Biology, Centro Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, Madrid, 28040, Spain
| | | |
Collapse
|
135
|
Jang HD, Noh JY, Shin JH, Lin JJ, Lee SY. PTEN regulation by the Akt/GSK-3β axis during RANKL signaling. Bone 2013; 55:126-31. [PMID: 23419777 DOI: 10.1016/j.bone.2013.02.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 02/05/2013] [Accepted: 02/09/2013] [Indexed: 01/31/2023]
Abstract
Phosphatase and tensin homolog (PTEN) negatively regulates phosphoinositide 3-kinase (PI3K)/Akt signaling as a lipid phosphatase for the second messenger phosphatidylinositol 3,4,5-triphosphate. We discovered recently that inactivating glycogen synthase kinase-3β (GSK-3β) via Akt plays an important role in receptor activator of nuclear factor κb ligand (RANKL)-induced osteoclastogenesis. However, the signaling link between GSK-3β and PTEN in RANKL signaling has not been revealed. Downregulating PTEN by RNA interference increases Akt and GSK-3β phosphorylation levels by RANKL, thereby promoting the formation of osteoclasts. PTEN phosphorylation at threonine 366 (T366) decreased gradually during RANKL-induced osteoclastogenesis, whereas PTEN protein levels were unaffected. Interestingly, the PTEN phosphorylation defective mutant (T366A) showed increased osteoclastogenesis, which is consistent with its lower phosphatase activity, compared to that of wild-type PTEN. Moreover, treatment with the GSK-3 inhibitor SB216763 suppressed PTEN phosphorylation levels and phosphatase activity and enhanced Akt phosphorylation. These data suggest that inhibiting GSK-3β during RANKL-induced osteoclastogenesis decreases PTEN phosphorylation, leading to enhanced osteoclast differentiation through Akt activation.
Collapse
Affiliation(s)
- Hyun Duk Jang
- Division of Life and Pharmaceutical Sciences, Center for Cell Signaling & Drug Discovery Research, Ewha Womans University, Seoul, South Korea
| | | | | | | | | |
Collapse
|
136
|
Atkins RJ, Stylli SS, Luwor RB, Kaye AH, Hovens CM. Glycogen synthase kinase-3β (GSK-3β) and its dysregulation in glioblastoma multiforme. J Clin Neurosci 2013; 20:1185-92. [PMID: 23768967 DOI: 10.1016/j.jocn.2013.02.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 02/09/2013] [Indexed: 01/10/2023]
Abstract
Glioblastoma multiforme (GBM) is the most frequently occurring and devastating human brain malignancy, retaining almost universal mortality and a median survival of only 14 months, even with recent advances in multimodal treatments. Gliomas are characterised as being both highly resistant to chemo- and radiotherapy and highly invasive, rendering conventional interventions palliative. The continual dismal prognosis for GBM patients identifies an urgent need for the evolutionary development of new treatment modalities. This includes molecular targeted therapies as many signaling molecules and associated pathways have been implicated in the development and survival of malignant gliomas including the protein kinase, glycogen synthase kinase 3 beta (GSK-3β). Here we review the activity and function of GSK-3β in a number of signaling pathways and its role in gliomagenesis.
Collapse
Affiliation(s)
- R J Atkins
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Grattan Street, Parkville, VIC 3050, Australia.
| | | | | | | | | |
Collapse
|
137
|
Man XY, Li W, Chen JQ, Zhou J, Landeck L, Zhang KH, Mu Z, Li CM, Cai SQ, Zheng M. Impaired nuclear translocation of glucocorticoid receptors: novel findings from psoriatic epidermal keratinocytes. Cell Mol Life Sci 2013; 70:2205-20. [PMID: 23334186 PMCID: PMC11113139 DOI: 10.1007/s00018-012-1255-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 12/19/2012] [Accepted: 12/27/2012] [Indexed: 01/21/2023]
Abstract
Psoriasis is a chronic proliferative skin disease and is usually treated with topical glucocorticoids, which act through the glucocorticoid receptor (GR), a component of the physiological systems essential for immune responses, differentiation, and homeostasis. To investigate the possible role of GR in the pathogenesis of psoriasis, normal and psoriatic lesional skin were recruited. Firstly, the immunolocalization of GR in the skin and cultured epidermal keratinocytes were determined by immunofluorescence. In normal skin and cultured human epidermal keratinocytes, intracellular GR is localized in the nuclei, while in psoriatic skin and cultured keratinocytes, GR is in the cytoplasm. Next, we investigated possible factors associated with the cytoplasmic distribution. We found that VEGF and IFN-γ led to impaired nuclear translocation of GR through p53 and microtubule-inhibitor, vincristine, and inhibited nuclear uptake of GR in normal keratinocytes. In addition to dexamethasone, interleukin (IL)-13 was also able to transfer GR into nuclei of psoriatic keratinocytes. Furthermore, discontinuation of dexamethasone induced cytoplasmic retention of GR in normal keratinocytes. In contrast, energy depletion of normal epidermal keratinocytes did not change the nuclear distribution of GR. To confirm our findings in vivo, an imiquimod-induced psoriasis-like skin mouse model was included. IL-13 ameliorated (but vincristine exacerbated) the skin lesions on the mouse. Taken together, our findings define that impaired nuclear translocation of GR is associated with VEGF, IFN-γ, p53, and microtubule. Therapeutic strategies designed to accumulate GR in the nucleus, such as IL-13, may be beneficial for the therapy of psoriasis.
Collapse
Affiliation(s)
- Xiao-Yong Man
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009 China
| | - Wei Li
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009 China
| | - Jia-Qi Chen
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009 China
| | - Jiong Zhou
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009 China
| | - Lilla Landeck
- Department of Dermatology, University of Osnabrueck, Osnabrueck, Germany
| | - Kai-Hong Zhang
- Department of Dermatology, Affiliated Hospital, Taishan Medical College, Taishan, China
| | - Zhen Mu
- Department of Dermatology, Affiliated Hospital, Taishan Medical College, Taishan, China
| | - Chun-Ming Li
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009 China
| | - Sui-Qing Cai
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009 China
| | - Min Zheng
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009 China
| |
Collapse
|
138
|
Lu ZQ, Tang LM, Zhao GJ, Yao YM, Zhu XM, Dong N, Yu Y. Overactivation of mitogen-activated protein kinase and suppression of mitofusin-2 expression are two independent events in high mobility group box 1 protein-mediated T cell immune dysfunction. J Interferon Cytokine Res 2013; 33:529-41. [PMID: 23697559 DOI: 10.1089/jir.2012.0054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
High mobility group box 1 protein (HMGB1), a critical proinflammatory cytokine, has recently been identified to be an immunostimulatory signal involved in sepsis-related immune dysfunction when released extracellularly, but the potential mechanism involved remains elusive. Here, we showed that the treatment with HMGB1 in vitro inhibited T lymphocyte immune response and expression of mitofusin-2 (Mfn-2; a member of the mitofusin family) in a dose- and time-dependent manner. Upregulation of Mfn-2 expression attenuated the suppressive effect of HMGB1 on T cell immune function. The phosphorylation of both extracellular signal-regulated kinase (ERK)1/2 and p38 mitogen-activated protein kinase (MAPK) was markedly upregulated by treating with high amount of HMGB1, while pretreatment with ERK1/2 and p38 MAPK-specific inhibitors (U0126 and SB203580) could attenuate suppression of T cell immune function and nuclear factor of activated T cell (NFAT) activation induced by HMGB1, respectively. HMGB1-induced activity of ERK1/2 and p38 was not fully inhibited in the presence of U0126 or SB203580. Interestingly, overexpression of Mfn-2 had no marked effect on HMGB1-mediated activation of MAPK, but could attenuate the suppressive effect of HMGB1 on the activity of NFAT. Thus, the mechanisms involved in HMGB1-induced T cell immune dysfunction in vitro at least partly include suppression of Mfn-2 expression, overactivation of ERK1/2, p38 MAPK, and intervention of NFAT activation, while the protective effect of Mfn-2 on T cell immune dysfunction induced by HMGB1 is dependent on other signaling pathway associated with NFAT, but not MAPK. Taken together, we conclude that overactivation of MAPK and suppression of Mfn-2 expression are two independent events in HMGB1-mediated T cell immune dysfunction.
Collapse
Affiliation(s)
- Zhong-qiu Lu
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical College, Wenzhou, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
139
|
Fionda C, Malgarini G, Soriani A, Zingoni A, Cecere F, Iannitto ML, Ricciardi MR, Federico V, Petrucci MT, Santoni A, Cippitelli M. Inhibition of glycogen synthase kinase-3 increases NKG2D ligand MICA expression and sensitivity to NK cell-mediated cytotoxicity in multiple myeloma cells: role of STAT3. THE JOURNAL OF IMMUNOLOGY 2013; 190:6662-72. [PMID: 23686482 DOI: 10.4049/jimmunol.1201426] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Engagement of NKG2D and DNAX accessory molecule-1 (DNAM-1) receptors on lymphocytes plays an important role for anticancer response and represents an interesting therapeutic target for pharmacological modulation. In this study, we investigated the effect of inhibitors targeting the glycogen synthase kinase-3 (GSK3) on the expression of NKG2D and DNAM-1 ligands in multiple myeloma (MM) cells. GSK3 is a pleiotropic serine-threonine kinase point of convergence of numerous cell-signaling pathways, able to regulate the proliferation and survival of cancer cells, including MM. We found that inhibition of GSK3 upregulates both MICA protein surface and mRNA expression in MM cells, with little or no effects on the basal expression of the MICB and DNAM-1 ligand poliovirus receptor/CD155. Moreover, exposure to GSK3 inhibitors renders myeloma cells more efficient to activate NK cell degranulation and to enhance the ability of myeloma cells to trigger NK cell-mediated cytotoxicity. We could exclude that increased expression of β-catenin or activation of the heat shock factor-1 (transcription factors inhibited by active GSK3) is involved in the upregulation of MICA expression, by using RNA interference or viral transduction of constitutive active forms. On the contrary, inhibition of GSK3 correlated with a downregulation of STAT3 activation, a negative regulator of MICA transcription. Both Tyr(705) phosphorylation and binding of STAT3 on MICA promoter are reduced by GSK3 inhibitors; in addition, overexpression of a constitutively active form of STAT3 significantly inhibits MICA upregulation. Thus, we provide evidence that regulation of the NKG2D-ligand MICA expression may represent an additional immune-mediated mechanism supporting the antimyeloma activity of GSK3 inhibitors.
Collapse
Affiliation(s)
- Cinzia Fionda
- Department of Molecular Medicine, Cenci Bolognetti Foundation-Pasteur Institute, Sapienza University of Rome, 00161 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Wu B, Baldwin HS, Zhou B. Nfatc1 directs the endocardial progenitor cells to make heart valve primordium. Trends Cardiovasc Med 2013; 23:294-300. [PMID: 23669445 DOI: 10.1016/j.tcm.2013.04.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 04/09/2013] [Accepted: 04/10/2013] [Indexed: 11/26/2022]
Abstract
Heart valves arise from the cardiac endocardial cushions located at the atrioventricular canal (AVC) and cardiac outflow tract (OFT) during development. A subpopulation of cushion endocardial cells undergoes endocardial to mesenchymal transformation (EMT) and generates the cushion mesenchyme, which is then remodeled into the interstitial tissue of the mature valves. The cushion endocardial cells that do not undertake EMT proliferate to elongate valve leaflets. During EMT and the post-EMT valve remodeling, endocardial cells at the cushions highly express nuclear factor in activated T cell, cytoplasmic 1 (Nfatc1), a transcription factor required for valve formation in mice. In this review, we present the current knowledge of Nfatc1 roles in the ontogeny of heart valves with a focus on the fate decision of the endocardial cells in the processes of EMT and valve remodeling.
Collapse
Affiliation(s)
- Bingruo Wu
- Department of Genetics, Division of Cardiology, Wilf Cardiovascular Institute, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461, USA; Department of Pediatrics, Division of Cardiology, Wilf Cardiovascular Institute, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461, USA; Department of Medicine, Division of Cardiology, Wilf Cardiovascular Institute, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461, USA
| | | | | |
Collapse
|
141
|
Takahashi-Yanaga F. Activator or inhibitor? GSK-3 as a new drug target. Biochem Pharmacol 2013; 86:191-9. [PMID: 23643839 DOI: 10.1016/j.bcp.2013.04.022] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 04/25/2013] [Accepted: 04/25/2013] [Indexed: 01/01/2023]
Abstract
Glycogen synthase kinase-3 (GSK-3) is a cytoplasmic serine/threonine protein kinase that phosphorylates and inhibits glycogen synthase, thereby inhibiting glycogen synthesis from glucose. However, this serine/threonine kinase is now known to regulate numerous cellular processes through a number of signaling pathways important for cell proliferation, stem cell renewal, apoptosis and development. Because of these diverse roles, malfunction of this kinase is also known to be involved in the pathogenesis of human diseases, such as nervous system disorders, diabetes, bone formation, inflammation, cancer and heart failure. Therefore, GSK-3 is recognized as an attractive target for the development of new drugs. The present review summarizes the roles of GSK-3 in the insulin, Wnt/β-catenin and hedgehog signaling pathways including the regulation of their activities. The roles of GSK-3 in the development of human diseases within the context of its participation in various signaling pathways are also summarized. Finally, the possibility of new drug development targeting this kinase is discussed with recent information about inhibitors and activators of GSK-3.
Collapse
Affiliation(s)
- Fumi Takahashi-Yanaga
- Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
142
|
Zhu M, Van Dyke TE, Gyurko R. Resolvin E1 regulates osteoclast fusion via DC-STAMP and NFATc1. FASEB J 2013; 27:3344-53. [PMID: 23629863 DOI: 10.1096/fj.12-220228] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Interactions between the immune and skeletal systems in inflammatory bone diseases are well appreciated, but the underlying molecular mechanisms that coordinate the resolution phase of inflammation and bone turnover have not been unveiled. Here we investigated the direct actions of the proresolution mediator resolvin E1 (RvE1) on bone-marrow-cell-derived osteoclasts in an in vitro murine model of osteoclast maturation and inflammatory bone resorption. Investigation of the actions of RvE1 treatment on the specific stages of osteoclast maturation revealed that RvE1 targeted late stages of osteoclast maturation to decrease osteoclast formation by 32.8%. Time-lapse vital microscopy and migration assays confirmed that membrane fusion of osteoclast precursors was inhibited. The osteoclast fusion protein DC-STAMP was specifically targeted by RvE1 receptor binding and was down-regulated by 65.4%. RvE1 did not affect the induction of the essential osteoclast transcription factor nuclear factor of activated T cells c1 (NFATc1) or its nuclear translocation; however, NFATc1 binding to the DC-STAMP promoter was significantly inhibited by 60.9% with RvE1 treatment as shown in electrophoresis mobility shift assay. Our findings suggest that proresolution mediators act directly on osteoclasts, in addition to down-regulation of inflammation, providing a novel mechanism for modulating osteoclast signaling in osteolytic inflammatory disease.
Collapse
Affiliation(s)
- Min Zhu
- Department of Periodontology and Oral Biology, Goldman School of Dental Medicine, Boston University, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|
143
|
Feng Z, Xia Y, Zhang M, Zheng J. MicroRNA-155 regulates T cell proliferation through targeting GSK3β in cardiac allograft rejection in a murine transplantation model. Cell Immunol 2013; 281:141-9. [PMID: 23648819 DOI: 10.1016/j.cellimm.2013.04.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 03/29/2013] [Accepted: 04/02/2013] [Indexed: 10/27/2022]
Abstract
Here we investigated the activity and regulation of miR-155 during cardiac allograft rejection (AR), and to examine the feasibility of using miR-155 as a biomarker of graft status. Expression of miR-155 in graft-infiltrating lymphocytes (GIL), T cells isolated from spleen (TFS), and lymphocytes separated from blood (LFB) was significantly increased during cardiac AR while GSK3β was downregulated in GIL and TFS. Inhibition of miR-155 impaired lymphocyte proliferation and enhanced the expression of GSK3β. Moreover, pharmacological inactivation of GSK3β resulted in rescue of the proliferative capability of T cells pretreated with a miR-155 inhibitor. Luciferase reporter assay confirmed that miR-155 interacted with the 3'-untranslated region (UTR) of GSK3β directly. In particular, the miR-155 in LFB can distinguish recipients with AR from syngeneic controls from POD 3 and later. The present study provides a better understanding of the pathophysiological process underlying cardiac AR progression.
Collapse
Affiliation(s)
- Zhiyu Feng
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children's Medical Center, Shanghai Jiaotong University, School of Medicine, 1678 Dongfang Road, Pudong, Shanghai 200127, China
| | | | | | | |
Collapse
|
144
|
Sanquer S, Amrein C, Grenet D, Guillemain R, Philippe B, Boussaud V, Herry L, Lena C, Diouf A, Paunet M, Billaud EM, Loriaux F, Jais JP, Barouki R, Stern M. Expression of calcineurin activity after lung transplantation: a 2-year follow-up. PLoS One 2013; 8:e59634. [PMID: 23536885 PMCID: PMC3607585 DOI: 10.1371/journal.pone.0059634] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 02/16/2013] [Indexed: 11/18/2022] Open
Abstract
The objective of this pharmacodynamic study was to longitudinally assess the activity of calcineurin during the first 2 years after lung transplantation. From March 2004 to October 2008, 107 patients were prospectively enrolled and their follow-up was performed until 2009. Calcineurin activity was measured in peripheral blood mononuclear cells. We report that calcineurin activity was linked to both acute and chronic rejection. An optimal activity for calcineurin with two thresholds was defined, and we found that the risk of rejection was higher when the enzyme activity was above the upper threshold of 102 pmol/mg/min or below the lower threshold of 12 pmol/mg/min. In addition, we report that the occurrence of malignancies and viral infections was significantly higher in patients displaying very low levels of calcineurin activity. Taken together, these findings suggest that the measurement of calcineurin activity may provide useful information for the management of the prevention therapy of patients receiving lung transplantation.
Collapse
Affiliation(s)
- Sylvia Sanquer
- Service de Biochimie Métabolomique et Protéomique, Hôpital Universitaire Necker-Enfants Malades Assistance Publique-Hôpitaux de Paris (AP-HP), France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Mikami N, Miyagi Y, Sueda K, Takatsuji M, Fukada SI, Yamamoto H, Tsujikawa K. Calcitonin gene-related peptide and cyclic adenosine 5'-monophosphate/protein kinase A pathway promote IL-9 production in Th9 differentiation process. THE JOURNAL OF IMMUNOLOGY 2013; 190:4046-55. [PMID: 23509367 DOI: 10.4049/jimmunol.1203102] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Th9 cells are a novel Th cell subset that produces IL-9 and is involved in type I hypersensitivity such as airway inflammation. Although its critical roles in asthma have attracted interest, the physiological regulatory mechanisms of Th9 cell differentiation and function are largely unknown. Asthma is easily affected by psychological factors. Therefore, we investigated one of the physiological mediators derived from the nervous system, calcitonin gene-related peptide (CGRP), in asthma and Th9 cells because CGRP and activation of the cAMP/protein kinase A (PKA) pathway by CGRP are known to be important regulators in several immune responses and allergic diseases. In this study, we demonstrated that the CGRP/cAMP/PKA pathway promotes IL-9 production via NFATc2 activation by PKA-dependent glycogen synthase kinase-3β inactivation. Moreover, CGRP also induces the expression of PU.1, a critical transcriptional factor in Th9 cells, which depends on PKA, but not NFATc2. Additionally, we demonstrated the physiological importance of CGRP in IL-9 production and Th9 differentiation using an OVA-induced airway inflammation model and T cell-specific CGRP receptor-deficient mice. The present study revealed a novel regulatory mechanism comprising G protein-coupled receptor ligands and nervous system-derived substances in Th9 cell differentiation and type I hypersensitivity.
Collapse
Affiliation(s)
- Norihisa Mikami
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
146
|
Zhou X, Wang H, Burg MB, Ferraris JD. Inhibitory phosphorylation of GSK-3β by AKT, PKA, and PI3K contributes to high NaCl-induced activation of the transcription factor NFAT5 (TonEBP/OREBP). Am J Physiol Renal Physiol 2013; 304:F908-17. [PMID: 23324178 DOI: 10.1152/ajprenal.00591.2012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
High NaCl activates the transcription factor nuclear factor of activated T cells 5 (NFAT5), leading to increased transcription of osmoprotective target genes. Kinases PKA, PI3K, AKT1, and p38α were known to contribute to the high NaCl-induced increase of NFAT5 activity. We now identify another kinase, GSK-3β. siRNA-mediated knock-down of GSK-3β increases NFAT5 transcriptional and transactivating activities without affecting high NaCl-induced nuclear localization of NFAT5 or NFAT5 protein expression. High NaCl increases phosphorylation of GSK-3β-S9, which inhibits GSK-3β. In GSK-3β-null mouse embryonic fibroblasts transfection of GSK-3β, in which serine 9 is mutated to alanine, so that it cannot be inhibited by phosphorylation at that site, inhibits high NaCl-induced NFAT5 transcriptional activity more than transfection of wild-type GSK-3β. High NaCl-induced phosphorylation of GSK-3β-S9 depends on PKA, PI3K, and AKT, but not p38α. Overexpression of PKA catalytic subunit α or of catalytically active AKT1 reduces inhibition of NFAT5 by GSK-3β, but overexpression of p38α together with its catalytically active upstream kinase, MKK6, does not. Thus, GSK-3β normally inhibits NFAT5 by suppressing its transactivating activity. When activated by high NaCl, PKA, PI3K, and AKT1, but not p38α, increase phosphorylation of GSK-3β-S9, which reduces the inhibitory effect of GSK-3β on NFAT5, and thus contributes to activation of NFAT5.
Collapse
Affiliation(s)
- Xiaoming Zhou
- Department of Medicine, Uniformed Services University, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA.
| | | | | | | |
Collapse
|
147
|
Voronov I, Ochotny N, Jaumouillé V, Owen C, Manolson MF, Aubin JE. The R740S mutation in the V-ATPase a3 subunit increases lysosomal pH, impairs NFATc1 translocation, and decreases in vitro osteoclastogenesis. J Bone Miner Res 2013; 28:108-18. [PMID: 22865292 DOI: 10.1002/jbmr.1727] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 06/07/2012] [Accepted: 07/16/2012] [Indexed: 01/04/2023]
Abstract
Vacuolar H(+) -ATPase (V-ATPase), a multisubunit enzyme located at the ruffled border and in lysosomes of osteoclasts, is necessary for bone resorption. We previously showed that heterozygous mice with an R740S mutation in the a3 subunit of V-ATPase (+/R740S) have mild osteopetrosis resulting from an ∼90% reduction in proton translocation across osteoclast membranes. Here we show that lysosomal pH is also higher in +/R740S compared with wild-type (+/+) osteoclasts. Both osteoclast number and size were decreased in cultures of +/R740S compared with +/+ bone marrow cells, with concomitant decreased expression of key osteoclast markers (TRAP, cathepsin K, OSCAR, DC-STAMP, and NFATc1), suggesting that low lysosomal pH plays an important role in osteoclastogenesis. To elucidate the molecular mechanism of this inhibition, NFATc1 activation was assessed. NFATc1 nuclear translocation was significantly reduced in +/R740S compared with +/+ cells; however, this was not because of impaired enzymatic activity of calcineurin, the phosphatase responsible for NFATc1 dephosphorylation. Protein and RNA expression levels of regulator of calcineurin 1 (RCAN1), an endogenous inhibitor of NFATc1 activation and a protein degraded in lysosomes, were not significantly different between +/R740S and +/+ osteoclasts, but the RCAN1/NFATc1 ratio was significantly higher in +/R740S versus +/+ cells. The lysosomal inhibitor chloroquine significantly increased RCAN1 accumulation in +/+ cells, consistent with the hypothesis that higher lysosomal pH impairs RCAN1 degradation, leading to a higher RCAN1/NFATc1 ratio and consequently NFATc1 inhibition. Our data indicate that increased lysosomal pH in osteoclasts leads to decreased NFATc1 signaling and nuclear translocation, resulting in a cell autonomous impairment of osteoclastogenesis in vitro.
Collapse
Affiliation(s)
- Irina Voronov
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.
| | | | | | | | | | | |
Collapse
|
148
|
Bryan HK, Olayanju A, Goldring CE, Park BK. The Nrf2 cell defence pathway: Keap1-dependent and -independent mechanisms of regulation. Biochem Pharmacol 2012; 85:705-17. [PMID: 23219527 DOI: 10.1016/j.bcp.2012.11.016] [Citation(s) in RCA: 779] [Impact Index Per Article: 64.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 11/24/2012] [Accepted: 11/27/2012] [Indexed: 12/13/2022]
Abstract
The transcription factor Nrf2 (NF-E2-related factor 2) plays a vital role in maintaining cellular homeostasis, especially upon the exposure of cells to chemical or oxidative stress, through its ability to regulate the basal and inducible expression of a multitude of antioxidant proteins, detoxification enzymes and xenobiotic transporters. In addition, Nrf2 contributes to diverse cellular functions including differentiation, proliferation, inflammation and lipid synthesis and there is an increasing association of aberrant expression and/or function of Nrf2 with pathologies including cancer, neurodegeneration and cardiovascular disease. The activity of Nrf2 is primarily regulated via its interaction with Keap1 (Kelch-like ECH-associated protein 1), which directs the transcription factor for proteasomal degradation. Although it is generally accepted that modification (e.g. chemical adduction, oxidation, nitrosylation or glutathionylation) of one or more critical cysteine residues in Keap1 represents a likely chemico-biological trigger for the activation of Nrf2, unequivocal evidence for such a phenomenon remains elusive. An increasing body of literature has revealed alternative mechanisms of Nrf2 regulation, including phosphorylation of Nrf2 by various protein kinases (PKC, PI3K/Akt, GSK-3β, JNK), interaction with other protein partners (p21, caveolin-1) and epigenetic factors (micro-RNAs -144, -28 and -200a, and promoter methylation). These and other processes are potentially important determinants of Nrf2 activity, and therefore may contribute to the maintenance of cellular homeostasis. Here, we dissect evidence supporting these Keap1-dependent and -independent mechanisms of Nrf2 regulation. Furthermore, we highlight key knowledge gaps in this important field of biology, and suggest how these may be addressed experimentally.
Collapse
Affiliation(s)
- Holly K Bryan
- MRC Centre for Drug Safety Science, Molecular & Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, L69 3GE, UK
| | | | | | | |
Collapse
|
149
|
Zanoni I, Granucci F. Regulation and dysregulation of innate immunity by NFAT signaling downstream of pattern recognition receptors (PRRs). Eur J Immunol 2012; 42:1924-31. [PMID: 22706795 DOI: 10.1002/eji.201242580] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Innate immunity is the most ancient form of response to pathogens and it relies on evolutionary conserved signaling pathways, i.e. those involving the NF-κB pathway. Nevertheless, increasing evidence suggests that factors that have appeared more recently in evolution, such as the nuclear factor of activated T-cell transcription factor family (NFATc), also contribute to innate immune-response regulation in vertebrates. Exposure to inflammatory stimuli induces the activation of NFATc factors in innate immune cells, including conventional dendritic cells (DCs), granulocytes, mast cells and under pathological circumstances, also macrophages. While the evolutionary conserved functions of innate immunity, such as direct microbial killing and interferon production, are expected to be NFATc independent, other aspects of innate immunity, including collaboration with adaptive immunity and mechanisms to limit the tissue damage generated by the inflammatory process, are presumably controlled by NFATc members in collaboration with other transcription factors. In this article, we discuss the recent advances regarding the role of the NFATc signaling pathway in regulating DC, neutrophil and macrophage responses to specific inflammatory stimuli, including lipopolysaccharide and β-glucan-bearing microorganisms. We also discuss how NFATc signaling influences the interactions of myeloid cells with lymphocytes.
Collapse
Affiliation(s)
- Ivan Zanoni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | | |
Collapse
|
150
|
Vázquez-Cedeira M, Lazo PA. Human VRK2 (vaccinia-related kinase 2) modulates tumor cell invasion by hyperactivation of NFAT1 and expression of cyclooxygenase-2. J Biol Chem 2012; 287:42739-50. [PMID: 23105117 DOI: 10.1074/jbc.m112.404285] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Human VRK2 (vaccinia-related kinase 2), a kinase that emerged late in evolution, affects different signaling pathways, and some carcinomas express high levels of VRK2. Invasion by cancer cells has been associated with NFAT1 (nuclear factor of activated T cells) activation and expression of the COX-2 (cyclooxygenase 2) gene. We hypothesized that VRK proteins might play a regulatory role in NFAT1 activation in tumor cells. We demonstrate that VRK2 directly interacts and phosphorylates NFAT1 in Ser-32 within its N-terminal transactivation domain. VRK2 increases NFAT1-dependent transcription by phosphorylation, and this effect is only detected following cell phorbol 12-myristate 13-acetate and ionomycin stimulation and calcineurin activation. This NFAT1 hyperactivation by VRK2 increases COX-2 gene expression through the proximal NFAT1 binding site in the COX-2 gene promoter. Furthermore, VRK2A down-regulation by RNA interference reduces COX-2 expression at transcriptional and protein levels. Therefore, VRK2 down-regulation reduces cell invasion by tumor cells, such as MDA-MB-231 and MDA-MB-435, upon stimulation with phorbol 12-myristate 13-acetate plus ionomycin. These findings identify the first reported target and function of human VRK2 as an active kinase playing a role in regulation of cancer cell invasion through the NFAT pathway and COX-2 expression.
Collapse
Affiliation(s)
- Marta Vázquez-Cedeira
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas, Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain
| | | |
Collapse
|