101
|
Epitope Prediction Assays Combined with Validation Assays Strongly Narrows down Putative Cytotoxic T Lymphocyte Epitopes. Vaccines (Basel) 2015; 3:203-20. [PMID: 26343185 PMCID: PMC4494349 DOI: 10.3390/vaccines3020203] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/16/2015] [Indexed: 02/07/2023] Open
Abstract
Tumor vaccine design requires prediction and validation of immunogenic MHC class I epitopes expressed by target cells as well as MHC class II epitopes expressed by antigen-presenting cells essential for the induction of optimal immune responses. Epitope prediction methods are based on different algorithms and are instrumental for a first screening of possible epitopes. However, their results do not reflect a one-to-one correlation with experimental data. We combined several in silico prediction methods to unravel the most promising C57BL/6 mouse-restricted Hepatitis C virus (HCV) MHC class I epitopes and validated these epitopes in vitro and in vivo. Cytotoxic T lymphocyte (CTL) epitopes within the HCV non-structural proteins were identified, and proteasomal cleavage sites and helper T cell (Th) epitopes at close proximity to these CTL epitopes were analyzed using multiple prediction algorithms. This combined in silico analysis enhances the precision of identification of functional HCV-specific CTL epitopes. This approach will be applicable to the design of human vaccines not only for HCV, but also for other antigens in which T-cell responses play a crucial role.
Collapse
|
102
|
Scheel TKH, Simmonds P, Kapoor A. Surveying the global virome: identification and characterization of HCV-related animal hepaciviruses. Antiviral Res 2015; 115:83-93. [PMID: 25545071 PMCID: PMC5081135 DOI: 10.1016/j.antiviral.2014.12.014] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 12/15/2014] [Accepted: 12/19/2014] [Indexed: 12/25/2022]
Abstract
Recent advances in sequencing technologies have greatly enhanced our abilities to identify novel microbial sequences. Thus, our understanding of the global virome and the virome of specific host species in particular is rapidly expanding. Identification of animal viruses is important for understanding animal disease, the origin and evolution of human viruses, as well as zoonotic reservoirs for emerging infections. Although the human hepacivirus, hepatitis C virus (HCV), was identified 25years ago, its origin has remained elusive. In 2011, the first HCV homolog was reported in dogs but subsequent studies showed the virus to be widely distributed in horses. This indicated a wider hepacivirus host range and paved the way for identification of rodent, bat and non-human primate hepaciviruses. The equine non-primate hepacivirus (NPHV) remains the closest relative of HCV and is so far the best characterized. Identification and characterization of novel hepaciviruses may in addition lead to development of tractable animal models to study HCV persistence, immune responses and pathogenesis. This could be particular important, given the current shortage of immunocompetent models for robust HCV infection. Much remains to be learned on the novel hepaciviruses, including their association with disease, and thereby how relevant they will become as HCV model systems and for studies of animal disease. This review discusses how virome analysis led to identification of novel hepaci- and pegiviruses, their genetic relationship and characterization and the potential use of animal hepaciviruses as models to study hepaciviral infection, immunity and pathogenesis. This article forms part of a symposium in Antiviral Research on "Hepatitis C: Next steps toward global eradication."
Collapse
Affiliation(s)
- Troels K H Scheel
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY, United States; Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Disease and Clinical Research Centre, Copenhagen University Hospital, Hvidovre, Denmark; Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Simmonds
- Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Amit Kapoor
- Center for Infection and Immunity, Columbia University, New York, NY, United States.
| |
Collapse
|
103
|
Identification, molecular cloning, and analysis of full-length hepatitis C virus transmitted/founder genotypes 1, 3, and 4. mBio 2015; 6:e02518. [PMID: 25714714 PMCID: PMC4358020 DOI: 10.1128/mbio.02518-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hepatitis C virus (HCV) infection is characterized by persistent replication of a complex mixture of viruses termed a “quasispecies.” Transmission is generally associated with a stringent population bottleneck characterized by infection by limited numbers of “transmitted/founder” (T/F) viruses. Characterization of T/F genomes of human immunodeficiency virus type 1 (HIV-1) has been integral to studies of transmission, immunopathogenesis, and vaccine development. Here, we describe the identification of complete T/F genomes of HCV by single-genome sequencing of plasma viral RNA from acutely infected subjects. A total of 2,739 single-genome-derived amplicons comprising 10,966,507 bp from 18 acute-phase and 11 chronically infected subjects were analyzed. Acute-phase sequences diversified essentially randomly, except for the poly(U/UC) tract, which was subject to polymerase slippage. Fourteen acute-phase subjects were productively infected by more than one genetically distinct virus, permitting assessment of recombination between replicating genomes. No evidence of recombination was found among 1,589 sequences analyzed. Envelope sequences of T/F genomes lacked transmission signatures that could distinguish them from chronic infection viruses. Among chronically infected subjects, higher nucleotide substitution rates were observed in the poly(U/UC) tract than in envelope hypervariable region 1. Fourteen full-length molecular clones with variable poly(U/UC) sequences corresponding to seven genotype 1a, 1b, 3a, and 4a T/F viruses were generated. Like most unadapted HCV clones, T/F genomes did not replicate efficiently in Huh 7.5 cells, indicating that additional cellular factors or viral adaptations are necessary for in vitro replication. Full-length T/F HCV genomes and their progeny provide unique insights into virus transmission, virus evolution, and virus-host interactions associated with immunopathogenesis. Hepatitis C virus (HCV) infects 2% to 3% of the world’s population and exhibits extraordinary genetic diversity. This diversity is mirrored by HIV-1, where characterization of transmitted/founder (T/F) genomes has been instrumental in studies of virus transmission, immunopathogenesis, and vaccine development. Here, we show that despite major differences in genome organization, replication strategy, and natural history, HCV (like HIV-1) diversifies essentially randomly early in infection, and as a consequence, sequences of actual T/F viruses can be identified. This allowed us to capture by molecular cloning the full-length HCV genomes that are responsible for infecting the first hepatocytes and eliciting the initial immune responses, weeks before these events could be directly analyzed in human subjects. These findings represent an enabling experimental strategy, not only for HCV and HIV-1 research, but also for other RNA viruses of medical importance, including West Nile, chikungunya, dengue, Venezuelan encephalitis, and Ebola viruses.
Collapse
|
104
|
Characterization of nonprimate hepacivirus and construction of a functional molecular clone. Proc Natl Acad Sci U S A 2015; 112:2192-7. [PMID: 25646476 DOI: 10.1073/pnas.1500265112] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Nonprimate hepacivirus (NPHV) is the closest known relative of hepatitis C virus (HCV) and its study could enrich our understanding of HCV evolution, immunity, and pathogenesis. High seropositivity is found in horses worldwide with ∼ 3% viremic. NPHV natural history and molecular virology remain largely unexplored, however. Here, we show that NPHV, like HCV, can cause persistent infection for over a decade, with high titers and negative strand RNA in the liver. NPHV is a near-universal contaminant of commercial horse sera for cell culture. The complete NPHV 3'-UTR was determined and consists of interspersed homopolymer tracts and an HCV-like 3'-terminal poly(U)-X-tail. NPHV translation is stimulated by miR-122 and the 3'-UTR and, similar to HCV, the NPHV NS3-4A protease can cleave mitochondrial antiviral-signaling protein to inactivate the retinoic acid-inducible gene I pathway. Using an NPHV consensus cDNA clone, replication was not observed in primary equine fetal liver cultures or after electroporation of selectable replicons. However, intrahepatic RNA inoculation of a horse initiated infection, yielding high RNA titers in the serum and liver. Delayed seroconversion, slightly elevated circulating liver enzymes and mild hepatitis was observed, followed by viral clearance. This establishes the molecular components of a functional NPHV genome. Thus, NPHV appears to resemble HCV not only in genome structure but also in its ability to establish chronic infection with delayed seroconversion and hepatitis. This NPHV infectious clone and resulting acute phase sera will facilitate more detailed studies on the natural history, pathogenesis, and immunity of this novel hepacivirus in its natural host.
Collapse
|
105
|
Pfaender S, Cavalleri JMV, Walter S, Doerrbecker J, Campana B, Brown RJP, Burbelo PD, Postel A, Hahn K, Anggakusuma, Riebesehl N, Baumgärtner W, Becher P, Heim MH, Pietschmann T, Feige K, Steinmann E. Clinical course of infection and viral tissue tropism of hepatitis C virus-like nonprimate hepaciviruses in horses. Hepatology 2015; 61:447-59. [PMID: 25212983 DOI: 10.1002/hep.27440] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 09/10/2014] [Indexed: 12/14/2022]
Abstract
UNLABELLED Hepatitis C virus (HCV) has a very narrow species and tissue tropism and efficiently replicates only in humans and the chimpanzee. Recently, several studies identified close relatives to HCV in different animal species. Among these novel viruses, the nonprimate hepaciviruses (NPHV) that infect horses are the closest relatives of HCV described to date. In this study, we analyzed the NPHV prevalence in northern Germany and characterized the clinical course of infection and viral tissue tropism to explore the relevance of HCV-related horse viruses as a model for HCV infection. We found that approximately 31.4% of 433 horses were seropositive for antibodies (Abs) against NPHV and approximately 2.5% carried viral RNA. Liver function analyses revealed no indication for hepatic impairment in 7 of 11 horses. However, serum gamma-glutamyl transferase (GGT) concentrations were mildly elevated in 3 horses, and 1 horse displayed even highly elevated GGT levels. Furthermore, we observed that NPHV infection could be cleared in individual horses with a simultaneous emergence of nonstructural (NS)3-specific Abs and transient elevation of serum levels of liver-specific enzymes indicative for a hepatic inflammation. In other individual horses, chronic infections could be observed with the copresence of viral RNA and NS3-specific Abs for over 6 months. For the determination of viral tissue tropism, we analyzed different organs and tissues of 1 NPHV-positive horse using quantitative real-time polymerase chain reaction and fluorescent in situ hydridization and detected NPHV RNA mainly in the liver and at lower amounts in other organs. CONCLUSION Similar to HCV infections in humans, this work demonstrates acute and chronic stages of NPHV infection in horses with viral RNA detectable predominantly within the liver.
Collapse
Affiliation(s)
- Stephanie Pfaender
- Institute for Experimental Virology, TWINCORE Center for Experimental and Clinical Infection Research Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Vrontaki E, Melagraki G, Mavromoustakos T, Afantitis A. Exploiting ChEMBL database to identify indole analogs as HCV replication inhibitors. Methods 2015; 71:4-13. [DOI: 10.1016/j.ymeth.2014.03.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 03/11/2014] [Accepted: 03/13/2014] [Indexed: 12/16/2022] Open
|
107
|
Manickam C, Reeves RK. Modeling HCV disease in animals: virology, immunology and pathogenesis of HCV and GBV-B infections. Front Microbiol 2014; 5:690. [PMID: 25538700 PMCID: PMC4259104 DOI: 10.3389/fmicb.2014.00690] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 11/21/2014] [Indexed: 12/24/2022] Open
Abstract
Hepatitis C virus (HCV) infection has become a global public health burden costing billions of dollars in health care annually. Even with rapidly advancing scientific technologies this disease still poses a significant threat due to a lack of vaccines and affordable treatment options. The immune correlates of protection and predisposing factors toward chronicity remain major obstacles to development of HCV vaccines and immunotherapeutics due, at least in part, to lack of a tangible infection animal model. This review discusses the currently available animal models for HCV disease with a primary focus on GB virus B (GBV-B) infection of New World primates that recapitulates the dual Hepacivirus phenotypes of acute viral clearance and chronic pathologic disease. HCV and GBV-B are also closely phylogenetically related and advances in characterization of the immune systems of New World primates have already led to the use of this model for drug testing and vaccine trials. Herein, we discuss the benefits and caveats of the GBV-B infection model and discuss potential avenues for future development of novel vaccines and immunotherapies.
Collapse
Affiliation(s)
- Cordelia Manickam
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center - Harvard Medical School Boston, MA, USA
| | - R Keith Reeves
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center - Harvard Medical School Boston, MA, USA
| |
Collapse
|
108
|
Holz L, Rehermann B. T cell responses in hepatitis C virus infection: historical overview and goals for future research. Antiviral Res 2014; 114:96-105. [PMID: 25433310 DOI: 10.1016/j.antiviral.2014.11.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/16/2014] [Accepted: 11/18/2014] [Indexed: 02/08/2023]
Abstract
Hepatitis C virus (HCV)-specific T cells are key factors in the outcome of acute HCV infection and in protective immunity. This review recapitulates the steps that immunologists have taken in the past 25years to dissect the role of T cell responses in HCV infection. It describes technical as well as disease-specific challenges that were caused by the inapparent onset of acute HCV infection, the difficulty to identify subjects who spontaneously clear HCV infection, the low frequency of HCV-specific T cells in the blood of chronically infected patients, and the lack of small animal models with intact immune systems to study virus-host interaction. The review provides a historical perspective on techniques and key findings, and identifies areas for future research.
Collapse
Affiliation(s)
- Lauren Holz
- Immunology Section, Liver Diseases Branch, NIDDK, National Institutes of Health, DHHS, Bethesda, MD 20892, USA
| | - Barbara Rehermann
- Immunology Section, Liver Diseases Branch, NIDDK, National Institutes of Health, DHHS, Bethesda, MD 20892, USA.
| |
Collapse
|
109
|
Gouttenoire J, Montserret R, Paul D, Castillo R, Meister S, Bartenschlager R, Penin F, Moradpour D. Aminoterminal amphipathic α-helix AH1 of hepatitis C virus nonstructural protein 4B possesses a dual role in RNA replication and virus production. PLoS Pathog 2014; 10:e1004501. [PMID: 25392992 PMCID: PMC4231108 DOI: 10.1371/journal.ppat.1004501] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 10/02/2014] [Indexed: 01/19/2023] Open
Abstract
Nonstructural protein 4B (NS4B) is a key organizer of hepatitis C virus (HCV) replication complex formation. In concert with other nonstructural proteins, it induces a specific membrane rearrangement, designated as membranous web, which serves as a scaffold for the HCV replicase. The N-terminal part of NS4B comprises a predicted and a structurally resolved amphipathic α-helix, designated as AH1 and AH2, respectively. Here, we report a detailed structure-function analysis of NS4B AH1. Circular dichroism and nuclear magnetic resonance structural analyses revealed that AH1 folds into an amphipathic α-helix extending from NS4B amino acid 4 to 32, with positively charged residues flanking the helix. These residues are conserved among hepaciviruses. Mutagenesis and selection of pseudorevertants revealed an important role of these residues in RNA replication by affecting the biogenesis of double-membrane vesicles making up the membranous web. Moreover, alanine substitution of conserved acidic residues on the hydrophilic side of the helix reduced infectivity without significantly affecting RNA replication, indicating that AH1 is also involved in virus production. Selective membrane permeabilization and immunofluorescence microscopy analyses of a functional replicon harboring an epitope tag between NS4B AH1 and AH2 revealed a dual membrane topology of the N-terminal part of NS4B during HCV RNA replication. Luminal translocation was unaffected by the mutations introduced into AH1, but was abrogated by mutations introduced into AH2. In conclusion, our study reports the three-dimensional structure of AH1 from HCV NS4B, and highlights the importance of positively charged amino acid residues flanking this amphipathic α-helix in membranous web formation and RNA replication. In addition, we demonstrate that AH1 possesses a dual role in RNA replication and virus production, potentially governed by different topologies of the N-terminal part of NS4B. With an estimated 180 million chronically infected individuals, hepatitis C virus (HCV) is a leading cause of chronic hepatitis, liver cirrhosis and hepatocellular carcinoma worldwide. HCV is a positive-strand RNA virus that builds its replication complex on rearranged intracellular membranes, designated as membranous web. HCV nonstructural protein 4B (NS4B) is a key organizer of HCV membranous web and replication complex formation. Here, we provide a detailed structure-function analysis of an N-terminal amphipathic α-helix of NS4B, named AH1, and demonstrate that it plays key roles in shaping the membranous web as well as in virus production. We also show that the N-terminal part of NS4B adopts a dual membrane topology in a replicative context, possibly reflecting the different roles of this protein in the viral life cycle.
Collapse
Affiliation(s)
- Jérôme Gouttenoire
- Division of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Roland Montserret
- Institut de Biologie et Chimie des Protéines, Bases Moléculaires et Structurales des Systèmes Infectieux, UMR 5086, CNRS, Labex Ecofect, University of Lyon, Lyon, France
| | - David Paul
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Rosa Castillo
- Division of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Simon Meister
- Division of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - François Penin
- Institut de Biologie et Chimie des Protéines, Bases Moléculaires et Structurales des Systèmes Infectieux, UMR 5086, CNRS, Labex Ecofect, University of Lyon, Lyon, France
| | - Darius Moradpour
- Division of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
110
|
Vercauteren K, de Jong YP, Meuleman P. HCV animal models and liver disease. J Hepatol 2014; 61:S26-33. [PMID: 25443343 DOI: 10.1016/j.jhep.2014.07.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/07/2014] [Accepted: 07/10/2014] [Indexed: 01/08/2023]
Abstract
The development and evaluation of effective therapies and vaccines for the hepatitis C virus (HCV) and the study of its interactions with the mammalian host have been hindered for a long time by the absence of suitable small animal models. Due to the narrow host tropism of HCV, the development of mice that can be robustly engrafted with human hepatocytes was a major breakthrough since they recapitulate the complete HCV life cycle. This model has been useful to investigate many aspects of the HCV life cycle, including antiviral interventions. However, studies of cellular immunity, immunopathogenesis and resulting liver diseases have been hampered by the lack of a small animal model with a functional immune system. In this review, we summarize the evolution of in vivo models for the study of HCV.
Collapse
Affiliation(s)
- Koen Vercauteren
- Center for Vaccinology, Ghent University Hospital, Ghent University, Gent, Belgium
| | - Ype P de Jong
- Division of Gastroenterology and Hepatology, Weill Cornell Medical College, New York, USA; Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, USA
| | - Philip Meuleman
- Center for Vaccinology, Ghent University Hospital, Ghent University, Gent, Belgium.
| |
Collapse
|
111
|
Efficient infectious cell culture systems of the hepatitis C virus (HCV) prototype strains HCV-1 and H77. J Virol 2014; 89:811-23. [PMID: 25355880 DOI: 10.1128/jvi.02877-14] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
UNLABELLED The first discovered and sequenced hepatitis C virus (HCV) genome and the first in vivo infectious HCV clones originated from the HCV prototype strains HCV-1 and H77, respectively, both widely used in research of this important human pathogen. In the present study, we developed efficient infectious cell culture systems for these genotype 1a strains by using the HCV-1/SF9_A and H77C in vivo infectious clones. We initially adapted a genome with the HCV-1 5'UTR-NS5A (where UTR stands for untranslated region) and the JFH1 NS5B-3'UTR (5-5A recombinant), including the genotype 2a-derived mutations F1464L/A1672S/D2979G (LSG), to grow efficiently in Huh7.5 cells, thus identifying the E2 mutation S399F. The combination of LSG/S399F and reported TNcc(1a)-adaptive mutations A1226G/Q1773H/N1927T/Y2981F/F2994S promoted adaptation of the full-length HCV-1 clone. An HCV-1 recombinant with 17 mutations (HCV1cc) replicated efficiently in Huh7.5 cells and produced supernatant infectivity titers of 10(4.0) focus-forming units (FFU)/ml. Eight of these mutations were identified from passaged HCV-1 viruses, and the A970T/I1312V/C2419R/A2919T mutations were essential for infectious particle production. Using CD81-deficient Huh7 cells, we further demonstrated the importance of A970T/I1312V/A2919T or A970T/C2419R/A2919T for virus assembly and that the I1312V/C2419R combination played a major role in virus release. Using a similar approach, we found that NS5B mutation F2994R, identified here from culture-adapted full-length TN viruses and a common NS3 helicase mutation (S1368P) derived from viable H77C and HCV-1 5-5A recombinants, initiated replication and culture adaptation of H77C containing LSG and TNcc(1a)-adaptive mutations. An H77C recombinant harboring 19 mutations (H77Ccc) replicated and spread efficiently after transfection and subsequent infection of naive Huh7.5 cells, reaching titers of 10(3.5) and 10(4.4) FFU/ml, respectively. IMPORTANCE Hepatitis C virus (HCV) was discovered in 1989 with the cloning of the prototype strain HCV-1 genome. In 1997, two molecular clones of H77, the other HCV prototype strain, were shown to be infectious in chimpanzees, but not in vitro. HCV research was hampered by a lack of infectious cell culture systems, which became available only in 2005 with the discovery of JFH1 (genotype 2a), a genome that could establish infection in Huh7.5 cells. Recently, we developed in vitro infectious clones for genotype 1a (TN), 2a (J6), and 2b (J8, DH8, and DH10) strains by identifying key adaptive mutations. Globally, genotype 1 is the most prevalent. Studies using HCV-1 and H77 prototype sequences have generated important knowledge on HCV. Thus, the in vitro infectious clones developed here for these 1a strains will be of particular value in advancing HCV research. Moreover, our findings open new avenues for the culture adaptation of HCV isolates of different genotypes.
Collapse
|
112
|
Horiuchi Y, Takagi A, Kobayashi N, Moriya O, Nagai T, Moriya K, Tsutsumi T, Koike K, Akatsuka T. Effect of the infectious dose and the presence of hepatitis C virus core gene on mouse intrahepatic CD8 T cells. Hepatol Res 2014; 44:E240-E252. [PMID: 24224477 DOI: 10.1111/hepr.12275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 11/08/2013] [Accepted: 11/11/2013] [Indexed: 01/23/2023]
Abstract
AIM Chronic hepatitis C viral (HCV) infections often result in ineffective CD8 T-cell responses due to functional exhaustion of HCV-specific T cells. However, how persisting HCV impacts CD8 T-cell effector functions remains largely unknown. The aim of this study is to examine the effect of the infectious dose and the presence of HCV core gene. METHODS We compared responses of intrahepatic CD8 T cells during infection of wild-type or HCV core transgenic (Tg) mice with various infectious doses of HCV-NS3-expressing recombinant adenovirus (Ad-HCV-NS3). RESULTS Using major histocompatibility complex class I tetramer and intracellular interferon (IFN)-γ staining method to track HCV-NS3-specific CD8 T cells, we found that a significant expansion of HCV-NS3-specific CD8 T cells was restricted to a very narrow dosage range. IFN-γ production by intrahepatic CD8 T cells in HCV core Tg mice was suppressed as compared with wild-type mice. Higher levels of expression of regulatory molecules, Tim-3 and PD-1, by intrahepatic CD8 T cells and PD-L1 by intrahepatic antigen-presenting cells were observed in HCV core Tg mice following Ad-HCV-NS3 infection, and the expression increased dependent on infectious dose. Furthermore, we found a significant inverse correlation between the percentages of IFN-γ-producing cells and expression of regulatory molecules in antigen-specific intrahepatic CD8 T cells. CONCLUSION High infectious dose and the presence of HCV core gene were strongly involved in ineffective CD8 T-cell responses. We consider that HCV core Tg mouse infected with high infectious dose of Ad-HCV-NS3 is useful as a chronic infection model in the development of immunotherapy for chronic hepatitis C.
Collapse
Affiliation(s)
- Yutaka Horiuchi
- Department of Microbiology, Saitama Medical University, Saitama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Core amino acid variation at position 110 is associated with sustained virological response in Caucasian patients with chronic hepatitis C virus 1b infection. Arch Virol 2014; 159:3345-51. [PMID: 25161034 DOI: 10.1007/s00705-014-2209-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 08/19/2014] [Indexed: 01/17/2023]
Abstract
The aim of this study was to analyze the impact of core variations on sustained virological response (SVR) to pegylated interferon plus ribavirin (PEG-IFN/RBV) and its association with predictive factors of response in Caucasian patients infected with genotype 1 hepatitis C virus (HCV-1). Full-length core sequences were analyzed in 100 Caucasian HCV-1-infected patients who received therapy with PEG-IFN/RBV. The associations between variations in the core protein and SVR, as well as with predictors of SVR, were analyzed. Variations at core 62, 70 and 110 were selected as candidates. There were almost no variations at these positions among patients harboring HCV-1a. However, they were identified in 10 (30.3 %), 21 (63.6 %) and 13 (39.4 %) subjects with HCV-1b, respectively. Among the HCV-1b patients, 39.1 % individuals carrying core R62 and 70 % subjects with core R62G showed SVR (p = 0.141), and 66.7 % of HCV-1b patients harboring core R70 and 38.1 % with core R70Q achieved SVR (p = 0.157), whereas the rate of SVR was 70 % for individuals with core T110 and 15.4 % for those with core T110N (p = 0.004). No statistical interaction between core variations and IL28B genotype was observed. Patients with R70 showed higher median (interquartile range) baseline plasma levels of low-density-lipoprotein cholesterol (LDL-C) than those with R70Q (96 [86-118] mg/dL vs. 76 [54-88] mg/dL, p = 0.014). We concluded that a substitution at core 110 is associated with a lower rate of SVR in Caucasian HCV-1b-infected patients receiving PEG-IFN/RBV. Furthermore, the variation at the core 70 position is related to plasma levels of LDL-C in these patients.
Collapse
|
114
|
Ren S, Contreras D, Arumugaswami V. A protocol for analyzing hepatitis C virus replication. J Vis Exp 2014:e51362. [PMID: 24998302 DOI: 10.3791/51362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Hepatitis C Virus (HCV) affects 3% of the world's population and causes serious liver ailments including chronic hepatitis, cirrhosis, and hepatocellular carcinoma. HCV is an enveloped RNA virus belonging to the family Flaviviridae. Current treatment is not fully effective and causes adverse side effects. There is no HCV vaccine available. Thus, continued effort is required for developing a vaccine and better therapy. An HCV cell culture system is critical for studying various stages of HCV growth including viral entry, genome replication, packaging, and egress. In the current procedure presented, we used a wild-type intragenotype 2a chimeric virus, FNX-HCV, and a recombinant FNX-Rluc virus carrying a Renilla luciferase reporter gene to study the virus replication. A human hepatoma cell line (Huh-7 based) was used for transfection of in vitro transcribed HCV genomic RNAs. Cell-free culture supernatants, protein lysates and total RNA were harvested at various time points post-transfection to assess HCV growth. HCV genome replication status was evaluated by quantitative RT-PCR and visualizing the presence of HCV double-stranded RNA. The HCV protein expression was verified by Western blot and immunofluorescence assays using antibodies specific for HCV NS3 and NS5A proteins. HCV RNA transfected cells released infectious particles into culture supernatant and the viral titer was measured. Luciferase assays were utilized to assess the replication level and infectivity of reporter HCV. In conclusion, we present various virological assays for characterizing different stages of the HCV replication cycle.
Collapse
Affiliation(s)
- Songyang Ren
- Liver Program at Regenerative Medicine Institute, Department of Biomedical Sciences, Department of Surgery, Cedars-Sinai Medical Center
| | - Deisy Contreras
- Liver Program at Regenerative Medicine Institute, Department of Biomedical Sciences, Department of Surgery, Cedars-Sinai Medical Center
| | - Vaithilingaraja Arumugaswami
- Liver Program at Regenerative Medicine Institute, Department of Biomedical Sciences, Department of Surgery, Cedars-Sinai Medical Center; Department of Surgery, David Geffen School of Medicine at UCLA;
| |
Collapse
|
115
|
Sung PS, Racanelli V, Shin EC. CD8(+) T-Cell Responses in Acute Hepatitis C Virus Infection. Front Immunol 2014; 5:266. [PMID: 24936203 PMCID: PMC4047488 DOI: 10.3389/fimmu.2014.00266] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/23/2014] [Indexed: 12/21/2022] Open
Abstract
Hepatitis C virus (HCV) infects approximately 170 million people worldwide and is a major cause of life-threatening liver diseases such as liver cirrhosis and hepatocellular carcinoma. Acute HCV infection often progresses to chronic persistent infection, although some patients recover spontaneously. The divergent outcomes of acute HCV infection are known to be determined by differences in virus-specific T-cell responses among patients. Of the two major T-cell subsets, CD8+ T-cells are known to be the key effector cells that control viral infections via cytolytic activity and cytokine secretion. Herein, we review various aspects of HCV-specific CD8+ T-cell responses in acute HCV infection. In particular, we focus on timing of CD8+ T-cell responses, relationship between CD8+ T-cell responses and outcomes of acute HCV infection, receptor expression on CD8+ T-cells, breadth of CD8+ T-cell responses, and viral mutations.
Collapse
Affiliation(s)
- Pil Soo Sung
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology , Daejeon , South Korea
| | - Vito Racanelli
- Department of Internal Medicine and Clinical Oncology, University of Bari Medical School , Bari , Italy
| | - Eui-Cheol Shin
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology , Daejeon , South Korea
| |
Collapse
|
116
|
Chan SW. Unfolded protein response in hepatitis C virus infection. Front Microbiol 2014; 5:233. [PMID: 24904547 PMCID: PMC4033015 DOI: 10.3389/fmicb.2014.00233] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 04/30/2014] [Indexed: 12/14/2022] Open
Abstract
Hepatitis C virus (HCV) is a single-stranded, positive-sense RNA virus of clinical importance. The virus establishes a chronic infection and can progress from chronic hepatitis, steatosis to fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). The mechanisms of viral persistence and pathogenesis are poorly understood. Recently the unfolded protein response (UPR), a cellular homeostatic response to endoplasmic reticulum (ER) stress, has emerged to be a major contributing factor in many human diseases. It is also evident that viruses interact with the host UPR in many different ways and the outcome could be pro-viral, anti-viral or pathogenic, depending on the particular type of infection. Here we present evidence for the elicitation of chronic ER stress in HCV infection. We analyze the UPR signaling pathways involved in HCV infection, the various levels of UPR regulation by different viral proteins and finally, we propose several mechanisms by which the virus provokes the UPR.
Collapse
Affiliation(s)
- Shiu-Wan Chan
- Faculty of Life Sciences, The University of Manchester Manchester, UK
| |
Collapse
|
117
|
|
118
|
Carrozzo M. Hepatitis C virus: a silent killer relevant to dentistry. Oral Dis 2014; 20:425-9. [PMID: 24666473 DOI: 10.1111/odi.12240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 03/11/2014] [Accepted: 03/12/2014] [Indexed: 12/12/2022]
Abstract
Around 25 years ago, hepatitis C virus (HCV) was identified, and following intense research and tremendous advancements, the infection is now potentially curable and even complete viral eradication is possible. It is also evident that HCV can be involved in some oral disorders, but more research is clearly warranted on oral health of HCV-infected patients. Given the global estimates on HCV epidemic and its likely huge economic impact, primary prevention and secondary prevention are worldwide priorities. However, investments are still insufficient to achieve these goals.
Collapse
Affiliation(s)
- M Carrozzo
- Oral Medicine Department, Centre for Oral Health Research, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
119
|
Pfaender S, Brown RJ, Pietschmann T, Steinmann E. Natural reservoirs for homologs of hepatitis C virus. Emerg Microbes Infect 2014; 3:e21. [PMID: 26038514 PMCID: PMC3974340 DOI: 10.1038/emi.2014.19] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/07/2014] [Accepted: 01/22/2014] [Indexed: 12/31/2022]
Abstract
Hepatitis C virus is considered a major public health problem, infecting 2%–3% of the human population. Hepatitis C virus infection causes acute and chronic liver disease, including chronic hepatitis, cirrhosis and hepatocellular carcinoma. In fact, hepatitis C virus infection is the most frequent indication for liver transplantation and a vaccine is not available. Hepatitis C virus displays a narrow host species tropism, naturally infecting only humans, although chimpanzees are also susceptible to experimental infection. To date, there is no evidence for an animal reservoir of viruses closely related to hepatitis C virus which may have crossed the species barrier to cause disease in humans and resulted in the current pandemic. In fact, due to this restricted host range, a robust immunocompetent small animal model is still lacking, hampering mechanistic analysis of virus pathogenesis, immune control and prophylactic vaccine development. Recently, several studies discovered new viruses related to hepatitis C virus, belonging to the hepaci- and pegivirus genera, in small wild mammals (rodents and bats) and domesticated animals which live in close contact with humans (dogs and horses). Genetic and biological characterization of these newly discovered hepatitis C virus-like viruses infecting different mammals will contribute to our understanding of the origins of hepatitis C virus in humans and enhance our ability to study pathogenesis and immune responses using tractable animal models. In this review article, we start with an introduction on the genetic diversity of hepatitis C virus and then focus on the newly discovered viruses closely related to hepatitis C virus. Finally, we discuss possible theories about the origin of this important viral human pathogen.
Collapse
Affiliation(s)
- Stephanie Pfaender
- Institute for Experimental Virology, Twincore Centre of Experimental and Clinical Infection Research; a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research , Hannover 30625, Germany
| | - Richard Jp Brown
- Institute for Experimental Virology, Twincore Centre of Experimental and Clinical Infection Research; a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research , Hannover 30625, Germany
| | - Thomas Pietschmann
- Institute for Experimental Virology, Twincore Centre of Experimental and Clinical Infection Research; a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research , Hannover 30625, Germany
| | - Eike Steinmann
- Institute for Experimental Virology, Twincore Centre of Experimental and Clinical Infection Research; a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research , Hannover 30625, Germany
| |
Collapse
|
120
|
Determinants for membrane association of the hepatitis C virus NS2 protease domain. J Virol 2014; 88:6519-23. [PMID: 24648458 DOI: 10.1128/jvi.00224-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hepatitis C virus (HCV) nonstructural protein 2 (NS2) is required for HCV polyprotein processing and particle assembly. It comprises an N-terminal membrane domain and a C-terminal, cytosolically oriented protease domain. Here, we demonstrate that the NS2 protease domain itself associates with cellular membranes. A single charged residue in the second α-helix of the NS2 protease domain is required for proper membrane association, NS2 protein stability, and efficient HCV polyprotein processing.
Collapse
|
121
|
Cooper DA, Jha BK, Silverman RH, Hesselberth JR, Barton DJ. Ribonuclease L and metal-ion-independent endoribonuclease cleavage sites in host and viral RNAs. Nucleic Acids Res 2014; 42:5202-16. [PMID: 24500209 PMCID: PMC4005677 DOI: 10.1093/nar/gku118] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Ribonuclease L (RNase L) is a metal-ion–independent endoribonuclease associated with antiviral and antibacterial defense, cancer and lifespan. Despite the biological significance of RNase L, the RNAs cleaved by this enzyme are poorly defined. In this study, we used deep sequencing methods to reveal the frequency and location of RNase L cleavage sites within host and viral RNAs. To make cDNA libraries, we exploited the 2′, 3′-cyclic phosphate at the end of RNA fragments produced by RNase L and other metal-ion–independent endoribonucleases. We optimized and validated 2′, 3′-cyclic phosphate cDNA synthesis and Illumina sequencing methods using viral RNAs cleaved with purified RNase L, viral RNAs cleaved with purified RNase A and RNA from uninfected and poliovirus-infected HeLa cells. Using these methods, we identified (i) discrete regions of hepatitis C virus and poliovirus RNA genomes that were profoundly susceptible to RNase L and other single-strand specific endoribonucleases, (ii) RNase L-dependent and RNase L-independent cleavage sites within ribosomal RNAs (rRNAs) and (iii) 2′, 3′-cyclic phosphates at the ends of 5S rRNA and U6 snRNA. Monitoring the frequency and location of metal-ion–independent endoribonuclease cleavage sites within host and viral RNAs reveals, in part, how these enzymes contribute to health and disease.
Collapse
Affiliation(s)
- Daphne A Cooper
- Department of Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA, Department of Cancer Biology, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH 44195, USA, Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA and Program in Molecular Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | | | | | | |
Collapse
|
122
|
Morikawa K, Gouttenoire J, Hernandez C, Dao Thi VL, Tran HTL, Lange CM, Dill MT, Heim MH, Donzé O, Penin F, Quadroni M, Moradpour D. Quantitative proteomics identifies the membrane-associated peroxidase GPx8 as a cellular substrate of the hepatitis C virus NS3-4A protease. Hepatology 2014; 59:423-33. [PMID: 23929719 DOI: 10.1002/hep.26671] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 07/30/2013] [Indexed: 12/31/2022]
Abstract
UNLABELLED The hepatitis C virus (HCV) NS3-4A protease is not only an essential component of the viral replication complex and a prime target for antiviral intervention but also a key player in the persistence and pathogenesis of HCV. It cleaves and thereby inactivates two crucial adaptor proteins in viral RNA sensing and innate immunity, mitochondrial antiviral signaling protein (MAVS) and TRIF, a phosphatase involved in growth factor signaling, T-cell protein tyrosine phosphatase (TC-PTP), and the E3 ubiquitin ligase component UV-damaged DNA-binding protein 1 (DDB1). Here we explored quantitative proteomics to identify novel cellular substrates of the NS3-4A protease. Cell lines inducibly expressing the NS3-4A protease were analyzed by stable isotopic labeling using amino acids in cell culture (SILAC) coupled with protein separation and mass spectrometry. This approach identified the membrane-associated peroxidase GPx8 as a bona fide cellular substrate of the HCV NS3-4A protease. Cleavage by NS3-4A occurs at Cys 11, removing the cytosolic tip of GPx8, and was observed in different experimental systems as well as in liver biopsies from patients with chronic HCV. Overexpression and RNA silencing studies revealed that GPx8 is involved in viral particle production but not in HCV entry or RNA replication. CONCLUSION We provide proof-of-concept for the use of quantitative proteomics to identify cellular substrates of a viral protease and describe GPx8 as a novel proviral host factor targeted by the HCV NS3-4A protease.
Collapse
Affiliation(s)
- Kenichi Morikawa
- From the Division of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Mariño Z, van Bömmel F, Forns X, Berg T. New concepts of sofosbuvir-based treatment regimens in patients with hepatitis C. Gut 2014; 63:207-15. [PMID: 24253934 DOI: 10.1136/gutjnl-2013-305771] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Zoe Mariño
- Liver Unit, Hospital Clínic, CIBEREHD, IDIBAPS, , Barcelona, Spain
| | | | | | | |
Collapse
|
124
|
Bexfield NH, Watson PJ, Heaney J, Heeney JL, Tiley L. Canine hepacivirus is not associated with chronic liver disease in dogs. J Viral Hepat 2014; 21:223-8. [PMID: 24438684 PMCID: PMC4079338 DOI: 10.1111/jvh.12150] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Accepted: 06/20/2013] [Indexed: 12/19/2022]
Abstract
Canine hepacivirus (CHV) has recently been identified in liver and respiratory tract samples from dogs, and comparative phylogenetic analysis has confirmed it to be the closest genetic relative of hepatitis C virus (HCV) described to date. CHV offers great potential as a model system for HCV, but only if the underlying processes of infection and pathogenesis are similar for both viruses. However, it is not yet clear if CHV is hepatotrophic. Canine chronic hepatitis (CH) is a common and usually idiopathic disease that shares similar histological features to that of HCV infection of humans. To date, no study has attempted to determine whether CHV is involved in the aetiology of liver disease in dogs. We employed two nested PCR assays, using primers targeting regions of the helicase domain of CHV NS3, to identify viral nucleic acids in liver samples from 100 dogs with CH of unknown cause in the UK. We also used a sensitive luciferase immunoprecipitation system (LIPS) assay to screen serum samples from these dogs for the presence of anti-CHV antibodies. Surprisingly, there was no evidence of exposure to, or a carrier state of, CHV in this large cohort, suggesting that the virus is not associated with CH in UK dogs. Future work, including transmission studies, is required to understand the pathogenesis of CHV in canids before it can be proposed as a surrogate model for HCV-induced liver disease in man.
Collapse
Affiliation(s)
- N. H. Bexfield
- Department of Veterinary MedicineUniversity of CambridgeCambridgeUK,Correspondence: Nicholas H. Bexfield, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK. E‐mail:
| | - P. J. Watson
- Department of Veterinary MedicineUniversity of CambridgeCambridgeUK
| | - J. Heaney
- Department of Veterinary MedicineUniversity of CambridgeCambridgeUK
| | - J. L. Heeney
- Department of Veterinary MedicineUniversity of CambridgeCambridgeUK
| | - L. Tiley
- Department of Veterinary MedicineUniversity of CambridgeCambridgeUK
| |
Collapse
|
125
|
Evolution of a cell culture-derived genotype 1a hepatitis C virus (H77S.2) during persistent infection with chronic hepatitis in a chimpanzee. J Virol 2014; 88:3678-94. [PMID: 24429362 DOI: 10.1128/jvi.03540-13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Persistent infection is a key feature of hepatitis C virus (HCV). However, chimpanzee infections with cell culture-derived viruses (JFH1 or related chimeric viruses that replicate efficiently in cell culture) have been limited to acute-transient infections with no pathogenicity. Here, we report persistent infection with chronic hepatitis in a chimpanzee challenged with cell culture-derived genotype 1a virus (H77S.2) containing 6 cell culture-adaptive mutations. Following acute-transient infection with a chimeric H77/JFH1 virus (HJ3-5), intravenous (i.v.) challenge with 10(6) FFU H77S.2 virus resulted in immediate seroconversion and, following an unusual 4- to 6-week delay, persistent viremia accompanied by alanine aminotransferase (ALT) elevation, intrahepatic innate immune responses, and diffuse hepatopathy. This first persistent infection with cell culture-produced HCV provided a unique opportunity to assess evolution of cell culture-adapted virus in vivo. Synonymous and nonsynonymous nucleotide substitution rates were greatest during the first 8 weeks of infection. Of 6 cell culture-adaptive mutations in H77S.2, Q1067R (NS3) had reverted to Q1067 and S2204I (NS5A) was replaced by T2204 within 8 weeks of infection. By 62 weeks, 4 of 6 mutations had reverted to the wild-type sequence, and all reverted to the wild-type sequence by 194 weeks. The data suggest H77S.2 virus has greater potential for persistence and pathogenicity than JFH1 and demonstrate both the capacity of a nonfit virus to persist for weeks in the liver in the absence of detectable viremia as well as strong selective pressure against cell culture-adaptive mutations in vivo. IMPORTANCE This study shows that mutations promoting the production of infectious genotype 1a HCV in cell culture have the opposite effect and attenuate replication in the liver of the only fully permissive animal species other than humans. It provides the only example to date of persistent infection in a chimpanzee challenged with cell culture-produced virus and provides novel insight into the forces shaping molecular evolution of that virus during 5 years of persistent infection. It demonstrates that a poorly fit virus can replicate for weeks within the liver in the absence of detectable viremia, an observation that expands current concepts of HCV pathogenesis and that is relevant to relapses observed with direct-acting antiviral therapies.
Collapse
|
126
|
Durantel D, Escuret V, Zoulim F. Current and emerging therapeutic approaches to hepatitis C infection. Expert Rev Anti Infect Ther 2014; 1:441-54. [PMID: 15482141 DOI: 10.1586/14787210.1.3.441] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hepatitis C virus is a frequent disease infecting an estimated 3% of the worlds population. It represents a major health problem and must be combated by all means. The aim of this review is to discuss the current treatment methods, including interferon-alpha, either standard or pegylated, and ribavirin. Emerging treatments will also be discussed for this potentially curable disease.
Collapse
|
127
|
Alphavirus-based vaccines encoding nonstructural proteins of hepatitis C virus induce robust and protective T-cell responses. Mol Ther 2013; 22:881-90. [PMID: 24370701 DOI: 10.1038/mt.2013.287] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 12/17/2013] [Indexed: 01/07/2023] Open
Abstract
An absolute prerequisite for a therapeutic vaccine against hepatitis C virus (HCV) infection is the potency to induce HCV-specific vigorous and broad-spectrum T-cell responses. Here, we generated three HCV vaccines based on a recombinant Semliki Forest virus (rSFV) vector expressing all- or a part of the conserved nonstructural proteins (nsPs) of HCV. We demonstrated that an rSFV vector was able to encode a transgene as large as 6.1 kb without affecting its vaccine immunogenicity. Prime-boost immunizations of mice with rSFV expressing all nsPs induced strong and long-lasting NS3-specific CD8(+) T-cell responses. The strength and functional heterogeneity of the T-cell response was similar to that induced with rSFV expressing only NS3/4A. Furthermore this leads to a significant growth delay and negative selection of HCV-expressing EL4 tumors in an in vivo mouse model. In general, as broad-spectrum T-cell responses are only seen in patients with resolved HCV infection, this rSFV-based vector, which expresses all nsPs, inducing robust T-cell activity has a potential for the treatment of HCV infections.
Collapse
|
128
|
Liehl P, Zuzarte-Luís V, Chan J, Zillinger T, Baptista F, Carapau D, Konert M, Hanson KK, Carret C, Lassnig C, Müller M, Kalinke U, Saeed M, Chora AF, Golenbock DT, Strobl B, Prudêncio M, Coelho LP, Kappe SH, Superti-Furga G, Pichlmair A, Vigário AM, Rice CM, Fitzgerald KA, Barchet W, Mota MM. Host-cell sensors for Plasmodium activate innate immunity against liver-stage infection. Nat Med 2013; 20:47-53. [PMID: 24362933 DOI: 10.1038/nm.3424] [Citation(s) in RCA: 217] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 11/08/2013] [Indexed: 12/15/2022]
Abstract
Before they infect red blood cells and cause malaria, Plasmodium parasites undergo an obligate and clinically silent expansion phase in the liver that is supposedly undetected by the host. Here, we demonstrate the engagement of a type I interferon (IFN) response during Plasmodium replication in the liver. We identified Plasmodium RNA as a previously unrecognized pathogen-associated molecular pattern (PAMP) capable of activating a type I IFN response via the cytosolic pattern recognition receptor Mda5. This response, initiated by liver-resident cells through the adaptor molecule for cytosolic RNA sensors, Mavs, and the transcription factors Irf3 and Irf7, is propagated by hepatocytes in an interferon-α/β receptor-dependent manner. This signaling pathway is critical for immune cell-mediated host resistance to liver-stage Plasmodium infection, which we find can be primed with other PAMPs, including hepatitis C virus RNA. Together, our results show that the liver has sensor mechanisms for Plasmodium that mediate a functional antiparasite response driven by type I IFN.
Collapse
Affiliation(s)
- Peter Liehl
- Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, Lisboa, Portugal
| | - Vanessa Zuzarte-Luís
- Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, Lisboa, Portugal
| | - Jennie Chan
- 1] Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, USA. [2]
| | - Thomas Zillinger
- 1] Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital of Bonn, Bonn, Germany. [2]
| | - Fernanda Baptista
- Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, Lisboa, Portugal
| | - Daniel Carapau
- Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, Lisboa, Portugal
| | - Madlen Konert
- Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, Lisboa, Portugal
| | - Kirsten K Hanson
- Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, Lisboa, Portugal
| | - Céline Carret
- Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, Lisboa, Portugal
| | - Caroline Lassnig
- Institute of Animal Breeding and Genetics and Biomodels, Austria University of Veterinary Medicine Vienna, Vienna, Austria
| | - Mathias Müller
- Institute of Animal Breeding and Genetics and Biomodels, Austria University of Veterinary Medicine Vienna, Vienna, Austria
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover Medical School and Helmholtz Centre for Infection Research, Hannover, Germany
| | - Mohsan Saeed
- Laboratory of Virology and Infectious Diseases, Center for the Study of Hepatitis C, The Rockefeller University, New York, New York, USA
| | - Angelo Ferreira Chora
- Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, Lisboa, Portugal
| | - Douglas T Golenbock
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Birgit Strobl
- Institute of Animal Breeding and Genetics and Biomodels, Austria University of Veterinary Medicine Vienna, Vienna, Austria
| | - Miguel Prudêncio
- Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, Lisboa, Portugal
| | - Luis P Coelho
- Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, Lisboa, Portugal
| | - Stefan H Kappe
- Seattle Biomedical Research Institute, Seattle, Washington, USA
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Andreas Pichlmair
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Ana M Vigário
- 1] Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, Lisboa, Portugal. [2] Unidade de Ciências Médicas, Centro de compentência de ciências da vida, Universidade da Madeira, Funchal, Portugal
| | - Charles M Rice
- Laboratory of Virology and Infectious Diseases, Center for the Study of Hepatitis C, The Rockefeller University, New York, New York, USA
| | - Katherine A Fitzgerald
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Winfried Barchet
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital of Bonn, Bonn, Germany
| | - Maria M Mota
- Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
129
|
Arai M, Tokunaga Y, Takagi A, Tobita Y, Hirata Y, Ishida Y, Tateno C, Kohara M. Isolation and characterization of highly replicable hepatitis C virus genotype 1a strain HCV-RMT. PLoS One 2013; 8:e82527. [PMID: 24358200 PMCID: PMC3865021 DOI: 10.1371/journal.pone.0082527] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 10/24/2013] [Indexed: 01/28/2023] Open
Abstract
Multiple genotype 1a clones have been reported, including the very first hepatitis C virus (HCV) clone called H77. The replication ability of some of these clones has been confirmed in vitro and in vivo, although this ability is somehow compromised. We now report a newly isolated genotype 1a clone, designated HCV-RMT, which has the ability to replicate efficiently in patients, chimeric mice with humanized liver, and cultured cells. An authentic subgenomic replicon cell line was established from the HCV-RMT sequence with spontaneous introduction of three adaptive mutations, which were later confirmed to be responsible for efficient replication in HuH-7 cells as both subgenomic replicon RNA and viral genome RNA. Following transfection, the HCV-RMT RNA genome with three adaptive mutations was maintained for more than 2 months in HuH-7 cells. One clone selected from the transfected cells had a high copy number, and its supernatant could infect naïve HuH-7 cells. Direct injection of wild-type HCV-RMT RNA into the liver of chimeric mice with humanized liver resulted in vigorous replication, similar to inoculation with the parental patient's serum. A study of virus replication using HCV-RMT derivatives with various combinations of adaptive mutations revealed a clear inversely proportional relationship between in vitro and in vivo replication abilities. Thus, we suggest that HCV-RMT and its derivatives are important tools for HCV genotype 1a research and for determining the mechanism of HCV replication in vitro and in vivo.
Collapse
Affiliation(s)
- Masaaki Arai
- Advanced Medical Research Laboratory, Mitsubishi Tanabe Pharma Corporation, Kanagawa, Japan
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yuko Tokunaga
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Asako Takagi
- Advanced Medical Research Laboratory, Mitsubishi Tanabe Pharma Corporation, Kanagawa, Japan
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yoshimi Tobita
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yuichi Hirata
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | | | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- * E-mail:
| |
Collapse
|
130
|
Lohmann V, Bartenschlager R. On the History of Hepatitis C Virus Cell Culture Systems. J Med Chem 2013; 57:1627-42. [DOI: 10.1021/jm401401n] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Volker Lohmann
- Department of Infectious
Diseases, Molecular Virology, Heidelberg University, Heidelberg, 69120, Germany
| | - Ralf Bartenschlager
- Department of Infectious
Diseases, Molecular Virology, Heidelberg University, Heidelberg, 69120, Germany
| |
Collapse
|
131
|
Abstract
The liver is the largest organ in the body and is generally regarded by nonimmunologists as having little or no lymphoid function. However, such is far from accurate. This review highlights the importance of the liver as a lymphoid organ. Firstly, we discuss experimental data surrounding the role of liver as a lymphoid organ. The liver facilitates tolerance rather than immunoreactivity, which protects the host from antigenic overload of dietary components and drugs derived from the gut and it is instrumental to fetal immune tolerance. Loss of liver tolerance leads to autoaggressive phenomena, which if not controlled by regulatory lymphoid populations, may lead to the induction of autoimmune liver diseases. Liver-related lymphoid subpopulations also act as critical antigen-presenting cells. The study of the immunological properties of liver and delineation of the microenvironment of the intrahepatic milieu in normal and diseased livers provides a platform to understand the hierarchy of a series of detrimental events that lead to immune-mediated destruction of the liver and the rejection of liver allografts. The majority of emphasis within this review will be on the normal mononuclear cell composition of the liver. However, within this context, we will discuss selected, but not all, immune-mediated liver disease and attempt to place these data in the context of human autoimmunity.
Collapse
Affiliation(s)
- Dimitrios P Bogdanos
- Institute of Liver Studies, Transplantation Immunology and Mucosal Biology, King's College London School of Medicine at King's College Hospital, London, UK
| | | | | |
Collapse
|
132
|
A novel strategy to develop a robust infectious hepatitis C virus cell culture system directly from a clinical isolate. J Virol 2013; 88:1484-91. [PMID: 24227861 DOI: 10.1128/jvi.02929-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Hepatitis C virus (HCV) infection is a leading cause of chronic liver diseases. Progress in the HCV field was greatly enhanced by constructing infectious cDNA clone of JFH-1. Since then, JFH-1-based intra- and intergenotypic recombinants have been developed, and this permitted the study of vaccines and antiviral inhibitors for all genotypes. Recently, highly efficient HCV culture systems have been established by using consensus sequence-based clones. We developed a novel strategy to construct infectious HCV cDNA clone by combining functional screening of sequences directly from a genotype 2a clinical isolate (PR63) and cell culture adaptation. Using JFH-1 cDNA as the starting backbone, we sequentially replaced the JFH-1 fragments with a sequence from the pools of PR63 sequences. Through engineering adaptive mutations that improve HCV infectivity, we finally established a full-length cell culture-derived infectious clone of PR63, named PR63cc, that could efficiently produce virus particles in Huh7-derived cells, with peak titers of 1.6 × 10(5) focus-forming units/ml. The PR63cc could be neutralized by an anti-E2 antibody and inhibited by antiviral agents but appeared more resistant to an NS5A inhibitor than JFH-1. In summary, we developed a new approach to construct an infectious HCV cDNA clone that can produce viruses efficiently in cell culture. This approach could be applied to other viral isolates, with potential implications for individualized treatments of HCV patients.
Collapse
|
133
|
Gerold G, Pietschmann T. Opportunities and Risks of Host-targeting Antiviral Strategies for Hepatitis C. CURRENT HEPATITIS REPORTS 2013; 12:200-213. [PMID: 32214912 PMCID: PMC7089091 DOI: 10.1007/s11901-013-0187-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV) infects more than 2 % of the world population with highest prevalence in parts of Africa and Asia. Past standard of care using interferon α and ribavirin had adverse effects and showed modest efficacy for some HCV genotypes spurring the development of direct acting antivirals (DAAs). Such DAAs target viral proteins and are thus better tolerated but they suffer from emergence of vial resistance. Furthermore, DAAs are often HCV genotype specific. Novel drug candidates targeting host factors required for HCV propagation, so called host-targeting antivirals (HTAs), promise to overcome both caveats. The genetic barrier to resistance is usually considered to be high for HTAs and all HCV genotypes presumably use the same host factors. Recent data, however, challenge these assumptions, at least for some HTAs. Here, we highlight the most important host-targeting strategies against hepatitis C and critically discuss their opportunities and risks.
Collapse
Affiliation(s)
- Gisa Gerold
- TWINCORE – Centre for Experimental and Clinical Infection Research, Institute of Experimental Virology, Feodor-Lynen-Str. 7, 30625 Hannover, Germany
| | - Thomas Pietschmann
- TWINCORE – Centre for Experimental and Clinical Infection Research, Institute of Experimental Virology, Feodor-Lynen-Str. 7, 30625 Hannover, Germany
| |
Collapse
|
134
|
Characterization of hepatitis C virus intra- and intergenotypic chimeras reveals a role of the glycoproteins in virus envelopment. J Virol 2013; 87:13297-306. [PMID: 24089562 DOI: 10.1128/jvi.01708-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Hepatitis C virus (HCV) is highly variable and associated with chronic liver disease. Viral isolates are grouped into seven genotypes (GTs). Accumulating evidence indicates that viral determinants in the core to NS2 proteins modulate the efficiency of virus production. However, the role of the glycoproteins E1 and E2 in this process is currently poorly defined. Therefore, we constructed chimeric viral genomes to explore the role of E1 and E2 in HCV assembly. Comparison of the kinetics and efficiency of particle production by intragenotypic chimeras highlighted core and p7 as crucial determinants for efficient virion release. Glycoprotein sequences, however, had only a minimal impact on this process. In contrast, in the context of intergenotypic HCV chimeras, HCV assembly was profoundly influenced by glycoprotein genes. On the one hand, insertion of GT1a-derived (H77) E1-E2 sequences into a chimeric GT2a virus (Jc1) strongly suppressed virus production. On the other hand, replacement of H77 glycoproteins within the GT1a-GT2a chimeric genome H77/C3 by GT2a-derived (Jc1) E1-E2 increased infectious particle production. Thus, within intergenotypic chimeras, glycoprotein features strongly modulate virus production. Replacement of Jc1 glycoprotein genes by H77-derived E1-E2 did not grossly affect subcellular localization of core, E2, and NS2. However, it caused an accumulation of nonenveloped core protein and increased abundance of nonenveloped core protein structures with slow sedimentation. These findings reveal an important role for the HCV glycoproteins E1 and E2 in membrane envelopment, which likely depends on a genotype-specific interplay with additional viral factors.
Collapse
|
135
|
Lindenbach BD, Rice CM. The ins and outs of hepatitis C virus entry and assembly. Nat Rev Microbiol 2013; 11:688-700. [PMID: 24018384 DOI: 10.1038/nrmicro3098] [Citation(s) in RCA: 279] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatitis C virus, a major human pathogen, produces infectious virus particles with several unique features, such as an ability to interact with serum lipoproteins, a dizzyingly complicated process of virus entry, and a pathway of virus assembly and release that is closely linked to lipoprotein secretion. Here, we review these unique features, with an emphasis on recent discoveries concerning virus particle structure, virus entry and virus particle assembly and release.
Collapse
Affiliation(s)
- Brett D Lindenbach
- Department of Microbial Pathogenesis, Yale University, New Haven, Connecticut 06536, USA
| | | |
Collapse
|
136
|
Immunotherapy of chronic hepatitis C virus infection with antibodies against programmed cell death-1 (PD-1). Proc Natl Acad Sci U S A 2013; 110:15001-6. [PMID: 23980172 DOI: 10.1073/pnas.1312772110] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hepatitis C virus (HCV) persistence is facilitated by exhaustion of CD8+ T cells that express the inhibitory receptor programmed cell death 1 (PD-1). Blockade of PD-1 signaling improves in vitro proliferation of HCV-specific T lymphocytes, but whether antiviral function can be restored in infected individuals is unknown. To address this question, chimpanzees with persistent HCV infection were treated with anti-PD-1 antibodies. A significant reduction in HCV viremia was observed in one of three treated animals without apparent hepatocellular injury. Viremia rebounded in the responder animal when antibody treatment was discontinued. Control of HCV replication was associated with restoration of intrahepatic CD4+ and CD8+ T-cell immunity against multiple HCV proteins. The responder animal had a history of broader T-cell immunity to multiple HCV proteins than the two chimpanzees that did not respond to PD-1 therapy. The results suggest that successful PD-1 blockade likely requires a critical threshold of preexisting virus-specific T cells in liver and warrants consideration of therapeutic vaccination strategies in combination with PD-1 blockade to broaden narrow responses. Anti-PD-1 immunotherapy may also facilitate control of other persistent viruses, notably the hepatitis B virus where options for long-term control of virus replication are limited.
Collapse
|
137
|
Billerbeck E, de Jong Y, Dorner M, de la Fuente C, Ploss A. Animal models for hepatitis C. Curr Top Microbiol Immunol 2013; 369:49-86. [PMID: 23463197 DOI: 10.1007/978-3-642-27340-7_3] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hepatitis C remains a global epidemic. Approximately 3 % of the world's population suffers from chronic hepatitis C, which is caused by hepatitis C virus (HCV)-a positive sense, single-stranded RNA virus of the Flaviviridae family. HCV has a high propensity for establishing a chronic infection. If untreated chronic HCV carriers can develop severe liver disease including fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Antiviral treatment is only partially effective, costly, and poorly tolerated. A prophylactic or therapeutic vaccine for HCV does not exist. Mechanistic studies of virus-host interactions, HCV immunity, and pathogenesis as well as the development of more effective therapies have been hampered by the lack of a suitable small animal model. Besides humans, chimpanzees are the only species that is naturally susceptible to HCV infection. While experimentation in these large primates has yielded valuable insights, ethical considerations, limited availability, genetic heterogeneity, and cost limit their utility. In search for more tractable small animal models, numerous experimental approaches have been taken to recapitulate parts of the viral life cycle and/or aspects of viral pathogenesis that will be discussed in this review. Exciting new models and improvements in established models hold promise to further elucidate our understanding of chronic HCV infection.
Collapse
Affiliation(s)
- Eva Billerbeck
- Center for the Study of Hepatitis C, The Rockefeller University, NY, USA
| | | | | | | | | |
Collapse
|
138
|
Lu J, Tao W, Li R, Xiang Y, Zhang N, Xiang X, Xie Q, Zhong J. Construction and characterization of infectious hepatitis C virus chimera containing structural proteins directly from genotype 1b clinical isolates. Virology 2013; 443:80-8. [DOI: 10.1016/j.virol.2013.04.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 04/10/2013] [Accepted: 04/27/2013] [Indexed: 12/17/2022]
|
139
|
Akazawa D, Moriyama M, Yokokawa H, Omi N, Watanabe N, Date T, Morikawa K, Aizaki H, Ishii K, Kato T, Mochizuki H, Nakamura N, Wakita T. Neutralizing antibodies induced by cell culture-derived hepatitis C virus protect against infection in mice. Gastroenterology 2013; 145:447-55.e1-4. [PMID: 23673355 DOI: 10.1053/j.gastro.2013.05.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 04/30/2013] [Accepted: 05/05/2013] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Hepatitis C virus (HCV) infection is a major cause of liver cancer, so strategies to prevent infection are needed. A system for cell culture of infectious HCV particles (HCVcc) has recently been established; the inactivated HCVcc particles might be used as antigens in vaccine development. We aimed to confirm the potential of HCVcc as an HCV particle vaccine. METHODS HCVcc derived from the J6/JFH-1 chimeric genome was purified from cultured cells by ultrafiltration and ultracentrifugation purification steps. Purified HCV particles were inactivated and injected into female BALB/c mice with adjuvant. Sera from immunized mice were collected and their ability to neutralize HCV was examined in naive Huh7.5.1 cells and urokinase-type plasminogen activator-severe combined immunodeficiency mice (uPA(+/+)-SCID mice) given transplants of human hepatocytes (humanized livers). RESULTS Antibodies against HCV envelope proteins were detected in the sera of immunized mice; these sera inhibited infection of cultured cells with HCV genotypes 1a, 1b, and 2a. Immunoglobulin G purified from the sera of HCV-particle-immunized mice (iHCV-IgG) inhibited HCV infection of cultured cells. Injection of IgG from the immunized mice into uPA(+/+)-SCID mice with humanized livers prevented infection with the minimum infectious dose of HCV. CONCLUSIONS Inactivated HCV particles derived from cultured cells protect chimeric liver uPA(+/+)-SCID mice against HCV infection, and might be used in the development of a prophylactic vaccine.
Collapse
Affiliation(s)
- Daisuke Akazawa
- Pharmaceutical Research Laboratories, Toray Industries, Inc, Kanagawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Scheel TKH, Rice CM. Understanding the hepatitis C virus life cycle paves the way for highly effective therapies. Nat Med 2013; 19:837-49. [PMID: 23836234 PMCID: PMC3984536 DOI: 10.1038/nm.3248] [Citation(s) in RCA: 421] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 05/28/2013] [Indexed: 02/07/2023]
Abstract
More than two decades of intense research has provided a detailed understanding of hepatitis C virus (HCV), which chronically infects 2% of the world's population. This effort has paved the way for the development of antiviral compounds to spare patients from life-threatening liver disease. An exciting new era in HCV therapy dawned with the recent approval of two viral protease inhibitors, used in combination with pegylated interferon-α and ribavirin; however, this is just the beginning. Multiple classes of antivirals with distinct targets promise highly efficient combinations, and interferon-free regimens with short treatment duration and fewer side effects are the future of HCV therapy. Ongoing and future trials will determine the best antiviral combinations and whether the current seemingly rich pipeline is sufficient for successful treatment of all patients in the face of major challenges, such as HCV diversity, viral resistance, the influence of host genetics, advanced liver disease and other co-morbidities.
Collapse
Affiliation(s)
- Troels K H Scheel
- Laboratory of Virology and Infectious Disease, Center for Study of Hepatitis C, The Rockefeller University, New York, New York, USA
| | | |
Collapse
|
141
|
|
142
|
Pedersen J, Jensen TB, Carlsen THR, Schønning K, Christensen PB, Laursen AL, Krarup H, Bukh J, Weis N. Neutralizing antibodies in patients with chronic hepatitis C, genotype 1, against a panel of genotype 1 culture viruses: lack of correlation to treatment outcome. PLoS One 2013; 8:e62674. [PMID: 23667506 PMCID: PMC3646876 DOI: 10.1371/journal.pone.0062674] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 03/24/2013] [Indexed: 01/08/2023] Open
Abstract
The correlation of neutralizing antibodies to treatment outcome in patients with chronic hepatitis C virus (HCV) infection has not been established. The aim of this study was to determine whether neutralizing antibodies could be used as an outcome predictor in patients with chronic HCV, genotype 1, infection treated with pegylated interferon-α and ribavirin. Thirty-nine patients with chronic hepatitis C, genotype 1a or 1b, with either sustained virologic response (n = 23) or non-sustained virologic response (n = 16) were enrolled. Samples taken prior to treatment were tested for their ability to neutralize 6 different HCV genotype 1 cell culture recombinants (1a: H77/JFH1, TN/JFH1, DH6/JFH1; 1b: J4/JFH1, DH1/JFH1, DH5/JFH1). The results were expressed as the highest dilution yielding 50% neutralization (NAb50-titer). We observed no genotype or subtype specific differences in NAb50-titers between patients with chronic HCV infection with and without sustained virologic response when tested against any of the included culture viruses. However, NAb50-titers varied significantly with a mean reciprocal NAb50-titer of 800 (range: 100-6400) against DH6/JFH1 compared to a mean NAb50-titer of 50 (range: <50-400) against all other included isolates. Subsequent studies demonstrated that the efficient neutralization of DH6/JFH1 could be linked to engineered adaptive mutations in the envelope-2 protein. In analysis of envelope 1 and 2 sequences of HCV, recovered from a subset of patients, we observed no apparent link between relatedness of patient sequences with culture viruses used and the corresponding neutralization results. In conclusion, pre-treatment levels of neutralizing antibodies against HCV genotype 1 isolates could not predict treatment outcome in patients with chronic HCV infection. High neutralization susceptibility of DH6/JFH1 could be correlated with adaptive envelope mutations previously highlighted as important for neutralization. Our study emphasizes the importance of using multiple culture viruses for neutralization studies and contributes to the current knowledge about neutralizing epitopes, important for future therapeutic- and vaccine-studies.
Collapse
Affiliation(s)
- Jannie Pedersen
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Copenhagen University Hospital, Hvidovre, Denmark
- Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tanja B. Jensen
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Copenhagen University Hospital, Hvidovre, Denmark
- Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas H. R. Carlsen
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Copenhagen University Hospital, Hvidovre, Denmark
- Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Schønning
- Department of Clinical Microbiology, Copenhagen University Hospital, Hvidovre, Denmark
| | | | - Alex Lund Laursen
- Department of Infectious Diseases, Aarhus University Hospital, Skejby, Denmark
| | - Henrik Krarup
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Copenhagen University Hospital, Hvidovre, Denmark
- Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail: (NW); (JB)
| | - Nina Weis
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail: (NW); (JB)
| |
Collapse
|
143
|
|
144
|
Anjum S, Ali S, Ahmad T, Afzal MS, Waheed Y, Shafi T, Ashraf M, Andleeb S. Sequence and structural analysis of 3' untranslated region of hepatitis C virus, genotype 3a, from pakistani isolates. HEPATITIS MONTHLY 2013; 13:e8390. [PMID: 23922562 PMCID: PMC3732663 DOI: 10.5812/hepatmon.8390] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Revised: 02/07/2013] [Accepted: 03/05/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND Hepatitis C virus (HCV) is the cause of high morbidity and mortality worldwide, inflicting around one million people in Pakistan alone. The HCV genomic RNA harbors conserved structural elements that are indispensable for its replication. The 3' untranslated region (UTR) contains several of these elements essentially involved in regulating the major steps of the viral life cycle. OBJECTIVES Differences in regulatory elements of HCV may contribute towards differential infectivity of local isolates. The present study explicates sequence analysis and secondary structure prediction of HCV 3'UTR region of subtype 3a from Pakistan to characterize this particular region. PATIENTS AND METHODS HCV 3'UTR region was amplified, cloned and sequenced from five different patients. Sequence and structural analysis was performed and phylogenetic analysis was carried out using the 3'UTR sequence reported in NCBI nucleotide data base (http://www.ncbi.nlm.nih.gov/nuccore) by other studies. RESULTS Sequence analysis of the amplified fragment from five patients indicated that the 3'UTR is composed of 214-235 nts. Its sequence contains a type-specific variable region followed by a poly U/UC region and a highly conserved X-tail of 98 nts. The variable region reported here has 26 nts and one stem loop at the secondary structure that differentiate it from HCV genotype 1a ( GT1a) 3'UTR which contains additional 14 nts and two stem loops. The poly U/UC region varied in length (100-79 nts) and nucleotide sequence within the Pakistani isolates, and among different genotypes. Some substitutions found in the X-tail do not affect secondary structure of this element suggesting that this region might play an important role in replication, stabilization and packaging of HCV genome. Additionally, U residues are not present at the end of the X-tail in Pakistani 3a isolates as otherwise reported for the variants of genotype 1b. CONCLUSIONS Sequence and structural diversity of the 3'UTR variable region and Poly U/UC region found in the local isolates indicate specificity in the regulating elements of 3'UTR that might be associated with differential replication efficacy of the HCV Pakistani isolates. The study necessitates functional characterization of these regulating elements to elucidate variable viral efficiency and pathogenicity associated with inter-geographical isolates.
Collapse
Affiliation(s)
- Sadia Anjum
- Atta-ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Sidra Ali
- Atta-ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Tahir Ahmad
- Atta-ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Muhammad Sohail Afzal
- Atta-ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Yasir Waheed
- Atta-ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Talha Shafi
- Atta-ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Muhammad Ashraf
- Atta-ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Saadia Andleeb
- Atta-ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| |
Collapse
|
145
|
Gu M, Rice CM. Structures of hepatitis C virus nonstructural proteins required for replicase assembly and function. Curr Opin Virol 2013; 3:129-36. [PMID: 23601958 DOI: 10.1016/j.coviro.2013.03.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 03/08/2013] [Accepted: 03/20/2013] [Indexed: 02/07/2023]
Abstract
Approximately 3% of the world population is infected with hepatitis C virus (HCV), causing a serious public health burden. Like other positive-strand RNA viruses, HCV assembles replicase complexes in association with cellular membranes and produces progeny RNA genomes through negative-strand intermediates. The viral proteins required for RNA replication are nonstructural (NS) proteins NS3 to NS5B. Owing to many obstacles and limitations in structural characterization of proteins and complexes with multiple transmembrane segments, attempts to understand the assembly and action of the HCV replicase complex have been challenging. Nevertheless, great progress has been made in obtaining structural information for several replicase components, providing insights into some aspects of the viral genome replication machinery.
Collapse
Affiliation(s)
- Meigang Gu
- Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, United States.
| | | |
Collapse
|
146
|
EWSR1 binds the hepatitis C virus cis-acting replication element and is required for efficient viral replication. J Virol 2013; 87:6625-34. [PMID: 23552423 DOI: 10.1128/jvi.01006-12] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The hepatitis C virus (HCV) genome contains numerous RNA elements that are required for its replication. Most of the identified RNA structures are located within the 5' and 3' untranslated regions (UTRs). One prominent RNA structure, termed the cis-acting replication element (CRE), is located within the NS5B coding region. Mutation of part of the CRE, the 5BSL3.2 stem-loop, impairs HCV RNA replication. This loop has been implicated in a kissing interaction with a complementary stem-loop structure in the 3' UTR. Although it is clear that this interaction is required for viral replication, the function of the interaction, and its regulation are unknown. In order to gain insight into the CRE function, we isolated cellular proteins that preferentially bind the CRE and identified them using mass spectrometry. This approach identified EWSR1 as a CRE-binding protein. Silencing EWSR1 expression impairs HCV replication and infectious virus production but not translation. While EWRS1 is a shuttling protein that is extensively nuclear in hepatocytes, substantial amounts of EWSR1 localize to the cytosol in HCV-infected cells and colocalize with sites of HCV replication. A subset of EWRS1 translocates into detergent-resistant membrane fractions, which contain the viral replicase proteins, in cells with replicating HCV. EWSR1 directly binds the CRE, and this is dependent on the intact CRE structure. Finally, EWSR1 preferentially interacts with the CRE in the absence of the kissing interaction. This study implicates EWSR1 as a novel modulator of CRE function in HCV replication.
Collapse
|
147
|
Horwitz JA, Dorner M, Friling T, Donovan BM, Vogt A, Loureiro J, Oh T, Rice CM, Ploss A. Expression of heterologous proteins flanked by NS3-4A cleavage sites within the hepatitis C virus polyprotein. Virology 2013; 439:23-33. [PMID: 23485372 DOI: 10.1016/j.virol.2013.01.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 01/21/2013] [Accepted: 01/23/2013] [Indexed: 12/11/2022]
Abstract
Hepatitis C virus (HCV) contributes substantially to human morbidity and mortality world-wide. The development of HCV genomes expressing heterologous proteins has enhanced the ability to study viral infection, but existing systems have drawbacks. Recombinant viruses often require adaptive mutations to compensate for reduced viral titers, or rely on an artificial genomic organization that uncouples viral protein expression from recombinant gene expression. Here, we sought to exploit the viral polyprotein processing machinery to express heterologous proteins within the context of the HCV polyprotein. We show that HCV genotypes 2a and 1b permit insertion of reporter proteins between NS5A and NS5B with minimal impact on viral fitness. Using this strategy we constructed reporter genomes exhibiting a wide dynamic range, simplifying analysis of HCV infection in primary hepatocytes. Expression of heterologous proteins within the HCV genome offers new opportunities to analyze HCV infection in experimental systems without perturbing functions of individual viral proteins.
Collapse
Affiliation(s)
- Joshua A Horwitz
- Center for the Study of Hepatitis C, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Sandmann L, Ploss A. Barriers of hepatitis C virus interspecies transmission. Virology 2013; 435:70-80. [PMID: 23217617 PMCID: PMC3523278 DOI: 10.1016/j.virol.2012.09.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 09/28/2012] [Indexed: 12/19/2022]
Abstract
Hepatitis C virus (HCV) is a major causative agent of severe liver disease including fibrosis, cirrhosis and liver cancer. Therapy has improved over the years, but continues to be associated with adverse side effects and variable success rates. Furthermore, a vaccine protecting against HCV infection remains elusive. Development of more effective intervention measures has been delayed by the lack of a suitable animal model. Naturally, HCV infects only humans and chimpanzees. The determinants of this limited host range are poorly understood in part due to difficulties of studying HCV in cell culture. Some progress has been made elucidating the barriers for the HCV lifecycle in non-permissive species which will help in the future to construct animal models for HCV infection, immunity and pathogenesis.
Collapse
|
149
|
Abstract
Due to the obligatory intracellular lifestyle of viruses, cell culture systems for efficient viral propagation are crucial to obtain a detailed understanding of the virus-host cell interaction. For hepatitis C virus (HCV) the development of permissive and authentic culture models continues to be a challenging task. The first efforts to culture HCV had limited success and range back to before the virus was molecularly cloned in 1989. Since then several major breakthroughs have gradually overcome limitations in culturing the virus and sequentially permitted analysis of viral RNA replication, cell entry, and ultimately the complete replication cycle in cultured cells in 2005. Until today, basic and applied HCV research greatly benefit from these tremendous efforts which spurred multiple complementary cell-based model systems for distinct steps of the HCV replication cycle. When used in combination they now permit deep insights into the fascinating biology of HCV and its interplay with the host cell. In fact, drug development has been much facilitated and our understanding of the molecular determinants of HCV replication has grown in parallel to these advances. Building on this groundwork and further refining our cellular models to better mimic the architecture, polarization and differentiation of natural hepatocytes should reveal novel unique aspects of HCV replication. Ultimately, models to culture primary HCV isolates across all genotypes may teach us important new lessons about viral functional adaptations that have evolved in exchange with its human host and that may explain the variable natural course of hepatitis C.
Collapse
Affiliation(s)
- Eike Steinmann
- Helmholtz Centre for Infection Research, Hannover, Germany
| | | |
Collapse
|
150
|
Takagi A, Kobayashi N, Taneichi M, Uchida T, Akatsuka T. Coupling to the surface of liposomes alters the immunogenicity of hepatitis C virus-derived peptides and confers sterile immunity. Biochem Biophys Res Commun 2012; 430:183-9. [PMID: 23159619 PMCID: PMC7124229 DOI: 10.1016/j.bbrc.2012.11.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 11/08/2012] [Indexed: 12/16/2022]
Abstract
We have previously demonstrated that antigens chemically coupled to the surface of liposomes consisting of unsaturated fatty acids were cross-presented by antigen presenting cells to cytotoxic T lymphocytes (CTLs). Liposomal form of immunodominant CTL epitope peptides derived from lymphocytic choriomeningitis virus exhibited highly efficient antiviral CTL responses in immunized mice. In this study, we coupled 15 highly conserved immunodominant CTL epitope peptides derived from hepatitis C virus (HCV) to the surface of liposomes. We also emulsified the peptides in incomplete Freund’s adjuvant, and compared the immune responses of the two methods of presenting the peptides by cytotoxicity induction and interferon-gamma (IFN-γ) production by CD8+ T cells of the immunized mice. We noticed significant variations of the immunogenicity of each peptide between the two antigen delivery systems. In addition, the immunogenicity profiles of the peptides were also different from those observed in the mice infected with recombinant adenoviruses expressing HCV proteins as previously reported. Induction of anti-viral immunity by liposomal peptides was tested by the challenge experiments using recombinant vaccinia viruses expressing corresponding HCV epitopes. One Db-restricted and three HLA-A*0201-restricted HCV CTL epitope peptides on the surface of liposomes were found to confer complete protection to immunized mice with establishment of long-term memory. Interestingly, their protective efficacy seemed to correlate with the induction of IFN-γ producing cells rather than the cytotoxicity induction suggesting that the immunized mice were protected through non-cytolytic mechanisms. Thus, these liposomal peptides might be useful as HCV vaccines not only for prevention but also for therapeutic use.
Collapse
Affiliation(s)
- Akira Takagi
- Department of Microbiology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495, Japan
| | | | | | | | | |
Collapse
|