101
|
Lee-Sayer SSM, Dong Y, Arif AA, Olsson M, Brown KL, Johnson P. The where, when, how, and why of hyaluronan binding by immune cells. Front Immunol 2015; 6:150. [PMID: 25926830 PMCID: PMC4396519 DOI: 10.3389/fimmu.2015.00150] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 03/20/2015] [Indexed: 01/04/2023] Open
Abstract
Hyaluronan is made and extruded from cells to form a pericellular or extracellular matrix (ECM) and is present in virtually all tissues in the body. The size and form of hyaluronan present in tissues are indicative of a healthy or inflamed tissue, and the interactions of hyaluronan with immune cells can influence their response. Thus, in order to understand how inflammation is regulated, it is necessary to understand these interactions and their consequences. Although there is a large turnover of hyaluronan in our bodies, the large molecular mass form of hyaluronan predominates in healthy tissues. Upon tissue damage and/or infection, the ECM and hyaluronan are broken down and an inflammatory response ensues. As inflammation is resolved, the ECM is restored, and high molecular mass hyaluronan predominates again. Immune cells encounter hyaluronan in the tissues and lymphoid organs and respond differently to high and low molecular mass forms. Immune cells differ in their ability to bind hyaluronan and this can vary with the cell type and their activation state. For example, peritoneal macrophages do not bind soluble hyaluronan but can be induced to bind after exposure to inflammatory stimuli. Likewise, naïve T cells, which typically express low levels of the hyaluronan receptor, CD44, do not bind hyaluronan until they undergo antigen-stimulated T cell proliferation and upregulate CD44. Despite substantial knowledge of where and when immune cells bind hyaluronan, why immune cells bind hyaluronan remains a major outstanding question. Here, we review what is currently known about the interactions of hyaluronan with immune cells in both healthy and inflamed tissues and discuss how hyaluronan binding by immune cells influences the inflammatory response.
Collapse
Affiliation(s)
- Sally S M Lee-Sayer
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia , Vancouver, BC , Canada
| | - Yifei Dong
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia , Vancouver, BC , Canada
| | - Arif A Arif
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia , Vancouver, BC , Canada
| | - Mia Olsson
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia , Vancouver, BC , Canada
| | - Kelly L Brown
- Department of Pediatrics, Child and Family Research Institute, University of British Columbia , Vancouver, BC , Canada
| | - Pauline Johnson
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia , Vancouver, BC , Canada
| |
Collapse
|
102
|
Antigen dependently activated cluster of differentiation 8-positive T cells cause perforin-mediated neurotoxicity in experimental stroke. J Neurosci 2015; 34:16784-95. [PMID: 25505331 DOI: 10.1523/jneurosci.1867-14.2014] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Neuroinflammation plays a key role in secondary brain damage after stroke. Although deleterious effects of proinflammatory cytokines are well characterized, direct cytotoxic effects of invading immune cells on the ischemic brain and the importance of their antigen-dependent activation are essentially unknown. Here we examined the effects of adaptive and innate immune cells-cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells-that share the direct perforin-mediated cytotoxic pathway on outcome after cerebral ischemia in mice. Although CTLs and NK cells both invaded the ischemic brain, only brain-infiltrating CTLs but not NK cells were more activated than their splenic counterparts. Depletion of CTLs decreased infarct volumes and behavioral deficit in two ischemia models, whereas NK cell depletion had no effect. Correspondingly, adoptive CTL transfer from wild-type into Rag1 knock-out mice increased infarct size. Adoptive CTL transfer from perforin knock-out or interferon-γ knock-out mice into Rag1 knock-out mice revealed that CTL neurotoxicity was mediated by perforin. Accordingly, CTLs isolated from wild-type or interferon-γ knock-out but not from perforin knock-out mice induced neuronal cell death in vitro. CTLs derived from ovalbumin-specific T-cell receptor transgenic mice were not activated and infiltrated less into the ischemic brain compared with wild-type CTLs. Their transfer did not increase the infarct size of Rag1 knock-out mice, indicating antigen-dependent activation as an essential component of CTL neurotoxicity. Our findings underscore the importance of antigen-dependent, direct cytotoxic immune responses in stroke and suggest modulation of CTLs and their effector pathways as a potential new strategy for stroke therapy.
Collapse
|
103
|
Midgley AC, Duggal L, Jenkins R, Hascall V, Steadman R, Phillips AO, Meran S. Hyaluronan regulates bone morphogenetic protein-7-dependent prevention and reversal of myofibroblast phenotype. J Biol Chem 2015; 290:11218-34. [PMID: 25716319 PMCID: PMC4416830 DOI: 10.1074/jbc.m114.625939] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Indexed: 12/16/2022] Open
Abstract
Hyaluronan (HA) promotes transforming growth factor (TGF)-β1-driven myofibroblast phenotype. However, HA can also have disease-limiting activity. Bone morphogenetic protein-7 (BMP7) is an antifibrotic cytokine that antagonizes TGF-β1, and isolated studies have demonstrated that HA can both mediate and modulate BMP7 responses. In this study, we investigated whether BMP7 can modulate HA in a manner that leads to prevention/reversal of TGF-β1-driven myofibroblast differentiation in human lung fibroblasts. Results demonstrated that BMP7 prevented and reversed TGF-β1-driven myofibroblast differentiation through a novel mechanism. BMP7 promoted the dissolution and internalization of cell-surface HA into cytoplasmic endosomes. Endosomal HA co-localized with the HA-degrading enzymes, hyaluronidase-1 and hyaluronidase-2 (Hyal2). Moreover, BMP7 showed differential regulation of CD44 standard and variant isoform expression, when compared with TGF-β1. In particular, BMP7 increased membrane expression of CD44v7/8. Inhibiting CD44v7/8 as well as blocking Hyal2 and the Na+/H+ exchanger-1 at the cell-surface prevented BMP7-driven HA internalization and BMP7-mediated prevention/reversal of myofibroblast phenotype. In summary, a novel mechanism of TGF-β1 antagonism by BMP7 is shown and identifies alteration in HA as critical in mediating BMP7 responses. In addition, we identify Hyal2 and CD44v7/8 as new potential targets for manipulation in prevention and reversal of fibrotic pathology.
Collapse
Affiliation(s)
- Adam C Midgley
- From the Institute of Nephrology, Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff CF14 4XN, Wales, United Kingdom and
| | - Lucy Duggal
- From the Institute of Nephrology, Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff CF14 4XN, Wales, United Kingdom and
| | - Robert Jenkins
- From the Institute of Nephrology, Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff CF14 4XN, Wales, United Kingdom and
| | - Vincent Hascall
- the Lerner Research Institute, Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio 44195
| | - Robert Steadman
- From the Institute of Nephrology, Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff CF14 4XN, Wales, United Kingdom and
| | - Aled O Phillips
- From the Institute of Nephrology, Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff CF14 4XN, Wales, United Kingdom and
| | - Soma Meran
- From the Institute of Nephrology, Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff CF14 4XN, Wales, United Kingdom and
| |
Collapse
|
104
|
McDonald B, Kubes P. Interactions between CD44 and Hyaluronan in Leukocyte Trafficking. Front Immunol 2015; 6:68. [PMID: 25741341 PMCID: PMC4330908 DOI: 10.3389/fimmu.2015.00068] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 02/02/2015] [Indexed: 11/17/2022] Open
Abstract
Recruitment of leukocytes from the bloodstream to inflamed tissues requires a carefully regulated cascade of binding interactions between adhesion molecules on leukocytes and endothelial cells. Adhesive interactions between CD44 and hyaluronan (HA) have been implicated in the regulation of immune cell trafficking within various tissues. In this review, the biology of CD44–HA interactions in cell trafficking is summarized, with special attention to neutrophil recruitment within the liver microcirculation. We describe the molecular mechanisms that regulate adhesion between neutrophil CD44 and endothelial HA, including recent evidence implicating serum-derived hyaluronan-associated protein as an important co-factor in the binding of HA to CD44 under flow conditions. CD44–HA-mediated neutrophil recruitment has been shown to contribute to innate immune responses to invading microbes, as well as to the pathogenesis of many inflammatory diseases, including various liver pathologies. As a result, blockade of neutrophil recruitment by targeting CD44–HA interactions has proven beneficial as an anti-inflammatory treatment strategy in a number of animal models of inflammatory diseases.
Collapse
Affiliation(s)
- Braedon McDonald
- Department of Medicine, University of British Columbia , Vancouver, BC , Canada ; Snyder Institute for Chronic Diseases, University of Calgary , Calgary, AB , Canada
| | - Paul Kubes
- Snyder Institute for Chronic Diseases, University of Calgary , Calgary, AB , Canada
| |
Collapse
|
105
|
Ghosh S, Hoselton SA, Wanjara SB, Carlson J, McCarthy JB, Dorsam GP, Schuh JM. Hyaluronan stimulates ex vivo B lymphocyte chemotaxis and cytokine production in a murine model of fungal allergic asthma. Immunobiology 2015; 220:899-909. [PMID: 25698348 DOI: 10.1016/j.imbio.2015.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 01/24/2015] [Indexed: 12/19/2022]
Abstract
Allergic asthma is a chronic inflammatory disease of the airways characterized by excessive eosinophilic and lymphocytic inflammation with associated changes in the extracellular matrix (ECM) resulting in airway wall remodeling. Hyaluronan (HA) is a nonsulfated glycosaminoglycan ECM component that functions as a structural cushion in its high molecular mass (HMM) but has been implicated in metastasis and other disease processes when it is degraded to smaller fragments. However, relatively little is known about the role HA in mediating inflammatory responses in allergy and asthma. In the present study, we used a murine Aspergillus fumigatus inhalational model to mimic human disease. After observing in vivo that a robust B cell recruitment followed a massive eosinophilic egress to the lumen of the allergic lung and corresponded with the detection of low molecular mass HA (LMM HA), we examined the effect of HA on B cell chemotaxis and cytokine production in the ex vivo studies. We found that LMM HA functioned through a CD44-mediated mechanism to elicit chemotaxis of B lymphocytes, while high molecular mass HA (HMM HA) had little effect. LMM HA, but not HMM HA, also elicited the production of IL-10 and TGF-β1 in these cells. Taken together, these findings demonstrate a critical role for ECM components in mediating leukocyte migration and function which are critical to the maintenance of allergic inflammatory responses.
Collapse
Affiliation(s)
- Sumit Ghosh
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA.
| | - Scott A Hoselton
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Steve B Wanjara
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Jennifer Carlson
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - James B McCarthy
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Glenn P Dorsam
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Jane M Schuh
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA
| |
Collapse
|
106
|
Orian-Rousseau V, Ponta H. Perspectives of CD44 targeting therapies. Arch Toxicol 2014; 89:3-14. [PMID: 25472903 DOI: 10.1007/s00204-014-1424-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 11/24/2014] [Indexed: 01/03/2023]
Abstract
CD44 is a family of single-span transmembrane glycoproteins. Members of this family differ in the extracellular domain where ten variant exons are either excluded or included in various combinations. CD44 isoforms participate in many physiological processes including hematopoiesis, regeneration, lymphocyte homing and inflammation. Most importantly, they are involved in pathological processes and in particular in cancer. In several types of tumors, CD44 together with other antigens specifies for cancer stem cell populations. Mechanistically, CD44 proteins act as receptors for hyaluronan, co-receptor for receptor tyrosine kinases (RTKs) or G-protein-coupled receptors or provide a platform for metalloproteinases. For all these reasons, targeting CD44 may be a successful approach in cancer therapy. In this review, we discuss the various possibilities of targeting CD44. Among these are the production of CD44 ectodomains, antibodies, peptides or aptamers. Also inhibition of CD44 expression has been proposed. Finally, the function of CD44 as a hyaluronan receptor was also taken advantage of. We are convinced that the success of these therapies will depend on an increased understanding of the molecular functions of specific CD44 isoforms in particular in cancer stem cells.
Collapse
Affiliation(s)
- V Orian-Rousseau
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Postfach 3640, 76021, Karlsruhe, Germany,
| | | |
Collapse
|
107
|
Schumann J, Stanko K, Woertge S, Appelt C, Schumann M, Kühl AA, Panov I, Schliesser U, Vogel S, Ahrlich S, Vaeth M, Berberich-Siebelt F, Waisman A, Sawitzki B. The mitochondrial protein TCAIM regulates activation of T cells and thereby promotes tolerance induction of allogeneic transplants. Am J Transplant 2014; 14:2723-35. [PMID: 25363083 DOI: 10.1111/ajt.12941] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 07/16/2014] [Accepted: 07/18/2014] [Indexed: 01/25/2023]
Abstract
Primary T cell activation and effector cell differentiation is required for rejection of allogeneic grafts in naïve recipients. It has become evident, that mitochondria play an important role for T cell activation. Expression of several mitochondrial proteins such as TCAIM (T cell activation inhibitor, mitochondrial) is down-regulated upon T cell receptor triggering. Here we report that TCAIM inhibited spontaneous development of memory and effector T cells. CD4(+) T cells from Tcaim knock-in (KI) mice showed reduced activation, cytokine secretion and proliferation in vitro. Tcaim KI T cells tolerated allogeneic skin grafts upon transfer into Rag-1 KO mice. CD4(+) and CD8(+) T cells from these mice did not infiltrate skin grafts and kept a naïve or central memory phenotype, respectively. They were unable to acquire effector phenotype and functions. TCAIM altered T cell activation-induced mitochondrial distribution and reduced mitochondrial reactive oxygen species (mROS) production. Thus, TCAIM controls T cell activation and promotes tolerance induction probably by regulating TCR-mediated mitochondrial distribution and mROS production.
Collapse
Affiliation(s)
- J Schumann
- Institute for Medical Immunology, Charité University Medicine Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Kennedy JM, Fodil N, Torre S, Bongfen SE, Olivier JF, Leung V, Langlais D, Meunier C, Berghout J, Langat P, Schwartzentruber J, Majewski J, Lathrop M, Vidal SM, Gros P. CCDC88B is a novel regulator of maturation and effector functions of T cells during pathological inflammation. ACTA ACUST UNITED AC 2014; 211:2519-35. [PMID: 25403443 PMCID: PMC4267237 DOI: 10.1084/jem.20140455] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Kennedy et al. identify a mutation in coiled-coil domain containing protein 88b (Ccdc88b) that confers protection against lethal neuroinflammation during experimental cerebral malaria. CCDC88B is expressed in immune cells and regulates T cell maturation and effector functions. In humans, the CCDC88B gene maps to a locus associated with susceptibility to several inflammatory and autoimmune disorders. We used a genome-wide screen in mutagenized mice to identify genes which inactivation protects against lethal neuroinflammation during experimental cerebral malaria (ECM). We identified an ECM-protective mutation in coiled-coil domain containing protein 88b (Ccdc88b), a poorly annotated gene that is found expressed specifically in spleen, bone marrow, lymph nodes, and thymus. The CCDC88B protein is abundantly expressed in immune cells, including both CD4+ and CD8+ T lymphocytes, and in myeloid cells, and loss of CCDC88B protein expression has pleiotropic effects on T lymphocyte functions, including impaired maturation in vivo, significantly reduced activation, reduced cell division as well as impaired cytokine production (IFN-γ and TNF) in response to T cell receptor engagement, or to nonspecific stimuli in vitro, and during the course of P. berghei infection in vivo. This identifies CCDC88B as a novel and important regulator of T cell function. The human CCDC88B gene maps to the 11q13 locus that is associated with susceptibility to several inflammatory and auto-immune disorders. Our findings strongly suggest that CCDC88B is the morbid gene underlying the pleiotropic effect of the 11q13 locus on inflammation.
Collapse
Affiliation(s)
- James M Kennedy
- Department of Biochemistry, Department of Human Genetics, McGill and Genome Quebec Innovation Center, Complex Traits Group, McGill University, Montreal, Quebec H3A 0G4, Canada Department of Biochemistry, Department of Human Genetics, McGill and Genome Quebec Innovation Center, Complex Traits Group, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Nassima Fodil
- Department of Biochemistry, Department of Human Genetics, McGill and Genome Quebec Innovation Center, Complex Traits Group, McGill University, Montreal, Quebec H3A 0G4, Canada Department of Biochemistry, Department of Human Genetics, McGill and Genome Quebec Innovation Center, Complex Traits Group, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Sabrina Torre
- Department of Biochemistry, Department of Human Genetics, McGill and Genome Quebec Innovation Center, Complex Traits Group, McGill University, Montreal, Quebec H3A 0G4, Canada Department of Biochemistry, Department of Human Genetics, McGill and Genome Quebec Innovation Center, Complex Traits Group, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Silayuv E Bongfen
- Department of Biochemistry, Department of Human Genetics, McGill and Genome Quebec Innovation Center, Complex Traits Group, McGill University, Montreal, Quebec H3A 0G4, Canada Department of Biochemistry, Department of Human Genetics, McGill and Genome Quebec Innovation Center, Complex Traits Group, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Jean-Frédéric Olivier
- Department of Biochemistry, Department of Human Genetics, McGill and Genome Quebec Innovation Center, Complex Traits Group, McGill University, Montreal, Quebec H3A 0G4, Canada Department of Biochemistry, Department of Human Genetics, McGill and Genome Quebec Innovation Center, Complex Traits Group, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Vicki Leung
- Department of Biochemistry, Department of Human Genetics, McGill and Genome Quebec Innovation Center, Complex Traits Group, McGill University, Montreal, Quebec H3A 0G4, Canada Department of Biochemistry, Department of Human Genetics, McGill and Genome Quebec Innovation Center, Complex Traits Group, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - David Langlais
- Department of Biochemistry, Department of Human Genetics, McGill and Genome Quebec Innovation Center, Complex Traits Group, McGill University, Montreal, Quebec H3A 0G4, Canada Department of Biochemistry, Department of Human Genetics, McGill and Genome Quebec Innovation Center, Complex Traits Group, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Charles Meunier
- Department of Biochemistry, Department of Human Genetics, McGill and Genome Quebec Innovation Center, Complex Traits Group, McGill University, Montreal, Quebec H3A 0G4, Canada Department of Biochemistry, Department of Human Genetics, McGill and Genome Quebec Innovation Center, Complex Traits Group, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Joanne Berghout
- Department of Biochemistry, Department of Human Genetics, McGill and Genome Quebec Innovation Center, Complex Traits Group, McGill University, Montreal, Quebec H3A 0G4, Canada Department of Biochemistry, Department of Human Genetics, McGill and Genome Quebec Innovation Center, Complex Traits Group, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Pinky Langat
- Department of Biochemistry, Department of Human Genetics, McGill and Genome Quebec Innovation Center, Complex Traits Group, McGill University, Montreal, Quebec H3A 0G4, Canada Department of Biochemistry, Department of Human Genetics, McGill and Genome Quebec Innovation Center, Complex Traits Group, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Jeremy Schwartzentruber
- Department of Biochemistry, Department of Human Genetics, McGill and Genome Quebec Innovation Center, Complex Traits Group, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Jacek Majewski
- Department of Biochemistry, Department of Human Genetics, McGill and Genome Quebec Innovation Center, Complex Traits Group, McGill University, Montreal, Quebec H3A 0G4, Canada Department of Biochemistry, Department of Human Genetics, McGill and Genome Quebec Innovation Center, Complex Traits Group, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Mark Lathrop
- Department of Biochemistry, Department of Human Genetics, McGill and Genome Quebec Innovation Center, Complex Traits Group, McGill University, Montreal, Quebec H3A 0G4, Canada Department of Biochemistry, Department of Human Genetics, McGill and Genome Quebec Innovation Center, Complex Traits Group, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Silvia M Vidal
- Department of Biochemistry, Department of Human Genetics, McGill and Genome Quebec Innovation Center, Complex Traits Group, McGill University, Montreal, Quebec H3A 0G4, Canada Department of Biochemistry, Department of Human Genetics, McGill and Genome Quebec Innovation Center, Complex Traits Group, McGill University, Montreal, Quebec H3A 0G4, Canada Department of Biochemistry, Department of Human Genetics, McGill and Genome Quebec Innovation Center, Complex Traits Group, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Philippe Gros
- Department of Biochemistry, Department of Human Genetics, McGill and Genome Quebec Innovation Center, Complex Traits Group, McGill University, Montreal, Quebec H3A 0G4, Canada Department of Biochemistry, Department of Human Genetics, McGill and Genome Quebec Innovation Center, Complex Traits Group, McGill University, Montreal, Quebec H3A 0G4, Canada Department of Biochemistry, Department of Human Genetics, McGill and Genome Quebec Innovation Center, Complex Traits Group, McGill University, Montreal, Quebec H3A 0G4, Canada
| |
Collapse
|
109
|
Li P, Fujimoto K, Bourguingnon L, Yukl S, Deeks S, Wong JK. Exogenous and endogenous hyaluronic acid reduces HIV infection of CD4(+) T cells. Immunol Cell Biol 2014; 92:770-80. [PMID: 24957217 PMCID: PMC4205896 DOI: 10.1038/icb.2014.50] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 05/19/2014] [Accepted: 05/27/2014] [Indexed: 01/02/2023]
Abstract
Preventing mucosal transmission of HIV is critical to halting the HIV epidemic. Novel approaches to preventing mucosal transmission are needed. Hyaluronic acid (HA) is a major extracellular component of mucosa and the primary ligand for the cell surface receptor CD44. CD44 enhances HIV infection of CD4(+) T cells, but the role of HA in this process is not clear. To study this, virions were generated with CD44 (HIVCD44) or without CD44 (HIVmock). Exogenous HA reduced HIV infection of unstimulated CD4(+) T cells in a CD44-dependent manner. Conversely, hyaluronidase-mediated reduction of endogenous HA on the cell surface enhanced HIV binding to and infection of unstimulated CD4(+) T cells. Exogenous HA treatment reduced activation of protein kinase C alpha via CD44 on CD4(+) T cells during infection with HIVCD44. These results reveal new roles for HA during the interaction of HIV with CD4(+) T cells that may be relevant to mucosal HIV transmission and could be exploitable as a future strategy to prevent HIV infection.
Collapse
Affiliation(s)
- Peilin Li
- San Francisco Veterans Affairs Medical Center, Department of Medicine, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Katsuya Fujimoto
- San Francisco Veterans Affairs Medical Center, Department of Medicine, San Francisco, CA, USA
| | - Lilly Bourguingnon
- San Francisco Veterans Affairs Medical Center, Department of Medicine, San Francisco, CA, USA
| | - Steven Yukl
- San Francisco Veterans Affairs Medical Center, Department of Medicine, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Steven Deeks
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Joseph K Wong
- San Francisco Veterans Affairs Medical Center, Department of Medicine, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, USA
| |
Collapse
|
110
|
Fu Q, Hou L, Xiao P, Guo C, Chen Y, Liu X. CD44 deficiency leads to decreased proinflammatory cytokine production in lung induced by PCV2 in mice. Res Vet Sci 2014; 97:498-504. [PMID: 25294252 DOI: 10.1016/j.rvsc.2014.09.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 08/21/2014] [Accepted: 09/15/2014] [Indexed: 12/17/2022]
Abstract
Porcine circovirus type 2 (PCV2) is the primary etiological agent of postweaning multisystemic wasting syndrome (PMWS). CD44 is a widely expressed class I transmembrane glycoprotein implicated in immunological and inflammatory responses. In previous studies, the role of CD44 in host defense against microorganism infection remains controversial. The role of CD44 in host defense against PCV2 infection has never been studied before. In this study, we investigated the role of CD44 in the development of pneumonia induced by PCV2 in mice model. Upon infection, CD44 mRNA level in lung tissue was upregulated, and we confirmed a detrimental role of CD44 in host defense against PCV2 infection. The results demonstrated that CD44 deficiency could result in decreased proinflammatory cytokine production in lung induced by PCV2 in mice, suggesting a previously unrecognized role for CD44 in the development of pneumonia response to PCV2 infection.
Collapse
Affiliation(s)
- Qiang Fu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Linbing Hou
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Pingping Xiao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Chunhe Guo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
111
|
Rudraraju R, Sealy RE, Surman SL, Thomas PG, Dayton BH, Hurwitz JL. Non-random lymphocyte distribution among virus-infected cells of the respiratory tract. Viral Immunol 2014; 26:378-84. [PMID: 24328934 DOI: 10.1089/vim.2013.0033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The rules of T cell positioning within virus-infected respiratory tract tissues are poorly understood. We therefore marked cervical lymph node or spleen cells from Sendai virus (SeV) primed mice and transferred lymphocytes to animals infected with SeV expressing an enhanced green fluorescent protein (SeV-eGFP). Confocal imaging showed that when T cells entered a field of infected respiratory tract epithelium, they assumed a spatial distribution that maximized distances between each donor cell and its nearest neighbor. We therefore hypothesized that lymphocytes repelled one another by altering their chemokine/cytokine microenvironment. Subsequent in vitro tests confirmed that when SeV-primed lymphocytes were co-cultured with infected respiratory tract stroma, there was a profound upregulation of chemokines including RANTES, CXCL9, CXCL10, and CCL2. Based on these data, we propose that newly resident lymphocytes within virus-infected respiratory tract tissues may create halos of chemokines/cytokines to mark their territories; lymphocyte cross-talk may then inhibit cell overlap and redundancy to expedite virus clearance.
Collapse
Affiliation(s)
- Rajeev Rudraraju
- 1 Department of Infectious Diseases, St. Jude Children's Research Hospital , Memphis, Tennessee
| | | | | | | | | | | |
Collapse
|
112
|
Mueller AM, Yoon BH, Sadiq SA. Inhibition of hyaluronan synthesis protects against central nervous system (CNS) autoimmunity and increases CXCL12 expression in the inflamed CNS. J Biol Chem 2014; 289:22888-22899. [PMID: 24973214 DOI: 10.1074/jbc.m114.559583] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hyaluronan (HA) may have proinflammatory roles in the context of CNS autoimmunity. It accumulates in demyelinated multiple sclerosis (MS) lesions, promotes antigen presentation, and enhances T-cell activation and proliferation. HA facilitates lymphocyte binding to vessels and CNS infiltration at the CNS vascular endothelium. Furthermore, HA signals through Toll-like receptors 2 and 4 to stimulate inflammatory gene expression. We assessed the role of HA in experimental autoimmune encephalomyelitis (EAE), an animal model of MS by administration of 4-methylumbelliferone (4MU), a well established inhibitor of HA synthesis. 4MU decreased hyaluronan synthesis in vitro and in vivo. It was protective in active EAE of C57Bl/6 mice, decreased spinal inflammatory infiltrates and spinal infiltration of Th1 cells, and increased differentiation of regulatory T-cells. In adoptive transfer EAE, feeding of 4MU to donor mice significantly decreased the encephalitogenicity of lymph node cells. The transfer of proteolipid protein (PLP)-stimulated lymph node cells to 4MU-fed mice resulted in a delayed EAE onset and delayed spinal T-cell infiltration. Expression of CXCL12, an anti-inflammatory chemokine, is reduced in MS patients in CSF cells and in spinal cord tissue during EAE. Hyaluronan suppressed production of CXCL12, whereas 4MU increased spinal CXCL12 in naive animals and during neuroinflammation. Neutralization of CXCR4, the most prominent receptor of CXCL12, by administration of AMD3100 diminished the protective impact of 4MU in adoptive transfer EAE. In conclusion, hyaluronan exacerbates CNS autoimmunity, enhances encephalitogenic T-cell responses, and suppresses the protective chemokine CXCL12 in CNS tissue. Inhibition of hyaluronan synthesis with 4MU protects against an animal model of MS and may represent an important therapeutic option in MS and other neuroinflammatory diseases.
Collapse
Affiliation(s)
| | - Bo Hyung Yoon
- Tisch Multiple Sclerosis Research Center of New York, New York, New York 10019
| | - Saud Ahmed Sadiq
- Tisch Multiple Sclerosis Research Center of New York, New York, New York 10019.
| |
Collapse
|
113
|
Huang Z, Zhao C, Chen Y, Cowell JA, Wei G, Kultti A, Huang L, Thompson CB, Rosengren S, Frost GI, Shepard HM. Recombinant human hyaluronidase PH20 does not stimulate an acute inflammatory response and inhibits lipopolysaccharide-induced neutrophil recruitment in the air pouch model of inflammation. THE JOURNAL OF IMMUNOLOGY 2014; 192:5285-95. [PMID: 24778442 DOI: 10.4049/jimmunol.1303060] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Hyaluronidase (Hyal) and low m.w. hyaluronan (LMW HA) fragments have been widely reported to stimulate the innate immune response. However, most hyaluronidases used were purified from animal tissues (e.g., bovine testis Hyal [BTH]), and contain endotoxin and other unrelated proteins. We tested a highly purified recombinant human Hyal (rHuPH20) and endotoxin-free HA fragments from M(r) 5,000 to 1,500,000 in the rodent air pouch model of inflammation to determine their potential for stimulation of the innate immune response. Exogenous LMW HA fragments (average M(r) 200,000) failed to induce either cytokine/chemokine production or neutrophil infiltration into the air pouch. Challenging the air pouch with LPS or BTH stimulated production of cytokines and chemokines but rHuPH20 did not, suggesting that neither PH20 nor generation of LMW HA fragments in situ stimulates cytokine and chemokine production. LPS and BTH also induced neutrophil infiltration into the air pouch, which was not observed with rHuPH20 treatment. Endotoxin-depleted BTH had much reduced proinflammatory activity, suggesting that the difference in inflammatory responses between rHuPH20 and BTH is likely due to endotoxin contaminants in BTH. When rHuPH20 was dosed with LPS, the induction of cytokines and chemokines was the same as LPS alone, but neutrophil infiltration was inhibited, likely by interrupting HA-CD44 interaction. Our results indicate that neither rHuPH20 nor its directly generated HA catabolites have inflammatory properties in the air pouch model, and rHuPH20 can instead inhibit some aspects of inflammation, such as neutrophil infiltration into the air pouch.
Collapse
Affiliation(s)
| | | | | | | | - Ge Wei
- Halozyme Therapeutics, San Diego, CA 92121
| | | | - Lei Huang
- Halozyme Therapeutics, San Diego, CA 92121
| | | | | | | | | |
Collapse
|
114
|
Opposite role of CD44-standard and CD44-variant-3 in tubular injury and development of renal fibrosis during chronic obstructive nephropathy. Kidney Int 2014; 86:558-69. [PMID: 24717295 DOI: 10.1038/ki.2014.87] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 12/30/2013] [Accepted: 02/06/2014] [Indexed: 02/07/2023]
Abstract
Chronic kidney diseases (CKDs) are characterized by tubular atrophy and interstitial fibrosis. We previously showed that in obstructive nephropathy de novo CD44 renal expression contributes to renal fibrosis but attenuates tubular damage/apoptosis. As CD44-standard (CD44s) has been linked to TGF-β1-mediated actions and CD44-variant-3 (CD44v3) favors HGF-c-Met binding, we compared the functional properties of these CD44 isoforms in the progression of obstructive nephropathy, using specific CD44-variant knockout/knockin mice. The presence of CD44v3 diminished tubular damage during obstructive nephropathy, decreased apoptosis, and increased proliferation of tubular epithelial cells, and prevented renal fibrosis development. In contrast, expression of CD44s led to increased tubular damage and tubular epithelial cell apoptosis, and more renal fibrosis. A relative increase in renal β-catenin expression, HGF production, and HGF/c-Met signaling, together with a relative inhibition of TGF-β1 downstream signaling and TGF-β type I receptor expression, was found in CD44v3 mice compared with CD44s littermates. In line with this, Wnt3a/HGF treatment of tubular cells resulted in higher β-catenin/p-AKT levels in CD44v3(+) tubular epithelial cells, whereas TGF-β1 induced a mild collagen I upregulation in CD44v3(+) mouse embryonic fibroblasts as compared with CD44s(+) cells. Thus, CD44s and CD44v3 exert opposite roles in the progression of obstructive nephropathy, with CD44v3-v10 being the protective isoform that delays evolution of the renal pathology.
Collapse
|
115
|
Petrey AC, de la Motte CA. Hyaluronan, a crucial regulator of inflammation. Front Immunol 2014; 5:101. [PMID: 24653726 PMCID: PMC3949149 DOI: 10.3389/fimmu.2014.00101] [Citation(s) in RCA: 339] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 02/25/2014] [Indexed: 12/30/2022] Open
Abstract
Hyaluronan (HA), a major component of the extracellular matrix (ECM), plays a key role in regulating inflammation. Inflammation is associated with accumulation and turnover of HA polymers by multiple cell types. Increasingly through the years, HA has become recognized as an active participant in inflammatory, angiogenic, fibrotic, and cancer promoting processes. HA and its binding proteins regulate the expression of inflammatory genes, the recruitment of inflammatory cells, the release of inflammatory cytokines, and can attenuate the course of inflammation, providing protection against tissue damage. A growing body of evidence suggests the cell responses are HA molecular weight dependent. HA fragments generated by multiple mechanisms throughout the course of inflammatory pathologies, elicit cellular responses distinct from intact HA. This review focuses on the role of HA in the promotion and resolution of inflammation.
Collapse
Affiliation(s)
- Aaron C Petrey
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation , Cleveland, OH , USA
| | - Carol A de la Motte
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation , Cleveland, OH , USA
| |
Collapse
|
116
|
CD44 mediated hyaluronan adhesion of Toxoplasma gondii-infected leukocytes. Parasitol Int 2013; 63:479-84. [PMID: 24157443 DOI: 10.1016/j.parint.2013.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 10/09/2013] [Accepted: 10/15/2013] [Indexed: 11/21/2022]
Abstract
Toxoplasma gondii is an obligate intracellular apicomplexan parasite that infects humans and animals. Ingested parasites cross the intestinal epithelium, invade leukocytes and are then disseminated to peripheral organs. However, the mechanism of extravasation of the infected leukocytes remains poorly understood. In this study, we demonstrate that T. gondii-invaded human and mouse leukocytes express higher level of CD44, a ligand of hyaluronan (HA), and its expression on myeloid and non-myeloid leukocytes causes T. gondii-invaded human and mouse leukocyte to adhere to HA more effectively than non-invaded leukocytes. The specific adherence of parasite-invaded leukocytes was inhibited by anti CD44 antibody. Leukocytes of CD44 knockout mice did not show parasite-invaded leukocyte specific adhesion. Our results indicate that parasite-invaded leukocytes, regardless of whether myeloid or not, gain higher ability to adhere to HA than non-invaded leukocytes, via upregulation of CD44 expression and/or selective invasion to CD44 highly expressing cells. The difference in ability to adhere to HA between parasite-invaded cells and non-invaded neighboring cells might facilitate effective delivery of parasite-invaded leukocytes to the HA-producing endothelial cell surface and/or HA-rich extra cellular matrix.
Collapse
|
117
|
Characterization of phenotypes of immune cells and cytokines associated with chronic exposure to Premolis semirufa caterpillar bristles extract. PLoS One 2013; 8:e71938. [PMID: 24023721 PMCID: PMC3762804 DOI: 10.1371/journal.pone.0071938] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/10/2013] [Indexed: 01/13/2023] Open
Abstract
The Brazilian moth Premolis semirufa (Walker, 1856), usually called pararama, is a parasite of the rubber Hevea genus. Contact with the bristles causes symptoms of acute inflammation. A chronic inflammatory reaction frequently occurs in individuals after multiple contacts, and this reaction is characterised by articular synovial membrane thickening with joint deformities, common characteristics of chronic synovitis. Extract from the bristles has been shown to induce an intense inflammatory response in a murine model, and this reaction was characterised by the presence of neutrophils in the paw tissues of injected mice and a strong, specific antibody response. There is not yet an effective treatment for incidents involving contact with pararama. In this study, we evaluated the phenotype of the immunological response and cytokine production in BALB/c mice subcutaneously injected in the footpad with P. semirufa bristle extract or sterile saline (control) seven times at 15 day intervals. An analysis of cells from the draining lymph node by flow cytometry showed that the absolute numbers of TCD4, TCD8 and B lymphocytes, as well as the expression of activation molecules, were higher in the extract-treated group. Furthermore, immunohistochemistry and immunofluorescence analyses showed a mixed inflammatory infiltrate composed of neutrophils and macrophages at the inoculation site. In addition, an analysis of paw cytokines showed elevated levels of IL-6, IL-12, IL-10, IL-17 and IL-23 after the 7(th) inoculation. In conclusion, these data provide evidence of pro-inflammatory changes in the phenotypes of immune cells and cytokine production in animals subjected to injections with an extract from Premolis semirufa bristles, which may explain the intense and prolonged inflammatory response that characterises this disorder.
Collapse
|
118
|
Schouppe E, Mommer C, Movahedi K, Laoui D, Morias Y, Gysemans C, Luyckx A, De Baetselier P, Van Ginderachter JA. Tumor-induced myeloid-derived suppressor cell subsets exert either inhibitory or stimulatory effects on distinct CD8+ T-cell activation events. Eur J Immunol 2013; 43:2930-42. [PMID: 23878002 DOI: 10.1002/eji.201343349] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 06/10/2013] [Accepted: 07/17/2013] [Indexed: 01/04/2023]
Abstract
Tumor growth coincides with an accumulation of myeloid-derived suppressor cells (MDSCs), which exert immune suppression and which consist of two main subpopulations, known as monocytic (MO) CD11b(+) CD115(+) Ly6G(-) Ly6C(high) MDSCs and granulocytic CD11b(+) CD115(-) Ly6G(+) Ly6C(int) polymorphonuclear (PMN)-MDSCs. However, whether these distinct MDSC subsets hamper all aspects of early CD8(+) T-cell activation--including cytokine production, surface marker expression, survival, and cytotoxicity--is currently unclear. Here, employing an in vitro coculture system, we demonstrate that splenic MDSC subsets suppress antigen-driven CD8(+) T-cell proliferation, but differ in their dependency on IFN-γ, STAT-1, IRF-1, and NO to do so. Moreover, MO-MDSC and PMN-MDSCs diminish IL-2 levels, but only MO-MDSCs affect IL-2Rα (CD25) expression and STAT-5 signaling. Unexpectedly, however, both MDSC populations stimulate IFN-γ production by CD8(+) T cells on a per cell basis, illustrating that some T-cell activation characteristics are actually stimulated by MDSCs. Conversely, MO-MDSCs counteract the activation-induced change in CD44, CD62L, CD162, and granzyme B expression, while promoting CD69 and Fas upregulation. Together, these effects result in an altered CD8(+) T-cell adhesiveness to the extracellular matrix and selectins, sensitivity to FasL-mediated apoptosis, and cytotoxicity. Hence, MDSCs intricately influence different CD8(+) T-cell activation events in vitro, whereby some parameters are suppressed while others are stimulated.
Collapse
Affiliation(s)
- Elio Schouppe
- Myeloid Cell Immunology Laboratory, VIB, Brussels, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Hu Y, Cauley L. Antigen and transforming growth factor Beta receptors contribute to long term functional and phenotypic heterogeneity of memory CD8 T cells. Front Immunol 2013; 4:227. [PMID: 23964275 PMCID: PMC3740294 DOI: 10.3389/fimmu.2013.00227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 07/18/2013] [Indexed: 02/05/2023] Open
Abstract
Pathogen-specific CD8 T cells provide a mechanism for selectively eliminating host cells that are harboring intracellular pathogens. The pathogens are killed when lytic molecules are injected into the cytoplasm of the infected cells and begin an apoptotic cascade. Activated CD8 T cells also release large quantities of pro-inflammatory cytokines that stimulate other immune cells in the local vicinity. As the alveoli are extraordinarily sensitive to cytokine induced damage, multiple layers of immune regulation limit the activities of immune cells that enter the lungs. These mechanisms include receptor-mediated signaling pathways in CD8 T cells that respond to peptide antigens and transforming growth factor β. Both pathways influence the functional and phenotypic properties of long-lived CD8 T cells populations in peripheral and lymphoid tissues.
Collapse
Affiliation(s)
- Yinghong Hu
- University of Connecticut Health Center , Farmington, CT , USA
| | | |
Collapse
|
120
|
Mott PJ, Lazarus AH. CD44 antibodies and immune thrombocytopenia in the amelioration of murine inflammatory arthritis. PLoS One 2013; 8:e65805. [PMID: 23785450 PMCID: PMC3681793 DOI: 10.1371/journal.pone.0065805] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 04/29/2013] [Indexed: 12/29/2022] Open
Abstract
Antibodies to CD44 have been used to successfully ameliorate murine models of autoimmune disease. The most often studied disease model has been murine inflammatory arthritis, where a clear mechanism for the efficacy of CD44 antibodies has not been established. We have recently shown in a murine passive-model of the autoimmune disease immune thrombocytopenia (ITP) that some CD44 antibodies themselves can induce thrombocytopenia in mice, and the CD44 antibody causing the most severe thrombocytopenia (IM7), also is known to be highly effective in ameliorating murine models of arthritis. Recent work in the K/BxN serum-induced model of arthritis demonstrated that antibody-induced thrombocytopenia reduced arthritis, causing us to question whether CD44 antibodies might primarily ameliorate arthritis through their thrombocytopenic effect. We evaluated IM7, IRAWB14.4, 5035-41.1D, KM201, KM114, and KM81, and found that while all could induce thrombocytopenia, the degree of protection against serum-induced arthritis was not closely related to the length or severity of the thrombocytopenia. CD44 antibody treatment was also able to reverse established inflammation, while thrombocytopenia induced by an anti-platelet antibody targeting the GPIIbIIIa platelet antigen, could not mediate this effect. While CD44 antibody-induced thrombocytopenia may contribute to some of its therapeutic effect against the initiation of arthritis, for established disease there are likely other mechanisms contributing to its efficacy. Humans are not known to express CD44 on platelets, and are therefore unlikely to develop thrombocytopenia after CD44 antibody treatment. An understanding of the relationship between arthritis, thrombocytopenia, and CD44 antibody treatment remains critical for continued development of CD44 antibody therapeutics.
Collapse
Affiliation(s)
- Patrick J. Mott
- Keenan Research Centre in the Li Ka Shing Knowledge Institute of St. Michael’s Hospital, Toronto, Ontario, Canada
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Alan H. Lazarus
- The Canadian Blood Services, Toronto, Ontario, Canada
- Keenan Research Centre in the Li Ka Shing Knowledge Institute of St. Michael’s Hospital, Toronto, Ontario, Canada
- Departments of Medicine University of Toronto, Toronto, Ontario, Canada
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
121
|
Liu D, Okwor I, Mou Z, Beverley SM, Uzonna JE. Deficiency of Leishmania phosphoglycans influences the magnitude but does not affect the quality of secondary (memory) anti-Leishmania immunity. PLoS One 2013; 8:e66058. [PMID: 23776605 PMCID: PMC3679009 DOI: 10.1371/journal.pone.0066058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 05/02/2013] [Indexed: 12/22/2022] Open
Abstract
Despite inducing very low IFN-γ response and highly attenuated in vivo, infection of mice with phosphoglycan (PG) deficient Leishmania major (lpg2-) induces protection against virulent L. major challenge. Here, we show that mice infected with lpg2- L. major generate Leishmania-specific memory T cells. However, in vitro and in vivo proliferation, IL-10 and IFN-γ production by lpg2- induced memory cells were impaired in comparison to those induced by wild type (WT) parasites. Interestingly, TNF recall response was comparable to WT infected mice. Despite the impaired proliferation and IFN-γ response, lpg2- infected mice were protected against virulent L. major challenge and their T cells mediated efficient infection-induced immunity. In vivo depletion and neutralization studies with mAbs demonstrated that lpg2- L. major-induced resistance was strongly dependent on IFN-γ, but independent of TNF and CD8+ T cells. Collectively, these data show that the effectiveness of secondary anti-Leishmania immunity depends on the quality (and not the magnitude) of IFN-γ response. These observations provide further support for consideration of lpg2- L. major as a live-attenuated candidate for leishmanization in humans since it protects strongly against virulent challenge, without inducing pathology in infected animals.
Collapse
Affiliation(s)
- Dong Liu
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Ifeoma Okwor
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Zhirong Mou
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Stephen M. Beverley
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Jude E. Uzonna
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada
- * E-mail:
| |
Collapse
|
122
|
Murai T, Sato C, Sato M, Nishiyama H, Suga M, Mio K, Kawashima H. Membrane cholesterol modulates the hyaluronan-binding ability of CD44 in T lymphocytes and controls rolling under shear flow. J Cell Sci 2013; 126:3284-94. [PMID: 23729731 DOI: 10.1242/jcs.120014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The adhesion of circulating lymphocytes to the surface of vascular endothelial cells is important for their recruitment from blood to secondary lymphoid organs and to inflammatory sites. CD44 is a key adhesion molecule for this interaction and its ligand-binding ability is tightly regulated. Here we show that the hyaluronan-binding ability of CD44 in T cells is upregulated by the depletion of membrane cholesterol with methyl-β-cyclodextrin (MβCD), which disintegrates lipid rafts, i.e. cholesterol- and sphingolipid-enriched membrane microdomains. Increasing concentrations of MβCD led to a dose-dependent decrease in cellular cholesterol content and to upregulation of hyaluronan binding. Additionally, a cholesterol-binding agent filipin also increased hyaluronan binding. Cholesterol depletion caused CD44 to be dispersed from cholesterol-enriched membrane microdomains. Cholesterol depletion also increased the number of cells undergoing rolling adhesion under physiological flow conditions. Our results suggest that the ligand-binding ability of CD44 is governed by its cholesterol-dependent allocation to membrane microdomains at the cell surface. These findings provide novel insight into the regulation of T cell adhesion under blood flow.
Collapse
Affiliation(s)
- Toshiyuki Murai
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | | | |
Collapse
|
123
|
Pluchino S, Cossetti C. How stem cells speak with host immune cells in inflammatory brain diseases. Glia 2013; 61:1379-401. [PMID: 23633288 DOI: 10.1002/glia.22500] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/01/2013] [Indexed: 12/14/2022]
Abstract
Advances in stem cell biology have raised great expectations that diseases and injuries of the central nervous system (CNS) may be ameliorated by the development of non-hematopoietic stem cell medicines. Yet, the application of adult stem cells as CNS therapeutics is challenging and the interpretation of some of the outcomes ambiguous. In fact, the initial idea that stem cell transplants work only via structural cell replacement has been challenged by the observation of consistent cellular signaling between the graft and the host. Cellular signaling is the foundation of coordinated actions and flexible responses, and arises via networks of exchanging and interacting molecules that transmit patterns of information between cells. Sustained stem cell graft-to-host communication leads to remarkable trophic effects on endogenous brain cells and beneficial modulatory actions on innate and adaptive immune responses in vivo, ultimately promoting the healing of the injured CNS. Among a number of adult stem cell types, mesenchymal stem cells (MSCs) and neural stem/precursor cells (NPCs) are being extensively investigated for their ability to signal to the immune system upon transplantation in experimental CNS diseases. Here, we focus on the main cellular signaling pathways that grafted MSCs and NPCs use to establish a therapeutically relevant cross talk with host immune cells, while examining the role of inflammation in regulating some of the bidirectionality of these communications. We propose that the identification of the players involved in stem cell signaling might contribute to the development of innovative, high clinical impact therapeutics for inflammatory CNS diseases.
Collapse
Affiliation(s)
- Stefano Pluchino
- Department of Clinical Neurosciences, John van Geest Cambridge Centre for Brain Repair and Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, United Kingdom.
| | | |
Collapse
|
124
|
CD44 targeting magnetic glyconanoparticles for atherosclerotic plaque imaging. Pharm Res 2013; 31:1426-37. [PMID: 23568520 DOI: 10.1007/s11095-013-1021-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 03/04/2013] [Indexed: 12/21/2022]
Abstract
PURPOSE The cell surface adhesion molecule CD44 plays important roles in the initiation and development of atherosclerotic plaques. We aim to develop nanoparticles that can selectively target CD44 for the non-invasive detection of atherosclerotic plaques by magnetic resonance imaging. METHODS Magnetic glyconanoparticles with hyaluronan immobilized on the surface have been prepared. The binding of these nanoparticles with CD44 was evaluated in vitro by enzyme linked immunosorbent assay, flow cytometry and confocal microscopy. In vivo magnetic resonance imaging of plaques was performed on an atherosclerotic rabbit model. RESULTS The magnetic glyconanoparticles can selectively bind CD44. In T2* weighted magnetic resonance images acquired in vivo, significant contrast changes in aorta walls were observed with a very low dose of the magnetic nanoparticles, allowing the detection of atherosclerotic plaques. Furthermore, imaging could be performed without significant delay after probe administration. The selectivity of hyaluronan nanoparticles in plaque imaging was established by several control experiments. CONCLUSIONS Magnetic nanoparticles bearing surface hyaluronan enabled the imaging of atherosclerotic plaques in vivo by magnetic resonance imaging. The low dose of nanoparticles required, the possibility to image without much delay and the high biocompatibility are the advantages of these nanoparticles as contrast agents for plaque imaging.
Collapse
|
125
|
Jokela TA, Kuokkanen J, Kärnä R, Pasonen-Seppänen S, Rilla K, Kössi J, Laato M, Tammi RH, Tammi MI. Mannose reduces hyaluronan and leukocytes in wound granulation tissue and inhibits migration and hyaluronan-dependent monocyte binding. Wound Repair Regen 2013; 21:247-55. [DOI: 10.1111/wrr.12022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 11/26/2012] [Indexed: 01/04/2023]
Affiliation(s)
- Tiina A. Jokela
- Institute of Biomedicine; University of Eastern Finland; Kuopio
| | - Jukka Kuokkanen
- Institute of Biomedicine; University of Eastern Finland; Kuopio
| | - Riikka Kärnä
- Institute of Biomedicine; University of Eastern Finland; Kuopio
| | | | - Kirsi Rilla
- Institute of Biomedicine; University of Eastern Finland; Kuopio
| | - Jyrki Kössi
- Department of Surgery; Päijät-Häme Central Hospital; Lahti
| | - Matti Laato
- Department of Surgery; Turku University Hospital; Turku; Finland
| | - Raija H. Tammi
- Institute of Biomedicine; University of Eastern Finland; Kuopio
| | - Markku I. Tammi
- Institute of Biomedicine; University of Eastern Finland; Kuopio
| |
Collapse
|
126
|
Mou Z, Muleme HM, Liu D, Jia P, Okwor IB, Kuriakose SM, Beverley SM, Uzonna JE. Parasite-derived arginase influences secondary anti-Leishmania immunity by regulating programmed cell death-1-mediated CD4+ T cell exhaustion. THE JOURNAL OF IMMUNOLOGY 2013; 190:3380-9. [PMID: 23460745 DOI: 10.4049/jimmunol.1202537] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The breakdown of L-arginine to ornithine and urea by host arginase supports Leishmania proliferation in macrophages. Studies using arginase-null mutants show that Leishmania-derived arginase plays an important role in disease pathogenesis. We investigated the role of parasite-derived arginase in secondary (memory) anti-Leishmania immunity in the resistant C57BL/6 mice. We found that C57BL/6 mice infected with arginase-deficient (arg(-)) L. major failed to completely resolve their lesion and maintained chronic pathology after 16 wk, a time when the lesion induced by wild-type L. major is completely resolved. This chronic disease was associated with impaired Ag-specific proliferation and IFN-γ production, a concomitant increase in programmed cell death-1 (PD-1) expression on CD4(+) T cells, and failure to induce protection against secondary L. major challenge. Treatment with anti-PD-1 mAb restored T cell proliferation and IFN-γ production in vitro and led to complete resolution of chronic lesion in arg(-) L. major-infected mice. These results show that infection with arg(-) L. major results in chronic disease due in part to PD-1-mediated clonal exhaustion of T cells, suggesting that parasite-derived arginase contributes to the overall quality of the host immune response and subsequent disease outcome in L. major-infected mice. They also indicate that persistent parasites alone do not regulate the quality of secondary anti-Leishmania immunity in mice and that the quality of the primary immune response may be playing a hitherto unrecognized dominant role in this process.
Collapse
Affiliation(s)
- Zhirong Mou
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | | | | | | | | | | | | | | |
Collapse
|
127
|
Deboux C, Ladraa S, Cazaubon S, Ghribi-Mallah S, Weiss N, Chaverot N, Couraud PO, Evercooren ABV. Overexpression of CD44 in neural precursor cells improves trans-endothelial migration and facilitates their invasion of perivascular tissues in vivo. PLoS One 2013; 8:e57430. [PMID: 23468987 PMCID: PMC3585392 DOI: 10.1371/journal.pone.0057430] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 01/22/2013] [Indexed: 02/02/2023] Open
Abstract
Neural precursor (NPC) based therapies are used to restore neurons or oligodendrocytes and/or provide neuroprotection in a large variety of neurological diseases. In multiple sclerosis models, intravenously (i.v) -delivered NPCs reduced clinical signs via immunomodulation. We demonstrated recently that NPCs were able to cross cerebral endothelial cells in vitro and that the multifunctional signalling molecule, CD44 involved in trans-endothelial migration of lymphocytes to sites of inflammation, plays a crucial role in extravasation of syngeneic NPCs. In view of the role of CD44 in NPCs trans-endothelial migration in vitro, we questioned presently the benefit of CD44 overexpression by NPCs in vitro and in vivo, in EAE mice. We show that overexpression of CD44 by NPCs enhanced over 2 folds their trans-endothelial migration in vitro, without impinging on the proliferation or differentiation potential of the transduced cells. Moreover, CD44 overexpression by NPCs improved significantly their elongation, spreading and number of filopodia over the extracellular matrix protein laminin in vitro. We then tested the effect of CD44 overexpression after i.v. delivery in the tail vein of EAE mice. CD44 overexpression was functional invivo as it accelerated trans-endothelial migration and facilitated invasion of HA expressing perivascular sites. These in vitro and in vivo data suggest that CD44 may be crucial not only for NPC crossing the endothelial layer but also for facilitating invasion of extravascular tissues.
Collapse
Affiliation(s)
- Cyrille Deboux
- Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l’Institut du Cerveau et de la Moelle Epinière, UMR-S975, Paris, France
- Inserm, U 975, Paris, France
- CNRS, UMR 7225, Paris, France
| | - Sophia Ladraa
- Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l’Institut du Cerveau et de la Moelle Epinière, UMR-S975, Paris, France
- Inserm, U 975, Paris, France
- CNRS, UMR 7225, Paris, France
| | - Sylvie Cazaubon
- Inserm, U1016, Institut Cochin, Paris, France
- CNRS (UMR8104), Paris Descartes, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Siham Ghribi-Mallah
- Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l’Institut du Cerveau et de la Moelle Epinière, UMR-S975, Paris, France
- Inserm, U 975, Paris, France
- CNRS, UMR 7225, Paris, France
| | - Nicolas Weiss
- Inserm, U1016, Institut Cochin, Paris, France
- CNRS (UMR8104), Paris Descartes, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Nathalie Chaverot
- Inserm, U1016, Institut Cochin, Paris, France
- CNRS (UMR8104), Paris Descartes, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Pierre Olivier Couraud
- Inserm, U1016, Institut Cochin, Paris, France
- CNRS (UMR8104), Paris Descartes, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Anne Baron-Van Evercooren
- Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l’Institut du Cerveau et de la Moelle Epinière, UMR-S975, Paris, France
- Inserm, U 975, Paris, France
- CNRS, UMR 7225, Paris, France
- Assitance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Fédération de Neurologie
- * E-mail:
| |
Collapse
|
128
|
Flynn KM, Michaud M, Madri JA. CD44 deficiency contributes to enhanced experimental autoimmune encephalomyelitis: a role in immune cells and vascular cells of the blood-brain barrier. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:1322-36. [PMID: 23416161 DOI: 10.1016/j.ajpath.2013.01.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 11/27/2012] [Accepted: 01/03/2013] [Indexed: 12/19/2022]
Abstract
Adhesion molecule CD44 is expressed by multiple cell types and is implicated in various cellular and immunological processes. In this study, we examined the effect of global CD44 deficiency on myelin oligodendrocyte glycoprotein peptide (MOG)-induced experimental autoimmune encephalomyelitis (EAE), a murine model of multiple sclerosis. Compared to C57BL/6 wild-type mice, CD44-deficient mice presented with greater disease severity, increased immune cell numbers in the central nervous system, and increased anti-MOG antibody and proinflammatory cytokine production, especially those associated with T helper 17 (Th17) cells. Further, decreased numbers of peripheral CD4(+)CD25(+)FoxP3(+) regulatory T cells (Tregs) were observed in CD44-knockout mice throughout the disease course. CD44-knockout CD4 T cells exhibited reduced transforming growth factor-β receptor type I (TGF-β RI) expression that did not impart a defect in Treg polarization in vitro, but did correlate with enhanced Th17 polarization in vitro. Further, EAE in bone marrow-chimeric animals suggested CD44 expression on both circulating and noncirculating cells limited disease severity. Endothelial expression of CD44 limited T-cell adhesion to and transmigration through murine endothelial monolayers in vitro. Importantly, we also identified increased permeability of the blood-brain barrier in vivo in CD44-deficient mice before and following immunization. These data suggest that CD44 has multiple protective roles in EAE, with effects on cytokine production, T-cell differentiation, T-cell-endothelial cell interactions, and blood-brain barrier integrity.
Collapse
MESH Headings
- Animals
- Blood-Brain Barrier/immunology
- Blood-Brain Barrier/metabolism
- Blood-Brain Barrier/pathology
- Bone Marrow Cells/metabolism
- Bone Marrow Cells/pathology
- Cell Adhesion
- Cell Movement
- Cell Polarity
- Chimera
- Encephalomyelitis, Autoimmune, Experimental/complications
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Gene Deletion
- Hyaluronan Receptors/metabolism
- Inflammation/complications
- Inflammation/pathology
- Inflammation Mediators/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Permeability
- Protein Serine-Threonine Kinases/metabolism
- Receptor, Transforming Growth Factor-beta Type I
- Receptors, Transforming Growth Factor beta/metabolism
- Stromal Cells/metabolism
- Stromal Cells/pathology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/pathology
Collapse
Affiliation(s)
- Kelly M Flynn
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06520-8023, USA
| | | | | |
Collapse
|
129
|
Nagano O, Okazaki S, Saya H. Redox regulation in stem-like cancer cells by CD44 variant isoforms. Oncogene 2013; 32:5191-8. [PMID: 23334333 DOI: 10.1038/onc.2012.638] [Citation(s) in RCA: 207] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 12/02/2012] [Accepted: 12/03/2012] [Indexed: 12/18/2022]
Abstract
Increasing evidence indicates that several types of solid tumor are hierarchically organized and sustained by a distinct population of cancer stem cells (CSCs). CSCs possess enhanced mechanisms of protection from stress induced by reactive oxygen species (ROS) that render them resistant to chemo- and radiotherapy. Expression of CD44, especially variant isoforms (CD44v) of this major CSC marker, contributes to ROS defense through upregulation of the synthesis of reduced glutathione (GSH), the primary intracellular antioxidant. CD44v interacts with and stabilizes xCT, a subunit of the cystine-glutamate transporter xc(-), and thereby promotes cystine uptake for GSH synthesis. Given that cancer cells are often exposed to high levels of ROS during tumor progression, the ability to avoid the consequences of such exposure is required for cancer cell survival and propagation in vivo. CSCs, in which defense against ROS is enhanced by CD44v are thus thought to drive tumor growth, chemoresistance and metastasis. Therapy targeted to the CD44v-xCT system may therefore impair the ROS defense ability of CSCs and thereby sensitize them to currently available treatments.
Collapse
Affiliation(s)
- O Nagano
- Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | | | | |
Collapse
|
130
|
Winkler CW, Foster SC, Itakura A, Matsumoto SG, Asari A, McCarty OJT, Sherman LS. Hyaluronan oligosaccharides perturb lymphocyte slow rolling on brain vascular endothelial cells: implications for inflammatory demyelinating disease. Matrix Biol 2013; 32:160-8. [PMID: 23333375 DOI: 10.1016/j.matbio.2013.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 12/31/2012] [Accepted: 01/02/2013] [Indexed: 12/21/2022]
Abstract
Inflammatory demyelinating diseases like multiple sclerosis are characterized by mononuclear cell infiltration into the central nervous system. The glycosaminoglycan hyaluronan and its receptor, CD44, are implicated in the initiation and progression of a mouse model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE). Digestion of hyaluronan tethered to brain vascular endothelial cells by a hyaluronidase blocks the slow rolling of lymphocytes along activated brain vascular endothelial cells and delays the onset of EAE. These effects could be due to the elimination of hyaluronan or the generation of hyaluronan digestion products that influence lymphocytes or endothelial cells. Here, we found that hyaluronan dodecasaccharides impaired activated lymphocyte slow rolling on brain vascular endothelial cells when applied to lymphocytes but not to the endothelial cells. The effects of hyaluronan dodecasaccharides on lymphocyte rolling were independent of CD44 and a receptor for degraded hyaluronan, Toll-like receptor-4. Subcutaneous injection of hyaluronan dodecasaccharides or tetrasaccharides delayed the onset of EAE in a manner similar to subcutaneous injection of hyaluronidase. Hyaluronan oligosaccharides can therefore act directly on lymphocytes to modulate the onset of inflammatory demyelinating disease.
Collapse
Affiliation(s)
- Clayton W Winkler
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Ave., Beaverton, OR 97006, USA
| | | | | | | | | | | | | |
Collapse
|
131
|
Ayars AG, Altman LC, Potter-Perigo S, Radford K, Wight TN, Nair P. Sputum hyaluronan and versican in severe eosinophilic asthma. Int Arch Allergy Immunol 2012; 161:65-73. [PMID: 23257685 DOI: 10.1159/000343031] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 08/27/2012] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND We examined levels of hyaluronan, a matrix glycosaminoglycan and versican, a matrix proteoglycan, in the sputum of asthmatics treated with mepolizumab (anti-IL-5 monoclonal antibody) versus placebo to evaluate the utility of these measurements as possible biomarkers of asthma control and airway remodeling. METHODS Patients with severe, prednisone-dependent asthma received either mepolizumab or placebo as described in a previously published randomized, double-blind, placebo-controlled study. We measured hyaluronan and versican levels by enzyme-linked immunosorbent assay in sputum collected before and after the 16-week treatment phase. Patients underwent a predefined prednisone tapering schedule if they remained exacerbation free, and sputum eosinophil percentage, asthma control questionnaire (ACQ) and spirometry were monitored. RESULTS After 6 months of mepolizumab therapy and prednisone tapering, there was a significant increase in sputum hyaluronan in the placebo group compared with baseline (p = 0.003). In contrast, there was a significant decrease in sputum hyaluronan in the active treatment group compared with placebo (p = 0.007), which correlated with improvements in percent forced expiratory volume in 1 s (FEV1%) (p = 0.001) and ACQ scores (p = 0.009) as well as a decrease in sputum eosinophils (p = 0.02). There was a nonsignificant increase in sputum versican in the placebo group (p = 0.16), a decrease in the mepolizumab group (p = 0.13) and a significant inverse correlation between versican reduction and FEV1% improvement (p = 0.03). CONCLUSIONS Sputum hyaluronan values are reduced with mepolizumab therapy and correlate with improved clinical and spirometry values, suggesting this measurement may serve as a noninvasive biomarker of asthma control.
Collapse
Affiliation(s)
- Andrew G Ayars
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Wash., USA.
| | | | | | | | | | | |
Collapse
|
132
|
Diz R, Garland A, Vincent BG, Johnson MC, Spidale N, Wang B, Tisch R. Autoreactive effector/memory CD4+ and CD8+ T cells infiltrating grafted and endogenous islets in diabetic NOD mice exhibit similar T cell receptor usage. PLoS One 2012; 7:e52054. [PMID: 23251685 PMCID: PMC3522632 DOI: 10.1371/journal.pone.0052054] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 11/12/2012] [Indexed: 12/21/2022] Open
Abstract
Islet transplantation provides a “cure” for type 1 diabetes but is limited in part by recurrent autoimmunity mediated by β cell-specific CD4+ and CD8+ T cells. Insight into the T cell receptor (TCR) repertoire of effector T cells driving recurrent autoimmunity would aid the development of immunotherapies to prevent islet graft rejection. Accordingly, we used a multi-parameter flow cytometry strategy to assess the TCR variable β (Vβ) chain repertoires of T cell subsets involved in autoimmune-mediated rejection of islet grafts in diabetic NOD mouse recipients. Naïve CD4+ and CD8+ T cells exhibited a diverse TCR repertoire, which was similar in all tissues examined in NOD recipients including the pancreas and islet grafts. On the other hand, the effector/memory CD8+ T cell repertoire in the islet graft was dominated by one to four TCR Vβ chains, and specific TCR Vβ chain usage varied from recipient to recipient. Similarly, islet graft- infiltrating effector/memory CD4+ T cells expressed a limited number of prevalent TCR Vβ chains, although generally TCR repertoire diversity was increased compared to effector/memory CD8+ T cells. Strikingly, the majority of NOD recipients showed an increase in TCR Vβ12-bearing effector/memory CD4+ T cells in the islet graft, most of which were proliferating, indicating clonal expansion. Importantly, TCR Vβ usage by effector/memory CD4+ and CD8+ T cells infiltrating the islet graft exhibited greater similarity to the repertoire found in the pancreas as opposed to the draining renal lymph node, pancreatic lymph node, or spleen. Together these results demonstrate that effector/memory CD4+ and CD8+ T cells mediating autoimmune rejection of islet grafts are characterized by restricted TCR Vβ chain usage, and are similar to T cells that drive destruction of the endogenous islets.
Collapse
Affiliation(s)
- Ramiro Diz
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Alaina Garland
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Benjamin G. Vincent
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Mark C. Johnson
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Nicholas Spidale
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Bo Wang
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Roland Tisch
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
133
|
Kastenmüller W, Torabi-Parizi P, Subramanian N, Lämmermann T, Germain RN. A spatially-organized multicellular innate immune response in lymph nodes limits systemic pathogen spread. Cell 2012; 150:1235-48. [PMID: 22980983 DOI: 10.1016/j.cell.2012.07.021] [Citation(s) in RCA: 294] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 05/09/2012] [Accepted: 07/24/2012] [Indexed: 01/08/2023]
Abstract
The lymphatic network that transports interstitial fluid and antigens to lymph nodes constitutes a conduit system that can be hijacked by invading pathogens to achieve systemic spread unless dissemination is blocked in the lymph node itself. Here, we show that a network of diverse lymphoid cells (natural killer cells, γδ T cells, natural killer T cells, and innate-like CD8+ T cells) are spatially prepositioned close to lymphatic sinus-lining sentinel macrophages where they can rapidly and efficiently receive inflammasome-generated IL-18 and additional cytokine signals from the pathogen-sensing phagocytes. This leads to rapid IFNγ secretion by the strategically positioned innate lymphocytes, fostering antimicrobial resistance in the macrophage population. Interference with this innate immune response loop allows systemic spread of lymph-borne bacteria. These findings extend our understanding of the functional significance of cellular positioning and local intercellular communication within lymph nodes while emphasizing the role of these organs as highly active locations of innate host defense.
Collapse
Affiliation(s)
- Wolfgang Kastenmüller
- Lymphocyte Biology Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
134
|
Payne NL, Sun G, McDonald C, Layton D, Moussa L, Emerson-Webber A, Veron N, Siatskas C, Herszfeld D, Price J, Bernard CCA. Distinct immunomodulatory and migratory mechanisms underpin the therapeutic potential of human mesenchymal stem cells in autoimmune demyelination. Cell Transplant 2012; 22:1409-25. [PMID: 23057962 DOI: 10.3727/096368912x657620] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are efficacious in a variety of intractable diseases. While bone marrow (BM)-derived MSCs (BM-MSCs) have been widely investigated, MSCs from other tissue sources have also been shown to be effective in several autoimmune and inflammatory disorders. In the present study, we simultaneously assessed the therapeutic efficacy of human BM-MSCs, as well as MSCs isolated from adipose tissue (Ad-MSCs) and umbilical cord Wharton's jelly (UC-MSCs), in experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis (MS). Prior to in vivo experiments, we characterized the phenotype and function of all three MSC types. We show that BM-MSCs were more efficient at suppressing the in vitro proliferation of mitogen or antigen-stimulated T-cell responses compared to Ad-MSCs and UC-MSCs. Notably BM-MSCs induced the differential expression of cytokines from normal and stimulated T-cells. Paradoxically, intravenous transplantation of BM-MSCs into C57Bl/6 mice with chronic progressive EAE had a negligible effect on the disease course, even when multiple MSC injections were administered over a number of time points. In contrast, Ad-MSCs had the most significant impact on clinical and pathological disease outcomes in chronic progressive and relapsing-remitting EAE models. In vivo tracking studies revealed that Ad-MSCs were able to migrate to the central nervous system (CNS), a property that most likely correlated with their broader expression of homing molecules, while BM-MSCs were not detected in this anatomic region. Collectively, this comparative investigation demonstrates that transplanted Ad-MSCs play a significant role in tissue repair processes by virtue of their ability to suppress inflammation coupled with their enhanced ability to home to the injured CNS. Given the access and relatively ease for harvesting adipose tissue, these data further implicate Ad-MSCs as a cell therapeutic that may be used to treat MS patients.
Collapse
Affiliation(s)
- Natalie L Payne
- Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Winkler CW, Foster SC, Matsumoto SG, Preston MA, Xing R, Bebo BF, Banine F, Berny-Lang MA, Itakura A, McCarty OJT, Sherman LS. Hyaluronan anchored to activated CD44 on central nervous system vascular endothelial cells promotes lymphocyte extravasation in experimental autoimmune encephalomyelitis. J Biol Chem 2012; 287:33237-51. [PMID: 22865853 DOI: 10.1074/jbc.m112.356287] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The extravasation of lymphocytes across central nervous system (CNS) vascular endothelium is a key step in inflammatory demyelinating diseases including multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). The glycosaminoglycan hyaluronan (HA) and its receptor, CD44, have been implicated in this process but their precise roles are unclear. We find that CD44(-/-) mice have a delayed onset of EAE compared with wild type animals. Using an in vitro lymphocyte rolling assay, we find that fewer slow rolling (<1 μm/s) wild type (WT) activated lymphocytes interact with CD44(-/-) brain vascular endothelial cells (ECs) than with WT ECs. We also find that CD44(-/-) ECs fail to anchor HA to their surfaces, and that slow rolling lymphocyte interactions with WT ECs are inhibited when the ECs are treated with a pegylated form of the PH20 hyaluronidase (PEG-PH20). Subcutaneous injection of PEG-PH20 delays the onset of EAE symptoms by ~1 day and transiently ameliorates symptoms for 2 days following disease onset. These improved symptoms correspond histologically to degradation of HA in the lumen of CNS blood vessels, decreased demyelination, and impaired CD4(+) T-cell extravasation. Collectively these data suggest that HA tethered to CD44 on CNS ECs is critical for the extravasation of activated T cells into the CNS providing new insight into the mechanisms promoting inflammatory demyelinating disease.
Collapse
Affiliation(s)
- Clayton W Winkler
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon 97006, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
CD44 as a novel target for treatment of staphylococcal enterotoxin B-induced acute inflammatory lung injury. Clin Immunol 2012; 144:41-52. [PMID: 22659034 DOI: 10.1016/j.clim.2012.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Revised: 05/01/2012] [Accepted: 05/03/2012] [Indexed: 01/07/2023]
|
137
|
Yang C, Liang H, Zhao H, Jiang X. CD44 variant isoforms are specifically expressed on peripheral blood lymphocytes from asthmatic patients. Exp Ther Med 2012; 4:79-83. [PMID: 23060926 DOI: 10.3892/etm.2012.543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 03/22/2012] [Indexed: 01/22/2023] Open
Abstract
Asthma is a disease characterized by chronic airway inflammation, and Th2 cells play a critical role in initiating and sustaining asthmatic inflammation. It has been shown that CD44 expressed on CD4(+) T cells plays a critical role in the accumulation of antigen-specific Th2 cells in the development of airway hyperresponsiveness induced by antigen challenge in the airways. The aim of this study was to determine whether there are specific CD44 variant isoforms (CD44v) expressed on lymphocytes from asthmatic patients. We collected whole blood samples from 103 normal subjects, 165 subjects with asthma and 104 with pneumonia. Peripheral blood lymphocyte isolation was performed, and total RNA was extracted from the isolated lymphocytes, using nested PCR for specific CD44v amplification on lymphocytes. Demographic variables were analyzed using linear regression in order to determine whether the expression of CD44v was correlated with these demographic features. The nested PCR results revealed that CD44v5 was expressed by 55.2% of asthma patients, which was significantly higher than levels of expression in the other groups. Lower percentages of individuals in the normal subject group exhibited expression of CD44v5 and CD44v6. The data demonstrated that the percentage of individuals in the pneumonia group expressing CD44v5 was 29.0%, but a higher percentage of these patients expressed CD44v6. CD44v5 expression was positively correlated with IgE levels (p=0.032) in the asthmatic patient group, and CD44v6 was significantly positively correlated with the neutrophil count (p<0.05). CD44v5 was expressed by a higher proportion of asthmatic patients than other subjects and thus may play an important role in the pathogenesis of asthma. These findings may offer a new target for the diagnosis and treatment of asthma and may also provide insights into the mechanisms of asthma development.
Collapse
Affiliation(s)
- Chun Yang
- Department of Clinical Biochemistry Laboratory, The 4th Affiliated Hospital of Harbin Medical University
| | | | | | | |
Collapse
|
138
|
Teunissen PF, Horrevoets AJ, van Royen N. The coronary collateral circulation: Genetic and environmental determinants in experimental models and humans. J Mol Cell Cardiol 2012; 52:897-904. [DOI: 10.1016/j.yjmcc.2011.09.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 08/25/2011] [Accepted: 09/12/2011] [Indexed: 12/27/2022]
|
139
|
Hirose Y, Saijou E, Sugano Y, Takeshita F, Nishimura S, Nonaka H, Chen YR, Sekine K, Kido T, Nakamura T, Kato S, Kanke T, Nakamura K, Nagai R, Ochiya T, Miyajima A. Inhibition of Stabilin-2 elevates circulating hyaluronic acid levels and prevents tumor metastasis. Proc Natl Acad Sci U S A 2012; 109:4263-8. [PMID: 22371575 PMCID: PMC3306694 DOI: 10.1073/pnas.1117560109] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hyaluronic acid (HA) has been implicated in the proliferation and metastasis of tumor cells. However, most previous studies were conducted on extracellular matrix or pericellular HA, and the role of circulating HA in vivo has not been studied. HA is rapidly cleared from the bloodstream. The scavenger receptor Stabilin-2 (Stab2) is considered a major clearance receptor for HA. Here we report a dramatic elevation in circulating HA levels in Stab2-deficient mice without any overt phenotype. Surprisingly, the metastasis of B16F10 melanoma cells to the lungs was markedly suppressed in the Stab2-deficient mice, whereas cell proliferation was not affected. Furthermore, administration of an anti-Stab2 antibody in Stab2(+) mice elevated serum HA levels and prevented the metastasis of melanoma to the lung, and also suppressed spontaneous metastasis of mammary tumor and human breast tumor cells inoculated in the mammary gland. Administration of the antibody or high-dose HA in mice blocked the lodging of melanoma cells to the lungs. Furthermore, HA at high concentrations inhibited the rolling/tethering of B16 cells to lung endothelial cells. These results suggest that blocking Stab2 function prevents tumor metastasis by elevating circulating HA levels. Stab2 may be a potential target in antitumor therapy.
Collapse
Affiliation(s)
| | - Eiko Saijou
- Laboratory of Cell Growth and Differentiation and
| | | | - Fumitaka Takeshita
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Satoshi Nishimura
- Department of Cardiovascular Medicine
- Translational Systems Biology and Medicine Initiative, and
| | | | | | | | | | - Takashi Nakamura
- Laboratory of Nuclear Signaling, Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan
| | - Shigeaki Kato
- Laboratory of Nuclear Signaling, Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan
| | | | | | - Ryozo Nagai
- Department of Cardiovascular Medicine
- Translational Systems Biology and Medicine Initiative, and
- Global Center of Excellence Program, Comprehensive Center of Education and Research for Chemical Biology of the Diseases, University of Tokyo, Tokyo 113-8655, Japan; and
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | | |
Collapse
|
140
|
Byun EH, Kim WS, Kim JS, Jung ID, Park YM, Kim HJ, Cho SN, Shin SJ. Mycobacterium tuberculosis Rv0577, a novel TLR2 agonist, induces maturation of dendritic cells and drives Th1 immune response. FASEB J 2012; 26:2695-711. [PMID: 22415304 DOI: 10.1096/fj.11-199588] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis constitutes an ongoing threat to global health. An antigen that can induce dendritic cell (DC) maturation and lead to enhanced cellular immunity is crucial to the development of an effective TB vaccine. Here, we investigated the functional roles and the related signaling mechanism of the Rv0577 protein, a M. tuberculosis complex-restricted secreted protein involved in the methylglyoxal detoxification pathway. Rv0577 recognizes Toll-like receptor 2 (TLR2) and functionally induces DC maturation by augmenting the expression of cell surface molecules (CD80, CD86, and MHC class I and II) and proinflammatory cytokine production (TNF-α, IL-1β, IL-6, and IL-12p70) in DCs on MyD88-dependent signaling, mitogen-activated protein kinases, and nuclear factor κB signaling pathways. In addition, Rv0577-treated DCs activated naive T cells, effectively polarized CD4(+) and CD8(+) T cells to secrete IFN-γ and IL-2, and induced T-cell proliferation, indicating that this protein possibly contributes to Th1-polarization of the immune response. More important, unlike LPS, Rv0577-treated DCs specifically induced the proliferation of memory CD4(+)/CD8(+)CD44(high)CD62L(low) T cells in the spleen of M. tuberculosis-infected mice in a TLR2-dependent manner. Taken together, these findings suggest that Rv0577 may regulate innate and adaptive immunity by interacting with TLR2, a finding that could be helpful in the design of new TB vaccines.
Collapse
Affiliation(s)
- Eui-Hong Byun
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
141
|
Ouasti S, Kingham PJ, Terenghi G, Tirelli N. The CD44/integrins interplay and the significance of receptor binding and re-presentation in the uptake of RGD-functionalized hyaluronic acid. Biomaterials 2012; 33:1120-34. [DOI: 10.1016/j.biomaterials.2011.10.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 10/06/2011] [Indexed: 11/30/2022]
|
142
|
Mitogen-activated protein kinases mediate Mycobacterium tuberculosis–induced CD44 surface expression in monocytes. J Biosci 2012; 37:41-54. [DOI: 10.1007/s12038-011-9179-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
143
|
Ohta-Ogo K, Hao H, Ishibashi-Ueda H, Hirota S, Nakamura K, Ohe T, Ito H. CD44 expression in plexiform lesions of idiopathic pulmonary arterial hypertension. Pathol Int 2012; 62:219-25. [PMID: 22449225 DOI: 10.1111/j.1440-1827.2011.02779.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Plexiform lesions in pulmonary arteries are a characteristic histological feature for idiopathic pulmonary arterial hypertension (IPAH). The pathogenesis of the plexiform lesion is not fully understood, although it may be related to endothelial cell dysfunction and local inflammation. CD44 is a cell adhesion molecule and it is also involved in angiogenesis, endothelial cell proliferation and migration. The expression of CD44 was examined in lung plexiform lesions obtained from patients with IPAH (IPAH group, n= 7) and pulmonary arterial hypertension associated with atrial septal defect (ASD-PAH group, n= 4). Expression of CD44 was detected in 49 out of 52 plexiform lesions (93%) from all patients in the IPAH group, whereas 31 plexiform lesions obtained from the ASD-PAH group lacked CD44 positivity by immunohistochemistry. In the IPAH group, CD44 was localized in the endothelial cells of microvessels within plexiform lesions and activated T cells in and around the lesions. Furthermore, T cell infiltration and endothelial cell proliferation activity were prominent in the plexiform lesions of the IPAH group, compared to those of the ASD-PAH group. These findings suggest that CD44 and activated T cell infiltration play an important role in the development of plexiform lesions particularly in IPAH.
Collapse
Affiliation(s)
- Keiko Ohta-Ogo
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | | | | | | | | | | | | |
Collapse
|
144
|
Peng Y, Chen J, Shao W, Wang F, Dai H, Cheng P, Xia J, Wang F, Huang R, Zhu Q, Qi Z. Xenoreactive CD4+ memory T cells resist inhibition by anti-CD44 mAb and reject islet grafts via a Th2-dependent pathway. Xenotransplantation 2012; 18:252-61. [PMID: 21848543 DOI: 10.1111/j.1399-3089.2011.00646.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Memory T cells are a significant barrier to the induction of transplant tolerance. Our previous study demonstrated that multiple applications of anti-CD44 monoclonal antibody (mAb) could significantly inhibit CD4(+) memory T cells from mediating rejection of cardiac allografts. Now, we sought to explore the effect and mechanism of anti-CD44 mAb on the rejection of islet allografts and xenografts mediated by CD4(+) memory T cells. METHODS In this study, we first engrafted skin grafts of C57BL/6 (B6) mice or Dark Agouti (DA) rats onto BALB/c mice to induce donor-reactive memory T cells. We adoptively transferred purified CD4(+) memory T cells to BALB/c origin nude mice and then transplanted islet allografts and xenografts to produce the Allo-Tx and Xeno-Tx models, respectively. We subsequently administered multiple anti-CD44 mAb and observed changes in the survival times of the islet grafts. RESULTS In the Allo-Tx model, the mean survival time (MST) of the grafts was 7.7 days in the isotype group, and 20.3 days in the anti-CD44 group. In the Xeno-Tx model, the MST of the grafts was 7.2 days in the isotype group and 8.2 days in the anti-CD44 group. Compared with the isotype group, CD4(+) T cells on the grafts in the anti-CD44 group were significantly decreased in both the Allo-Tx and Xeno-Tx models, but the proportion of CD4(+) memory T cells in the spleens and draining lymph nodes of the recipient nude mice in the anti-CD44 group was significantly decreased in the Allo-Tx model, while it was increased in the Xeno-Tx model. The production of donor-specific IgG antibody in the anti-CD44 group did not vary in the Allo-Tx model, while it was markedly elevated in the Xeno-Tx model. Furthermore, the expression of interferon gamma in the anti-CD44 group was markedly decreased in both the Allo-Tx and Xeno-Tx models, while the expression of IL-4 in the anti-CD44 group was significantly increased only in the Xeno-Tx model. CONCLUSION Multiple applications of the anti-CD44 mAb could significantly inhibit donor-reactive CD4(+) memory T cells from rejecting grafts via a Th1-dependent pathway, but xenoreactive CD4(+) memory T cells can avoid the effects of anti-CD44 mAb to reject islet xenografts via a Th2-dependent pathway.
Collapse
Affiliation(s)
- Yuanzheng Peng
- Organ Transplantation Institute, Xiamen University, Xiamen City, Fujian Province, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Deiuliis JA, Kampfrath T, Zhong J, Oghumu S, Maiseyeu A, Chen LC, Sun Q, Satoskar AR, Rajagopalan S. Pulmonary T cell activation in response to chronic particulate air pollution. Am J Physiol Lung Cell Mol Physiol 2011; 302:L399-409. [PMID: 22160305 DOI: 10.1152/ajplung.00261.2011] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The purpose of this study was to investigate the effects of chronically inhaled particulate matter <2.5 μm (PM(2.5)) on inflammatory cell populations in the lung and systemic circulation. A prominent component of air pollution exposure is a systemic inflammatory response that may exaggerate chronic diseases such as atherosclerosis and insulin resistance. T cell response was measured in wild-type C57B/L6, Foxp3-green fluorescent protein (GFP) "knockin," and chemokine receptor 3 knockout (CXCR3(-/-)) mice following 24-28 wk of PM(2.5) or filtered air. Chronic PM(2.5) exposure resulted in increased CXCR3-expressing CD4(+) and CD8(+) T cells in the lungs, spleen, and blood with elevation in CD11c(+) macrophages in the lung and oxidized derivatives of 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphorylcholine in wild-type mice. CXCR3 deficiency decreased T cells in the lung. GFP(+) regulatory T cells increased with PM(2.5) exposure in the spleen and blood of Foxp3-GFP mice but were present at very low levels in the lung irrespective of PM(2.5) exposure. Mixed lymphocyte cultures using primary, PM(2.5)-treated macrophages demonstrated enhanced T cell proliferation. Our experiments indicate that PM(2.5) potentiates a proinflammatory Th1 response involving increased homing of CXCR3(+) T effector cells to the lung and modulation of systemic T cell populations.
Collapse
Affiliation(s)
- Jeffrey A Deiuliis
- Davis Heart & Lung Research Institute, The Ohio State University College of Medicine, Columbus, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Leukocyte ligands for endothelial selectins: specialized glycoconjugates that mediate rolling and signaling under flow. Blood 2011; 118:6743-51. [PMID: 22021370 DOI: 10.1182/blood-2011-07-343566] [Citation(s) in RCA: 410] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reversible interactions of glycoconjugates on leukocytes with P- and E-selectin on endothelial cells mediate tethering and rolling of leukocytes in inflamed vascular beds, the first step in their recruitment to sites of injury. Although selectin ligands on hematopoietic precursors have been identified, here we review evidence that PSGL-1, CD44, and ESL-1 on mature leukocytes are physiologic glycoprotein ligands for endothelial selectins. Each ligand has specialized adhesive functions during tethering and rolling. Furthermore, PSGL-1 and CD44 induce signals that activate the β2 integrin LFA-1 and promote slow rolling, whereas ESL-1 induces signals that activate the β2 integrin Mac-1 in adherent neutrophils. We also review evidence for glycolipids, CD43, L-selectin, and other glycoconjugates as potential physiologic ligands for endothelial selectins on neutrophils or lymphocytes. Although the physiologic characterization of these ligands has been obtained in mice, we also note reported similarities and differences with human selectin ligands.
Collapse
|
147
|
Rambaruth NDS, Dwek MV. Cell surface glycan-lectin interactions in tumor metastasis. Acta Histochem 2011; 113:591-600. [PMID: 21501858 DOI: 10.1016/j.acthis.2011.03.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 02/28/2011] [Accepted: 03/01/2011] [Indexed: 02/07/2023]
Abstract
The development of secondary cancers, metastases, requires that a multitude of events are completed in an ordered and sequential manner. This review focuses on the role of cell surface glycans and their binding partners in the metastatic process. A common feature of metastasis is that the steps require adhesive interactions; many of these are mediated by cell surface glycans and their interactions with endogenous carbohydrate binding proteins (lectins). Aberrant glycosylation is a key feature of malignant transformation and the glycans involved influence the adhesive interactions of cancer cells often providing favorable conditions for tumor dissemination. This review focuses on glycans on the cancer cell surface and their association with endogenous lectins. In particular, E-cadherin and siglec-mediated disaggregation of tumor cells from the primary tumor mass; integrins, laminin and CD44-mediated invasion and migration of tumor cells through the connective tissue; the involvement of heparan sulphate in tumor angiogenesis and C-/S-type lectin interactions with the vasculature. The potential role of glycans in cancer cell evasion of immune surveillance is considered.
Collapse
Affiliation(s)
- Neela D S Rambaruth
- Department of Molecular and Applied Biosciences, University of Westminster, London, United Kingdom
| | | |
Collapse
|
148
|
Katoh S, Kaminuma O, Hiroi T, Mori A, Ohtomo T, Maeda S, Shimizu H, Obase Y, Oka M. CD44 is critical for airway accumulation of antigen-specific Th2, but not Th1, cells induced by antigen challenge in mice. Eur J Immunol 2011; 41:3198-207. [PMID: 21874648 DOI: 10.1002/eji.201141521] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Revised: 07/03/2011] [Accepted: 08/09/2011] [Indexed: 01/29/2023]
Abstract
CD44 is a cell adhesion molecule involved in lymphocyte infiltration of inflamed tissues. We previously demonstrated that CD44 plays an important role in the development of airway inflammation in a murine model of allergic asthma. In this study, we investigated the role of CD44 expressed on CD4(+) T cells in the accumulation of T-helper type 2 (Th2) cells in the airway using CD44-deficient mice and anti-CD44 monoclonal antibodies. Antigen-induced Th2-mediated airway inflammation and airway hyperresponsiveness (AHR) in sensitized mice were reduced by CD44-deficiency. These asthmatic responses induced by the transfer of antigen-sensitized splenic CD4(+) T cells from CD44-deficient mice were weaker than those from WT mice. Lack of CD44 failed to induce AHR by antigen challenge. Expression level and hyaluronic acid receptor activity of CD44, as well as Neu1 sialidase expression on antigen-specific Th2 cells, were higher than those on antigen-specific Th1 cells. Anti-CD44 antibody preferentially suppressed the accumulation of those Th2 cells in the airway induced by antigen challenge. Our findings indicate that CD44 expressed on CD4(+) T cells plays a critical role in the accumulation of antigen-specific Th2 cells, but not Th1 cells, in the airway and in the development of AHR induced by antigen challenge.
Collapse
Affiliation(s)
- Shigeki Katoh
- Department of Respiratory Medicine, Kawasaki Medical School, Okayama, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Vercruysse KP. Hyaluronan: a Simple Molecule with Complex Character. RENEWABLE RESOURCES FOR FUNCTIONAL POLYMERS AND BIOMATERIALS 2011:261-291. [DOI: 10.1039/9781849733519-00261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
This review aims to summarize the properties and applications of hyaluronan, a naturally-occurring, anionic polysaccharide. It provides an overview of its physic chemical properties, biosynthesis and biodegradation. It includes a discussion of the principal hyaluronan-binding proteins studied thus far. The existence of such proteins underscores the importance of this polysaccharide in cell-biological processes like cancer, inflammation or wound healing and these properties are discussed. Finally, this review summarizes some of the applications of hyaluronan in medicine, biotechnology and cosmetics.
Collapse
Affiliation(s)
- Koen P. Vercruysse
- Tennessee State University Chemistry Department, 3500 John A. Merritt Blvd, Nashville, TN 37209 USA
| |
Collapse
|
150
|
Expression of CD44s and CD44v6 in lung cancer and their correlation with prognostic factors. Int J Biol Markers 2011; 26:50-7. [PMID: 21279958 DOI: 10.5301/jbm.2011.6291] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2010] [Indexed: 11/20/2022]
Abstract
BACKGROUND CD44, a transmembrane glycoprotein receptor, plays a major role in tumor progression and metastasis. OBJECTIVE To evaluate the expression of CD44 standard (CD44s) and its variant 6 (CD44v6) in normal and neoplastic lung tissue and correlate it with prognostic factors in lung cancer. METHODS The study included 52 non-small cell lung carcinomas (NSCLC) (21 squamous cell carcinomas and 31 adenocarcinomas), 15 small cell lung carcinomas (SCLC) and 8 carcinoid tumors. Expression of CD44s and CD44v6 was evaluated by immunohistochemistry and correlated with lung cancer prognostic factors. RESULTS All squamous cell carcinomas expressed both CD44s and CD44v6. Adenocarcinomas expressed CD44s in 39% of cases and CD44v6 in 45%. Carcinoid tumors expressed only CD44s in 88% of cases. All SCLCs were negative for both CD44s and CD44v6. A restricted panel consisting of CD44s and CD44v6 will discriminate NSCLC from SCLC with a sensitivity of 67% and a specificity of 100%. In adenocarcinoma CD44s expression was significantly correlated with lymph node metastases (p=0.007) while CD44v6 expression was more significantly associated with tumor size (p=0.0032). CONCLUSIONS CD44s and CD44v6 are expressed in certain types of lung cancer. In adenocarcinoma CD44s and CD44v6 expression is significantly correlated with lymph node metastases and tumor size.
Collapse
|