101
|
Ammar AS, Osman Y, Hendam AT, Hasen MA, Al Rubaish FA, Al Nujaidi DY, Al Abbas FM. A Method for Reconstruction of Severely Damaged Spinal Cord using Autologous Hematopoietic Stem Cells and Platelet-rich Protein as a Biological Scaffold. Asian J Neurosurg 2017; 12:681-690. [PMID: 29114283 PMCID: PMC5652095 DOI: 10.4103/ajns.ajns_351_16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Introduction: There have been attempts to alter the prognosis of severe spinal cord injury in different centers, but none of which have reliably altered the outcome. Some trials use stem cells (SCs) that produced widely differing results. We hereby add our experience in our center of a surgical reconstruction of the damaged spinal cord using a mixture of SCs and Platelet-Rich Protein (PRP) with fibrin coated as a biological scaffold. Materials and Methods: Four cases of severely damaged spinal cord have been operated for neurolysis and reconstruction of the spinal cord using SCs and platelet-rich protein (PRP) with fibrin coated harvested from the peripheral circulation of the patient. PRP serves to maintain the position of the SCs. One milliliter suspension contains an average of 2.8 × 106 of autologous hematopoietic SCs. Patients were intraoperatively monitored by somatosensory evoked potential, motor evoked potentials, and delta wave. They are clinically followed postoperatively and electromyogram was repeated every 2 weeks. Magnetic resonance imaging (MRI) was repeated regularly. The patients are followed up for a period between 2 and 3 years. Results: One patient demonstrated motor and objective sensory improvement (P = 0.05), two other patients reported subjective sensory improvement, and the fourth one remained without any improvement (P = 0.1). None of these patients demonstrated any sign of deterioration or complication either on the surgery or on implanting of the SCs. MRI clearly proved that the inserted biological scaffold remained in place of reconstruction. Conclusion: SCs may play a role in restoring spinal cord functions. However, the unsolved problems of the use of SCs and related ethical issues should be addressed.
Collapse
Affiliation(s)
- Ahmed Sabry Ammar
- Department of Neurosurgery, King Fahd University Hospital, Faculty of Medicine, University of Dammam, Al Khobar, Kingdom of Saudi Arabia
| | - Yasser Osman
- Department of Heamatology, King Fahd University Hospital, Faculty of Medicine, University of Dammam, Al Khobar, Kingdom of Saudi Arabia
| | - Ahmed Taher Hendam
- Department of Neurosurgery, King Fahd University Hospital, Faculty of Medicine, University of Dammam, Al Khobar, Kingdom of Saudi Arabia
| | - Mohammed Ahmed Hasen
- Department of Neurosurgery, King Fahd University Hospital, Faculty of Medicine, University of Dammam, Al Khobar, Kingdom of Saudi Arabia
| | - Fatma Abdullah Al Rubaish
- Department of Internal Medicine, King Fahd University Hospital, Faculty of Medicine, University of Dammam, Al Khobar, Kingdom of Saudi Arabia
| | - Danya Yaagoub Al Nujaidi
- Department of Internal Medicine, King Fahd University Hospital, Faculty of Medicine, University of Dammam, Al Khobar, Kingdom of Saudi Arabia
| | - Faisal Mishal Al Abbas
- Department of Neurosurgery, King Fahd University Hospital, Faculty of Medicine, University of Dammam, Al Khobar, Kingdom of Saudi Arabia
| |
Collapse
|
102
|
Sang JF, Shi XL, Han B, Huang T, Huang X, Ren HZ, Ding YT. Intraportal mesenchymal stem cell transplantation prevents acute liver failure through promoting cell proliferation and inhibiting apoptosis. Hepatobiliary Pancreat Dis Int 2016; 15:602-611. [PMID: 27919849 DOI: 10.1016/s1499-3872(16)60141-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Transplantation of mesenchymal stem cells (MSCs) has been regarded as a potential treatment for acute liver failure (ALF), but the optimal route was unknown. The present study aimed to explore the most effective MSCs transplantation route in a swine ALF model. METHODS The swine ALF model induced by intravenous injection of D-Gal was treated by the transplantation of swine MSCs through four routes including intraportal injection (InP group), hepatic intra-arterial injection (AH group), peripheral intravenous injection (PV group) and intrahepatic injection (IH group). The living conditions and survival time were recorded. Blood samples before and after MSCs transplantation were collected for the analysis of hepatic function. The histology of liver injury was interpreted and scored in terminal samples. Hepatic apoptosis was detected by TUNEL assay. Apoptosis and proliferation related protein expressions including cleaved caspase-3, survivin, AKT, phospho-AKT (Ser473), ERK and phospho-ERK (Tyr204) were analyzed by Western blotting. RESULTS The average survival time of each group was 10.7+/-1.6 days (InP), 6.0+/-0.9 days (AH), 4.7+/-1.4 days (PV), 4.3+/-0.8 days (IH), respectively, when compared with the average survival time of 3.8+/-0.8 days in the D-Gal group. The survival rates between the InP group and D-Gal group revealed a statistically significant difference (P<0.01). Pathological and biochemical analysis showed that liver damage was the worst in the D-Gal group, while less injury in the InP group. Histopathological scores revealed a significant decrease in the InP group (3.17+/-1.04, P<0.01) and AH group (8.17+/-0.76, P<0.05) as compared with that in the D-Gal group (11.50+/-1.32). The apoptosis rate in the InP group (25.0%+/-3.4%, P<0.01) and AH group (40.5%+/-1.0%, P<0.05) was lower than that in the D-Gal group (70.6%+/-8.5%). The expression of active caspase-3 was inhibited, while the expression of survivin, AKT, phospho-AKT (Ser473), ERK and phospho-ERK (Tyr204) was elevated in the InP group. CONCLUSIONS Intraportal injection was superior to other pathways for MSC transplantation. Intraportal MSC transplantation could improve liver function, inhibit apoptosis and prolong the survival time of swine with ALF. The transplanted MSCs may participate in liver regeneration via promoting cell proliferation and suppressing apoptosis during the initial stage of ALF.
Collapse
Affiliation(s)
- Jian-Feng Sang
- Department of General Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China.
| | | | | | | | | | | | | |
Collapse
|
103
|
Wang H, Li Y, Wu Q, Xu C, Liu Q. Combination of butylphthalide with umbilical mesenchymal stem cells for the treatment of delayed encephalopathy after carbon monoxide poisoning. Medicine (Baltimore) 2016; 95:e5412. [PMID: 27930518 PMCID: PMC5265990 DOI: 10.1097/md.0000000000005412] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Delayed encephalopathy after carbon monoxide (CO) poisoning (DEACMP) is still a clinical challenge. This study aimed to investigate the efficacy of combined therapy of mesenchymal stem cell (MSC) transplantation and butylphthalide in DEACMP patients.Forty-two DEACMP patients were treated with 1 of the 3 therapies: combined therapy of MSC transplantation and butylphthalide; MSC transplantation alone; or hyperbaric oxygen therapy. The MSCs were alternatively injected into the subarachnoid space and the carotid artery using a self-made high-pressure injector. The Mini-Mental State Examination and the Barthel index of activities of daily living were administered before the treatment, and at 1 month, 3 months, and 6 months after the treatment. Computed tomography and magnetic resonance imaging results before and after the treatment were compared.At 1 month, 3 months, and 6 months after the treatment, the Mini-Mental State Examination scores and the Barthl scores were significantly higher in patients with the combined therapy of MSC transplantation and butylphthalide than those in patients with MSC transplantation alone or hyperbaric oxygen therapy (all P < 0.0001). No significant adverse events occurred.The combination of MSC transplantation and butylphthalide is safe and effective in treating DEACMP.
Collapse
|
104
|
Liu ZZ, Wong ML, Griffiths LG. Effect of bovine pericardial extracellular matrix scaffold niche on seeded human mesenchymal stem cell function. Sci Rep 2016; 6:37089. [PMID: 27845391 PMCID: PMC5109049 DOI: 10.1038/srep37089] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/21/2016] [Indexed: 01/14/2023] Open
Abstract
Numerous studies have focused on generation of unfixed bovine pericardium (BP) extracellular matrix (ECM) for clinical application. However, the extent to which maintenance of native ECM niche is capable of directing behavior of repopulating cells remains relatively unexplored. By exploiting the sidedness of BP scaffolds (i.e., serous or fibrous surface), this study aims to determine the effect of ECM niche preservation on cellular repopulation using different scaffold generation methods. BP underwent either sodium dodecyl sulfate (SDS) decellularization or stepwise, solubilization-based antigen removal using amidosulfobetaine-14 (ASB-14). SDS scaffolds were toxic to repopulating human mesenchymal stem cells (hMSC). Scanning electron microscopy revealed distinct surface ultrastructure of ASB-14 scaffolds based on native BP sidedness. Basement membrane structures on the serous side stimulated hMSC cell monolayer formation, whereas fibrous side facilitated cell penetration into scaffold. Additionally, serous side seeding significantly increased hMSC adhesion and proliferation rate compared to the fibrous side. Furthermore, scaffold ECM niche stimulated sidedness dependent differential hMSC human leukocyte antigen expression, angiogenic and inflammatory cytokine secretion. This work demonstrates that ECM scaffold preparation method and preservation of BP side-based niches critically affects in vitro cell growth patterns and behavior, which has implications for use of such ECM biomaterials in clinical practice.
Collapse
Affiliation(s)
- Zhi Zhao Liu
- Department of Veterinary Medicine: Medicine and Epidemiology, University of California, Davis, One Shields Ave., Davis, CA 95616, USA
| | - Maelene L Wong
- Department of Veterinary Medicine: Medicine and Epidemiology, University of California, Davis, One Shields Ave., Davis, CA 95616, USA
| | - Leigh G Griffiths
- Department of Veterinary Medicine: Medicine and Epidemiology, University of California, Davis, One Shields Ave., Davis, CA 95616, USA
| |
Collapse
|
105
|
Hamooda M. Hepatocyte transplantation in children with liver cell failure. Electron Physician 2016; 8:3096-3101. [PMID: 27957309 PMCID: PMC5133034 DOI: 10.19082/3096] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 09/07/2016] [Indexed: 12/22/2022] Open
Abstract
Patients with hepatic failure and liver-based metabolic disorders require management which is both costly and complex. Hepatocyte transplantation has been very encouraging as an alternative to organ transplantation for liver disease treatment, and studies in rodents, show that transplants involving isolated liver cells can reverse hepatic failure, and correct various metabolic deficiencies of the liver. This 2016 review is based on a literature search using PubMed including original articles, reviews, cases and clinical guidelines. The search terms were “hepatocyte transplantation”, “liver transplantation”, “liver cell failure”, “metabolic liver disorders”, “orthotropic liver transplantation”, “hepatocytes” and “stem cell transplantation”. The goal of this review is to summarize the significance of hepatocyte transplantation, the sources of hepatocytes and the barriers of hepatocyte transplantation using a detailed review of literature. Our review shows that treatment of patients with liver disease by hepatocyte transplantation has expanded exponentially, especially for patients suffering from liver-based metabolic disorders. Once hepatocyte transplantation has been shown to effectively replace organ transplantation for a portion of patients with life-threatening liver metabolic diseases and those with liver failure it will make cell therapy effective and available for a broad population of patients with liver disorders.
Collapse
Affiliation(s)
- Mohamed Hamooda
- MRCPCH, Paediatrics Specialty Registrar, West Yorkshire and the Humber, United Kingdom
| |
Collapse
|
106
|
Vellasamy S, Tong CK, Azhar NA, Kodiappan R, Chan SC, Veerakumarasivam A, Ramasamy R. Human mesenchymal stromal cells modulate T-cell immune response via transcriptomic regulation. Cytotherapy 2016; 18:1270-83. [PMID: 27543068 DOI: 10.1016/j.jcyt.2016.06.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND AIMS Mesenchymal stromal cells (MSCs) have been identified as pan-immunosuppressant in various in vitro and in vivo inflammatory models. Although the immunosuppressive activity of MSCs has been explored in various contexts, the precise molecular signaling pathways that govern inhibitory functions remain poorly elucidated. METHODS By using a microarray-based global gene expression profiling system, this study aimed to decipher the underlying molecular pathways that may mediate the immunosuppressive activity of umbilical cord-derived MSCs (UC-MSCs) on activated T cells. RESULTS In the presence of UC-MSCs, the proliferation of activated T cells was suppressed in a dose-depended manner by cell-to-cell contact mode via an active cell-cycle arrest at the G0/G1 phase of the cell cycle. The microarray analysis revealed that particularly, IFNG, CXCL9, IL2, IL2RA and CCND3 genes were down-regulated, whereas IL11, VSIG4, GFA1, TIMP3 and BBC3 genes were up-regulated by UC-MSCs. The dysregulated gene clusters associated with immune-response-related ontologies, namely, lymphocyte proliferation or activation, apoptosis and cell cycle, were further analyzed. CONCLUSIONS Among the nine canonical pathways identified, three pathways (namely T-helper cell differentiation, cyclins and cell cycle regulation, and gap/tight junction signalling pathways) were highly enriched with these dysregulated genes. The pathways represent putative molecular pathways through which UC-MSCs elicit immunosuppressive activity toward activated T cells. This study provides a global snapshot of gene networks and pathways that contribute to the ability of UC-MSCs to suppress activated T cells.
Collapse
Affiliation(s)
- Shalini Vellasamy
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; Immunology Laboratory, Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Chih Kong Tong
- Immunology Laboratory, Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Nur Atiqah Azhar
- Centre for Bioinformatics, School of Data Sciences, Perdana University, Jalan MAEPS Perdana, Serdang, Selangor Darul Ehsan, Malaysia
| | - Radha Kodiappan
- Perdana University-Royal College of Surgeons in Ireland, Perdana University, Jalan MAEPS Perdana, Serdang, Selangor Darul Ehsan, Malaysia; Medical Genetics Laboratory, Genetics & Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia
| | - Soon Choy Chan
- Perdana University Graduate School of Medicine, Perdana University, Jalan MAEPS Perdana, Serdang, Selangor Darul Ehsan, Malaysia
| | - Abhi Veerakumarasivam
- Perdana University Graduate School of Medicine, Perdana University, Jalan MAEPS Perdana, Serdang, Selangor Darul Ehsan, Malaysia; Medical Genetics Laboratory, Genetics & Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia
| | - Rajesh Ramasamy
- Immunology Laboratory, Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; Stem Cell Research Laboratory, Genetics & Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
107
|
Silencing of hepatic fate-conversion factors induce tumorigenesis in reprogrammed hepatic progenitor-like cells. Stem Cell Res Ther 2016; 7:96. [PMID: 27460218 PMCID: PMC4962402 DOI: 10.1186/s13287-016-0349-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/02/2016] [Accepted: 06/21/2016] [Indexed: 11/17/2022] Open
Abstract
Background Several studies have reported the direct conversion of mouse fibroblasts to hepatocyte-like cells with different degrees of maturation by expression of hepatic fate-conversion factors. Methods We have used a combination of lentiviral vectors expressing hepatic fate-conversion factors with Oct4, Sox2, Klf4, and Myc to convert mouse embryonic fibroblasts into hepatic cells. Results We have generated hepatic cells with progenitor-like features (iHepL cells). iHepL cells displayed basic hepatocyte functions but failed to perform functions characteristic of mature hepatocytes such as significant Cyp450 or urea cycle activities. iHepL cells expressed multiple hepatic-specific transcription factors and functional genes characteristic of immature hepatocytes and cholangiocytes, as well as high levels of Foxl1, Cd24a, and Lgr5, specific markers of hepatic progenitor cells. When transplanted into partial hepatectomized and hepatic irradiated mice, they differentiated into hepatocytes and cholangiocytes. However, iHepL cells formed malignant non-teratoma cell aggregations in one out of five engrafted livers and five out of five xenografts assays. All the cells in these tumors had silenced key hepatic fate-conversion factors, and lost hepatic features. Conclusions This study highlights the dangers of using pluripotency factors in reprogramming strategies when fate-conversion factors are silenced in vivo, and urges us to perform extensive tumorigenic tests in reprogrammed cells. Electronic supplementary material The online version of this article (doi:10.1186/s13287-016-0349-5) contains supplementary material, which is available to authorized users.
Collapse
|
108
|
Sanges D, Simonte G, Di Vicino U, Romo N, Pinilla I, Nicolás M, Cosma MP. Reprogramming Müller glia via in vivo cell fusion regenerates murine photoreceptors. J Clin Invest 2016; 126:3104-16. [PMID: 27427986 DOI: 10.1172/jci85193] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 05/24/2016] [Indexed: 12/17/2022] Open
Abstract
Vision impairments and blindness caused by retinitis pigmentosa result from severe neurodegeneration that leads to a loss of photoreceptors, the specialized light-sensitive neurons that enable vision. Although the mammalian nervous system is unable to replace neurons lost due to degeneration, therapeutic approaches to reprogram resident glial cells to replace retinal neurons have been proposed. Here, we demonstrate that retinal Müller glia can be reprogrammed in vivo into retinal precursors that then differentiate into photoreceptors. We transplanted hematopoietic stem and progenitor cells (HSPCs) into retinas affected by photoreceptor degeneration and observed spontaneous cell fusion events between Müller glia and the transplanted cells. Activation of Wnt signaling in the transplanted HSPCs enhanced survival and proliferation of Müller-HSPC hybrids as well as their reprogramming into intermediate photoreceptor precursors. This suggests that Wnt signaling drives the reprogrammed cells toward a photoreceptor progenitor fate. Finally, Müller-HSPC hybrids differentiated into photoreceptors. Transplantation of HSPCs with activated Wnt functionally rescued the retinal degeneration phenotype in rd10 mice, a model for inherited retinitis pigmentosa. Together, these results suggest that photoreceptors can be generated by reprogramming Müller glia and that this approach may have potential as a strategy for reversing retinal degeneration.
Collapse
|
109
|
Fikry H, Gawad SA, Baher W. Therapeutic Potential of Bone Marrow-Derived Mesenchymal Stem Cells on Experimental Liver Injury Induced by Schistosoma mansoni: A Histological Study. Int J Stem Cells 2016; 9:96-106. [PMID: 27426091 PMCID: PMC4961109 DOI: 10.15283/ijsc.2016.9.1.96] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2015] [Indexed: 12/13/2022] Open
Abstract
Background and Objectives Bone marrow derived mesenchymal stem cells (BM-MSCs) have been proposed as effective treatment of many diseases owing to their unique ability to differentiate into other cell types in vivo. Schistosoma mansoni (S. mansoni) infection is characterized by hepatic granuloma formation around schistosome eggs at acute stage of infection, followed by hepatic fibrosis at chronic and advanced stages. Whether BM-MSCs have an ameliorative effect on hepatic tissue injury caused by S. mansoni infection or not, was inspected in the current study. Materials and Results Female Swiss Albino mice were divided into a control group and an experimental group. Half of control animals served as donors for bone marrow stem cells, and the other half was used to collect liver samples. Experimental group was injected with circariae of S. mansoni, and then subdivided into three subgroups; Subgroup B1, sacrificed after eight weeks of infection without treatment, subgroup B2, received BM-MSCs at the eighth week and sacrificed four weeks later, and subgroup B3, was untreated till the twelfth week of infection. Histological examination of liver samples showed the formation of granulomas and liver fibrosis which were extensive in subgroup B3. However, treated subgroup illustrated improvement of liver histology, signs of hepatocytes regeneration, and possible contribution of oval cell in the process of hepatic and biliary regeneration. Conclusion BM-MSCs decreased liver fibrosis and contributed to an increase in oval cells, generation of new hepatocytes and/or to the improvement of resident hepatocytes in S. mansoni infected mice.
Collapse
Affiliation(s)
- Heba Fikry
- Department of Histology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Sara Abdel Gawad
- Department of Histology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Walaa Baher
- Department of Histology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
110
|
Lee PH, Tu CT, Hsiao CC, Tsai MS, Ho CM, Cheng NC, Hung TM, Shih DTB. Antifibrotic Activity of Human Placental Amnion Membrane-Derived CD34+ Mesenchymal Stem/Progenitor Cell Transplantation in Mice With Thioacetamide-Induced Liver Injury. Stem Cells Transl Med 2016; 5:1473-1484. [PMID: 27405780 DOI: 10.5966/sctm.2015-0343] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 04/18/2016] [Indexed: 12/31/2022] Open
Abstract
: Liver fibrosis represents the end stage of chronic liver inflammatory diseases and is defined by the abnormal accumulation of extracellular matrix in the liver. Advanced liver fibrosis results in cirrhosis, liver failure, and portal hypertension. Liver transplantation has been the most effective treatment for these diseases, but the procedure is limited by the shortage of suitable donors. Mesenchymal stromal cells (MSCs) have shown great potential in the treatment of chronic inflammatory diseases associated with fibrosis. This study aimed to evaluate the therapeutic effect of MSC-based cell transplantation as an alternative treatment for liver fibrosis. A CD34-positive subpopulation of human placental amnion membrane-derived stem/progenitor cells (CD34+ AMSPCs) was isolated through the depletion of CD34-negative stromal fibroblasts (CD34- AMSFCs) facilitated by CD34 fluorescence-activated cell sorting, enriched and expanded ex vivo. These cells express pluripotency markers and demonstrate multidirectional differentiation potentials. Comparative analysis was made between CD34+ AMSPCs and CD34- AMSFCs in terms of the expressions of stemness surface markers, embryonic surface antigens, and multilineage differentiation potentials. A mouse model of liver fibrosis was established by thioacetamide (TAA) administration. When injected into the spleen of TAA-injured mice, human placental amnion membrane-derived MSCs (hAM-MSCs) can engraft into the injury site, ameliorate liver fibrosis, and restore liver function, as shown by pathological and blood biochemical analysis and downregulated gene expressions associated with liver damage. CD34+ AMSPCs represent a more primitive subset of hAM-MSCs and could be a suitable candidate with a potentially better safety profile for cell-based therapy in treatment of liver diseases associated with fibrosis. SIGNIFICANCE In this study, a CD34+ subpopulation of stem/progenitor cells derived from neonatal placental amnion membrane, denoted as CD34+ AMSPCs, were identified, enriched, and characterized. These cells are highly proliferative, express mesenchymal stromal cells and pluripotent stem cell markers, and demonstrate multidirectional differentiation potentials, indicating their promising application in clinical regenerative therapies. CD34+ AMSPC transplantation ameliorated liver fibrosis in mice with drug-induced liver injury. These cells represent a potential therapeutic agent for treating liver diseases associated with fibrosis.
Collapse
Affiliation(s)
- Po-Huang Lee
- National Taiwan University Hospital, Taipei City, Taiwan, Republic of China
- E-Da Hospital/I-Shou University, Yan-Chau Shiang, Kaohsiung County, Taiwan, Republic of China
| | - Chi-Tang Tu
- National Taiwan University Hospital, Taipei City, Taiwan, Republic of China
| | - Chih-Chiang Hsiao
- Taipei Medical University Hospital, Taipei City, Taiwan, Republic of China
| | - Ming-Song Tsai
- Prenatal Diagnosis Center, Cathay General Hospital, Taipei City, Taiwan, Republic of China
| | - Cheng-Maw Ho
- National Taiwan University Hospital, Taipei City, Taiwan, Republic of China
| | - Nai-Chen Cheng
- National Taiwan University Hospital, Taipei City, Taiwan, Republic of China
| | - Tzu-Min Hung
- National Taiwan University Hospital, Taipei City, Taiwan, Republic of China
- E-Da Hospital/I-Shou University, Yan-Chau Shiang, Kaohsiung County, Taiwan, Republic of China
| | - Daniel Tzu-Bi Shih
- E-Da Hospital/I-Shou University, Yan-Chau Shiang, Kaohsiung County, Taiwan, Republic of China
- Taipei Medical University Hospital, Taipei City, Taiwan, Republic of China
- Innovation Incubation Center, National Taiwan University Hospital, Taipei City, Taiwan, Republic of China
| |
Collapse
|
111
|
LoGuidice A, Houlihan A, Deans R. Multipotent adult progenitor cells on an allograft scaffold facilitate the bone repair process. J Tissue Eng 2016; 7:2041731416656148. [PMID: 27493716 PMCID: PMC4959303 DOI: 10.1177/2041731416656148] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/02/2016] [Indexed: 01/08/2023] Open
Abstract
Multipotent adult progenitor cells are a recently described population of stem cells derived from the bone marrow stroma. Research has demonstrated the potential of multipotent adult progenitor cells for treating ischemic injury and cardiovascular repair; however, understanding of multipotent adult progenitor cells in orthopedic applications remains limited. In this study, we evaluate the osteogenic and angiogenic capacity of multipotent adult progenitor cells, both in vitro and loaded onto demineralized bone matrix in vivo, with comparison to mesenchymal stem cells, as the current standard. When compared to mesenchymal stem cells, multipotent adult progenitor cells exhibited a more robust angiogenic protein release profile in vitro and developed more extensive vasculature within 2 weeks in vivo. The establishment of this vascular network is critical to the ossification process, as it allows nutrient exchange and provides an influx of osteoprogenitor cells to the wound site. In vitro assays confirmed the multipotency of multipotent adult progenitor cells along mesodermal lineages and demonstrated the enhanced expression of alkaline phosphatase and production of calcium-containing mineral deposits by multipotent adult progenitor cells, necessary precursors for osteogenesis. In combination with a demineralized bone matrix scaffold, multipotent adult progenitor cells demonstrated enhanced revascularization and new bone formation in vivo in an orthotopic defect model when compared to mesenchymal stem cells on demineralized bone matrix or demineralized bone matrix–only control groups. The potent combination of angiogenic and osteogenic properties provided by multipotent adult progenitor cells appears to create a synergistic amplification of the bone healing process. Our results indicate that multipotent adult progenitor cells have the potential to better promote tissue regeneration and healing and to be a functional cell source for use in orthopedic applications.
Collapse
|
112
|
Cameron AM, Wesson RN, Ahmadi AR, Singer AL, Hu X, Okabayashi T, Wang Y, Shigoka M, Fu Y, Gao W, Raccusen LC, Montgomery RA, Williams GM, Sun Z. Chimeric Allografts Induced by Short-Term Treatment With Stem Cell Mobilizing Agents Result in Long-Term Kidney Transplant Survival Without Immunosuppression: II, Study in Miniature Swine. Am J Transplant 2016; 16:2066-76. [PMID: 26748958 DOI: 10.1111/ajt.13703] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 12/21/2015] [Accepted: 12/27/2015] [Indexed: 01/25/2023]
Abstract
Transplantation is now lifesaving therapy for patients with end-stage organ failure but requires lifelong immunosuppression with resultant morbidity. Current immunosuppressive strategies inhibit T cell activation and prevent donor-recipient engagement. Therefore, it is not surprising that few host cells are demonstrated in donor grafts. However, our recent small animal studies found large numbers of recipient stem cells present after transplantation and pharmacological mobilization, resulting in a chimeric, repopulated organ. We now confirm these findings in a well-characterized large animal preclinical model. Here, we show that AMD3100 and FK506 mobilization of endogenous stem cells immediately post kidney transplantation combined with repeat therapy at 1, 2, and 3 months led to drug-free long-term survival in maximally immunologically mismatched swine. Three long-term recipients have stable chimeric transplants, preserved antidonor skin graft responses, and normal serum creatinine levels despite withdrawal of all medication for 3 years.
Collapse
Affiliation(s)
- A M Cameron
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - R N Wesson
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - A R Ahmadi
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - A L Singer
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD.,Transplant Center, Mayo Clinic, Phoenix, AZ, USA
| | - X Hu
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - T Okabayashi
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Surgery, Kochi Health Center, Kochi University, Kochi, Japan
| | - Y Wang
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - M Shigoka
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Surgery, Tokyo Medical University, Tokyo, Japan
| | - Y Fu
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD.,Transplant Center, Tianjin First Central Hospital, Tianjin, China
| | - W Gao
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD.,Transplant Center, Tianjin First Central Hospital, Tianjin, China
| | - L C Raccusen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - R A Montgomery
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - G M Williams
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Z Sun
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
113
|
Abstract
Bone marrow, in addition to hematopoietic precursors, contains cells that are considered stem cells of nonhematopoietic tissues. These cells are referred to as marrow stromal cells or mesenchymal stem cells. Marrow stromal cells, because of their ability to survive, integrate, and migrate within the central nervous system, can be used as an alternative source of cells for neural transplantation and repair. They can be expanded rapidly in culture and can be induced to express markers of neural cells. Moreover, implanted into the developing brain, these cells can integrate without disrupting the host brain architecture and can assume the fate of neural cells. They can be genetically transduced and can elaborate transgene products. Because large numbers of stromal cells can be obtained from small aspirates of bone marrow, these cells are potentially useful for treating a variety of neurological diseases.
Collapse
Affiliation(s)
- S. Ausim Azizi
- Department of Neurology and Center for Gene Therapy, MCP-Hahnemann University, Philadelphia, Pennsylvania,
| |
Collapse
|
114
|
Najimi M, Defresne F, Sokal EM. Concise Review: Updated Advances and Current Challenges in Cell Therapy for Inborn Liver Metabolic Defects. Stem Cells Transl Med 2016; 5:1117-25. [PMID: 27245366 DOI: 10.5966/sctm.2015-0260] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 03/14/2016] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED : The development of liver cell transplantation (LCT), considered a major biotechnological breakthrough, was intended to provide more accessible treatments for liver disease patients. By preserving the native recipient liver and decreasing hospitalization time, this innovative approach has progressively gained interest among clinicians. LCT initially targets inborn errors of liver metabolism, enabling the compensation of deficient metabolic functions for up to 18 months post-transplantation, supporting its use at least as a bridge to transplantation. The rigorous clinical development and widespread use of LCT depends strongly on controlled and consistent clinical trial data, which may help improve several critical factors, including the standardization of raw biological material and immunosuppression regimens. Substantial effort has also been made in defining and optimizing the most efficient cell population to be transplanted in the liver setting. Although isolated hepatocytes remain the best cell type, showing positive clinical results, their widespread use is hampered by their poor resistance to both cryopreservation and in vitro culture, as well as ever-more-significant donor shortages. Hence, there is considerable interest in developing more standardized and widely accessible cell medicinal products to improve engraftment permanency and post-cell transplantation metabolic effects. SIGNIFICANCE In this therapeutic approach to liver disease, new solutions are being designed and evaluated to bypass the documented limitations and move forward toward wide clinical use. Future developments also require a deep knowledge of regulatory framework to launch specific clinical trials that will allow clear assessment of cell therapy and help patients with significant unmet medical needs.
Collapse
Affiliation(s)
- Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain and Cliniques Universitaires St Luc, Brussels, Belgium
| | - Florence Defresne
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain and Cliniques Universitaires St Luc, Brussels, Belgium
| | - Etienne M Sokal
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain and Cliniques Universitaires St Luc, Brussels, Belgium
| |
Collapse
|
115
|
Sang JF, Shi XL, Han B, Huang X, Huang T, Ren HZ, Ding YT. Combined mesenchymal stem cell transplantation and interleukin-1 receptor antagonism after partial hepatectomy. World J Gastroenterol 2016; 22:4120-4135. [PMID: 27122663 PMCID: PMC4837430 DOI: 10.3748/wjg.v22.i16.4120] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 09/24/2015] [Accepted: 12/14/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the therapeutic effects of mesenchymal stem cells (MSCs) and an interleukin-1 receptor antagonist (IL-1Ra) in acute liver failure.
METHODS: Chinese experimental miniature swine (15 ± 3 kg, 5-8 mo) were obtained from the Laboratory Animal Centre of the Affiliated Drum Tower Hospital of Nanjing University Medical School. Acute liver failure was induced via 85% hepatectomy, and animals were treated by MSC transplantation combined with IL-1Ra injection. Blood samples were collected for hepatic function analysis, and the living conditions and survival time were recorded. Liver injury was histologically analyzed. Hepatic cell regeneration and apoptosis were studied by Ki67 immunohistochemistry and terminal deoxynucleotidyl transferase dUTP nick end labeling, respectively. The levels of protein kinase B and nuclear factor-κB expression were analyzed by Western blotting.
RESULTS: MSCs were infected with a lentivirus for expression of green fluorescent protein (GFP) for subsequent identification; 97.3% of the MSCs were positive for GFP as assessed by flow cytometry. Additional flow cytometric analysis of cell surface marker expression demonstrated that > 90% of GFP-expressing MSCs were also positive for CD29, CD44, and CD90, indicating that most of these cells expressed typical markers of MSCs, and the population of MSCs was almost pure. Transplantation of MSCs in combination with 2 mg/kg IL-1Ra therapy significantly improved survival time compared to the acute liver failure model group (35.3 ± 6.7 d vs 17.3 ± 5.5 d, P < 0.05). Combined therapy also promoted improvement in serum inflammatory cytokines and biochemical conditions. The observed hepatic histopathologic score was significantly lower in the group with combined therapy than in the model group (3.50 ± 0.87 vs 8.17 ± 1.26, P < 0.01). In addition, liver cell apoptosis in the combined therapy group was significantly inhibited (18.1 ± 2.1% vs 70.8 ± 3.7%, P < 0.01), and hepatic cell regeneration increased. A significant increase in protein kinase B expression and decrease in nuclear factor-κB expression were observed (P < 0.01), which supports their important roles in liver regeneration.
CONCLUSION: MSCs and IL-1Ra had a synergistic effect in liver regeneration via regulation of inflammation and apoptotic signaling.
Collapse
|
116
|
Hu M, Li S, Menon S, Liu B, Hu MS, Longaker MT, Lorenz HP. Expansion and Hepatic Differentiation of Adult Blood-Derived CD34+ Progenitor Cells and Promotion of Liver Regeneration After Acute Injury. Stem Cells Transl Med 2016; 5:723-32. [PMID: 27075766 PMCID: PMC4878335 DOI: 10.5966/sctm.2015-0268] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 01/13/2016] [Indexed: 12/27/2022] Open
Abstract
A new group of blood-derived CD34+ progenitor cells (BDPCs) with the ability to expand and differentiate into functional hepatocyte-like cells and promote liver regeneration is reported. With their ease of access, application through the peripheral blood, and the capability of rapid expansion and hepatic differentiation, BDPCs have great potential as a cell-based therapy for liver disease. The low availability of functional hepatocytes has been an unmet demand for basic scientific research, new drug development, and cell-based clinical applications for decades. Because of the inability to expand hepatocytes in vitro, alternative sources of hepatocytes are a focus of liver regenerative medicine. We report a new group of blood-derived CD34+ progenitor cells (BDPCs) that have the ability to expand and differentiate into functional hepatocyte-like cells and promote liver regeneration. BDPCs were obtained from the peripheral blood of an adult mouse with expression of surface markers CD34, CD45, Sca-1, c-kit, and Thy1.1. BDPCs can proliferate in vitro and differentiate into hepatocyte-like cells expressing hepatocyte markers, including CK8, CK18, CK19, α-fetoprotein, integrin-β1, and A6. The differentiated BDPCs (dBDPCs) also display liver-specific functional activities, such as glycogen storage, urea production, and albumin secretion. dBDPCs have cytochrome P450 activity and express specific hepatic transcription factors, such as hepatic nuclear factor 1α. To demonstrate liver regenerative activity, dBDPCs were injected into mice with severe acute liver damage caused by a high-dose injection of carbon tetrachloride (CCl4). dBDPC treatment rescued the mice from severe acute liver injury, increased survival, and induced liver regeneration. Because of their ease of access and application through peripheral blood and their capability of rapid expansion and hepatic differentiation, BDPCs have great potential as a cell-based therapy for liver disease. Significance Hematopoietic stem/progenitor cell expansion and tissue-specific differentiation in vitro are challenges in regenerative medicine, although stem cell therapy has raised hope for the treatment of liver diseases by overcoming the scarcity of hepatocytes. This study identified and characterized a group of blood-derived progenitor cells (BDPCs) from the peripheral blood of an adult mouse. The CD34+ progenitor-dominant BDPCs were rapidly expanded and hepatically differentiated into functional hepatocyte-like cells with our established coculture system. BDPC treatment increased animal survival and produced full regeneration in a severe liver injury mouse model caused by CCl4. BDPCs could have potential for liver cell therapies.
Collapse
Affiliation(s)
- Min Hu
- Division of Plastic Surgery, Department of Surgery, School of Medicine, Stanford University, Stanford, California, USA
| | - Shaowei Li
- Division of Plastic Surgery, Department of Surgery, School of Medicine, Stanford University, Stanford, California, USA
| | - Siddharth Menon
- Division of Plastic Surgery, Department of Surgery, School of Medicine, Stanford University, Stanford, California, USA
| | - Bo Liu
- Division of Pediatric Surgery, Department of Surgery, School of Medicine, Stanford University, Stanford, California, USA
| | - Michael S Hu
- Division of Plastic Surgery, Department of Surgery, School of Medicine, Stanford University, Stanford, California, USA Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, California, USA Department of Surgery, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Michael T Longaker
- Division of Plastic Surgery, Department of Surgery, School of Medicine, Stanford University, Stanford, California, USA Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, California, USA
| | - H Peter Lorenz
- Division of Plastic Surgery, Department of Surgery, School of Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
117
|
Adult cell plasticity in vivo: de-differentiation and transdifferentiation are back in style. Nat Rev Mol Cell Biol 2016; 17:413-25. [PMID: 26979497 DOI: 10.1038/nrm.2016.24] [Citation(s) in RCA: 300] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Biologists have long been intrigued by the possibility that cells can change their identity, a phenomenon known as cellular plasticity. The discovery that terminally differentiated cells can be experimentally coaxed to become pluripotent has invigorated the field, and recent studies have demonstrated that changes in cell identity are not limited to the laboratory. Specifically, certain adult cells retain the capacity to de-differentiate or transdifferentiate under physiological conditions, as part of an organ's normal injury response. Recent studies have highlighted the extent to which cell plasticity contributes to tissue homeostasis, findings that have implications for cell-based therapy.
Collapse
|
118
|
Dezawa M. Muse Cells Provide the Pluripotency of Mesenchymal Stem Cells: Direct Contribution of Muse Cells to Tissue Regeneration. Cell Transplant 2016; 25:849-61. [PMID: 26884346 DOI: 10.3727/096368916x690881] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
While mesenchymal stem cells (MSCs) are easily accessible from mesenchymal tissues, such as bone marrow and adipose tissue, they are heterogeneous, and their entire composition is not fully identified. MSCs are not only able to differentiate into osteocytes, chondrocytes, and adipocytes, which belong to the same mesodermal lineage, but they are also able to cross boundaries between mesodermal, ectodermal, and endodermal lineages, and differentiate into neuronal- and hepatocyte-like cells. However, the ratio of such differentiation is not very high, suggesting that only a subpopulation of the MSCs participates in this cross-lineage differentiation phenomenon. We have identified unique cells that we named multilineage-differentiating stress-enduring (Muse) cells that may explain the pluripotent-like properties of MSCs. Muse cells comprise a small percentage of MSCs, are able to generate cells representative of all three germ layers from a single cell, and are nontumorigenic and self-renewable. Importantly, cells other than Muse cells in MSCs do not have these pluripotent-like properties. Muse cells are particularly unique compared with other stem cells in that they efficiently migrate and integrate into damaged tissue when supplied into the bloodstream, and spontaneously differentiate into cells compatible with the homing tissue. Such a repairing action of Muse cells via intravenous injection is recognized in various tissues including the brain, liver, and skin. Therefore, unlike ESCs/iPSCs, Muse cells render induction into the target cell type prior to transplantation unnecessary. They can repair tissues in two simple steps: collection from mesenchymal tissues, such as the bone marrow, and intravenous injection. The impressive regenerative performance of these cells provides a simple, feasible strategy for treating a variety of diseases. This review details the unique characteristics of Muse cells and describes their future application for regenerative medicine.
Collapse
Affiliation(s)
- Mari Dezawa
- Department of Stem Cell Biology and Histology and Department of Anatomy and Anthropology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
119
|
Huang B, Cheng X, Wang H, Huang W, la Ga Hu Z, Wang D, Zhang K, Zhang H, Xue Z, Da Y, Zhang N, Hu Y, Yao Z, Qiao L, Gao F, Zhang R. Mesenchymal stem cells and their secreted molecules predominantly ameliorate fulminant hepatic failure and chronic liver fibrosis in mice respectively. J Transl Med 2016; 14:45. [PMID: 26861623 PMCID: PMC4746907 DOI: 10.1186/s12967-016-0792-1] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/20/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Orthotopic liver transplantation is the only effective treatment for liver failure but limited with shortage of available donor organs. Recent studies show promising results of mesenchymal stem cells (MSCs)-based therapies. METHODS We systematically investigate the therapeutic effects of MSCs or MSC-conditioned medium (MSC-CM) in ameliorating fulminant hepatic failure (FHF) and chronic liver fibrosis in mice. In addition, extensive flow cytometry analysis of spleens from vehicle and MSC- and MSC-CM-treated mice was applied to reveal the alteration of inflammatory state. RESULTS In FHF model, MSCs treatment reduced remarkably the death incidents; the analysis of gross histopathology showed that control livers were soft and shrunken with extensive extravasated blood, which was gradually reduced at later time points, while MSC-treated livers showed gross pathological changes, even 24 h after MSC infusion, and hematoxylin and eosin staining revealed dramatical hepatocellular death with cytoplasmic vacuolization suppressed by MSCs treatment; flow cytometry analysis of total lymphocytes showed that macrophages (F4/80) infiltrated into control livers more than MSC-treated livers; by contrast, MSC-CM partially ameliorates FHF. In chronic liver injury model, MSC and MSC-CM both suppressed fibrogenesis and necroinflammatory, and the later was better; activation of hepatic stellate cells (α-SMA) was inhibited; glycogen synthesis and storage (indicated by periodic acid-Schiff -staining) was improved; liver regeneration (Ki67) was promoted while liver apoptosis (TUNEL) was reduced. In the in vitro, MSCs promote macrophage line RAW264.7 apoptosis and MSC-CM promotes apoptosis and inhibits proliferation of HSC line LX-2. We also found that MSCs and MSC-CM could improve spleen; MSC-CM increased levels of Th2 and Treg cells, and reduced levels of Th17 cells, whereas levels of Th1 cells were unchanged; comparatively, MSC treatment did not affect Th17 and Treg cells and only slightly alters inflammatory state; MSC and MSC-CM treatment both substantially down-regulated macrophages in the spleens. CONCLUSION Both MSCs and MSC-CM exert therapeutic effects by acting on various key cells during the pathogenesis of FHF and chronic fibrosis, stimulating hepatocyte proliferation and suppressing apoptosis, down-regulating infiltrating macrophages, converting CD4(+) T lymphocyte system into an anti-inflammatory state, and facilitating hepatic stellate cell death.
Collapse
Affiliation(s)
- Biao Huang
- Department of Immunology and Research Center of Basic Medical Science; Tianjin Key Laboratory of Cellular and Molecular Immunology; Key Laboratory of Immune Microenvironment and Diseases, Ministry of Education of China, Key Laboratory of Hormones and Development (Ministry of Health), Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Qi Xiang Tai Road No.22, Tianjin, 300070, China.
| | - Xixi Cheng
- Department of Immunology and Research Center of Basic Medical Science; Tianjin Key Laboratory of Cellular and Molecular Immunology; Key Laboratory of Immune Microenvironment and Diseases, Ministry of Education of China, Key Laboratory of Hormones and Development (Ministry of Health), Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Qi Xiang Tai Road No.22, Tianjin, 300070, China.
| | - Huafeng Wang
- Department of Immunology and Research Center of Basic Medical Science; Tianjin Key Laboratory of Cellular and Molecular Immunology; Key Laboratory of Immune Microenvironment and Diseases, Ministry of Education of China, Key Laboratory of Hormones and Development (Ministry of Health), Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Qi Xiang Tai Road No.22, Tianjin, 300070, China. .,School of Life Science, Shanxi Normal University, Linfen, Shanxi Province, China.
| | - Wenjing Huang
- Department of Immunology and Research Center of Basic Medical Science; Tianjin Key Laboratory of Cellular and Molecular Immunology; Key Laboratory of Immune Microenvironment and Diseases, Ministry of Education of China, Key Laboratory of Hormones and Development (Ministry of Health), Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Qi Xiang Tai Road No.22, Tianjin, 300070, China.
| | - Zha la Ga Hu
- Department of Cell Biology, Logistic College of CAPF, Tianjin, China.
| | - Dan Wang
- Department of Immunology and Research Center of Basic Medical Science; Tianjin Key Laboratory of Cellular and Molecular Immunology; Key Laboratory of Immune Microenvironment and Diseases, Ministry of Education of China, Key Laboratory of Hormones and Development (Ministry of Health), Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Qi Xiang Tai Road No.22, Tianjin, 300070, China.
| | - Kai Zhang
- Department of Immunology and Research Center of Basic Medical Science; Tianjin Key Laboratory of Cellular and Molecular Immunology; Key Laboratory of Immune Microenvironment and Diseases, Ministry of Education of China, Key Laboratory of Hormones and Development (Ministry of Health), Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Qi Xiang Tai Road No.22, Tianjin, 300070, China.
| | - Huan Zhang
- Department of Immunology and Research Center of Basic Medical Science; Tianjin Key Laboratory of Cellular and Molecular Immunology; Key Laboratory of Immune Microenvironment and Diseases, Ministry of Education of China, Key Laboratory of Hormones and Development (Ministry of Health), Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Qi Xiang Tai Road No.22, Tianjin, 300070, China.
| | - Zhenyi Xue
- Department of Immunology and Research Center of Basic Medical Science; Tianjin Key Laboratory of Cellular and Molecular Immunology; Key Laboratory of Immune Microenvironment and Diseases, Ministry of Education of China, Key Laboratory of Hormones and Development (Ministry of Health), Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Qi Xiang Tai Road No.22, Tianjin, 300070, China.
| | - Yurong Da
- Department of Immunology and Research Center of Basic Medical Science; Tianjin Key Laboratory of Cellular and Molecular Immunology; Key Laboratory of Immune Microenvironment and Diseases, Ministry of Education of China, Key Laboratory of Hormones and Development (Ministry of Health), Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Qi Xiang Tai Road No.22, Tianjin, 300070, China.
| | - Ning Zhang
- Department of Immunology and Research Center of Basic Medical Science; Tianjin Key Laboratory of Cellular and Molecular Immunology; Key Laboratory of Immune Microenvironment and Diseases, Ministry of Education of China, Key Laboratory of Hormones and Development (Ministry of Health), Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Qi Xiang Tai Road No.22, Tianjin, 300070, China.
| | - Yongcheng Hu
- Department of Orthopaedic Oncology, Tianjin Hospital, Tianjin, China.
| | - Zhi Yao
- Department of Immunology and Research Center of Basic Medical Science; Tianjin Key Laboratory of Cellular and Molecular Immunology; Key Laboratory of Immune Microenvironment and Diseases, Ministry of Education of China, Key Laboratory of Hormones and Development (Ministry of Health), Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Qi Xiang Tai Road No.22, Tianjin, 300070, China.
| | - Liang Qiao
- Storr Liver Unit, Westmead Millennium Institute, The Western Clinical School of the University of Sydney, Westmead, NSW, Australia.
| | - Fei Gao
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Rongxin Zhang
- Department of Immunology and Research Center of Basic Medical Science; Tianjin Key Laboratory of Cellular and Molecular Immunology; Key Laboratory of Immune Microenvironment and Diseases, Ministry of Education of China, Key Laboratory of Hormones and Development (Ministry of Health), Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Qi Xiang Tai Road No.22, Tianjin, 300070, China.
| |
Collapse
|
120
|
Yan J, Guo D, Yang S, Sun H, Wu B, Zhou D. Inhibition of miR-222-3p activity promoted osteogenic differentiation of hBMSCs by regulating Smad5-RUNX2 signal axis. Biochem Biophys Res Commun 2016; 470:498-503. [PMID: 26809090 DOI: 10.1016/j.bbrc.2016.01.133] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 01/14/2016] [Accepted: 01/21/2016] [Indexed: 10/22/2022]
Abstract
miRNAs are recently found playing important roles in osteogenesis. In this study, we identified that miR-222-3p decreased during osteogenic differentiation of human mesenchymal stem cells (hBMSCs) using Quantitative Real-Time Reverse Transcription PCR (qRT-PCR). Furthermore, we investigated the effect of miR-222-3p on osteogenic differentiation of hBMSCs. Inhibition of miR-222-3p function in hBMSCs using infection of lentiviruses carrying miR-222-3p specific inhibitor promoted expression of osteoblast-specific genes, alkaline phosphatase (ALP) activity, and matrix mineralization. Whereas, overexpression of miR-222-3p inhibited osteoblast differentiation of hBMSCs in vitro. Moreover, Smad5 and RUNX2, which are the critical transcription factors in osteogenic differentiation, were predicted to be targets of miR-222-3p by bioinformatic analysis. Overexpression of miR-222-3p in hBMSCs significantly suppressed the protein levels of Smad5 and RUNX2, while inhibition of miR-222-3p increased their protein levels. Furthermore, inhibition of miR-222-3p increased phosphorylation of Smad1/5/8, which regulated the expression of osteogenic genes. Our findings suggest that suppression of miR-222-3p activity promoted osteogenic differentiation hBMSCs through regulating Smad5-RUNX2 signaling axis.
Collapse
Affiliation(s)
- Jihong Yan
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
| | - Duo Guo
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Shu Yang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Huaimei Sun
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Bo Wu
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Deshan Zhou
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
| |
Collapse
|
121
|
miR-29c-3p promotes senescence of human mesenchymal stem cells by targeting CNOT6 through p53-p21 and p16-pRB pathways. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:520-32. [PMID: 26792405 DOI: 10.1016/j.bbamcr.2016.01.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 12/12/2015] [Accepted: 01/08/2016] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cells (MSCs) are important seed cells for tissue engineering and are promising targets for cell-based therapies. However, the replicative senescence of MSCs during in vitro culture limits their research and clinical applications. The molecular mechanisms underlying the replicative senescence of MSCs are not fully understood. Evidence suggests that miRNAs play important roles in replicative senescence. A microarray analysis found that the miR-29c-3p level was significantly increased during the MSC senescence process. In our study, we investigated the roles of miR-29c-3p in senescence of MSCs. We cultured MSCs for long periods of time, up and down-regulated the miR-29c-3p expression in MSCs, and examined the senescent phenotype changes. The over-expression of miR-29c-3p led to enhanced senescence-associated-β-galactosidase (SA-β-gal) staining, senescence associated secretory phenotype (SASP), senescence associated heterochromatic foci (SAHF), reduced proliferation ability, retarded osteogenic differentiation and corresponding changes in senescence markers, whereas the miR-29c-3p down-regulation had the opposite results. Dual-luciferase reporter assays demonstrated that CNOT6 is the target gene of miR-29c-3p. Knockdown of CNOT6 confirmed its inhibitory effects on the senescence of MSCs. In addition, Western blot results showed that both the p53-p21 and the p16-pRB pathways were activated during the miR-29c-3p-induced senescence of MSCs. In conclusion, our results demonstrate that miR-29c-3p promotes the senescence of MSCs by targeting CNOT6 through p53-p21 and p16-pRB pathways and highlight the contribution of post-transcriptional regulation to stem cell senescence.
Collapse
|
122
|
Isolation and Characterization of Human Mesenchymal Stem Cells From Facet Joints and Interspinous Ligaments. Spine (Phila Pa 1976) 2016; 41:E1-7. [PMID: 26555840 DOI: 10.1097/brs.0000000000001178] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
STUDY DESIGN A descriptive in vitro study on isolation and differentiation of human mesenchymal stem cells (MSCs) derived from the facet joints and interspinous ligaments. OBJECTIVE To isolate cells from the facet joints and interspinous ligaments and investigate their surface marker profile and differentiation potentials. SUMMARY OF BACKGROUND DATA Lumbar spinal canal stenosis and ossification of the posterior longitudinal ligament are progressive conditions characterized by the hypertrophy and ossification of ligaments and joints within the spinal canal. MSCs are believed to play a role in the advancement of these diseases and the existence of MSCs has been demonstrated within the ligamentum flavum and posterior longitudinal ligament. The aim of this study was to investigate whether these cells could also be found within facet joints and interspinous ligaments. METHODS Samples were harvested from 10 patients undergoing spinal surgery. The MSCs from facet joints and interspinous ligaments were isolated using direct tissue explant technique. Cell surface antigen profilings were performed via flow cytometry. Their lineage differentiation potentials were analyzed. RESULTS The facet joints and interspinous ligaments-derived MSCs have the tri-lineage potential to be differentiated into osteogenic, adipogenic, and chondrogenic cells under appropriate inductions. Flow cytometry analysis revealed both cell lines expressed MSCs markers. Both facet joints and interspinous ligaments-derived MSCs expressed marker genes for osteoblasts, adipocytes, and chondrocytes. CONCLUSION The facet joints and interspinous ligaments may provide alternative sources of MSCs for tissue engineering applications. The facet joints and interspinous ligaments-derived MSCs are part of the microenvironment of the human ligaments of the spinal column and might play a crucial role in the development and progression of degenerative spine conditions.
Collapse
|
123
|
|
124
|
|
125
|
Mesenchymal Stromal Cells and Tissue-Specific Progenitor Cells: Their Role in Tissue Homeostasis. Stem Cells Int 2015; 2016:4285215. [PMID: 26823669 PMCID: PMC4707334 DOI: 10.1155/2016/4285215] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 09/15/2015] [Indexed: 02/07/2023] Open
Abstract
Multipotent mesenchymal stromal/stem cells (MSCs) reside in many human organs and comprise heterogeneous population of cells with self-renewal ability. These cells can be isolated from different tissues, and their morphology, immunophenotype, and differentiation potential are dependent on their tissue of origin. Each organ contains specific population of stromal cells which maintain regeneration process of the tissue where they reside, but some of them have much more wide plasticity and differentiate into multiple cells lineage. MSCs isolated from adult human tissues are ideal candidates for tissue regeneration and tissue engineering. However, MSCs do not only contribute to structurally tissue repair but also MSC possess strong immunomodulatory and anti-inflammatory properties and may influence in tissue repair by modulation of local environment. This paper is presenting an overview of the current knowledge of biology of tissue-resident mesenchymal stromal and progenitor cells (originated from bone marrow, liver, skeletal muscle, skin, heart, and lung) associated with tissue regeneration and tissue homeostasis.
Collapse
|
126
|
Li GC, Zhang HW, Zhao QC, Sun LI, Yang JJ, Hong L, Feng F, Cai L. Mesenchymal stem cells promote tumor angiogenesis via the action of transforming growth factor β1. Oncol Lett 2015; 11:1089-1094. [PMID: 26893697 DOI: 10.3892/ol.2015.3997] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 10/28/2015] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) may influence the growth and metastasis of various human malignancies, including hepatocellular carcinoma (HCC). Therefore, the underlying mechanisms via which MSCs are able to affect malignancies require investigation. In the present study, the potential role of MSC in the angiogenesis of HCC was investigated. A total of 17 nude mouse models exhibiting human HCC were used to evaluate the effects of MSC on angiogenesis. A total of 8 mice were injected with human MSCs via the tail vein, and the remaining 9 mice were injected with phosphate-buffered saline as a control. A total of 35 days subsequent to the injection of MSCs, the microvessel density (MVD) of tumors was evaluated by immunostaining, using cluster of differentiation 31 antibody. The mRNA levels of transforming growth factor (TGF)β1, Smad2 and Smad7 were detected using reverse transcription-quantitative polymerase chain reaction. Protein expression levels of TGFβ1 and vascular endothelial growth factor (VEGF) in tumor tissues were analyzed using ELISA. Compared with controls, MVD in MSC-treated mice was significantly increased (28.00±9.19 vs. 18.11±3.30; P=0.006). The levels of TGFβ1 mRNA in the MSC-treated group were 2.15-fold higher compared with the control group (1.27±0.61 vs. 0.59±0.39; P=0.033), and MVD was higher in the group exhibiting increased TGFβ1 mRNA levels compared with the control group (26.50±9.11 vs. 19.44±6.14; P=0.038). In addition, a close correlation between the expression levels of TGFβ1 and VEGF was identified. The results of the present study suggested that MSCs may be capable of enhancing the angiogenesis of HCC, which may be partly due to the involvement of TGFβ1.
Collapse
Affiliation(s)
- Guo-Cai Li
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Hong-Wei Zhang
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Qing-Chun Zhao
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - L I Sun
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jian-Jun Yang
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Liu Hong
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Fan Feng
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Lei Cai
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
127
|
Andreone P, Catani L, Margini C, Brodosi L, Lorenzini S, Sollazzo D, Nicolini B, Giordano R, Montemurro T, Rizzi S, Dan E, Giudice V, Viganò M, Casadei A, Foschi FG, Malvi D, Bernardi M, Conti F, Lemoli RM. Reinfusion of highly purified CD133+ bone marrow-derived stem/progenitor cells in patients with end-stage liver disease: A phase I clinical trial. Dig Liver Dis 2015; 47:1059-66. [PMID: 26427587 DOI: 10.1016/j.dld.2015.08.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 08/24/2015] [Accepted: 08/29/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Bone marrow stem/progenitor cells seem to be effective in liver regeneration after tissue injury. AIM To evaluate the feasibility and safety of the mobilization and reinfusion of CD133+ stem/progenitor cells in patients with end-stage liver disease. METHODS Autologous CD133+ stem/progenitor cells, mobilized with granulocyte-colony stimulating factor, were collected by leukapheresis and reinfused at increasing doses through the hepatic artery starting from 5×10(4)/kg up to 1×10(6)/kg. RESULTS 16 subjects with Model for End-stage Liver Disease (MELD) score between 17 and 25 were enrolled, 14 mobilized an adequate number of CD133+ stem/progenitor cells and 12 were reinfused. No severe adverse events related to the procedure were reported. MELD score significantly worsened during mobilization in Child Turcotte Pugh-C patients. A significant improvement of liver function was observed 2 months after reinfusion (MELD 19.5 vs. 16; P=0.045). Overall, 5 patients underwent liver transplantation within 12 months from reinfusion and 2 died because of progressive liver failure. CONCLUSIONS CD133+ stem/progenitor cells reinfusion in patients with end-stage liver disease is feasible and safe. A worsening of liver function was observed during mobilization in Child Turcotte Pugh-C patients. The temporary improvement of MELD score after reinfusion suggests that stem cells therapy may be a "bridge to transplant" approach for these patients.
Collapse
Affiliation(s)
- Pietro Andreone
- Department of Medical and Surgical Sciences, Bologna University, Bologna, Italy.
| | - Lucia Catani
- Department of Specialty Diagnostic and Experimental Medicine, Bologna University, Bologna, Italy
| | - Cristina Margini
- Department of Medical and Surgical Sciences, Bologna University, Bologna, Italy
| | - Lucia Brodosi
- Department of Medical and Surgical Sciences, Bologna University, Bologna, Italy
| | - Stefania Lorenzini
- Department of Medical and Surgical Sciences, Bologna University, Bologna, Italy
| | - Daria Sollazzo
- Department of Specialty Diagnostic and Experimental Medicine, Bologna University, Bologna, Italy
| | - Benedetta Nicolini
- Department of Specialty Diagnostic and Experimental Medicine, Bologna University, Bologna, Italy
| | - Rosaria Giordano
- Cell Factory, Unit of Cell Therapy and Cryobiology, Fondazione IRCCS Ca' Granda, Maggiore Hospital, Milano, Italy
| | | | - Simonetta Rizzi
- Department of Specialty Diagnostic and Experimental Medicine, Bologna University, Bologna, Italy
| | - Elisa Dan
- Department of Specialty Diagnostic and Experimental Medicine, Bologna University, Bologna, Italy
| | - Valeria Giudice
- Transfusion Medicine Unit, Bologna University Hospital, Policlinico S. Orsola-Malpighi, Bologna, Italy
| | - Mariele Viganò
- Department of Regenerative Medicine, Maggiore Hospital, Milano, Italy
| | - Andrea Casadei
- Zompatori Radiology Unit, Bologna University Hospital, Policlinico S. Orsola-Malpighi, Bologna, Italy
| | | | - Deborah Malvi
- "F. Addarii" Institute of Oncology and Transplantation, Bologna University Hospital, Policlinico S. Orsola-Malpighi, Bologna, Italy
| | - Mauro Bernardi
- Department of Medical and Surgical Sciences, Bologna University, Bologna, Italy
| | - Fabio Conti
- Department of Medical and Surgical Sciences, Bologna University, Bologna, Italy
| | - Roberto M Lemoli
- Haematology Clinic, Internal Medicine Department, Genoa University, Genoa, Italy
| |
Collapse
|
128
|
Yarygin KN, Lupatov AY, Kholodenko IV. Cell-based therapies of liver diseases: age-related challenges. Clin Interv Aging 2015; 10:1909-24. [PMID: 26664104 PMCID: PMC4671765 DOI: 10.2147/cia.s97926] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The scope of this review is to revise recent advances of the cell-based therapies of liver diseases with an emphasis on cell donor's and patient's age. Regenerative medicine with cell-based technologies as its integral part is focused on the structural and functional restoration of tissues impaired by sickness or aging. Unlike drug-based medicine directed primarily at alleviation of symptoms, regenerative medicine offers a more holistic approach to disease and senescence management aimed to achieve restoration of homeostasis. Hepatocyte transplantation and organ engineering are very probable forthcoming options of liver disease treatment in people of different ages and vigorous research and technological innovations in this area are in progress. Accordingly, availability of sufficient amounts of functional human hepatocytes is crucial. Direct isolation of autologous hepatocytes from liver biopsy is problematic due to related discomfort and difficulties with further expansion of cells, particularly those derived from aging people. Allogeneic primary human hepatocytes meeting quality standards are also in short supply. Alternatively, autologous hepatocytes can be produced by reprogramming of differentiated cells through the stage of induced pluripotent stem cells. In addition, fibroblasts and mesenchymal stromal cells can be directly induced to undergo advanced stage hepatogenic differentiation. Reprogramming of cells derived from elderly people is accompanied by the reversal of age-associated changes at the cellular level manifesting itself by telomere elongation and the U-turn of DNA methylation. Cell reprogramming can provide high quality rejuvenated hepatocytes for cell therapy and liver tissue engineering. Further technological advancements and establishment of national and global registries of induced pluripotent stem cell lines homozygous for HLA haplotypes can allow industry-style production of livers for immunosuppression-free transplantation.
Collapse
Affiliation(s)
| | - Alexei Y Lupatov
- Laboratory of Cell Biology, Institute of Biomedical Chemistry, Moscow, Russia
| | - Irina V Kholodenko
- Laboratory of Cell Biology, Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
129
|
Rakian R, Block TJ, Johnson SM, Marinkovic M, Wu J, Dai Q, Dean DD, Chen XD. Native extracellular matrix preserves mesenchymal stem cell "stemness" and differentiation potential under serum-free culture conditions. Stem Cell Res Ther 2015; 6:235. [PMID: 26620283 PMCID: PMC4666167 DOI: 10.1186/s13287-015-0235-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/10/2015] [Accepted: 11/10/2015] [Indexed: 02/07/2023] Open
Abstract
Introduction Bone marrow-derived mesenchymal stem cells (BM-MSCs) for clinical use should not be grown in media containing fetal bovine serum (FBS), because of serum-related concerns over biosafety and batch-to-batch variability. Previously, we described the preparation and use of a cell-free native extracellular matrix (ECM) made by bone marrow cells (BM-ECM) which preserves stem cell properties and enhances proliferation. Here, we compare colony-forming ability and differentiation of MSCs cultured on BM-ECM with a commercially available matrix (CELLstart™) and tissue culture plastic (TCP) under serum-free conditions. Methods Primary MSCs from freshly isolated bone marrow-derived mononuclear cells or passaged MSCs (P1) were grown in serum-containing (SCM) or serum-free (SFM) media on BM-ECM, CELLstart™, or TCP substrates. Proliferation, cell composition (phenotype), colony-forming unit replication, and bone morphogenetic protein-2 (BMP-2) responsiveness were compared among cells maintained on the three substrates. Results Proliferation of primary BM-MSCs was significantly higher in SCM than SFM, irrespectively of culture substrate, suggesting that the expansion of these cells requires SCM. In contrast, passaged cells cultured on BM-ECM or CELLstart™ in SFM proliferated to nearly the same extent as cells in SCM. However, morphologically, those on BM-ECM were smaller and more aligned, slender, and long. Cells grown for 7 days on BM-ECM in SFM were 20–40 % more positive for MSC surface markers than cells cultured on CELLstart™. Cells cultured on TCP contained the smallest number of cells positive for MSC markers. MSC colony-forming ability in SFM, as measured by CFU-fibroblasts, was increased 10-, 9-, and 2-fold when P1 cells were cultured on BM-ECM, CELLstart™, and TCP, respectively. Significantly, CFU-adipocyte and -osteoblast replication of cells grown on BM-ECM was dramatically increased over those on CELLstart™ (2X) and TCP (4-7X). BM-MSCs, cultured in SFM and treated with BMP-2, retained their differentiation capacity better on BM-ECM than on either of the other two substrates. Conclusions Our findings indicate that BM-ECM provides a unique microenvironment that supports the colony-forming ability of MSCs in SFM and preserves their stem cell properties. The establishment of a robust culture system, combining native tissue-specific ECM and SFM, provides an avenue for preparing significant numbers of potent MSCs for cell-based therapies in patients.
Collapse
Affiliation(s)
- Rubie Rakian
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA.
| | - Travis J Block
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA.
| | - Shannan M Johnson
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA. .,Periodontics Graduate Program, Wilford Hall 59th Medical Wing, 2133 Pepperrell Street, Building 3352, Joint Base San Antonio, Lackland, TX, 78236, USA.
| | - Milos Marinkovic
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA.
| | - Junjie Wu
- Department of Orthodontics, Fourth Military Medical University, School of Stomatology, 145 West Chang-le Road, Xi'an, Shaanxi Province, 710032, P.R. China.
| | - Qiuxia Dai
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA.
| | - David D Dean
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA.
| | - Xiao-Dong Chen
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA. .,Research Service, Audie Murphy VA Medical Center, South Texas Veterans Health Care System, 7400 Merton Minter Boulevard, San Antonio, TX, 78229-4404, USA.
| |
Collapse
|
130
|
Heo JS, Choi Y, Kim HS, Kim HO. Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue. Int J Mol Med 2015; 37:115-25. [PMID: 26719857 PMCID: PMC4687432 DOI: 10.3892/ijmm.2015.2413] [Citation(s) in RCA: 331] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 11/17/2015] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are clinically useful due to their capacity for self-renewal, their immunomodulatory properties and tissue regenerative potential. These cells can be isolated from various tissues and exhibit different potential for clinical applications according to their origin, and thus comparative studies on MSCs from different tissues are essential. In this study, we investigated the immunophenotype, proliferative potential, multilineage differentiation and immunomodulatory capacity of MSCs derived from different tissue sources, namely bone marrow, adipose tissue, the placenta and umbilical cord blood. The gene expression profiles of stemness-related genes [octamer-binding transcription factor 4 (OCT4), sex determining region Y-box (SOX)2, MYC, Krüppel-like factor 4 (KLF4), NANOG, LIN28 and REX1] and lineage-related and differentiation stage-related genes [B4GALNT1 (GM2/GS2 synthase), inhibin, beta A (INHBA), distal-less homeobox 5 (DLX5), runt-related transcription factor 2 (RUNX2), proliferator-activated receptor gamma (PPARG), CCAAT/enhancer-binding protein alpha (C/EBPA), bone morphogenetic protein 7 (BMP7) and SOX9] were compared using RT-PCR. No significant differences in growth rate, colony-forming efficiency and immunophenotype were observed. Our results demonstrated that MSCs derived from bone marrow and adipose tissue shared not only in vitro trilineage differentiation potential, but also gene expression profiles. While there was considerable interdonor variation in DLX5 expression between MSCs derived from different tissues, its expression appears to be associated with the osteogenic potential of MSCs. Bone marrow-derived MSCs (BM-MSCs) significantly inhibited allogeneic T cell proliferation possibly via the high levels of the immunosuppressive cytokines, IL10 and TGFB1. Although MSCs derived from different tissues and fibroblasts share many characteristics, some of the marker genes, such as B4GALNT1 and DLX5 may be useful for the characterization of MSCs derived from different tissue sources. Collectively, our results suggest that, based on their tri-lineage differentiation potential and immunomodulatory effects, BM-MSCs and adipose tissue-derived MSCs (A-MSCs) represent the optimal stem cell source for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- June Seok Heo
- Cell Therapy Center, Severance Hospital, Seoul, Republic of Korea
| | - Youjeong Choi
- Cell Therapy Center, Severance Hospital, Seoul, Republic of Korea
| | - Han-Soo Kim
- Institute for Bio‑Medical Convergence, Catholic Kwandong University, Incheon, Republic of Korea
| | - Hyun Ok Kim
- Cell Therapy Center, Severance Hospital, Seoul, Republic of Korea
| |
Collapse
|
131
|
Khatri M, O'Brien TD, Chattha KS, Saif LJ. Porcine lung mesenchymal stromal cells possess differentiation and immunoregulatory properties. Stem Cell Res Ther 2015; 6:222. [PMID: 26560714 PMCID: PMC4642738 DOI: 10.1186/s13287-015-0220-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 09/20/2014] [Accepted: 10/29/2015] [Indexed: 01/14/2023] Open
Abstract
Introduction Mesenchymal stem (stromal) cells (MSCs) possess self-renewal, differentiation and immunoregulatory properties, and therefore are being evaluated as cellular therapy for inflammatory and autoimmune diseases, and for tissue repair. MSCs isolated from bone marrow are extensively studied. Besides bone marrow, MSCs have been identified in almost all organs of the body including the lungs. Lung-derived MSCs may be more effective as therapy for lung diseases as compared to bone marrow-derived MSCs. Pigs are similar to humans in anatomy, physiology and immunological responses, and thus may serve as a useful large animal preclinical model to study potential cellular therapy for human diseases. Methods We isolated MSCs from the lungs (L-MSCs) of 4–6-week-old germ-free pigs. We determined the self-renewal, proliferation and differentiation potential of L-MSCs. We also examined the mechanisms of immunoregulation by porcine L-MSCs. Results MSCs isolated from porcine lungs showed spindle-shaped morphology and proliferated actively in culture. Porcine L-MSCs expressed mesenchymal markers CD29, CD44, CD90 and CD105 and lacked the expression of hematopoietic markers CD34 and CD45. These cells were multipotent and differentiated into adipocytes, osteocytes and epithelial cells. Like human MSCs, L-MSCs possessed immunoregulatory properties and inhibited proliferation of T cells and interferon-γ and tumor necrosis factor-α production by T cells and dendritic cells, respectively, and increased the production of T-helper 2 cytokines interleukin (IL)-4 and IL-13 by T cells. L-MSCs induced the production of prostaglandin E2 (PGE2) in MSC–T cell co-cultures and inhibition of PGE2 significantly restored (not completely) the immune modulatory effects of L-MSCs. Conclusions Here, we demonstrate that MSCs can be isolated from porcine lung and that these cells, similar to human lung MSCs, possess in vitro proliferation, differentiation and immunomodulatory functions. Thus, these cells may serve as a model system to evaluate the contribution of lung MSCs in modulating the immune response, interactions with resident epithelial cells and tissue repair in a pig model of human lung diseases.
Collapse
Affiliation(s)
- Mahesh Khatri
- Department of Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Avenue, Wooster, OH, 44691, USA.
| | - Timothy D O'Brien
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA.
| | - Kuldeep S Chattha
- Department of Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Avenue, Wooster, OH, 44691, USA.
| | - Linda J Saif
- Department of Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Avenue, Wooster, OH, 44691, USA.
| |
Collapse
|
132
|
Gargett CE, Schwab KE, Deane JA. Endometrial stem/progenitor cells: the first 10 years. Hum Reprod Update 2015; 22:137-63. [PMID: 26552890 PMCID: PMC4755439 DOI: 10.1093/humupd/dmv051] [Citation(s) in RCA: 223] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/19/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The existence of stem/progenitor cells in the endometrium was postulated many years ago, but the first functional evidence was only published in 2004. The identification of rare epithelial and stromal populations of clonogenic cells in human endometrium has opened an active area of research on endometrial stem/progenitor cells in the subsequent 10 years. METHODS The published literature was searched using the PubMed database with the search terms ‘endometrial stem cells and menstrual blood stem cells' until December 2014. RESULTS Endometrial epithelial stem/progenitor cells have been identified as clonogenic cells in human and as label-retaining or CD44+ cells in mouse endometrium, but their characterization has been modest. In contrast, endometrial mesenchymal stem/stromal cells (MSCs) have been well characterized and show similar properties to bone marrow MSCs. Specific markers for their enrichment have been identified, CD146+PDGFRβ+ (platelet-derived growth factor receptor beta) and SUSD2+ (sushi domain containing-2), which detected their perivascular location and likely pericyte identity in endometrial basalis and functionalis vessels. Transcriptomics and secretomics of SUSD2+ cells confirm their perivascular phenotype. Stromal fibroblasts cultured from endometrial tissue or menstrual blood also have some MSC characteristics and demonstrate broad multilineage differentiation potential for mesodermal, endodermal and ectodermal lineages, indicating their plasticity. Side population (SP) cells are a mixed population, although predominantly vascular cells, which exhibit adult stem cell properties, including tissue reconstitution. There is some evidence that bone marrow cells contribute a small population of endometrial epithelial and stromal cells. The discovery of specific markers for endometrial stem/progenitor cells has enabled the examination of their role in endometrial proliferative disorders, including endometriosis, adenomyosis and Asherman's syndrome. Endometrial MSCs (eMSCs) and menstrual blood stromal fibroblasts are an attractive source of MSCs for regenerative medicine because of their relative ease of acquisition with minimal morbidity. Their homologous and non-homologous use as autologous and allogeneic cells for therapeutic purposes is currently being assessed in preclinical animal models of pelvic organ prolapse and phase I/II clinical trials for cardiac failure. eMSCs and stromal fibroblasts also exhibit non-stem cell-associated immunomodulatory and anti-inflammatory properties, further emphasizing their desirable properties for cell-based therapies. CONCLUSIONS Much has been learnt about endometrial stem/progenitor cells in the 10 years since their discovery, although several unresolved issues remain. These include rationalizing the terminology and diagnostic characteristics used for distinguishing perivascular stem/progenitor cells from stromal fibroblasts, which also have considerable differentiation potential. The hierarchical relationship between clonogenic epithelial progenitor cells, endometrial and decidual SP cells, CD146+PDGFR-β+ and SUSD2+ cells and menstrual blood stromal fibroblasts still needs to be resolved. Developing more genetic animal models for investigating the role of endometrial stem/progenitor cells in endometrial disorders is required, as well as elucidating which bone marrow cells contribute to endometrial tissue. Deep sequencing and epigenetic profiling of enriched populations of endometrial stem/progenitor cells and their differentiated progeny at the population and single-cell level will shed new light on the regulation and function of endometrial stem/progenitor cells.
Collapse
Affiliation(s)
- Caroline E Gargett
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton 3168, Victoria, Australia Department of Obstetrics and Gynaecology, Monash University, Monash Medical Centre, 246 Clayton Road, Clayton 3168, Victoria, Australia
| | - Kjiana E Schwab
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton 3168, Victoria, Australia
| | - James A Deane
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton 3168, Victoria, Australia Department of Obstetrics and Gynaecology, Monash University, Monash Medical Centre, 246 Clayton Road, Clayton 3168, Victoria, Australia
| |
Collapse
|
133
|
Wozniak J, Wandtke T, Kopinski P, Chorostowska-Wynimko J. Challenges and Prospects for Alpha-1 Antitrypsin Deficiency Gene Therapy. Hum Gene Ther 2015; 26:709-18. [PMID: 26413996 PMCID: PMC4651033 DOI: 10.1089/hum.2015.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 08/01/2015] [Indexed: 01/06/2023] Open
Abstract
Alpha-1 antitrypsin (AAT) is a protease inhibitor belonging to the serpin family. A number of identified mutations in the SERPINA1 gene encoding this protein result in alpha-1 antitrypsin deficiency (AATD). A decrease in AAT serum concentration or reduced biological activity causes considerable risk of chronic respiratory and liver disorders. As a monogenic disease, AATD appears to be an attractive target for gene therapy, particularly for patients with pulmonary dysfunction, where augmentation of functional AAT levels in plasma might slow down respiratory disease development. The short AAT coding sequence and its activity in the extracellular matrix would enable an increase in systemic serum AAT production by cellular secretion. In vitro and in vivo experimental AAT gene transfer with gamma-retroviral, lentiviral, adenoviral, and adeno-associated viral (AAV) vectors has resulted in enhanced AAT serum levels and a promising safety profile. Human clinical trials using intramuscular viral transfer with AAV1 and AAV2 vectors of the AAT gene demonstrated its safety, but did not achieve a protective level of AAT >11 μM in serum. This review provides an in-depth critical analysis of current progress in AATD gene therapy based on viral gene transfer. The factors affecting transgene expression levels, such as site of administration, dose and type of vector, and activity of the immune system, are discussed further as crucial variables for optimizing the clinical effectiveness of gene therapy in AATD subjects.
Collapse
Affiliation(s)
- Joanna Wozniak
- Department of Gene Therapy, Faculty of Medicine, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Tomasz Wandtke
- Department of Gene Therapy, Faculty of Medicine, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Piotr Kopinski
- Department of Gene Therapy, Faculty of Medicine, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Joanna Chorostowska-Wynimko
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| |
Collapse
|
134
|
Oh K, Shon SY, Seo MW, Lee HM, Oh JE, Choi EY, Lee DS, Park KS. Murine Sca1(+)Lin(-) bone marrow contains an endodermal precursor population that differentiates into hepatocytes. Exp Mol Med 2015; 47:e187. [PMID: 26427852 PMCID: PMC4673473 DOI: 10.1038/emm.2015.64] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/26/2015] [Accepted: 06/01/2015] [Indexed: 12/12/2022] Open
Abstract
The direct differentiation of hepatocytes from bone marrow cells remains controversial. Several mechanisms, including transdifferentiation and cell fusion, have been proposed for this phenomenon, although direct visualization of the process and the underlying mechanisms have not been reported. In this study, we established an efficient in vitro culture method for differentiation of functioning hepatocytes from murine lineage-negative bone marrow cells. These cells reduced liver damage and incorporated into hepatic parenchyma in two independent hepatic injury models. Our simple and efficient in vitro protocol for endodermal precursor cell survival and expansion enabled us to identify these cells as existing in Sca1+ subpopulations of lineage-negative bone marrow cells. The endodermal precursor cells followed a sequential developmental pathway that included endodermal cells and hepatocyte precursor cells, which indicates that lineage-negative bone marrow cells contain more diverse multipotent stem cells than considered previously. The presence of equivalent endodermal precursor populations in human bone marrow would facilitate the development of these cells into an effective treatment modality for chronic liver diseases.
Collapse
Affiliation(s)
- Keunhee Oh
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.,Transplantation Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Suh Youn Shon
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Myung Won Seo
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.,Transplantation Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hak Mo Lee
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Ju-Eun Oh
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Eun Young Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Dong-Sup Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.,Transplantation Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Kyong Soo Park
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| |
Collapse
|
135
|
Development of mRuby2-Transfected C3H10T1/2 Fibroblasts for Musculoskeletal Tissue Engineering. PLoS One 2015; 10:e0139054. [PMID: 26407291 PMCID: PMC4583363 DOI: 10.1371/journal.pone.0139054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/07/2015] [Indexed: 11/19/2022] Open
Abstract
Mouse C3H10T1/2 fibroblasts are multipotent, mesenchymal stem cell (MSC)-like progenitor cells that are widely used in musculoskeletal research. In this study, we have established a clonal population of C3H10T1/2 cells stably-transfected with mRuby2, an orange-red fluorescence reporter gene. Flow cytometry analysis and fluorescence imaging confirmed successful transfection of these cells. Cell counting studies showed that untransfected C3H10T1/2 cells and mRuby2-transfected C3H10T1/2 cells proliferated at similar rates. Adipogenic differentiation experiments demonstrated that untransfected C3H10T1/2 cells and mRuby2-transfected C3H10T1/2 cells stained positive for Oil Red O and showed increased expression of adipogenic genes including adiponectin and lipoprotein lipase. Chondrogenic differentiation experiments demonstrated that untransfected C3H10T1/2 cells and mRuby2-transfected C3H10T1/2 cells stained positive for Alcian Blue and showed increased expression of chondrogenic genes including aggrecan. Osteogenic differentiation experiments demonstrated that untransfected C3H10T1/2 cells and mRuby2-transfected C3H10T1/2 cells stained positive for alkaline phosphatase (ALP) as well as Alizarin Red and showed increased expression of osteogenic genes including alp, ocn and osf-1. When seeded on calcium phosphate-based ceramic scaffolds, mRuby2-transfected C3H10T1/2 cells maintained even fluorescence labeling and osteogenic differentiation. In summary, mRuby2-transfected C3H10T1/2 cells exhibit mRuby2 fluorescence and showed little-to-no difference in terms of cell proliferation and differentiation as untransfected C3H10T1/2 cells. These cells will be available from American Type Culture Collection (ATCC; CRL-3268™) and may be a valuable tool for preclinical studies.
Collapse
|
136
|
Xu X, Li L, Wang C, Liu Y, Chen C, Yan J, Ding H, Tang SY. The expansion of autologous adipose-derived stem cells in vitro for the functional reconstruction of nasal mucosal tissue. Cell Biosci 2015; 5:54. [PMID: 26388989 PMCID: PMC4574024 DOI: 10.1186/s13578-015-0045-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/04/2015] [Indexed: 02/07/2023] Open
Abstract
Background I
t is established that adipose-derived stem cells (ADSCs) produce and secrete cytokines/growth factors that antagonize mucosal injury. However, the exact molecular basis underlying the treatment effects exerted by ADSCs is ill understood, and whether ADSCs cooperate with adipose tissue particles to improve mucosal function in patients with empty nose syndrome (ENS) has not been explored. We investigated the impact of ADSCs on nasal mucosa, the associated mechanisms, and their use in the treatment of patients with ENS. Results
The nasal endoscope and mucociliary clearance assessments were significantly improved (P < 0.05) in patients with (n = 28) and without (n = 2) a rudimentary turbinate that received ADSCs combined with fat granules transplantation. Patients experienced a significant improvement in nasal obstruction and nasal mucociliary clearance after nasal turbinate angioplasty (P < 0.05). H&E staining, Masson’s staining, and AB-PAS staining confirmed that inflammation was significantly reduced, collagenous fibers became aligned, fewer deposits were observed, and the mucosal proteins generated from caliciform cells increased following treatment. After a 14-day incubation period, ADSCs developed a polygonal cobblestone shape characteristic of human epithelial cells. Furthermore, immunohistochemical analysis revealed the presence of epithelial markers such as cytokeratin-7, and cytokeratin-19. Western blot analysis showed the presence of specific epithelial cell markers including cytokeratin-7, cytokeratin-14 and cytokeratin-19 in these epithelial like cells (ELC); these markers had low expression levels of ADSCs. Conclusions The reconstruction of mucosal function by nasal turbinate angioplasty combined with ADSCs and autologous adipose tissue particle transplantation significantly improved the symptoms of patients with ENS. This is a new procedure that will improve mucosal restoration treatment options in patients with ENS. Furthermore, we undertook preliminary explorations of the underlying mechanisms involved, and found that transplantation of ADSCs could induce epithelial cells to improve mucosa function in patients with ENS in the micro-environment of injection areas.
Collapse
Affiliation(s)
- Xiao Xu
- Skin and Reconstructive Medicine Department, The General Hospital of Chinese People's Armed Police Forces, Beijing, People's Republic of China
| | - Liang Li
- Skin and Reconstructive Medicine Department, The General Hospital of Chinese People's Armed Police Forces, Beijing, People's Republic of China
| | - Cheng Wang
- Skin and Reconstructive Medicine Department, The General Hospital of Chinese People's Armed Police Forces, Beijing, People's Republic of China
| | - Yang Liu
- Skin and Reconstructive Medicine Department, The General Hospital of Chinese People's Armed Police Forces, Beijing, People's Republic of China
| | - Chong Chen
- Skin and Reconstructive Medicine Department, The General Hospital of Chinese People's Armed Police Forces, Beijing, People's Republic of China
| | - Junling Yan
- Skin and Reconstructive Medicine Department, The General Hospital of Chinese People's Armed Police Forces, Beijing, People's Republic of China
| | - Hong Ding
- Skin and Reconstructive Medicine Department, The General Hospital of Chinese People's Armed Police Forces, Beijing, People's Republic of China
| | - Su-Yang Tang
- Skin and Reconstructive Medicine Department, The General Hospital of Chinese People's Armed Police Forces, Beijing, People's Republic of China
| |
Collapse
|
137
|
Yamaza T, Alatas FS, Yuniartha R, Yamaza H, Fujiyoshi JK, Yanagi Y, Yoshimaru K, Hayashida M, Matsuura T, Aijima R, Ihara K, Ohga S, Shi S, Nonaka K, Taguchi T. In vivo hepatogenic capacity and therapeutic potential of stem cells from human exfoliated deciduous teeth in liver fibrosis in mice. Stem Cell Res Ther 2015; 6:171. [PMID: 26358689 PMCID: PMC4566368 DOI: 10.1186/s13287-015-0154-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 07/02/2015] [Accepted: 08/12/2015] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Liver transplantation is a gold standard treatment for intractable liver diseases. Because of the shortage of donor organs, alternative therapies have been required. Due to their potential to differentiate into a variety of mature cells, stem cells are considered feasible cell sources for liver regeneration. Stem cells from human exfoliated deciduous teeth (SHED) exhibit hepatogenic capability in vitro. In this study, we investigated their in vivo capabilities of homing and hepatocyte differentiation and therapeutic efficacy for liver disorders in carbon tetrachloride (CCl4)-induced liver fibrosis model mice. METHODS We transplanted SHED into CCl4-induced liver fibrosis model mice through the spleen, and analyzed the in vivo homing and therapeutic effects by optical, biochemical, histological, immunological and molecular biological assays. We then sorted human leukocyte antigen-ABC (HLA-ABC)-positive cells from primary CCl4-damaged recipient livers, and analyzed their fusogenicity and hepatic characteristics by flow cytometric, genomic DNA, hepatocyte-specific gene assays. Furthermore, we examined the treatment effects of HLA-positive cells to a hepatic dysfunction by a secondary transplantation into CCl4-treated mice. RESULTS Transplanted SHED homed to recipient livers, and expressed HLA-ABC, human hepatocyte specific antigen hepatocyte paraffin 1 and human albumin. SHED transplantation markedly recovered liver dysfunction and led to anti-fibrotic and anti-inflammatory effects in the recipient livers. SHED-derived HLA-ABC-positive cells that were sorted from the primary recipient liver tissues with CCl4 damage did not fuse with the host mouse liver cells. Sorted HLA-positive cells not only expressed human hepatocyte-specific genes including albumin, cytochrome P450 1A1, fumarylacetoacetase, tyrosine aminotransferase, uridine 5'-diphospho-glucuronosyltransferase, transferrin and transthyretin, but also secreted human albumin, urea and blood urea nitrogen. Furthermore, SHED-derived HLA-ABC-positive cells were secondary transplanted into CCl4-treated mice. The donor cells homed into secondary recipient livers, and expressed hepatocyte paraffin 1 and human albumin, as well as HLA-ABC. The secondary transplantation recovered a liver dysfunction in secondary recipients. CONCLUSIONS This study indicates that transplanted SHED improve hepatic dysfunction and directly transform into hepatocytes without cell fusion in CCl4-treated mice, suggesting that SHED may provide a feasible cell source for liver regeneration.
Collapse
Affiliation(s)
- Takayoshi Yamaza
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Fatima Safira Alatas
- Department of Pediatric Surgery, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Ratih Yuniartha
- Department of Pediatric Surgery, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Haruyoshi Yamaza
- Department of Pediatric Dentistry, Kyushu University Graduate School of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Junko K Fujiyoshi
- Department of Pediatrics, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Yusuke Yanagi
- Department of Pediatric Surgery, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Koichiro Yoshimaru
- Department of Pediatric Surgery, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Makoto Hayashida
- Department of Pediatric Surgery, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Toshiharu Matsuura
- Department of Pediatric Surgery, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Reona Aijima
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Kenji Ihara
- Department of Pediatrics, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hazama-cho, Yuhuin, 879-5593, Japan.
| | - Shouichi Ohga
- Department of Pediatrics, Faculty of Medicine and Health Sciences, Yamaguchi University, 1-1-1 Minami Ogushi, Ube, 755-8505, Japan.
| | - Songtao Shi
- Department Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Philadelphia, PA, 19104-6030, USA.
| | - Kazuaki Nonaka
- Department of Pediatric Dentistry, Kyushu University Graduate School of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Tomoaki Taguchi
- Department of Pediatric Surgery, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
138
|
Li L, Zeng Z, Qi Z, Wang X, Gao X, Wei H, Sun R, Tian Z. Natural Killer Cells-Produced IFN-γ Improves Bone Marrow-Derived Hepatocytes Regeneration in Murine Liver Failure Model. Sci Rep 2015; 5:13687. [PMID: 26345133 PMCID: PMC4561890 DOI: 10.1038/srep13687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 08/03/2015] [Indexed: 02/07/2023] Open
Abstract
Bone-marrow transplantation (BMT) can repopulate the liver through BM-derived hepatocyte (BMDH) generation, although the underlying mechanism remains unclear. Using fumarylacetoacetate hydrolase-deficient (Fah(-/-)) mice as a liver-failure model, we confirmed that BMDHs were generated by fusion of BM-derived CD11b(+)F4/80(+)myelomonocytes with resident Fah(-/-) hepatocytes. Hepatic NK cells became activated during BMDH generation and were the major IFN-γ producers. Indeed, both NK cells and IFN-γ were required for BMDH generation since WT, but not NK-, IFN-γ-, or IFN-γR1-deficient BM transplantation successfully generated BMDHs and rescued survival in Fah(-/-) hosts. BM-derived myelomonocytes were determined to be the IFN-γ-responding cells. The IFN-γ-IFN-γR interaction contributed to the myelomonocyte-hepatocyte fusion process, as most of the CD11b(+) BMDHs in mixed BM chimeric Fah(-/-) hosts transplanted with a 1:1 ratio of CD45.1(+) WT and CD45.2(+) Ifngr1(-/-) BM cells were of CD45.1(+) WT origin. Confirming these findings in vitro, IFN-γ dose-dependently promoted the fusion of GFP(+) myelomonocytes with Fah(-/-) hepatocytes due to a direct effect on myelomonocytes; similar results were observed using activated NK cells. In conclusion, BMDH generation requires NK cells to facilitate myelomonocyte-hepatocyte fusion in an IFN-γ-dependent manner, providing new insights for treating severe liver failure.
Collapse
Affiliation(s)
- Lu Li
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Zhutian Zeng
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Ziping Qi
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xin Wang
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, Inner Mongolia University, Hohhot 010070, China
| | - Xiang Gao
- Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Haiming Wei
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Rui Sun
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Zhigang Tian
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
139
|
Lee SG, Moon SH, Kim HJ, Lee JY, Park SJ, Chung HM, Ha TY, Song GW, Jung DH, Park H, Kwon TW, Cho YP. Bone marrow-derived progenitor cells in de novo liver regeneration in liver transplant. Liver Transpl 2015; 21:1186-94. [PMID: 25761987 DOI: 10.1002/lt.24099] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 02/14/2015] [Accepted: 02/21/2015] [Indexed: 12/13/2022]
Abstract
The study was designed (1) to examine the hypothesis that circulating progenitor cells play a role in the process of de novo regeneration in human liver transplants and that these cells arise from a cell population originating in, or associated with, the bone marrow and (2) to investigate whether the transplanted liver volume has an effect on the circulating recipient-derived progenitor cells that generate hepatocytes during this process. Clinical data and liver tissue characteristics were analyzed in male individuals who underwent sex-mismatched adult-to-adult living donor liver transplantation using dual left lobe grafts. Dual left lobe grafts were examined at the time of transplantation and 19 to 27 days after transplantation. All recipients showed recovery of normal liver function and a significant increase in the volume of the engrafted left lobes after transplantation. Double staining for a Y-chromosome probe and the CD31 antigen showed the presence of hybrid vessels composed of recipient-derived cells and donor cells within the transplanted liver tissues. Furthermore, CD34-expressing cells were observed commingling with Y-chromosome+ cells. The ratio of recipient-derived vessels and the number of Y+ CD34+ cells tended to be higher when smaller graft volumes underwent transplantation. These findings suggest that the recruitment of circulating bone marrow-derived progenitor cells could contribute to vessel formation and de novo regeneration in human liver transplants. Moreover, graft volume may be an important determinant for the active mobilization of circulating recipient-derived progenitor cells and their contribution to liver regeneration.
Collapse
Affiliation(s)
- Sung-Gyu Lee
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sung-Hwan Moon
- Department of Medicine, School of Medicine, Konkuk University, Seoul, Republic of Korea
| | - Hee-Je Kim
- Department of Internal Medicine, Catholic Blood and Marrow Transplantation Center, Seoul St. Mary's Hospital, Catholic University of Korea, Seoul, Republic of Korea
| | - Ji Yoon Lee
- Department of Internal Medicine, Catholic Blood and Marrow Transplantation Center, Seoul St. Mary's Hospital, Catholic University of Korea, Seoul, Republic of Korea
| | - Soon-Jung Park
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Republic of Korea
| | - Hyung-Min Chung
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Republic of Korea
| | - Tae-Yong Ha
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Gi-Won Song
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Dong-Hwan Jung
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hojong Park
- Department of Surgery, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Tae-Won Kwon
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yong-Pil Cho
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
140
|
Porada CD, Atala AJ, Almeida-Porada G. The hematopoietic system in the context of regenerative medicine. Methods 2015; 99:44-61. [PMID: 26319943 DOI: 10.1016/j.ymeth.2015.08.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 07/06/2015] [Accepted: 08/23/2015] [Indexed: 12/16/2022] Open
Abstract
Hematopoietic stem cells (HSC) represent the prototype stem cell within the body. Since their discovery, HSC have been the focus of intensive research, and have proven invaluable clinically to restore hematopoiesis following inadvertent radiation exposure and following radio/chemotherapy to eliminate hematologic tumors. While they were originally discovered in the bone marrow, HSC can also be isolated from umbilical cord blood and can be "mobilized" peripheral blood, making them readily available in relatively large quantities. While their ability to repopulate the entire hematopoietic system would already guarantee HSC a valuable place in regenerative medicine, the finding that hematopoietic chimerism can induce immunological tolerance to solid organs and correct autoimmune diseases has dramatically broadened their clinical utility. The demonstration that these cells, through a variety of mechanisms, can also promote repair/regeneration of non-hematopoietic tissues as diverse as liver, heart, and brain has further increased their clinical value. The goal of this review is to provide the reader with a brief glimpse into the remarkable potential HSC possess, and to highlight their tremendous value as therapeutics in regenerative medicine.
Collapse
Affiliation(s)
- Christopher D Porada
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, 391 Technology Way, Winston-Salem, NC 27157-1083, United States.
| | - Anthony J Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, 391 Technology Way, Winston-Salem, NC 27157-1083, United States.
| | - Graça Almeida-Porada
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, 391 Technology Way, Winston-Salem, NC 27157-1083, United States.
| |
Collapse
|
141
|
Al Ghrbawy NM, Afify RAAM, Dyaa N, El Sayed AA. Differentiation of Bone Marrow: Derived Mesenchymal Stem Cells into Hepatocyte-like Cells. Indian J Hematol Blood Transfus 2015; 32:276-83. [PMID: 27429519 DOI: 10.1007/s12288-015-0581-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 08/17/2015] [Indexed: 02/06/2023] Open
Abstract
Cirrhosis is the end-stage liver fibrosis, whereby normal liver architecture is disrupted by fibrotic bands, parenchymal nodules and vascular distortion. Portal hypertension and hepatocyte dysfunction are the end results and give rise to major systemic complications and premature death. Mesenchymal stem cells (MSC) have the capacity of self-renew and to give rise to cells of various lineages, so MSC can be isolated from bone marrow (BM) and induced to differentiate into hepatocyte-like cells. MSC were induced to differentiate into hepatocyte-like cells by hepatotic growth factor (HGF) and fibroblast growth factor-4 (FGF-4). Differentiated cells were examined for the expression of hepatocyte-specific markers and hepatocyte functions. MSC were isolated. Flow cytometry analysis showed that they expressed the MSC-specific markers, reverse transcriptase-polymerase chain reaction (RT-PCR) demonstrated that MSC expressed the hepatocyte-specific marker cytokeratin 18 (CK-18) following hepatocyte induction. This study demonstrates that BM-derived-MSC can differentiate into functional hepatocyte-like cells following the induction of HGF and FGF-4. MSC can serve as a favorable cell source for tissue engineering in the treatment of liver disease.
Collapse
Affiliation(s)
- Nesrien M Al Ghrbawy
- Clinical Pathology Department, Faculty of Medicine, Al kaser Al Aini, Cairo University, Cairo, Egypt
| | | | - Nehal Dyaa
- Clinical Pathology Department, Faculty of Medicine, Al kaser Al Aini, Cairo University, Cairo, Egypt
| | | |
Collapse
|
142
|
Zeng C, Zhang Y, Park SC, Eun JR, Nguyen NT, Tschudy-Seney B, Jung YJ, Theise ND, Zern MA, Duan Y. CD34(+) Liver Cancer Stem Cells Were Formed by Fusion of Hepatobiliary Stem/Progenitor Cells with Hematopoietic Precursor-Derived Myeloid Intermediates. Stem Cells Dev 2015; 24:2467-78. [PMID: 26192559 DOI: 10.1089/scd.2015.0202] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A large number of cancer stem cells (CSCs) were identified and characterized; however, the origins and formation of CSCs remain elusive. In this study, we examined the origination of the newly identified CD34(+) liver CSC (LCSC). We found that CD34(+) LCSC coexpressed liver stem cell and myelomonocytic cell markers, showing a mixed phenotype, a combination of hepatobiliary stem/progenitor cells (HSPCs) and myelomonocytic cells. Moreover, human xenografts produced by CD34(+) LCSCs and the parental cells, which CD34(+) LCSC was isolated from, coexpressed liver cancer and myelomonocytic markers, also demonstrating mixed phenotypes. The xenografts and the parental cells secreted albumin demonstrating their hepatocyte origin and also expressed cytokines [interleukin (IL)-1b, IL-6, IL-12A, IL-18, tumor necrosis factor-alpha (TNF-α), and CSF1] and chemokines (IL-8, CCL2, and CCL5). Expression of these cytokines and chemokines responded to the stimuli [interferon-γ (INF-γ), IL-4, and lipopolysaccharide (LPS)]. Furthermore, human xenografts and the parental cells phagocytized Escherichia coli. CD34(+) LCSC coexpressed CD45, demonstrating that its origin appears to be from a hematopoietic precursor. The percentage of cells positive for OV6, CD34, and CD31, presenting the markers of HSPC, hematopoietic, and myelomonocytic cells, increased under treatment of CD34(+) LCSC with a drug. Cytogenetic analysis showed that CD34(+) LCSC contained a greater number of chromosomes. HBV DNA integrations and mutations in CD34(+) LCSC and the parental cells were identical to those in the literature or the database. Thus, these results demonstrated that CD34(+) LCSCs were formed by fusion of HSPC with CD34(+) hematopoietic precursor-derived myeloid intermediates; it appears that this is the first report that human CSCs have been formed by the fusion. Therefore, it represents a significant step toward better understanding of the formation of human CSC and the diverse origins of liver cancers.
Collapse
Affiliation(s)
- Changjun Zeng
- 1 Department of Internal Medicine, University of California Davis Medical Center , Sacramento, California.,2 Institute for Regenerative Cures, University of California Davis Medical Center , Sacramento, California.,3 College of Animal Science and Technology, Sichuan Agricultural University , Ya'an, China
| | - Yanling Zhang
- 1 Department of Internal Medicine, University of California Davis Medical Center , Sacramento, California.,2 Institute for Regenerative Cures, University of California Davis Medical Center , Sacramento, California.,4 School of Biotechnology, Southern Medical University , Guangzhou, China
| | - Su Cheol Park
- 1 Department of Internal Medicine, University of California Davis Medical Center , Sacramento, California.,2 Institute for Regenerative Cures, University of California Davis Medical Center , Sacramento, California.,5 Department of Internal Medicine, Korea Institute of Radiological & Medical Sciences , Seoul, Korea
| | - Jong Ryeol Eun
- 1 Department of Internal Medicine, University of California Davis Medical Center , Sacramento, California.,2 Institute for Regenerative Cures, University of California Davis Medical Center , Sacramento, California.,6 Department of Internal Medicine, Yeungnam University College of Medicine , Daegu, Korea
| | - Ngoc Tue Nguyen
- 1 Department of Internal Medicine, University of California Davis Medical Center , Sacramento, California.,2 Institute for Regenerative Cures, University of California Davis Medical Center , Sacramento, California
| | - Benjamin Tschudy-Seney
- 1 Department of Internal Medicine, University of California Davis Medical Center , Sacramento, California.,2 Institute for Regenerative Cures, University of California Davis Medical Center , Sacramento, California
| | - Yong Jin Jung
- 1 Department of Internal Medicine, University of California Davis Medical Center , Sacramento, California.,2 Institute for Regenerative Cures, University of California Davis Medical Center , Sacramento, California.,7 Department of Internal Medicine, Seoul National University College of Medicine , Seoul, Korea
| | - Neil D Theise
- 8 Department of Pathology and Medicine, Beth Israel Medical Center , Albert Einstein College of Medicine, New York, New York
| | - Mark A Zern
- 1 Department of Internal Medicine, University of California Davis Medical Center , Sacramento, California.,2 Institute for Regenerative Cures, University of California Davis Medical Center , Sacramento, California
| | - Yuyou Duan
- 1 Department of Internal Medicine, University of California Davis Medical Center , Sacramento, California.,2 Institute for Regenerative Cures, University of California Davis Medical Center , Sacramento, California.,9 Department of Dermatology, University of California Davis Medical Center , Sacramento, California
| |
Collapse
|
143
|
SDF-1/CXCR4 Axis Promotes MSCs to Repair Liver Injury Partially through Trans-Differentiation and Fusion with Hepatocytes. Stem Cells Int 2015; 2015:960387. [PMID: 26300925 PMCID: PMC4537768 DOI: 10.1155/2015/960387] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/06/2015] [Indexed: 02/06/2023] Open
Abstract
MSCs have become a popular target for developing end-stage liver therapies. In this study, two models of bone marrow chimeric mice were used to construct the liver failure models. Then it was found that MSCs can transdifferentiate into hepatocyte-like cells and these hepatocyte-like cells can significantly express albumin. Furthermore it was also found that MSCs can fuse with the hepatocytes and these cells had the proliferation activity. However, the percentage of transdifferentiation was significantly higher than fusion. So it was considered that MSCs which transdifferentiated into hepatocyte-likes cells played important roles for repairing the injuring liver function.
Collapse
|
144
|
Gautier SV, Shevchenko OP, Tsirulnikova OM, Kurabekova RM, Lugovskaya SA, Naumova EV, Tsirulnikova IE, Dolgov VV. The hematopoietic stem cell number in the peripheral blood of pediatric recipients correlates with the outcome after living donor liver transplantation. Pediatr Transplant 2015; 19:531-7. [PMID: 25951239 DOI: 10.1111/petr.12482] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/02/2015] [Indexed: 12/20/2022]
Abstract
It has been proposed that circulating HSCs play a role in graft survival after liver transplantation. The aim was to analyze the relationship between the number of HSCs before and after LDLT and liver function, immune biomarkers, and clinical outcomes in pediatric patients. We studied 15 pairs of adult healthy liver donors and pediatric recipients with ESLD. The CD34/CD45+ cell number was measured in the blood via flow cytometry, and plasma levels of immune biomarkers - via ELISA. CD34/CD45+ cell number in the recipients decreased within the first week after LDLT. The cell number before LDLT was negatively correlated with the plasma levels of CRP and the development of graft dysfunction in the early post-transplant period. After LDLT, the CD34/CD45+ cell number was positively correlated with the pretransplant plasma level of sCD40L, a T-cell activation marker. In adult liver donors, the cell number did not change within the first week after liver resection and was lower than in pediatric recipients. The results suggest that in pediatric recipients, the HSC number may be associated with graft function and could be regarded as a potential predictor of the clinical outcome after LDLT.
Collapse
Affiliation(s)
- Sergey V Gautier
- V.I. Shumakov Federal Research Center of Transplantology and Artificial Organs, Moscow, Russian Federation.,Department of Transplantology and Artificial Organs, I.M. Sechenov Fist Moscow State Medical University, Moscow, Russian Federation
| | - Olga P Shevchenko
- V.I. Shumakov Federal Research Center of Transplantology and Artificial Organs, Moscow, Russian Federation.,Department of Transplantology and Artificial Organs, I.M. Sechenov Fist Moscow State Medical University, Moscow, Russian Federation
| | - Olga M Tsirulnikova
- V.I. Shumakov Federal Research Center of Transplantology and Artificial Organs, Moscow, Russian Federation
| | - Rivada M Kurabekova
- V.I. Shumakov Federal Research Center of Transplantology and Artificial Organs, Moscow, Russian Federation
| | | | - Elena V Naumova
- Russian Medical Academy of Postgraduate Education, Moscow, Russian Federation
| | - Irina E Tsirulnikova
- V.I. Shumakov Federal Research Center of Transplantology and Artificial Organs, Moscow, Russian Federation
| | - Vladimir V Dolgov
- Russian Medical Academy of Postgraduate Education, Moscow, Russian Federation
| |
Collapse
|
145
|
Hsu LW, Nakano T, Huang KT, Chen CC, Chen KD, Lai CY, Yang SM, Lin CC, Wang CC, Cheng YF, Chiu KW, Kuo YR, Goto S, Chen CL. Prolonged survival by combined treatment with granulocyte colony-stimulating factor and dipeptidyl peptidase IV inhibitor in a rat small-for-size liver transplantation model. Hepatol Res 2015; 45:804-13. [PMID: 25179290 DOI: 10.1111/hepr.12413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 08/12/2014] [Accepted: 08/25/2014] [Indexed: 01/10/2023]
Abstract
AIM Despite the great advances and excellent outcomes of liver transplantation (LT), small-for-size (SFS) graft syndrome is a life-threatening complication that remains to be overcome. In the present study, we investigated the therapeutic effect of combined treatment with granulocyte colony-stimulating factor (G-CSF) and a dipeptidyl peptidase IV (DPP-IV) inhibitor on SFS liver graft syndrome. METHODS The transplantation of small-sized Lewis donor livers into green fluorescent protein (GFP) transgenic Wistar rats was performed and the recipients were randomly assigned to one of four groups (without treatment, DPP-IV inhibitor treatment, G-CSF treatment and G-CSF/DPP-IV inhibitor combination). Recombinant human G-CSF was injected s.c. at a dose of 2 μg/kg per day starting 5 days prior to transplantation. G-CSF was combined with the p.o. administration of a DPP-IV inhibitor (2 mg/kg per day) after transplantation until the end of the observation period. RESULTS The post-transplant survival and liver function of rats treated with G-CSF/DPP-IV inhibitor combination therapy were significantly improved with an increased number of recipient-derived GFP positive cells into the liver grafts. A confocal microscopy study showed cytokeratin (CK)-18 and GFP positive hepatic progenitor cells in the parenchyma of the liver allografts. Untreated rats and rats treated with either G-CSF or DPP-IV inhibitor did not exhibit the prolonged survival and had less GFP and CK-18 positive cells in the liver grafts after SFS LT. CONCLUSION Our results suggest that combined treatment with G-CSF and DPP-IV inhibitor may synergistically induce migration and differentiation of recipient-derived stem cells into the hepatic progenitor cells, resulting in the amelioration of SFS liver graft syndrome.
Collapse
Affiliation(s)
- Li-Wen Hsu
- Liver Transplantation Program and Division of Transplant Immunology, Center for Translational Research in Biomedical Sciences, Kaohsiung, Taiwan.,Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Toshiaki Nakano
- Liver Transplantation Program and Division of Transplant Immunology, Center for Translational Research in Biomedical Sciences, Kaohsiung, Taiwan.,Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kuang-Tzu Huang
- Liver Transplantation Program and Division of Transplant Immunology, Center for Translational Research in Biomedical Sciences, Kaohsiung, Taiwan
| | - Chien-Chih Chen
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kuang-Den Chen
- Liver Transplantation Program and Division of Transplant Immunology, Center for Translational Research in Biomedical Sciences, Kaohsiung, Taiwan
| | - Chia-Yun Lai
- Liver Transplantation Program and Division of Transplant Immunology, Center for Translational Research in Biomedical Sciences, Kaohsiung, Taiwan.,Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Shih-Ming Yang
- Liver Transplantation Program and Division of Transplant Immunology, Center for Translational Research in Biomedical Sciences, Kaohsiung, Taiwan.,Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chih-Che Lin
- Liver Transplantation Program and Division of Transplant Immunology, Center for Translational Research in Biomedical Sciences, Kaohsiung, Taiwan.,Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chih-Chi Wang
- Liver Transplantation Program and Division of Transplant Immunology, Center for Translational Research in Biomedical Sciences, Kaohsiung, Taiwan.,Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yu-Fan Cheng
- Liver Transplantation Program and Division of Transplant Immunology, Center for Translational Research in Biomedical Sciences, Kaohsiung, Taiwan.,Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - King-Wah Chiu
- Liver Transplantation Program and Division of Transplant Immunology, Center for Translational Research in Biomedical Sciences, Kaohsiung, Taiwan.,Division of Hepatogastroenterology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yur-Ren Kuo
- Department of Plastic and Reconstructive Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Shigeru Goto
- Liver Transplantation Program and Division of Transplant Immunology, Center for Translational Research in Biomedical Sciences, Kaohsiung, Taiwan.,Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chao-Long Chen
- Liver Transplantation Program and Division of Transplant Immunology, Center for Translational Research in Biomedical Sciences, Kaohsiung, Taiwan.,Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| |
Collapse
|
146
|
Coombes J, Swiderska-Syn M, Dollé L, Reid D, Eksteen B, Claridge L, Briones-Orta MA, Shetty S, Oo YH, Riva A, Chokshi S, Papa S, Mi Z, Kuo PC, Williams R, Canbay A, Adams DH, Diehl AM, van Grunsven LA, Choi SS, Syn WK. Osteopontin neutralisation abrogates the liver progenitor cell response and fibrogenesis in mice. Gut 2015; 64:1120-31. [PMID: 24902765 PMCID: PMC4487727 DOI: 10.1136/gutjnl-2013-306484] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 05/22/2014] [Indexed: 12/29/2022]
Abstract
BACKGROUND Chronic liver injury triggers a progenitor cell repair response, and liver fibrosis occurs when repair becomes deregulated. Previously, we reported that reactivation of the hedgehog pathway promotes fibrogenic liver repair. Osteopontin (OPN) is a hedgehog-target, and a cytokine that is highly upregulated in fibrotic tissues, and regulates stem-cell fate. Thus, we hypothesised that OPN may modulate liver progenitor cell response, and thereby, modulate fibrotic outcomes. We further evaluated the impact of OPN-neutralisation on murine liver fibrosis. METHODS Liver progenitors (603B and bipotential mouse oval liver) were treated with OPN-neutralising aptamers in the presence or absence of transforming growth factor (TGF)-β, to determine if (and how) OPN modulates liver progenitor function. Effects of OPN-neutralisation (using OPN-aptamers or OPN-neutralising antibodies) on liver progenitor cell response and fibrogenesis were assessed in three models of liver fibrosis (carbon tetrachloride, methionine-choline deficient diet, 3,5,-diethoxycarbonyl-1,4-dihydrocollidine diet) by quantitative real time (qRT) PCR, Sirius-Red staining, hydroxyproline assay, and semiquantitative double-immunohistochemistry. Finally, OPN expression and liver progenitor response were corroborated in liver tissues obtained from patients with chronic liver disease. RESULTS OPN is overexpressed by liver progenitors in humans and mice. In cultured progenitors, OPN enhances viability and wound healing by modulating TGF-β signalling. In vivo, OPN-neutralisation attenuates the liver progenitor cell response, reverses epithelial-mesenchymal-transition in Sox9+ cells, and abrogates liver fibrogenesis. CONCLUSIONS OPN upregulation during liver injury is a conserved repair response, and influences liver progenitor cell function. OPN-neutralisation abrogates the liver progenitor cell response and fibrogenesis in mouse models of liver fibrosis.
Collapse
Affiliation(s)
- J Coombes
- Regeneration and Repair Group, The Institute of Hepatology, Foundation for Liver Research, London, UK
| | - M Swiderska-Syn
- Division of Gastroenterology, Department of Medicine, Duke University, NC, USA
| | - L Dollé
- Liver Cell Biology Lab (LIVR), Department of Cell Biology (CYTO), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - D Reid
- Snyder Institute for Chronic Diseases, Health Research and Innovation Centre (HRIC), University of Calgary, Canada
| | - B Eksteen
- Snyder Institute for Chronic Diseases, Health Research and Innovation Centre (HRIC), University of Calgary, Canada
| | - L Claridge
- Centre for Liver Research, NIHR Institute for Biomedical Research, University of Birmingham, UK
| | - MA Briones-Orta
- Regeneration and Repair Group, The Institute of Hepatology, Foundation for Liver Research, London, UK
| | - S Shetty
- Centre for Liver Research, NIHR Institute for Biomedical Research, University of Birmingham, UK
| | - YH Oo
- Centre for Liver Research, NIHR Institute for Biomedical Research, University of Birmingham, UK
| | - A Riva
- Viral Hepatitis Group, The Institute of Hepatology, Foundation for Liver Research, London, UK
| | - S Chokshi
- Viral Hepatitis Group, The Institute of Hepatology, Foundation for Liver Research, London, UK
| | - S Papa
- Cell Signaling Group, The Institute of Hepatology, Foundation for Liver Research, London, UK
| | - Z Mi
- Department of Surgery, Loyola University, Chicago, USA
| | - PC Kuo
- Department of Surgery, Loyola University, Chicago, USA
| | - R Williams
- Regeneration and Repair Group, The Institute of Hepatology, Foundation for Liver Research, London, UK
| | - A Canbay
- Department of Gastroenterology and Hepatology, Essen University Hospital, Essen, Germany
| | - DH Adams
- Centre for Liver Research, NIHR Institute for Biomedical Research, University of Birmingham, UK
| | - AM Diehl
- Division of Gastroenterology, Department of Medicine, Duke University, NC, USA
| | - LA van Grunsven
- Liver Cell Biology Lab (LIVR), Department of Cell Biology (CYTO), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - SS Choi
- Division of Gastroenterology, Department of Medicine, Duke University, NC, USA,Section of Gastroenterology, Department of Medicine, Durham Veteran Affairs Medical Center, Durham, NC, USA
| | - WK Syn
- Regeneration and Repair Group, The Institute of Hepatology, Foundation for Liver Research, London, UK,Centre for Liver Research, NIHR Institute for Biomedical Research, University of Birmingham, UK,Department of Hepatology, Barts Health NHS Trust, London, UK,Senior and Corresponding Author: Dr Wing-Kin Syn, Head of Liver Regeneration and Repair, The Institute of Hepatology, Foundation for Liver Research, London WC1E 6HX, Tel: 44-20272559837,
| |
Collapse
|
147
|
Sharma M, Rao PN, Sasikala M, Kuncharam MR, Reddy C, Gokak V, Raju BPSS, Singh JR, Nag P, Reddy DN. Autologous mobilized peripheral blood CD34 + cell infusion in non-viral decompensated liver cirrhosis. World J Gastroenterol 2015; 21:7264-7271. [PMID: 26109814 PMCID: PMC4476889 DOI: 10.3748/wjg.v21.i23.7264] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 02/03/2015] [Accepted: 03/19/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the effect of mobilized peripheral blood autologous CD34 positive (CD34+) cell infusion in patients with non-viral decompensated cirrhosis.
METHODS: Cirrhotic patients of non-viral etiology were divided into 2 groups based on their willingness to be listed for deceased donor liver transplant (DDLT) (control, n = 23) or to receive autologous CD34+ cell infusion through the hepatic artery (study group, n = 22). Patients in the study group were admitted to hospital and received granulocyte colony stimulating factor injections 520 μg/d for 3 consecutive days to mobilize CD34+ cells from the bone marrow. On day 4, leukapheresis was done and CD34+ cells were isolated using CliniMAC magnetic cell sorter. The isolated CD34+ cells were infused into the hepatic artery under radiological guidance. The patients were discharged within 48 h. The control group received standard of care treatment for liver cirrhosis and were worked up for DDLT as per protocol of the institute. Both groups were followed up every week for 4 wk and then every month for 3 mo.
RESULTS: In the control and the study group, the cause of cirrhosis was cryptogenic in 18 (78.2%) and 16 (72.72%) and alcohol related in 5 (21.7%) and 6 (27.27%), respectively. The mean day 3 cell count (cells/μL) was 27.00 ± 20.43 with a viability of 81.84 ± 11.99%. and purity of 80%-90%. Primary end point analysis revealed that at 4 wk, the mean serum albumin in the study group increased significantly (2.83 ± 0.36 vs 2.43 ± 0.42, P = 0.001) when compared with controls. This improvement in albumin was, however, not sustained at 3 mo. However, at the end of 3 mo there was a statistically significant improvement in serum creatinine in the study group (0.96 ± 0.33 vs 1.42 ± 0.70, P = 0.01) which translated into a significant improvement in the Model for End-Stage Liver Disease score (15.75 ± 5.13 vs 19.94 ± 6.68, P = 0.04). On statistical analysis of secondary end points, the transplant free survival at the end of 1 mo and 3 mo did not show any significant difference (P = 0.60) when compared to the control group. There was no improvement in aspartate transaminase, alanine transaminase, and bilirubin at any point in the study population. There was no mortality benefit in the study group. The procedure was safe with no procedural or treatment related complications.
CONCLUSION: Autologous CD 34+ cell infusion is safe and effectively improves liver function in the short term and may serve as a bridge to liver transplantation.
Collapse
|
148
|
Huang M, Feng Z, Ji D, Cao Y, Shi X, Chen P, Wang P, Tang M, Liu K. Use of a transjugular intrahepatic portosystemic shunt combined with autologous bone marrow cell infusion in patients with decompensated liver cirrhosis: an exploratory study. Cytotherapy 2015; 16:1575-1583. [PMID: 25287603 DOI: 10.1016/j.jcyt.2014.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 03/27/2014] [Accepted: 04/04/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND AIMS Currently, there is no treatment for decompensated liver cirrhosis except for liver transplantation. The safety and effect on liver function of a transjugular intrahepatic portosystemic shunt (TIPS) with and without autologous bone marrow cell (BMC) infusion in patients with decompensated liver cirrhosis were determined. METHODS Ten patients who were diagnosed with decompensated liver cirrhosis during the period from September 2011 to July 2012 were enrolled in this study. The patients underwent TIPS (TIPS group) or combined treatment with TIPS and BMC infusion through the hepatic artery (TIPS+BMC group). All patients were monitored for adverse events, liver function and complications caused by portal hypertension during a period of 52 weeks. RESULTS The number of infused BMCs was 2.65 ± 1.20 ×10(9). Significant improvements in the serum levels of albumin and total bilirubin and decreased Child-Pugh scores were observed in patients treated with both TIPS and BMCs (P < 0.05), whereas no such changes were observed in the TIPS group. Endoscopic findings showed that varices in the esophagus and the gastric fundus were alleviated after either treatment. All 10 patients showed a complete or partial resolution of ascites at 4 weeks. No major adverse effects were noted during the follow-up period for patients in either group. CONCLUSIONS TIPS combined with BMC infusion is clinically safe; the treatment improved liver function and alleviated complications caused by portal hypertension; therefore, this combination has potential for treatment of patients with decompensated liver cirrhosis.
Collapse
Affiliation(s)
- Maotao Huang
- Department of Gastroenterology and Endocrinology, The 452(nd) Hospital of PLA, Chengdu, China.
| | - Zaoming Feng
- Department of Gastroenterology and Endocrinology, The 452(nd) Hospital of PLA, Chengdu, China
| | - Daijin Ji
- Department of Gastroenterology and Endocrinology, The 452(nd) Hospital of PLA, Chengdu, China
| | - Yaling Cao
- Department of Gastroenterology and Endocrinology, The 452(nd) Hospital of PLA, Chengdu, China
| | - Xiaoying Shi
- Department of Gastroenterology and Endocrinology, The 452(nd) Hospital of PLA, Chengdu, China
| | - Ping Chen
- Department of Nursing, The 452(nd) Hospital of PLA, Chengdu, China
| | - Ping Wang
- Department of Gastroenterology and Endocrinology, The 452(nd) Hospital of PLA, Chengdu, China
| | - Min Tang
- Department of Gastroenterology and Endocrinology, The 452(nd) Hospital of PLA, Chengdu, China
| | - Kai Liu
- Department of Gastroenterology and Endocrinology, The 452(nd) Hospital of PLA, Chengdu, China
| |
Collapse
|
149
|
Rui Y, Xu L, Chen R, Zhang T, Lin S, Hou Y, Liu Y, Meng F, Liu Z, Ni M, Sze Tsang K, Yang F, Wang C, Chang Chan H, Jiang X, Li G. Epigenetic memory gained by priming with osteogenic induction medium improves osteogenesis and other properties of mesenchymal stem cells. Sci Rep 2015; 5:11056. [PMID: 26053250 PMCID: PMC4459169 DOI: 10.1038/srep11056] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 05/11/2015] [Indexed: 01/31/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are highly plastic cells that are able to transdifferentiate or dedifferentiate under appropriate conditions. In the present study, we reported here that after in vitro induction of osteogenic differentiation, MSCs could be reverted to a primitive stem cell population (dedifferentiated osteogenic MSCs, De-Os-MSCs) with improved cell survival, colony formation, osteogenic potential, migratory capacity and increased expression of Nanog, Oct4 and Sox2. Most importantly, our results showed great superiority of the De-Os-MSCs over untreated MSCs in ectopic bone formation in vivo. Furthermore, Nanog-knockdown in MSCs could reverse these enhanced properties in De-Os-MSCs in vitro, indicating a central role of Nanog in the transcriptional network. In addition, epigenetic regulations including DNA methylation and histone modifications may play important roles in regulating the de-osteogenic differentiation process. And we found decreased methylation and promoter accrual of activating histone marks, such as H3K4me3 and H4ac on both Nanog and Oct4 gene promoters. Taken together, our study demonstrated that epigenetic memory in De-Os-MSCs gained by priming with osteogenic induction medium favored their differentiation along osteoblastic lineage with improved cell survival and migratory abilities, which may have application potential in enhancing their regenerative capacity in mammals.
Collapse
Affiliation(s)
- Yunfeng Rui
- Department of Orthopaedics, Zhongda Hospital, Southeast University, 87 Ding Jia Qiao, Nanjing 210009, Jiangsu, PR China
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, PR China
| | - Liangliang Xu
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, PR China
| | - Rui Chen
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Ting Zhang
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, PR China
| | - Sien Lin
- Department of Orthopaedics, Zhongda Hospital, Southeast University, 87 Ding Jia Qiao, Nanjing 210009, Jiangsu, PR China
| | - Yonghui Hou
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, PR China
| | - Yang Liu
- Department of Orthopaedics, Zhongda Hospital, Southeast University, 87 Ding Jia Qiao, Nanjing 210009, Jiangsu, PR China
| | - Fanbiao Meng
- Department of Orthopaedics, Zhongda Hospital, Southeast University, 87 Ding Jia Qiao, Nanjing 210009, Jiangsu, PR China
| | - Zhenqing Liu
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Ming Ni
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, PR China
- The Department of Orthopaedics, The General Hospital of Chinese People’s Liberation Army, Beijing, PR China
| | - Kam Sze Tsang
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Fuyuan Yang
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Chen Wang
- Department of Orthopaedics, Zhongda Hospital, Southeast University, 87 Ding Jia Qiao, Nanjing 210009, Jiangsu, PR China
| | - Hsiao Chang Chan
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
- Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, PR China
- The Chinese University of Hong Kong, Shenzhen Research Institute, Shenzhen, PR China
| | - Xiaohua Jiang
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
- Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, PR China
- The Chinese University of Hong Kong, Shenzhen Research Institute, Shenzhen, PR China
| | - Gang Li
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, PR China
- Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, PR China
- The Chinese University of Hong Kong, Shenzhen Research Institute, Shenzhen, PR China
| |
Collapse
|
150
|
Giri S, Acikgöz A, Bader A. Isolation and Expansion of Hepatic Stem-like Cells from a Healthy Rat Liver and their Efficient Hepatic Differentiation of under Well-defined Vivo Hepatic like Microenvironment in a Multiwell Bioreactor. J Clin Exp Hepatol 2015; 5:107-22. [PMID: 26155038 PMCID: PMC4491607 DOI: 10.1016/j.jceh.2015.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 03/20/2015] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Currently, undifferentiated cells are found in all tissue and term as local stem cells which are quiescent in nature and less in number under normal healthy conditions but activate upon injury and repair the tissue or organs via automated activating mechanism. Due to very scanty presence of local resident somatic local stem cells in healthy organs, isolation and expansion of these adult stems is an immense challenge for medical research and cell based therapy. Particularly organ like liver, there is an ongoing controversy about existence of liver stem cells. METHODS Herein, Hepatic stem cells population was identified during culture of primary hepatocyte cells upon immediate isolation of primary hepatocyte cells. These liver stem cells has been expanded extensively and differentiated into primary hepatocytes under defined culture conditions in a nanostructured self assembling peptides modular bioreactor that mimic the state of art of liver microenvironment and compared with Matrigel as a positive control. Nanostructured self assembling peptides were used a defined extracellular matrix and Matrigel was used for undefined extracellular matrix. Proliferation of hepatic stem cells was investigated by two strategies. First strategy is to provide high concentration of hepatocyte growth factor (HGF) and second strategy is to evaluate the role of recombinant human erythropoietin (rHuEPO) in presence of trauma/ischemia cytokines (IL-6, TNF-α). Expansion to hepatic differentiation is observed by morphological analysis and was evaluated for the expression of hepatocyte-specific genes using RT-PCR and biochemical methods. RESULTS Hepatocyte-specific genes are well expressed at final stage (day 21) of differentiation period. The differentiated hepatocytes exhibited functional hepatic characteristics such as albumin secretion, urea secretion and cytochrome P450 expression. Additionally, immunofluorescence analysis revealed that hepatic stem cells derived hepatocytes exhibited mature hepatocyte markers (albumin, CK-19, CPY3A1, alpha 1-antitrypsin). Expansion and hepatic differentiation was efficiently in nanostructured self assembling peptides without such batch to batch variation while there was much variation in Matrigel coated bioreactor. In conclusion, the results of the study suggest that the nanostructured self assembling peptides coated bioreactor supports expansion as well as hepatic differentiation of liver stem cells which is superior than Matrigel. CONCLUSION This defined microenvironment conditions in bioreactor module can be useful for research involving bioartificial liver system, stem cell research and engineered liver tissue which could contribute to regenerative cell therapies or drug discovery and development.
Collapse
Key Words
- A1AT, Alpha 1-antitrypsin
- AFP, α-fetoprotein
- CK 7, Cytokeratin 7
- CK-19, Cytokeratin 19
- CPY3A1, Cytochrome P450 3A 1
- EROD, Ethoxyresorufin O-deethylase
- GaIN, D-galactosamine
- HGF, Hepatocyte growth factor
- IL-6, Interleukin 6
- MROD, Methoxyresorufin O-demethylase
- Matrigel
- PROD, Pentoxyresorufin O-depentylase
- TNF-α, Tumor necrosis factor alpha
- Thy1, Thy-1 cell surface antigen
- bioreactor
- defined culture conditions
- hepatic stem cells
- nanostructured self assembling peptides
- rHuEPO, Recombinant human erythropoietin
Collapse
Affiliation(s)
- Shibashish Giri
- Department of Cell Techniques and Applied Stem Cell Biology, Center for Biotechnology and Biomedicine (BBZ), University of Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany,Address for correspondence: Shibashish Giri, Department of Cell Techniques and Applied Stem Cell Biology, Center for Biotechnology and Biomedicine, Medical faculty, University of Leipzig, Deutscher Platz 5, D-04103 Leipzig, Germany.
| | - Ali Acikgöz
- Department of Cell Techniques and Applied Stem Cell Biology, Center for Biotechnology and Biomedicine (BBZ), University of Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany,Department of Gastroenterology and Hepatology, Klinikum St Georg, Delitzscher Straße, Leipzig, Germany
| | - Augustinus Bader
- Department of Cell Techniques and Applied Stem Cell Biology, Center for Biotechnology and Biomedicine (BBZ), University of Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany
| |
Collapse
|