101
|
Naydenova E, Roßbach S, Ochsenfeld C. QM/MM Study of the Uracil DNA Glycosylase Reaction Mechanism: A Competition between Asp145 and His148. J Chem Theory Comput 2019; 15:4344-4350. [PMID: 31318548 DOI: 10.1021/acs.jctc.8b01305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Uracil DNA glycosylase catalyzes the N-glycosidic bond cleavage of uracil, thereby initiating the base excision repair mechanism for this DNA lesion. Here we employ hybrid quantum mechanics/molecular mechanics calculations to investigate the exact mechanism of the nucleophile attack and the role of the conserved His148 residue. Our calculations suggest that the C1'-N1 bond dissociation proceeds by a migration of the electrophilic sugar in the direction of the water nucleophile, resulting in a planar, oxocarbenium-like transition state. The subsequent nucleophile addition and proton transfer to a nearby base occur without a barrier. We assign the role of a proton acceptor to His148 and elucidate why mutations of this residue curtail the enzymatic activity but do not fully suppress it.
Collapse
Affiliation(s)
- Eli Naydenova
- Chair of Theoretical Chemistry, Department of Chemistry , University of Munich (LMU) , Butenandtstr. 7 , D-81377 Munich , Germany.,Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry , University of Munich (LMU) , Butenandtstr. 5-13 , D-81377 Munich , Germany
| | - Sven Roßbach
- Chair of Theoretical Chemistry, Department of Chemistry , University of Munich (LMU) , Butenandtstr. 7 , D-81377 Munich , Germany.,Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry , University of Munich (LMU) , Butenandtstr. 5-13 , D-81377 Munich , Germany
| | - Christian Ochsenfeld
- Chair of Theoretical Chemistry, Department of Chemistry , University of Munich (LMU) , Butenandtstr. 7 , D-81377 Munich , Germany.,Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry , University of Munich (LMU) , Butenandtstr. 5-13 , D-81377 Munich , Germany
| |
Collapse
|
102
|
The Effect of Waterpipe Smoking on DNA Integrity Among Youth in Jordan. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2019. [DOI: 10.1007/s13369-019-03794-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
103
|
5',8-Cyclopurine Lesions in DNA Damage: Chemical, Analytical, Biological, and Diagnostic Significance. Cells 2019; 8:cells8060513. [PMID: 31141888 PMCID: PMC6628319 DOI: 10.3390/cells8060513] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/18/2019] [Accepted: 05/22/2019] [Indexed: 12/14/2022] Open
Abstract
Purine 5′,8-cyclo-2′-deoxynucleosides (cPu) are tandem-type lesions observed among the DNA purine modifications and identified in mammalian cellular DNA in vivo. These lesions can be present in two diasteroisomeric forms, 5′R and 5′S, for each 2′-deoxyadenosine and 2′-deoxyguanosine moiety. They are generated exclusively by hydroxyl radical attack to 2′-deoxyribose units generating C5′ radicals, followed by cyclization with the C8 position of the purine base. This review describes the main recent achievements in the preparation of the cPu molecular library for analytical and DNA synthesis applications for the studies of the enzymatic recognition and repair mechanisms, their impact on transcription and genetic instability, quantitative determination of the levels of lesions in various types of cells and animal model systems, and relationships between the levels of lesions and human health, disease, and aging, as well as the defining of the detection limits and quantification protocols.
Collapse
|
104
|
Steenwyk JL, Opulente DA, Kominek J, Shen XX, Zhou X, Labella AL, Bradley NP, Eichman BF, Čadež N, Libkind D, DeVirgilio J, Hulfachor AB, Kurtzman CP, Hittinger CT, Rokas A. Extensive loss of cell-cycle and DNA repair genes in an ancient lineage of bipolar budding yeasts. PLoS Biol 2019; 17:e3000255. [PMID: 31112549 PMCID: PMC6528967 DOI: 10.1371/journal.pbio.3000255] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 04/18/2019] [Indexed: 02/06/2023] Open
Abstract
Cell-cycle checkpoints and DNA repair processes protect organisms from potentially lethal mutational damage. Compared to other budding yeasts in the subphylum Saccharomycotina, we noticed that a lineage in the genus Hanseniaspora exhibited very high evolutionary rates, low Guanine-Cytosine (GC) content, small genome sizes, and lower gene numbers. To better understand Hanseniaspora evolution, we analyzed 25 genomes, including 11 newly sequenced, representing 18/21 known species in the genus. Our phylogenomic analyses identify two Hanseniaspora lineages, a faster-evolving lineage (FEL), which began diversifying approximately 87 million years ago (mya), and a slower-evolving lineage (SEL), which began diversifying approximately 54 mya. Remarkably, both lineages lost genes associated with the cell cycle and genome integrity, but these losses were greater in the FEL. E.g., all species lost the cell-cycle regulator WHIskey 5 (WHI5), and the FEL lost components of the spindle checkpoint pathway (e.g., Mitotic Arrest-Deficient 1 [MAD1], Mitotic Arrest-Deficient 2 [MAD2]) and DNA-damage-checkpoint pathway (e.g., Mitosis Entry Checkpoint 3 [MEC3], RADiation sensitive 9 [RAD9]). Similarly, both lineages lost genes involved in DNA repair pathways, including the DNA glycosylase gene 3-MethylAdenine DNA Glycosylase 1 (MAG1), which is part of the base-excision repair pathway, and the DNA photolyase gene PHotoreactivation Repair deficient 1 (PHR1), which is involved in pyrimidine dimer repair. Strikingly, the FEL lost 33 additional genes, including polymerases (i.e., POLymerase 4 [POL4] and POL32) and telomere-associated genes (e.g., Repressor/activator site binding protein-Interacting Factor 1 [RIF1], Replication Factor A 3 [RFA3], Cell Division Cycle 13 [CDC13], Pbp1p Binding Protein [PBP2]). Echoing these losses, molecular evolutionary analyses reveal that, compared to the SEL, the FEL stem lineage underwent a burst of accelerated evolution, which resulted in greater mutational loads, homopolymer instabilities, and higher fractions of mutations associated with the common endogenously damaged base, 8-oxoguanine. We conclude that Hanseniaspora is an ancient lineage that has diversified and thrived, despite lacking many otherwise highly conserved cell-cycle and genome integrity genes and pathways, and may represent a novel, to our knowledge, system for studying cellular life without them.
Collapse
Affiliation(s)
- Jacob L Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Dana A Opulente
- Laboratory of Genetics, Genome Center of Wisconsin, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Wisconsin, United States of America
| | - Jacek Kominek
- Laboratory of Genetics, Genome Center of Wisconsin, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Wisconsin, United States of America
| | - Xing-Xing Shen
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Xiaofan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Abigail L Labella
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Noah P Bradley
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Brandt F Eichman
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Neža Čadež
- University of Ljubljana Biotechnical Faculty, Department of Food Science and Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Diego Libkind
- Laboratorio de Microbiología Aplicada, Biotecnología y Bioinformática, Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales, Universidad Nacional del Comahue-CONICET, San Carlos de Bariloche, Río Negro, Argentina
| | - Jeremy DeVirgilio
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, Peoria, Illinois, United States of America
| | - Amanda Beth Hulfachor
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Cletus P Kurtzman
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, Peoria, Illinois, United States of America
| | - Chris Todd Hittinger
- Laboratory of Genetics, Genome Center of Wisconsin, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Wisconsin, United States of America
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
105
|
Andrade JCBN, Gatto M, Rodrigues DR, Soares ÂMVDC, Calvi SA. Cryptococcus neoformans and gattii promote DNA damage in human peripheral blood mononuclear cells. Med Mycol 2019. [PMID: 28633410 DOI: 10.1093/mmy/myx046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cryptococcosis, a systemic mycosis capable of disseminating to the central nervous system with frequent lethal effects, is caused by the species Cryptococus neoformans and Cryptococcus gattii. Several infectious agents such as virus, bacteria, and parasites may be associated to DNA damage and carcinogenesis in humans. Products of the oxidative metabolism, such as NO, produced as a host defense mechanism to destroy these pathogens, have been implicated in this damage process, due to excessive production related to an established chronic inflammatory response. Here, we investigated whether C. neoformans and /or C. gattii can cause DNA damage in human peripheral blood mononuclear cells (PBMCs) and whether this process is related to NO levels produced by PBMCs. We found that both species are equally able to induce genotoxicity in PBMCs. However, an association between DNA damage and high NO levels was only detected in relation to C. gattii. The results point to the possibility that patients with cryptococcosis are more susceptible to the development of other diseases.
Collapse
Affiliation(s)
| | - Mariana Gatto
- Botucatu School of Medicine - UNESP, Campus Botucatu, Tropical Diseases Department, São Paulo, Brazil
| | - Daniela Ramos Rodrigues
- Biosciences Institute - UNESP, Campus Botucatu, Microbiology and Immunology Department, São Paulo, Brazil
| | | | - Sueli Aparecida Calvi
- Botucatu School of Medicine - UNESP, Campus Botucatu, Tropical Diseases Department, São Paulo, Brazil
| |
Collapse
|
106
|
Leite WC, Penteado RF, Gomes F, Iulek J, Etto RM, Saab SC, Steffens MBR, Galvão CW. MAW point mutation impairs H. Seropedicae RecA ATP hydrolysis and DNA repair without inducing large conformational changes in its structure. PLoS One 2019; 14:e0214601. [PMID: 30998678 PMCID: PMC6472873 DOI: 10.1371/journal.pone.0214601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/17/2019] [Indexed: 11/18/2022] Open
Abstract
RecA is a multifunctional protein that plays a central role in DNA repair in bacteria. The structural Make ATP Work motif (MAW) is proposed to control the ATPase activity of RecA. In the present work, we report the biochemical activity and structural effects of the L53Q mutation at the MAW motif of the RecA protein from H. seropedicae (HsRecA L53Q). In vitro studies showed that HsRecA L53Q can bind ADP, ATP, and ssDNA, as does wild-type RecA. However, the ATPase and DNA-strand exchange activities were completely lost. In vivo studies showed that the expression of HsRecA L53Q in E. coli recA1 does not change its phenotype when cells were challenged with MMS and UV. Molecular dynamics simulations showed the L53Q point mutation did not cause large conformational changes in the HsRecA structure. However, there is a difference on dynamical cross-correlation movements of the residues involved in contacts within the ATP binding site and regions that hold the DNA binding sites. Additionally, a new hydrogen bond, formed between Q53 and T49, was hypothesized to allow an independent motion of the MAW motif from the hydrophobic core, what could explain the observed loss of activity of HsRecA L53Q.
Collapse
Affiliation(s)
- Wellington C. Leite
- Department of Physics, State University of Ponta Grossa (UEPG), Ponta Grossa,Paraná, Brazil
- * E-mail: (WCL); .(CWG)
| | - Renato F. Penteado
- Department of Chemistry, State University of Ponta Grossa (UEPG), Ponta Grossa, Paraná, Brazil
| | - Fernando Gomes
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Jorge Iulek
- Department of Chemistry, State University of Ponta Grossa (UEPG), Ponta Grossa, Paraná, Brazil
| | - Rafael M. Etto
- Department of Chemistry, State University of Ponta Grossa (UEPG), Ponta Grossa, Paraná, Brazil
| | - Sérgio C. Saab
- Department of Physics, State University of Ponta Grossa (UEPG), Ponta Grossa,Paraná, Brazil
| | - Maria B. R. Steffens
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Carolina W. Galvão
- Department of Structural and Molecular Biology and Genetics, State University of Ponta Grossa (UEPG), Ponta Grossa, Paraná, Brazil
- * E-mail: (WCL); .(CWG)
| |
Collapse
|
107
|
Sacchetti B, Botticelli A, Pierelli L, Nuti M, Alimandi M. CAR-T with License to Kill Solid Tumors in Search of a Winning Strategy. Int J Mol Sci 2019; 20:E1903. [PMID: 30999624 PMCID: PMC6514830 DOI: 10.3390/ijms20081903] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/11/2019] [Accepted: 04/13/2019] [Indexed: 02/06/2023] Open
Abstract
Artificial receptors designed for adoptive immune therapies need to absolve dual functions: antigen recognition and abilities to trigger the lytic machinery of reprogrammed effector T lymphocytes. In this way, CAR-T cells deliver their cytotoxic hit to cancer cells expressing targeted tumor antigens, bypassing the limitation of HLA-restricted antigen recognition. Expanding technologies have proposed a wide repertoire of soluble and cellular "immunological weapons" to kill tumor cells; they include monoclonal antibodies recognizing tumor associated antigens on tumor cells and immune cell checkpoint inhibition receptors expressed on tumor specific T cells. Moreover, a wide range of formidable chimeric antigen receptors diversely conceived to sustain quality, strength and duration of signals delivered by engineered T cells have been designed to specifically target tumor cells while minimize off-target toxicities. The latter immunological weapons have shown distinct efficacy and outstanding palmarès in curing leukemia, but limited and durable effects for solid tumors. General experience with checkpoint inhibitors and CAR-T cell immunotherapy has identified a series of variables, weaknesses and strengths, influencing the clinical outcome of the oncologic illness. These aspects will be shortly outlined with the intent of identifying the still "missing strategy" to combat epithelial cancers.
Collapse
Affiliation(s)
| | - Andrea Botticelli
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy.
| | - Luca Pierelli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy.
| | - Marianna Nuti
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy.
| | - Maurizio Alimandi
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy.
| |
Collapse
|
108
|
Shafirovich V, Kropachev K, Kolbanovskiy M, Geacintov NE. Excision of Oxidatively Generated Guanine Lesions by Competing Base and Nucleotide Excision Repair Mechanisms in Human Cells. Chem Res Toxicol 2019; 32:753-761. [PMID: 30688445 PMCID: PMC6465092 DOI: 10.1021/acs.chemrestox.8b00411] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The interchange between different repair mechanisms in human cells has long been a subject of interest. Here, we provide a direct demonstration that the oxidatively generated guanine lesions spiroiminodihydantoin (Sp) and 5-guanidinohydantoin (Gh) embedded in double-stranded DNA are substrates of both base excision repair (BER) and nucleotide excision repair (NER) mechanisms in intact human cells. Site-specifically modified, 32P-internally labeled double-stranded DNA substrates were transfected into fibroblasts or HeLa cells, and the BER and/or NER mono- and dual incision products were quantitatively recovered after 2-8 h incubation periods and lysis of the cells. DNA duplexes bearing single benzo[ a]pyrene-derived guanine adduct were employed as positive controls of NER. The NER activities, but not the BER activities, were abolished in XPA-/- cells, while the BER yields were strongly reduced in NEIL1-/- cells. Co-transfecting different concentrations of analogous DNA sequences bearing the BER substrates 5-hydroxyuracil diminish the BER yields of Sp lesions and enhance the yields of NER products. These results are consistent with a model based on the local availability of BER and NER factors in human cells and their competitive binding to the same Sp or Gh BER/NER substrates.
Collapse
Affiliation(s)
- Vladimir Shafirovich
- Chemistry Department, New York University, 31 Washington Place, New York, NY 10003-5180, USA
| | - Konstantin Kropachev
- Chemistry Department, New York University, 31 Washington Place, New York, NY 10003-5180, USA
| | - Marina Kolbanovskiy
- Chemistry Department, New York University, 31 Washington Place, New York, NY 10003-5180, USA
| | - Nicholas E. Geacintov
- Chemistry Department, New York University, 31 Washington Place, New York, NY 10003-5180, USA
| |
Collapse
|
109
|
Milo-Cochavi S, Pareek M, Delulio G, Almog Y, Anand G, Ma LJ, Covo S. The response to the DNA damaging agent methyl methanesulfonate in a fungal plant pathogen. Fungal Biol 2019; 123:408-422. [PMID: 31053330 DOI: 10.1016/j.funbio.2019.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/27/2019] [Accepted: 03/05/2019] [Indexed: 12/31/2022]
Abstract
DNA damage can cause mutations that in fungal plant pathogens lead to hypervirulence and resistance to pesticides. Almost nothing is known about the response of these fungi to DNA damage. We performed transcriptomic and phosphoproteomic analyses of Fusarium oxysporum exposed to methyl methanesulfonate (MMS). At the RNA level we observe massive induction of DNA repair pathways including the global genome nucleotide excision. Cul3, Cul4, several Ubiquitin-like ligases and components of the proteasome are significantly induced. In agreement, we observed drug synergism between a proteasome inhibitor and MMS. While our data suggest that Yap1 and Xbp1 networks are similarly activated in response to damage in yeast and F. oxysporum we were able to observe modules that were MMS-responsive in F. oxysporum and not in yeast. These include transcription/splicing modules that are upregulated and respiration that is down-regulated. In agreement, MMS treated cells are much more sensitive to a respiration inhibitor. At the phosphoproteomic level, Adenylate cyclase, which generates cAMP, is phosphorylated in response to MMS and forms a network of phosphorylated proteins that include cell cycle regulators and several MAPKs. Our analysis provides a starting point in understanding how genomic changes in response to DNA damage occur in Fusarium species.
Collapse
Affiliation(s)
- Shira Milo-Cochavi
- Department of Plant Pathology and Microbiology, Hebrew University, Rehovot, 7610001, Israel
| | - Manish Pareek
- Department of Plant Pathology and Microbiology, Hebrew University, Rehovot, 7610001, Israel
| | - Gregory Delulio
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Yael Almog
- Department of Plant Pathology and Microbiology, Hebrew University, Rehovot, 7610001, Israel
| | - Gautam Anand
- Department of Plant Pathology and Microbiology, Hebrew University, Rehovot, 7610001, Israel
| | - Li-Jun Ma
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Shay Covo
- Department of Plant Pathology and Microbiology, Hebrew University, Rehovot, 7610001, Israel.
| |
Collapse
|
110
|
|
111
|
Papp‐Kádár V, Balázs Z, Vékey K, Ozohanics O, Vértessy BG. Mass spectrometry-based analysis of macromolecular complexes of Staphylococcus aureus uracil-DNA glycosylase and its inhibitor reveals specific variations due to naturally occurring mutations. FEBS Open Bio 2019; 9:420-427. [PMID: 30868050 PMCID: PMC6396141 DOI: 10.1002/2211-5463.12567] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/10/2018] [Accepted: 09/06/2018] [Indexed: 12/13/2022] Open
Abstract
The base excision repair pathway plays an important role in correcting damage induced by either physiological or external effects. This repair pathway removes incorrect bases from the DNA. The uracil base is among the most frequently occurring erroneous bases in DNA, and is cut out from the phosphodiester backbone via the catalytic action of uracil-DNA glycosylase. Uracil excision repair is an evolutionarily highly conserved pathway and can be specifically inhibited by a protein inhibitor of uracil-DNA glycosylase. Interestingly, both uracil-DNA glycosylase (Staphylococcus aureus uracil-DNA glycosylase; SAUDG) and its inhibitor (S. aureus uracil-DNA glycosylase inhibitor; SAUGI) are present in the staphylococcal cell. The interaction of these two proteins effectively decreases the efficiency of uracil-DNA excision repair. The physiological relevance of this complexation has not yet been addressed in detailed; however, numerous mutations have been identified within SAUGI. Here, we investigated whether these mutations drastically perturb the interaction with SAUDG. To perform quantitative analysis of the macromolecular interactions, we applied native mass spectrometry and demonstrated that this is a highly efficient and specific method for determination of dissociation constants. Our results indicate that several naturally occurring mutations of SAUGI do indeed lead to appreciable changes in the dissociation constants for complex formation. However, all of these Kd values remain in the nanomolar range and therefore the association of these two proteins is preserved. We conclude that complexation is most likely preserved even with the naturally occurring mutant uracil-DNA glycosylase inhibitor proteins.
Collapse
Affiliation(s)
- Veronika Papp‐Kádár
- Hungarian Academy of SciencesResearch Centre for Natural SciencesInstitute of EnzymologyBudapestHungary
- Department of Applied Biotechnology and Food ScienceBudapest University of Technology and EconomicsBudapestHungary
| | - Zoltán Balázs
- Department of Applied Biotechnology and Food ScienceBudapest University of Technology and EconomicsBudapestHungary
| | - Károly Vékey
- Hungarian Academy of SciencesResearch Centre for Natural SciencesInstitute of Organic ChemistryBudapestHungary
| | - Olivér Ozohanics
- Hungarian Academy of SciencesResearch Centre for Natural SciencesInstitute of Organic ChemistryBudapestHungary
- Department of Medical BiochemistrySemmelweis UniversityBudapestHungary
| | - Beáta G. Vértessy
- Hungarian Academy of SciencesResearch Centre for Natural SciencesInstitute of EnzymologyBudapestHungary
- Department of Applied Biotechnology and Food ScienceBudapest University of Technology and EconomicsBudapestHungary
| |
Collapse
|
112
|
Pichel N, Vivar M, Fuentes M. The problem of drinking water access: A review of disinfection technologies with an emphasis on solar treatment methods. CHEMOSPHERE 2019; 218:1014-1030. [PMID: 30609481 DOI: 10.1016/j.chemosphere.2018.11.205] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 11/19/2018] [Accepted: 11/29/2018] [Indexed: 05/17/2023]
Abstract
The lack of access to safe drinking water is one of the biggest challenges facing humanity in the 21st century. Despite the collective global effort that has been made, the drinking water sources of at least 2 billion people are faecally contaminated, resulting in more than half a million diarrhoeal deaths each year, with the majority occurring in developing countries. Technologies for the inactivation of pathogenic microorganisms in water are therefore of great significance for human health and well-being. However, conventional technologies to provide drinking water, although effective, present limitations that impede their global application. These treatment methods often have high energy and chemical demands, which limits their application for the prevention of waterborne diseases in the most vulnerable regions. These shortcomings have led to rapid research and development of advanced alternative technologies. One of these alternative methods is solar disinfection, which is recognised by the World Health Organization as one of the most appropriate methods for producing drinkable water in developing countries. This study reviews conventional technologies that are being applied at medium to large scales to purify water and emerging technologies currently in development. In addition, this paper describes the merits, demerits, and limitations of these technologies. Finally, the review focuses on solar disinfection, including a novel technology recently developed in this field.
Collapse
Affiliation(s)
- N Pichel
- IMDEA Water Institute, Alcalá de Henares, 28805, Spain.
| | - M Vivar
- Grupo IDEA, EPS Linares, Universidad de Jaén, Linares 23700, Spain
| | - M Fuentes
- IMDEA Water Institute, Alcalá de Henares, 28805, Spain; Grupo IDEA, EPS Linares, Universidad de Jaén, Linares 23700, Spain
| |
Collapse
|
113
|
Guo S, Leng J, Tan Y, Price NE, Wang Y. Quantification of DNA Lesions Induced by 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanol in Mammalian Cells. Chem Res Toxicol 2019; 32:708-717. [PMID: 30714728 DOI: 10.1021/acs.chemrestox.8b00374] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Quantitative measurement of DNA adducts in carcinogen-exposed cells provides the information about the frequency of formation and the rate of removal of DNA lesions in vivo, which yields insights into the initial events of mutagenesis. Metabolic activation of tobacco-specific nitrosamines, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and its reduction product 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), leads to pyridyloxobutylation and pyridylhydroxybutylation of DNA. In this study, we employed a highly robust nanoflow liquid chromatography-nanoelectrospray ionization-tandem mass spectrometry (nLC-nESI-MS/MS) coupled with the isotope-dilution method for simultaneous quantification of O6-[4-(3-pyridyl)-4-hydroxylbut-1-yl]-2'-deoxyguanosine ( O6-PHBdG) and O2- and O4-[4-(3-pyridyl)-4-hydroxylbut-1-yl]-thymidine ( O2-PHBdT and O4-PHBdT). Cultured mammalian cells were exposed to a model pyridylhydroxybutylating agent, 4-(acetoxymethylnitrosamino)-1-(3-pyridyl)-1-butanol (NNALOAc), followed by DNA extraction, enzymatic digestion, and sample enrichment prior to nLC-nESI-MS/MS quantification. Our results demonstrate, for the first time, that O4-PHBdT is quantifiable in cellular DNA and naked DNA upon NNALOAc exposure. We also show that nucleotide excision repair (NER) machinery may counteract the formation of O2-PHBdT and O4-PHBdT, and O6-alkylguanine DNA alkyltransferase (AGT) may be responsible for the repair of O6-PHBdG and O4-PHBdT in mammalian cells. Together, our study provides new knowledge about the occurrence and repair of NNAL-induced DNA lesions in mammalian cells.
Collapse
|
114
|
Romero H, Rösch TC, Hernández-Tamayo R, Lucena D, Ayora S, Alonso JC, Graumann PL. Single molecule tracking reveals functions for RarA at replication forks but also independently from replication during DNA repair in Bacillus subtilis. Sci Rep 2019; 9:1997. [PMID: 30760776 PMCID: PMC6374455 DOI: 10.1038/s41598-018-38289-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/18/2018] [Indexed: 12/19/2022] Open
Abstract
RarA is a widely conserved protein proposed to be involved in recombination-dependent replication. We present a cell biological approach to identify functional connections between RarA and other proteins using single molecule tracking. We found that 50% of RarA molecules were static, mostly close to replication forks and likely DNA-bound, while the remaining fraction was highly dynamic throughout the cells. RarA alternated between static and dynamic states. Exposure to H2O2 increased the fraction of dynamic molecules, but not treatment with mitomycin C or with methyl methanesulfonate, which was exacerbated by the absence of RecJ, RecD2, RecS and RecU proteins. The ratio between static and dynamic RarA also changed in replication temperature-sensitive mutants, but in opposite manners, dependent upon inhibition of DnaB or of DnaC (pre)primosomal proteins, revealing an intricate function related to DNA replication restart. RarA likely acts in the context of collapsed replication forks, as well as in conjunction with a network of proteins that affect the activity of the RecA recombinase. Our novel approach reveals intricate interactions of RarA, and is widely applicable for in vivo protein studies, to underpin genetic or biochemical connections, and is especially helpful for investigating proteins whose absence does not lead to any detectable phenotype.
Collapse
Affiliation(s)
- Hector Romero
- SYNMIKRO, LOEWE-Zentrum für Synthetische Mikrobiologie, Philipps-Universität Marburg, Hans-Meerwein-Straße, Mehrzweckgebäude, 35043, Marburg, Germany
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032, Marburg, Germany
- Department Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin St., 28049, Cantoblanco, Madrid, Spain
| | - Thomas C Rösch
- SYNMIKRO, LOEWE-Zentrum für Synthetische Mikrobiologie, Philipps-Universität Marburg, Hans-Meerwein-Straße, Mehrzweckgebäude, 35043, Marburg, Germany
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032, Marburg, Germany
| | - Rogelio Hernández-Tamayo
- SYNMIKRO, LOEWE-Zentrum für Synthetische Mikrobiologie, Philipps-Universität Marburg, Hans-Meerwein-Straße, Mehrzweckgebäude, 35043, Marburg, Germany
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032, Marburg, Germany
| | - Daniella Lucena
- SYNMIKRO, LOEWE-Zentrum für Synthetische Mikrobiologie, Philipps-Universität Marburg, Hans-Meerwein-Straße, Mehrzweckgebäude, 35043, Marburg, Germany
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032, Marburg, Germany
| | - Silvia Ayora
- Department Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin St., 28049, Cantoblanco, Madrid, Spain
| | - Juan C Alonso
- Department Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin St., 28049, Cantoblanco, Madrid, Spain.
| | - Peter L Graumann
- SYNMIKRO, LOEWE-Zentrum für Synthetische Mikrobiologie, Philipps-Universität Marburg, Hans-Meerwein-Straße, Mehrzweckgebäude, 35043, Marburg, Germany.
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032, Marburg, Germany.
| |
Collapse
|
115
|
Lu X, Chen F, Liu X, Yuan D, Zi Y, He X, Zhu D. Detection and clinical significance of DNA repair gene ERCC8 tag SNPs in gastric cancer. TURKISH JOURNAL OF GASTROENTEROLOGY 2019; 29:392-396. [PMID: 30249552 DOI: 10.5152/tjg.2018.17662] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND/AIMS Excision repair cross-complementing group 8 (ERCC8) is one of the members of the nucleotide excision repair pathway. This study aimed to explore the association between ERCC8 tag single nucleotide polymorphisms (SNPs) and gastric cancer. MATERIALS AND METHODS Totally, 120 patients with gastric cancer treated from March 2010 to March 2011 were selected as the observation group and 120 healthy individuals were selected as the control group during the same period. The Sequenom MassARRAY system was used to identify genotypes in these samples. The genetic locus of ERCC8 tag SNPs and the relevance of gastric cancer risk to the different ERCC8 genotypes alone or in combination with Helicobacter pylori infection were observed and analyzed. The AA, GA, and GG genotypes on rs158572 and rs158916 in the observation and control groups were compared. RESULTS The results showed that the odds ratio of the different ERCC8 rs158572 and rs158916 genotypes was not significantly increased in the observation group compared with that in the control group. By contrast, in patients with H. pylori infection, the ERCC8 rs158572 GA/GG and rs158916 TT genotypes showed a 7.921-fold and 8.021-fold [95% confidence interval (CI)=4.022-15.921, p=0.029 and 95% CI=3.021-15.092, p=0.021, respectively] increased risk of gastric cancer than the AA and CT/CC genotypes, respectively. CONCLUSION Helicobacter pylori infection combined with ERCC8 rs158572 and rs158916 can be used as a predictive index of gastric cancer occurrence.
Collapse
Affiliation(s)
- Xingre Lu
- Department of Clinical Laboratory, The People's Hospital of Wenshan Prefecture, Yunnan, China
| | - Fengyu Chen
- Department of Clinical Laboratory, The People's Hospital of Wenshan Prefecture, Yunnan, China
| | - Xiaowen Liu
- Department of Clinical Laboratory, The People's Hospital of Wenshan Prefecture, Yunnan, China
| | - Diao Yuan
- Department of Clinical Laboratory, The People's Hospital of Wenshan Prefecture, Yunnan, China
| | - Yunju Zi
- Department of Clinical Laboratory, The People's Hospital of Wenshan Prefecture, Yunnan, China
| | - Xiang He
- Department of Clinical Laboratory, The People's Hospital of Wenshan Prefecture, Yunnan, China
| | - Deyong Zhu
- Department of Clinical Laboratory, The People's Hospital of Wenshan Prefecture, Yunnan, China
| |
Collapse
|
116
|
Srinivasan SS, Seenivasan R, Condie A, Gerson SL, Wang Y, Burda C. Gold Nanoparticle-Based Fluorescent Theranostics for Real-Time Image-Guided Assessment of DNA Damage and Repair. Int J Mol Sci 2019; 20:E471. [PMID: 30678294 PMCID: PMC6387448 DOI: 10.3390/ijms20030471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 01/09/2019] [Accepted: 01/15/2019] [Indexed: 12/11/2022] Open
Abstract
Chemotherapeutic dosing, is largely based on the tolerance levels of toxicity today. Molecular imaging strategies can be leveraged to quantify DNA cytotoxicity and thereby serve as a theranostic tool to improve the efficacy of treatments. Methoxyamine-modified cyanine-7 (Cy7MX) is a molecular probe which binds to apurinic/apyrimidinic (AP)-sites, inhibiting DNA-repair mechanisms implicated by cytotoxic chemotherapies. Herein, we loaded (Cy7MX) onto polyethylene glycol-coated gold nanoparticles (AuNP) to selectively and stably deliver the molecular probe intravenously to tumors. We optimized the properties of Cy7MX-loaded AuNPs using optical spectroscopy and tested the delivery mechanism and binding affinity using the DLD1 colon cancer cell line in vitro. A 10:1 ratio of Cy7MX-AuNPs demonstrated a strong AP site-specific binding and the cumulative release profile demonstrated 97% release within 12 min from a polar to a nonpolar environment. We further demonstrated targeted delivery using imaging and biodistribution studies in vivo in an xenografted mouse model. This work lays a foundation for the development of real-time molecular imaging techniques that are poised to yield quantitative measures of the efficacy and temporal profile of cytotoxic chemotherapies.
Collapse
Affiliation(s)
- Shriya S Srinivasan
- Center for Chemical Dynamics and Nanomaterials Research, Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | - Rajesh Seenivasan
- Center for Chemical Dynamics and Nanomaterials Research, Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | - Allison Condie
- Department of Radiology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | - Stanton L Gerson
- Department of Hematology and Oncology, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Yanming Wang
- Department of Radiology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | - Clemens Burda
- Center for Chemical Dynamics and Nanomaterials Research, Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| |
Collapse
|
117
|
Bokhari B, Sharma S. Stress Marks on the Genome: Use or Lose? Int J Mol Sci 2019; 20:ijms20020364. [PMID: 30654540 PMCID: PMC6358951 DOI: 10.3390/ijms20020364] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/31/2018] [Accepted: 01/10/2019] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress and the resulting damage to DNA are inevitable consequence of endogenous physiological processes further amplified by cellular responses to environmental exposures. If left unrepaired, oxidative DNA lesions can block essential processes such as transcription and replication or can induce mutations. Emerging data also indicate that oxidative base modifications such as 8-oxoG in gene promoters may serve as epigenetic marks, and/or provide a platform for coordination of the initial steps of DNA repair and the assembly of the transcriptional machinery to launch adequate gene expression alterations. Here, we briefly review the current understanding of oxidative lesions in genome stability maintenance and regulation of basal and inducible transcription.
Collapse
Affiliation(s)
- Bayan Bokhari
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, 520 W Street, NW, Washington, DC 20059, USA.
- Department of Biochemistry, Faculty of Applied Medical Science, Umm Al- Qura University, Makkah 21421, Saudi Arabia.
| | - Sudha Sharma
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, 520 W Street, NW, Washington, DC 20059, USA.
- National Human Genome Center, College of Medicine, Howard University, 2041 Georgia Avenue, NW, Washington, DC 20060, USA.
| |
Collapse
|
118
|
Tomita T, Ieguchi K, Takita M, Tsukahara F, Yamada M, Egly JM, Maru Y. C1D is not directly involved in the repair of UV-damaged DNA but protects cells from oxidative stress by regulating gene expressions in human cell lines. J Biochem 2019; 164:415-426. [PMID: 30165670 DOI: 10.1093/jb/mvy069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/24/2018] [Indexed: 11/14/2022] Open
Abstract
A small nuclear protein, C1D, has roles in various cellular processes, transcription regulation, genome stability surveillance, DNA repair and RNA processing, all of which are required to maintain the host life cycles. In the previous report, C1D directly interacts with XPB, a component of the nucleotide excision repair complex, and C1D knockdown reduced cell survival of 27-1 cells, CHO derivative cells, after UV irradiation. To find out the role of C1D in UV-damaged cells, we used human cell lines with siRNA or shRNA to knockdown C1D. C1D knockdown reduced cell survival rates of LU99 and 786-O after UV irradiation, although C1D knockdown did not affect the efficiency of the nucleotide excision repair. Immunostaining data support that C1D is not directly involved in the DNA repair process in UV-damaged cells. However, H2O2 treatment reduced cell viability in LU99 and 786-O cells. We also found that C1D knockdown upregulated DDIT3 expression in LU99 cells and downregulated APEX1 in 786-O cells, suggesting that C1D functions as a co-repressor/activator. The data accounts for the reduction of cell survival rates upon UV irradiation.
Collapse
Affiliation(s)
- Takeshi Tomita
- Department of Pharmacology, Tokyo Women's Medical University, 8-1 Kawada, Shinjuku, Tokyo, Japan
| | - Katsuaki Ieguchi
- Department of Pharmacology, Tokyo Women's Medical University, 8-1 Kawada, Shinjuku, Tokyo, Japan
| | - Morichika Takita
- Department of Pharmacology, Tokyo Women's Medical University, 8-1 Kawada, Shinjuku, Tokyo, Japan
| | - Fujiko Tsukahara
- Department of Pharmacology, Tokyo Women's Medical University, 8-1 Kawada, Shinjuku, Tokyo, Japan
| | - Masayuki Yamada
- Center for Medical Education, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Jean-Marc Egly
- Institut de Génétique et de Biologie Moléculaire et Cellulaire CNRS/INSERM/UdS 1, rue Laurent Fries, BP163 F-67404 Illkirch Cedex, France
| | - Yoshiro Maru
- Department of Pharmacology, Tokyo Women's Medical University, 8-1 Kawada, Shinjuku, Tokyo, Japan
| |
Collapse
|
119
|
Votaw KA, McCullagh M. Characterization of the Search Complex and Recognition Mechanism of the AlkD-DNA Glycosylase. J Phys Chem B 2018; 123:95-105. [PMID: 30525620 DOI: 10.1021/acs.jpcb.8b09555] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
DNA damage is a routine problem for cells, and pathways such as base excision repair have evolved to protect the genome by using DNA glycosylases to first recognize and excise lesions. The search mechanism of these enzymes is of particular interest due to the seemingly intractable problem of probing the billions of base pairs in the genome for potential damage. It has been hypothesized that glycosylases form multiple protein-DNA conformational states to efficiently search and recognize DNA lesions, ultimately only flipping out the damaged substrate into the active site. A unique DNA glycosylase, the Bacillus cereus AlkD enzyme, has been shown to excise damaged DNA without flipping the nucleobase into a protein binding pocket following lesion recognition. Here, we use microsecond-scale all-atom molecular dynamics simulations to characterize the AlkD recognition mechanism, putting it in perspective with other DNA glycosylases. We first identify and describe two distinct enzyme-DNA conformations of AlkD: the search complex (SC) and excision complex (EC). The SC is distinguished by the linearity of DNA, changes in four helical parameters in the vicinity of the lesion, and changes in distance between active site residues and the DNA. Free DNA simulations are used to demonstrate that the DNA structural deviations and increased active site interactions present in the EC are initiated by the recognition of a methylation-induced signal in the rises both 5' to the methylation and opposing this base. Our results support the hypothesis that subtle geometric distortions in DNA are recognized by AlkD and are consequently probed to initiate concerted protein and DNA conformational changes which prime excise without additional intermediate states. This mechanism is shown to be consistent among the three methylated DNA sequences that have been crystallized bound to AlkD.
Collapse
Affiliation(s)
- Kevin A Votaw
- Department of Chemistry , Colorado State University , Fort Collins , Colorado 80523, United States
| | - Martin McCullagh
- Department of Chemistry , Colorado State University , Fort Collins , Colorado 80523, United States
| |
Collapse
|
120
|
Warr AR, Klimova AN, Nwaobasi AN, Sandler SJ. Protease-deficient SOS constitutive cells have RecN-dependent cell division phenotypes. Mol Microbiol 2018; 111:405-422. [PMID: 30422330 DOI: 10.1111/mmi.14162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2018] [Indexed: 02/05/2023]
Abstract
In Escherichia coli, after DNA damage, the SOS response increases the transcription (and protein levels) of approximately 50 genes. As DNA repair ensues, the level of transcription returns to homeostatic levels. ClpXP and other proteases return the high levels of several SOS proteins to homeostasis. When all SOS genes are constitutively expressed and many SOS proteins are stabilized by the removal of ClpXP, microscopic analysis shows that cells filament, produce mini-cells and have branching protrusions along their length. The only SOS gene required (of 19 tested) for the cell length phenotype is recN. RecN is a member of the Structural Maintenance of Chromosome (SMC) class of proteins. It can hold pieces of DNA together and is important for double-strand break repair (DSBR). RecN is degraded by ClpXP. Overexpression of recN+ in the absence of ClpXP or recN4174 (A552S, A553V), a mutant not recognized by ClpXP, produce filamentous cells with nucleoid partitioning defects. It is hypothesized that when produced at high levels during the SOS response, RecN interferes with nucleoid partitioning and Z-Ring function by holding together sections of the nucleoid, or sister nucleoids, providing another way to inhibit cell division.
Collapse
Affiliation(s)
- Alyson R Warr
- Department of Microbiology, Morrill Science Center IV N203, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Anastasiia N Klimova
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Amy N Nwaobasi
- Department of Microbiology, Morrill Science Center IV N203, University of Massachusetts Amherst, Amherst, MA, 01003, USA.,University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06032, USA
| | - Steven J Sandler
- Department of Microbiology, Morrill Science Center IV N203, University of Massachusetts Amherst, Amherst, MA, 01003, USA.,Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| |
Collapse
|
121
|
Burra S, Marasco D, Malfatti MC, Antoniali G, Virgilio A, Esposito V, Demple B, Galeone A, Tell G. Human AP-endonuclease (Ape1) activity on telomeric G4 structures is modulated by acetylatable lysine residues in the N-terminal sequence. DNA Repair (Amst) 2018; 73:129-143. [PMID: 30509560 DOI: 10.1016/j.dnarep.2018.11.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 02/08/2023]
Abstract
Loss of telomeres stability is a hallmark of cancer cells. Exposed telomeres are prone to aberrant end-joining reactions leading to chromosomal fusions and translocations. Human telomeres contain repeated TTAGGG elements, in which the 3' exposed strand may adopt a G-quadruplex (G4) structure. The guanine-rich regions of telomeres are hotspots for oxidation forming 8-oxoguanine, a lesion that is handled by the base excision repair (BER) pathway. One key player of this pathway is Ape1, the main human endonuclease processing abasic sites. Recent evidences showed an important role for Ape1 in telomeric physiology, but the molecular details regulating Ape1 enzymatic activities on G4-telomeric sequences are lacking. Through a combination of in vitro assays, we demonstrate that Ape1 can bind and process different G4 structures and that this interaction involves specific acetylatable lysine residues (i.e. K27/31/32/35) present in the unstructured N-terminal sequence of the protein. The cleavage of an abasic site located in a G4 structure by Ape1 depends on the DNA conformation or the position of the lesion and on electrostatic interactions between the protein and the nucleic acids. Moreover, Ape1 mutants mimicking the acetylated protein display increased cleavage activity for abasic sites. We found that nucleophosmin (NPM1), which binds the N-terminal sequence of Ape1, plays a role in modulating telomere length and Ape1 activity at abasic G4 structures. Thus, the Ape1 N-terminal sequence is an important relay site for regulating the enzyme's activity on G4-telomeric sequences, and specific acetylatable lysine residues constitute key regulatory sites of Ape1 enzymatic activity dynamics at telomeres.
Collapse
Affiliation(s)
- Silvia Burra
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Daniela Marasco
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy
| | - Matilde Clarissa Malfatti
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Giulia Antoniali
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Antonella Virgilio
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy
| | - Veronica Esposito
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy
| | - Bruce Demple
- Department of Pharmacological Sciences, Stony Brook University, School of Medicine, Stony Brook, NY, 11794-8651, USA
| | - Aldo Galeone
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy
| | - Gianluca Tell
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine (DAME), University of Udine, Udine, Italy.
| |
Collapse
|
122
|
Prasad R, Horton JK, Dai DP, Wilson SH. Repair pathway for PARP-1 DNA-protein crosslinks. DNA Repair (Amst) 2018; 73:71-77. [PMID: 30466837 DOI: 10.1016/j.dnarep.2018.11.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/03/2018] [Accepted: 11/09/2018] [Indexed: 02/06/2023]
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) is a regulatory enzyme involved in many different processes of DNA and RNA metabolism, including DNA repair. Previously, PARP-1 was found capable of forming a covalent DNA-protein crosslink (DPC) at the apurinic/apyrimidinic (AP) site in double-stranded DNA. The C1´ atom of the AP site participates in Schiff base formation with a lysine side chain in PARP-1, and a covalent bond is formed upon reduction of the Schiff base. The PARP-1 DPC is formed in vivo where DPC formation correlates with AP site induction by a monofunctional alkylating agent. Here, we examined repair of PARP-1 DPCs in mouse fibroblasts and found that a proteasome inhibitor, MG-132, reduces repair resulting in accumulation of PARP-1 DPCs and increased alkylating agent cytotoxicity. Using a model DNA substrate mimicking the PARP-1 DPC after proteasomal degradation, we found that repair is completed by a sub-pathway of base excision repair (BER). Tyrosyl-DNA phosphodiesterase 1 was proficient in removing the ring-open AP site sugar at the phosphodiester linkage, leaving an intermediate for processing by other BER enzymes. The results reveal proteasomal degradation of the PARP-1 DPC is active in mouse fibroblasts and that a model repair intermediate is processed by the BER machinery.
Collapse
Affiliation(s)
- Rajendra Prasad
- Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Julie K Horton
- Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Da-Peng Dai
- Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Samuel H Wilson
- Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
123
|
Yukutake M, Hayashida M, Shioi Aoki N, Kuraoka I. Oligo swapping method for in vitro DNA repair substrate containing a single DNA lesion at a specific site. Genes Environ 2018; 40:23. [PMID: 30459925 PMCID: PMC6231255 DOI: 10.1186/s41021-018-0112-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/12/2018] [Indexed: 11/10/2022] Open
Abstract
Background A wide variety of DNA lesions interfere with replication and transcription, leading to mutations and cell death. DNA repair mechanisms act upon these DNA lesions present in the genomic DNA. To investigate a DNA repair mechanism elaborately, an in vitro DNA repair substrate containing DNA lesions at a specific site is required. Previously, to prepare the substrate, phagemid ssDNA and DNA lesion-harboring oligonucleotides were employed with considerable amounts of DNA polymerase and DNA ligase. However, preparing in vitro DNA repair substrate in general is difficult and labor intensive. Results Here, we modified the construction method of in vitro mismatch repair substrate using a nicking-endonuclease, which produces gap corresponding to the ssDNA in the plasmid DNA, and swaps DNA lesion-containing oligonucleotide upon addition of restriction enzyme and T5 exonuclease. This modified method is able to produce in vitro DNA repair substrates containing adenine:cytosine mismatch basepair, 8-oxoG, and uracil. The DNA repair enzyme, each Fpg, hOGG1 could cleave an 8-oxoG-containing DNA substrate, the mixture of UDG and APE1 could cleave a uracil-containing DNA substrate. Omitting a column purification step, DNA repair substrates were prepared by one-pot synthesis. Conclusions We were able to prepare in vitro DNA repair substrates using this simple method involving restriction enzymes and T5 exonuclease. It is anticipated that this method, termed as "Oligo Swapping Method", will be valuable for understanding the DNA repair machinery.
Collapse
Affiliation(s)
- Mika Yukutake
- Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180 Japan
| | - Mika Hayashida
- Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180 Japan
| | - Narumi Shioi Aoki
- Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180 Japan
| | - Isao Kuraoka
- Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180 Japan
| |
Collapse
|
124
|
Kuraoka I. Alternative excision repair of topoisomerase inhibitor-induced DNA damage. THE NUCLEUS 2018. [DOI: 10.1007/s13237-018-0248-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
125
|
Sanders MA, Chew E, Flensburg C, Zeilemaker A, Miller SE, Al Hinai AS, Bajel A, Luiken B, Rijken M, Mclennan T, Hoogenboezem RM, Kavelaars FG, Fröhling S, Blewitt ME, Bindels EM, Alexander WS, Löwenberg B, Roberts AW, Valk PJM, Majewski IJ. MBD4 guards against methylation damage and germ line deficiency predisposes to clonal hematopoiesis and early-onset AML. Blood 2018; 132:1526-1534. [PMID: 30049810 PMCID: PMC6172562 DOI: 10.1182/blood-2018-05-852566] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/18/2018] [Indexed: 02/07/2023] Open
Abstract
The tendency of 5-methylcytosine (5mC) to undergo spontaneous deamination has had a major role in shaping the human genome, and this methylation damage remains the primary source of somatic mutations that accumulate with age. How 5mC deamination contributes to cancer risk in different tissues remains unclear. Genomic profiling of 3 early-onset acute myeloid leukemias (AMLs) identified germ line loss of MBD4 as an initiator of 5mC-dependent hypermutation. MBD4-deficient AMLs display a 33-fold higher mutation burden than AML generally, with >95% being C>T in the context of a CG dinucleotide. This distinctive signature was also observed in sporadic cancers that acquired biallelic mutations in MBD4 and in Mbd4 knockout mice. Sequential sampling of germ line cases demonstrated repeated expansion of blood cell progenitors with pathogenic mutations in DNMT3A, a key driver gene for both clonal hematopoiesis and AML. Our findings reveal genetic and epigenetic factors that shape the mutagenic influence of 5mC. Within blood cells, this links methylation damage to the driver landscape of clonal hematopoiesis and reveals a conserved path to leukemia. Germ line MBD4 deficiency enhances cancer susceptibility and predisposes to AML.
Collapse
Affiliation(s)
- Mathijs A Sanders
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Edward Chew
- Division of Cancer and Haematology, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Clinical Hematology, Peter MacCallum Cancer Center, Royal Melbourne Hospital, Parkville, VIC, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
- Victorian Comprehensive Cancer Centre, Parkville, VIC, Australia
| | - Christoffer Flensburg
- Division of Cancer and Haematology, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Annelieke Zeilemaker
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Sarah E Miller
- Division of Cancer and Haematology, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Adil S Al Hinai
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
- National Genetic Center, Royal Hospital, Ministry of Health, Muscat, Sultanate of Oman
| | - Ashish Bajel
- Clinical Hematology, Peter MacCallum Cancer Center, Royal Melbourne Hospital, Parkville, VIC, Australia
- Victorian Comprehensive Cancer Centre, Parkville, VIC, Australia
| | - Bram Luiken
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Melissa Rijken
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Tamara Mclennan
- Division of Molecular Medicine, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Remco M Hoogenboezem
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - François G Kavelaars
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Stefan Fröhling
- Division of Translational Oncology, National Center for Tumor Diseases Heidelberg and German Cancer Research Center, Heidelberg, Germany
- German Cancer Consortium, Heidelberg, Germany; and
- Section for Personalized Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Marnie E Blewitt
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
- Division of Molecular Medicine, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Eric M Bindels
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Warren S Alexander
- Division of Cancer and Haematology, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Bob Löwenberg
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Andrew W Roberts
- Division of Cancer and Haematology, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Clinical Hematology, Peter MacCallum Cancer Center, Royal Melbourne Hospital, Parkville, VIC, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
- Victorian Comprehensive Cancer Centre, Parkville, VIC, Australia
| | - Peter J M Valk
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ian J Majewski
- Division of Cancer and Haematology, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
126
|
Hiller B, Hoppe A, Haase C, Hiller C, Schubert N, Müller W, Reijns MAM, Jackson AP, Kunkel TA, Wenzel J, Behrendt R, Roers A. Ribonucleotide Excision Repair Is Essential to Prevent Squamous Cell Carcinoma of the Skin. Cancer Res 2018; 78:5917-5926. [PMID: 30154151 DOI: 10.1158/0008-5472.can-18-1099] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/10/2018] [Accepted: 08/22/2018] [Indexed: 01/07/2023]
Abstract
Because of imperfect discrimination against ribonucleoside triphosphates by the replicative DNA polymerases, large numbers of ribonucleotides are incorporated into the eukaryotic nuclear genome during S-phase. Ribonucleotides, by far the most common DNA lesion in replicating cells, destabilize the DNA, and an evolutionarily conserved DNA repair machinery, ribonucleotide excision repair (RER), ensures ribonucleotide removal. Whereas complete lack of RER is embryonically lethal, partial loss-of-function mutations in the genes encoding subunits of RNase H2, the enzyme essential for initiation of RER, cause the SLE-related type I interferonopathy Aicardi-Goutières syndrome. Here, we demonstrate that selective inactivation of RER in mouse epidermis results in spontaneous DNA damage and epidermal hyperproliferation associated with loss of hair follicle stem cells and hair follicle function. The animals developed keratinocyte intraepithelial neoplasia and invasive squamous cell carcinoma with complete penetrance, despite potent type I interferon production and skin inflammation. These results suggest that compromises to RER-mediated genome maintenance might represent an important tumor-promoting principle in human cancer.Significance: Selective inactivation of ribonucleotide excision repair by loss of RNase H2 in the murine epidermis results in spontaneous DNA damage, type I interferon response, skin inflammation, and development of squamous cell carcinoma. Cancer Res; 78(20); 5917-26. ©2018 AACR.
Collapse
Affiliation(s)
- Björn Hiller
- Institute for Immunology, Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany.,Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Anja Hoppe
- Institute for Immunology, Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Christa Haase
- Institute for Immunology, Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Christina Hiller
- Institute for Immunology, Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Nadja Schubert
- Institute for Immunology, Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Werner Müller
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Martin A M Reijns
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew P Jackson
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| | - Thomas A Kunkel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences (NIEHS), NIH, Research Triangle Park, North Carolina
| | - Jörg Wenzel
- Department of Dermatology and Allergy, University Hospital Bonn, Bonn, Germany
| | - Rayk Behrendt
- Institute for Immunology, Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany.
| | - Axel Roers
- Institute for Immunology, Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany.
| |
Collapse
|
127
|
St. Martin A, Salamango D, Serebrenik A, Shaban N, Brown WL, Donati F, Munagala U, Conticello SG, Harris RS. A fluorescent reporter for quantification and enrichment of DNA editing by APOBEC-Cas9 or cleavage by Cas9 in living cells. Nucleic Acids Res 2018; 46:e84. [PMID: 29746667 PMCID: PMC6101615 DOI: 10.1093/nar/gky332] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 03/26/2018] [Accepted: 04/18/2018] [Indexed: 12/17/2022] Open
Abstract
Base editing is an exciting new genome engineering technology. C-to-T mutations in genomic DNA have been achieved using ribonucleoprotein complexes comprised of rat APOBEC1 single-stranded DNA deaminase, Cas9 nickase (Cas9n), uracil DNA glycosylase inhibitor (UGI), and guide (g)RNA. Here, we report the first real-time reporter system for quantification of APOBEC-mediated base editing activity in living mammalian cells. The reporter expresses eGFP constitutively as a marker for transfection or transduction, and editing restores functionality of an upstream mCherry cassette through the simultaneous processing of two gRNA binding regions that each contain an APOBEC-preferred 5'TCA target site. Using this system as both an episomal and a chromosomal editing reporter, we show that human APOBEC3A-Cas9n-UGI and APOBEC3B-Cas9n-UGI base editing complexes are more efficient than the original rat APOBEC1-Cas9n-UGI construct. We also demonstrate coincident enrichment of editing events at a heterologous chromosomal locus in reporter-edited, mCherry-positive cells. The mCherry reporter also quantifies the double-stranded DNA cleavage activity of Cas9, and may therefore be adaptable for use with many different CRISPR systems. The combination of a rapid, fluorescence-based editing reporter system and more efficient, structurally defined DNA editing enzymes broadens the versatility of the rapidly expanding toolbox of genome editing and engineering technologies.
Collapse
Affiliation(s)
- Amber St. Martin
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Center for Genome Engineering, Institute for Molecular Virology, University of Minnesota, MN 55455, USA
| | - Daniel Salamango
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Center for Genome Engineering, Institute for Molecular Virology, University of Minnesota, MN 55455, USA
| | - Artur Serebrenik
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Center for Genome Engineering, Institute for Molecular Virology, University of Minnesota, MN 55455, USA
| | - Nadine Shaban
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Center for Genome Engineering, Institute for Molecular Virology, University of Minnesota, MN 55455, USA
| | - William L Brown
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Center for Genome Engineering, Institute for Molecular Virology, University of Minnesota, MN 55455, USA
| | | | | | | | - Reuben S Harris
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Center for Genome Engineering, Institute for Molecular Virology, University of Minnesota, MN 55455, USA
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
128
|
Li J, Svilar D, McClellan S, Kim JH, Ahn EYE, Vens C, Wilson DM, Sobol RW. DNA Repair Molecular Beacon assay: a platform for real-time functional analysis of cellular DNA repair capacity. Oncotarget 2018; 9:31719-31743. [PMID: 30167090 PMCID: PMC6114979 DOI: 10.18632/oncotarget.25859] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/12/2018] [Indexed: 12/15/2022] Open
Abstract
Numerous studies have shown that select DNA repair enzyme activities impact response and/or toxicity of genotoxins, suggesting a requirement for enzyme functional analyses to bolster precision medicine or prevention. To address this need, we developed a DNA Repair Molecular Beacon (DRMB) platform that rapidly measures DNA repair enzyme activity in real-time. The DRMB assay is applicable for discovery of DNA repair enzyme inhibitors, for the quantification of enzyme rates and is sufficiently sensitive to differentiate cellular enzymatic activity that stems from variation in expression or effects of amino acid substitutions. We show activity measures of several different base excision repair (BER) enzymes, including proteins with tumor-identified point mutations, revealing lesion-, lesion-context- and cell-type-specific repair dependence; suggesting application for DNA repair capacity analysis of tumors. DRMB measurements using lysates from isogenic control and APE1-deficient human cells suggests the major mechanism of base lesion removal by most DNA glycosylases may be mono-functional base hydrolysis. In addition, development of a microbead-conjugated DRMB assay amenable to flow cytometric analysis further advances its application. Our studies establish an analytical platform capable of evaluating the enzyme activity of select DNA repair proteins in an effort to design and guide inhibitor development and precision cancer therapy options.
Collapse
Affiliation(s)
- Jianfeng Li
- University of South Alabama Mitchell Cancer Institute, Mobile, AL, USA
| | - David Svilar
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA, USA
| | - Steven McClellan
- University of South Alabama Mitchell Cancer Institute, Mobile, AL, USA
| | - Jung-Hyun Kim
- University of South Alabama Mitchell Cancer Institute, Mobile, AL, USA
| | | | - Conchita Vens
- The Netherlands Cancer Institute, Division of Cell Biology, Amsterdam, The Netherlands
| | - David M Wilson
- Laboratory of Molecular Gerontology, National Institute on Aging, IRP, NIH Baltimore, MD, USA
| | - Robert W Sobol
- University of South Alabama Mitchell Cancer Institute, Mobile, AL, USA.,Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA, USA
| |
Collapse
|
129
|
Barnard IRM, Tierney P, Campbell CL, McMillan L, Moseley H, Eadie E, Brown CTA, Wood K. Quantifying Direct DNA Damage in the Basal Layer of Skin Exposed to UV Radiation from Sunbeds. Photochem Photobiol 2018; 94:1017-1025. [PMID: 29752876 DOI: 10.1111/php.12935] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/12/2018] [Indexed: 12/22/2022]
Abstract
Nonmelanoma and melanoma skin cancers are attributable to DNA damage caused by ultraviolet (UV) radiation exposure. One DNA photoproduct, the cyclobutane pyrimidine dimer (CPD), is believed to lead to DNA mutations caused by UV radiation. Using radiative transfer simulations, we compare the number of CPDs directly induced by UV irradiation from artificial and natural UV sources (a standard sunbed and the midday summer Mediterranean sun) for skin types I and II on the Fitzpatrick scale. We use Monte Carlo radiative transfer (MCRT) modeling to track the progression of UV photons through a multilayered three dimensional (3D) grid that simulates the upper layers of the skin. By recording the energy deposited in the DNA-containing cells of the basal layer, the number of CPDs formed can be quantified. The aim of this work was to compare the number of CPDs formed in the basal layer of the skin and by implication the risk of developing cancer, as a consequence of irradiation by artificial and natural sources. Our simulations show that the number of CPDs formed per second during sunbed irradiation is almost three times that formed during solar irradiation.
Collapse
Affiliation(s)
| | - Patrick Tierney
- Photobiology Unit, Ninewells Hospital & Medical School, University of Dundee, Dundee, UK
| | | | - Lewis McMillan
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, UK
| | - Harry Moseley
- Photobiology Unit, Ninewells Hospital & Medical School, University of Dundee, Dundee, UK
| | - Ewan Eadie
- Photobiology Unit, Ninewells Hospital & Medical School, NHS Tayside, Dundee, UK
| | | | - Kenneth Wood
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, UK
| |
Collapse
|
130
|
The association of polymorphisms in nucleotide excision repair genes with ovarian cancer susceptibility. Biosci Rep 2018; 38:BSR20180114. [PMID: 29669843 PMCID: PMC6013708 DOI: 10.1042/bsr20180114] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/09/2018] [Accepted: 04/18/2018] [Indexed: 11/21/2022] Open
Abstract
Nucleotide excision repair (NER), the core mechanism of DNA repair pathway, was commonly used to maintain genomic stability and prevent tumorigenesis. Previous investigations have demonstrated that single nucleotide polymorphisms (SNPs) of NER pathway genes were associated with various types of cancer. However, there was no research elucidating the genetic association of entire NER pathway with ovarian cancer susceptibility. Therefore, we conducted genotyping for 17 SNPs of six NER core genes (XPA, XPC, XPG, ERCC1, ERCC2, and ERCC4) in 89 ovarian cancer cases and 356 cancer-free controls. Odds ratios (ORs) and 95% confidence intervals (CIs) were used to describe the strength of association. The result showed that both ERCC1 rs11615 and XPC rs2228000 were significantly associated with reduced risk of ovarian cancer under dominant genetic model (adjusted OR = 0.35, 95% CI = 0.20–0.61, P=0.0002 and adjusted OR = 0.49, 95% CI = 0.30–0.81, P=0.005 respectively). In addition, XPC rs2228001 and ERCC2 rs238406 had statistically significant association with the increased risk of ovarian cancer under dominant genetic model (adjusted OR = 1.72, 95% CI = 1.02–2.92, P=0.043 and adjusted OR = 2.07, 95% CI = 1.07–4.01, P=0.032 respectively). ERCC1 rs3212986 were related with the increased risk of ovarian cancer under recessive model (adjusted OR = 2.40, 95% CI = 1.30–4.44, P=0.005). In conclusion, our results indicated that ERCC1, XPC and ERCC2 might influence ovarian cancer susceptibility. Further research with large sample size is warranted to validate the reliability and accuracy of our results.
Collapse
|
131
|
Lukina MV, Koval VV, Lomzov AA, Zharkov DO, Fedorova OS. Global DNA dynamics of 8-oxoguanine repair by human OGG1 revealed by stopped-flow kinetics and molecular dynamics simulation. MOLECULAR BIOSYSTEMS 2018; 13:1954-1966. [PMID: 28770925 DOI: 10.1039/c7mb00343a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The toxic action of different endogenous and exogenous agents leads to damage in genomic DNA. 8-Oxoguanine is one of the most often generated and highly mutagenic oxidative forms of damage in DNA. Normally, in human cells it is promptly removed by 8-oxoguanine-DNA-glycosylase hOGG1, the key DNA-repair enzyme. An association between the accumulation of oxidized guanine and an increased risk of harmful processes in organisms was already found. However, the detailed mechanism of damaged base recognition and removal is still unclear. To clarify the role of active site amino acids in the damaged base coordination and to reveal the elementary steps in the overall enzymatic process we investigated hOGG1 mutant forms with substituted amino acid residues in the enzyme base-binding pocket. Replacing the functional groups of the enzyme active site allowed us to change the rates of the individual steps of the enzymatic reaction. To gain further insight into the mechanism of hOGG1 catalysis a detailed pre-steady state kinetic study of this enzymatic process was carried out using the stopped-flow approach. The changes in the DNA structure after mixing with enzymes were followed by recording the FRET signal using Cy3/Cy5 labels in DNA substrates in the time range from milliseconds to hundreds of seconds. DNA duplexes containing non-damaged DNA, 8-oxoG, or an AP-site or its unreactive synthetic analogue were used as DNA-substrates. The kinetic parameters of DNA binding and damage processing were obtained for the mutant forms and for WT hOGG1. The analyses of fluorescence traces provided information about the DNA dynamics during damage recognition and removal. The kinetic study for the mutant forms revealed that all introduced substitutions reduced the efficiency of the hOGG1 activity; however, they played pivotal roles at certain elementary stages identified during the study. Taken together, our results gave the opportunity to restore the role of substituted amino acids and main "damaged base-amino acid" contacts, which provide an important link in the understanding the mechanism of the DNA repair process catalyzed by hOGG1.
Collapse
Affiliation(s)
- M V Lukina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentyev Ave., 8, Novosibirsk 630090, Russia.
| | | | | | | | | |
Collapse
|
132
|
Parrish MC, Chaim IA, Nagel ZD, Tannenbaum SR, Samson LD, Engelward BP. Nitric oxide induced S-nitrosation causes base excision repair imbalance. DNA Repair (Amst) 2018; 68:25-33. [PMID: 29929044 DOI: 10.1016/j.dnarep.2018.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 03/20/2018] [Accepted: 04/30/2018] [Indexed: 02/05/2023]
Abstract
It is well established that inflammation leads to the creation of potent DNA damaging chemicals, including reactive oxygen and nitrogen species. Nitric oxide can react with glutathione to create S-nitrosoglutathione (GSNO), which can in turn lead to S-nitrosated proteins. Of particular interest is the impact of GSNO on the function of DNA repair enzymes. The base excision repair (BER) pathway can be initiated by the alkyl-adenine DNA glycosylase (AAG), a monofunctional glycosylase that removes methylated bases. After base removal, an abasic site is formed, which then gets cleaved by AP endonuclease and processed by downstream BER enzymes. Interestingly, using the Fluorescence-based Multiplexed Host Cell Reactivation Assay (FM-HCR), we show that GSNO actually enhances AAG activity, which is consistent with the literature. This raised the possibility that there might be imbalanced BER when cells are challenged with a methylating agent. To further explore this possibility, we confirmed that GSNO can cause AP endonuclease to translocate from the nucleus to the cytoplasm, which might further exacerbate imbalanced BER by increasing the levels of AP sites. Analysis of abasic sites indeed shows GSNO induces an increase in the level of AP sites. Furthermore, analysis of DNA damage using the CometChip (a higher throughput version of the comet assay) shows an increase in the levels of BER intermediates. Finally, we found that GSNO exposure is associated with an increase in methylation-induced cytotoxicity. Taken together, these studies support a model wherein GSNO increases BER initiation while processing of AP sites is decreased, leading to a toxic increase in BER intermediates. This model is also supported by additional studies performed in our laboratory showing that inflammation in vivo leads to increased large-scale sequence rearrangements. Taken together, this work provides new evidence that inflammatory chemicals can drive cytotoxicity and mutagenesis via BER imbalance.
Collapse
Affiliation(s)
- Marcus C Parrish
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Isaac A Chaim
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Zachary D Nagel
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Steven R Tannenbaum
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Leona D Samson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Bevin P Engelward
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
133
|
Liu X, Wu J, Zhang D, Wang K, Duan X, Meng Z, Zhang X. Network Pharmacology-Based Approach to Investigate the Mechanisms of Hedyotis diffusa Willd. in the Treatment of Gastric Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:7802639. [PMID: 29853970 PMCID: PMC5954954 DOI: 10.1155/2018/7802639] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 03/27/2018] [Accepted: 04/01/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Hedyotis diffusa Willd. (HDW) is one of the renowned herbs often used in the treatment of gastric cancer (GC). However, its curative mechanism has not been fully elucidated. OBJECTIVE To systematically investigate the mechanisms of HDW in GC. METHODS A network pharmacology approach mainly comprising target prediction, network construction, and module analysis was adopted in this study. RESULTS A total of 353 targets of the 32 bioactive compounds in HDW were obtained. The network analysis showed that CA isoenzymes, p53, PIK3CA, CDK2, P27Kip1, cyclin D1, cyclin B1, cyclin A2, AKT1, BCL2, MAPK1, and VEGFA were identified as key targets of HDW in the treatment of GC. The functional enrichment analysis indicated that HDW probably produced the therapeutic effects against GC by synergistically regulating many biological pathways, such as nucleotide excision repair, apoptosis, cell cycle, PI3K/AKT/mTOR signaling pathway, VEGF signaling pathway, and Ras signaling pathway. CONCLUSIONS This study holistically illuminates the fact that the pharmacological mechanisms of HDW in GC might be strongly associated with its synergic modulation of apoptosis, cell cycle, differentiation, proliferation, migration, invasion, and angiogenesis.
Collapse
Affiliation(s)
- Xinkui Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Jiarui Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Dan Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Kaihuan Wang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Xiaojiao Duan
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Ziqi Meng
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Xiaomeng Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| |
Collapse
|
134
|
Papaluca A, Wagner JR, Saragovi HU, Ramotar D. UNG-1 and APN-1 are the major enzymes to efficiently repair 5-hydroxymethyluracil DNA lesions in C. elegans. Sci Rep 2018; 8:6860. [PMID: 29717169 PMCID: PMC5931555 DOI: 10.1038/s41598-018-25124-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/13/2018] [Indexed: 11/16/2022] Open
Abstract
In Caenorhabditis elegans, two DNA glycosylases, UNG-1 and NTH-1, and two AP endonucleases, APN-1 and EXO-3, have been characterized from the base-excision repair (BER) pathway that repairs oxidatively modified DNA bases. UNG-1 removes uracil, while NTH-1 can remove 5-hydroxymethyluracil (5-hmU), an oxidation product of thymine, as well as other lesions. Both APN-1 and EXO-3 can incise AP sites and remove 3′-blocking lesions at DNA single strand breaks, and only APN-1 possesses 3′- to 5′-exonulease and nucleotide incision repair activities. We used C. elegans mutants to study the role of the BER pathway in processing 5-hmU. We observe that ung-1 mutants exhibited a decrease in brood size and lifespan, and an elevated level of germ cell apoptosis when challenged with 5-hmU. These phenotypes were exacerbated by RNAi downregulation of apn-1 in the ung-1 mutant. The nth-1 or exo-3 mutants displayed wild type phenotypes towards 5-hmU. We show that partially purified UNG-1 can act on 5-hmU lesion in vitro. We propose that UNG-1 removes 5-hmU incorporated into the genome and the resulting AP site is cleaved by APN-1 or EXO-3. In the absence of UNG-1, the 5-hmU is removed by NTH-1 creating a genotoxic 3′-blocking lesion that requires the action of APN-1.
Collapse
Affiliation(s)
- Arturo Papaluca
- Maisonneuve-Rosemont Hospital, Research Center, Université de Montréal, Department of Medicine, 5415 Boul. de l'Assomption, Montréal, Québec, H1T2M4, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Department of Pharmacology and Therapeutics, McGill University, Department of Pharmacology and Therapeutics, 3755 Chemin de la Côte Sainte-Catherine, Québec, Montréal, H3T1E2, Canada
| | - J Richard Wagner
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12 Avenue Nord, Sherbrooke, Québec, J1H5N4, Canada
| | - H Uri Saragovi
- Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Department of Pharmacology and Therapeutics, McGill University, Department of Pharmacology and Therapeutics, 3755 Chemin de la Côte Sainte-Catherine, Québec, Montréal, H3T1E2, Canada
| | - Dindial Ramotar
- Maisonneuve-Rosemont Hospital, Research Center, Université de Montréal, Department of Medicine, 5415 Boul. de l'Assomption, Montréal, Québec, H1T2M4, Canada.
| |
Collapse
|
135
|
Laporte GA, Leguisamo NM, Kalil AN, Saffi J. Clinical importance of DNA repair in sporadic colorectal cancer. Crit Rev Oncol Hematol 2018; 126:168-185. [PMID: 29759559 DOI: 10.1016/j.critrevonc.2018.03.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 03/05/2018] [Accepted: 03/22/2018] [Indexed: 12/18/2022] Open
Abstract
Colorectal cancer (CRC) is the third major cause of cancer-related deaths worldwide. However, despite the scientific efforts to provide a molecular classification to improve CRC clinical practice management, prognosis and therapeutic decision are still strongly dependent on the TNM staging system. Mismatch repair system deficiencies can occur in many organs, but it is mainly a hallmark of CRC influencing clinical outcomes and response to therapy. This review will discuss the effect of the modulation of other DNA repair pathways (direct, excision and double strand break repairs) in the clinical and pathological aspects of colorectal cancer and its potential as prognostic and predictive biomarkers.
Collapse
Affiliation(s)
- Gustavo A Laporte
- Surgical Oncology Service, Santa Casa de Misericórdia de Porto Alegre (ISCMPA), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Natalia M Leguisamo
- Institute of Cardiology/University Foundation of Cardiology, Porto Alegre, Rio Grande do Sul, Brazil; Laboratory of Genetic Toxicology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Antonio N Kalil
- Surgical Oncology Service, Santa Casa de Misericórdia de Porto Alegre (ISCMPA), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Jenifer Saffi
- Laboratory of Genetic Toxicology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
136
|
Wang Z, Li B, Li Y, Zhai X, Dong Y, Deng M, Zhao Z, Cao Y, Fan G. Identification and characterization of long noncoding RNA in Paulownia tomentosa treated with methyl methane sulfonate. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2018; 24:325-334. [PMID: 29515326 PMCID: PMC5834995 DOI: 10.1007/s12298-018-0513-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 01/18/2018] [Accepted: 01/24/2018] [Indexed: 05/25/2023]
Abstract
Paulownia is a tree native to China, with important ecological and economic value. Long noncoding RNAs (lncRNAs) are known to play important roles in eukaryotic gene regulation. However, no lncRNAs have been reported in Paulownia so far. We performed RNA sequencing of two Paulownia tomentosa lncRNA libraries constructed from the terminal buds of normal untreated seedlings and 60 mg L-1 MMS-treated seedlings, and obtained a total of 2531 putative lncRNAs. The average length of the lncRNA transcripts was much less than the average length of the mRNA transcripts in the P. tomentosa libraries. A few of the Paulownia lncRNAs were conserved among ten species tested. We identified seven lncRNAs as precursors of 13 known miRNAs, 15 lncRNAs may act as target mimics of 19 miRNAs, and 351 unique noncoding sequences belonging to 133 conserved lncRNA families. In addition, we identified 220 lncRNAs responsive to methyl methane sulfonate (MMS), including seven phytohormone-related lncRNAs and one lncRNAs involved in base excision repair. This is the first time that lncRNAs have been explored in Paulownia. The lncRNA data may also provide new insights into the MMS-response in P. tomentosa.
Collapse
Affiliation(s)
- Zhe Wang
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan People’s Republic of China
| | - Bingbing Li
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan People’s Republic of China
| | - Yongsheng Li
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan People’s Republic of China
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan People’s Republic of China
| | - Xiaoqiao Zhai
- Henan Academy of Forestry, Zhengzhou, Henan People’s Republic of China
| | - Yanpeng Dong
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan People’s Republic of China
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan People’s Republic of China
| | - Minjie Deng
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan People’s Republic of China
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan People’s Republic of China
| | - Zhenli Zhao
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan People’s Republic of China
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan People’s Republic of China
| | - Yabing Cao
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan People’s Republic of China
| | - Guoqiang Fan
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan People’s Republic of China
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan People’s Republic of China
| |
Collapse
|
137
|
Rad5 coordinates translesion DNA synthesis pathway by recognizing specific DNA structures in saccharomyces cerevisiae. Curr Genet 2018; 64:889-899. [PMID: 29396601 DOI: 10.1007/s00294-018-0807-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/11/2018] [Accepted: 01/25/2018] [Indexed: 02/07/2023]
Abstract
DNA repair is essential to maintain genome integrity. In addition to various DNA repair pathways dealing with specific types of DNA lesions, DNA damage tolerance (DDT) promotes the bypass of DNA replication blocks encountered by the replication fork to prevent cell death. Budding yeast Rad5 plays an essential role in the DDT pathway and its structure indicates that Rad5 recognizes damaged DNA or stalled replication forks, suggesting that Rad5 plays an important role in the DDT pathway choice. It has been reported that Rad5 forms subnuclear foci in the presence of methyl methanesulfonate (MMS) during the S phase. By analyzing the formation of Rad5 foci after MMS treatment, we showed that some specific DNA structures rather than mono-ubiquitination of proliferating cell nuclear antigen are required for the recruitment of Rad5 to the damaged site. Moreover, inactivation of the base excision repair (BER) pathway greatly decreased the Rad5 focus formation, suggesting that Rad5 recognizes specific DNA structures generated by BER. We also identified a negative role of overexpressed translesion synthesis polymerase Polη in the formation of Rad5 foci. Based on these data, we propose a modified DDT pathway model in which Rad5 plays a role in activating the DDT pathway.
Collapse
|
138
|
Chae YK, Anker JF, Carneiro BA, Chandra S, Kaplan J, Kalyan A, Santa-Maria CA, Platanias LC, Giles FJ. Genomic landscape of DNA repair genes in cancer. Oncotarget 2018; 7:23312-21. [PMID: 27004405 PMCID: PMC5029628 DOI: 10.18632/oncotarget.8196] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 03/02/2016] [Indexed: 01/09/2023] Open
Abstract
DNA repair genes are frequently mutated in cancer, yet limited data exist regarding the overall genomic landscape and functional implications of these alterations in their entirety. We created comprehensive lists of DNA repair genes and indirect caretakers. Mutation, copy number variation (CNV), and expression frequencies of these genes were analyzed in COSMIC. Mutation co-occurrence, clinical outcomes, and mutation burden were analyzed in TCGA. We report the 20 genes most frequently with mutations (n > 19,689 tumor samples for each gene), CNVs (n > 1,556), or up- or down-regulated (n = 7,998). Mutual exclusivity was observed as no genes displayed both high CNV gain and loss or high up- and down-regulation, and CNV gain and loss positively correlated with up- and down-regulation, respectively. Co-occurrence of mutations differed between cancers, and mutations in many DNA repair genes were associated with higher total mutation burden. Mutation and CNV frequencies offer insights into which genes may play tumor suppressive or oncogenic roles, such as NEIL2 and RRM2B, respectively. Mutual exclusivities within CNV and expression frequencies, and correlations between CNV and expression, support the functionality of these genomic alterations. This study provides comprehensive lists of candidate genes as potential biomarkers for genomic instability, novel therapeutic targets, or predictors of immunotherapy efficacy.
Collapse
Affiliation(s)
- Young Kwang Chae
- Northwestern Medicine Developmental Therapeutics Institute, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.,Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jonathan F Anker
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Benedito A Carneiro
- Northwestern Medicine Developmental Therapeutics Institute, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.,Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sunandana Chandra
- Northwestern Medicine Developmental Therapeutics Institute, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.,Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jason Kaplan
- Northwestern Medicine Developmental Therapeutics Institute, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.,Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Aparna Kalyan
- Northwestern Medicine Developmental Therapeutics Institute, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.,Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Cesar A Santa-Maria
- Northwestern Medicine Developmental Therapeutics Institute, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.,Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Leonidas C Platanias
- Northwestern Medicine Developmental Therapeutics Institute, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.,Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Division of Hematology-Oncology, Department of Medicine, Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Francis J Giles
- Northwestern Medicine Developmental Therapeutics Institute, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.,Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
139
|
Bohrer RC, Dicks N, Gutierrez K, Duggavathi R, Bordignon V. Double‐strand DNA breaks are mainly repaired by the homologous recombination pathway in early developing swine embryos. FASEB J 2018; 32:1818-1829. [DOI: 10.1096/fj.201700800r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Naomi Dicks
- Department of Animal ScienceMcGill UniversityMontrealQuebecCanada
| | - Karina Gutierrez
- Department of Animal ScienceMcGill UniversityMontrealQuebecCanada
| | - Raj Duggavathi
- Department of Animal ScienceMcGill UniversityMontrealQuebecCanada
| | - Vilceu Bordignon
- Department of Animal ScienceMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
140
|
Family A and B DNA Polymerases in Cancer: Opportunities for Therapeutic Interventions. BIOLOGY 2018; 7:biology7010005. [PMID: 29301327 PMCID: PMC5872031 DOI: 10.3390/biology7010005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/14/2017] [Accepted: 12/29/2017] [Indexed: 02/07/2023]
Abstract
DNA polymerases are essential for genome replication, DNA repair and translesion DNA synthesis (TLS). Broadly, these enzymes belong to two groups: replicative and non-replicative DNA polymerases. A considerable body of data suggests that both groups of DNA polymerases are associated with cancer. Many mutations in cancer cells are either the result of error-prone DNA synthesis by non-replicative polymerases, or the inability of replicative DNA polymerases to proofread mismatched nucleotides due to mutations in 3'-5' exonuclease activity. Moreover, non-replicative, TLS-capable DNA polymerases can negatively impact cancer treatment by synthesizing DNA past lesions generated from treatments such as cisplatin, oxaliplatin, etoposide, bleomycin, and radiotherapy. Hence, the inhibition of DNA polymerases in tumor cells has the potential to enhance treatment outcomes. Here, we review the association of DNA polymerases in cancer from the A and B families, which participate in lesion bypass, and conduct gene replication. We also discuss possible therapeutic interventions that could be used to maneuver the role of these enzymes in tumorigenesis.
Collapse
|
141
|
Prasad R, Çağlayan M, Dai DP, Nadalutti CA, Zhao ML, Gassman NR, Janoshazi AK, Stefanick DF, Horton JK, Krasich R, Longley MJ, Copeland WC, Griffith JD, Wilson SH. DNA polymerase β: A missing link of the base excision repair machinery in mammalian mitochondria. DNA Repair (Amst) 2017; 60:77-88. [PMID: 29100041 PMCID: PMC5919216 DOI: 10.1016/j.dnarep.2017.10.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mitochondrial genome integrity is fundamental to mammalian cell viability. Since mitochondrial DNA is constantly under attack from oxygen radicals released during ATP production, DNA repair is vital in removing oxidatively generated lesions in mitochondrial DNA, but the presence of a strong base excision repair system has not been demonstrated. Here, we addressed the presence of such a system in mammalian mitochondria involving the primary base lesion repair enzyme DNA polymerase (pol) β. Pol β was localized to mammalian mitochondria by electron microscopic-immunogold staining, immunofluorescence co-localization and biochemical experiments. Extracts from purified mitochondria exhibited base excision repair activity that was dependent on pol β. Mitochondria from pol β-deficient mouse fibroblasts had compromised DNA repair and showed elevated levels of superoxide radicals after hydrogen peroxide treatment. Mitochondria in pol β-deficient fibroblasts displayed altered morphology by electron microscopy. These results indicate that mammalian mitochondria contain an efficient base lesion repair system mediated in part by pol β and thus pol β plays a role in preserving mitochondrial genome stability.
Collapse
Affiliation(s)
- Rajendra Prasad
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, P.O. Box 12233, Research Triangle Park, NC 27709, USA
| | - Melike Çağlayan
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, P.O. Box 12233, Research Triangle Park, NC 27709, USA
| | - Da-Peng Dai
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, P.O. Box 12233, Research Triangle Park, NC 27709, USA
| | - Cristina A Nadalutti
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ming-Lang Zhao
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, P.O. Box 12233, Research Triangle Park, NC 27709, USA
| | - Natalie R Gassman
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, P.O. Box 12233, Research Triangle Park, NC 27709, USA; University of South Alabama Mitchell Cancer Institute, 1660 Springhill Ave, Mobile, AL 36604, USA
| | - Agnes K Janoshazi
- Signal Transduction Laboratory, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, P.O. Box 12233, Research Triangle Park, NC 27709, USA
| | - Donna F Stefanick
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, P.O. Box 12233, Research Triangle Park, NC 27709, USA
| | - Julie K Horton
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, P.O. Box 12233, Research Triangle Park, NC 27709, USA
| | - Rachel Krasich
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, P.O. Box 12233, Research Triangle Park, NC 27709, USA
| | - Matthew J Longley
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, P.O. Box 12233, Research Triangle Park, NC 27709, USA
| | - William C Copeland
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, P.O. Box 12233, Research Triangle Park, NC 27709, USA
| | - Jack D Griffith
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Samuel H Wilson
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, P.O. Box 12233, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
142
|
Amanullah A, Upadhyay A, Joshi V, Mishra R, Jana NR, Mishra A. Progressing neurobiological strategies against proteostasis failure: Challenges in neurodegeneration. Prog Neurobiol 2017; 159:1-38. [DOI: 10.1016/j.pneurobio.2017.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 06/01/2017] [Accepted: 08/25/2017] [Indexed: 02/07/2023]
|
143
|
Zhu J, Hao Q, Liu Y, Guo Z, Rustam B, Jiang W. Integrating DNA structure switch with branched hairpins for the detection of uracil-DNA glycosylase activity and inhibitor screening. Talanta 2017; 179:51-56. [PMID: 29310268 DOI: 10.1016/j.talanta.2017.10.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/19/2017] [Accepted: 10/25/2017] [Indexed: 12/24/2022]
Abstract
The detection of uracil-DNA glycosylase (UDG) activity is pivotal for its biochemical studies and the development of drugs for UDG-related diseases. Here, we explored an integrated DNA structure switch for high sensitive detection of UDG activity. The DNA structure switch containing two branched hairpins was employed to recognize UDG enzyme and generate fluorescent signal. Under the action of UDG, one branched hairpin was impelled folding into a close conformation after the excision of the single uracil. This reconfigured hairpin could immediately initiate the polymerization/nicking amplification reaction of another branched hairpin accompanying with the release of numerous G-quadruplexes (G4s). In the absence of UDG, the DNA structure switch kept its original configuration, and thus the subsequent polymerization/nicking reaction was inhibited, resulting in the release of few G4 strands. In this work, Thioflavin T was used as signal reporter to target G4s. By integrating the DNA structure switch, the quick response and high sensitivity for UDG determination was achieved and a low detection limit of 0.0001U/mL was obtained, which was superior to the most fluorescent methods for UDG assay. The repeatability of the as-proposed strategy was demonstrated under the concentration of 0.02U/mL and 0.002U/mL, the relative standard deviation obtained from 5 successive samples were 1.7% and 2.8%, respectively. The integrated DNA structure switch strategy proposed here has the potential application for the study of mechanism and function of UDG enzyme and the screening the inhibitors as potential drugs and biochemical tools.
Collapse
Affiliation(s)
- Jing Zhu
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, PR China; Henan Key Laboratory of Biomolecular Recognition and Sensing, School of Chemistry and Chemical Engineering, Shangqiu Normal University, 476000 Shangqiu, PR China
| | - Qijie Hao
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, PR China
| | - Yi Liu
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, PR China
| | - Zhaohui Guo
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, PR China
| | - Buayxigul Rustam
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, PR China
| | - Wei Jiang
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, PR China.
| |
Collapse
|
144
|
Gao M, Guo J, Song Y, Zhu Z, Yang CJ. Detection of T4 Polynucleotide Kinase via Allosteric Aptamer Probe Platform. ACS APPLIED MATERIALS & INTERFACES 2017; 9:38356-38363. [PMID: 29027787 DOI: 10.1021/acsami.7b14185] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
As a vital enzyme in DNA phosphorylation and restoration, T4 polynucleotide kinase (T4 PNK) has aroused great interest in recent years. Therefore, numerous strategies have been established for highly sensitive detection of T4 PNK based on diverse signal amplification techniques. However, they often need sophisticated design, a variety of auxiliary reagents and enzymes, or cumbersome manipulations. We have designed a new kind of allosteric aptamer probe (AAP) consisting of streptavidin (SA) aptamer and the complementary DNA (cDNA) for simple detection of T4 PNK without signal amplification and with minimized interference in complex biological samples. When the 5'-terminus of the cDNA is phosphorylated by T4 PNK, the cDNA is degraded by lambda exonuclease to release the fluorescein amidite (FAM)-labeled SA aptamer, which subsequently binds to streptavidin beads. The enhancement of the fluorescence signal on SA beads can be detected precisely and easily by a microscope or flow cytometer. Our method performs well in complex biological samples as a result of the enrichment of the signaling molecules on beads, as well as simple manipulations to discard the background interference and nonbinding molecules. Without signal amplification techniques, our AAP method not only avoids complicated manipulations but also decreases the time required. With the advantages of ease of operation, reliability, and robustness for T4 PNK detection in buffer as well as real biological samples, the AAP has great potential for clinical diagnostics, inhibitor screening, and drug discovery.
Collapse
Affiliation(s)
- Mingxuan Gao
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Centre of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, China
| | - Jingjing Guo
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Centre of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, China
| | - Yanling Song
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Centre of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, China
- The Key Lab of Analysis and Detection Technology for Food Safety of MOE, State Key Laboratory of Photocatalysis on Energy and Environment, College of Biological Science and Engineering, Fuzhou University , Fuzhou 350116, China
| | - Zhi Zhu
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Centre of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, China
| | - Chaoyong James Yang
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Centre of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, China
| |
Collapse
|
145
|
Kashida H, Kurihara A, Kawai H, Asanuma H. Orientation-dependent FRET system reveals differences in structures and flexibilities of nicked and gapped DNA duplexes. Nucleic Acids Res 2017; 45:e105. [PMID: 28369626 PMCID: PMC5499647 DOI: 10.1093/nar/gkx200] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 03/17/2017] [Indexed: 12/18/2022] Open
Abstract
Differences in structures and flexibilities of DNA duplexes play important roles on recognition by DNA-binding proteins. We herein describe a novel method for structural analyses of DNA duplexes by using orientation dependence of Förster resonance energy transfer (FRET). We first analyzed canonical B-form duplex and correct structural parameters were obtained. The experimental FRET efficiencies were in excellent agreement with values theoretically calculated by using determined parameters. We then investigated DNA duplexes with nick and gaps, which are key intermediates in DNA repair systems. Effects of gap size on structures and flexibilities were successfully revealed. Since our method is facile and sensitive, it could be widely used to analyze DNA structures containing damages and non-natural molecules.
Collapse
Affiliation(s)
- Hiromu Kashida
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.,PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Ayako Kurihara
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Hayato Kawai
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Hiroyuki Asanuma
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
146
|
Yang Z, Price NE, Johnson KM, Wang Y, Gates KS. Interstrand cross-links arising from strand breaks at true abasic sites in duplex DNA. Nucleic Acids Res 2017; 45:6275-6283. [PMID: 28531327 PMCID: PMC5499897 DOI: 10.1093/nar/gkx394] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/02/2017] [Indexed: 01/04/2023] Open
Abstract
Interstrand cross-links are exceptionally bioactive DNA lesions. Endogenous generation of interstrand cross-links in genomic DNA may contribute to aging, neurodegeneration, and cancer. Abasic (Ap) sites are common lesions in genomic DNA that readily undergo spontaneous and amine-catalyzed strand cleavage reactions that generate a 2,3-didehydro-2,3-dideoxyribose sugar remnant (3’ddR5p) at the 3’-terminus of the strand break. Interestingly, this strand scission process leaves an electrophilic α,β-unsaturated aldehyde residue embedded within the resulting nicked duplex. Here we present evidence that 3’ddR5p derivatives generated by spermine-catalyzed strand cleavage at Ap sites in duplex DNA can react with adenine residues on the opposing strand to generate a complex lesion consisting of an interstrand cross-link adjacent to a strand break. The cross-link blocks DNA replication by ϕ29 DNA polymerase, a highly processive polymerase enzyme that couples synthesis with strand displacement. This suggests that 3’ddR5p-derived cross-links have the potential to block critical cellular DNA transactions that require strand separation. LC-MS/MS methods developed herein provide powerful tools for studying the occurrence and properties of these cross-links in biochemical and biological systems.
Collapse
Affiliation(s)
- Zhiyu Yang
- Department of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, MO 65211, USA
| | - Nathan E Price
- Department of Chemistry, University of California, Riverside, CA 92521-0403, USA
| | - Kevin M Johnson
- Department of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, MO 65211, USA
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, CA 92521-0403, USA
| | - Kent S Gates
- Department of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, MO 65211, USA.,Department of Biochemistry, University of Missouri, 125 Chemistry Building, Columbia, MO 65211, USA
| |
Collapse
|
147
|
Li Y, Bao L, Zhang R, Tang X, Zhang Q, Wang W. Insights into the error bypass of 1-Nitropyrene DNA adduct by DNA polymerase ι: A QM/MM study. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.08.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
148
|
Xu J, Cortellino S, Tricarico R, Chang WC, Scher G, Devarajan K, Slifker M, Moore R, Bassi MR, Caretti E, Clapper M, Cooper H, Bellacosa A. Thymine DNA Glycosylase (TDG) is involved in the pathogenesis of intestinal tumors with reduced APC expression. Oncotarget 2017; 8:89988-89997. [PMID: 29163805 PMCID: PMC5685726 DOI: 10.18632/oncotarget.21219] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 08/21/2017] [Indexed: 12/22/2022] Open
Abstract
Thymine DNA Glycosylase (TDG) is a base excision repair enzyme that acts as a thymine and uracil DNA N-glycosylase on G:T and G:U mismatches, thus protecting CpG sites in the genome from mutagenesis by deamination. In addition, TDG has an epigenomic function by removing the novel cytosine derivatives 5-formylcytosine and 5-carboxylcytosine (5caC) generated by Ten-Eleven Translocation (TET) enzymes during active DNA demethylation. We and others previously reported that TDG is essential for mammalian development. However, its involvement in tumor formation is unknown. To study the role of TDG in tumorigenesis, we analyzed the effects of its inactivation in a well-characterized model of tumor predisposition, the ApcMin mouse strain. Mice bearing a conditional Tdgflox allele were crossed with Fabpl::Cre transgenic mice, in the context of the ApcMin mutation, in order to inactivate Tdg in the small intestinal and colonic epithelium. We observed an approximately 2-fold increase in the number of small intestinal adenomas in the test Tdg-mutant ApcMin mice in comparison to control genotypes (p=0.0001). This increase occurred in female mice, and is similar to the known increase in intestinal adenoma formation due to oophorectomy. In the human colorectal cancer (CRC) TCGA database, the subset of patients with TDG and APC expression in the lowest quartile exhibits an excess of female cases. We conclude that TDG inactivation plays a role in intestinal tumorigenesis initiated by mutation/underexpression of APC. Our results also indicate that TDG may be involved in sex-specific protection from CRC.
Collapse
Affiliation(s)
- Jinfei Xu
- Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Salvatore Cortellino
- Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Rossella Tricarico
- Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Wen-Chi Chang
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Gabrielle Scher
- Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Karthik Devarajan
- Department of Biostatistics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Michael Slifker
- Department of Biostatistics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Robert Moore
- Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Maria Rosaria Bassi
- Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Elena Caretti
- Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Margie Clapper
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Harry Cooper
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Alfonso Bellacosa
- Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| |
Collapse
|
149
|
Šebera J, Hattori Y, Sato D, Reha D, Nencka R, Kohno T, Kojima C, Tanaka Y, Sychrovský V. The mechanism of the glycosylase reaction with hOGG1 base-excision repair enzyme: concerted effect of Lys249 and Asp268 during excision of 8-oxoguanine. Nucleic Acids Res 2017; 45:5231-5242. [PMID: 28334993 PMCID: PMC5435939 DOI: 10.1093/nar/gkx157] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/24/2017] [Indexed: 12/14/2022] Open
Abstract
The excision of 8-oxoguanine (oxoG) by the human 8-oxoguanine DNA glycosylase 1 (hOGG1) base-excision repair enzyme was studied by using the QM/MM (M06-2X/6-31G(d,p):OPLS2005) calculation method and nuclear magnetic resonance (NMR) spectroscopy. The calculated glycosylase reaction included excision of the oxoG base, formation of Lys249-ribose enzyme–substrate covalent adduct and formation of a Schiff base. The formation of a Schiff base with ΔG# = 17.7 kcal/mol was the rate-limiting step of the reaction. The excision of the oxoG base with ΔG# = 16.1 kcal/mol proceeded via substitution of the C1΄-N9 N-glycosidic bond with an H-N9 bond where the negative charge on the oxoG base and the positive charge on the ribose were compensated in a concerted manner by NH3+(Lys249) and CO2−(Asp268), respectively. The effect of Asp268 on the oxoG excision was demonstrated with 1H NMR for WT hOGG1 and the hOGG1(D268N) mutant: the excision of oxoG was notably suppressed when Asp268 was mutated to Asn. The loss of the base-excision function was rationalized with QM/MM calculations and Asp268 was confirmed as the electrostatic stabilizer of ribose oxocarbenium through the initial base-excision step of DNA repair. The NMR experiments and QM/MM calculations consistently illustrated the base-excision reaction operated by hOGG1.
Collapse
Affiliation(s)
- Jakub Šebera
- The Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo námestí 2, 166 10 Praha, Czech Republic
| | - Yoshikazu Hattori
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Nishihama-Boji 180, Yamashiro-cho, Tokushima 770 8514, Japan
| | - Daichi Sato
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aobayama, Sendai 980 8578, Japan
| | - David Reha
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Zámek 136, 373 33 Nové Hrady, Czech Republic
| | - Radim Nencka
- The Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo námestí 2, 166 10 Praha, Czech Republic
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute 1-1, Tsukiji 5-chome, Chuo-ku, Tokyo 104 0045, Japan
| | - Chojiro Kojima
- Graduate School of Engineering, Yokohama National University, Tokiwadai 79-5, Hodogaya-ku, Yokohama 240 8501, Japan
| | - Yoshiyuki Tanaka
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Nishihama-Boji 180, Yamashiro-cho, Tokushima 770 8514, Japan.,Graduate School of Pharmaceutical Sciences, Tohoku University, Aobayama, Sendai 980 8578, Japan
| | - Vladimír Sychrovský
- The Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 166 10 Praha, Czech Republic.,Department of Electrotechnology, Electrical Engineering Czech Technical University, Technická 2, 166 27 Praha, Czech Republic
| |
Collapse
|
150
|
Li YL, Wei F, Li YP, Zhang LH, Bai YZ. A case-control study on association of nucleotide excision repair polymorphisms and its interaction with environment factors with the susceptibility to non-melanoma skin cancer. Oncotarget 2017; 8:80994-81000. [PMID: 29113361 PMCID: PMC5655256 DOI: 10.18632/oncotarget.20942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/19/2017] [Indexed: 12/24/2022] Open
Abstract
Aims To investigate the association of several single nucleotide polymorphisms (SNPs) within nucleotide excision repair (NER) gene and additional gene- gene and gene- smoking interaction with non-melanoma skin cancer (NMSC) risk in a Chinese population. Methods A total of 1322 participants (939 males, 383 females) were selected, including 660 NMSC patients and 662 control participants. Generalized multifactor dimensionality reduction (GMDR) was used to screen the best interaction combination among SNPs and smoking. Logistic regression was performed to investigate association between 4 SNPs within NER gene, additional gene- gene and gene- smoking interaction on NMSC risk. Results NMSC risk was significantly higher in carriers with G allele of rs2228527 than those with AA genotype (AG + GG versus AA), adjusted OR (95%CI) =1.76 (1.24-2.37), and higher in carriers with the G allele of rs2228529 than those with AA genotype (AG + GG versus AA), adjusted OR (95%CI) = 1.66 (1.24-2.13). However, we did not find any direct association of the rs4134822 and rs1799793 with NMSC risk after covariates adjustment. GMDR model indicated a significant interaction combination (p=0.0010), including rs2228529 and current smoking. Overall, the cross-validation consistency of this model was 9/ 10, and the testing accuracy was 60.72%. Current smokers with rs2228529- GA or GG genotype have the highest NMSC risk, compared to never- smokers with rs2228529- AA genotype, OR (95%CI) = 2.92 (1.61-4.29). Conclusions We found that the G allele of rs2228527 and the G allele of rs2228529 within NER gene, interaction between rs2228529 and current smoking were all associated with increased NMSC risk.
Collapse
Affiliation(s)
- Yan-Ling Li
- Department of Dermatology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, People's Republic of China
| | - Feng Wei
- Department of Dermatology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, People's Republic of China
| | - Yu-Ping Li
- Department of Dermatology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, People's Republic of China
| | - Li-Hua Zhang
- Department of Dermatology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, People's Republic of China
| | - Yan-Zhi Bai
- Department of Dermatology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, People's Republic of China
| |
Collapse
|