101
|
Kang HT, Hwang ES. 2-Deoxyglucose: An anticancer and antiviral therapeutic, but not any more a low glucose mimetic. Life Sci 2006; 78:1392-9. [PMID: 16111712 DOI: 10.1016/j.lfs.2005.07.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Accepted: 07/12/2005] [Indexed: 11/22/2022]
Abstract
2-Deoxyglucose (2-DG), a non-metabolizable glucose analogue, blocks glycolysis and inhibits protein glycosylation. It has been tested in multiple studies for possible application as an anticancer or antiviral therapeutic. The inhibitory effect of 2-DG on ATP generation made it a good candidate molecule as a calorie restriction mimetic as well. Furthermore, 2-DG has been utilized in numerous studies to simulate a condition of glucose starvation. Because 2-DG disrupts glucose metabolism, protein glycosylation, and ER quality control at the same time, a cellular or pathologic outcome could be easily misinterpreted without clear understanding of 2-DG's effect on each of these aspects. However, the effect of 2-DG on protein glycosylation has rarely been investigated. A recent study suggested that 2-DG causes hyperGlcNAcylation of proteins, while low glucose supply causes hypoGlcNAcylation. In certain aspects of cellular physiology, this difference could be disregarded, but in others, this may possibly cause totally different outcomes.
Collapse
Affiliation(s)
- Hyun Tae Kang
- Department of Life Science, University of Seoul, Dongdaemungu, Jeonnongdong 90, Seoul, Republic of Korea 130-743
| | | |
Collapse
|
102
|
Abstract
Specificity protein 1 (Sp1) and other Sp and Krüppel-like factor (KLF) proteins are members of a family of transcription factors which bind GC/GT-rich promoter elements through three C(2)H(2)-type zinc fingers that are present at their C-terminal domains. Sp1-Sp4 proteins regulate expression of multiple genes in normal tissues and tumours. There is growing evidence that some Sp proteins play a critical role in the growth and metastasis of many tumour types by regulating expression of cell cycle genes and vascular endothelial growth factor. Sp/KLF proteins are also potential targets for cancer chemotherapy.
Collapse
Affiliation(s)
- Stephen Safe
- Institute of Biosciences and Technology, Texas A and M University System Health Science Center, 2121 W. Holcombe Blvd., Houston, TX 77030-3303, USA.
| | | |
Collapse
|
103
|
Hammill D, Jain N, Armstrong S, Mueller CR. The D-domain of Sp3 modulates its protein levels and activation of the p21CIP1/WAF1 promoter. Biochem Biophys Res Commun 2005; 335:377-84. [PMID: 16081043 DOI: 10.1016/j.bbrc.2005.07.084] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Accepted: 07/19/2005] [Indexed: 10/25/2022]
Abstract
A variety of signals result in the transcriptional induction of the p21(CIP1/WAF1) promoter and both Sp1 and the related Sp3 proteins have been implicated in this induction. We have characterized the role of the C-terminal D-domains of both Sp1 and Sp3 proteins in the activation of this promoter in response to butyrate treatment of Hep G2 cells. We have defined a negative regulatory domain present in the C-terminus of Sp3. This domain decreases Sp3 protein levels, and this property can be transferred to Sp1. Changes in Sp3 protein levels may bring about growth arrest through the induction of inhibitors of the cell cycle such as p21(CIP1/WAF1).
Collapse
Affiliation(s)
- Deborah Hammill
- Queen's Cancer Research Institute, Department of Biochemistry and Pathology, Queen's University, Kingston, Ont., Canada
| | | | | | | |
Collapse
|
104
|
Fukue Y, Sumida N, Tanase JI, Ohyama T. A highly distinctive mechanical property found in the majority of human promoters and its transcriptional relevance. Nucleic Acids Res 2005; 33:3821-7. [PMID: 16027106 PMCID: PMC1175459 DOI: 10.1093/nar/gki700] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A recent study revealed that TATA boxes and initiator sequences have a common anomalous mechanical property, i.e. they comprise distinctive flexible and rigid sequences when compared with the other parts of the promoter region. In the present study, using the flexibility parameters from two different models, we calculated the average flexibility profiles of 1004 human promoters that do not contain canonical promoter elements, such as a TATA box, initiator (Inr) sequence, downstream promoter element or a GC box, and those of 382 human promoters that contain the GC box only. Here, we show that they have a common characteristic mechanical property that is strikingly similar to those of the TATA box-containing or Inr-containing promoters. Their most interesting feature is that the TATA- or Inr-corresponding region lies in the several nucleotides around the transcription start site. We have also found that a dinucleotide step from −1 to +1 (transcription start site) has a slight tendency to adopt CA that is known to be flexible. We also demonstrate that certain synthetic DNA fragments designed to mimic the average mechanical property of these 1386 promoters can drive transcription. This distinctive mechanical property may be the hallmark of a promoter.
Collapse
Affiliation(s)
| | | | | | - Takashi Ohyama
- To whom correspondence should be addressed. Tel: +81 78 435 2547; Fax: +81 78 435 2539;
| |
Collapse
|
105
|
Lou Z, O'Reilly S, Liang H, Maher VM, Sleight SD, McCormick JJ. Down-Regulation of Overexpressed Sp1 Protein in Human Fibrosarcoma Cell Lines Inhibits Tumor Formation. Cancer Res 2005. [DOI: 10.1158/0008-5472.1007.65.3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Sp1 is a transcription factor for many genes, including genes involved in tumorigenesis. We found that human fibroblast cells malignantly transformed in culture by a carcinogen or by stable transfection of an oncogene express Sp1 at 8-fold to 18-fold higher levels than their parental cells. These cell lines form fibrosarcomas in athymic mice with a very short latency, and the cells from the tumors express the same high levels of Sp1. Similar high levels of Sp1 were found in the patient-derived fibrosarcoma cell lines tested, and in the tumors formed in athymic mice by these cell lines. To investigate the role of overexpression of Sp1 in malignant transformation of human fibroblasts, we transfected an Sp1 U1snRNA/Ribozyme into two human cell lines, malignantly transformed in culture by a carcinogen or overexpression of an oncogene, and into a patient-derived fibrosarcoma cell line. The level of expression of Sp1 in these transfected cell lines was reduced to near normal. The cells regained the spindle-shaped morphology and exhibited increased apoptosis and decreased expression of several genes linked to cancer, i.e., epithelial growth factor receptor, urokinase plasminogen activator, urokinase plasminogen activator receptor, and vascular endothelial growth factor. When injected into athymic mice, these cell lines with near normal levels of Sp1 failed to form tumors or did so only at a greatly reduced frequency and with a much longer latency. These data indicate that overexpression of Sp1 plays a causal role in malignant transformation of human fibroblasts and suggest that for cancers in which it is overexpressed, Sp1 constitutes a target for therapy.
Collapse
Affiliation(s)
- Zhenjun Lou
- Carcinogenesis Laboratory, Department of Microbiology and Molecular Genetics and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Sandra O'Reilly
- Carcinogenesis Laboratory, Department of Microbiology and Molecular Genetics and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Hongyan Liang
- Carcinogenesis Laboratory, Department of Microbiology and Molecular Genetics and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Veronica M. Maher
- Carcinogenesis Laboratory, Department of Microbiology and Molecular Genetics and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Stuart D. Sleight
- Carcinogenesis Laboratory, Department of Microbiology and Molecular Genetics and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | - J. Justin McCormick
- Carcinogenesis Laboratory, Department of Microbiology and Molecular Genetics and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
106
|
Ray A, Kumar D, Ray P, Ray BK. Transcriptional activity of serum amyloid A-activating factor-1 is regulated by distinct functional modules. J Biol Chem 2004; 279:54637-46. [PMID: 15498774 DOI: 10.1074/jbc.m411830200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Serum amyloid A-activating transcription factor-1 (SAF-1) plays a major role in regulating transcription of several inflammation-responsive genes, including SAA and matrix metalloproteinase-1, that are implicated in the pathogenesis of reactive secondary amyloidosis, atherosclerosis, and arthritis. SAF-1 is a 477-amino acid protein with six zinc fingers. Its activation during inflammatory condition by a phosphorylation event that leads to an altered structure suggested possible structural modification of this protein as a leading cause of higher activity. However, no information is available regarding structural features that might regulate its activity. Here, we have characterized its functional domains, delineating activation and repression modules, DNA binding, and nuclear localization activities. Using GAL4AD chimeras and a DNA-binding assay with proteins prepared from various deletion constructs, the core DNA-binding domain of SAF-1 is mapped between amino acids 282 and 361, which contain second, third, and fourth zinc fingers. Results from several deletion and point mutants using green fluorescent protein reporter show that SAF-1 contains two independent nuclear localization signals; one is composed of a stretch of basic amino acids, and the other is a bipartite signal located within the core DNA-binding domain. SAF-1 contains several negative and positively functioning transactivation modules clustered at the two ends of this protein. Removal of any one of the terminal negative modules renders the SAF-1 protein functionally very active. These findings suggest that the terminal repression modules act in conjunction to regulate the functional activity of this protein.
Collapse
Affiliation(s)
- Alpana Ray
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | |
Collapse
|
107
|
deGraffenried LA, Hopp TA, Valente AJ, Clark RA, Fuqua SAW. Regulation of the estrogen receptor alpha minimal promoter by Sp1, USF-1 and ERalpha. Breast Cancer Res Treat 2004; 85:111-20. [PMID: 15111769 DOI: 10.1023/b:brea.0000025398.93829.78] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The exact molecular mechanisms regulating estrogen receptor alpha (ERalpha) expression in breast tumors are unclear, but studies suggest that they are partly at the level of transcription. We have focused on the transcription factors that regulate the ERalpha minimal promoter, which we have previously shown to reside within the first 245 bp of the 5'-flanking region of the gene. Within this region are several elements essential for full ERalpha promoter transcriptional activity, including a GC box and an imperfect E box. In earlier studies we demonstrated an essential function for the Sp1 family of transcription factors in the regulation of ERalpha expression. We have now identified both USF-1 and ERalpha itself as components of a multi-protein complex of transcription factors that interacts at the ERalpha minimal promoter and is essential for its full transcriptional activity. Electrophoretic mobility shift assays demonstrated that Sp1 and USF-1, but not ERalpha, bind directly to the ERalpha minimal promoter. We showed by GST pull-down assays that ERalpha is able to interact in vitro with USF-1, suggesting, in addition to a possible interaction between ERalpha and Sp1, a mechanism whereby ERalpha is able to interact with the protein complex. Combined exogenous expression of the components of the complex in MCF-7 breast cancer cells resulted in a synergistic effect on transactivation of the ERalpha minimal promoter, suggesting that the importance of the protein complex is in the interactions among the components. Based upon these findings, we propose a possible model for transcription from the ERalpha minimal promoter.
Collapse
Affiliation(s)
- Linda A deGraffenried
- Department of Medicine, The University of Texas Health Science Center, San Antonio, USA
| | | | | | | | | |
Collapse
|
108
|
Kamemura K, Hart GW. Dynamic interplay between O-glycosylation and O-phosphorylation of nucleocytoplasmic proteins: a new paradigm for metabolic control of signal transduction and transcription. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2004; 73:107-36. [PMID: 12882516 DOI: 10.1016/s0079-6603(03)01004-3] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The glycosylation of serine and threonine residues with beta-O-linked N-acetylglucosamine (O-GlcNAc) is an abundant posttranslational modification of nuclear and cytoplasmic proteins in multicellular eukaryotes. This highly dynamic glycosylation/deglycosylation of protein is catalyzed by the nucleocytoplasmic enzymes, UDP-G1cNAc: polypeptide O-beta-N-acetylglucosaminyltransferase (OGT)/O-beta-N-acetylglucosaminidase. OGT is required for embryonic stem cell viability and mouse ontogeny, thus O-GlcNAc is essential for the life of eukaryotes. The gene encoding O-GlcNAcase maps to a locus important to late-onset Alzheimer's disease. All known O-GlcNAc-modified proteins are also phosphoproteins that form reversible multimeric protein complexes. There is both a global and often site-specific reciprocal relationship between O-GlcNAc and O-phosphate in many cellular responses to stimuli. Thus, regulation of the protein-protein interaction(s) and/or protein function by dynamic glycosylation/phosphorylation has been hypothesized. In this chapter, we will review the current status of dynamic glycosylation/phosphorylation of several important regulatory proteins including c-Myc, estrogen receptors, Sp1, endothelial nitric oxide synthase, and beta-catenin. Various aspects of subcellular localization, association with binding partners, activity, and/or turnover of these proteins appear to be regulated by dynamic glycosylation/ phosphorylation in response to cellular signals or stages.
Collapse
Affiliation(s)
- Kazuo Kamemura
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
109
|
Safe S, Kim K. Nuclear receptor-mediated transactivation through interaction with Sp proteins. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2004; 77:1-36. [PMID: 15196889 DOI: 10.1016/s0079-6603(04)77001-4] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843-4466, USA
| | | |
Collapse
|
110
|
Shibanuma M, Kim-Kaneyama JR, Sato S, Nose K. A LIM protein, Hic-5, functions as a potential coactivator for Sp1. J Cell Biochem 2004; 91:633-45. [PMID: 14755691 DOI: 10.1002/jcb.10754] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Hic-5 is a LIM protein with striking similarity to paxillin, and shuttles between focal adhesions and the nucleus. Our previous study suggested that Hic-5 participates in the transcriptional control of several genes such as the c-fos and p21 genes. In the present study, we examined the function of Hic-5 in the nucleus using the transcriptional promoter region of the p21 gene. When localized to the nucleus, Hic-5 was found to transactivate the p21 promoter through two of five Sp1 sites in the region proximal to the TATA box. The Hic-5 effect was mediated by a transactivation domain of Sp1 and functional interaction with p300 through the LIM4 domain. Hic-5 was also shown to interact functionally and physically with Smad3 through the LIM domains and to potentiate p21 promoter activity together with Smad3 and Sp1. These properties were confirmed in an artificial system using GAL4-fusion protein. Thus, Hic-5 was suggested to have a potential function as a cofactor in the transcriptional complex that contains Sp1, playing a role in gene transcription in the nucleus as well as in integrin signaling at focal adhesion sites.
Collapse
Affiliation(s)
- Motoko Shibanuma
- Department of Microbiology, Showa University School of Pharmaceutical Sciences, Hatanodai 1-5-8, Shinagawa-ku, Tokyo, Japan
| | | | | | | |
Collapse
|
111
|
Kang HT, Ju JW, Cho JW, Hwang ES. Down-regulation of Sp1 Activity through Modulation of O-Glycosylation by Treatment with a Low Glucose Mimetic, 2-Deoxyglucose. J Biol Chem 2003; 278:51223-31. [PMID: 14532290 DOI: 10.1074/jbc.m307332200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
2-Deoxyglucose (2-DG), a nonmetabolizable glucose analogue, blocks glycolysis at the phosphohexose isomerase step and has been frequently used as a glucose starvation mimetic in studies of a wide variety of physiological dysfuctions. However, the effect of 2-DG on protein glycosylation and related signal pathways has not been investigated in depth. In HeLa, an HPV18-positive cervical carcinoma line, 2-DG treatment down-regulates human papillomavirus early gene transcription. This down-regulation was also achieved by low glucose supply or hypoxia, suggesting that this is a response commonly modulated by cellular glucose or energy level. We investigated how 2-DG and low glucose affect transcriptional activity. Human papillomavirus gene transcription was only marginally affected by the inhibition of ATP synthesis or the supplementation of pyruvate to 2-DG-treated cells, suggesting that poor ATP generation is involved only to a limited extent. 2-DG treatment also inhibited activation of p21 WAF1 promoter, which is controlled by p53 and/or Sp1. In a reporter assay using p21 WAF1 promoter constructs, 2-DG exerted a strong inhibitory effect on Sp1 activity. DNA binding activity of Sp1 in 2-DG-treated HeLa cells was intact, whereas it was severely impaired in cells incubated in a low glucose medium or in hypoxic condition. Unexpectedly, Sp1 was heavily modified with GlcNAc in 2-DG-treated cells, which is at least partially attributed to the inhibitory effect of 2-DG on N-acetyl-beta-D-glucosaminidase activity. Our results suggest that 2-DG, like low glucose or hypoxic condition, down-regulates Sp1 activity, but through hyper-GlcNAcylation instead of hypo-GlcNAcylation.
Collapse
Affiliation(s)
- Hyun Tae Kang
- Department of Life Science, University of Seoul, Seoul 130-743, Korea
| | | | | | | |
Collapse
|
112
|
Yedavalli VSRK, Benkirane M, Jeang KT. Tat and trans-activation-responsive (TAR) RNA-independent induction of HIV-1 long terminal repeat by human and murine cyclin T1 requires Sp1. J Biol Chem 2003; 278:6404-10. [PMID: 12458222 DOI: 10.1074/jbc.m209162200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
P-TEFb, cyclin T1 + CDK9, is needed for the expression of cellular promoters and primate lentiviral long terminal repeats (LTRs). Curiously, cellular and lentiviral promoters differ dramatically in the requirements for positive transcriptional elongation factor (P-TEF) b activity. Lentiviral LTRs, but not cellular promoters, need an RNA-associated P-TEFb/Tat/TAR (trans-activation-responsive) RNA ternary complex. Ternary complex defective murine cycT1 is apparently inactive for lentiviral transcription. Why P-TEFb requires Tat/TAR for LTRs but not for cellular promoters remains unknown. To explore this question, we sought to determine whether DNA targeting of murine and human cyclin T1 can reconstitute a Tat/TAR-independent activity to the HIV-1 LTR. In the absence of Tat and TAR, we found that both HuCycT1 and MuCycT1 can robustly activate the HIV-1 LTR. We further showed that Sp1 is necessary and sufficient for this DNA-targeted activity. Thus, like cellular promoters, HIV-1 LTR can use P-TEFb function without a Tat/TAR RNA complex. This activity could explain recent findings of robust HIV-1 replication in rat cells that cannot form a P-TEFb/Tat/TAR moiety.
Collapse
Affiliation(s)
- Venkat S R K Yedavalli
- Molecular Virology Section, Laboratory of Molecular Microbiology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-0460, USA
| | | | | |
Collapse
|
113
|
Abstract
The initiation of transcription is accomplished via interactions of many different proteins with common and gene-specific regulatory motifs. Clearly, sequence-specific transcription factors play a crucial role in the specificity of transcription initiation. A group of sequence-specific DNA-binding proteins, related to the transcription factor Sp1, has been implicated in the regulation of many different genes, since binding sites for these transcription factors (GC/GT boxes) are a recurrent motif in regulatory sequences such as promoters, enhancers and CpG islands of these genes. The simultaneous occurrence of several homologous GC/GT box-binding factors precludes a straightforward deduction of their role in transcriptional regulation. In this review, we focus on the connection between functional specificity and biochemical properties including glycosylation, phosphorylation and acetylation of Sp1-related factors.
Collapse
Affiliation(s)
- Peter Bouwman
- Hubrecht Laboratory/NIOB, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | | |
Collapse
|
114
|
Blais A, Monté D, Pouliot F, Labrie C. Regulation of the human cyclin-dependent kinase inhibitor p18INK4c by the transcription factors E2F1 and Sp1. J Biol Chem 2002; 277:31679-93. [PMID: 12077144 DOI: 10.1074/jbc.m204554200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The p18(INK4c) cyclin-dependent kinase inhibitor is an important regulator of cell cycle progression and cellular differentiation. We and others found that overexpressed E2F proteins up-regulate p18 expression. To better understand this phenomenon, we performed a functional analysis of the human p18 promoter. Deletion studies revealed that the E2F-responsive elements of the promoter are located within 131 bp upstream of the transcription start site. This region contains putative Sp1- and E2F-binding sites. Mutational inactivation of these elements revealed that the Sp1 sites were important for the basal activity of the promoter but could also mediate the effects of E2F1 on the p18 promoter. Moreover, we found that E2F1 and Sp1 can synergistically enhance the activity of the proximal p18 promoter. Gel shift analyses using p18 promoter-derived probes led to the identification of several multiprotein complexes that were found to contain different combinations of E2F proteins and/or Sp1. Recombinant E2F1 was also capable of binding to the E2F-binding sites. Chromatin immunoprecipitation experiments demonstrated that E2F1 and E2F4 associate with the p18 promoter in unperturbed cells. Based on these findings, we conclude that E2F proteins and Sp1 play an important role in the control of p18 expression.
Collapse
Affiliation(s)
- Alexandre Blais
- Molecular Endocrinology and Oncology Research Center, Centre Hospitalier de l'Université Laval Research Center, Centre Hospitalier Universitaire de Quebec, Sainte-Foy, G1V 4G2 Quebec, Canada
| | | | | | | |
Collapse
|
115
|
Greaves DR, Gordon S. Macrophage-specific gene expression: current paradigms and future challenges. Int J Hematol 2002; 76:6-15. [PMID: 12138897 DOI: 10.1007/bf02982713] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cells of the mononuclear phagocyte lineage include macrophages, microglia, osteoclasts, and myeloid dendritic cells. These cell types are all derived from blood monocytes, which are the product of hematopoietic stem cell differentiation. In this review we use specific examples of macrophage-expressed genes to illustrate potential regulatory strategies for directing macrophage-specific gene expression. The examples we have chosen-the human c-fes gene, the murine spi-1 (PU.1) gene, the human RANTES promoter, and the human CD68 gene-illustrate different aspects of constitutive and inducible gene expression in macrophages. One important challenge for future work in this field will be to identify the molecular events that dictate lineage decisions during the differentiation of mononuclear phagocytes from hematopoietic progenitor cells. Another important goal will be to understand how groups of macrophage genes are coordinately expressed in response to physiological, immunological, and inflammatory stimuli. A better understanding of macrophage gene expression may find application in gene therapy, genetic vaccination, and the development of new antiinflammatory drugs.
Collapse
Affiliation(s)
- David R Greaves
- Sir William Dunn School of Pathology, University of Oxford, United Kingdom.
| | | |
Collapse
|
116
|
Gordon-Shaag A, Ben-Nun-Shaul O, Roitman V, Yosef Y, Oppenheim A. Cellular transcription factor Sp1 recruits simian virus 40 capsid proteins to the viral packaging signal, ses. J Virol 2002; 76:5915-24. [PMID: 12021324 PMCID: PMC136189 DOI: 10.1128/jvi.76.12.5915-5924.2002] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Simian virus 40 (SV40) capsid assembly occurs in the nucleus. All three capsid proteins bind DNA nonspecifically, raising the dilemma of how they attain specificity to the SV40 minichromosome in the presence of a large excess of genomic DNA. The SV40 packaging signal, ses, which is required for assembly, is composed of multiple DNA elements that bind transcription factor Sp1. Our previous studies showed that Sp1 participates in SV40 assembly and that it cooperates in DNA binding with VP2/3. We hypothesized that Sp1 recruits the capsid proteins to the viral minichromosome, conferring upon them specific DNA recognition. Here, we have tested the hypothesis. Computer analysis showed that the combination of six tandem GC boxes at ses is not found at cellular promoters and therefore is unique to SV40. Cooperativity in DNA binding between Sp1 and VP2/3 was not abolished at even a 1,000-fold excess of cellular DNA, providing strong support for the recruitment hypothesis. Sp1 also binds VP1 and cooperates with VP1 in DNA binding. VP1 pentamers (VP1(5)) avidly interact with VP2/3, utilizing the same VP2/3 domain as described for polyomavirus. We conclude that VP1(5)-VP2/3 building blocks are recruited by Sp1 to ses, where they form the nucleation center for capsid assembly. By this mechanism the virus ensures that capsid formation is initiated at a single site around its minichromosome. Sp1 enhances the formation of SV40 pseudovirions in vitro, providing additional support for the model. Analyses of Sp1 and VP3 deletion mutants showed that Sp1 and VP2/3 bind one another and cooperate in DNA binding through their DNA-binding domains, with additional contacts outside these domains. VP1 contacts Sp1 at residues outside the Sp1 DNA-binding domain. These and additional data allowed us to propose a molecular model for the VP1(5)-VP2/3-DNA-Sp1 complex.
Collapse
Affiliation(s)
- Ariela Gordon-Shaag
- Department of Hematology, The Hebrew University-Hadassah Medical School and Hadassah University Hospital, Jerusalem 91120, Israel
| | | | | | | | | |
Collapse
|
117
|
Taniura S, Kamitani H, Watanabe T, Eling TE. Transcriptional regulation of cyclooxygenase-1 by histone deacetylase inhibitors in normal human astrocyte cells. J Biol Chem 2002; 277:16823-30. [PMID: 11877441 DOI: 10.1074/jbc.m200527200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
While cyclooxygenase (COX)-2 is a highly inducible gene, COX-1 is widely known as a noninducible gene and is constitutively expressed in a variety of cell lines and human tissues. Recently, several reports have indicated that COX-1 is also regulated at the transcriptional level by various stimuli. We present evidence that histone deacetylase (HDAC) inhibitors induce COX-1 transcription and translation in normal human astrocyte (NHA) cells and glioma cell lines. HDAC inhibitors increased acetylated histone H4 protein expression in NHA cells. The levels of COX-1 mRNA and protein were maximal at 24 and 48 h, respectively, after treatment with the specific HDAC inhibitor, trichostatin A (TSA). In addition, TSA-treated NHA cells produced prostaglandin E(2) as determined by enzyme-linked immunosorbent assay after incubation with 10 microm exogenous arachidonic acid, indicating that the induced COX-1 is functionally active. In addition to NHA cells, this up-regulation of COX-1 after treatment with HDAC inhibitors was observed in 5 different glioma cell lines. The nucleotide sequence of the inducible COX-1 cDNA was confirmed identical to human COX-1 that was previously reported. HDAC inhibitors stimulated COX-1 promoter activity as measured by luciferase reporter assays, suggesting that the induction of COX-1 is regulated at the transcriptional level. Furthermore, mutation analysis of the COX-1 promoter suggests that TSA-responsive element exists in the proximal Sp1-binding site at +25 to +31. In conclusion, COX-1 is an inducible gene in glial-derived cells including immortalized cells, and appears to be transcriptionally regulated by a unique mechanism associated with histone acetylation.
Collapse
Affiliation(s)
- Seijiro Taniura
- Laboratory of Molecular Carcinogenesis, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | |
Collapse
|
118
|
Grinstein E, Jundt F, Weinert I, Wernet P, Royer HD. Sp1 as G1 cell cycle phase specific transcription factor in epithelial cells. Oncogene 2002; 21:1485-92. [PMID: 11896576 DOI: 10.1038/sj.onc.1205211] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2001] [Revised: 11/19/2001] [Accepted: 11/28/2001] [Indexed: 11/08/2022]
Abstract
Sp1 binding sites have been identified in enhancer/promoter regions of several growth and cell cycle regulated genes, and it has been shown that Sp1 is increasingly phosphorylated in G1 phase of the cell cycle. Interactions of Sp1 with proteins involved in control of cell cycle and tumor formation have been reported. Here we show that expression of Sp1 protein predominates in the G1 phase of the cell cycle in epithelial cells. This is achieved by proteasome-dependent degradation. Inhibition of endogeneous Sp1 activity by a dominant-negative Sp1 mutant was associated with a cell cycle arrest in G1 phase, a strongly reduced expression of cyclin D1, the EGF-receptor and increased levels of p27Kip1. We have thus identified Sp1 as an important regulator of the cell cycle in G1 phase.
Collapse
Affiliation(s)
- Edgar Grinstein
- Institut für Transplantationsdiagnostik und Zelltherapeutika, Heinrich Heine Universität Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany.
| | | | | | | | | |
Collapse
|
119
|
Abstract
Diabetes-specific microvascular disease is a leading cause of blindness, renal failure and nerve damage, and diabetes-accelerated atherosclerosis leads to increased risk of myocardial infarction, stroke and limb amputation. Four main molecular mechanisms have been implicated in glucose-mediated vascular damage. All seem to reflect a single hyperglycaemia-induced process of overproduction of superoxide by the mitochondrial electron-transport chain. This integrating paradigm provides a new conceptual framework for future research and drug discovery.
Collapse
Affiliation(s)
- M Brownlee
- Department of Medicine, Diabetes Research and Training Center, Albert Einstein College of Medicine, Bronx, New York, 10461, USA.
| |
Collapse
|
120
|
Yamashita R, Matsubara K, Kato K. A comprehensive collection of mouse zinc finger motifs compiled by molecular indexing. Gene 2001; 274:101-10. [PMID: 11675002 DOI: 10.1016/s0378-1119(01)00547-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The C(2)H(2) zinc finger motif found in many transcription factors is thought to be for nucleic acid binding and/or dimerization. Nearly 1% of eukaryote genes are estimated to encode this motif. We investigated the gene family encoding this motif in the Mus musculus mRNA by molecular indexing, a technique used to select a subpopulation of cDNA by ligation of adapters to cDNA fragments digested by a class IIS restriction enzyme(s). In place of oligo-dT primers in the original method, a polymerase chain reaction primer designed based on the conserved sequence of the C(2)H(2) zinc finger protein stranded cDNA was made from various mouse tissue mRNAs, digested with FokI and BsmAI, and joined with adapters. Amplification of the cDNA with an adapter primer and zinc finger-specific primer yielded products enriched in zinc finger protein genes. Fragments were separated by subsequent denaturing polyacrylamide gel electrophoresis, and characterized by DNA sequencing. Consequently, 259 C(2)H(2) zinc finger motif sequences were obtained, among which 166 were novel. Combined with the reported sequences, these mouse motif sequences were compared with those of other species such as Saccharomyces cerevisiae and Caenorhabditis elegans. Some of the amino acids in the motif sequence showed strong bias among species. Most of the novel sequences were supposed to be DNA-binding according to the surface potential of predicted tertiary structures.
Collapse
Affiliation(s)
- R Yamashita
- Taisho Laboratory of Functional Genomics, Nara Institutes of Science and Technology, 8916-5 Takayama-cho, Ikoma-shi, Nara 630-0101, Japan
| | | | | |
Collapse
|
121
|
Lee I, Kim MK, Choi EY, Mehl A, Jung KC, Gil MC, Rowe M, Park SH. CD99 expression is positively regulated by Sp1 and is negatively regulated by Epstein-Barr virus latent membrane protein 1 through nuclear factor-kappaB. Blood 2001; 97:3596-604. [PMID: 11369656 DOI: 10.1182/blood.v97.11.3596] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV)-encoded latent membrane protein-1 (LMP1) is highly expressed in Hodgkin and Reed-Sternberg (H-RS) cells from patients with EBV-associated Hodgkin disease. It was previously demonstrated that CD99 can be negatively regulated by LMP1 at the transcriptional level, and the decreased expression of CD99 in a B lymphocyte cell line generates H-RS-like cells. In this study, detailed dissection of the CD99 promoter region was performed to search regulatory factor(s) involved in the expression of the gene. Using various mutant constructs containing deletions in the promoter region, it was revealed that the maximal promoter activity was retained on 5'-deletion to the position -137 from the transcriptional initiation site. Despite the presence of multiple putative Sp1-binding sites in the promoter region, the site located at -95 contributes heavily as a positive cis-acting element to its basal promoter activity. However, on examination of the involvement of the positive-acting Sp1-binding site of the promoter for the repressive activity of LMP1, it appeared to be dispensable. Instead, the repressive effect was mapped to the nuclear factor (NF)-kappaB activation domains in the cytoplasmic carboxyl terminus of LMP1 despite the absence of the NF-kappaB consensus sequences in the CD99 promoter region. Furthermore, the decreased CD99 promoter activity by LMP1 was markedly restored when NF-kappaB activity was inhibited. Taken together, these data suggest that Sp1 activates, whereas LMP1 represses, transcription from the CD99 promoter through the NF-kappaB signaling pathway, and they might aid in the understanding of the molecular mechanisms of viral pathogenesis in EBV-positive Hodgkin disease. (Blood. 2001;97:3596-3604)
Collapse
Affiliation(s)
- I Lee
- Department of Pathology, Seoul National University College of Medicine, 28 Yongon-dong Chongno-gu, Seoul 110-799, Korea
| | | | | | | | | | | | | | | |
Collapse
|
122
|
Noé V, Alemany C, Nicolás M, Ciudad CJ. Sp1 involvement in the 4beta-phorbol 12-myristate 13-acetate (TPA)-mediated increase in resistance to methotrexate in Chinese hamster ovary cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:3163-73. [PMID: 11389717 DOI: 10.1046/j.1432-1327.2001.02198.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
4beta-Phorbol 12-myristate 13-acetate (TPA) increases the number of colonies resistant to methotrexate (MTX), mainly by amplification of the dihydrofolate reductase (dhfr) locus. We showed previously that inhibition of protein kinase C (PKC) prevents this resistance. Here, we studied the molecular changes involved in the development of TPA-mediated MTX resistance in Chinese hamster ovary (CHO) cells. TPA incubation increased the expression and activity of DHFR. Because Sp1 controls the dhfr promoter, we determined the effect of TPA on the expression of Sp1 and its binding to DNA. TPA incubation increased Sp1 binding and the levels of Sp1 protein. The latter effect was due to an increase in Sp1 mRNA. Dephosphorylation of nuclear extracts from control or TPA-treated cells reduced the binding of Sp1. Stable transfectants of PKCalpha showed increased Sp1 binding, and when treated with MTX, developed a greater number of resistant colonies than control cells. Seventy-five percent of the isolated colonies showed increased copy number for the dhfr gene. Transient expression of PKCalpha increased DHFR activity. Over-expression of Sp1 increased resistance to MTX, and inhibition of Sp1 binding by mithramycin decreased this resistance. We conclude that one mechanism by which TPA enhances MTX resistance, mainly by gene amplification, is through an increase in Sp1 expression which leads to DHFR activation.
Collapse
Affiliation(s)
- V Noé
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona, Spain
| | | | | | | |
Collapse
|
123
|
Yang X, Su K, Roos MD, Chang Q, Paterson AJ, Kudlow JE. O-linkage of N-acetylglucosamine to Sp1 activation domain inhibits its transcriptional capability. Proc Natl Acad Sci U S A 2001; 98:6611-6. [PMID: 11371615 PMCID: PMC34401 DOI: 10.1073/pnas.111099998] [Citation(s) in RCA: 226] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The posttranslational modification of eukaryotic intracellular proteins by O-linked N-acetylglucosamine (O-GlcNAc) monosaccharides is essential for cell viability, yet its precise functional roles are largely unknown. O-GlcNAc transferase utilizes UDP-GlcNAc, the end product of hexosamine biosynthesis, to catalyze this modification. The availability of UDP-GlcNAc correlates with glycosylation levels of intracellular proteins as well as with transcriptional levels of some genes. Meanwhile, transcription factors and RNA polymerase II can be modified by O-GlcNAc. A linkage between transcription factor O-GlcNAcylation and transcriptional regulation therefore has been postulated. Here, we show that O-GlcNAcylation of a chimeric transcriptional activator containing the second activation domain of Sp1 decreases its transcriptional activity both in an in vitro transcription system and in living cells, which is in concert with our observation that O-GlcNAcylation of Sp1 activation domain blocks its in vitro and in vivo interactions with other Sp1 molecules and TATA-binding protein-associated factor II 110. Furthermore, overexpression of O-GlcNAc transferase specifically inhibits transcriptional activation by native Sp1 in cells. Thus, our studies provide direct evidence that O-GlcNAcylation of transcription factors is involved in transcriptional regulation.
Collapse
Affiliation(s)
- X Yang
- Departments of Cell Biology and Medicine, Division of Endocrinology and Metabolism, University of Alabama at Birmingham, Birmingham AL 35294, USA
| | | | | | | | | | | |
Collapse
|
124
|
Konrad RJ, Mikolaenko I, Tolar JF, Liu K, Kudlow JE. The potential mechanism of the diabetogenic action of streptozotocin: inhibition of pancreatic beta-cell O-GlcNAc-selective N-acetyl-beta-D-glucosaminidase. Biochem J 2001; 356:31-41. [PMID: 11336633 PMCID: PMC1221809 DOI: 10.1042/0264-6021:3560031] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Streptozotocin (STZ), an analogue of GlcNAc, inhibits purified rat spleen O-GlcNAc-selective N-acetyl-beta-D-glucosaminidase (O-GlcNAcase), the enzyme that removes O-GlcNAc from protein. We have shown previously that STZ increases pancreatic islet O-linked protein glycosylation. In light of these data, we investigated the possibility further that STZ causes beta-cell death by inhibiting O-GlcNAcase. In isolated islets, the time course and dose curve of STZ-induced O-glycosylation correlated with beta-cell toxicity. STZ inhibition of rat islet O-GlcNAcase activity also paralleled that of its beta-cell toxicity, with significant inhibition occurring at a concentration of 1 mM. In contrast, STZ inhibition of rat brain O-GlcNAcase and beta-TC3 insulinoma cell O-GlcNAcase was significantly right-shifted compared with islets, with STZ only significantly inhibiting activity at a concentration of 5 mM, the same concentration required for beta-TC3 cell toxicity. In comparison, N-methyl-N-nitrosourea, the nitric oxide-donating portion of STZ, did not cause increased islet O-glycosylation, beta-cell toxicity or inhibition of beta-cell O-GlcNAcase. Enhanced STZ sensitivity of islet O-GlcNAcase compared with O-GlcNAcase from other tissues or an insulinoma cell line suggests why actual islet beta-cells are particularly sensitive to STZ. Confirming this idea, STZ-induced islet beta-cell toxicity was completely blocked by GlcNAc, which also prevented STZ-induced O-GlcNAcase inhibition, but was not even partially blocked by glucose, glucosamine or GalNAc. Together, these data demonstrate that STZ's inhibition of beta-cell O-GlcNAcase is the mechanism that accounts for its diabetogenic toxicity.
Collapse
Affiliation(s)
- R J Konrad
- Department of Pathology, University of Alabama at Birmingham, P230G West Pavilion, 619 South 19th Street, Birmingham, AL 35233-7331, USA.
| | | | | | | | | |
Collapse
|
125
|
Ma W, Lim W, Gee K, Aucoin S, Nandan D, Kozlowski M, Diaz-Mitoma F, Kumar A. The p38 mitogen-activated kinase pathway regulates the human interleukin-10 promoter via the activation of Sp1 transcription factor in lipopolysaccharide-stimulated human macrophages. J Biol Chem 2001; 276:13664-74. [PMID: 11278848 DOI: 10.1074/jbc.m011157200] [Citation(s) in RCA: 267] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Interleukin-10 (IL-10), a pleiotropic cytokine that inhibits inflammatory and cell-mediated immune responses, is produced by a wide variety of cell types including T and B cells and monocytes/macrophages. Regulation of pro- and anti-inflammatory cytokines has been suggested to involve distinct signaling pathways. In this study, we investigated the regulation of the human IL-10 (hIL-10) promoter in the human monocytic cell line THP-1 following activation with lipopolysaccharide (LPS). Analysis of hIL-10 promoter sequences revealed that DNA sequences located between base pairs -652 and -571 are necessary for IL-10 transcription. A computer analysis of the promoter sequence between base pairs -652 and -571 revealed the existence of consensus sequences for Sp1, PEA1, YY1, and Epstein-Barr virus-specific nuclear antigen-2 (EBNA-2)-like transcription factors. THP-1 cells transfected with a plasmid containing mutant Sp1 abrogated the promoter activity, whereas plasmids containing the sequences for PEA1, YY1, and EBNA-2-like transcription factors did not influence hIL-10 promoter activity. To understand the events upstream of Sp1 activation, we investigated the role of p38 and extracellular signal-regulated kinase mitogen-activated protein kinases by using their specific inhibitors. SB202190 and SB203580, the p38-specific inhibitors, inhibited LPS-induced IL-10 production. In contrast, PD98059, a specific inhibitor of extracellular signal-regulated kinase kinases, failed to modulate IL-10 production. Furthermore, SB203580 inhibited LPS-induced activation of Sp1, as well as the promoter activity in cells transfected with a plasmid containing the Sp1 consensus sequence. These results suggest that p38 mitogen-activated protein kinase regulates LPS-induced activation of Sp1, which in turn regulates transcription of the hIL-10 gene.
Collapse
Affiliation(s)
- W Ma
- Department of Pediatrics, University of Ottawa, Ottawa, Ontario K1H 8L1, Canada
| | | | | | | | | | | | | | | |
Collapse
|
126
|
Takahara T, Kanazu SI, Yanagisawa S, Akanuma H. Heterogeneous Sp1 mRNAs in human HepG2 cells include a product of homotypic trans-splicing. J Biol Chem 2000; 275:38067-72. [PMID: 10973950 DOI: 10.1074/jbc.m002010200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sp1 is one of the well documented transcription factors, but the whole structure of human Sp1 has not been determined yet. In the present study, we isolated several cDNAs representing two forms of human Sp1 mRNA with different 5'-terminal structures in HepG2 cells. Isolation of a genomic clone established that one of the cDNAs represents the mRNA having consecutive alignment of exons, which allowed deducing the complete amino acid sequence for human Sp1. Another cDNA clone had a surprising structure that possessed an alignment of exons 3-2-3. Both reverse transcriptase-polymerase chain reaction and RNase protection assays confirmed accumulation of the two forms of Sp1 mRNA in HepG2 cells. Because Southern blot analysis suggested that exon 3 is of a single copy in the genome, the cDNA clone having the duplicated sequences for exon 3 appeared to reflect the trans-splicing between pre-mRNAs of human Sp1.
Collapse
Affiliation(s)
- T Takahara
- Department of Life Sciences (Chemistry), Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
| | | | | | | |
Collapse
|
127
|
Du XL, Edelstein D, Rossetti L, Fantus IG, Goldberg H, Ziyadeh F, Wu J, Brownlee M. Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. Proc Natl Acad Sci U S A 2000; 97:12222-6. [PMID: 11050244 PMCID: PMC17322 DOI: 10.1073/pnas.97.22.12222] [Citation(s) in RCA: 741] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The hexosamine pathway has been implicated in the pathogenesis of diabetic complications. We determined first that hyperglycemia induced a decrease in glyceraldehyde-3-phosphate dehydrogenase activity in bovine aortic endothelial cells via increased production of mitochondrial superoxide and a concomitant 2.4-fold increase in hexosamine pathway activity. Both decreased glyceraldehyde-3-phosphate dehydrogenase activity and increased hexosamine pathway activity were prevented completely by an inhibitor of electron transport complex II (thenoyltrifluoroacetone), an uncoupler of oxidative phosphorylation (carbonyl cyanide m-chlorophenylhydrazone), a superoxide dismutase mimetic [manganese (III) tetrakis(4-benzoic acid) porphyrin], overexpression of either uncoupling protein 1 or manganese superoxide dismutase, and azaserine, an inhibitor of the rate-limiting enzyme in the hexosamine pathway (glutamine:fructose-6-phosphate amidotransferase). Immunoprecipitation of Sp1 followed by Western blotting with antibodies to O-linked GlcNAc, phosphoserine, and phosphothreonine showed that hyperglycemia increased GlcNAc by 1.7-fold, decreased phosphoserine by 80%, and decreased phosphothreonine by 70%. The same inhibitors prevented all these changes. Hyperglycemia increased expression from a transforming growth factor-beta(1) promoter luciferase reporter by 2-fold and increased expression from a (-740 to +44) plasminogen activator inhibitor-1 promoter luciferase reporter gene by nearly 3-fold. Inhibition of mitochondrial superoxide production or the glucosamine pathway prevented all these changes. Hyperglycemia increased expression from an 85-bp truncated plasminogen activator inhibitor-1 (PAI-1) promoter luciferase reporter containing two Sp1 sites in a similar fashion (3.8-fold). In contrast, hyperglycemia had no effect when the two Sp1 sites were mutated. Thus, hyperglycemia-induced mitochondrial superoxide overproduction increases hexosamine synthesis and O-glycosylation of Sp1, which activates expression of genes that contribute to the pathogenesis of diabetic complications.
Collapse
Affiliation(s)
- X L Du
- Albert Einstein College of Medicine, Diabetes Research Center, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|
128
|
Abstract
The question of long-range allosteric transitions of DNA secondary structure and their possible involvement in transcriptional activation is discussed in the light of new results. A variety of recent evidence strongly supports a fluctuating long-range description of DNA secondary structure. Balanced equilibria between two or more different secondary structures, and the occurrence of very large domain sizes, have been documented in several instances. Long-range allosteric effects stemming from changes in sequence or secondary structure over a small region of the DNA have been observed to extend over distances up to hundreds of base pairs in some cases. The discovery that coherent bending strain beyond a threshold level in small (N < or = 250 base pairs (bp)] circular DNAs significantly alters the DNA secondary structure has important implications, especially for transcriptional activators that either bend the DNA directly or are involved in the formation of DNA loops of sufficiently small size (N < or = 250 bp). Whether the RNA polymerase is activated primarily via protein: protein contacts, as is widely believed, or instead via a bend-induced allosteric transition of the DNA in such a small loop, is now an open question. Binding of the transcriptional activator Sp1 to linear DNA induces a remarkably long-range change in its secondary structure, and catabolite activator protein binding to a supercoiled DNA behaves similarly, though possibly for different reasons. Compelling evidence for a bend-induced long-range structural transmission effect of the transcriptional activator integration host factor on RNA polymerase activity was recently reported. These results may augur a new paradigm in which allosteric transitions of duplex DNA, as well as of the proteins, are involved in the regulation of transcription.
Collapse
Affiliation(s)
- J M Schurr
- Department of Chemistry, University of Washington, Seattle 98195-1700, USA
| | | | | | | |
Collapse
|
129
|
Itoh H, Yamauchi M, Kataoka H, Hamasuna R, Kitamura N, Koono M. Genomic structure and chromosomal localization of the human hepatocyte growth factor activator inhibitor type 1 and 2 genes. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:3351-9. [PMID: 10824123 DOI: 10.1046/j.1432-1327.2000.01368.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hepatocyte growth factor activator inhibitor type 1 (HAI-1) and type 2 (HAI-2) are recently discovered Kunitz-type serine protease inhibitors which can be purified and cloned from human stomach cancer cell line MKN45 as specific inhibitors against hepatocyte growth factor activator (HGFA). HAI-2 was identical with the protein originally reported as placental bikunin. Both proteins contain two Kunitz inhibitor domains (KDs), of which the first domain (KD1) is mainly responsible for the inhibitory activity against HGFA, and are expressed ubiquitously in various tissues. In this study, we cloned the genes coding for these two structurally similar proteins by screening of human genomic bacterial artificial chromosome (BAC) library and their genomic structures were compared. HAI-1 and -2 genes consist of 11 and 8 exons spanning 12 kbp and 12.5 kbp, respectively. Three exons were inserted between KD1 and KD2 of each gene, of which the middle one was the low-density lipoprotein (LDL) receptor-like domain (HAI-1) and the testis specific exon (HAI-2). Apparently homologous regions between HAI-1 and -2 were not found in 5'-flanking region and neither TATA nor CAAT box was present. The genes were mapped to chromosome 15q15 (HAI-1) and 19q13.11 (HAI-2). These results suggested that although HAI-1 and -2 genes might be derived from same ancestor gene, they acquired distinctive in vivo roles during their evolution.
Collapse
Affiliation(s)
- H Itoh
- Second Department of Pathology, Miyazaki Medical College, Miyazaki, Japan.
| | | | | | | | | | | |
Collapse
|
130
|
Wagner A, Doerks A, Aboud M, Alonso A, Tokino T, Flügel RM, Löchelt M. Induction of cellular genes is mediated by the Bel1 transactivator in foamy virus-infected human cells. J Virol 2000; 74:4441-7. [PMID: 10775579 PMCID: PMC111964 DOI: 10.1128/jvi.74.10.4441-4447.2000] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To gain insight into human foamy virus (HFV; also called spumaretrovirus)-induced alterations of cellular genes, the expression profiles of defined genes in HFV-infected primary human cells were analyzed by cDNA array assays. Several distinct cellular genes activated by HFV infection were identified; the identities of the cellular genes were confirmed by RNA blot analyses. Compared with mock-infected controls, the concentrations of cellular Kip2, Egr-1, COUP-TF1, insulin-like growth factor II (IGF-II), and EphB3 mRNAs were significantly increased in HFV-infected cells and showed a gene-specific and time-dependent induction. Immunoblot analyses with antibodies against some of the cellular gene products revealed increased levels of the corresponding proteins. To investigate mechanisms of HFV-induced alterations in cellular gene expression, the capacity of known HFV genes to increase expression of defined cellular genes was analyzed by transient expression experiments. Plasmids that encode the HFV Bel1 transcriptional transactivator were necessary and sufficient to strongly increase expression of p57Kip2, IGF-II, and EphB3 genes in 293T cells. Potential mechanisms and consequences of activation of cellular genes during HFV infection and Bel1 transactivation of the Kip2 gene are discussed.
Collapse
Affiliation(s)
- A Wagner
- Abteilung Retrovirale Genexpression, Forschungsschwerpunkt Angewandte Tumorvirologie, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
131
|
|
132
|
Biggs JR, Kraft AS. The role of the Smad3 protein in phorbol ester-induced promoter expression. J Biol Chem 1999; 274:36987-94. [PMID: 10601254 DOI: 10.1074/jbc.274.52.36987] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Sp1 transcription factor plays an important role in mediating the p53-independent activation of the p21(WAF1) (WAF1) promoter by phorbol 12-myristate13-acetate (PMA) in hematopoietic cells. Using GAL4-Sp1 fusion proteins and a luciferase reporter, PMA is shown to activate the transcriptional activity of Sp1 independent of the WAF1 promoter. This activation does not require the Ser/Thr-rich region of Sp1 and can be mediated by 41 amino acids (152-193) of Sp1 that are important for the interaction with human TAF130. Because transforming growth factor-beta enhances WAF1 promoter activity through both Sp1 and Smad proteins, the role of Smads in PMA transcriptional activation was examined. PMA addition to hematopoietic cells was found to activate a GAL4/Smad-dependent promoter and the transforming growth factor-beta-responsive promoter, p3TP-lux. Immunofluorescence data demonstrate that PMA addition to hematopoietic cells induces the translocation of Smad3 to the nucleus. However, Smad3 does not stimulate the WAF1 promoter, but rather slightly inhibits the PMA-mediated induction of transcription from this upstream region. Additionally, transfection of Smad3 did not enhance the activation of GAL4/Sp1 by PMA. These results demonstrate that, while PMA can activate Smad-mediated transcription, Smad proteins do not appear to play a major role in the PMA induction of the WAF1 promoter.
Collapse
Affiliation(s)
- J R Biggs
- Department of Medical Oncology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | |
Collapse
|
133
|
Gletsu N, Dixon W, Clandinin MT. Insulin receptor at the mouse hepatocyte nucleus after a glucose meal induces dephosphorylation of a 30-kDa transcription factor and a concomitant increase in malic enzyme gene expression. J Nutr 1999; 129:2154-61. [PMID: 10573543 DOI: 10.1093/jn/129.12.2154] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Insulin receptor translocation to the nucleus may represent a mechanism for activation of transcription factors controlling lipogenic gene expression in the mouse hepatocyte. Insulin stimulation was achieved in vivo by oral glucose feeding of mice deprived of food for 24 h. Hepatocytes were fractionated after the glucose meal and nuclei were purified. Insulin receptor levels and phosphorylation state in nuclei were assessed by immunoassay. Insulin receptor significantly increased from basal levels in hepatocyte nuclei within 15 min of the glucose meal. Immunoassay using antiphosphotyrosine indicated that phosphorylation of nuclear insulin receptor increased, whereas phosphorylation of a 30-kDa DNA-binding protein significantly decreased within 15 min of the glucose meal. Glucose treatment significantly increased expression of malic enzyme within the time frame of insulin receptor translocation to the nucleus. Nuclear protein binding to an insulin response element (IRE) within the malic enzyme gene promoter significantly increased within 15 min of the glucose meal. When cell nuclei were isolated from mice that had been deprived of food and treated in vitro with purified, activated insulin receptor, changes were observed in DNA-binding protein phosphorylation and IRE-binding in the absence of cytoplasmic insulin signaling. In vitro incubation of nuclei with activated insulin receptor significantly decreased phosphorylation of a 30-kDa DNA-binding protein compared with basal levels. Increased binding of nuclear proteins to malic enzyme IRE was observed upon stimulation of isolated nuclei with activated insulin receptor. These results suggest that nuclear insulin receptors induce malic enzyme gene expression by regulating phosphorylation of IRE transcription factors.
Collapse
Affiliation(s)
- N Gletsu
- Nutrition and Metabolism Research Group, Department of Agricultural, Food and Nutritional Science, Department of Medicine, University of Alberta, Edmonton, AB, Canada T6G 2P5
| | | | | |
Collapse
|
134
|
Ramon O, Sauvaigo S, Gasparutto D, Faure P, Favier A, Cadet J. Effects of 8-oxo-7,8-dihydro-2'-deoxyguanosine on the binding of the transcription factor Sp1 to its cognate target DNA sequence (GC box). Free Radic Res 1999; 31:217-29. [PMID: 10499779 DOI: 10.1080/10715769900300781] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Emphasis was placed in this work on the assessment of the role of guanine bases in the interaction of transcription factor SP1 with its cognate DNA sequence. For this purpose, each guanine residue of the 5'-GGGGCG-GGG-3' (GC box) target DNA sequence was substituted in turn by 8-oxo-7,8-dihydro-2'-deoxyguanosine. The latter oxidized nucleotide which is likely to be present in mammalian DNA and exhibit mutogenic features is expected to be involved in age-related diseases and cancer. The effect of the incorporation of 8-oxodGuo into DNA on the binding of transcription factor Sp1 was studied using electrophoretic mobility shift assays with nuclear extracts from HeLa cells. When guanines at position G '2, G '3, G '4, G '5 and G'6 were replaced with 8-oxodGuo, binding of Sp1 was only 28%, 30%, 7%, 5% and 21%, respectively, to that of the non-substituted oligonucleotide. The binding is less affected when guanines at position G'1, G'7, G'8 and G'9 were substituted by 8-oxodGuo. Results show up the importance of the core of the GC box and the stronger contribution of the second and the third zinc finger to the binding with DNA. All together, this suggests that incorporation of 8-oxodGuo may alter the expression of the gene regulated by Sp1 and affect the response of the cell.
Collapse
Affiliation(s)
- O Ramon
- LBSO/LCR no 8, Faculté de Pharmacie de Grenoble, Domaine de la Merci, La Tronche, France
| | | | | | | | | | | |
Collapse
|
135
|
Näär AM, Ryu S, Tjian R. Cofactor requirements for transcriptional activation by Sp1. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 1999; 63:189-99. [PMID: 10384283 DOI: 10.1101/sqb.1998.63.189] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- A M Näär
- Howard Hughes Medical Institute, University of California, Berkeley 94720, USA
| | | | | |
Collapse
|
136
|
Physical Interaction Between Retinoic Acid Receptor and Sp1: Mechanism for Induction of Urokinase by Retinoic Acid. Blood 1999. [DOI: 10.1182/blood.v93.12.4264.412k27_4264_4276] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Induction of urokinase plasminogen activator (uPA) by retinoic acid (RA) is the initial event preceding certain subsequent biological changes in vascular endothelial cells. We investigated the molecular mechanism by which RA stimulates the expression of uPA, which lacks a canonical RA receptor (RAR)-responsive element, in bovine and human aortic endothelial cells. Upon stimulation with RA, mRNA levels of RAR and β transiently increased in parallel with the induction of uPA, and this increase was inhibited by cycloheximide. Results of transient transfection of RAR/RXR cDNAs and experiments using specific agonists and antagonists suggested that uPA induction is dependent upon RAR (initially, RAR) with the help of RXR. Deletion analysis of the uPA promoter suggested that RAR/RXR acts on GC box region within the uPA promoter. This was further supported by inhibition of Sp1 binding to this region. Coimmunoprecipitation studies, glutathioneS-transferase pull-down experiment, and mammalian two-hybrid assays suggested a physical interaction between RAR/RXR and Sp1. Furthermore, gel shift studies showed that the binding of Sp1 to the uPA GC box is significantly potentiated in the presence of RARs/RXRs. Finally, Sp1 and RAR/RXR synergistically enhanced the transactivation activity of the uPA promoter. These results suggest that (1) RA induces RARs mainly via RAR and that (2) RAR/RXR physically and functionally interact with Sp1, resulting in a potentiation of uPA transcription.
Collapse
|
137
|
Physical Interaction Between Retinoic Acid Receptor and Sp1: Mechanism for Induction of Urokinase by Retinoic Acid. Blood 1999. [DOI: 10.1182/blood.v93.12.4264] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Induction of urokinase plasminogen activator (uPA) by retinoic acid (RA) is the initial event preceding certain subsequent biological changes in vascular endothelial cells. We investigated the molecular mechanism by which RA stimulates the expression of uPA, which lacks a canonical RA receptor (RAR)-responsive element, in bovine and human aortic endothelial cells. Upon stimulation with RA, mRNA levels of RAR and β transiently increased in parallel with the induction of uPA, and this increase was inhibited by cycloheximide. Results of transient transfection of RAR/RXR cDNAs and experiments using specific agonists and antagonists suggested that uPA induction is dependent upon RAR (initially, RAR) with the help of RXR. Deletion analysis of the uPA promoter suggested that RAR/RXR acts on GC box region within the uPA promoter. This was further supported by inhibition of Sp1 binding to this region. Coimmunoprecipitation studies, glutathioneS-transferase pull-down experiment, and mammalian two-hybrid assays suggested a physical interaction between RAR/RXR and Sp1. Furthermore, gel shift studies showed that the binding of Sp1 to the uPA GC box is significantly potentiated in the presence of RARs/RXRs. Finally, Sp1 and RAR/RXR synergistically enhanced the transactivation activity of the uPA promoter. These results suggest that (1) RA induces RARs mainly via RAR and that (2) RAR/RXR physically and functionally interact with Sp1, resulting in a potentiation of uPA transcription.
Collapse
|
138
|
Su K, Roos MD, Yang X, Han I, Paterson AJ, Kudlow JE. An N-terminal region of Sp1 targets its proteasome-dependent degradation in vitro. J Biol Chem 1999; 274:15194-202. [PMID: 10329728 DOI: 10.1074/jbc.274.21.15194] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcription factor Sp1 is important for the expression of many cellular genes. Previously, it was shown that reduced O-glycosylation of Sp1 is associated with increased proteasome susceptibility. Sp1 undergoes proteasome-dependent degradation in cells stressed with glucose deprivation and adenylate cyclase activation, and this process is blocked in cells treated with glucosamine. In this study, using a reconstituted in vitro system, we identified the principal structural determinant in Sp1 that targets Sp1 for proteasome-dependent degradation. We found by using deletion analysis that the N-terminal 54 amino acids of Sp1 is required for Sp1 degradation. This element can act as an independent processing signal by directing degradation of an unrelated protein. Recognition of this Sp1 element by the proteasome-dependent system is saturable, and ubiquitination of this element is not required for recognition. Time course experiments revealed that Sp1 degradation is a two-step process. First, a discrete endoproteolytic cleavage occurs downstream of the target region immediately C-terminal to Leu56. The Sp1 sequence C-terminal to the cleavage site is subsequently degraded, whereas the N-terminal peptide remains intact. The identification of this Sp1 degradation-targeting signal will facilitate the identification of the critical proteins involved in the control of Sp1 proteasome-dependent degradation and the role of OGlcNAc in this process.
Collapse
Affiliation(s)
- K Su
- Departments of Medicine and Cell Biology, Division of Endocrinology and Metabolism, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | |
Collapse
|
139
|
Billon N, Carlisi D, Datto MB, van Grunsven LA, Watt A, Wang XF, Rudkin BB. Cooperation of Sp1 and p300 in the induction of the CDK inhibitor p21WAF1/CIP1 during NGF-mediated neuronal differentiation. Oncogene 1999; 18:2872-82. [PMID: 10362258 DOI: 10.1038/sj.onc.1202712] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Addition of nerve growth factor (NGF) to PC12 cells promotes neuronal differentiation while inhibiting cell proliferation. In order to understand how NGF exerts its antimitogenic effect during differentiation, we have studied the mechanism by which this factor activates the promoter of the CDK inhibitor p21W4F1/CIP1. The minimal region of the p21 promoter required for the NGF-induction was mapped to a contiguous stretch of 10 bp located 83 bases upstream of the transcription initiation site. This GC-rich region was shown to interact specifically with the transcription factor Sp1 and the related protein Sp3, in either exponentially-growing or NGF-treated PC12 cells. The addition of NGF resulted in an accumulation of the transcriptional co-activator p300 in complexes associated with the NGF-responsive region. Transcriptional activity of Sp1, Sp3 and p300 was specifically induced by NGF in a Gal4-fusion assay, indicating that induction of p21 during neuronal differentiation may involve regulation of the activity of these factors by NGF. Furthermore, p300 was able to act as a co-activator for Sp1-mediated transcriptional activation in PC12 cells, suggesting that p300 and Sp1 may cooperate in activating p21 transcription during the withdrawal of neuronal precursors from the cell cycle. This hypothesis is supported by experiments showing that p300 and Sp1 form complexes in PC12 cells.
Collapse
Affiliation(s)
- N Billon
- Differentiation & Cell Cycle Group, Laboratoire de Biologie Moleculaire et Cellulaire, UMR 49 CNRS/Ecole Normale Supérieure de Lyon, France
| | | | | | | | | | | | | |
Collapse
|
140
|
Hider RC, Bittel D, Andrews GK. Competition between iron(III)-selective chelators and zinc-finger domains for zinc(II). Biochem Pharmacol 1999; 57:1031-5. [PMID: 10796073 DOI: 10.1016/s0006-2952(99)00014-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Many iron(III)-selective chelators possess an appreciable affinity for zinc(II) and this can prove to be undesirable when such chelators are being assessed for clinical application. At present, there is no useful test available which can reliably access this problem. In the present manuscript, we provide evidence that indicates that a zinc-finger protein MTF-1, (metal transcription factor-1) may prove to be a suitable candidate. N,N',2-hydroxybenzyl ethylenediamine diacetic acid, in contrast to desferrioxamine, removes zinc quite efficiently from MTF-1.
Collapse
Affiliation(s)
- R C Hider
- Department of Pharmacy, King's College London, UK.
| | | | | |
Collapse
|
141
|
Schöck F, Sauer F, Jäckle H, Purnell BA. Drosophila head segmentation factor buttonhead interacts with the same TATA box-binding protein-associated factors and in vivo DNA targets as human Sp1 but executes a different biological program. Proc Natl Acad Sci U S A 1999; 96:5061-5. [PMID: 10220418 PMCID: PMC21816 DOI: 10.1073/pnas.96.9.5061] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Drosophila gene buttonhead (btd) is required for the establishment of three embryonic head segments. It encodes a zinc-finger-type transcription factor expressed in the corresponding head segment anlagen in the blastoderm stage embryo. The DNA-binding properties of the btd protein (BTD) are indistinguishable from the human transcription factor Sp1. Furthermore, BTD and Sp1 are capable of activating transcription in transfected cultured cells through interaction with the same DNA target sites. Herein we show that BTD and Sp1 functionally interact with the same TATA box-binding protein-associated factors and support in vitro transcription activation through these contacts. Transgene expression of BTD results in the rescue of the head segments that fail to develop in btd mutant embryos, whereas Sp1 or Sp1 containing the zinc finger region of BTD rescues mandibular segment development. The results suggest that BTD contains functional domains other than an equivalent DNA-binding region and interaction sites of the TATA box-binding protein-associated factors, which are necessary to establish head segments that fail to develop in response to Sp1.
Collapse
Affiliation(s)
- F Schöck
- Max-Planck-Institut für biophysikalische Chemie, Abteilung Molekulare Entwicklungsbiologie, Am Fassberg, 37077 Göttingen, Germany
| | | | | | | |
Collapse
|
142
|
Rickers A, Peters N, Badock V, Beyaert R, Vandenabeele P, Dörken B, Bommert K. Cleavage of transcription factor SP1 by caspases during anti-IgM-induced B-cell apoptosis. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 261:269-74. [PMID: 10103059 DOI: 10.1046/j.1432-1327.1999.00273.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Apoptosis is instrumental in the processes generating the diversity of the B-cell repertoire. Autoreactive B-cells are eliminated by anti-IgM crosslinking after encountering self-antigens, but precise mechanisms leading to B-cell apoptosis are still not well understood. We report here the cleavage of the transcription factor SP1 in the human Burkitt lymphoma cell line BL60 during anti-IgM-induced apoptosis. Western blot analysis revealed two cleavage products of approximately 68 kDa and 45 kDa after induction of apoptosis. Cleavage could be completely inhibited by zDEVD-fmk, an inhibitor specific for caspase 3-like proteases. In-vitro cleavage of recombinant SP1 by recombinant caspase 3 (CPP32) or caspase 7 (Mch 3) results in similar cleavage products as those observed in vivo. Recombinant caspase 6 (Mch 2) primarily generates a 68-kDa cleavage product, as observed after calcium ionophore (CaI) induced B-cell apoptosis. In contrast, caspase 1 (ICE) did not cleave SP1 in vitro. The time course of SP1 cleavage during anti-IgM-induced apoptosis is paralleled by an increase of caspase activity measured by DEVD-p-nitroanilide (DEVD-pNA) cleavage. DNA band-shift assays revealed a decrease in the intensity of the full length SP1/DNA complex and an increase in the intensity of a smaller complex due to the binding of one SP1 cleavage product. By Edman sequencing we could identify a caspase 3 cleavage site after Asp584 (D584AQPQAGR), generating a 22-kDa C-terminal SP1 protein fragment which still contains the DNA binding site. Our results show the cleavage of the human transcription factor SP1 in vivo and in vitro, underlining the central role of caspase 3-like proteases during the process of anti-IgM-induced apoptosis.
Collapse
Affiliation(s)
- A Rickers
- Medizinische Onkologie und Tumorimmunologie, Max Delbück Center for Molecular Medicine, Berlin-Buch, Germany
| | | | | | | | | | | | | |
Collapse
|
143
|
Biesiada E, Hamamori Y, Kedes L, Sartorelli V. Myogenic basic helix-loop-helix proteins and Sp1 interact as components of a multiprotein transcriptional complex required for activity of the human cardiac alpha-actin promoter. Mol Cell Biol 1999; 19:2577-84. [PMID: 10082523 PMCID: PMC84050 DOI: 10.1128/mcb.19.4.2577] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Activation of the human cardiac alpha-actin (HCA) promoter in skeletal muscle cells requires the integrity of DNA binding sites for the serum response factor (SRF), Sp1, and the myogenic basic helix-loop-helix (bHLH) family. In this study we report that activation of the HCA correlates with formation of a muscle-specific multiprotein complex on the promoter. We provide evidence that proteins eluted from the multiprotein complex specifically react with antibodies directed against myogenin, Sp1, and SRF and that the complex can be assembled in vitro by using the HCA promoter and purified MyoD, E12, SRF, and Sp1. In vitro and in vivo assays revealed a direct association of Sp1 and myogenin-MyoD mediated by the DNA-binding domain of Sp1 and the HLH motif of myogenin. The results obtained in this study indicate that protein-protein interactions and the cooperative DNA binding of transcriptional activators are critical steps in the formation of a transcriptionally productive multiprotein complex on the HCA promoter and suggest that the same mechanisms might be utilized to regulate the transcription of muscle-specific and other genes.
Collapse
Affiliation(s)
- E Biesiada
- Institute for Genetic Medicine and Department of Biochemistry and Molecular Biology, University of Southern California School of Medicine, Los Angeles, California, USA
| | | | | | | |
Collapse
|
144
|
Chen XM, Gray PJ, Cullinane C, Phillips DR. Differential sensitivity of transcription factors to mustard-damaged DNA. Chem Biol Interact 1999; 118:51-67. [PMID: 10227578 DOI: 10.1016/s0009-2797(98)00117-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nitrogen mustard (bis(2-chloroethyl) methylamine, HN2) inhibited the binding of upstream factors Sp1 and AP2 to their consensus sequences. At concentrations where 50% of the consensus sequence DNA contained at least one lesion, HN2 inhibited formation of the Sp1 complex by 37% (40 microM HN2) and the AP2 complex by 40% (50 microM HN2). The binding of the TATA binding protein (TBP) to the TATA element was also inhibited by HN2, whereas sulphur mustard and the monofunctional sulphur mustard 2-chloroethyl ethyl sulphide (CEES) resulted in a disproportional extent of inhibition with respect to the level of alkylation. The level of alkylation of the TBP oligonucleotide varied significantly at 100 microM drug, with 80, 42 and 15% of HN2, sulphur mustard and CEES, respectively. However, this level of alkylation inhibited formation of the TBP-DNA complex by 70, 70 and 45%, respectively. This differential sensitivity of transcription factors to mustard-induced DNA damage therefore appears to reside dominantly in the stereochemical differences between the specific mustard lesions.
Collapse
Affiliation(s)
- X M Chen
- Department of Biochemistry, La Trobe University, Bundoora, Victoria, Australia
| | | | | | | |
Collapse
|
145
|
Alroy I, Soussan L, Seger R, Yarden Y. Neu differentiation factor stimulates phosphorylation and activation of the Sp1 transcription factor. Mol Cell Biol 1999; 19:1961-72. [PMID: 10022883 PMCID: PMC83989 DOI: 10.1128/mcb.19.3.1961] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neu differentiation factors (NDFs), or neuregulins, are epidermal growth factor-like growth factors which bind to two tyrosine kinase receptors, ErbB-3 and ErbB-4. The transcription of several genes is regulated by neuregulins, including genes encoding specific subunits of the acetylcholine receptor at the neuromuscular junction. Here, we have examined the promoter of the acetylcholine receptor epsilon subunit and delineated a minimal CA-rich sequence which mediates transcriptional activation by NDF (NDF-response element [NRE]). Using gel mobility shift analysis with an NRE oligonucleotide, we detected two complexes that are induced by treatment with neuregulin and other growth factors and identified Sp1, a constitutively expressed zinc finger phosphoprotein, as a component of one of these complexes. Phosphatase treatment, two-dimensional gel electrophoresis, and an in-gel kinase assay indicated that Sp1 is phosphorylated by a 60-kDa kinase in response to NDF-induced signals. Moreover, Sp1 seems to act downstream of all members of the ErbB family and thus may funnel the signaling of the ErbB network into the nucleus.
Collapse
Affiliation(s)
- I Alroy
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
146
|
Xu Y, Krishnan A, Wan XS, Majima H, Yeh CC, Ludewig G, Kasarskis EJ, St Clair DK. Mutations in the promoter reveal a cause for the reduced expression of the human manganese superoxide dismutase gene in cancer cells. Oncogene 1999; 18:93-102. [PMID: 9926924 DOI: 10.1038/sj.onc.1202265] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Manganese superoxide dismutase (MnSOD) has been shown to play an important role in preventing the development of cancer. MnSOD activity is reduced in many transformed cells and tumor tissues. We previously showed that the reduced level of MnSOD activity in cancer cells was not due to a defect in the primary structure of MnSOD protein, but rather was due to defects in gene expression. To elucidate the cause for the reduced expression of human MnSOD in cancer, we investigated the nucleotide sequence in the regulatory region of the MnSOD gene in a normal human cell line and various human tumor cell lines. A DNA fragment spanning 3.4 kb 5' flanking region of the MnSOD gene isolated from a normal human genomic DNA library was used to determine the DNA sequence of MnSOD promoter. PCR primers were used for amplification of the 3.4 kb 5' flanking region of the human MnSOD gene in cancer cells. Sequence analysis identified three heterozygous mutations in the proximal region of the promoter in five human tumor cell lines. These mutations, clustered around the GC-rich region of the human MnSOD promoter, change the binding pattern of AP-2 and lead to a reduction in transcription activity using a luciferase reporter assay system. These results suggest that the reduced level of MnSOD expression in some tumor cells is, at least in part, due to a defect in the DNA sequence of the promoter region.
Collapse
Affiliation(s)
- Y Xu
- Graduate Center for Toxicology and Department of Neurology, University of Kentucky, Lexington 40536-0305, USA
| | | | | | | | | | | | | | | |
Collapse
|
147
|
Vallian S, Chin KV, Chang KS. The promyelocytic leukemia protein interacts with Sp1 and inhibits its transactivation of the epidermal growth factor receptor promoter. Mol Cell Biol 1998; 18:7147-56. [PMID: 9819401 PMCID: PMC109296 DOI: 10.1128/mcb.18.12.7147] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/1998] [Accepted: 08/19/1998] [Indexed: 11/20/2022] Open
Abstract
The promyelocytic leukemia protein (PML) is a nuclear phosphoprotein with growth- and transformation-suppressing ability. Having previously shown it to be a transcriptional repressor of the epidermal growth factor receptor (EGFR) gene promoter, we have now shown that PML's repression of EGFR transcription is caused by inhibition of EGFR's Sp1-dependent activity. On functional analysis, the repressive effect of PML was mapped to a 150-bp element (the sequences between -150 and -16, relative to the ATG initiation site) of the promoter. Transient transfection assays with Sp1-negative Drosophila melanogaster SL2 cells showed that the transcription of this region was regulated by Sp1 and that the Sp1-dependent activity of the promoter was suppressed by PML in a dose-dependent manner. Coimmunoprecipitation and mammalian two-hybrid assays demonstrated that PML and Sp1 were associated in vivo. In vitro binding by means of the glutathione S-transferase (GST) pull-down assay, using the full-length and truncated GST-Sp1 proteins and in vitro-translated PML, showed that PML and Sp1 directly interacted and that the C-terminal (DNA-binding) region of Sp1 and the coiled-coil (dimerization) domain of PML were essential for this interaction. Analysis of the effects of PML on Sp1 DNA binding by electrophoretic mobility shift assay (EMSA) showed that PML could specifically disrupt the binding of Sp1 to DNA. Furthermore, cotransfection of PML specifically repressed Sp1, but not the E2F1-mediated activity of the dihydrofolate reductase promoter. Together, these data suggest that the association of PML and Sp1 represents a novel mechanism for negative regulation of EGFR and other Sp1 target promoters.
Collapse
Affiliation(s)
- S Vallian
- Division of Laboratory Medicine, The University of Texas, Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | |
Collapse
|
148
|
Bono P, Salmi M, Smith DJ, Leppänen I, Horelli-Kuitunen N, Palotie A, Jalkanen S. Isolation, Structural Characterization, and Chromosomal Mapping of the Mouse Vascular Adhesion Protein-1 Gene and Promoter. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.6.2953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Vascular adhesion protein-1 (VAP-1) is an endothelial cell adhesion molecule which mediates lymphocyte binding to endothelial cells. The cloning of a mouse VAP-1 (mVAP-1) cDNA revealed that mVAP-1 is a novel 110/220 kDa transmembrane molecule with significant identity to copper-containing amine oxidases. In this work the nucleotide sequence and primary structure of the mVAP-1 gene was determined and the promoter region was structurally characterized. The isolated approximately 14.4-kb mVAP-1 gene consists of 4 exons and 3 introns. Primer extension analysis and 5′ rapid amplification of cDNA ends revealed multiple transcription initiation sites in different tissues suggesting that the mVAP-1 transcription is differently regulated in different tissues. Analysis of the sequence immediately upstream of the detected transcription initiation sites showed no canonical TATA or CCAAT elements, but putative regulatory elements were found close to the detected transcription start sites. The cloning of the mVAP-1 gene reveals the first insight into the genomic organization of murine amine oxidases and will, by targeted disruption of the gene, allow us to understand better the importance of VAP-1 in leukocyte trafficking and monoamine oxidase activity for the function of the immune system.
Collapse
Affiliation(s)
- Petri Bono
- †National Public Health Institute, and
- *MediCity Research Laboratories, University of Turku,
| | - Marko Salmi
- †National Public Health Institute, and
- *MediCity Research Laboratories, University of Turku,
| | - David J. Smith
- ‡BioTie Therapies, BioCity, Turku, Finland; and
- *MediCity Research Laboratories, University of Turku,
| | - Ilona Leppänen
- †National Public Health Institute, and
- *MediCity Research Laboratories, University of Turku,
| | - Nina Horelli-Kuitunen
- §Laboratory Department of Helsinki University Hospital and Department of Clinical Chemistry, University of Helsinki, Helsinki, Finland
- *MediCity Research Laboratories, University of Turku,
| | - Aarno Palotie
- §Laboratory Department of Helsinki University Hospital and Department of Clinical Chemistry, University of Helsinki, Helsinki, Finland
- *MediCity Research Laboratories, University of Turku,
| | - Sirpa Jalkanen
- †National Public Health Institute, and
- *MediCity Research Laboratories, University of Turku,
| |
Collapse
|
149
|
Wang L, Hunt KE, Martin GM, Oshima J. Structure and function of the human Werner syndrome gene promoter: evidence for transcriptional modulation. Nucleic Acids Res 1998; 26:3480-5. [PMID: 9671808 PMCID: PMC147734 DOI: 10.1093/nar/26.15.3480] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Werner syndrome (WS) is an autosomal recessive segmental progeroid syndrome caused by mutations in a novel member ( WRN ) of the RecQ family of helicases. Somatic WS cells are hypermutable and have elongated S phases, suggesting possible defects in DNA replication and/or repair. As an initial approach to the investigation of how this locus might be responsive to DNA damage, we determined the structure of the human WRN promoter. The WRN promoter region has two transcription initiation sites and exhibits several features characteristic of so-called constitutive promoters, including the absence of TATA and CAAT boxes. A luciferase reporter assay revealed that the upstream promoter was used 2-10-fold less frequently than the downstream promoter, the variation being a function of cell type. The activity of the WRN promoter was dramatically reduced in cells from WS patients. The reduction of activity was not seen in three other promoters tested, including one TATA-less promoter and one TATA-containing promoter. This is consistent with the presence of a positive regulatory mechanism of WRN expression.
Collapse
Affiliation(s)
- L Wang
- Department of Genetics and Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
150
|
Fukami-Kobayashi J, Mitsui Y. The regulation of cyclin D1 expression in senescent human fibroblasts. Exp Cell Res 1998; 241:435-44. [PMID: 9637785 DOI: 10.1006/excr.1998.4079] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To clarify the molecular mechanisms of cyclin D1 expression during in vitro cellular aging, we investigated the binding of nuclear protein factors to the cyclin D1 gene promoter domain in young and senescent normal human fibroblasts. The cyclin D1 promoter binding activities of nuclear protein factors from young and senescent cells were examined by the gel mobility shift assay. Our findings revealed that (i) the binding of a specific nuclear factor to the enhancer element was very weak in senescent cells; (ii) the binding of a specific nuclear factor to the CRE, which is independent of cell growth, was unchanged between young and senescent cells; (iii) nuclear factors from senescent cells did not bind to the presumptive silencer element; (iv) the binding of specific factors to the Inr (transcription initiation region) and E2F increased with growth stimulation in young cells and was weakly detectable in senescent cells; and (v) the binding of Sp1 to its promoter element occurred only in senescent cells. The analysis of the silencer element by the gel mobility shift assay revealed that the essential sequence required for binding of specific factors to the silencer element was TTTAAT. The molecular weight of the binding factor to the silencer element was determined to be approximately 35 kDa by the Southwestern blotting and UV cross-linking assay. Thus, we postulated that the observed increase of cyclin D1 expression during cellular aging is due to an increase in the binding activity of specific nuclear protein factors to an enhancer element, Sp1, and a decrease in binding to a silencer element in senescent cells.
Collapse
Affiliation(s)
- J Fukami-Kobayashi
- Agency of Industrial ScienceTechnology, National Institute of Bioscience and Human Technology, Ibaraki, Higashi 1-1, Tsukuba, 305, Japan
| | | |
Collapse
|