101
|
|
102
|
Huang J, Weintraub H, Kedes L. Intramolecular regulation of MyoD activation domain conformation and function. Mol Cell Biol 1998; 18:5478-84. [PMID: 9710631 PMCID: PMC109132 DOI: 10.1128/mcb.18.9.5478] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The MyoD family of basic helix-loop-helix (bHLH) proteins is required for myogenic determination and differentiation. The basic region carries the myogenic code and DNA binding specificity, while the N terminus contains a potent transcriptional activation domain. Myogenic activation is abolished when the basic region, bound to a myogenic E box, carries a mutation of Ala-114. It has been proposed that DNA binding of the MyoD basic region leads to recruitment of a recognition factor that unmasks the activation domain. Here we demonstrate that an A114N mutant exhibits an altered conformation in the basic region and that this local conformational difference can lead to a more global change affecting the conformation of the activation domain. This suggests that the deleterious effects of this class of mutations may result directly from defective conformation. Thus, the activation domain is unmasked only upon DNA binding by the correct basic region. Such a coupled conformational relationship may have evolved to restrict myogenic specificity to a small number of bHLH proteins among many with diverse functions yet with DNA binding specificities known to be similar.
Collapse
Affiliation(s)
- J Huang
- Institute for Genetic Medicine and Department of Biochemistry and Molecular Biology, University of Southern California School of Medicine, Los Angeles, California 90033, USA
| | | | | |
Collapse
|
103
|
Feng B, Marzluf GA. Interaction between major nitrogen regulatory protein NIT2 and pathway-specific regulatory factor NIT4 is required for their synergistic activation of gene expression in Neurospora crassa. Mol Cell Biol 1998; 18:3983-90. [PMID: 9632783 PMCID: PMC108983 DOI: 10.1128/mcb.18.7.3983] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In Neurospora crassa, the major nitrogen regulatory protein, NIT2, a member of the GATA family of transcription factors, controls positively the expression of numerous genes which specify nitrogen catabolic enzymes. Expression of the highly regulated structural gene nit-3, which encodes nitrate reductase, is dependent upon a synergistic interaction of NIT2 with a pathway-specific control protein, NIT4, a member of the GAL4 family of fungal regulatory factors. The NIT2 and NIT4 proteins both bind at specific recognition elements in the nit-3 promoter, but, in addition, we show that a direct protein-protein interaction between NIT2 and NIT4 is essential for optimal expression of the nit-3 structural gene. Neurospora possesses at least five different GATA factors which control different areas of cellular function, but which have a similar DNA binding specificity. Significantly, only NIT2, of the several Neurospora GATA factors examined, interacts with NIT4. We propose that protein-protein interactions of the individual GATA factors with additional pathway-specific regulatory factors determine each of their specific regulatory functions.
Collapse
Affiliation(s)
- B Feng
- Department of Biochemistry and Program in Molecular, Cellular, and Developmental Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
104
|
Swanson BJ, Jäck HM, Lyons GE. Characterization of myocyte enhancer factor 2 (MEF2) expression in B and T cells: MEF2C is a B cell-restricted transcription factor in lymphocytes. Mol Immunol 1998; 35:445-58. [PMID: 9798649 DOI: 10.1016/s0161-5890(98)00058-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Our studies examined the expression and DNA binding activity of myocyte enhancer factor 2 (MEF2A-D) transcription factors in lymphopoietic tissues, cell lines, and primary lymphocytes. Our analyses demonstrate that mef2C expression is restricted to B cells within the lymphocyte lineage. Using in situ hybridization, mef2C is detected in foci in fetal liver and postnatal thymic medulla, and both mef2B and mef2C are expressed in areas of the postnatal spleen and lymph node that also express kappa light chain (Ckappa), a B cell-specific marker. Reverse transcriptase-PCR (RT-PCR) analyses demonstrate that all mef2 family members are expressed in B cell lines, and all except mef2C are expressed in T cell lines. Immunoblot analyses of cell lines and primary thymic and splenic lymphocytes show that MEF2C and MEF2D proteins are expressed in B cells and that MEF2D is expressed in T cells; however, MEF2A protein is not detected in lymphocytes. Electrophoretic mobility shift assays (EMSA) demonstrate that B cell lines have MEF2C-containing, MEF2-specific DNA binding complexes whereas T cells do not. Our data is the first to describe mef2C expression in the lymphocyte lineage, and this finding suggests possible roles for MEF2C activity in B cell development and function.
Collapse
Affiliation(s)
- B J Swanson
- Department of Anatomy, University of Wisconsin, Madison 53706, USA.
| | | | | |
Collapse
|
105
|
Lu J, Richardson JA, Olson EN. Capsulin: a novel bHLH transcription factor expressed in epicardial progenitors and mesenchyme of visceral organs. Mech Dev 1998; 73:23-32. [PMID: 9545521 DOI: 10.1016/s0925-4773(98)00030-6] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Members of the basic helix-loop-helix (bHLH) family of transcription factors have been shown to control development and differentiation of a variety of cell types. We describe a novel bHLH protein, called capsulin, which is expressed specifically in mesodermally-derived cells that surround the epithelium of the developing gastrointestinal, genitourinary and respiratory systems during mouse embryogenesis. Capsulin transcripts also mark the spiral septum of the heart and progenitor cells that give rise to the pericardium and coronary arteries. Capsulin shares high homology with a recently identified bHLH protein from Drosophila, called bHLH102C, which is expressed in visceral muscle cells that surround the midgut. Capsulin binds a specific E-box consensus sequence (CANNTG) as a heterodimer with the widely-expressed bHLH protein E12, but it does not activate transcription through that sequence on its own. Its restricted expression pattern and DNA binding activity suggest that capsulin regulates gene expression in specific subtypes of visceral mesodermal cells involved in organogenesis and in precursor cells that contribute to the pericardium, coronary arteries and regions of the heart.
Collapse
Affiliation(s)
- J Lu
- Department of Molecular Biology and Oncology, The University of Texas, Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75235-9148, USA
| | | | | |
Collapse
|
106
|
Currie PD, Ingham PW. The generation and interpretation of positional information within the vertebrate myotome. Mech Dev 1998; 73:3-21. [PMID: 9545513 DOI: 10.1016/s0925-4773(98)00036-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
How somitic cells become restricted to the muscle fate has been investigated on a number of levels. Classical embryological manipulations have attempted to define the source of inductive signals that control the formation of the myotome. Recently, these studies have converged with others dissecting the role of secreted proteins in embryonic patterning to demonstrate a role for specific peptides in inducing individual cell types of the myotome. Collectively, these investigations have implicated the products of the Wnt, Hedgehog (Hh) and Bone morphogenetic protein (Bmp) gene families as key myogenic regulators; simultaneously controlling both the initiation of myogenesis and the fate of individual myoblasts.
Collapse
Affiliation(s)
- P D Currie
- Developmental Genetics Section, MRC Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | | |
Collapse
|
107
|
Takano H, Komuro I, Oka T, Shiojima I, Hiroi Y, Mizuno T, Yazaki Y. The Rho family G proteins play a critical role in muscle differentiation. Mol Cell Biol 1998; 18:1580-9. [PMID: 9488475 PMCID: PMC108873 DOI: 10.1128/mcb.18.3.1580] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Rho family GTP-binding proteins play a critical role in a variety of cytoskeleton-dependent cell functions. In this study, we examined the role of Rho family G proteins in muscle differentiation. Dominant negative forms of Rho family proteins and RhoGDI, a GDP dissociation inhibitor, suppressed transcription of muscle-specific genes, while mutationally activated forms of Rho family proteins strongly activated their transcription. C2C12 cells overexpressing RhoGDI (C2C12RhoGDI cells) did not differentiate into myotubes, and expression levels of myogenin, MRF4, and contractile protein genes but not MyoD and myf5 genes were markedly reduced in C2C12RhoGDI cells. The promoter activity of the myogenin gene was suppressed by dominant negative mutants of Rho family proteins and was reduced in C2C12RhoGDI cells. Expression of myocyte enhancer binding factor 2 (MEF2), which has been reported to be required for the expression of the myogenin gene, was reduced at the mRNA and protein levels in C2C12RhoGDI cells. These results suggest that the Rho family proteins play a critical role in muscle differentiation, possibly by regulating the expression of the myogenin and MEF2 genes.
Collapse
Affiliation(s)
- H Takano
- Department of Medicine III, University of Tokyo School of Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|
108
|
Black BL, Molkentin JD, Olson EN. Multiple roles for the MyoD basic region in transmission of transcriptional activation signals and interaction with MEF2. Mol Cell Biol 1998; 18:69-77. [PMID: 9418854 PMCID: PMC121453 DOI: 10.1128/mcb.18.1.69] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Establishment of skeletal muscle lineages is controlled by the MyoD family of basic helix-loop-helix (bHLH) transcription factors. The ability of these factors to initiate myogenesis is dependent on two conserved amino acid residues, alanine and threonine, in the basic domains of these factors. It has been postulated that these two residues may be responsible for the initiation of myogenesis via interaction with an essential myogenic cofactor. The myogenic bHLH proteins cooperatively activate transcription and myogenesis through protein-protein interactions with members of the myocyte enhancer factor 2 (MEF2) family of MADS domain transcription factors. MyoD-E12 heterodimers interact with MEF2 proteins to synergistically activate myogenesis, while homodimers of E12, which lack the conserved alanine and threonine residues in the basic domain, do not interact with MEF2. We have examined whether the myogenic alanine and threonine in the MyoD basic region are required for interaction with MEF2. Here, we show that substitution of the MyoD basic domain with that of E12 does not prevent interaction with MEF2. Instead, the inability of alanine-threonine mutants of MyoD to initiate myogenesis is due to a failure to transmit transcriptional activation signals provided either from the MyoD or the MEF2 activation domain. This defect in transcriptional transmission can be overcome by substitution of the MyoD or the MEF2 activation domain with the VP16 activation domain. These results demonstrate that myogenic bHLH-MEF2 interaction can be uncoupled from transcriptional activation and support the idea that the myogenic residues in myogenic bHLH proteins are essential for transmission of a transcriptional activation signal.
Collapse
Affiliation(s)
- B L Black
- Department of Molecular Biology and Oncology, The University of Texas Southwestern Medical Center, Dallas 75235-9148, USA
| | | | | |
Collapse
|
109
|
Ornatsky OI, Andreucci JJ, McDermott JC. A dominant-negative form of transcription factor MEF2 inhibits myogenesis. J Biol Chem 1997; 272:33271-8. [PMID: 9407117 DOI: 10.1074/jbc.272.52.33271] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A biological role for MEF2 (myocyte enhancer factor 2) activity during mammalian myogenesis has been inferred but not directly proven because of its role in the transcriptional activation of many muscle-specific genes. Therefore, our purpose was to determine whether MEF2 activity is absolutely required for mammalian myogenesis. Using a dominant-negative approach to address this question, we constructed a mutated MEF2A protein comprised of the amino-terminal DNA binding/dimerization domain of MEF2A without its trans-activation domain as a bacterial fusion protein (GST-131) or in a eukaryotic expression vector (pcDNA-131). GST-131 and the protein encoded by pcDNA-131 bind specifically to the MEF2 cis element and abrogate trans-activation of a MEF2-responsive luciferase reporter gene by wild type MEF2A, thus serving a role as trans-dominant inhibitors of MEF2 function. In congruence with their ability to interfere with wild type MEF2 function, microinjection of GST-131 or pcDNA-131 into L6E9 or C2C12 myoblasts inhibited myotube formation. Immunofluorescence analysis showed that the expression of myogenin, myosin heavy chain, and MEF2A were inhibited in the GST-131 or pcDNA-131-injected cells compared with GST or pcDNA-injected controls. We also document that this trans-dominant MEF2 inhibitor impairs the myogenic conversion of C3H10T1/2 fibroblasts by MyoD. Thus, these data provide evidence that the trans-activation function of the MEF2 proteins during mammalian myogenesis is required for muscle-specific gene expression and differentiation.
Collapse
Affiliation(s)
- O I Ornatsky
- Departments of Biology and Kinesiology, Faculty of Pure and Applied Science, York University, Toronto M3J 1P3, Canada
| | | | | |
Collapse
|
110
|
Tohda C, Yamaguchi T, Kuraishi Y. Increased expression of mRNA for myocyte-specific enhancer binding factor (MEF) 2C in the cerebral cortex of the itching mouse. Neurosci Res 1997; 29:209-15. [PMID: 9436646 DOI: 10.1016/s0168-0102(97)00090-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Since itch can be a subjective sensation, markedly affected by psychological conditions or sometimes originate in the central nervous system, the mechanisms of neuronal processing of itch signaling in the central nervous system should be studied. Therefore, we examined itch-related behaviors and nervous gene expressions of NC mice, which show severe dermatitis and atopy-like changes in inflammatory cells. Some NC mice spontaneously scratched their bodies and showed skin lesions, such as eczema, bleeding and alopecia from 2-6 months after birth. The mice with skin lesions scratched mainly the face, ears and rostral part of the body throughout the day, using their hind paws . The average scratching frequency was 126.7 +/- 36.8 (n = 4) and 5.3 +/- 4.7 (n = 3) per h in skin-lesioned and non-lesioned control mice, respectively. A differential display analysis of gene expressions in several regions in central and peripheral nervous systems was performed between these scratching and control groups. One of the genes that was expressed at a higher level in a scratching group than in the control group was myocyte-specific enhancer binding factor (MEF) 2C, in the cerebral cortex. The scratching was inhibited by intracerebroventricular injection of antisense oligodeoxynucleotide for MEF2C. These results raise the possibility that MEF2C may be involved in the sensation or perception of itch in the cerebral cortex.
Collapse
Affiliation(s)
- C Tohda
- Analytical Research Center for Ethnomedicines, Research Institute for Wakan-yaku, Toyama Medical and Pharmaceutical University, Japan
| | | | | |
Collapse
|
111
|
Hamamori Y, Wu HY, Sartorelli V, Kedes L. The basic domain of myogenic basic helix-loop-helix (bHLH) proteins is the novel target for direct inhibition by another bHLH protein, Twist. Mol Cell Biol 1997; 17:6563-73. [PMID: 9343420 PMCID: PMC232510 DOI: 10.1128/mcb.17.11.6563] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In vertebrates, the basic helix-loop-helix (bHLH) protein Twist may be involved in the negative regulation of cellular determination and in the differentiation of several lineages, including myogenesis, osteogenesis, and neurogenesis. Although it has been shown that mouse twist (M-Twist) (i) sequesters E proteins, thus preventing formation of myogenic E protein-MyoD complexes and (ii) inhibits the MEF2 transcription factor, a cofactor of myogenic bHLH proteins, overexpression of E proteins and MEF2 failed to rescue the inhibitory effects of M-Twist on MyoD. We report here that M-Twist physically interacts with the myogenic bHLH proteins in vitro and in vivo and that this interaction is required for the inhibition of MyoD by M-Twist. In contrast to the conventional HLH-HLH domain interaction formed in the MyoD/E12 heterodimer, this novel type of interaction uses the basic domains of the two proteins. While the MyoD HLH domain without the basic domain failed to interact with M-Twist, a MyoD peptide containing only the basic and helix 1 regions was sufficient to interact with M-Twist, suggesting that the basic domain contacts M-Twist. The replacement of three arginine residues by alanines in the M-Twist basic domain was sufficient to abolish both the binding and inhibition of MyoD by M-Twist, while the domain retained other M-Twist functions such as heterodimerization with an E protein and inhibition of MEF2 transactivation. These findings demonstrate that M-Twist interacts with MyoD through the basic domains, thereby inhibiting MyoD.
Collapse
Affiliation(s)
- Y Hamamori
- Institute for Genetic Medicine and Department of Biochemistry and Molecular Biology, University of Southern California School of Medicine, Los Angeles 90033, USA
| | | | | | | |
Collapse
|
112
|
Huang WY, Chen JJ, Shih N, Liew CC. Multiple muscle-specific regulatory elements are associated with a DNase I hypersensitive site of the cardiac beta-myosin heavy-chain gene. Biochem J 1997; 327 ( Pt 2):507-12. [PMID: 9359423 PMCID: PMC1218823 DOI: 10.1042/bj3270507] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Using nuclei isolated from neonatal cardiomyocytes, we have mapped the DNase I hypersensitive sites (DHSs) residing within the 5'-upstream regions of the hamster cardiac myosin heavy-chain (MyHC) gene. Two cardiac-specific DHSs within the 5 kb upstream region of the cardiac MyHC gene were identified. One of the DHSs was mapped to the -2.3 kb (beta-2.3 kb) region and the other to the proximal promoter region. We further localized the beta-2.3 kb site to a range of 250 bp. Multiple, conserved, muscle regulatory motifs were found within the beta-2.3 kb site, consisting of three E-boxes, one AP-2 site, one CArG motif, one CT/ACCC box and one myocyte-specific enhancer factor-2 site. This cluster of regulatory elements is strikingly similar to a cluster found in the enhancer of the mouse muscle creatine kinase gene (-1256 to -1050). The specific interaction of the motifs within the beta-2.3 kb site and the cardiac nuclear proteins was demonstrated using gel mobility-shift assays and footprinting analysis. In addition, transfection analysis revealed a significant increase in chloramphenicol acetyltransferase activity when the beta-2.3 kb site was linked to a heterologous promoter. These results suggest that previously undefined regulatory elements of the beta-MyHC gene may be associated with the beta-2.3 kb site.
Collapse
Affiliation(s)
- W Y Huang
- Laboratory for Molecular Cardiology, Departments of Clinical Biochemistry and Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
113
|
Firulli A, Olson E. Evolution of muscle cell diversity through modular enhancers. Trends Genet 1997. [DOI: 10.1016/s0168-9525(97)90062-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
114
|
Dennis P, Prody CA. Multiple nuclear proteins bind a novel cis-acting element that regulates the muscle-specific expression of the mouse nicotinic acetylcholine receptor alpha-subunit gene. DNA Cell Biol 1997; 16:1099-110. [PMID: 9324312 DOI: 10.1089/dna.1997.16.1099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Expression of the nicotinic acetylcholine receptor (AChR) is transcriptionally regulated during the development of vertebrate striated muscle. To better define regulatory elements involved in this process, site-directed mutations were made in the gene's 86 bp muscle specific enhancer. Transient expression assays in skeletal muscle C2C12 cells indicated that all three E-boxes, plus a novel sequence outside the E-boxes, are necessary for full activity of the AChR gene in myotubes. Gel mobility shift assays demonstrated that mutations in the non-E-box sequence disrupted the formation of two DNA/protein complexes while not affecting myoD binding. Methylation interference footprinting confirmed that the complexes form at nucleotides within the mutated region, and also include part of the central E-box. UV crosslinking of nuclear proteins to a DNA probe identified five proteins of 125, 81, 55, 42, and 35 kDa that bind to this region; with the 125 kDa protein being differentially bound in U.V. crosslink assays during the transition from myoblasts to myotubes. These data suggest that interactions between this DNA element and the five proteins contribute to the transcriptional control of the AChR alpha-subunit gene expression during the differentiation of skeletal muscle.
Collapse
Affiliation(s)
- P Dennis
- Division of Cardiovascular Research, Hospital for Sick Children, Toronto, Ontario, Canada
| | | |
Collapse
|
115
|
Taylor JM, Dupont-Versteegden EE, Davies JD, Hassell JA, Houlé JD, Gurley CM, Peterson CA. A role for the ETS domain transcription factor PEA3 in myogenic differentiation. Mol Cell Biol 1997; 17:5550-8. [PMID: 9271430 PMCID: PMC232403 DOI: 10.1128/mcb.17.9.5550] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Activation of adult myoblasts called satellite cells during muscle degeneration is an important aspect of muscle regeneration. Satellite cells are believed to be the only myogenic stem cells in adult skeletal muscle and the source of regenerating muscle fibers. Upon activation, satellite cells proliferate, migrate to the site of degeneration, and become competent to fuse and differentiate. We show here that the transcription factor polyomavirus enhancer activator 3 (PEA3) is expressed in adult myoblasts in vitro when they are proliferative and during the early stages of differentiation. Overexpression of PEA3 accelerates differentiation, whereas blocking of PEA3 function delays myoblast fusion. PEA3 activates gene expression following binding to the ets motif most efficiently in conjunction with the transcription factor myocyte enhancer factor 2 (MEF2). In vivo, PEA3 is expressed in satellite cells only after muscle degeneration. Taken together, these results suggest that PEA3 is an important regulator of activated satellite cell function.
Collapse
Affiliation(s)
- J M Taylor
- Department of Medicine and Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock 72205, USA
| | | | | | | | | | | | | |
Collapse
|
116
|
Kong Y, Flick MJ, Kudla AJ, Konieczny SF. Muscle LIM protein promotes myogenesis by enhancing the activity of MyoD. Mol Cell Biol 1997; 17:4750-60. [PMID: 9234731 PMCID: PMC232327 DOI: 10.1128/mcb.17.8.4750] [Citation(s) in RCA: 230] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The muscle LIM protein (MLP) is a muscle-specific LIM-only factor that exhibits a dual subcellular localization, being present in both the nucleus and in the cytoplasm. Overexpression of MLP in C2C12 myoblasts enhances skeletal myogenesis, whereas inhibition of MLP activity blocks terminal differentiation. Thus, MLP functions as a positive developmental regulator, although the mechanism through which MLP promotes terminal differentiation events remains unknown. While examining the distinct roles associated with the nuclear and cytoplasmic forms of MLP, we found that nuclear MLP functions through a physical interaction with the muscle basic helix-loop-helix (bHLH) transcription factors MyoD, MRF4, and myogenin. This interaction is highly specific since MLP does not associate with nonmuscle bHLH proteins E12 or E47 or with the myocyte enhancer factor-2 (MEF2) protein, which acts cooperatively with the myogenic bHLH proteins to promote myogenesis. The first LIM motif in MLP and the highly conserved bHLH region of MyoD are responsible for mediating the association between these muscle-specific factors. MLP also interacts with MyoD-E47 heterodimers, leading to an increase in the DNA-binding activity associated with this active bHLH complex. Although MLP lacks a functional transcription activation domain, we propose that it serves as a cofactor for the myogenic bHLH proteins by increasing their interaction with specific DNA regulatory elements. Thus, the functional complex of MLP-MyoD-E protein reveals a novel mechanism for both initiating and maintaining the myogenic program and suggests a global strategy for how LIM-only proteins may control a variety of developmental pathways.
Collapse
Affiliation(s)
- Y Kong
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392, USA
| | | | | | | |
Collapse
|
117
|
Cloning and functional characterization of Roaz, a zinc finger protein that interacts with O/E-1 to regulate gene expression: implications for olfactory neuronal development. J Neurosci 1997. [PMID: 9151733 DOI: 10.1523/jneurosci.17-11-04159.1997] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We have identified a protein, Rat O/E-1-associated zinc finger protein (Roaz), that plays a role in regulating the temporal and spatial pattern of olfactory neuronal-specific gene expression. This protein functions by interacting with the olfactory factor O/E-1 and modulating its transcriptional activity. Roaz, isolated via a yeast two-hybrid screen, encoded a protein containing 29 C2H2 zinc fingers of the TFIIIA type. The Roaz mRNA was found in brain, eye, olfactory epithelium, spleen, and heart. In situ hybridization data indicated that Roaz was expressed in the basal layer, consisting of neural precursor cells and immature sensory neurons of the olfactory epithelium, but not in the mature receptor cells. We showed that the Roaz protein bound specifically to O/E-1 by using the yeast two-hybrid system. The two proteins formed a stable complex in coimmunoprecipitation and in vitro binding assays. Introduction of Roaz and O/E-1 into cells containing an olfactory promoter-driven luciferase reporter demonstrated that Roaz abolished O/E-1-mediated transcriptional activation. We propose that the function of Roaz is to modulate negatively the transactivational activity of O/E-1 and to act as a switch protein in the coordination of olfactory sensory neuron differentiation.
Collapse
|
118
|
Lin Q, Schwarz J, Bucana C, Olson EN. Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C. Science 1997; 276:1404-7. [PMID: 9162005 PMCID: PMC4437729 DOI: 10.1126/science.276.5317.1404] [Citation(s) in RCA: 716] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Members of the myocyte enhancer factor-2 (MEF2) family of MADS (MCM1, agamous, deficiens, serum response factor)-box transcription factors bind an A-T-rich DNA sequence associated with muscle-specific genes. The murine MEF2C gene is expressed in heart precursor cells before formation of the linear heart tube. In mice homozygous for a null mutation of MEF2C, the heart tube did not undergo looping morphogenesis, the future right ventricle did not form, and a subset of cardiac muscle genes was not expressed. The absence of the right ventricular region of the mutant heart correlated with down-regulation of the dHAND gene, which encodes a basic helix-loop-helix transcription factor required for cardiac morphogenesis. Thus, MEF2C is an essential regulator of cardiac myogenesis and right ventricular development.
Collapse
Affiliation(s)
- Q Lin
- Department of Molecular Biology and Oncology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75235-9148, USA
| | | | | | | |
Collapse
|
119
|
Black BL, Lu J, Olson EN. The MEF2A 3' untranslated region functions as a cis-acting translational repressor. Mol Cell Biol 1997; 17:2756-63. [PMID: 9111346 PMCID: PMC232126 DOI: 10.1128/mcb.17.5.2756] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Myocyte enhancer factor 2 (MEF2) proteins serve as important muscle transcription factors. In addition, MEF2 proteins have been shown to potentiate the activity of other cell-type-specific transcription factors found in muscle and brain tissue. While transcripts for MEF2 factors are widely expressed in a variety of cells and tissues, MEF2 proteins and binding activity are largely restricted to skeletal, smooth, and cardiac muscle and to brain. This disparity between MEF2 protein and mRNA expression suggests that translational control may play an important role in regulating MEF2 expression. In an effort to identify sequences within the MEF2A message which control translation, we isolated the mouse MEF2A 3' untranslated region (UTR) and fused it to the chloramphenicol acetyltransferase (CAT) reporter gene. Here, we show by CAT assay that the MEF2A 3' UTR dramatically inhibits CAT gene expression in vivo and that this inhibition is due to an internal region within the highly conserved 3' UTR. RNase protection analyses demonstrated that the steady-state level of CAT mRNA produced in vivo was not affected by fusion of the MEF2A 3' UTR, indicating that the inhibition of CAT activity resulted from translational repression. Furthermore, fusion of the MEF2A 3' UTR to CAT inhibited translation in vitro in rabbit reticulocyte lysates. We also show that the translational repression mediated by the 3' UTR of MEF2A is regulated during muscle cell differentiation. As muscle cells in culture differentiate, the translational inhibition caused by the MEF2A 3' UTR is relaxed. These results demonstrate that the MEF2A 3' UTR functions as a cis-acting translational repressor both in vitro and in vivo and suggest that this repression may contribute to the tissue-restricted expression and binding activity of MEF2A.
Collapse
Affiliation(s)
- B L Black
- Department of Molecular Biology and Oncology, The University of Texas Southwestern Medical Center, Dallas 75235, USA
| | | | | |
Collapse
|
120
|
West AG, Shore P, Sharrocks AD. DNA binding by MADS-box transcription factors: a molecular mechanism for differential DNA bending. Mol Cell Biol 1997; 17:2876-87. [PMID: 9111360 PMCID: PMC232140 DOI: 10.1128/mcb.17.5.2876] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The serum response factor (SRF) and myocyte enhancer factor 2A (MEF2A) represent two human members of the MADS-box transcription factor family. Each protein has a distinct biological function which is reflected by the distinct specificities of the proteins for coregulatory protein partners and DNA-binding sites. In this study, we have investigated the mechanism of DNA binding utilized by these two related transcription factors. Although SRF and MEF2A belong to the same family and contain related DNA-binding domains, their DNA-binding mechanisms differ in several key aspects. In contrast to the dramatic DNA bending induced by SRF, MEF2A induces minimal DNA distortion. A combination of loss- and gain-of-function mutagenesis identified a single amino acid residue located at the N terminus of the recognition helices as the critical mediator of this differential DNA bending. This residue is also involved in determining DNA-binding specificity, thus indicating a link between DNA bending and DNA-binding specificity determination. Furthermore, different basic residues within the putative recognition alpha-helices are critical for DNA binding, and the role of the C-terminal extensions to the MADS box in dimerization between SRF and MEF2A also differs. These important differences in the molecular interactions of SRF and MEF2A are likely to contribute to their differing roles in the regulation of specific gene transcription.
Collapse
Affiliation(s)
- A G West
- Department of Biochemistry and Genetics, Medical School, University of Newcastle upon Tyne, United Kingdom
| | | | | |
Collapse
|
121
|
Lee Y, Nadal-Ginard B, Mahdavi V, Izumo S. Myocyte-specific enhancer factor 2 and thyroid hormone receptor associate and synergistically activate the alpha-cardiac myosin heavy-chain gene. Mol Cell Biol 1997; 17:2745-55. [PMID: 9111345 PMCID: PMC232125 DOI: 10.1128/mcb.17.5.2745] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The muscle-specific regulatory region of the alpha-cardiac myosin heavy-chain (MHC) gene contains the thyroid hormone response element (TRE) and two A/T-rich DNA sequences, designated A/T1 and A/T2, the putative myocyte-specific enhancer factor 2 (MEF2) binding sites. We investigated the roles of the TRE and MEF2 binding sites and the potential interaction between thyroid hormone receptor (TR) and MEF2 proteins regulating the alpha-MHC promoter. Deletion mutation analysis indicated that both the A/T2 motif and TRE were required for muscle-specific expression of the alpha-MHC gene. The alpha-MHC enhancer containing both the A/T2 motif and TRE was synergistically activated by coexpression of MEF2 and TR in nonmuscle cells, whereas neither factor by itself activated the alpha-MHC reporters. The reporter construct containing the A/T2 sequence and the TRE linked to a heterologous promoter also showed synergistic activation by coexpression of MEF2 and TR in nonmuscle cells. Moreover, protein binding assays demonstrated that MEF2 and TR specifically bound to one another in vitro and in vivo. The MADS domain of MEF2 and the DNA-binding domain of TR were necessary and sufficient to mediate their physical interaction. Our results suggest that the members of the MADS family (MEF2) and steroid receptor superfamily (TR) interact with one another to synergistically activate the alpha-cardiac MHC gene expression.
Collapse
Affiliation(s)
- Y Lee
- Cardiovascular Research Center, University of Michigan Medical Center, Ann Arbor 48109-0644, USA.
| | | | | | | |
Collapse
|
122
|
Klamut HJ, Bosnoyan-Collins LO, Worton RG, Ray PN. A muscle-specific enhancer within intron 1 of the human dystrophin gene is functionally dependent on single MEF-1/E box and MEF-2/AT-rich sequence motifs. Nucleic Acids Res 1997; 25:1618-25. [PMID: 9092671 PMCID: PMC146611 DOI: 10.1093/nar/25.8.1618] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In previous studies we have described a 5.0 kb Hin dIII fragment downstream of muscle exon 1 that exhibits properties consistent with a muscle-specific transcriptional enhancer. The goal of this study has been to identify the sequence elements responsible for muscle-specific enhancer activity. Functional studies indicated that this enhancer is active in pre- and post-differentiated H9C2(2-1) myoblasts but functions poorly in L6 and C2C12 myotubes. The core enhancer region was delimited to a 195 bp Spe I- Acc I fragment and sequence analysis identified three MEF-1/E box and two MEF-2/AT-rich motifs as potential muscle-specific regulatory domains. EMSA competition and DNase footprinting indicated that sequences within a 30 bp region containing single adjoining MEF-1/E box and MEF-2/AT-rich motifs are target binding sites for trans -acting factors expressed in H9C2(2-1) myotubes but not in L6 or C2C12 myotubes. Site-specific mutations within these motifs resulted in a significant reduction in enhancer activity in H9C2(2-1) myotubes. These results suggest that the mechanisms governing DMD gene expression in muscle are similar to those identified in other muscle-specific genes. However, the myogenic profile of enhancer activity and trans -acting factor binding suggests a more specialized role for this enhancer that is consistent with its potential involvement in dystrophin gene regulation in cardiac muscle.
Collapse
Affiliation(s)
- H J Klamut
- Division of Experimental Therapeutics, Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto, Princess Margaret Hospital, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada.
| | | | | | | |
Collapse
|
123
|
Gong X, Kaushal S, Ceccarelli E, Bogdanova N, Neville C, Nguyen T, Clark H, Khatib ZA, Valentine M, Look AT, Rosenthal N. Developmental regulation of Zbu1, a DNA-binding member of the SWI2/SNF2 family. Dev Biol 1997; 183:166-82. [PMID: 9126292 DOI: 10.1006/dbio.1996.8486] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The SWI2/SNF2 gene family has been implicated in a wide variety of processes, involving regulation of DNA structure and chromatin configuration, mitotic chromosome segregation, and DNA repair. Here we report the characterization of the Zbu1 gene, also known as HIP116, located on human chromosome band 3q25, which encodes a DNA-binding member of this superfamily. Zbu1 was isolated in this study by its affinity for a site in the myosin light chain 1/3 enhancer. The protein has single-stranded DNA-dependent ATPase activity, includes seven helicase motifs, and a RING finger motif that is shared exclusively by the RAD5, spRAD8, and RAD16 family members. During mouse embryogenesis, Zbu1 transcripts are detected relatively late in fetal development and increase in neonatal stages, whereas the protein accumulates asynchronously in heart, skeletal muscle, and brain. In adult human tissues, alternatively spliced Zbu1 transcripts are ubiquitous with highest expression in these tissues. Gene expression is also dramatically induced in human tumor lines and in Li-Fraumeni fibroblast cultures, suggesting that it is aberrantly regulated in malignant cells. The developmental profile of Zbu1 gene expression and the association of the protein with a tissue-specific transcriptional regulatory element distinguish it from other members of the SWI2/SNF2 family and suggest novel roles for the Zbu1 gene product.
Collapse
Affiliation(s)
- X Gong
- Cardiovascular Research Center, Massachusetts General Hospital-East, Charlestown 02129, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Maione R, Amati P. Interdependence between muscle differentiation and cell-cycle control. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1332:M19-30. [PMID: 9061008 DOI: 10.1016/s0304-419x(96)00036-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- R Maione
- Dipartimento di Biopatologia Umana, Università di Roma La Sapienza, Italy
| | | |
Collapse
|
125
|
Lin MH, Bour BA, Abmayr SM, Storti RV. Ectopic expression of MEF2 in the epidermis induces epidermal expression of muscle genes and abnormal muscle development in Drosophila. Dev Biol 1997; 182:240-55. [PMID: 9070325 DOI: 10.1006/dbio.1996.8484] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Myocyte-specific enhancer-binding factor 2 (MEF2) is a myogenic regulatory factor in vertebrates and Drosophila. Whereas the role of MEF2 in regulating vertebrate myogenesis and muscle genes has been extensively studied, little is known of the role of MEF2 in regulating Drosophila myogenesis. We have shown in a recent analysis of the regulation of the Drosophila Tropomyosin I (TmI) gene in transgenic flies that MEF2 is a positive regulator of TmI expression in the somatic body-wall muscles of embryos, larvae, and adults. To understand further the role of MEF2 in myogenesis and test the role of MEF2 in regulating TmI expression, we have used the yeast GAL4/UAS system to generate embryos in which MEF2 is ectopically expressed in tissues where it is not normally expressed or embryos in which MEF2 is overexpressed in the mesoderm and muscles. We observe that ectopic expression of MEF2 in the epidermis and the ventral midline cells in embryos activates the expression of TmI and other muscle genes in these tissues and that this activation is stage-dependent suggesting a requirement for additional factors. Furthermore, ectopic expression of MEF2 in the epidermis results in a decrease in the expression of signaling molecules in the epidermis and a failure of the embryo to properly form body-wall muscles. These results indicate that MEF2 can function out of context in the epidermis to induce the expression of muscle genes and interfere with a requirement for the epidermis in muscle development. We also find that the level of MEF2 in the mesoderm and/or muscles in embryos is critical to body-wall muscle formation; however, no effect is observed on the development of the visceral muscle or dorsal vessel.
Collapse
Affiliation(s)
- M H Lin
- Department of Biochemistry M/C536, University of Illinois College of Medicine, Chicago 60612, USA
| | | | | | | |
Collapse
|
126
|
Sartorelli V, Huang J, Hamamori Y, Kedes L. Molecular mechanisms of myogenic coactivation by p300: direct interaction with the activation domain of MyoD and with the MADS box of MEF2C. Mol Cell Biol 1997; 17:1010-26. [PMID: 9001254 PMCID: PMC231826 DOI: 10.1128/mcb.17.2.1010] [Citation(s) in RCA: 305] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
By searching for molecules that assist MyoD in converting fibroblasts to muscle cells, we have found that p300 and CBP, two related molecules that act as transcriptional adapters, coactivate the myogenic basic-helix-loop-helix (bHLH) proteins. Coactivation by p300 involves novel physical interactions between p300 and the amino-terminal activation domain of MyoD. In particular, disruption of the FYD domain, a group of three amino acids conserved in the activation domains of other myogenic bHLH proteins, drastically diminishes the transactivation potential of MyoD and abolishes both p300-mediated coactivation and the physical interaction between MyoD and p300. Two domains of p300, at its amino and carboxy terminals, independently function to both mediate coactivation and physically interact with MyoD. A truncated segment of p300, unable to bind MyoD, acts as a dominant negative mutation and abrogates both myogenic conversion and transactivation by MyoD, suggesting that endogenous p300 is a required coactivator for MyoD function. The p300 dominant negative peptide forms multimers with intact p300. p300 and CBP serve as coactivators of another class of transcriptional activators critical for myogenesis, myocyte enhancer factor 2 (MEF2). In fact, transactivation mediated by the MEF2C protein is potentiated by the two coactivators, and this phenomenon is associated with the ability of p300 to interact with the MADS domain of MEF2C. Our results suggest that p300 and CBP may positively influence myogenesis by reinforcing the transcriptional autoregulatory loop established between the myogenic bHLH and the MEF2 factors.
Collapse
Affiliation(s)
- V Sartorelli
- Institute for Genetic Medicine and Department of Biochemistry and Molecular Biology, University of Southern California School of Medicine, Los Angeles 90033, USA
| | | | | | | |
Collapse
|
127
|
Chen B, Han BH, Sun XH, Lim RW. Inhibition of muscle-specific gene expression by Id3: requirement of the C-terminal region of the protein for stable expression and function. Nucleic Acids Res 1997; 25:423-30. [PMID: 9016574 PMCID: PMC146444 DOI: 10.1093/nar/25.2.423] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have examined the role of an Id-like protein, Id3 (also known as HLH462), in the regulation of muscle-specific gene expression. Id proteins are believed to block expression of muscle-specific genes by preventing the dimerization between ubiquitous bHLH proteins (E proteins) and myogenic bHLH proteins such as MyoD. Consistent with its putative role as an inhibitor of differentiation, Id3 mRNA was detected in proliferating skeletal muscle cells, was further induced by basic fibroblast growth factor (bFGF) and was down-regulated in differentiated muscle cultures. Overexpression of Id3 efficiently inhibited the MyoD-mediated activation of the muscle-specific creatine kinase (MCK) reporter gene. Deletion analysis indicated that the C-terminal 15 amino acids of Id3 are critical for the full inhibitory activity while deleting up to 42 residues from the C-terminus of the related protein, Id2, did not affect its ability to inhibit the MCK reporter gene. Chimeric protein containing the N-terminal region of Id3 and the C-terminus of Id2 was also non-functional in transfected cells. In contrast, wild-type Id3, the C-terminal mutants, and the Id3/Id2 chimera could all interact with the E-protein E47in vitro. Additional studies indicated that truncation of the Id3 C-terminus might have adversely affected the expression level of the mutant proteins but the Id3/Id2 chimera was stably expressed. Taken together, our results revealed a more complex requirement for the expression and proper function of the Id family proteins than was hitherto expected.
Collapse
Affiliation(s)
- B Chen
- Department of Pharmacology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | | | | | | |
Collapse
|
128
|
|
129
|
Benjamin IJ, Shelton J, Garry DJ, Richardson JA. Temporospatial expression of the small HSP/alpha B-crystallin in cardiac and skeletal muscle during mouse development. Dev Dyn 1997; 208:75-84. [PMID: 8989522 DOI: 10.1002/(sici)1097-0177(199701)208:1<75::aid-aja7>3.0.co;2-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Although the small (22 Kd) heat shock protein/alpha B-crystallin functions as a major structural protein and molecular chaperone in the vertebrate lens, little is known about the protein's role in nonlenticular tissues such as the heart and skeletal muscle. Recent studies have demonstrated that alpha B-crystallin expression is uniquely regulated during myogenesis in vitro. We report here for the first time that the temporal and spatial expression of alpha B-crystallin is similarly regulated in vivo during mouse embryogenesis. Expression of alpha B-crystallin mRNA was detected by in situ hybridization in the primitive heart at 8.5 days postconception (p.c.) and in the myotome of the somites at 10.5 days p.c. This tissue-restricted pattern was corroborated by immunohistochemical studies. alpha B-crystallin mRNA and protein expression were uniform in the developing atria and ventricles without regional differences or gradients. alpha B-crystallin expression was absent in the endocardial cushion, pulmonary trunk, aorta, and endothelium. Examination of muscle precursors revealed expression throughout the dorsoventral aspect of the myotomes and in developing skeletal muscle. Our findings suggest that alpha B-crystallin may serve pivotal roles as a structural protein and a molecular chaperone in myofiber stabilization of metabolically active tissues during early embryogenesis. Thus, early alpha B-crystallin expression in myogenic lineages supports the hypothesis that the putative functions of alpha B-crystallin are coupled to the activation of genetic programs responsible for myogenic differentiation and cardiac morphogenesis.
Collapse
Affiliation(s)
- I J Benjamin
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas 75235-8573, USA
| | | | | | | |
Collapse
|
130
|
Lin X, Bulleit RF. Cell intrinsic mechanisms regulate mouse cerebellar granule neuron differentiation. Neurosci Lett 1996; 220:81-4. [PMID: 8981478 DOI: 10.1016/s0304-3940(96)13214-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cerebellar granule cells isolated from postnatal day 7 mice, and cultured in minimal medium containing only insulin-like growth factor-I (IGF-I), both survive and differentiate. This differentiation is marked by neurite growth and expression of genes associated with terminal differentiation, the myocyte-specific enhancer factor 2A (MEF2A) and the alpha 6 subunit of the gamma-aminobutyric acidA receptor (GABAA alpha 6). Percoll gradient purified granule cells maintained without IGF-I, in minimal medium alone or in medium containing the antioxidant N-acetylcysteine (NAC), also express MEF2A and GABAA alpha 6. Thus, cultured granule neurons can differentiate to some extent cell-autonomously and IGF-I may not be a critical factor for this process.
Collapse
Affiliation(s)
- X Lin
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore 21201, USA
| | | |
Collapse
|
131
|
Yun K, Wold B. Skeletal muscle determination and differentiation: story of a core regulatory network and its context. Curr Opin Cell Biol 1996; 8:877-89. [PMID: 8939680 DOI: 10.1016/s0955-0674(96)80091-3] [Citation(s) in RCA: 285] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Regulation of skeletal muscle determination and differentiation in vertebrates centers on a core regulatory network which is composed of two families of transcription factors, the MyoD group basic helix-loop-helix (bHLH) muscle regulatory factors (MRFs) and the myocyte enhancer factor 2 (MEF2) group of MADS-box regulators. Members of this network interact with each other genetically and physically, and together they cooperate to positively regulate transcription of downstream muscle-specific differentiation genes. During development, the myogenic network can be activated or repressed in response to patterning signals, some of which have recently been identified. Once activated, the powerful myogenic activity of the core network can be modulated and held in check by a remarkably large group of negative regulators that operate on network components by diverse mechanisms. Recent discoveries highlight extensive parallels between myogenesis and peripheral neurogenesis in the structures of their respective regulatory networks and in the interaction of their bHLH networks with other regulatory circuits. Comparisons with Drosophila indicate that these ensembles of interacting molecular circuits have been highly conserved during evolution.
Collapse
Affiliation(s)
- K Yun
- Biology Division 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
132
|
Lin X, Shah S, Bulleit RF. The expression of MEF2 genes is implicated in CNS neuronal differentiation. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1996; 42:307-16. [PMID: 9013788 DOI: 10.1016/s0169-328x(96)00135-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The myocyte enhancer factor-2 (MEF2) proteins are transcription factors required for muscle differentiation. In the present study we examined MEF2 expression in developing cerebellar granule neurons. In the developing postnatal cerebellum, RNA blot analysis revealed that MEF2A and MEF2D RNA levels increase after birth. The majority of this increase occurs around postnatal day 9 reaching a peak at postnatal day 15-18 which is maintained in adults. This time course of expression coincides with the expression of GABA(A) receptor alpha6 subunit RNA, a marker for the differentiation of the mature cerebellar granule neurons. We further observed, using the polyclonal antibody generated against an MEF2A peptide, that MEF2 protein expression occurs primarily in the internal granule cell layer of the developing cerebellum. Thus, MEF2 expression increases as granule neurons differentiate and mature. Experiments also indicated that MEF2 expression not only occurs in the cerebellum but also in other regions of the CNS. In adult mice, expression of RNA for the MEF2 isoforms A, C and D occurs throughout the CNS. MEF2A and D expression occurs at highest levels in the olfactory bulb, hippocampus and cerebellum. The expression of MEF2C differs with low levels of expression in the cerebellum and hindbrain. Using the MEF2A polyclonal antibody, we observed a similar adult pattern of expression for the MEF2 protein with high level of expression in the olfactory bulb, cortex, hippocampus, thalamus and cerebellum. These observations suggest that MEF2 molecules may be an important factor involved in CNS neuron differentiation similar to their role in muscle differentiation.
Collapse
Affiliation(s)
- X Lin
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore 21201, USA
| | | | | |
Collapse
|
133
|
Murry CE, Kay MA, Bartosek T, Hauschka SD, Schwartz SM. Muscle differentiation during repair of myocardial necrosis in rats via gene transfer with MyoD. J Clin Invest 1996; 98:2209-17. [PMID: 8941636 PMCID: PMC507669 DOI: 10.1172/jci119030] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Myocardial infarcts heal by scar formation because there are no stem cells in myocardium, and because adult myocytes cannot divide and repopulate the wound. We sought to redirect the heart to form skeletal muscle instead of scar by transferring the myogenic determination gene, MyoD, into cardiac granulation (wound repair) tissue. A replication-defective adenovirus was constructed containing MyoD under transcriptional control of the Rous sarcoma virus long terminal repeat. The virus converted cultured cardiac fibroblasts to skeletal muscle, indicated by expression of myogenin and skeletal myosin heavy chains (MHCs). To determine if MyoD could induce muscle differentiation in vivo, we injected 2 x 10(9) or 10(10) pfu of either the MyoD or a control beta-galactosidase adenovirus into healing rat hearts, injured 1 wk previously by freeze-thaw. After receiving the lower viral dose, cardiac granulation tissue expressed MyoD mRNA and protein, but did not express myogenin or skeletal MHC. When the higher dose of virus was administered, double immunostaining showed that cells in reparative tissue expressed both myogenin and embryonic skeletal MHC. No muscle differentiation occurred after beta-galactosidase transfection. Thus, MyoD gene transfer can induce skeletal muscle differentiation in healing heart lesions. Modifications of this strategy might eventually provide new contractile tissue to repair myocardial infarcts.
Collapse
Affiliation(s)
- C E Murry
- Department of Pathology, University of Washington, Seattle 98195, USA.
| | | | | | | | | |
Collapse
|
134
|
Theissen G, Kim JT, Saedler H. Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. J Mol Evol 1996; 43:484-516. [PMID: 8875863 DOI: 10.1007/bf02337521] [Citation(s) in RCA: 284] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The MADS-box encodes a novel type of DNA-binding domain found so far in a diverse group of transcription factors from yeast, animals, and seed plants. Here, our first aim was to evaluate the primary structure of the MADS-box. Compilation of the 107 currently available MADS-domain sequences resulted in a signature which can strictly discriminate between genes possessing or lacking a MADS-domain and allowed a classification of MADS-domain proteins into several distinct subfamilies. A comprehensive phylogenetic analysis of known eukaryotic MADS-box genes, which is the first comprising animal as well as fungal and plant homologs, showed that the vast majority of subfamily members appear on distinct subtrees of phylogenetic trees, suggesting that subfamilies represent monophyletic gene clades and providing the proposed classification scheme with a sound evolutionary basis. A reconstruction of the history of the MADS-box gene subfamilies based on the taxonomic distribution of contemporary subfamily members revealed that each subfamily comprises highly conserved putative orthologs and recent paralogs. Some subfamilies must be very old (1,000 MY or more), while others are more recent. In general, subfamily members tend to share highly similar sequences, expression patterns, and related functions. The defined species distribution, specific function, and strong evolutionary conservation of the members of most subfamilies suggest that the establishment of different subfamilies was followed by rapid fixation and was thus highly advantageous during eukaryotic evolution. These gene subfamilies may have been essential prerequisites for the establishment of several complex eukaryotic body structures, such as muscles in animals and certain reproductive structures in higher plants, and of some signal transduction pathways. Phylogenetic trees indicate that after establishment of different subfamilies, additional gene duplications led to a further increase in the number of MADS-box genes. However, several molecular mechanisms of MADS-box gene diversification were used to a quite different extent during animal and plant evolution. Known plant MADS-domain sequences diverged much faster than those of animals, and gene duplication and sequence diversification were extensively used for the creation of new genes during plant evolution, resulting in a relatively large number of interacting genes. In contrast, the available data on animal genes suggest that increase in gene number was only moderate in the lineage leading to mammals, but in the case of MEF2-like gene products, heterodimerization between different splice variants may have increased the combinatorial possibilities of interactions considerably. These observations demonstrate that in metazoan and plant evolution, increased combinatorial possibilities of MADS-box gene product interactions correlated with the evolution of increasingly complex body plans.
Collapse
Affiliation(s)
- G Theissen
- Max-Planck-Institut für Züchtungsforschung, Abteilung Molekulare Pflanzengenetik, Carl-von-Linné-Weg 10, D-50829 Köln, Germany
| | | | | |
Collapse
|
135
|
Black BL, Ligon KL, Zhang Y, Olson EN. Cooperative transcriptional activation by the neurogenic basic helix-loop-helix protein MASH1 and members of the myocyte enhancer factor-2 (MEF2) family. J Biol Chem 1996; 271:26659-63. [PMID: 8900141 DOI: 10.1074/jbc.271.43.26659] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Establishment of skeletal muscle and neural cell types is controlled by families of myogenic and neurogenic basic helix-loop-helix (bHLH) proteins, respectively. Myogenic bHLH proteins have been shown to activate skeletal muscle transcription in collaboration with members of the myocyte enhancer factor-2 (MEF2) family of MCM1-agamous-deficiens-serum response factor (MADS)-box transcription factors, which are expressed in differentiated myocytes and neurons. Here, we show that the neurogenic bHLH protein MASH1 interacts with members of the MEF2 family and that this interaction, mediated by the DNA binding and dimerization domains of these factors, results in synergistic activation of transcription through either the MASH1 or the MEF2 DNA binding site. Consistent with their involvement in activation of neuronal gene expression, members of the MEF2 family are expressed in P19 embryonal carcinoma cells that have been induced to form neurons following treatment with retinoic acid. These results suggest that members of the MEF2 family perform similar roles in synergistic activation of transcription in myogenic and neurogenic lineages by serving as cofactors for cell type-specific bHLH proteins.
Collapse
Affiliation(s)
- B L Black
- Department of Molecular Biology and Oncology, Hamon Center for Basic Cancer Research, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | | | | | | |
Collapse
|
136
|
Ornatsky OI, McDermott JC. MEF2 protein expression, DNA binding specificity and complex composition, and transcriptional activity in muscle and non-muscle cells. J Biol Chem 1996; 271:24927-33. [PMID: 8798771 DOI: 10.1074/jbc.271.40.24927] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Tissue-specific gene expression can be mediated by complex transcriptional regulatory mechanisms. Based on the dichotomy of the ubiquitous distribution of the myocyte enhancer factor 2 (MEF2) gene mRNAs compared to their cell type-restricted activity, we investigated the basis for their tissue specificity. Electrophoretic mobility shift assays using the muscle creatine kinase MEF2 DNA binding site as a probe showed that HeLa, Schneider, L6E9 muscle, and C2C12 muscle cells have a functional MEF2 binding activity that is indistinguishable based on competition analysis. Interestingly, chloramphenicol acetyltransferase reporter assays showed MEF2 site-dependent trans-activation in myogenic C2C12 cells but no trans-activation by the endogenous MEF2 proteins in HeLa cells. By immunofluorescence, we detected abundant nuclear localized MEF2A and MEF2D protein expression in HeLa cells and C2C12 muscle cells. Using immuno-gel shift analysis and also co-immunoprecipitation studies, we show that the predominant MEF2 DNA binding complex bound to MEF2 sites from either the muscle creatine kinase or c-jun regulatory regions in C2C12 muscle cells is comprised of a MEF2A homodimer, whereas in HeLa cells, it is a MEF2A:MEF2D heterodimer. Thus, the presence of MEF2 DNA binding complexes is not necessarily coupled with trans-activation of target genes. The ability of the MEF2 proteins to activate transcription in vivo correlates with the specific dimer composition of the DNA binding complex and the cellular context.
Collapse
Affiliation(s)
- O I Ornatsky
- Departments of Kinesiology and Biology, Faculty of Pure and Applied Science, York University, Toronto, Ontario M3J 1P3, Canada
| | | |
Collapse
|
137
|
Distinct Domains of Myocyte Enhancer Binding Factor-2A Determining Nuclear Localization and Cell Type-specific Transcriptional Activity. J Biol Chem 1996. [DOI: 10.1016/s0021-9258(18)40058-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
138
|
Eckner R, Yao TP, Oldread E, Livingston DM. Interaction and functional collaboration of p300/CBP and bHLH proteins in muscle and B-cell differentiation. Genes Dev 1996; 10:2478-90. [PMID: 8843199 DOI: 10.1101/gad.10.19.2478] [Citation(s) in RCA: 297] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Differentiation of skeletal muscle cells and B lymphocytes is regulated by basic helix-loop-helix (bHLH) proteins. Both differentiation programs are inhibited by the adenovirus E1A oncoprotein. Analysis of E1A mutants has implicated two of its cellular-binding proteins, p300 and CBP, in controlling certain aspects of differentiation. We find that p300 can cooperate with tissue-specific bHLH proteins in activating target genes and requires only the bHLH domain of such proteins to stimulate E box-directed transcription. Importantly, the ability of bHLH proteins to activate transcription correlates with the presence of p300/CBP in E box-dependent DNA-binding complexes, because both phenomena require at least two adjacent E-box motifs. Microinjection of p300/CBP antibodies into myoblasts blocks terminal differentiation, cell fusion, and transcriptional activity of myogenic bHLH proteins. These results suggest that the function of p300/CBP is essential for the execution of key aspects of cellular differentiation.
Collapse
Affiliation(s)
- R Eckner
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
139
|
Ticho BS, Stainier DY, Fishman MC, Breitbart RE. Three zebrafish MEF2 genes delineate somitic and cardiac muscle development in wild-type and mutant embryos. Mech Dev 1996; 59:205-18. [PMID: 8951797 DOI: 10.1016/0925-4773(96)00601-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The zebrafish is an important experimental system for vertebrate embryology, and is well suited to the molecular analysis of muscle development. Transcription factors, such as the MEF2s, regulate skeletal and cardiac muscle-specific genes during development. We report the identification of three zebrafish MEF2 genes which, like their mammalian counterparts, encode factors that function as DNA-binding transcriptional activators of muscle specific promoters. The pattern of MEF2 expression in zebrafish defines discrete cell populations in the developing somites and heart and has mechanistic implications for developmental regulation of the MEF2 genes, when compared with other species. Alteration of MEF2 expression in two mutants affecting somitogenesis provides insight into the control of muscle formation in the embryo.
Collapse
Affiliation(s)
- B S Ticho
- Department of Cardiology, Children's Hospital, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
140
|
Molkentin JD, Olson EN. Combinatorial control of muscle development by basic helix-loop-helix and MADS-box transcription factors. Proc Natl Acad Sci U S A 1996; 93:9366-73. [PMID: 8790335 PMCID: PMC38433 DOI: 10.1073/pnas.93.18.9366] [Citation(s) in RCA: 334] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Members of the MyoD family of muscle-specific basic helix-loop-helix (bHLH) proteins function within a genetic pathway to control skeletal muscle development. Mutational analyses of these factors suggested that their DNA binding domains mediated interaction with a coregulator required for activation of muscle-specific transcription. Members of the myocyte enhancer binding factor 2 (MEF2) family of MADS-box proteins are expressed at high levels in muscle and neural cells and at lower levels in several other cell types. MEF2 factors are unable to activate muscle gene expression alone, but they potentiate the transcriptional activity of myogenic bHLH proteins. This potentiation appears to be mediated by direct interactions between the DNA binding domains of these different types of transcription factors. Biochemical and genetic evidence suggests that MEF2 factors are the coregulators for myogenic bHLH proteins. The presence of MEF2 and cell-specific bHLH proteins in other cell types raises the possibility that these proteins may also cooperate to regulate other programs of cell-specific gene expression. We present a model to account for such cooperative interactions.
Collapse
Affiliation(s)
- J D Molkentin
- Hamon Center for Basic Cancer Research, University of Texas, Southwestern Medical Center at Dallas 75235-9148, USA
| | | |
Collapse
|
141
|
Riechmann JL, Wang M, Meyerowitz EM. DNA-binding properties of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA and AGAMOUS. Nucleic Acids Res 1996; 24:3134-41. [PMID: 8774892 PMCID: PMC146081 DOI: 10.1093/nar/24.16.3134] [Citation(s) in RCA: 184] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The MADS domain proteins APETALA1 (AP1), APETALA3 (AP3), PISTILLATA (PI), and AGAMOUS (AG) specify the identity of Arabidopsis floral organs. AP1 and AG homocomplexes and AP3-PI heterocomplexes bind to CArG-box sequences. The DNA-binding properties of these complexes were investigated. We find that AP1, AG and AP3-PI are all capable of recognizing the same DNA-binding sites, although with somewhat different affinities. In addition, the three complexes induce similar conformational changes on a CArG-box sequence. Phasing analysis reveals that the induced distortion is DNA bending, oriented toward the minor groove. The molecular dissection of AP1, AP3, PI and AG indicates that the boundaries of the dimerization domains of these proteins vary. The regions required to form a DNA-binding complex include, in addition to the MADS box, the entire L region (which follows the MADS box) and the first putative amphipathic helix of the K box in the case of AP3-PI, while for AP1 and AG only a part of the L region is needed. The similarity of the DNA-binding properties of AP1, AP3-PI and AG is discussed with regard to the biological specificity that these proteins exhibit.
Collapse
Affiliation(s)
- J L Riechmann
- Division of Biology, California Institute of Technology, Pasadena 91125, USA
| | | | | |
Collapse
|
142
|
Kaliman P, Viñals F, Testar X, Palacín M, Zorzano A. Phosphatidylinositol 3-kinase inhibitors block differentiation of skeletal muscle cells. J Biol Chem 1996; 271:19146-51. [PMID: 8702591 DOI: 10.1074/jbc.271.32.19146] [Citation(s) in RCA: 165] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Skeletal muscle differentiation involves myoblast alignment, elongation, and fusion into multinucleate myotubes, together with the induction of regulatory and structural muscle-specific genes. Here we show that two phosphatidylinositol 3-kinase inhibitors, LY294002 and wortmannin, blocked an essential step in the differentiation of two skeletal muscle cell models. Both inhibitors abolished the capacity of L6E9 myoblasts to form myotubes, without affecting myoblast proliferation, elongation, or alignment. Myogenic events like the induction of myogenin and of glucose carrier GLUT4 were also blocked and myoblasts could not exit the cell cycle, as measured by the lack of mRNA induction of p21 cyclin-dependent kinase inhibitor. Overexpresssion of MyoD in 10T1/2 cells was not sufficient to bypass the myogenic differentiation blockade by LY294002. Upon serum withdrawal, 10T1/2-MyoD cells formed myotubes and showed increased levels of myogenin and p21. In contrast, LY294002-treated cells exhibited none of these myogenic characteristics and maintained high levels of Id, a negative regulator of myogenesis. These data indicate that whereas phosphatidylinositol 3-kinase is not indispensable for cell proliferation or in the initial events of myoblast differentiation, i.e. elongation and alignment, it appears to be essential for terminal differentiation of muscle cells.
Collapse
Affiliation(s)
- P Kaliman
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 645, 08028 Barcelona, Spain
| | | | | | | | | |
Collapse
|
143
|
Abstract
The formation of skeletal muscle during vertebrate embryogenesis requires commitment of mesodermal precursor cells to the skeletal muscle lineage, withdrawal of myoblasts from the cell cycle, and transcriptional activation of dozens of muscle structural genes. The myogenic basic helix-loop-helix (bHLH) factors - MyoD, myogenin, Myf5, and MRF4 - act at multiple points in the myogenic lineage to establish myoblast identity and to control terminal differentiation. Recent studies have begun to define the inductive mechanisms that regulate myogenic bHLH gene expression and muscle cell determination in the embryo. Myogenic bHLH factors interact with components of the cell cycle machinery to control withdrawal from the cell cycle and act combinatorially with other transcription factors to induce skeletal muscle transcription. Elucidation of these aspects of the myogenic program is leading to a detailed understanding of the regulatory circuits controlling muscle development.
Collapse
Affiliation(s)
- J D Molkentin
- Hamon Center for Basic Research in Cancer, University of Texas, Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, 75235-9148, USA
| | | |
Collapse
|
144
|
McGrew MJ, Bogdanova N, Hasegawa K, Hughes SH, Kitsis RN, Rosenthal N. Distinct gene expression patterns in skeletal and cardiac muscle are dependent on common regulatory sequences in the MLC1/3 locus. Mol Cell Biol 1996; 16:4524-34. [PMID: 8754853 PMCID: PMC231451 DOI: 10.1128/mcb.16.8.4524] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The myosin light-chain 1/3 locus (MLC1/3) is regulated by two promoters and a downstream enhancer element which produce two protein isoforms in fast skeletal muscle at distinct stages of mouse embryogenesis. We have analyzed the expression of transcripts from the internal MLC3 promoter and determined that it is also expressed in the atria of the heart. Expression from the MLC3 promoter in these striated muscle lineages is differentially regulated during development. In transgenic mice, the MLC3 promoter is responsible for cardiac-specific reporter gene expression while the downstream enhancer augments expression in skeletal muscle. Examination of the methylation status of endogenous and transgenic promoter and enhancer elements indicates that the internal promoter is not regulated in a manner similar to that of the MLC1 promoter or the downstream enhancer. A GATA protein consensus sequence in the proximal MLC3 promoter but not the MLC1 promoter binds with high affinity to GATA-4, a cardiac muscle- and gut-specific transcription factor. Mutation of either the MEF2 or GATA motifs in the MLC3 promoter attenuates its activity in both heart and skeletal muscles, demonstrating that MLC3 expression in these two diverse muscle types is dependent on common regulatory elements.
Collapse
Affiliation(s)
- M J McGrew
- Department of Biochemistry, Boston University School of Medicine, Massachusetts 02118, USA
| | | | | | | | | | | |
Collapse
|
145
|
Molkentin JD, Li L, Olson EN. Phosphorylation of the MADS-Box transcription factor MEF2C enhances its DNA binding activity. J Biol Chem 1996; 271:17199-204. [PMID: 8663403 DOI: 10.1074/jbc.271.29.17199] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Members of the myocyte enhancer factor-2 (MEF2) family of transcription factors activate muscle gene expression by binding an A/T-rich DNA sequence in the control regions of muscle-specific genes. There are four MEF2 factors in vertebrates, MEF2A-D, which share homology in an amino-terminal MADS domain and an adjacent region known as the MEF2 domain, that together mediate DNA binding and dimerization. We show that serine 59 located between the MADS and MEF2 domains of MEF2C is phosphorylated in vivo and can be phosphorylated in vitro by casein kinase-II (CKII). Phosphorylation of this site enhanced the DNA binding and transcriptional activity of MEF2C by increasing its DNA binding activity 5-fold. In vivo 32P labeling experiments showed that serine 59 is the only phosphorylation site in the MADS and MEF2 domains. Mutagenesis of this serine to an aspartic acid resulted in an increase in DNA binding and transcriptional activity of MEF2C comparable to that observed when this site was phosphorylated, suggesting that phosphorylation augments DNA binding activity by introducing negative charge. This phosphorylation site, which corresponds to a CKII recognition site, is conserved in all known MEF2 factors in organisms ranging from flies to humans, consistent with its importance for the functions of MEF2C.
Collapse
Affiliation(s)
- J D Molkentin
- Department of Molecular Biology, University of Texas, Southwestern Medical Center at Dallas, 75235-9148, USA
| | | | | |
Collapse
|
146
|
Abstract
The delineation of the mechanisms that regulate cardiac gene expression is central to our understanding of cardiac growth and development. Much progress has been made toward the identification of factors involved in tissue-restricted gene expression, especially in skeletal muscle cells. However, the mechanisms regulating the expression of cardiac-specific genes remain less well understood. Certain homeodomain proteins have been implicated in commitment to the cardiac phenotype. Among the best characterized are the murine proteins Csx, Nkx-2.5, and Nkx-2.6, related to the protein tinman, which is essential for heart formation in Drosophila. The expression of these genes precedes that of cardiac-specific genes and is therefore believed to play a critical role in the development of the heart. The GATA proteins are a family of zinc finger proteins that are also expressed early in cardiac development and may act separately from, or in concert with, the homeodomain proteins as crucial regulators of heart development. The myosin heavy and light chain genes, the actin genes, the troponin genes, and the atrial natriuretic factor and muscle creatine kinase genes have served as excellent paradigms for the study of cardiac gene expression. Although differences in cis-acting elements and their behavior in binding assays have been observed between different genes, there exist similarities that are noteworthy. In this review, we will discuss the factors involved in the regulation of cardiac-specific gene expression in an attempt to provide a better understanding of the process of cardiogenesis.
Collapse
Affiliation(s)
- J D Mably
- Laboratory for Molecular Cardiology, Toronto Hospital, Ontario, Canada
| | | |
Collapse
|
147
|
Molkentin JD, Firulli AB, Black BL, Martin JF, Hustad CM, Copeland N, Jenkins N, Lyons G, Olson EN. MEF2B is a potent transactivator expressed in early myogenic lineages. Mol Cell Biol 1996; 16:3814-24. [PMID: 8668199 PMCID: PMC231378 DOI: 10.1128/mcb.16.7.3814] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
There are four members of the myocyte enhancer binding factor 2 (MEF2) family of transcription factors, MEF2A, -B, -C, and -D, that have homology within an amino-terminal MADS box and an adjacent MEF2 domain that together mediate dimerization and DNA binding. MEF2A, -C, and -D have previously been shown to bind an A/T-rich DNA sequence in the control regions of numerous muscle-specific genes, whereas MEF2B was reported to be unable to bind this sequence unless the carboxyl terminus was deleted. To further define the functions of MEF2B, we analyzed its DNA binding and transcriptional activities. In contrast to previous studies, our results show that MEF2B binds the same DNA sequence as other members of the MEF2 family and acts as a strong transactivator through that sequence. Transcriptional activation by MEF2B is dependent on the carboxyl terminus, which contains two conserved sequence motifs found in all vertebrate MEF2 factors. During mouse embryogenesis, MEF2B transcripts are expressed in the developing cardiac and skeletal muscle lineages in a temporospatial pattern distinct from but overlapping with those of the other Mef2 genes. The mouse Mef2b gene maps to chromosome 8 and is unlinked to other Mef2 genes; its intron-exon organization is similar to that of the other vertebrate Mef2 genes and the single Drosophila Mef2 gene, consistent with the notion that these different Mef2 genes evolved from a common ancestral gene.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Cell Line
- Consensus Sequence
- Crosses, Genetic
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/metabolism
- Embryo, Mammalian
- Enhancer Elements, Genetic
- Female
- Gene Expression Regulation, Developmental
- Genomic Library
- Heart/embryology
- MEF2 Transcription Factors
- Male
- Mice
- Mice, Inbred C57BL
- Molecular Sequence Data
- Muridae
- Muscle, Skeletal/embryology
- Muscle, Skeletal/metabolism
- Mutagenesis, Site-Directed
- Myocardium/metabolism
- Myogenic Regulatory Factors
- Open Reading Frames
- Promoter Regions, Genetic
- Recombinant Proteins/biosynthesis
- Recombinant Proteins/metabolism
- Sequence Homology, Amino Acid
- Trans-Activators/biosynthesis
- Transcription Factors/biosynthesis
- Transcription Factors/chemistry
- Transcription Factors/metabolism
- Transcription, Genetic
- Transfection
Collapse
Affiliation(s)
- J D Molkentin
- Hamon Center for Basic Cancer Research, The University of Texas Southwestern Medical Center at Dallas, 75235-9148, YSA
| | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Mao Z, Nadal-Ginard B. Functional and physical interactions between mammalian achaete-scute homolog 1 and myocyte enhancer factor 2A. J Biol Chem 1996; 271:14371-5. [PMID: 8662987 DOI: 10.1074/jbc.271.24.14371] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The mammalian achaete-scute homolog 1 (MASH1) protein is required for the early development of the nervous system. However, the molecular and biochemical mechanism by which MASH1 acts to determine neurogenesis are still unknown. The myocyte enhancer factor 2A (MEF2A) is a MADS transcription factor that is essential for the specification and differentiation of the muscle lineage. Here we show that MEF2A and MASH1 are coordinately induced during the differentiation of the teratocarcinoma cell line P19 along a neuronal lineage and that in transient transfection assays, MEF2A and MASH1 cooperatively activate gene expression. This cooperativity appears to be due to a specific physical interaction between MEF2A and MASH1. Taken together, these findings suggest that MASH1 via a cooperative interaction with MEF2A may regulate the expression of specific genes that are critical for neuronal differentiation.
Collapse
Affiliation(s)
- Z Mao
- Department of Cardiology, Children's Hospital, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
149
|
Abstract
The MEF2 and MyoD families of transcriptional regulatory factors both play central roles in the terminal differentiation of skeletal muscle. Further, binding sites for the two families often occur nearby, and there have been a number of indications that members of the two families may bind coordinately. The present study provides evidence that known binding sites for the two occur with precise geometric restrictions related to the DNA helical repeat unit, that pairs of putative sites following these restrictions are indicative of skeletal muscle-specific transcriptional regulatory regions, and that the geometric relationship can help provide a consistent interpretation for data that has until now been difficult to explain.
Collapse
Affiliation(s)
- J W Fickett
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, NM 87545, USA.
| |
Collapse
|
150
|
Spicer DB, Rhee J, Cheung WL, Lassar AB. Inhibition of myogenic bHLH and MEF2 transcription factors by the bHLH protein Twist. Science 1996; 272:1476-80. [PMID: 8633239 DOI: 10.1126/science.272.5267.1476] [Citation(s) in RCA: 260] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The myogenic basic helix-loop-helix (bHLH) and MEF2 transcription factors are expressed in the myotome of developing somites and cooperatively activate skeletal muscle gene expression. The bHLH protein Twist is expressed throughout the epithelial somite and is subsequently excluded from the myotome. Ectopically expressed mouse Twist (Mtwist) was shown to inhibit myogenesis by blocking DNA binding by MyoD, by titrating E proteins, and by inhibiting trans-activation by MEF2. For inhibition of MEF2, Mtwist required heterodimerization with E proteins and an intact basic domain and carboxyl-terminus. Thus, Mtwist inhibits both families of myogenic regulators and may regulate myotome formation temporally or spatially.
Collapse
Affiliation(s)
- D B Spicer
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|