101
|
Spillmann AA, Bandtlow CE, Lottspeich F, Keller F, Schwab ME. Identification and characterization of a bovine neurite growth inhibitor (bNI-220). J Biol Chem 1998; 273:19283-93. [PMID: 9668118 DOI: 10.1074/jbc.273.30.19283] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The poor axonal regeneration that follows lesions of the central nervous system (CNS) is crucially influenced by the local CNS tissue environment through which neurites have to grow. In addition to an inhibitory role of the glial scar, inhibitory substrate effects of CNS myelin and oligodendrocytes have been demonstrated. Several proteins including NI-35/250, myelin-associated glycoprotein, tenascin-R, and NG-2 have been described to have neurite outgrowth inhibitory or repulsive properties in vitro. Antibodies raised against NI-35/250 (monoclonal antibody IN-1) were shown to partially neutralize the growth inhibitory effect of CNS myelin and oligodendrocytes, and to result in long distance fiber regeneration in the lesioned adult mammalian CNS in vivo. We report here the purification of a myelin protein to apparent homogeneity from bovine spinal cord which exerts a potent neurite outgrowth inhibitory effect on PC12 cells and chick dorsal root ganglion cells, induces collapse of growth cones of chick dorsal root ganglion cells, and also inhibits the spreading of 3T3 fibroblasts. These activities could be neutralized by the monoclonal antibody IN-1. The purification procedure includes detergent solubilization, anion exchange chromatography, gel filtration, and elution from high resolution SDS-polyacrylamide gel electrophoresis. The active protein has a molecular mass of 220 kDa and an isoelectric point between 5.9 and 6.2. Its inhibitory activity is sensitive to protease treatment and resists harsh treatments like 9 M urea or short heating. Glycosylation is, if present at all, not detectable. Microsequencing resulted in six peptides and strongly suggests that this proteins is novel.
Collapse
Affiliation(s)
- A A Spillmann
- Brain Research Institute, University of Zürich and Swiss Federal Institute of Technology Zürich, August Forelstrasse 1, 8029 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
102
|
Ankerhold R, Leppert CA, Bastmeyer M, Stuermer CA. E587 antigen is upregulated by goldfish oligodendrocytes after optic nerve lesion and supports retinal axon regeneration. Glia 1998. [DOI: 10.1002/(sici)1098-1136(199807)23:3<257::aid-glia8>3.0.co;2-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
103
|
Keirstead HS, Steeves JD. CNS Myelin: Does a Stabilizing Role in Neurodevelopment Result in Inhibition of Neuronal Repair after Adult Injury? Neuroscientist 1998. [DOI: 10.1177/107385849800400416] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The inhibitory properties of mature oligodendrocytes and CNS myelin for neurite outgrowth were clearly documented more than a decade ago in studies involving co-cultures of dissociated glial cells and neurons. Since then, in vitro and in vivo studies have begun to characterize some of the CNS myelin-associated inhibitors of neurite growth. Furthermore, experimental techniques for neutralizing or suppressing these inhibitory effects have been developed. The results of several experiments, involving the suppression of myelination in the developing or adult CNS, suggest that the relatively late appearance of CNS myelin during neural development may serve to stabilize and restrict axonal outgrowth (e.g., collateral sprouting) after appropriate axonal connections have been established. This suggested developmental role of myelin may consolidate and limit the degree of axonal plasticity within the adult CNS; consequently, however, it might also limit axonal regeneration after injury.
Collapse
Affiliation(s)
- H. S. Keirstead
- Medical Research Council Cambridge Centre for Brain Repair (HSK) University of Cambridge Cambridge, United Kingdom Collaboration on Repair Discoveries (JDS) University of British Columbia Vancouver, British Columbia, Canada
| | - John D. Steeves
- Medical Research Council Cambridge Centre for Brain Repair (HSK) University of Cambridge Cambridge, United Kingdom Collaboration on Repair Discoveries (JDS) University of British Columbia Vancouver, British Columbia, Canada
| |
Collapse
|
104
|
Chierzi S, Cenni MC, Maffei L, Pizzorusso T, Porciatti V, Ratto GM, Strettoi E. Protection of retinal ganglion cells and preservation of function after optic nerve lesion in bcl-2 transgenic mice. Vision Res 1998; 38:1537-43. [PMID: 9667018 DOI: 10.1016/s0042-6989(97)00332-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Multicellular organisms face the necessity of removing superfluous or injured cells during normal development, tissue turn-over and in response to damaging conditions. These finalised killings occur throughout a process, commonly called programmed cell death (PCD), which is placed under strict cellular control. PCD is regulated by the products of the expression of a number of genes. This fact raises the intriguing possibility of inhibiting such degenerative processes by operating on some of the controlling genes. Central neurons of transgenic mice overexpressing bcl-2, a powerful inhibitor of PCD, are remarkably resistant to degeneration induced by noxious stimuli. We have explored the ate of retinal ganglion cells and of their axons, when such transgenic animals have been challenged by a lesion of the optic nerve. These results have direct bearing on the possibility of attaining functional restoration of the injured pathway.
Collapse
Affiliation(s)
- S Chierzi
- Istituto di Neurofisiologia CNR, Pisa, Italy
| | | | | | | | | | | | | |
Collapse
|
105
|
Lang DM, Monzón-Mayor M, Bandtlow CE, Stuermer CA. Retinal axon regeneration in the lizard Gallotia galloti in the presence of CNS myelin and oligodendrocytes. Glia 1998; 23:61-74. [PMID: 9562185 DOI: 10.1002/(sici)1098-1136(199805)23:1<61::aid-glia6>3.0.co;2-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Retinal ganglion cell (RGC) axons in lizards (reptiles) were found to regenerate after optic nerve injury. To determine whether regeneration occurs because the visual pathway has growth-supporting glia cells or whether RGC axons regrow despite the presence of neurite growth-inhibitory components, the substrate properties of lizard optic nerve myelin and of oligodendrocytes were analyzed in vitro, using rat dorsal root ganglion (DRG) neurons. In addition, the response of lizard RGC axons upon contact with rat and reptilian oligodendrocytes or with myelin proteins from the mammalian central nervous system (CNS) was monitored. Lizard optic nerve myelin inhibited extension of rat DRG neurites, and lizard oligodendrocytes elicited DRG growth cone collapse. Both effects were partially reversed by antibody IN-1 against mammalian 35/250 kD neurite growth inhibitors, and IN-1 stained myelinated fiber tracts in the lizard CNS. However, lizard RGC growth cones grew freely across oligodendrocytes from the rat and the reptilian CNS. Mammalian CNS myelin proteins reconstituted into liposomes and added to elongating lizard RGC axons caused at most a transient collapse reaction. Growth cones always recovered within an hour and regrew. Thus, lizard CNS myelin and oligodendrocytes possess nonpermissive substrate properties for DRG neurons--like corresponding structures and cells in the mammalian CNS, including mammalian-like neurite growth inhibitors. Lizard RGC axons, however, appear to be far less sensitive to these inhibitory substrate components and therefore may be able to regenerate through the visual pathway despite the presence of myelin and oligodendrocytes that block growth of DRG neurites.
Collapse
Affiliation(s)
- D M Lang
- Faculty of Biology, University of Konstanz, Germany
| | | | | | | |
Collapse
|
106
|
Rao Y, Zipursky SL. Domain requirements for the Dock adapter protein in growth- cone signaling. Proc Natl Acad Sci U S A 1998; 95:2077-82. [PMID: 9482841 PMCID: PMC19255 DOI: 10.1073/pnas.95.5.2077] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/1997] [Accepted: 12/18/1997] [Indexed: 02/06/2023] Open
Abstract
Tyrosine phosphorylation has been implicated in growth-cone guidance through genetic, biochemical, and pharmacological studies. Adapter proteins containing src homology 2 (SH2) domains and src homology 3 (SH3) domains provide a means of linking guidance signaling through phosphotyrosine to downstream effectors regulating growth-cone motility. The Drosophila adapter, Dreadlocks (Dock), the homolog of mammalian Nck containing three N-terminal SH3 domains and a single SH2 domain, is highly specialized for growth-cone guidance. In this paper, we demonstrate that Dock can couple signals in either an SH2-dependent or an SH2-independent fashion in photoreceptor (R cell) growth cones, and that Dock displays different domain requirements in different neurons.
Collapse
Affiliation(s)
- Y Rao
- Department of Biological Chemistry, Molecular Biology Institute, The School of Medicine, University of California, Los Angeles, CA 90095-1662, USA
| | | |
Collapse
|
107
|
Stier H, Schlosshauer B. Different cell surface areas of polarized radial glia having opposite effects on axonal outgrowth. Eur J Neurosci 1998; 10:1000-10. [PMID: 9753167 DOI: 10.1046/j.1460-9568.1998.00110.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During neuronal development neurites are likely to be specifically guided to their targets. Within the chicken retina, ganglion cell axons are extended exclusively into the optic fibre layer, but not into the outer retina. We investigated, whether radial glial cells having endfeet at the optic fibre layer and somata in the outer retina, might be involved in neurite guidance. In order to analyse distinct cell surface areas, endfeet and somata of these glial cells were purified. Glial endfeet were isolated from flat mounted retina by a specific detachment procedure. Glial somata were purified by negative selection using a monoclonal antibody/complement mediated cytolysis of all non-glial cells. Retinal tissue strips were explanted either onto pure glial endfeet or onto glial somata. As revealed by scanning and fluorescence microscopy, essentially no ganglion cell axons were evident on glial somata, whereas axonal outgrowth was abundant on glial endfeet. However, when glial somata were heat treated and employed thereafter as the substratum, axon extension was significantly increased. Time-lapse video recording studies indicated that purified cell membranes of glial somata but not of endfeet induced collapse of growth cones. Collapsing activity was destroyed by heat treatment of glial membranes. The collapsing activity of retinal glia was found to be specific for retinal ganglion cell neurites, because growth cones from dorsal root ganglia remained unaffected. Employing four different kinase inhibitors revealed that the investigated protein kinase types were unlikely to be involved in the collapse reaction. The data show for the first time that radial glial cells are functionally polarized having permissive endfeet and inhibitory somata with regard to outgrowing axons. This finding underscores the pivotal role of radial glia in structuring developing nervous systems.
Collapse
Affiliation(s)
- H Stier
- Naturwissenschaftliches und Medizinisches Institut, Reutlingen, Germany
| | | |
Collapse
|
108
|
Blackstone NW. Individuality in early eukaryotes and the consequences for matazoan development. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 1998; 19:23-43. [PMID: 15898187 DOI: 10.1007/978-3-642-48745-3_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Affiliation(s)
- N W Blackstone
- Department of Biological Sciences, Northern Illinois University, Dekalb, Illinois 60115, USA
| |
Collapse
|
109
|
David S. Axon growth promoting and inhibitory molecules involved in regeneration in the adult mammalian central nervous system. ACTA ACUST UNITED AC 1998. [DOI: 10.1002/(sici)1098-2779(1998)4:3<171::aid-mrdd4>3.0.co;2-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
110
|
Ming GL, Song HJ, Berninger B, Holt CE, Tessier-Lavigne M, Poo MM. cAMP-dependent growth cone guidance by netrin-1. Neuron 1997; 19:1225-35. [PMID: 9427246 DOI: 10.1016/s0896-6273(00)80414-6] [Citation(s) in RCA: 445] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Netrin-1 is known to function as a chemoattractant for several classes of developing axons and as a chemorepellent for other classes of axons, apparently dependent on the receptor type expressed by responsive cells. In culture, growth cones of embryonic Xenopus spinal neurons exhibited chemoattractive turning toward the source of netrin-1 but showed chemorepulsive responses in the presence of a competitive analog of cAMP or an inhibitor of protein kinase A. Both attractive and repulsive responses were abolished by depleting extracellular calcium and by adding a blocking antibody against the netrin-1 receptor Deleted in Colorectal Cancer. Thus, nerve growth cones may respond to the same guidance cue with opposite turning behavior, dependent on other coincident signals that set the level of cytosolic cAMP.
Collapse
Affiliation(s)
- G L Ming
- Department of Biology, University of California at San Diego, La Jolla 92093-0357, USA
| | | | | | | | | | | |
Collapse
|
111
|
Bandtlow CE, Löschinger J. Developmental changes in neuronal responsiveness to the CNS myelin-associated neurite growth inhibitor NI-35/250. Eur J Neurosci 1997; 9:2743-52. [PMID: 9517479 DOI: 10.1111/j.1460-9568.1997.tb01703.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The extent of fibre regeneration in the adult injured vertebrate nervous system appears to be primarily determined by the local environment. Thus, the failure of axon regrowth in the central nervous system (CNS) is crucially influenced by the presence of the myelin-associated neurite growth inhibitor NI-35/250 and possibly also by molecules such as the myelin-associated glycoprotein and the proteoglycans. Developmental time course studies have shown that the capacity for regeneration declines sharply with the appearance of mature oligodendrocytes and myelin, which indicates a role of NI-35/250 in restricting CNS regeneration and plasticity. However, recent in vitro and in vivo studies showed that embryonic neurons are capable of extending fibres on and in adult CNS tissue apparently unaffected by myelinated areas. A possible explanation is that very immature neurons have yet to express the appropriate receptors and response mechanisms for factors that normally induce growth inhibition at a later stage of development. Here we report that embryonic rat dorsal root ganglion and chick retinal ganglion cells display different sensitivity to bovine NI-35/250 compared with mature neurons. In older neurons NI-35/250 could evoke long-lasting collapse responses accompanied by a large increase in the intracellular calcium level, persisting for several minutes. In contrast, their embryonic counterparts collapsed only transiently when exposed to NI-35/250, and increases in intracellular calcium concentration were small and transient. Calcium influx induced experimentally by the calcium ionophore A23187 revealed that it was not the maximal size of the calcium increase but rather the duration of elevated calcium concentration that was the most important determinant for subsequent morphological alterations of the growth cone. Our data further suggest that developing neurons acquire their complete sensitivity for NI-35/250 around the time of myelination.
Collapse
Affiliation(s)
- C E Bandtlow
- Brain Research Institute, University of Zurich, Switzerland
| | | |
Collapse
|
112
|
Löschinger J, Bandtlow CE, Jung J, Klostermann S, Schwab ME, Bonhoeffer F, Kater SB. Retinal axon growth cone responses to different environmental cues are mediated by different second-messenger systems. JOURNAL OF NEUROBIOLOGY 1997; 33:825-34. [PMID: 9369154 DOI: 10.1002/(sici)1097-4695(19971120)33:6<825::aid-neu9>3.0.co;2-b] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Numerous studies have shown that the developing tip of a neurite, the growth cone, can respond to environmental cues with behaviors such as guidance or collapse. To assess whether a given cell type can use more than one second-messenger pathway for a single behavior, we compared the influence of two well-characterized guidance cues on growth cones of chick temporal retinal ganglion cells. The first cue was the repulsive activity derived from the posterior optic tectum (p-membranes), and the second was the collapse-inducing activity derived from oligodendrocytes known as NI35/NI250. p-Membranes caused permanent growth cone collapse with no recovery after several hours, while NI35 caused transient collapse followed by recovery after about 10 min. The p-membrane-induced collapse was found to be Ca2+ independent, as shown using the Ca2+-sensitive dye Fura-2 and by the persistence of collapse in Ca2+-free medium. Dantrolene, a blocker of the ryanodine receptor, had only a minor effect on the collapse frequency caused by p-membranes. In contrast, the NI35-induced collapse was clearly Ca2+ dependent. [Ca2+]i increased sevenfold preceding collapse, and both dantrolene and antibodies against NI35 significantly reduced both the Ca2+ increase and the collapse frequency. Thus, even in a single cell type, growth cone collapse induced by two different signals can be mediated by two different second-messenger systems.
Collapse
Affiliation(s)
- J Löschinger
- Max-Planck Institut für Entwicklungsbiologie, Abteilung für Physikalische Biologie, Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
113
|
Ouyang Y, Martone ME, Deerinck TJ, Airey JA, Sutko JL, Ellisman MH. Differential distribution and subcellular localization of ryanodine receptor isoforms in the chicken cerebellum during development. Brain Res 1997; 775:52-62. [PMID: 9439828 DOI: 10.1016/s0006-8993(97)00840-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The distribution of ryanodine receptor (RyR) isoforms was examined using isoform-specific monoclonal antibodies in the developing chicken brain, from E18 through adulthood, using light and electron microscopic immunocytochemistry. Monoclonal antibody 110F is specific for the alpha-skeletal muscle form of RyR, while monoclonal antibody 110E recognizes both the beta-skeletal muscle and cardiac isoforms, but does not distinguish between the two. Significant differences in the distribution of the alpha- and beta/cardiac forms were observed. Labeling for the alpha-form was restricted to cerebellar Purkinje neurons while the beta/cardiac form was observed in neurons throughout the brain. A major finding was the presence of labeling for the beta/cardiac in presynaptic terminals of the parallel fibers in the molecular layer and the mossy fiber terminals in the granular layer glomeruli in late development and during adulthood. Labeling for the beta/cardiac, but not the alpha-form, underwent a major redistribution in the cerebellum during the course of development. At 1 day of age, beta/cardiac labeling was present mainly in Purkinje neurons. From 1 day to 4 weeks, immunolabeling for the beta/cardiac form gradually disappeared from Purkinje neurons, but increased in granule cells. Within the molecular layer, the labeling pattern changed from being primarily within Purkinje dendrites to a more diffuse pattern. Electron microscopic examination of the cerebellar molecular layer of 2-week-old chicks revealed that beta/cardiac-labeling was mainly present in the axons and presynaptic processes of the parallel fibers. No developmental changes were observed in other brain regions. This study represents the first demonstration of ryanodine receptor immunoreactivity in presynaptic boutons and suggests that the ryanodine receptor may modulate neurotransmitter release through local regulation of intracellular calcium in the parallel fiber synapse.
Collapse
Affiliation(s)
- Y Ouyang
- Department of Neurosciences, University of California at San Diego, School of Medicine, La Jolla 92093-0608, USA
| | | | | | | | | | | |
Collapse
|
114
|
Knipper M, Rylett RJ. A new twist in an old story: the role for crosstalk of neuronal and trophic activity. Neurochem Int 1997; 31:659-76. [PMID: 9364452 DOI: 10.1016/s0197-0186(97)00009-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A number of recent findings suggest a reciprocal interaction between neurotransmitters and neurotrophins functioning at the level of the synapse, which may be relevant not only for plasticity changes in the mature nervous system, but also for the development of synaptic connectivity and for survival or maturation of neurons prior to target contact. Thus, neurotrophin-induced attenuation of frequency-dependent depletion of releasable synaptic vesicle pools of neurotransmitter at synapses may participate in Hebbian and non-Hebbian forms of LTP, as a characteristic of mature synaptic contacts. Subsequent to nerve/target contact, neurotrophins also appear to mediate contact-induced enhancement of neurotransmitter release; this may participate in a developmental improvement of synapse efficacy, stabilization of synaptic contacts, and maturation of "conductive" functional synapses. Coincident with a transmitter-induced elevation of cytosolic Ca2+ levels within growth cones, a local neurotrophin-mediated increase in released neurotransmitter occurring subsequent to stabilization of a distinct synaptic contact may then participate in the refinement of synapses with retention of those neurites affected by neurotrophins and withdrawal of those neurites not affected by neurotrophins. Finally, prior to nerve/target contact, Ca2+ channel-generated spontaneous neuronal activity as well as co-expression of neurotrophins and their receptors may play a role in maturational changes.
Collapse
Affiliation(s)
- M Knipper
- Department of Otolaryngology, Tübingen Centre for Hearing Research, University of Tübingen, Germany
| | | |
Collapse
|
115
|
Abstract
The natural ability of the adult central nervous system of higher vertebrates to recover from injury is highly limited. This limitation is most likely due to an inhospitable environment and/or intrinsic incapacities of the neurons to re-extend their neurites after injury or axotomy. The rat corticospinal tract is the largest tract leading from brain to spinal cord and is often used as a model in developmental and regeneration studies. The extensive know-how of factors involved in the development of the corticospinal tract did provide the foundation for many studies on corticospinal tract regrowth after injury in the adult spinal cord. The results of these experiments, as discussed in this review, have led to important contributions to the further understanding of central nervous system regeneration.
Collapse
Affiliation(s)
- E A Joosten
- Department of Neurology, Rudolf Magnus Institute for Neurosciences, University of Utrecht, The Netherlands
| |
Collapse
|
116
|
Schoop VM, Gardziella S, Müller CM. Critical period-dependent reduction of the permissiveness of cat visual cortex tissue for neuronal adhesion and neurite growth. Eur J Neurosci 1997; 9:1911-22. [PMID: 9383214 DOI: 10.1111/j.1460-9568.1997.tb00758.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
During postnatal development, the visual cortex undergoes an experience-dependent refinement of its circuitry. This process includes synapse formation, as well as synapse elimination. Both mechanisms appear to be restricted to a limited 'critical period' which lasts for approximately 2 months in cats. We tested whether the termination of the critical period for cortical malleability is paralleled by changes in the growth permissiveness of the tissue. These changes may inhibit progressive reorganization of functional circuitries mediated by axon growth. Embryonic cortical neurons were cultured on unfixed cryostat sections of the visual cortex obtained from cats aged 2-50 weeks. After 2-3 days in vitro the distribution of viable cells and the percentage of neurite-bearing cells were determined and analysed with respect to the developmental age and subdivisions of the underlying tissue substrate. It was shown that cell adhesion and neurite formation are correlated with the developmental age of the substrate tissue and the time period of myelination. While embryonic neurons adhered and survived on grey and white matter tissue from 2- and 4-week-old kittens, there was a significant reduction in cell adhesion on the myelinated white matter regions of the tissue sections of older animals. Quantitative analyses showed that neurite formation by cultured neurons also became successively impaired on grey and white matter areas of tissue substrates, corresponding to the time course of the critical period for cortical malleability. On grey matter tissue this effect was most pronounced between the second and sixth postnatal weeks. The effects were not antagonized by coating the substrate sections with the growth-promoting molecule laminin. It is therefore proposed that neurite growth-inhibiting factors, most probably associated with central nervous system myelin, are gradually expressed postnatally and may contribute to the termination of the critical period in the visual cortex of cats.
Collapse
Affiliation(s)
- V M Schoop
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | | | | |
Collapse
|
117
|
Goshima Y, Kawakami T, Hori H, Sugiyama Y, Takasawa S, Hashimoto Y, Kagoshima-Maezono M, Takenaka T, Misu Y, Strittmatter SM. A novel action of collapsin: collapsin-1 increases antero- and retrograde axoplasmic transport independently of growth cone collapse. JOURNAL OF NEUROBIOLOGY 1997; 33:316-28. [PMID: 9298768 DOI: 10.1002/(sici)1097-4695(199709)33:3<316::aid-neu9>3.0.co;2-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chick collapsin-1, a member of the semaphorin family, has been implicated in axonal pathfinding as a repulsive guidance cue. Collapsin-1 induces growth cone collapse via a pathway which may include CRMP-62 and heterotrimeric G proteins. CRMP-62 protein is related to UNC-33, a nematode neuronal protein required for appropriately directed axonal extension. Mutations in unc-33 affect neural microtubules, the basic cytoskeletal elements for axoplasmic transport. Using computer-assisted video-enhanced differential interference contrast microscopy, we now demonstrate that collapsin-1 potently promotes axoplasmic transport. Collapsin-1 doubles the number of antero- and retrograde-transported organelles but not their velocity. Collapsin-1 decreases the number of stationary organelles, suggesting that the fraction of time during which a particle is moving is increased. Collapsin-1-stimulated transport occurs by a mechanism distinct from that causing growth cone collapse. Pertussis toxin (PTX) but not its B oligomer blocks collapsin-induced growth cone collapse. The holotoxin does not affect collapsin-stimulated axoplasmic transport. Mastoparan and a myelin protein NI-35 induce PTX-sensitive growth cone collapse but do not stimulate axoplasmic transport. These results provide evidence that collapsin has a unique property to activate axonal vesicular transport systems. There are at least two distinct pathways through which collapsin exerts its actions in developing neurons.
Collapse
Affiliation(s)
- Y Goshima
- Department of Pharmacology, Yokohama City University School of Medicine, Yokohama, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Zhang Z, Guth L. Experimental spinal cord injury: Wallerian degeneration in the dorsal column is followed by revascularization, glial proliferation, and nerve regeneration. Exp Neurol 1997; 147:159-71. [PMID: 9294413 DOI: 10.1006/exnr.1997.6590] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The presence of adequate blood supply is a critical factor in recovery from traumatic injuries. We have examined whether the revascularization of the injured tissues is as crucial a precondition for wound healing in the spinal cord as in other organs. The development of the initial primary lesion (PL) after spinal crush injury in rats is followed by the formation of a unique tunnel-like dorsal column lesion (DCL) that extends rostrocaudally for many millimeters from the primary injury site. The DCL has been shown to result from Wallerian degeneration of the long spinal tracts in the dorsal column. In this study, we compared the processes of revascularization, wound healing, and nerve regeneration in the PL and the DCL by light microscopy after a crush injury of the cord. The spinal cord of 54 adults rats was crushed at T8 with jewelers forceps. The rats were allowed to survive from 3 h up to 8 weeks after spinal cord injury. The PL appeared immediately after injury and the DCL began to develop 6 h later. Infiltration of neutrophils, which is the first sign of the inflammatory responses to injury, began several hours later in the DCL than in the PL. Secondary vascular injury then occurred which resulted in hemorrhage around the DCL and rapid enlargement of the lesion during the remainder of the first week. Subsequent changes in the PL and DCL were entirely different. The PL underwent progressive enlargement and cavitation such that by 8 weeks, the lesion contained only very few cells, vessels, and axons scattered between huge fluid-filled cavities. The DCL, on the other hand, was maximal in size at 1 week and declined significantly in size and cavitation thereafter. By 8 weeks it was highly vascularized, contained abundant nerve fibers, and lacked any trace of cavitation. These findings amplify the current view that ischemia plays a critical role in spinal cord trauma by showing that revascularization precedes tissue repair and nerve regeneration in the dorsal columns. We conclude (a) that a well-vascularized lesion permits the ingrowth of glial and other cells which give rise to a supportive matrix for the nerve regeneration and (b) that procedures which induce revascularization or angiogenesis will ameliorate the cascade of progressive tissue necrosis.
Collapse
Affiliation(s)
- Z Zhang
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville 22908, USA
| | | |
Collapse
|
119
|
Abstract
Collapsin-1 or semaphorin III(D) inhibits axonal outgrowth by collapsing the lamellipodial and filopodial structures of the neuronal growth cones. Because growth cone collapse is associated with actin depolymerization, we considered whether small GTP-binding proteins of the rho subfamily might participate in collapsin-1 signal transduction. Recombinant rho, rac1, and cdc42 proteins were triturated into embryonic chick (DRG) neurons. Constitutively active rac1 increases the proportion of collapsed growth cones, and dominant negative rac1 inhibits collapsin-1-induced collapse of growth cones and collapsin-1 inhibition of neurite outgrowth. DRG neurons treated with dominant negative rac1 remain sensitive to myelin-induced growth cone collapse. Similar mutants of cdc42 do not alter growth cone structure, neurite elongation, or collapsin-1 sensitivity. Whereas the addition of activated rho has no effect, the inhibition of rho with Clostridium botulinum C3 transferase stimulates the outgrowth of DRG neurites. C3 transferase-treated growth cones exhibit little or no lamellipodial spreading and are minimally responsive to collapsin-1 and myelin. These data demonstrate a prominent role for rho and rac1 in modulating growth cone motility and indicate that rac1 may mediate collapsin-1 action.
Collapse
|
120
|
Martone ME, Alba SA, Edelman VM, Airey JA, Ellisman MH. Distribution of inositol-1,4,5-trisphosphate and ryanodine receptors in rat neostriatum. Brain Res 1997; 756:9-21. [PMID: 9187309 DOI: 10.1016/s0006-8993(96)01430-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The distribution of the inositol-1,4,5-trisphosphate (IP3) and the cardiac form of the ryanodine receptor, two intracellular calcium channels, was examined in the rat neostriatum. Both IP3 and ryanodine receptor labeling occurred within striatal medium spiny cells but only ryanodine receptor labeling was present in choline acetyltransferase- and parvalbumin-positive interneurons. IP3 receptor labeling was observed within cell bodies, dendrites and spines of spiny striatal neurons, as seen at both the light and electron microscopic levels. Subcellular labeling for the ryanodine receptor was restricted to cell bodies and proximal dendrites when a polyclonal antibody raised against a peptide sequence from the dog cardiac ryanodine receptor was employed. More extensive dendritic labeling was seen using monoclonal antibody MA3-916, also raised against the canine cardiac ryanodine receptor. At the ultrastructural level, labeled dendritic spines were observed frequently with the monoclonal but not the polyclonal antibody. Ryanodine receptor labeling also was present within astrocytic processes surrounding blood vessels and within the neuropil, regardless of the antibody used. The results of these studies suggest that the ryanodine receptor plays a general role in intracellular calcium regulation within striatal cells while the IP3 receptor plays a specialized role within spiny neurons.
Collapse
Affiliation(s)
- M E Martone
- Department of Neurosciences, University of California, San Diego, La Jolla 92093-0608, USA
| | | | | | | | | |
Collapse
|
121
|
The soluble N-ethylmaleimide-sensitive factor attached protein receptor complex in growth cones: molecular aspects of the axon terminal development. J Neurosci 1997. [PMID: 9006987 DOI: 10.1523/jneurosci.17-04-01460.1997] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Soluble N-ethylmaleimide-sensitive factor attached protein (SNAP) receptor (SNARE) mechanisms are thought to be involved in two important processes in axonal growth cones: (1) membrane expansion for axonal growth and (2) vesicular membrane fusion for mature synaptic transmission. We investigated the localization and interactions among the proteins involved in SNARE complex formation in isolated growth cone particles (GCP) from forebrain. We demonstrated that the SNARE complex is present in GCPs morphologically without synaptic vesicles (SVs) and associated with growth cone vesicles. However, the apparently SV-free GCP was lacking in the regulatory mechanisms inhibiting SNARE complex formation proposed in SV fusion, i.e., the association of synaptotagmin with the SNARE complex, and vesicle-associated membrane protein (VAMP)-synaptophysin complex formation. The core components of the SNARE complex (syntaxin, SNAP-25, and VAMP) accumulated for several days before postnatal day 7, when SVs first appeared, and preceded the accumulation of marker proteins such as synaptophysin, SV2, and V-ATPase. Our present results suggest that the SNARE mechanism for vesicular transmitter release is not fully functional in growth cones before the appearance of SVs, but the SNARE mechanism is working for membrane expansion in growth cones, which supports our recent report. We concluded that the regulation of the SNARE complex in growth cones is different from that in mature presynaptic terminals and that this switching may be one of the key steps in development from the growth cone to the presynaptic terminal.
Collapse
|
122
|
Spillmann AA, Amberger VR, Schwab ME. High molecular weight protein of human central nervous system myelin inhibits neurite outgrowth: an effect which can be neutralized by the monoclonal antibody IN-1. Eur J Neurosci 1997; 9:549-55. [PMID: 9104596 DOI: 10.1111/j.1460-9568.1997.tb01631.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Neurite outgrowth of PC12 cells in the presence of nerve growth factor and the spreading of 3T3 fibroblasts were inhibited by human myelin proteins from different areas of the central nervous system (CNS) in a dose-dependent manner. Application of liposomes containing human CNS myelin proteins induced rapid collapse of PC12 growth cones. When 3T3 fibroblasts were plated on a human CNS myelin protein-coated substrate the cells remained round, and spreading was inhibited. All these inhibitory effects could be neutralized by the monoclonal antibody IN-1, which was raised against a 250 kDa neurite growth-inhibiting protein (NI-250) of rat CNS myelin. Comparison of the inhibitory properties of human and bovine CNS myelin on PC12 neurite outgrowth showed that human CNS myelin was slightly more inhibitory per unit of myelin protein. Analysis by sodium dodecyl sulphate-polyacrylamide gel electrophoresis revealed that in human myelin, as in rat and bovine myelin, a high molecular weight protein is responsible for the inhibitory activities on neurite outgrowth and fibroblast spreading.
Collapse
Affiliation(s)
- A A Spillmann
- Brain Research Institute, University of Zurich, Switzerland
| | | | | |
Collapse
|
123
|
Tatagiba M, Brösamle C, Schwab ME. Regeneration of Injured Axons in the Adult Mammalian Central Nervous System. Neurosurgery 1997. [DOI: 10.1227/00006123-199703000-00023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
124
|
Tatagiba M, Brösamle C, Schwab ME. Regeneration of injured axons in the adult mammalian central nervous system. Neurosurgery 1997; 40:541-6; discussion 546-7. [PMID: 9055294 DOI: 10.1097/00006123-199703000-00023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The axons of peripheral nerves have a high capacity for regeneration after injury, whereas injury to the axons in the adult central nervous system (CNS) of higher species does not generally result in regeneration. In recent years, significant developments in neuroscience research have resulted in an improved understanding of the processes involved in the axonal response to CNS trauma. Myelin-associated proteins in the CNS white matter play a crucial role as strong inhibitors of the growth of nerve fibers. Neutralization of these proteins by monoclonal antibody IN-1 directed against the inhibitory proteins led to pronounced axonal regeneration in the adult spinal cords of lesioned rats. The morphological findings were recently complemented by the demonstration of very significant functional improvements in rats with transection lesions of their spinal cords after treatment with the antibody IN-1 that neutralizes the myelin-associated nerve growth inhibitors. Moreover, several neurotrophic factors that promote axonal survival and sprouting in the peripheral nervous system and the CNS have been identified in recent years. The combined use of specific neurotrophic factors and the IN-1 antibody in different experimental procedures, including spinal cord injury, have significantly improved regenerative axonal growth. We briefly review these recent developments in CNS axonal regeneration research and discuss possible clinical applications.
Collapse
Affiliation(s)
- M Tatagiba
- Brain Research Institute, University of Zurich, Switzerland
| | | | | |
Collapse
|
125
|
Williamson T, Gordon-Weeks PR, Schachner M, Taylor J. Microtubule reorganization is obligatory for growth cone turning. Proc Natl Acad Sci U S A 1996; 93:15221-6. [PMID: 8986791 PMCID: PMC26384 DOI: 10.1073/pnas.93.26.15221] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/1996] [Accepted: 10/17/1996] [Indexed: 02/03/2023] Open
Abstract
To examine the role of microtubules in growth cone turning, we have compared the microtubule organization in growth cones advancing on uniform laminin substrates with their organization in growth cones turning at a laminin-tenascin border. The majority (82%) of growth cones on laminin had a symmetrical microtubule organization, in which the microtubules entering the growth cone splay out toward the periphery of the growth cone. Growth cones at tenascin borders had symmetrically arranged microtubules in only 34% of cases, whereas in the majority of cases the microtubules were displaced toward one-half of the growth cone, presumably stabilizing in the direction of the turn along the tenascin border. These results suggest that reorganization of microtubules could underlie growth cone turning. Further evidence for the involvement of microtubule rearrangement in growth cone turning was provided by experiments in which growth cones approached tenascin borders in the presence of nanomolar concentrations of the microtubule stabilizing compound, Taxol. Taxol altered the organization of microtubules in growth cones growing on laminin by restricting their distribution to the proximal regions of the growth cone and increasing their bundling. Taxol did not stop growth cone advance on laminin. When growing in the presence of Taxol, growth cones at tenascin borders were not able to turn and grow along the laminin-tenascin border, and consequently stopped at the border. Growth cones were arrested at borders for as long as Taxol was present (up to 6 h) without showing any signs of drug toxicity. These effects of Taxol were reversible. Together, these results suggest that microtubule reorganization in growth cones is a necessary event in growth cone turning.
Collapse
Affiliation(s)
- T Williamson
- Developmental Biology Research Centre, King's College London, United Kingdom
| | | | | | | |
Collapse
|
126
|
Li M, Shibata A, Li C, Braun PE, McKerracher L, Roder J, Kater SB, David S. Myelin-associated glycoprotein inhibits neurite/axon growth and causes growth cone collapse. J Neurosci Res 1996; 46:404-14. [PMID: 8950700 DOI: 10.1002/(sici)1097-4547(19961115)46:4<404::aid-jnr2>3.0.co;2-k] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have previously shown that myelin-associated glycoprotein (MAG) inhibits neurite growth from a neuronal cell line. In this study we show that 60% of axonal growth cones of postnatal day 1 hippocampal neurons collapsed when they encountered polystyrene beads coated with recombinant MAG (rMAG). Such collapse was not observed with denatured rMAG. Neurite growth from rat embryonic hippocampal and neonatal cerebellar neurons was also inhibited about 80% on tissue culture substrates coated with rMAG. To investigate further the inhibitory activity of MAG in myelin, we purified myelin from MAG-deficient mice and separated octylglucoside extracts of myelin by diethylaminoethyl (DEAE) ion-exchange chromatography. Although there was no significant difference in neurite growth on myelin purified from MAG-/- and MAG+/+ mice, differences were observed in the fractionated material. The major inhibitory peak that is associated with MAG in normal mice was significantly reduced in MAG-deficient mice. These results suggest that although MAG contributes significantly to axon growth inhibition associated with myelin, its lack in MAG-deficient mice is masked by other non-MAG inhibitors. Axon regeneration in these mice was also examined after thoracic lesions of the corticospinal tracts. A very small number of anterogradely labeled axons extended up to 13.2 mm past the lesion in MAG-/- mice. Although there is some enhancement of axon generation, the poor growth after spinal cord injury in MAG-/- mice may be due to the presence of other non-MAG inhibitors. The in vitro studies, however, provide the first evidence that MAG modulates growth cone behavior and inhibits neurite growth by causing growth cone collapse.
Collapse
Affiliation(s)
- M Li
- Centre for Research in Neuroscience, Montreal General Hospital Research Institute, Quebec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
127
|
Abstract
Neuronal growth cones establish appropriate connections with their targets during development by responding to both positive and negative guidance cues. The importance of repulsive and inhibitory cues in pathfinding and target selection has now been firmly established at the cellular and molecular levels. Observations in vitro have demonstrated developmentally significant repulsive interactions among various neuronal populations, providing the basis for molecular and functional characterization of several families of molecules that can mediate these guidance events. Analysis of both the expression and function of these molecules in vivo suggests how they, together with positive guidance cues, participate in the dynamic process of growth-cone guidance during both development and axonal regeneration.
Collapse
Affiliation(s)
- A L Kolodkin
- Dept of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
128
|
Bandtlow C, Schiweck W, Tai HH, Schwab ME, Skerra A. The Escherichia coli-derived Fab fragment of the IgM/kappa antibody IN-1 recognizes and neutralizes myelin-associated inhibitors of neurite growth. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 241:468-75. [PMID: 8917444 DOI: 10.1111/j.1432-1033.1996.00468.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A recombinant Fab fragment was prepared from the monoclonal IgM/kappa antibody IN-1, which neutralizes central nervous system myelin-associated neurite growth inhibitors both in vitro and in vivo. The variable domain gene sequences were amplified and cloned after cDNA synthesis from the hybridoma RNA. After insertion into the tet promoter vector pASK85, which provided the constant domains of class IgG1/kappa, equipped with a His6 tag, large amounts of the Fab fragment were produced in Escherichia coli by medium cell density fermentation. The Fab fragment was purified to homogeneity by immobilized metal-affinity chromatography and its biochemical activity was compared with the original IN-1 antibody. In an assay for neurite outgrowth and fibroblast spreading, the Fab fragment showed a similar neutralizing effect on inhibitory substrate properties of central nervous system myelin as the unpurified IgM, although an approximately tenfold higher concentration was necessary. Immunoprecipitation experiments revealed a more selective antigen-binding behaviour for the Fab fragment. The Fab fragment was also successfully applied for antigen detection in immunohistochemical analyses. Therefore, the recombinant Fab fragment of IN-1 shows full functionality in vitro and appears to be well suited for replacing the monoclonal IgM in investigations on fiber tract regeneration in vivo.
Collapse
Affiliation(s)
- C Bandtlow
- Institut für Hirnforschung, Universität Zürich, Switzerland
| | | | | | | | | |
Collapse
|
129
|
Davenport RW, Dou P, Mills LR, Kater SB. Distinct calcium signaling within neuronal growth cones and filopodia. JOURNAL OF NEUROBIOLOGY 1996; 31:1-15. [PMID: 9120430 DOI: 10.1002/(sici)1097-4695(199609)31:1<1::aid-neu1>3.0.co;2-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Previous findings indicate that spatial restriction of intracellular calcium levels within growth cones can regulate growth cone behavior at many levels, ranging from filopodial disposition to neurite extension. By combining techniques for focal stimulation of growth cones with those for measurement of filopodia and for capturing low intensity calcium signals, we demonstrate that filopodia on individual growth cones can respond to imposed stimuli independently from one another. Moreover, filopodia and their parent growth cones appear to represent functionally and morphologically distinct domains of calcium regulation, possessing distinct calcium sources and sinks. Both are sensitive to calcium influx; however, application of the calcium ionophore A23187 to cells in calcium-free medium demonstrated the presence of potential intracellular calcium pools in the growth cone proper, but not in isolated filopodia. Thapsigargin significantly reduced the rise in growth cone calcium levels associated with excitatory neurotransmitters, further implicating release from calcium pools as one component of growth cone calcium regulation. The relative contributions of these pools were examined in response to excitatory neurotransmitters by quantitative calcium measurements made in both growth cones and isolated filopodia. Striking differences were observed; filopodia were sensitive to a low concentration of dopamine and serotonin, while growth cones displayed an amplified rise at a higher concentration. The spatial distribution of organelles that could serve as morphological correlates to such calcium amplification was examined using confocal microscopy. While the majority of organelles were located in the central core of the growth cone proper, peripheral organelles were detected at the base of a subset of filopodia. The distinctive distribution of calcium regulation within motile growth cones suggests one mechanism by which growth cones may regulate their complex behavior.
Collapse
Affiliation(s)
- R W Davenport
- Program in Neuronal Growth and Development, Colorado State University, Fort Collins 80523, USA.
| | | | | | | |
Collapse
|
130
|
Abstract
Molecules and activities which repulse growing neurites or induce growth cone collapse and long-lasting growth inhibition have been defined over the last 10 years. Recently, specific guidance roles for developing axons and pathways could be associated with such repulsive effects. A high molecular weight membrane protein located in CNS myelin acts as potent neurite growth inhibitor and may play a role as a negative control element for sprouting, neurite growth and regeneration, and for the plasticity of the adult CNS. Interestingly, some guidance molecules can have positive, growth-promoting as well as negative, repulsive effects for specific types of neurons. These results underline the complex mechanisms involved in neurite guidance which depends on the interpretation of combinations of incoming signals by particular growth cones.
Collapse
Affiliation(s)
- M E Schwab
- Brain Research Institute, University of Zurich, Switzerland
| |
Collapse
|
131
|
Abstract
In this review we describe the growth of regenerating fibres through lesions in immature mammalian spinal cord. In newborn opossums and foetal rats, repair occurs rapidly and reliably without antibodies, implants or bridges of undamaged spinal cord. In the neonatal opossum one can compare recovery from lesions made to the CNS at various stages of development in the animal and in culture. As the CNS matures, the capacity for regeneration ceases abruptly. In particular, the extracellular matrix and molecules associated with glia have been shown to play a role in promoting and inhibiting regeneration. Major problems concern the precision with which regenerating axons become reconnected to their targets, and the specificity needed for recovery of function.
Collapse
Affiliation(s)
- J Nicholls
- Dept of Pharmacology, Biozentrum, University of Basel, Switzerland
| | | |
Collapse
|
132
|
Ng WP, Cartel N, Roder J, Roach A, Lozano A. Human central nervous system myelin inhibits neurite outgrowth. Brain Res 1996; 720:17-24. [PMID: 8782892 DOI: 10.1016/0006-8993(96)00062-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In vitro and animal studies have identified molecules in mammalian CNS myelin which inhibit neuritic extension and which may be responsible, at least in part, for the lack of axonal regeneration after injury in the injured brain, optic nerve and spinal cord. To determine whether such inhibitory activity may be present in human CNS myelin, we used a bioassay to characterize neurite outgrowth on this substrate. Human CNS myelin strongly inhibited neuritic outgrowth from newborn rat dorsal root ganglion neurons and NG-108-15 cells, a neuroblastoma-glioma hybrid cell line. Similar but less potent inhibitory activity was identified in human gray matter. The CNS myelin inhibition of neuritic outgrowth appeared to be dependent on direct contact between the myelin substrate and neurites. The inhibitory activity in human CNS myelin closely resembled that described in adult rodents. Inhibition of neurite growth by human CNS myelin in this in vitro bioassay mirrors the lack of regeneration in vivo and can be used as a model to develop strategies designed to enhance axonal regeneration and neural recovery.
Collapse
Affiliation(s)
- W P Ng
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada
| | | | | | | | | |
Collapse
|
133
|
Abstract
Axons damaged in a peripheral nerve are often able to regenerate from the site of injury along the degenerate distal segment of the nerve to reform functional synapses. Schwann cells play a central role in this process. However, in the adult mammalian central nervous system, from which Schwann cells are absent, axonal regeneration does not progress to allow functional recovery. This is due to inhibitors of axonal growth produced by both oligodendrocytes and astrocytes and also to the decreased ability of adult neurons to extend axons during regeneration compared to embryonic neurons during development. However once provided with a substrate conducive to axonal growth, such as a peripheral nerve graft, many central neurons are able to regenerate axons over long distances. Over the past year this response has been utilised in experimental models to produce a degree of behavioural recovery.
Collapse
|
134
|
Bartsch U. Myelination and axonal regeneration in the central nervous system of mice deficient in the myelin-associated glycoprotein. JOURNAL OF NEUROCYTOLOGY 1996; 25:303-13. [PMID: 8818975 DOI: 10.1007/bf02284804] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The myelin-associated glycoprotein, a member of the immunoglobulin superfamily, has been implicated in the formation and maintenance of myelin sheaths. In addition, recent studies have demonstrated that myelin-associated glycoprotein is inhibitory for neurite elongation in vitro and it has therefore been suggested that myelin-associated glycoprotein prevents axonal regeneration in lesioned nervous tissue. The generation of mice deficient in the expression of myelin-associated glycoprotein by targeted disruption of the mag gene via homologous recombination in embryonic stem cells has allowed the study of the functional role of this molecule in vivo. This review summarizes experiments aimed at answering the following questions: (i) is myelin-associated glycoprotein involved in the formation and maintenance of myelin in the CNS? and (ii) does myelin-associated glycoprotein restrict axonal regeneration in the adult mammalian CNS? Analysis of optic nerves from mutant mice revealed a delay in myelination when compared to optic nerves of wild-type animals, a lack of a periaxonal cytoplasmic collar from most myelin sheaths, and the presence of some doubly and multiply myelinated axons. Axonal regeneration in the CNS of adult myelin-associated glycoprotein deficient mice was not improved when compared to wild-type animals. These observations indicate that myelin-associated glycoprotein is functionally involved in the recognition of axons by oligodendrocytes and in the morphological maturation of myelin sheaths. However, results do not support a role of myelin-associated glycoprotein as a potent inhibitor of axonal regeneration in the adult mammalian CNS.
Collapse
Affiliation(s)
- U Bartsch
- Department of Neurobiology, Swiss Federal Institute of Technology, Zürich, Switzerland
| |
Collapse
|
135
|
McKerracher L, Chamoux M, Arregui CO. Role of laminin and integrin interactions in growth cone guidance. Mol Neurobiol 1996; 12:95-116. [PMID: 8818145 DOI: 10.1007/bf02740648] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Laminin is well known to promote neuronal adhesion and axonal growth, but recent experiments suggest laminin has a wider role in guiding axons, both in development and regeneration. In vitro experiments demonstrate that laminin can alter the rate and direction of axonal growth, even when growth cone contact with laminin is transient. Investigations focused on a single neuronal type, such as retinal ganglion cells (RGCs), strongly implicate laminin as an important guidance molecule in development and suggest the involvement of integrins. Integrins are receptors for laminin, and neurons express multiple types of integrins that bind laminin. Morphologically, integrins cluster in point contacts, specialized regions of the growth cone that may coordinately regulate adhesion and motility. Recent evidence suggests that the structure and regulation of point contacts may differ from that of their nonneuronal counterpart, focal contacts. In part, this may be because the interaction of the cytoplasmic domain of integrin with the cytoskeleton is different in point contacts and focal contracts. Mutational studies where the cytoplasmic domain is truncated or altered are leading to a better understanding of the role of the alpha and beta subunit in regulating integrin clustering and binding to the cytoskeleton. In addition, whereas integrins may regulate motility through direct physical linkages to the growth cone cytoskeleton, an equally important role is their ability to elicit signaling, both through protein tyrosine phosphorylation and modulating calcium levels. Through such mechanisms integrins likely regulate the dynamic attachment and detachment of the growth cone as it moves on laminin substrates.
Collapse
Affiliation(s)
- L McKerracher
- Département de Pathologie, Université de Montréal, Quebec, Canada
| | | | | |
Collapse
|
136
|
Bates CA, Meyer RL. Heterotrimeric G protein activation rapidly inhibits outgrowth of optic axons from adult and embryonic mouse, and goldfish retinal explants. Brain Res 1996; 714:65-75. [PMID: 8861610 DOI: 10.1016/0006-8993(95)01468-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Axons in the adult mammalian CNS normally do not regenerate following axotomy even though they retain the capacity for growth under certain experimental conditions. Although this implies that the regeneration of adult axons is under regulative control, very little is known about the signaling pathways "responsible" for this regulation. This study examines the possibility that a G protein signaling system exists in adult mouse optic fibers and that it functions to regulate axonal outgrowth. To induce the growth of optic fibers, retinas from adult mouse were placed in organotypic culture under serum free conditions and allowed to regenerate onto a laminin substrate. Heterotrimeric G proteins were stimulated by adding mastoparan (MST) to the medium while monitoring growing fibers with time lapse microscopy. Mastoparan treatment produced rapid growth cone collapse and axonal retraction which persisted while MST was present. Prior addition of pertussis toxin (PTX), which irreversibly inactivates the G proteins, G(o) and G (i),completely blocked the effect of MST, confirming that MST was acting through the PTX sensitive G proteins. Selective activation of G proteins in the growth cone by local application of MST with a micropipet was equally effective. For comparison, equivalent experiments were performed on embryonic day 15 retinal explants and on retinal explants from adult goldfish, which normally regenerate in vivo. MST similarly inhibited these axons and this effect was blocked by PTX. However, embryonic fibers were less reliably affected compared to goldfish or adult mouse, suggesting a developmentally regulated sensitivity. The presence of G-proteins in the mouse axons was further tested immunohistochemically using antibodies against G(o)/G(i). Positive staining was detected in the growth cones and shaft of adult and embryonic mouse optic fibers. These findings demonstrate that G protein activation inhibits axonal outgrowth and suggest that there may be a G protein signaling pathway that normally regulates this outgrowth. However, since this pathway appears to exist in both axons that can regenerate and those that normally do not, the presence of PTX-sensitive G proteins alone cannot account for regenerative failure. Regenerative failure may instead be explained as the selective or increased activation of this pathway in the adult mammalian CNS.
Collapse
Affiliation(s)
- C A Bates
- Department of Developmental and Cell Biology, University of California at Irvine, Irvine, CA 92717, USA
| | | |
Collapse
|
137
|
Amato A, Al-Mohanna FA, Bolsover S. Spatial organization of calcium dynamics in growth cones of sensory neurones. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1996; 92:101-10. [PMID: 8861728 DOI: 10.1016/0165-3806(95)00211-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The concentration of calcium ions in the cytosol ([Ca2+]i) has a dominant influence on neuronal development. A [Ca2+]i rise can, depending on the amplitude and location, promote outgrowth or dramatically inhibit it. We have used the fluorescent calcium indicators Fura-2 and Fura-2 dextran to measure [Ca2+]i dynamics in sensory neurones from the adult rat. [Ca2+]i was low and uniform in advancing growth cones, even during specific behaviours such as protrusion, filling and consolidation. A brief train of action potentials caused [Ca2+]i to rise at the extreme leading edge of the growth cone. [Ca2+]i changes in more proximal regions of the growth cone were much smaller. This spatially organized [Ca2+]i change, which may result from a concentration of calcium channels at the growth cone leading edge, is likely to function in spontaneously active regenerating axons in vivo to specifically activate calcium-dependent processes at the growth cone tip.
Collapse
Affiliation(s)
- A Amato
- Department of Physiology, University College London, London, UK
| | | | | |
Collapse
|
138
|
Varga ZM, Fernandez J, Blackshaw S, Martin AR, Muller KJ, Adams WB, Nicholls JG. Neurite outgrowth through lesions of neonatal opossum spinal cord in culture. J Comp Neurol 1996; 366:600-12. [PMID: 8833112 DOI: 10.1002/(sici)1096-9861(19960318)366:4<600::aid-cne4>3.0.co;2-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The aim of these experiments was to analyze neurite outgrowth during regeneration of opossum spinal cord isolated from Monodelfis domestica and maintained in culture for 3-5 days. Lesions were made by crushing with forceps. In isolated spinal cords of animals aged 3 days, neurites entered the crush and grew along the basal lamina of the pia mater. Growth cones with pleiomorphic appearance containing vesicles, mitochondria and microtubules were abundant in the marginal zone, as were synaptoid contacts with active zones facing basal lamina. In preparations from animals aged 11-12 days, the lesion site was disrupted and contained only degenerating axons, debris and vesicles. Axons and growth cones entered the edge of the lesion but did not extend into it. Lesions in young animals extended over distances of more than 1 mm and contained no radial glia. The damaged area in older preparations was restricted to the crush site with normal astrocytes, oligodendrocytes and neurons immediately adjacent to the lesion. Thus, similar crushes produced more extensive damage in younger spinal cords that were capable of regeneration than in older cords that were not. Dorsal root ganglion fibers labeled with carbocyanine dye (DiI) were observed by video imaging as they grew through lesions. Individual growth cones examined subsequently by electron microscopy had grown again along pial basal lamina. After 5 days in culture dorsal root stimulation gave rise to discharges in ventral roots beyond the lesion indicating that synaptic connections were formed by growing fibers.
Collapse
Affiliation(s)
- Z M Varga
- Department of Pharmacology, Biocenter, University of Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
139
|
Abstract
The interactions between cultured neonatal rat oligodendrocytes from the optic nerve were examined. Spontaneous contact between oligodendrocytes in vitro resulted in collapse of the fine structure of the oligodendrocytes at the points of contact. To increase the frequency of oligodendrocyte-oligodendrocyte interactions, one oligodendrocyte was removed from the substrate and placed into contact with the end of a process of another oligodendrocyte. Within 15-30 minutes, the fine structure of the second oligodendrocyte had collapsed at the point of contact with the manipulated oligodendrocyte. Manipulated contact induced an approximately three-fold increase in intracellular free calcium concentration that preceded the inhibition of motility. To demonstrate that a release of calcium from internal stores was involved, the experiment was repeated with calcium removed from the medium by chelation with EGTA. Calcium elevation and contact-induced collapse still occurred in the absence of extracellular calcium. The contact-induced calcium increase was blocked by the combination of EGTA and thapsigargin (to deplete calcium from IP3 sensitive intracellular storage sites). Pertussis toxin sensitive G-proteins have been implicated in modulating calcium channels and in mediating a release of calcium from internal stores in certain cells. Pertussis toxin prevented the contact-induced calcium increase and the coincident morphological change in oligodendrocytes. These results suggest that oligodendrocytes are able to recognize and react to specific molecules on the surface of other oligodendrocytes. Moreover, the similarity of this response to the previously characterized response of oligodendrocytes to purified myelin supports the idea that molecules present in myelin and exposed on the surfaces of oligodendrocytes might be used in intercellular communication between oligodendrocytes.
Collapse
Affiliation(s)
- S J Moorman
- Department of Anatomy and Cell Biology, University of North Texas, Health Science Center at Fort Worth, USA
| |
Collapse
|
140
|
Abstract
The rapid transition of a stationary axon into a motile growth cone requires the recruitment of membrane and its strategic insertion into the neurolemma. The source of membrane to support the initial rapid growth postaxotomy is not known. Using membrane capacitance measurements, we examined quantitative aspects of membrane dynamics following axotomy of cultured Aplysia neurons. Axotomy activates two processes in parallel: membrane retrieval and exocytosis. Unexpectedly, membrane retrieval is the dominant process in the majority of the experiments. Thus, while a growth cone is vigorously extending, the total neuronal surface area decreases. We suggest that the initial rapid extension phase of the newly formed growth cone postaxotomy is supported by a pool of intracellular membrane that is rapidly retrieved from the neurolemma.
Collapse
Affiliation(s)
- U Ashery
- Department of Neurobiology, Life Sciences Institute, The Hebrew University of Jerusalem, The Interuniversity Institute for Marine Sciences of Eliat, Israel
| | | | | |
Collapse
|
141
|
Abstract
The concentration of free calcium ions in the cytosol has been shown to influence many components of growth cone behaviour, including the extension of filopodia and veils, the addition of new membrane to the plasmalemma, the retraction and disappearance of filopodia, and gross collapse and retraction of the growth cone. A spatially localized modulation of these processes by very local calcium changes has been proposed to underlie the steering of growth cones by gradients of neurotransmitters, voltage and cell adhesion molecules. Such local control can be studied in mouse neuroblastoma cells, where depolarization causes calcium to rise in a limited number of spatially restricted hotspots, triggering a localized advance. We have studied the simple, club-shaped growth cones that are characteristically found on advancing neurites. Depolarization caused calcium to increase most at the distal, leading tip. Agents that disrupt calcium-induced calcium release do not affect growth cone calcium dynamics, ruling out a local release of calcium at the tip as a cause of the gradient. Using cell-attached patch recording, we find that L-type calcium channels are present at a higher density at the distal tip than in the proximal growth cone. Our results show that the calcium gradients seen in depolarized growth cones are a direct consequence of a gradient of calcium channel density.
Collapse
Affiliation(s)
- F Zimprich
- Department of Physiology, University College London, UK
| | | |
Collapse
|
142
|
Kapfhammer JP. Myelin-associated neurite growth inhibitors: regulators of plastic changes of neural connections in the central nervous system. PROGRESS IN BRAIN RESEARCH 1996; 108:183-202. [PMID: 8979802 DOI: 10.1016/s0079-6123(08)62540-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
143
|
Jesuthasan S. Contact inhibition/collapse and pathfinding of neural crest cells in the zebrafish trunk. Development 1996; 122:381-9. [PMID: 8565850 DOI: 10.1242/dev.122.1.381] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neural crest cells in the trunk of vertebrate embryos have a choice of pathways after emigrating from the neural tube: they can migrate in either the medial pathway between somites and neural tube, or the lateral pathway between somites and epidermis. In zebrafish embryos, the first cells to migrate all choose the medial pathway. High resolution imaging of cells in living embryos suggests that neural crest cells do so because of repulsion by somites: cells take the medial pathway because the lateral somite surface triggers a paralysis and retraction of protrusions (contact inhibition or collapse) when the medial surface does not. Partial deletion of somites, using the spadetail mutation allows precocious entry into the lateral pathway, but only where somites are absent, supporting the notion that an inhibitory cue on somites delays entry. Growth cones of Rohon-Beard cells enter the lateral pathway before neural crest cells, demonstrating that there is no absolute barrier to migration. These data, in addition to providing a detailed picture of neural crest cells migrating in vivo, suggest that neural crest cells, like neuronal growth cones, are guided by a specific cue that triggers ‘collapse’ of active protrusions.
Collapse
Affiliation(s)
- S Jesuthasan
- ICRF Developmental Biology Unit, Department of Zoology, Oxford, UK
| |
Collapse
|
144
|
Isfort RJ, Stuard SB, Cody DB, Ridder GM, LeBoeuf RA. Modulation of the platelet-derived-growth-factor-induced calcium signal by extracellular/intracellular pH in Syrian hamster embryo cells. Implications for the role of calcium in mitogenic signalling. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 234:801-10. [PMID: 8575438 DOI: 10.1111/j.1432-1033.1995.801_a.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Studies have been performed to understand the interactions and the role which intracellular calcium and intracellular pH have in mediating mitogen-stimulated cellular proliferation. Stimulation of Syrian hamster embryo (SHE) cells with the mitogen platelet-derived growth factor A/B (PDGF) results in intracellular acidification and capacitative calcium entry involving the intracellular release of calcium via the inositol trisphosphate gamma receptor calcium channel, followed by an extracellular influx of calcium through a dihydropyridine-sensitive plasma membrane calcium channel. Chronic extracellular/intracellular acidification results in the inactivation of both these calcium channels due to slowly reversible protein alterations. Paradoxically, transient intracellular acidification, like that following PDGF stimulation, could not stimulate the activation of either calcium channel. In addition, even though intracellular calcium fluxes by themselves could intiate intracellular acidification, loss of the PDGF-induced calcium signal did not result in the loss of the PDGF-induced transient intracellular acidification. Importantly with regard to the role intracellular calcium and pH have in mediating the mitogenic signal leading to cellular proliferation, chronic extracellular/intracellular acidification, which leads to a complete loss of the PDGF-induced calcium signal, did not result in the loss of PDGF-induced mitogenesis. These results indicate that the PDGF-induced calcium signal is not essential for PDGF-stimulated mitogenesis in Syrian hamster embryo cells. In contrast, blocking the PDGF-induced transient intracellular acidification completely blocks PDGF-induced mitogenesis, indicating that the mitogen-induced transient intracellular acidification, unlike the intracellular calcium ion signal, is indispensible for cellular proliferation in Syrian hamster embryo cells.
Collapse
Affiliation(s)
- R J Isfort
- CP&RSD/HSD, Procter & Gamble Company, Miami Valley Laboratories, Cincinnati, Ohio 45239-8707, USA
| | | | | | | | | |
Collapse
|
145
|
Lozano AM, Schmidt M, Roach A. A convenient in vitro assay for the inhibition of neurite outgrowth by adult mammalian CNS myelin using immortalized neuronal cells. J Neurosci Methods 1995; 63:23-8. [PMID: 8788044 DOI: 10.1016/0165-0270(95)00081-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The adult mammalian CNS contains molecules which inhibit neurite outgrowth and which may be responsible for the lack of successful axonal regeneration after injuries in the brain and spinal cord. We describe an in vitro assay to measure the ability of primary and established lines of neuronal cells to produce neurites in the presence of CNS inhibitory molecules. The assay is suitable for identification of agents and treatments to overcome neurite growth inhibition. Assays are carried out in 96-well plates with CNS myelin substrates using NG108-15 cells, an immortalized cell line that can be induced to produce extensive neuritic growth. The inhibition of neurite outgrowth by CNS myelin observed in this assay is: (1) observed for NG108-15 cells and also PC12 cells and primary superior cervical ganglion neurons, (2) contact dependent, (3) half-maximal at 5 micrograms/cm2 of myelin, and (4) trypsin-labile. This assay is quantitative, rapid, highly reproducible, convenient and can be used to test compounds which have the potential to overcome the growth inhibitory molecules present in CNS myelin.
Collapse
Affiliation(s)
- A M Lozano
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada
| | | | | |
Collapse
|
146
|
Rubin BP, Spillmann AA, Bandtlow CE, Hillenbrand R, Keller F, Schwab ME. Inhibition of PC12 cell attachment and neurite outgrowth by detergent solubilized CNS myelin proteins. Eur J Neurosci 1995; 7:2524-9. [PMID: 8845959 DOI: 10.1111/j.1460-9568.1995.tb01052.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Adhesion and neurite outgrowth of PC12 cells, as well as the spreading of 3T3 fibroblasts, were inhibited in a dose dependent manner by detergent solubilized mouse central nervous system myelin proteins as a tissue culture substrate. These inhibitory effects could be neutralized by the monoclonal antibody IN-1 directed against the neurite growth inhibiting proteins NI-35 and NI-250. Separation of the detergent soluble proteins of bovine spinal cord by an anion exchange column showed that the peaks of inhibitory activity for the two cell lines overlapped, such that the PC12 cells were inhibited by a larger number of fractions comprising those inhibitory for 3T3 cells. Neurite outgrowth of PC12 cells was not influenced by the myelin associated glycoprotein, MAG.
Collapse
Affiliation(s)
- B P Rubin
- Brain Research Institute, University of Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
147
|
Larner AJ. Axonal sprouting and synaptogenesis in temporal lobe epilepsy: possible pathogenetic and therapeutic roles of neurite growth inhibitory factors. Seizure 1995; 4:249-58. [PMID: 8719916 DOI: 10.1016/s1059-1311(95)80001-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Axonal sprouting and synaptic reorganization within the temporal lobe following neuronal injury have been implicated in the pathogenesis of temporal lobe epilepsy (TLE). The molecular species responsible for these structural changes have yet to be fully defined. The recent characterization of molecules whose normal function within the nervous system is to inhibit neurite outgrowth and synaptogenesis prompts the suggestion that a diminution or loss of such molecules might be of relevance to the pathogenesis of TLE. If so, the possibility of developing a novel therapeutic approach to TLE, distinct from currently available symptomatic therapies, to arrest the pathogenetic processes is also raised.
Collapse
Affiliation(s)
- A J Larner
- University of Cambridge Department of Anatomy, UK
| |
Collapse
|
148
|
Bartsch U, Bandtlow CE, Schnell L, Bartsch S, Spillmann AA, Rubin BP, Hillenbrand R, Montag D, Schwab ME, Schachner M. Lack of evidence that myelin-associated glycoprotein is a major inhibitor of axonal regeneration in the CNS. Neuron 1995; 15:1375-81. [PMID: 8845160 DOI: 10.1016/0896-6273(95)90015-2] [Citation(s) in RCA: 179] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The MAG-deficient mouse was used to test whether MAG acts as a significant inhibitor of axonal regeneration in the adult mammalian CNS, as suggested by cell culture experiments. Cell spreading, neurite elongation, or growth cone collapse of different cell types in vitro was not significantly different when myelin preparations or optic nerve cryosections from either MAG-deficient or wild-type mice were used as a substrate. More importantly, the extent of axonal regrowth in lesioned optic nerve and corticospinal tract in vivo was similarly poor in MAG-deficient and wild-type mice. However, axonal regrowth increased significantly and to a similar extent in both genotypes after application of the IN-1 antibody directed against the neurite growth inhibitors NI-35 and NI-250. These observations do not support the view that MAG is a significant inhibitor of axonal regeneration in the adult CNS.
Collapse
Affiliation(s)
- U Bartsch
- Department of Neurobiology, Swiss Federal Institute of Technology, Hönggerberg, CH-8093 Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Larner AJ, Johnson AR, Keynes RJ. Regeneration in the vertebrate central nervous system: phylogeny, ontogeny, and mechanisms. Biol Rev Camb Philos Soc 1995; 70:597-619. [PMID: 8527607 DOI: 10.1111/j.1469-185x.1995.tb01653.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- A J Larner
- Department of Anatomy, University of Cambridge, UK
| | | | | |
Collapse
|
150
|
Lozano AM, Labes M, Roder J, Roach A. An antineuronal monoclonal antibody that reverses neurite growth inhibition by central nervous system myelin. J Neurosci Res 1995; 42:306-13. [PMID: 8583498 DOI: 10.1002/jnr.490420304] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A component of adult mammalian central nervous system (CNS) myelin causes collapse of neuronal growth cones and inhibits axonal growth, properties that may be responsible for the lack of regrowth of injured axons in the CNS. The molecules and detailed mechanism through which the inhibitory activity acts are not known. To study the cellular molecules mediating the response to this inhibitor, we have used an in vitro neurite growth inhibition assay to screen a panel of monoclonal antibodies raised against rat neuronal membrane proteins, for clones capable of blocking the response. One monoclonal antibody (10D) neutralized the inhibition of neurite growth seen when primary sympathetic neurons, PC12 cells or NG108-15 cells were grown on inhibitory CNS myelin substrates, but did not promote growth on non-inhibitory substrates. 10D reacted with neuronal cells but not myelin substrate proteins. The antigen recognized by 10D appears to play a role in the interaction between neurons and their growth substrates, and is a novel candidate for a cellular receptor or associated signalling molecule mediating the response to myelin inhibitors.
Collapse
Affiliation(s)
- A M Lozano
- Division of Molecular Immunology and Neurobiology, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|