101
|
Rodrigues RS, Paulo SL, Moreira JB, Tanqueiro SR, Sebastião AM, Diógenes MJ, Xapelli S. Adult Neural Stem Cells as Promising Targets in Psychiatric Disorders. Stem Cells Dev 2021; 29:1099-1117. [PMID: 32723008 DOI: 10.1089/scd.2020.0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The development of new therapies for psychiatric disorders is of utmost importance, given the enormous toll these disorders pose to society nowadays. This should be based on the identification of neural substrates and mechanisms that underlie disease etiopathophysiology. Adult neural stem cells (NSCs) have been emerging as a promising platform to counteract brain damage. In this perspective article, we put forth a detailed view of how NSCs operate in the adult brain and influence brain homeostasis, having profound implications at both behavioral and functional levels. We appraise evidence suggesting that adult NSCs play important roles in regulating several forms of brain plasticity, particularly emotional and cognitive flexibility, and that NSC dynamics are altered upon brain pathology. Furthermore, we discuss the potential therapeutic value of utilizing adult endogenous NSCs as vessels for regeneration, highlighting their importance as targets for the treatment of multiple mental illnesses, such as affective disorders, schizophrenia, and addiction. Finally, we speculate on strategies to surpass current challenges in neuropsychiatric disease modeling and brain repair.
Collapse
Affiliation(s)
- Rui S Rodrigues
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Sara L Paulo
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - João B Moreira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Sara R Tanqueiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Maria J Diógenes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Sara Xapelli
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
102
|
Gupta B, Errington AC, Jimenez-Pascual A, Eftychidis V, Brabletz S, Stemmler MP, Brabletz T, Petrik D, Siebzehnrubl FA. The transcription factor ZEB1 regulates stem cell self-renewal and cell fate in the adult hippocampus. Cell Rep 2021; 36:109588. [PMID: 34433050 PMCID: PMC8411115 DOI: 10.1016/j.celrep.2021.109588] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 05/27/2021] [Accepted: 07/30/2021] [Indexed: 12/25/2022] Open
Abstract
Radial glia-like (RGL) stem cells persist in the adult mammalian hippocampus, where they generate new neurons and astrocytes throughout life. The process of adult neurogenesis is well documented, but cell-autonomous factors regulating neuronal and astroglial differentiation are incompletely understood. Here, we evaluate the functions of the transcription factor zinc-finger E-box binding homeobox 1 (ZEB1) in adult hippocampal RGL cells using a conditional-inducible mouse model. We find that ZEB1 is necessary for self-renewal of active RGL cells. Genetic deletion of Zeb1 causes a shift toward symmetric cell division that consumes the RGL cell and generates pro-neuronal progenies, resulting in an increase of newborn neurons and a decrease of newly generated astrocytes. We identify ZEB1 as positive regulator of the ets-domain transcription factor ETV5 that is critical for asymmetric division.
Collapse
Affiliation(s)
- Bhavana Gupta
- European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences, Cardiff CF24 4HQ, UK
| | - Adam C Errington
- Neuroscience and Mental Health Research Institute, Cardiff University School of Biosciences, Cardiff CF24 4HQ, UK
| | - Ana Jimenez-Pascual
- European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences, Cardiff CF24 4HQ, UK
| | - Vasileios Eftychidis
- European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences, Cardiff CF24 4HQ, UK
| | - Simone Brabletz
- Department of Experimental Medicine I, Friedrich Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Marc P Stemmler
- Department of Experimental Medicine I, Friedrich Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Thomas Brabletz
- Department of Experimental Medicine I, Friedrich Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - David Petrik
- Cardiff University School of Biosciences, Cardiff CF10 3AX, UK
| | - Florian A Siebzehnrubl
- European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences, Cardiff CF24 4HQ, UK.
| |
Collapse
|
103
|
In Vivo Calcium Imaging of CA3 Pyramidal Neuron Populations in Adult Mouse Hippocampus. eNeuro 2021; 8:ENEURO.0023-21.2021. [PMID: 34330817 PMCID: PMC8387150 DOI: 10.1523/eneuro.0023-21.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 11/21/2022] Open
Abstract
Neuronal population activity in the hippocampal CA3 subfield is implicated in cognitive brain functions such as memory processing and spatial navigation. However, because of its deep location in the brain, the CA3 area has been difficult to target with modern calcium imaging approaches. Here, we achieved chronic two-photon calcium imaging of CA3 pyramidal neurons with the red fluorescent calcium indicator R-CaMP1.07 in anesthetized and awake mice. We characterize CA3 neuronal activity at both the single-cell and population level and assess its stability across multiple imaging days. During both anesthesia and wakefulness, nearly all CA3 pyramidal neurons displayed calcium transients. Most of the calcium transients were consistent with a high incidence of bursts of action potentials (APs), based on calibration measurements using simultaneous juxtacellular recordings and calcium imaging. In awake mice, we found state-dependent differences with striking large and prolonged calcium transients during locomotion. We estimate that trains of >30 APs over 3 s underlie these salient events. Their abundance in particular subsets of neurons was relatively stable across days. At the population level, we found that co-activity within the CA3 network was above chance level and that co-active neuron pairs maintained their correlated activity over days. Our results corroborate the notion of state-dependent spatiotemporal activity patterns in the recurrent network of CA3 and demonstrate that at least some features of population activity, namely co-activity of cell pairs and likelihood to engage in prolonged high activity, are maintained over days.
Collapse
|
104
|
Marymonchyk A, Malvaut S, Saghatelyan A. In vivo live imaging of postnatal neural stem cells. Development 2021; 148:271820. [PMID: 34383894 DOI: 10.1242/dev.199778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Neural stem cells (NSCs) are maintained in specific regions of the postnatal brain and contribute to its structural and functional plasticity. However, the long-term renewal potential of NSCs and their mode of division remain elusive. The use of advanced in vivo live imaging approaches may expand our knowledge of NSC physiology and provide new information for cell replacement therapies. In this Review, we discuss the in vivo imaging methods used to study NSC dynamics and recent live-imaging results with respect to specific intracellular pathways that allow NSCs to integrate and decode different micro-environmental signals. Lastly, we discuss future directions that may provide answers to unresolved questions regarding NSC physiology.
Collapse
Affiliation(s)
- Alina Marymonchyk
- CERVO Brain Research Center, Quebec City, QC, CanadaG1J 2G3.,Department of Psychiatry and Neuroscience, Université Laval, Quebec City, QC, CanadaG1V 0A6
| | - Sarah Malvaut
- CERVO Brain Research Center, Quebec City, QC, CanadaG1J 2G3.,Department of Psychiatry and Neuroscience, Université Laval, Quebec City, QC, CanadaG1V 0A6
| | - Armen Saghatelyan
- CERVO Brain Research Center, Quebec City, QC, CanadaG1J 2G3.,Department of Psychiatry and Neuroscience, Université Laval, Quebec City, QC, CanadaG1V 0A6
| |
Collapse
|
105
|
Ceanga M, Dahab M, Witte OW, Keiner S. Adult Neurogenesis and Stroke: A Tale of Two Neurogenic Niches. Front Neurosci 2021; 15:700297. [PMID: 34447293 PMCID: PMC8382802 DOI: 10.3389/fnins.2021.700297] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/30/2021] [Indexed: 01/17/2023] Open
Abstract
In the aftermath of an acute stroke, numerous signaling cascades that reshape the brain both in the perilesional zone as well as in more distal regions are activated. Despite continuous improvement in the acute treatment of stroke and the sustained research efforts into the pathophysiology of stroke, we critically lag in our integrated understanding of the delayed and chronic responses to ischemic injury. As such, the beneficial or maladaptive effect of some stroke-induced cellular responses is unclear, restricting the advancement of therapeutic strategies to target long-term complications. A prominent delayed effect of stroke is the robust increase in adult neurogenesis, which raises hopes for a regenerative strategy to counter neurological deficits in stroke survivors. In the adult brain, two regions are known to generate new neurons from endogenous stem cells: the subventricular zone (SVZ) and the dentate subgranular zone (SGZ) of the hippocampus. While both niches respond with an increase in neurogenesis post-stroke, there are significant regional differences in the ensuing stages of survival, migration, and maturation, which may differently influence functional outcome. External interventions such as rehabilitative training add a further layer of complexity by independently modulating the process of adult neurogenesis. In this review we summarize the current knowledge regarding the effects of ischemic stroke on neurogenesis in the SVZ and in the SGZ, and the influence of exogenous stimuli such as motor activity or enriched environment (EE). In addition, we discuss the contribution of SVZ or SGZ post-stroke neurogenesis to sensory, motor and cognitive recovery.
Collapse
Affiliation(s)
- Mihai Ceanga
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany
- Section Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena, Germany
| | - Mahmoud Dahab
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Otto W. Witte
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Silke Keiner
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany
| |
Collapse
|
106
|
Zocher S, Overall RW, Berdugo-Vega G, Rund N, Karasinsky A, Adusumilli VS, Steinhauer C, Scheibenstock S, Händler K, Schultze JL, Calegari F, Kempermann G. De novo DNA methylation controls neuronal maturation during adult hippocampal neurogenesis. EMBO J 2021; 40:e107100. [PMID: 34337766 PMCID: PMC8441477 DOI: 10.15252/embj.2020107100] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 06/28/2021] [Accepted: 07/02/2021] [Indexed: 11/20/2022] Open
Abstract
Adult neurogenesis enables the life‐long addition of functional neurons to the hippocampus and is regulated by both cell‐intrinsic molecular programs and behavioral activity. De novo DNA methylation is crucial for embryonic brain development, but its role during adult hippocampal neurogenesis has remained unknown. Here, we show that de novo DNA methylation is critical for maturation and functional integration of adult‐born neurons in the mouse hippocampus. Bisulfite sequencing revealed that de novo DNA methyltransferases target neuronal enhancers and gene bodies during adult hippocampal neural stem cell differentiation, to establish neuronal methylomes and facilitate transcriptional up‐regulation of neuronal genes. Inducible deletion of both de novo DNA methyltransferases Dnmt3a and Dnmt3b in adult neural stem cells did not affect proliferation or fate specification, but specifically impaired dendritic outgrowth and synaptogenesis of newborn neurons, thereby hampering their functional maturation. Consequently, abolishing de novo DNA methylation modulated activation patterns in the hippocampal circuitry and caused specific deficits in hippocampus‐dependent learning and memory. Our results demonstrate that proper establishment of neuronal methylomes during adult neurogenesis is fundamental for hippocampal function.
Collapse
Affiliation(s)
- Sara Zocher
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Rupert W Overall
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Gabriel Berdugo-Vega
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Nicole Rund
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Anne Karasinsky
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Vijay S Adusumilli
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Christina Steinhauer
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Sina Scheibenstock
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Kristian Händler
- PRECISE Platform for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative Diseases, University of Bonn, Bonn, Germany
| | - Joachim L Schultze
- PRECISE Platform for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative Diseases, University of Bonn, Bonn, Germany
| | - Federico Calegari
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Gerd Kempermann
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
107
|
Ploski JE, Vaidya VA. The Neurocircuitry of Posttraumatic Stress Disorder and Major Depression: Insights Into Overlapping and Distinct Circuit Dysfunction-A Tribute to Ron Duman. Biol Psychiatry 2021; 90:109-117. [PMID: 34052037 PMCID: PMC8383211 DOI: 10.1016/j.biopsych.2021.04.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 12/14/2022]
Abstract
The neurocircuitry that contributes to the pathophysiology of posttraumatic stress disorder and major depressive disorder, psychiatric conditions that exhibit a high degree of comorbidity, likely involves both overlapping and unique structural and functional changes within multiple limbic brain regions. In this review, we discuss neurobiological alterations that are associated with posttraumatic stress disorder and major depressive disorder and highlight both similarities and differences that may exist between these disorders to argue for the existence of a shared neurobiology. We highlight the key contributions based on preclinical studies, emerging from the late Professor Ronald Duman's research, that have shaped our understanding of the neurocircuitry that contributes to both the etiopathology and treatment of major depressive disorder and posttraumatic stress disorder.
Collapse
Affiliation(s)
- Jonathan E. Ploski
- Department of Neuroscience and Molecular & Cell Biology, School of Behavioral and Brain Sciences, University of Texas at Dallas, GR41, 800 W Campbell Road, Richardson, TX 75080-3021, USA
| | - Vidita A. Vaidya
- Department of Biological Sciences, Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Colaba, Mumbai, Maharashtra, 400005, India
| |
Collapse
|
108
|
Abstract
Oligodendrocyte precursor cells (OPCs) retain the capacity to remyelinate axons upon demyelinating injury. However, mode of cell division and differentiation dynamics of individual OPCs in deep brain structures, such as the corpus callosum, remains unknown. Using in vivo two-photon imaging in a focal model of demyelination, we show that OPCs undergo several rounds of symmetric and asymmetric cell divisions before producing a subset of daughter cells that differentiates into myelinating oligodendrocytes. The data presented here characterize the behavior of OPC clones and delineate the cellular principles that lead to remyelination. Oligodendrocyte precursor cells (OPCs) retain the capacity to remyelinate axons in the corpus callosum (CC) upon demyelination. However, the dynamics of OPC activation, mode of cell division, migration, and differentiation on a single-cell level remain poorly understood due to the lack of longitudinal observations of individual cells within the injured brain. After inducing focal demyelination with lysophosphatidylcholin in the CC of adult mice, we used two-photon microscopy to follow for up to 2 mo OPCs and their differentiating progeny, genetically labeled through conditional recombination driven by the regulatory elements of the gene Achaete-scute homolog 1. OPCs underwent several rounds of symmetric and asymmetric cell divisions, producing a subset of daughter cells that differentiates into myelinating oligodendrocytes. While OPCs continue to proliferate, differentiation into myelinating oligodendrocytes declines with time, and death of OPC-derived daughter cells increases. Thus, chronic in vivo imaging delineates the cellular principles leading to remyelination in the adult brain, providing a framework for the development of strategies to enhance endogenous brain repair in acute and chronic demyelinating disease.
Collapse
|
109
|
Sueda R, Kageyama R. Oscillatory expression of Ascl1 in oligodendrogenesis. Gene Expr Patterns 2021; 41:119198. [PMID: 34175456 DOI: 10.1016/j.gep.2021.119198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/15/2021] [Accepted: 06/20/2021] [Indexed: 11/29/2022]
Abstract
The proneural gene Ascl1 promotes formation of both neurons and oligodendrocytes from neural stem cells (NSCs), but it remains to be analyzed how its different functions are coordinated. It was previously shown that Ascl1 enhances proliferation of NSCs when its expression oscillates but induces differentiation into transit-amplifying precursor cells and neurons when its expression is up-regulated and sustained. By time-lapse imaging and immunohistological analyses, we found that Ascl1 expression oscillated in proliferating oligodendrocyte precursor cells (OPCs) at lower levels than in transit-amplifying precursor cells and was repressed when OPCs differentiated into mature oligodendrocytes. Induction of sustained overexpression of Ascl1 reduced oligodendrocyte differentiation and promoted neuronal differentiation. These results suggest that oscillatory expression of Ascl1 plays an important role in proliferating OPCs during oligodendrocyte formation.
Collapse
Affiliation(s)
- Risa Sueda
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan; Kyoto University Graduate School of Biostudies, Kyoto, 606-8501, Japan
| | - Ryoichiro Kageyama
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan; Kyoto University Graduate School of Biostudies, Kyoto, 606-8501, Japan; Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan; Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, 606-8501, Japan; RIKEN Center for Brain Science, Wako, 351-0198, Japan.
| |
Collapse
|
110
|
Vyleta NP, Snyder JS. Prolonged development of long-term potentiation at lateral entorhinal cortex synapses onto adult-born neurons. PLoS One 2021; 16:e0253642. [PMID: 34143843 PMCID: PMC8213073 DOI: 10.1371/journal.pone.0253642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/09/2021] [Indexed: 11/18/2022] Open
Abstract
Critical period plasticity at adult-born neuron synapses is widely believed to contribute to the learning and memory functions of the hippocampus. Experience regulates circuit integration and for a transient interval, until cells are ~6 weeks old, new neurons display enhanced long-term potentiation (LTP) at afferent and efferent synapses. Since neurogenesis declines substantially with age, this raises questions about the extent of lasting plasticity offered by adult-born neurons. Notably, however, the hippocampus receives sensory information from two major cortical pathways. Broadly speaking, the medial entorhinal cortex conveys spatial information to the hippocampus via the medial perforant path (MPP), and the lateral entorhinal cortex, via the lateral perforant path (LPP), codes for the cues and items that make experiences unique. While enhanced critical period plasticity at MPP synapses is relatively well characterized, no studies have examined long-term plasticity at LPP synapses onto adult-born neurons, even though the lateral entorhinal cortex is uniquely vulnerable to aging and Alzheimer's pathology. We therefore investigated LTP at LPP inputs both within (4-6 weeks) and beyond (8+ weeks) the traditional critical period. At immature stages, adult-born neurons did not undergo significant LTP at LPP synapses, and often displayed long-term depression after theta burst stimulation. However, over the course of 3-4 months, adult-born neurons displayed increasingly greater amounts of LTP. Analyses of short-term plasticity point towards a presynaptic mechanism, where transmitter release probability declines as cells mature, providing a greater dynamic range for strengthening synapses. Collectively, our findings identify a novel form of new neuron plasticity that develops over an extended interval, and may therefore be relevant for maintaining cognitive function in aging.
Collapse
Affiliation(s)
- Nicholas P. Vyleta
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Jason S. Snyder
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- * E-mail:
| |
Collapse
|
111
|
Hourigan B, Balay SD, Yee G, Sharma S, Tan Q. Capicua regulates the development of adult-born neurons in the hippocampus. Sci Rep 2021; 11:11725. [PMID: 34083623 PMCID: PMC8175746 DOI: 10.1038/s41598-021-91168-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 05/20/2021] [Indexed: 11/12/2022] Open
Abstract
New neurons continuously arise from neural progenitor cells in the dentate gyrus of the adult hippocampus to support ongoing learning and memory formation. To generate functional adult-born neurons, neural progenitor cells proliferate to expand the precursor cell pool and differentiate into neurons. Newly generated cells then undergo postmitotic maturation to migrate to their final destination and develop elaborate dendritic branching, which allows them to receive input signals. Little is known about factors that regulate neuronal differentiation, migration, and dendrite maturation during adult hippocampal neurogenesis. Here, we show that the transcriptional repressor protein capicua (CIC) exhibits dynamic expression in the adult dentate gyrus. Conditional deletion of Cic from the mouse dentate gyrus compromises the adult neural progenitor cell pool without altering their proliferative potential. We further demonstrate that the loss of Cic impedes neuronal lineage development and disrupts dendritic arborization and migration of adult-born neurons. Our study uncovers a previously unrecognized role of CIC in neurogenesis of the adult dentate gyrus.
Collapse
Affiliation(s)
- Brenna Hourigan
- Department of Cell Biology, University of Alberta, Edmonton, T6J 2H7, Canada
| | - Spencer D Balay
- Department of Cell Biology, University of Alberta, Edmonton, T6J 2H7, Canada.,Research Institute of Molecular Pathology, Vienna Biocenter, Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
| | - Graydon Yee
- Department of Cell Biology, University of Alberta, Edmonton, T6J 2H7, Canada
| | - Saloni Sharma
- Department of Cell Biology, University of Alberta, Edmonton, T6J 2H7, Canada
| | - Qiumin Tan
- Department of Cell Biology, University of Alberta, Edmonton, T6J 2H7, Canada.
| |
Collapse
|
112
|
Martín-Suárez S, Encinas JM. The future belongs to those who prepare for it today. Cell Stem Cell 2021; 28:783-785. [PMID: 33961757 DOI: 10.1016/j.stem.2021.04.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hippocampal neural stem cells (NSCs) and neurogenesis decline sharply with age, though a small population remains. Two articles in this issue of Cell Stem Cell by Ibrayeva et al. (2021) and Harris et al. (2021) indicate the presence of subpopulations of NSCs whose dynamics of activation and self-renewal change over time and may be key to NSC preservation.
Collapse
Affiliation(s)
- Soraya Martín-Suárez
- Biocruces Bizkaia Health Research Institute, Cruces Plaza, 48903 Barakaldo, Bizkaia, Spain
| | - Juan Manuel Encinas
- Achucarro Basque Center for Neuroscience, UPV/EHU, Scientific Park, 48940 Leioa, Bizkaia, Spain; Ikerbasque, The Basque Foundation for Science, Plaza Euskadi, 5, 48009 Bilbao, Bizkaia, Spain; Department of Neurosciences, University of the Basque Country (UPV/EHU), Scientific Park, 48940 Leioa, Bizkaia, Spain.
| |
Collapse
|
113
|
Regulation of Adult Mammalian Neural Stem Cells and Neurogenesis by Cell Extrinsic and Intrinsic Factors. Cells 2021; 10:cells10051145. [PMID: 34068607 PMCID: PMC8150395 DOI: 10.3390/cells10051145] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/07/2021] [Indexed: 12/27/2022] Open
Abstract
Tissue-specific stem cells give rise to new functional cells to maintain tissue homeostasis and restore damaged tissue after injury. To ensure proper brain functions in the adult brain, neural stem cells (NSCs) continuously generate newborn neurons that integrate into pre-existing neuronal networks. Proliferation, as well as neurogenesis of NSCs, are exquisitely controlled by extrinsic and intrinsic factors, and their underlying mechanisms have been extensively studied with the goal of enhancing the neurogenic capacity of NSCs for regenerative medicine. However, neurogenesis of endogenous NSCs alone is insufficient to completely repair brains damaged by neurodegenerative diseases and/or injury because neurogenic areas are limited and few neurons are produced in the adult brain. An innovative approach towards replacing damaged neurons is to induce conversion of non-neuronal cells residing in injured sites into neurons by a process referred to as direct reprogramming. This review describes extrinsic and intrinsic factors controlling NSCs and neurogenesis in the adult brain and discusses prospects for their applications. It also describes direct neuronal reprogramming technology holding promise for future clinical applications.
Collapse
|
114
|
Ibrayeva A, Bay M, Pu E, Jörg DJ, Peng L, Jun H, Zhang N, Aaron D, Lin C, Resler G, Hidalgo A, Jang MH, Simons BD, Bonaguidi MA. Early stem cell aging in the mature brain. Cell Stem Cell 2021; 28:955-966.e7. [PMID: 33848469 PMCID: PMC10069280 DOI: 10.1016/j.stem.2021.03.018] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/19/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022]
Abstract
Stem cell dysfunction drives many age-related disorders. Identifying mechanisms that initially compromise stem cell behavior represent early targets to promote tissue function later in life. Here, we pinpoint multiple factors that disrupt neural stem cell (NSC) behavior in the adult hippocampus. Clonal tracing showed that NSCs exhibit asynchronous depletion by identifying short-term NSCs (ST-NSCs) and long-term NSCs (LT-NSCs). ST-NSCs divide rapidly to generate neurons and deplete in the young brain. Meanwhile, multipotent LT-NSCs are maintained for months but are pushed out of homeostasis by lengthening quiescence. Single-cell transcriptome analysis of deep NSC quiescence revealed several hallmarks of molecular aging in the mature brain and identified tyrosine-protein kinase Abl1 as an NSC aging factor. Treatment with the Abl inhibitor imatinib increased NSC activation without impairing NSC maintenance in the middle-aged brain. Our study indicates that hippocampal NSCs are particularly vulnerable and adaptable to cellular aging.
Collapse
Affiliation(s)
- Albina Ibrayeva
- Eli and Edythe Broad Center for Regenerative Medicine & Stem Cell Research at USC, University of Southern California, Los Angeles, CA 90033, USA; Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA; USC Davis School - Buck Institute Graduate Program in the Biology of Aging, University of Southern California, Los Angeles, CA 90033, USA
| | - Maxwell Bay
- Eli and Edythe Broad Center for Regenerative Medicine & Stem Cell Research at USC, University of Southern California, Los Angeles, CA 90033, USA; Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA; Neuroscience Graduate Program, W. M. Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Elbert Pu
- Eli and Edythe Broad Center for Regenerative Medicine & Stem Cell Research at USC, University of Southern California, Los Angeles, CA 90033, USA; Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - David J Jörg
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK; Gurdon Institute, University of Cambridge, Cambridge CB3 0HE, UK
| | - Lei Peng
- Eli and Edythe Broad Center for Regenerative Medicine & Stem Cell Research at USC, University of Southern California, Los Angeles, CA 90033, USA; Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA; Neuroscience Graduate Program, W. M. Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Heechul Jun
- Department of Neurological Surgery, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Naibo Zhang
- Eli and Edythe Broad Center for Regenerative Medicine & Stem Cell Research at USC, University of Southern California, Los Angeles, CA 90033, USA; Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Daniel Aaron
- Eli and Edythe Broad Center for Regenerative Medicine & Stem Cell Research at USC, University of Southern California, Los Angeles, CA 90033, USA; Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Congrui Lin
- Eli and Edythe Broad Center for Regenerative Medicine & Stem Cell Research at USC, University of Southern California, Los Angeles, CA 90033, USA; Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Galen Resler
- Eli and Edythe Broad Center for Regenerative Medicine & Stem Cell Research at USC, University of Southern California, Los Angeles, CA 90033, USA; Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Axel Hidalgo
- Eli and Edythe Broad Center for Regenerative Medicine & Stem Cell Research at USC, University of Southern California, Los Angeles, CA 90033, USA; Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Mi-Hyeon Jang
- Department of Neurological Surgery, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Benjamin D Simons
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK; Gurdon Institute, University of Cambridge, Cambridge CB3 0HE, UK
| | - Michael A Bonaguidi
- Eli and Edythe Broad Center for Regenerative Medicine & Stem Cell Research at USC, University of Southern California, Los Angeles, CA 90033, USA; Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA; USC Davis School - Buck Institute Graduate Program in the Biology of Aging, University of Southern California, Los Angeles, CA 90033, USA; Neuroscience Graduate Program, W. M. Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, USA; Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90033, USA; Davis School of Gerontology, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
115
|
Zhang YH, Xu M, Shi X, Sun XL, Mu W, Wu H, Wang J, Li S, Su P, Gong L, He M, Yao M, Wu QF. Cascade diversification directs generation of neuronal diversity in the hypothalamus. Cell Stem Cell 2021; 28:1483-1499.e8. [PMID: 33887179 DOI: 10.1016/j.stem.2021.03.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/02/2021] [Accepted: 03/24/2021] [Indexed: 11/28/2022]
Abstract
The hypothalamus contains an astounding heterogeneity of neurons that regulate endocrine, autonomic, and behavioral functions. However, its molecular developmental trajectory and origin of neuronal diversity remain unclear. Here, we profile the transcriptome of 43,261 cells derived from Rax+ hypothalamic neuroepithelium to map the developmental landscape of the mouse hypothalamus and trajectory of radial glial cells (RGCs), intermediate progenitor cells (IPCs), nascent neurons, and peptidergic neurons. We show that RGCs adopt a conserved strategy for multipotential differentiation but generate Ascl1+ and Neurog2+ IPCs. Ascl1+ IPCs differ from their telencephalic counterpart by displaying fate bifurcation, and postmitotic nascent neurons resolve into multiple peptidergic neuronal subtypes. Clonal analysis further demonstrates that single RGCs can produce multiple neuronal subtypes. Our study reveals that multiple cell types along the lineage hierarchy contribute to fate diversification of hypothalamic neurons in a stepwise fashion, suggesting a cascade diversification model that deconstructs the origin of neuronal diversity.
Collapse
Affiliation(s)
- Yu-Hong Zhang
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Mingrui Xu
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Xiang Shi
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Xue-Lian Sun
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Wenhui Mu
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Haoda Wu
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Jingjing Wang
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Si Li
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Pengfei Su
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Ling Gong
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - Miao He
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - Mingze Yao
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Qing-Feng Wu
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai 200031, China; Chinese Institute for Brain Research, Beijing 102206, China.
| |
Collapse
|
116
|
VCAM1 Labels a Subpopulation of Neural Stem Cells in the Adult Hippocampus and Contributes to Spatial Memory. Stem Cell Reports 2021; 14:1093-1106. [PMID: 32521248 PMCID: PMC7355157 DOI: 10.1016/j.stemcr.2020.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 12/19/2022] Open
Abstract
Active neural stem cells (aNSCs) and quiescent neural stem cells (qNSCs) are two distinct subpopulations found in the adult hippocampal dentate gyrus (DG). However, to date, no cell surface marker has been established to identify and profile qNSCs in the adult hippocampus. Here, we identified expression of vascular cell adhesion molecule 1 (VCAM1) on the cell surface of NSCs, through which we identified a previously unrecognized subpopulation of NSCs in the adult mouse DG. Interestingly, most VCAM1-expressing NSCs were largely quiescent. By injecting virus into Ai14 reporter mice to conduct lineage tracing in the adult DG, we confirmed that VCAM1-expressing cells were multipotent and capable of generating neurons and astrocytes. Furthermore, depletion of Vcam1 during the embryonic or adult stage impaired spatial learning and memory in mice, accompanied by a reduced number of radial glial-like cells and proliferating NSCs in the subgranular zone of Vcam1 knockout mice.
Collapse
|
117
|
Dray N, Mancini L, Binshtok U, Cheysson F, Supatto W, Mahou P, Bedu S, Ortica S, Than-Trong E, Krecsmarik M, Herbert S, Masson JB, Tinevez JY, Lang G, Beaurepaire E, Sprinzak D, Bally-Cuif L. Dynamic spatiotemporal coordination of neural stem cell fate decisions occurs through local feedback in the adult vertebrate brain. Cell Stem Cell 2021; 28:1457-1472.e12. [PMID: 33823144 PMCID: PMC8363814 DOI: 10.1016/j.stem.2021.03.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/21/2020] [Accepted: 03/16/2021] [Indexed: 12/12/2022]
Abstract
Neural stem cell (NSC) populations persist in the adult vertebrate brain over a lifetime, and their homeostasis is controlled at the population level through unknown mechanisms. Here, we combine dynamic imaging of entire NSC populations in their in vivo niche over several weeks with pharmacological manipulations, mathematical modeling, and spatial statistics and demonstrate that NSCs use spatiotemporally resolved local feedback signals to coordinate their decision to divide in adult zebrafish brains. These involve Notch-mediated short-range inhibition from transient neural progenitors and a dispersion effect from the dividing NSCs themselves exerted with a delay of 9–12 days. Simulations from a stochastic NSC lattice model capturing these interactions demonstrate that these signals are linked by lineage progression and control the spatiotemporal distribution of output neurons. These results highlight how local and temporally delayed interactions occurring between brain germinal cells generate self-propagating dynamics that maintain NSC population homeostasis and coordinate specific spatiotemporal correlations. NSC activation events are spatiotemporally coordinated within adult NSC populations This involves inhibition by neural progenitors (relying on Notch) and by dividing NSCs A dynamic lattice model shows that these interactions are linked by lineage progression NSCs dynamics generate an intrinsic niche that maintains the NSC population long-term
Collapse
Affiliation(s)
- Nicolas Dray
- Zebrafish Neurogenetics Unit, Institut Pasteur, UMR3738, CNRS, team supported by La Ligue Nationale Contre le Cancer, 75015 Paris, France.
| | - Laure Mancini
- Zebrafish Neurogenetics Unit, Institut Pasteur, UMR3738, CNRS, team supported by La Ligue Nationale Contre le Cancer, 75015 Paris, France; Sorbonne Université, Collège doctoral, 75005 Paris, France
| | - Udi Binshtok
- School of Neurobiology, Biochemistry, and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Felix Cheysson
- Université Paris-Saclay, AgroParisTech, INRAE, UMR MIA-Paris, 75005 Paris, France; Epidemiology and Modeling of Bacterial Evasion to Antibacterials Unit (EMEA), Institut Pasteur, 75015 Paris, France; Anti-infective Evasion and Pharmacoepidemiology Team, Centre for Epidemiology and Public Health (CESP), INSERM/UVSQ, Villejuif Cedex, France
| | - Willy Supatto
- Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS, INSERM, IP Paris, 91128 Palaiseau, France
| | - Pierre Mahou
- Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS, INSERM, IP Paris, 91128 Palaiseau, France
| | - Sébastien Bedu
- Zebrafish Neurogenetics Unit, Institut Pasteur, UMR3738, CNRS, team supported by La Ligue Nationale Contre le Cancer, 75015 Paris, France
| | - Sara Ortica
- Zebrafish Neurogenetics Unit, Institut Pasteur, UMR3738, CNRS, team supported by La Ligue Nationale Contre le Cancer, 75015 Paris, France
| | - Emmanuel Than-Trong
- Zebrafish Neurogenetics Unit, Institut Pasteur, UMR3738, CNRS, team supported by La Ligue Nationale Contre le Cancer, 75015 Paris, France
| | - Monika Krecsmarik
- Zebrafish Neurogenetics Unit, Institut Pasteur, UMR3738, CNRS, team supported by La Ligue Nationale Contre le Cancer, 75015 Paris, France
| | - Sébastien Herbert
- Department of Developmental and Stem Cell Biology, Institut Pasteur, 75015 Paris, France; Image Analysis Hub, Institut Pasteur, 75015 Paris, France
| | - Jean-Baptiste Masson
- Department of Neuroscience and Department of Computational Biology, Institut Pasteur, 75015 Paris, France
| | | | - Gabriel Lang
- Université Paris-Saclay, AgroParisTech, INRAE, UMR MIA-Paris, 75005 Paris, France
| | - Emmanuel Beaurepaire
- Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS, INSERM, IP Paris, 91128 Palaiseau, France
| | - David Sprinzak
- School of Neurobiology, Biochemistry, and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel.
| | - Laure Bally-Cuif
- Zebrafish Neurogenetics Unit, Institut Pasteur, UMR3738, CNRS, team supported by La Ligue Nationale Contre le Cancer, 75015 Paris, France.
| |
Collapse
|
118
|
Formation and integration of new neurons in the adult hippocampus. Nat Rev Neurosci 2021; 22:223-236. [PMID: 33633402 DOI: 10.1038/s41583-021-00433-z] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2021] [Indexed: 01/31/2023]
Abstract
Neural stem cells (NSCs) generate new neurons throughout life in the mammalian brain. Adult-born neurons shape brain function, and endogenous NSCs could potentially be harnessed for brain repair. In this Review, focused on hippocampal neurogenesis in rodents, we highlight recent advances in the field based on novel technologies (including single-cell RNA sequencing, intravital imaging and functional observation of newborn cells in behaving mice) and characterize the distinct developmental steps from stem cell activation to the integration of newborn neurons into pre-existing circuits. Further, we review current knowledge of how levels of neurogenesis are regulated, discuss findings regarding survival and maturation of adult-born cells and describe how newborn neurons affect brain function. The evidence arguing for (and against) lifelong neurogenesis in the human hippocampus is briefly summarized. Finally, we provide an outlook of what is needed to improve our understanding of the mechanisms and functional consequences of adult neurogenesis and how the field may move towards more translational relevance in the context of acute and chronic neural injury and stem cell-based brain repair.
Collapse
|
119
|
Huang Q, Garrett A, Bose S, Blocker S, Rios AC, Clevers H, Shen X. The frontier of live tissue imaging across space and time. Cell Stem Cell 2021; 28:603-622. [PMID: 33798422 PMCID: PMC8034393 DOI: 10.1016/j.stem.2021.02.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
What you see is what you get-imaging techniques have long been essential for visualization and understanding of tissue development, homeostasis, and regeneration, which are driven by stem cell self-renewal and differentiation. Advances in molecular and tissue modeling techniques in the last decade are providing new imaging modalities to explore tissue heterogeneity and plasticity. Here we describe current state-of-the-art imaging modalities for tissue research at multiple scales, with a focus on explaining key tradeoffs such as spatial resolution, penetration depth, capture time/frequency, and moieties. We explore emerging tissue modeling and molecular tools that improve resolution, specificity, and throughput.
Collapse
Affiliation(s)
- Qiang Huang
- Department of Pediatric Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004 Shaanxi, China; Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Aliesha Garrett
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Shree Bose
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Stephanie Blocker
- Center for In Vitro Microscopy, Duke University, Durham, NC 27708, USA
| | - Anne C Rios
- Princess Máxima Center for Pediatric Oncology, Utrecht 3584, the Netherlands; Department of Cancer Research, Oncode Institute, Hubrecht Institute-KNAW Utrecht, Utrecht 3584, the Netherlands
| | - Hans Clevers
- Princess Máxima Center for Pediatric Oncology, Utrecht 3584, the Netherlands; Department of Cancer Research, Oncode Institute, Hubrecht Institute-KNAW Utrecht, Utrecht 3584, the Netherlands; Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center (UMC) Utrecht, Utrecht 3584, the Netherlands
| | - Xiling Shen
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
120
|
Cuartero MI, García-Culebras A, Torres-López C, Medina V, Fraga E, Vázquez-Reyes S, Jareño-Flores T, García-Segura JM, Lizasoain I, Moro MÁ. Post-stroke Neurogenesis: Friend or Foe? Front Cell Dev Biol 2021; 9:657846. [PMID: 33834025 PMCID: PMC8021779 DOI: 10.3389/fcell.2021.657846] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 02/26/2021] [Indexed: 12/18/2022] Open
Abstract
The substantial clinical burden and disability after stroke injury urges the need to explore therapeutic solutions. Recent compelling evidence supports that neurogenesis persists in the adult mammalian brain and is amenable to regulation in both physiological and pathological situations. Its ability to generate new neurons implies a potential to contribute to recovery after brain injury. However, post-stroke neurogenic response may have different functional consequences. On the one hand, the capacity of newborn neurons to replenish the damaged tissue may be limited. In addition, aberrant forms of neurogenesis have been identified in several insult settings. All these data suggest that adult neurogenesis is at a crossroads between the physiological and the pathological regulation of the neurological function in the injured central nervous system (CNS). Given the complexity of the CNS together with its interaction with the periphery, we ultimately lack in-depth understanding of the key cell types, cell-cell interactions, and molecular pathways involved in the neurogenic response after brain damage and their positive or otherwise deleterious impact. Here we will review the evidence on the stroke-induced neurogenic response and on its potential repercussions on functional outcome. First, we will briefly describe subventricular zone (SVZ) neurogenesis after stroke beside the main evidence supporting its positive role on functional restoration after stroke. Then, we will focus on hippocampal subgranular zone (SGZ) neurogenesis due to the relevance of hippocampus in cognitive functions; we will outline compelling evidence that supports that, after stroke, SGZ neurogenesis may adopt a maladaptive plasticity response further contributing to the development of post-stroke cognitive impairment and dementia. Finally, we will discuss the therapeutic potential of specific steps in the neurogenic cascade that might ameliorate brain malfunctioning and the development of post-stroke cognitive impairment in the chronic phase.
Collapse
Affiliation(s)
- María Isabel Cuartero
- Neurovascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica (IUIN), Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Alicia García-Culebras
- Neurovascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica (IUIN), Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Cristina Torres-López
- Neurovascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica (IUIN), Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Violeta Medina
- Neurovascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica (IUIN), Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Enrique Fraga
- Neurovascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica (IUIN), Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Sandra Vázquez-Reyes
- Neurovascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica (IUIN), Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Tania Jareño-Flores
- Neurovascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica (IUIN), Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Juan M. García-Segura
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Ignacio Lizasoain
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica (IUIN), Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - María Ángeles Moro
- Neurovascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica (IUIN), Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| |
Collapse
|
121
|
Kaise T, Kageyama R. Hes1 oscillation frequency correlates with activation of neural stem cells. Gene Expr Patterns 2021; 40:119170. [PMID: 33675998 DOI: 10.1016/j.gep.2021.119170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 11/28/2022]
Abstract
Quiescent neural stem cells (NSCs) are occasionally activated to undergo proliferation and subsequent neuronal differentiation. It was previously shown that the transcriptional repressor Hes1 is involved in both active and quiescent states of NSCs: when Hes1 expression oscillates, it periodically represses the proneural gene Ascl1, thereby driving Ascl1 oscillations, which regulate the active state, while sustained Hes1 expression continuously suppresses Ascl1, promoting quiescence. However, it remains to be analyzed how the transition from quiescent to active states of NSCs is controlled. Here, we found that overexpression of the active form of Notch1 significantly activates NSCs in both in-vitro and in-vivo conditions and that its levels are proportional to NSC activation. The active form of Notch1 induces a burst of Hes1 oscillations in quiescent NSCs, and the frequency of Hes1 oscillations, rather than the Hes1 peak levels, correlates with the efficiency of NSC activation. These results raised the possibility that bursting Hes1 oscillations could increase the chance of Ascl1 oscillations in quiescent NSCs, suggesting that Notch1-induced Hes1 oscillation is a cue for a transition from quiescent to active states of NSCs.
Collapse
Affiliation(s)
- Takashi Kaise
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan; Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Ryoichiro Kageyama
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan; Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan; Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
122
|
Luo OD, Kwiecien-Delaney B, Martin P, Foster JA, Sidor MM. The effect of early life immune challenge on adult forced swim test performance and hippocampal neurogenesis. J Neuroimmunol 2021; 354:577530. [PMID: 33744708 DOI: 10.1016/j.jneuroim.2021.577530] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 10/22/2022]
Abstract
Many psychiatric diseases can be considered neurodevelopmental in nature and accumulating evidence links immune system dysfunction to disease etiology. Yet, it is currently unknown how the immune system alters brain function through development to increase susceptibility to psychiatric illness. Neonatal immune challenge in rodents is a neurodevelopmental model that has been associated with long-term molecular and behavioural changes in stress-reactivity. As enhanced stress-reactivity is associated with the emergence of depressive-like behaviours concurrent with hippocampal pathology, we measured depressive-like behaviour in the forced swim test and hippocampal neurogenesis in adult mice neonatally exposed to lipopolysaccharide LPS; 0.05 mg/kg, i.p. on postnatal days 3 and 5. As there are important functional differences along the ventral-dorsal hippocampus axis, ventral and dorsal hippocampal neurogenesis were measured separately. Our findings reveal a sexually-dimorphic response to early-life LPS challenge. Male LPS-mice spent less time immobile in the forced swim test, suggesting altered reactivity to swim stress. This was accompanied by an increase in doublecortin-positive cells in the dorsal hippocampus of female mice. These findings demonstrate that exposure to an immune challenge during critical developmental time periods leads to long-term sexually-dimorphic alterations in stress-reactivity that are accompanied by changes to adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- Owen D Luo
- Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, Ontario, Canada
| | | | - Patrick Martin
- Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, Ontario, Canada
| | - Jane A Foster
- Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, Ontario, Canada; Department of Psychiatry, St. Michael's Hospital, Toronto, Ontario, Canada.
| | - Michelle M Sidor
- Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
123
|
Harris L, Rigo P, Stiehl T, Gaber ZB, Austin SHL, Masdeu MDM, Edwards A, Urbán N, Marciniak-Czochra A, Guillemot F. Coordinated changes in cellular behavior ensure the lifelong maintenance of the hippocampal stem cell population. Cell Stem Cell 2021; 28:863-876.e6. [PMID: 33581058 PMCID: PMC8110946 DOI: 10.1016/j.stem.2021.01.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 10/09/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022]
Abstract
Neural stem cell numbers fall rapidly in the hippocampus of juvenile mice but stabilize during adulthood, ensuring lifelong hippocampal neurogenesis. We show that this stabilization of stem cell numbers in young adults is the result of coordinated changes in stem cell behavior. Although proliferating neural stem cells in juveniles differentiate rapidly, they increasingly return to a resting state of shallow quiescence and progress through additional self-renewing divisions in adulthood. Single-cell transcriptomics, modeling, and label retention analyses indicate that resting cells have a higher activation rate and greater contribution to neurogenesis than dormant cells, which have not left quiescence. These changes in stem cell behavior result from a progressive reduction in expression of the pro-activation protein ASCL1 because of increased post-translational degradation. These cellular mechanisms help reconcile current contradictory models of hippocampal neural stem cell (NSC) dynamics and may contribute to the different rates of decline of hippocampal neurogenesis in mammalian species, including humans. More proliferating hippocampal stem cells return to shallow quiescence with age Dormant stem cells enter deeper quiescence with age These changes drive the transition from developmental to adult neurogenesis Increasing degradation of ASCL1 protein by HUWE1 coordinates these changes
Collapse
Affiliation(s)
- Lachlan Harris
- Neural Stem Cell Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Piero Rigo
- Neural Stem Cell Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Thomas Stiehl
- Institute of Applied Mathematics, Heidelberg University, 69120 Heidelberg, Germany; Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, 69120 Heidelberg, Germany; Bioquant Center, Heidelberg University, 69120 Heidelberg, Germany
| | - Zachary B Gaber
- Neural Stem Cell Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Sophie H L Austin
- Neural Stem Cell Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Maria Del Mar Masdeu
- Neural Stem Cell Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Amelia Edwards
- Advanced Sequencing Facility, The Francis Crick Institute, London NW1 1AT, UK
| | - Noelia Urbán
- Neural Stem Cell Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Anna Marciniak-Czochra
- Institute of Applied Mathematics, Heidelberg University, 69120 Heidelberg, Germany; Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, 69120 Heidelberg, Germany; Bioquant Center, Heidelberg University, 69120 Heidelberg, Germany
| | - François Guillemot
- Neural Stem Cell Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
124
|
Abstract
Quiescence is a cellular state in which a cell remains out of the cell cycle but retains the capacity to divide. The unique ability of adult stem cells to maintain quiescence is crucial for life-long tissue homeostasis and regenerative capacity. Quiescence has long been viewed as an inactive state but recent studies have shown that it is in fact an actively regulated process and that adult stem cells are highly reactive to extrinsic stimuli. This has fuelled hopes of boosting the reactivation potential of adult stem cells to improve tissue function during ageing. In this Review, we provide a perspective of the quiescent state and discuss how quiescent adult stem cells transition into the cell cycle. We also discuss current challenges in the field, highlighting recent technical advances that could help overcome some of these challenges.
Collapse
Affiliation(s)
- Noelia Urbán
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter Campus (VBC), Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Tom H Cheung
- Division of Life Science, Center for Stem Cell Research, Center of Systems Biology and Human Health, State Key Laboratory of Molecular Neuroscience, and Molecular Neuroscience Center, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, The Hong Kong University of Science and Technology Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, Guangdong 518057, China
| |
Collapse
|
125
|
Bottes S, Jaeger BN, Pilz GA, Jörg DJ, Cole JD, Kruse M, Harris L, Korobeynyk VI, Mallona I, Helmchen F, Guillemot F, Simons BD, Jessberger S. Long-term self-renewing stem cells in the adult mouse hippocampus identified by intravital imaging. Nat Neurosci 2021; 24:225-233. [PMID: 33349709 PMCID: PMC7116750 DOI: 10.1038/s41593-020-00759-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 11/13/2020] [Indexed: 11/17/2022]
Abstract
Neural stem cells (NSCs) generate neurons throughout life in the mammalian hippocampus. However, the potential for long-term self-renewal of individual NSCs within the adult brain remains unclear. We used two-photon microscopy and followed NSCs that were genetically labeled through conditional recombination driven by the regulatory elements of the stem cell-expressed genes GLI family zinc finger 1 (Gli1) or achaete-scute homolog 1 (Ascl1). Through intravital imaging of NSCs and their progeny, we identify a population of Gli1-targeted NSCs showing long-term self-renewal in the adult hippocampus. In contrast, once activated, Ascl1-targeted NSCs undergo limited proliferative activity before they become exhausted. Using single-cell RNA sequencing, we show that Gli1- and Ascl1-targeted cells have highly similar yet distinct transcriptional profiles, supporting the existence of heterogeneous NSC populations with diverse behavioral properties. Thus, we here identify long-term self-renewing NSCs that contribute to the generation of new neurons in the adult hippocampus.
Collapse
Affiliation(s)
- Sara Bottes
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Baptiste N Jaeger
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Gregor-Alexander Pilz
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - David J Jörg
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK
| | - John Darby Cole
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Merit Kruse
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Lachlan Harris
- Neural Stem Cell Biology Laboratory, The Francis Crick Institute, London, UK
| | - Vladislav I Korobeynyk
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Izaskun Mallona
- Institute of Molecular Life Sciences and SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Fritjof Helmchen
- Laboratory of Neural Circuit Dynamics, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - François Guillemot
- Neural Stem Cell Biology Laboratory, The Francis Crick Institute, London, UK
| | - Benjamin D Simons
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK
| | - Sebastian Jessberger
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
126
|
Gengatharan A, Malvaut S, Marymonchyk A, Ghareghani M, Snapyan M, Fischer-Sternjak J, Ninkovic J, Götz M, Saghatelyan A. Adult neural stem cell activation in mice is regulated by the day/night cycle and intracellular calcium dynamics. Cell 2021; 184:709-722.e13. [PMID: 33482084 DOI: 10.1016/j.cell.2020.12.026] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/25/2020] [Accepted: 12/15/2020] [Indexed: 01/06/2023]
Abstract
Neural stem cells (NSCs) in the adult brain transit from the quiescent state to proliferation to produce new neurons. The mechanisms regulating this transition in freely behaving animals are, however, poorly understood. We customized in vivo imaging protocols to follow NSCs for several days up to months, observing their activation kinetics in freely behaving mice. Strikingly, NSC division is more frequent during daylight and is inhibited by darkness-induced melatonin signaling. The inhibition of melatonin receptors affected intracellular Ca2+ dynamics and promoted NSC activation. We further discovered a Ca2+ signature of quiescent versus activated NSCs and showed that several microenvironmental signals converge on intracellular Ca2+ pathways to regulate NSC quiescence and activation. In vivo NSC-specific optogenetic modulation of Ca2+ fluxes to mimic quiescent-state-like Ca2+ dynamics in freely behaving mice blocked NSC activation and maintained their quiescence, pointing to the regulatory mechanisms mediating NSC activation in freely behaving animals.
Collapse
Affiliation(s)
- Archana Gengatharan
- CERVO Brain Research Center, Quebec City, QC G1J 2G3, Canada; Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Sarah Malvaut
- CERVO Brain Research Center, Quebec City, QC G1J 2G3, Canada; Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Alina Marymonchyk
- CERVO Brain Research Center, Quebec City, QC G1J 2G3, Canada; Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Majid Ghareghani
- CERVO Brain Research Center, Quebec City, QC G1J 2G3, Canada; Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Marina Snapyan
- CERVO Brain Research Center, Quebec City, QC G1J 2G3, Canada; Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Judith Fischer-Sternjak
- Division of Physiological Genomics, BioMedical Center, Ludwig-Maximilians-Universität München, Munich, Germany; Institute of Stem Cell Research, Helmholtz Center, Munich, Germany
| | - Jovica Ninkovic
- Institute of Stem Cell Research, Helmholtz Center, Munich, Germany; Department of Cell Biology and Anatomy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Magdalena Götz
- Division of Physiological Genomics, BioMedical Center, Ludwig-Maximilians-Universität München, Munich, Germany; Institute of Stem Cell Research, Helmholtz Center, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Armen Saghatelyan
- CERVO Brain Research Center, Quebec City, QC G1J 2G3, Canada; Université Laval, Quebec City, QC G1V 0A6, Canada.
| |
Collapse
|
127
|
Royall LN, Jessberger S. How stem cells remember their past. Curr Opin Cell Biol 2021; 69:17-22. [PMID: 33429112 DOI: 10.1016/j.ceb.2020.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/26/2020] [Accepted: 12/12/2020] [Indexed: 12/16/2022]
Abstract
Somatic stem cells are required for tissue development, homeostasis, and repair. Recent data suggested that previous biographical experiences of individual stem cells influence their behavior in the context of tissue formation and govern stem cell responses to external stimuli. Here we provide a concise review how a cell's biography, for example, previous rounds of cell divisions or the age-dependent accumulation of cellular damage, is remembered in stem cells and how previous experiences affect the segregation of cellular components, thus guiding cellular behavior in vertebrate stem cells. Further, we suggest future directions of research that may help to unravel the molecular underpinnings of how past experiences guide future cellular behavior.
Collapse
Affiliation(s)
- Lars N Royall
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, 8057, Zurich, Switzerland
| | - Sebastian Jessberger
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, 8057, Zurich, Switzerland.
| |
Collapse
|
128
|
Podgorny OV, Gulyaeva NV. Glucocorticoid-mediated mechanisms of hippocampal damage: Contribution of subgranular neurogenesis. J Neurochem 2020; 157:370-392. [PMID: 33301616 DOI: 10.1111/jnc.15265] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/09/2020] [Accepted: 11/30/2020] [Indexed: 12/19/2022]
Abstract
A comprehensive overview of the interplay between glucocorticoids (GCs) and adult hippocampal neurogenesis (AHN) is presented, particularly, in the context of a diseased brain. The effectors of GCs in the dentate gyrus neurogenic niche of the hippocampal are reviewed, and the consequences of the GC signaling on the generation and integration of new neurons are discussed. Recent findings demonstrating how GC signaling mediates impairments of the AHN in various brain pathologies are overviewed. GC-mediated effects on the generation and integration of adult-born neurons in the hippocampal dentate gyrus depend on the nature, severity, and duration of the acting stress factor. GCs realize their effects on the AHN primarily via specific glucocorticoid and mineralocorticoid receptors. Disruption of the reciprocal regulation between the hypothalamic-pituitary-adrenal (HPA) axis and the generation of the adult-born granular neurons is currently considered to be a key mechanism implicating the AHN into the pathogenesis of numerous brain diseases, including those without a direct hippocampal damage. These alterations vary from reduced proliferation of stem and progenitor cells to increased cell death and abnormalities in morphology, connectivity, and localization of young neurons. Although the involvement of the mutual regulation between the HPA axis and the AHN in the pathogenesis of cognitive deficits and mood impairments is evident, several unresolved critical issues are stated. Understanding the details of GC-mediated mechanisms involved in the alterations in AHN could enable the identification of molecular targets for ameliorating pathology-induced imbalance in the HPA axis/AHN mutual regulation to conquer cognitive and psychiatric disturbances.
Collapse
Affiliation(s)
- Oleg V Podgorny
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia.,Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Natalia V Gulyaeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia.,Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, Moscow, Russia
| |
Collapse
|
129
|
Abstract
Neural stem cells (NSCs) persist into adulthood in the subgranular zone (SGZ) of the dentate gyrus in the hippocampus and in the ventricular-subventricular zone (V-SVZ) of the lateral ventricles, where they generate new neurons and glia cells that contribute to neural plasticity. A better understanding of the developmental process that enables NSCs to persist beyond development will provide insight into factors that determine the size and properties of the adult NSC pool and thus the capacity for life-long neurogenesis in the adult mammalian brain. We review current knowledge regarding the developmental origins of adult NSCs and the developmental process by which embryonic NSCs transition into their adult form. We also discuss potential mechanisms that might regulate proper establishment of the adult NSC pool, and propose future directions of research that will be key to unraveling how NSCs transform to establish the adult NSC pool in the mammalian brain.
Collapse
Affiliation(s)
- Allison M Bond
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, United States; The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
130
|
Liang Y, Walczak P. Long term intravital single cell tracking under multiphoton microscopy. J Neurosci Methods 2020; 349:109042. [PMID: 33340557 DOI: 10.1016/j.jneumeth.2020.109042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022]
Abstract
Visualizing and tracking cells over time in a living organism has been a much-coveted dream before the invention of intravital microscopy. The opaque nature of tissue was a major hurdle that was remedied by the multiphoton microscopy. With the advancement of optical imaging and fluorescent labeling tools, intravital high resolution imaging has become increasingly accessible over the past few years. Long-term intravital tracking of single cells (LIST) under multiphoton microscopy provides a unique opportunity to gain insight into the longitudinal changes in the morphology, migration, or function of cells or subcellular structures. It is particularly suitable for studying slow-evolving cellular and molecular events during normal development or disease progression, without losing the opportunity of catching fast events such as calcium signals. Here, we review the application of LIST under 2-photon microscopy in various fields of neurobiology and discuss challenges and new directions in labeling and imaging methods for LIST. Overall, this review provides an overview of current applications of LIST in mammals, which is an emerging field that will contribute to a better understanding of essential molecular and cellular events in health and disease.
Collapse
Affiliation(s)
- Yajie Liang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Piotr Walczak
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
131
|
Mal’tsev DI, Podgornyi OV. Molecular and Cellular Mechanisms Regulating Quiescence and Division of Hippocampal Stem Cells. NEUROCHEM J+ 2020. [DOI: 10.1134/s1819712420040054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
132
|
Dray N, Than-Trong E, Bally-Cuif L. Neural stem cell pools in the vertebrate adult brain: Homeostasis from cell-autonomous decisions or community rules? Bioessays 2020; 43:e2000228. [PMID: 33295062 DOI: 10.1002/bies.202000228] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/31/2020] [Accepted: 11/04/2020] [Indexed: 12/15/2022]
Abstract
Adult stem cell populations must coordinate their own maintenance with the generation of differentiated cell types to sustain organ physiology, in a spatially controlled manner and over long periods. Quantitative analyses of clonal dynamics have revealed that, in epithelia, homeostasis is achieved at the population rather than at the single stem cell level, suggesting that feedback mechanisms coordinate stem cell maintenance and progeny generation. In the central nervous system, however, little is known of the possible community processes underlying neural stem cell maintenance. Recent work, in part based on intravital imaging made possible in the adult zebrafish, conclusively highlights that homeostasis in neural stem cell pools may rely on population asymmetry and long-term spatiotemporal coordination of neural stem cell states and fates. These results suggest that neural stem cell assemblies in the vertebrate brain behave as self-organized systems, such that the stem cells themselves generate their own intrinsic niche.
Collapse
Affiliation(s)
- Nicolas Dray
- Zebrafish Neurogenetics Unit, CNRS, Team supported by the Ligue Nationale Contre le Cancer, Institut Pasteur, UMR3738, Paris, France
| | - Emmanuel Than-Trong
- Zebrafish Neurogenetics Unit, CNRS, Team supported by the Ligue Nationale Contre le Cancer, Institut Pasteur, UMR3738, Paris, France.,Ecole doctorale Biosigne, Le Kremlin Bicêtre, Université Paris-Saclay, France
| | - Laure Bally-Cuif
- Zebrafish Neurogenetics Unit, CNRS, Team supported by the Ligue Nationale Contre le Cancer, Institut Pasteur, UMR3738, Paris, France
| |
Collapse
|
133
|
Reoccurring neural stem cell divisions in the adult zebrafish telencephalon are sufficient for the emergence of aggregated spatiotemporal patterns. PLoS Biol 2020; 18:e3000708. [PMID: 33290409 PMCID: PMC7748264 DOI: 10.1371/journal.pbio.3000708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 12/18/2020] [Accepted: 11/17/2020] [Indexed: 12/28/2022] Open
Abstract
Regulation of quiescence and cell cycle entry is pivotal for the maintenance of stem cell populations. Regulatory mechanisms, however, are poorly understood. In particular, it is unclear how the activity of single stem cells is coordinated within the population or if cells divide in a purely random fashion. We addressed this issue by analyzing division events in an adult neural stem cell (NSC) population of the zebrafish telencephalon. Spatial statistics and mathematical modeling of over 80,000 NSCs in 36 brain hemispheres revealed weakly aggregated, nonrandom division patterns in space and time. Analyzing divisions at 2 time points allowed us to infer cell cycle and S-phase lengths computationally. Interestingly, we observed rapid cell cycle reentries in roughly 15% of newly born NSCs. In agent-based simulations of NSC populations, this redividing activity sufficed to induce aggregated spatiotemporal division patterns that matched the ones observed experimentally. In contrast, omitting redivisions leads to a random spatiotemporal distribution of dividing cells. Spatiotemporal aggregation of dividing stem cells can thus emerge solely from the cells’ history. An interdisciplinary study of the rules governing cell divisions in a population of neural stem cells in the zebrafish brain reveals the existence of aggregated spatio-temporal division patterns of rapid cell cycles in stem cells, and shows that these patterns can be explained by a simple agent-based model relying solely on the cells‘ division history.
Collapse
|
134
|
Rosenbloom AB, Tarczyński M, Lam N, Kane RS, Bugaj LJ, Schaffer DV. β-Catenin signaling dynamics regulate cell fate in differentiating neural stem cells. Proc Natl Acad Sci U S A 2020; 117:28828-28837. [PMID: 33139571 PMCID: PMC7682555 DOI: 10.1073/pnas.2008509117] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Stem cells undergo differentiation in complex and dynamic environments wherein instructive signals fluctuate on various timescales. Thus, cells must be equipped to properly respond to the timing of signals, for example, to distinguish sustained signaling from transient noise. However, how stem cells respond to dynamic variations in differentiation cues is not well characterized. Here, we use optogenetic activation of β-catenin signaling to probe the dynamic responses of differentiating adult neural stem cells (NSCs). We discover that, while elevated, sustained β-catenin activation sequentially promotes proliferation and differentiation, transient β-catenin induces apoptosis. Genetic perturbations revealed that the neurogenic/apoptotic fate switch was mediated through cell-cycle regulation by Growth Arrest and DNA Damage 45 gamma (Gadd45γ). Our results thus reveal a role for β-catenin dynamics in NSC fate decisions and may suggest a role for signal timing to minimize cell-fate errors, analogous to kinetic proofreading of stem-cell differentiation.
Collapse
Affiliation(s)
| | - Marcin Tarczyński
- Department of Bioengineering, University of California, Berkeley, CA 94720
| | - Nora Lam
- Department of Bioengineering, University of California, Berkeley, CA 94720
| | - Ravi S Kane
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332;
| | - Lukasz J Bugaj
- Department of Bioengineering, University of California, Berkeley, CA 94720;
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| | - David V Schaffer
- Department of Bioengineering, University of California, Berkeley, CA 94720;
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720
| |
Collapse
|
135
|
Han F, Lu P. Introduction for Stem Cell-Based Therapy for Neurodegenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1266:1-8. [PMID: 33105491 DOI: 10.1007/978-981-15-4370-8_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neurodegenerative diseases (NDs) are a group of neurological diseases caused by the progressive degeneration of neurons and glial cells in the brain and spinal cords. Usually there is a selective loss of specific neuronal cells in a restricted brain area from any neurodegenerative diseases, such as dopamine (DA) neuron death in Parkinson disease (PD) and motor neuron loss in amyotrophic lateral sclerosis (ALS), or a widespread degeneration affecting many types of neurons in Alzheimer's disease (AD). As there is no effective treatment to stop the progression of these neurodegenerative diseases, stem cell-based therapies have provided great potentials for these disorders. Currently transplantation of different stem cells or their derivatives has improved neural function in animal models of neurodegenerative diseases by replacing the lost neural cells, releasing cytokines, modulation of inflammation, and mediating remyelination. With the advance in somatic cell reprogramming to generate induced pluripotent stem cells (iPS cells) and directly induced neural stem cells or neurons, pluripotent stem cell can be induced to differentiate to any kind of neural cells and overcome the immune rejection of the allogeneic transplantation. Recent studies have proved the effectiveness of transplanted stem cells in animal studies and some clinical trials on patients with NDs. However, some significant hurdles need to be resolved before these preclinical results can be translated to clinic. In particular, we need to better understand the molecular mechanisms of stem cell transplantation and develop new approaches to increase the directed neural differentiation, migration, survival, and functional connections of transplanted stem cells in the pathological environment of the patient's central nerve system.
Collapse
Affiliation(s)
- Fabin Han
- The Institute for Translational Medicine, Shandong University/Affiliated Second Hospital, Jinan, Shandong, China. .,The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/Liaocheng People's Hospital, Liaocheng, Shandong, China.
| | - Paul Lu
- Veterans Administration San Diego Healthcare System, San Diego, CA, USA.,Department of Neurosciences, University of California - San Diego, La Jolla, CA, USA
| |
Collapse
|
136
|
Wu AY, Sung Y, Chen Y, Chou ST, Guo V, Chien JC, Ko JJ, Yang AL, Huang H, Chuang J, Wu S, Ho M, Ericsson M, Lin W, Cheung CHY, Juan H, Ueda K, Chen Y, Lai CP. Multiresolution Imaging Using Bioluminescence Resonance Energy Transfer Identifies Distinct Biodistribution Profiles of Extracellular Vesicles and Exomeres with Redirected Tropism. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001467. [PMID: 33042758 PMCID: PMC7539214 DOI: 10.1002/advs.202001467] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/10/2020] [Indexed: 05/10/2023]
Abstract
Extracellular particles (EPs) including extracellular vesicles (EVs) and exomeres play significant roles in diseases and therapeutic applications. However, their spatiotemporal dynamics in vivo have remained largely unresolved in detail due to the lack of a suitable method. Therefore, a bioluminescence resonance energy transfer (BRET)-based reporter, PalmGRET, is created to enable pan-EP labeling ranging from exomeres (<50 nm) to small (<200 nm) and medium and large (>200 nm) EVs. PalmGRET emits robust, sustained signals and allows the visualization, tracking, and quantification of the EPs from whole animal to nanoscopic resolutions under different imaging modalities, including bioluminescence, BRET, and fluorescence. Using PalmGRET, it is shown that EPs released by lung metastatic hepatocellular carcinoma (HCC) exhibit lung tropism with varying distributions to other major organs in immunocompetent mice. It is further demonstrated that gene knockdown of lung-tropic membrane proteins, solute carrier organic anion transporter family member 2A1, alanine aminopeptidase/Cd13, and chloride intracellular channel 1 decreases HCC-EP distribution to the lungs and yields distinct biodistribution profiles. It is anticipated that EP-specific imaging, quantitative assays, and detailed in vivo characterization are a starting point for more accurate and comprehensive in vivo models of EP biology and therapeutic design.
Collapse
Affiliation(s)
- Anthony Yan‐Tang Wu
- Institute of Atomic and Molecular SciencesAcademia SinicaTaipei10617Taiwan
- Department of Pharmacology, College of MedicineNational Taiwan UniversityTaipei100233Taiwan
- Chemical Biology and Molecular Biophysics ProgramTaiwan International Graduate ProgramAcademia SinicaTaipei11529Taiwan
| | - Yun‐Chieh Sung
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of MattersNational Tsing Hua UniversityHsinchu30013Taiwan
- Department of Chemical EngineeringNational Tsing Hua UniversityHsinchu30013Taiwan
| | - Yen‐Ju Chen
- Institute of Atomic and Molecular SciencesAcademia SinicaTaipei10617Taiwan
| | | | - Vanessa Guo
- Institute of Atomic and Molecular SciencesAcademia SinicaTaipei10617Taiwan
| | | | - John Jun‐Sheng Ko
- Institute of Atomic and Molecular SciencesAcademia SinicaTaipei10617Taiwan
| | - Alan Ling Yang
- Institute of Atomic and Molecular SciencesAcademia SinicaTaipei10617Taiwan
| | - Hsi‐Chien Huang
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of MattersNational Tsing Hua UniversityHsinchu30013Taiwan
- Department of Chemical EngineeringNational Tsing Hua UniversityHsinchu30013Taiwan
| | - Ju‐Chen Chuang
- Institute of Atomic and Molecular SciencesAcademia SinicaTaipei10617Taiwan
| | - Syuan Wu
- Institute of Atomic and Molecular SciencesAcademia SinicaTaipei10617Taiwan
| | - Meng‐Ru Ho
- Institute of Biological ChemistryAcademia SinicaTaipei115Taiwan
| | - Maria Ericsson
- Department of Cell BiologyHarvard Medical SchoolBostonMA02115USA
| | - Wan‐Wan Lin
- Department of Pharmacology, College of MedicineNational Taiwan UniversityTaipei100233Taiwan
| | | | - Hsueh‐Fen Juan
- Department of Life ScienceNational Taiwan UniversityTaipei10617Taiwan
| | - Koji Ueda
- Cancer Proteomics Group, Cancer Precision Medicine CenterJapanese Foundation for Cancer ResearchTokyo135‐8550Japan
| | - Yunching Chen
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of MattersNational Tsing Hua UniversityHsinchu30013Taiwan
| | - Charles Pin‐Kuang Lai
- Institute of Atomic and Molecular SciencesAcademia SinicaTaipei10617Taiwan
- Chemical Biology and Molecular Biophysics ProgramTaiwan International Graduate ProgramAcademia SinicaTaipei11529Taiwan
- Genome and Systems Biology Degree ProgramNational Taiwan University and Academia SinicaTaipei10617Taiwan
| |
Collapse
|
137
|
Das RN, Yaniv K. Discovering New Progenitor Cell Populations through Lineage Tracing and In Vivo Imaging. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a035618. [PMID: 32041709 DOI: 10.1101/cshperspect.a035618] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Identification of progenitor cells that generate differentiated cell types during development, regeneration, and disease states is central to understanding the mechanisms governing such transitions. For more than a century, different lineage-tracing strategies have been developed, which helped disentangle the complex relationship between progenitor cells and their progenies. In this review, we discuss how lineage-tracing analyses have evolved alongside technological advances, and how this approach has contributed to the identification of progenitor cells in different contexts of cell differentiation. We also highlight a few examples in which lineage-tracing experiments have been instrumental for resolving long-standing debates and for identifying unexpected cellular origins. This discussion emphasizes how this century-old quest to delineate cellular lineage relationships is still active, and new discoveries are being made with the development of newer methodologies.
Collapse
Affiliation(s)
- Rudra Nayan Das
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Karina Yaniv
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
138
|
Ekstrand B, Scheers N, Rasmussen MK, Young JF, Ross AB, Landberg R. Brain foods - the role of diet in brain performance and health. Nutr Rev 2020; 79:693-708. [PMID: 32989449 DOI: 10.1093/nutrit/nuaa091] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The performance of the human brain is based on an interplay between the inherited genotype and external environmental factors, including diet. Food and nutrition, essential in maintenance of brain performance, also aid in prevention and treatment of mental disorders. Both the overall composition of the human diet and specific dietary components have been shown to have an impact on brain function in various experimental models and epidemiological studies. This narrative review provides an overview of the role of diet in 5 key areas of brain function related to mental health and performance, including: (1) brain development, (2) signaling networks and neurotransmitters in the brain, (3) cognition and memory, (4) the balance between protein formation and degradation, and (5) deteriorative effects due to chronic inflammatory processes. Finally, the role of diet in epigenetic regulation of brain physiology is discussed.
Collapse
Affiliation(s)
- Bo Ekstrand
- Department of Biology and Biological Engineering, Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| | - Nathalie Scheers
- Department of Biology and Biological Engineering, Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| | | | | | - Alastair B Ross
- Department of Biology and Biological Engineering, Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden.,AgResearch, Lincoln, New Zealand
| | - Rikard Landberg
- Department of Biology and Biological Engineering, Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
139
|
Metabolic tuning of inhibition regulates hippocampal neurogenesis in the adult brain. Proc Natl Acad Sci U S A 2020; 117:25818-25829. [PMID: 32973092 DOI: 10.1073/pnas.2006138117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hippocampus-engaged behaviors stimulate neurogenesis in the adult dentate gyrus by largely unknown means. To explore the underlying mechanisms, we used tetrode recording to analyze neuronal activity in the dentate gyrus of freely moving adult mice during hippocampus-engaged contextual exploration. We found that exploration induced an overall sustained increase in inhibitory neuron activity that was concomitant with decreased excitatory neuron activity. A mathematical model based on energy homeostasis in the dentate gyrus showed that enhanced inhibition and decreased excitation resulted in a similar increase in neurogenesis to that observed experimentally. To mechanistically investigate this sustained inhibitory regulation, we performed metabolomic and lipidomic profiling of the hippocampus during exploration. We found sustainably increased signaling of sphingosine-1-phosphate, a bioactive metabolite, during exploration. Furthermore, we found that sphingosine-1-phosphate signaling through its receptor 2 increased interneuron activity and thus mediated exploration-induced neurogenesis. Taken together, our findings point to a behavior-metabolism circuit pathway through which experience regulates adult hippocampal neurogenesis.
Collapse
|
140
|
Valcárcel-Martín R, Martín-Suárez S, Muro-García T, Pastor-Alonso O, Rodríguez de Fonseca F, Estivill-Torrús G, Encinas JM. Lysophosphatidic Acid Receptor 1 Specifically Labels Seizure-Induced Hippocampal Reactive Neural Stem Cells and Regulates Their Division. Front Neurosci 2020; 14:811. [PMID: 32922255 PMCID: PMC7456947 DOI: 10.3389/fnins.2020.00811] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/10/2020] [Indexed: 12/12/2022] Open
Abstract
A population of neural stem cells (NSCs) dwelling in the dentate gyrus (DG) is able to generate neurons throughout adult life in the hippocampus of most mammals. These NSCs generate also astrocytes naturally and are capable of generating oligodendrocytes after gene manipulation. It has been more recently shown that adult hippocampal NSCs after epileptic seizures as well as subventricular zone NSCs after stroke can give rise to reactive astrocytes (RAs). In the hippocampus, the induction of seizures triggers the conversion of NSCs into reactive NSCs (React-NSCs) characterized by a drastic morphological transformation, abnormal migration, and massive activation or entry into the cell cycle to generate more React-NSCs that ultimately differentiate into RAs. In the search for tools to investigate the properties of React-NSCs, we have explored the LPA1–green fluorescent protein (GFP) transgenic line of mice in which hippocampal NSCs are specifically labeled due to the expression of lysophosphatidic acid receptor 1 (LPA1). We first addressed the validity of the transgene expression as true marker of LPA1 expression and then demonstrated how, after seizures, LPA1-GFP labeled exclusively React-NSCs for several weeks. Then React-NSCs lost LPA1-GFP expression as neurons of the granule cell layer started to express it. Finally, we used knockout for LPA1 transgenic mice to show that LPA1 plays a functional role in the activation of React-NSCs. Thus, we confirmed that LPA1-GFP expression is a valid tool to study both NSCs and React-NSCs and that the LPA1 pathway could be a target in the intent to preserve NSCs after seizures.
Collapse
Affiliation(s)
- Roberto Valcárcel-Martín
- The Neural Stem Cell and Neurogenesis Laboratory, Achucarro Basque Center for Neuroscience, Leioa, Spain.,Department of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Soraya Martín-Suárez
- The Neural Stem Cell and Neurogenesis Laboratory, Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Teresa Muro-García
- The Neural Stem Cell and Neurogenesis Laboratory, Achucarro Basque Center for Neuroscience, Leioa, Spain.,Department of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Oier Pastor-Alonso
- The Neural Stem Cell and Neurogenesis Laboratory, Achucarro Basque Center for Neuroscience, Leioa, Spain.,Department of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Fernando Rodríguez de Fonseca
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Guillermo Estivill-Torrús
- Unidad de Gestión Clínica de Neurociencias, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Juan Manuel Encinas
- The Neural Stem Cell and Neurogenesis Laboratory, Achucarro Basque Center for Neuroscience, Leioa, Spain.,Department of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain.,Ikerbasque, The Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
141
|
Zhang R, Boareto M, Engler A, Louvi A, Giachino C, Iber D, Taylor V. Id4 Downstream of Notch2 Maintains Neural Stem Cell Quiescence in the Adult Hippocampus. Cell Rep 2020; 28:1485-1498.e6. [PMID: 31390563 DOI: 10.1016/j.celrep.2019.07.014] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 04/14/2019] [Accepted: 07/02/2019] [Indexed: 12/31/2022] Open
Abstract
Neural stem cells (NSCs) in the adult mouse hippocampal dentate gyrus (DG) are mostly quiescent, and only a few are in cell cycle at any point in time. DG NSCs become increasingly dormant with age and enter mitosis less frequently, which impinges on neurogenesis. How NSC inactivity is maintained is largely unknown. Here, we found that Id4 is a downstream target of Notch2 signaling and maintains DG NSC quiescence by blocking cell-cycle entry. Id4 expression is sufficient to promote DG NSC quiescence and Id4 knockdown rescues Notch2-induced inhibition of NSC proliferation. Id4 deletion activates NSC proliferation in the DG without evoking neuron generation, and overexpression increases NSC maintenance while promoting astrogliogenesis at the expense of neurogenesis. Together, our findings indicate that Id4 is a major effector of Notch2 signaling in NSCs and a Notch2-Id4 axis promotes NSC quiescence in the adult DG, uncoupling NSC activation from neuronal differentiation.
Collapse
Affiliation(s)
- Runrui Zhang
- Embryology and Stem Cell Biology Lab, Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Marcelo Boareto
- Computational Biology Group, D-BSSE, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland; Swiss Institute of Bioinformatics (SIB), Mattenstrasse 26, 4058 Basel, Switzerland
| | - Anna Engler
- Embryology and Stem Cell Biology Lab, Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Angeliki Louvi
- Departments of Neurosurgery and Neuroscience, Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT 06520, USA
| | - Claudio Giachino
- Embryology and Stem Cell Biology Lab, Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Dagmar Iber
- Computational Biology Group, D-BSSE, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland; Swiss Institute of Bioinformatics (SIB), Mattenstrasse 26, 4058 Basel, Switzerland
| | - Verdon Taylor
- Embryology and Stem Cell Biology Lab, Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland.
| |
Collapse
|
142
|
Seki T. Understanding the Real State of Human Adult Hippocampal Neurogenesis From Studies of Rodents and Non-human Primates. Front Neurosci 2020; 14:839. [PMID: 32848586 PMCID: PMC7432251 DOI: 10.3389/fnins.2020.00839] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022] Open
Abstract
The concept of adult hippocampal neurogenesis (AHN) has been widely accepted, and a large number of studies have been performed in rodents using modern experimental techniques, which have clarified the nature and developmental processes of adult neural stem/progenitor cells, the functions of AHN, such as memory and learning, and its association with neural diseases. However, a fundamental problem is that it remains unclear as to what extent AHN actually occurs in humans. The answer to this is indispensable when physiological and pathological functions of human AHN are deduced from studies of rodent AHN, but there are controversial data on the extent of human AHN. In this review, studies on AHN performed in rodents and humans will be briefly reviewed, followed by a discussion of the studies in non-human primates. Then, how data of rodent and non-human primate AHN should be applied for understanding human AHN will be discussed.
Collapse
Affiliation(s)
- Tatsunori Seki
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
143
|
Malvaut S, Constantinescu VS, Dehez H, Doric S, Saghatelyan A. Deciphering Brain Function by Miniaturized Fluorescence Microscopy in Freely Behaving Animals. Front Neurosci 2020; 14:819. [PMID: 32848576 PMCID: PMC7432153 DOI: 10.3389/fnins.2020.00819] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/14/2020] [Indexed: 11/19/2022] Open
Abstract
Animal behavior is regulated by environmental stimuli and is shaped by the activity of neural networks, underscoring the importance of assessing the morpho-functional properties of different populations of cells in freely behaving animals. In recent years, a number of optical tools have been developed to monitor and modulate neuronal and glial activity at the protein, cellular, or network level and have opened up new avenues for studying brain function in freely behaving animals. Tools such as genetically encoded sensors and actuators are now commonly used for studying brain activity and function through their expression in different neuronal ensembles. In parallel, microscopy has also made major progress over the last decades. The advent of miniature microscopes (mini-microscopes also called mini-endoscopes) has become a method of choice for studying brain activity at the cellular and network levels in different brain regions of freely behaving mice. This technique also allows for longitudinal investigations while animals carrying the microscope on their head are performing behavioral tasks. In this review, we will discuss mini-endoscopic imaging and the advantages that these devices offer to research. We will also discuss current limitations of and potential future improvements in mini-endoscopic imaging.
Collapse
Affiliation(s)
- Sarah Malvaut
- CERVO Brain Research Center, Quebec City, QC, Canada
- Department of Psychiatry and Neuroscience, Universite Laval, Quebec City, QC, Canada
| | - Vlad-Stefan Constantinescu
- CERVO Brain Research Center, Quebec City, QC, Canada
- Department of Psychiatry and Neuroscience, Universite Laval, Quebec City, QC, Canada
| | | | - Sead Doric
- Doric Lenses Inc., Quebec City, QC, Canada
| | - Armen Saghatelyan
- CERVO Brain Research Center, Quebec City, QC, Canada
- Department of Psychiatry and Neuroscience, Universite Laval, Quebec City, QC, Canada
| |
Collapse
|
144
|
Navarro Negredo P, Yeo RW, Brunet A. Aging and Rejuvenation of Neural Stem Cells and Their Niches. Cell Stem Cell 2020; 27:202-223. [PMID: 32726579 DOI: 10.1016/j.stem.2020.07.002] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Aging has a profound and devastating effect on the brain. Old age is accompanied by declining cognitive function and enhanced risk of brain diseases, including cancer and neurodegenerative disorders. A key question is whether cells with regenerative potential contribute to brain health and even brain "rejuvenation." This review discusses mechanisms that regulate neural stem cells (NSCs) during aging, focusing on the effect of metabolism, genetic regulation, and the surrounding niche. We also explore emerging rejuvenating strategies for old NSCs. Finally, we consider how new technologies may help harness NSCs' potential to restore healthy brain function during physiological and pathological aging.
Collapse
Affiliation(s)
| | - Robin W Yeo
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Glenn Laboratories for the Biology of Aging, Stanford, CA 94305, USA.
| |
Collapse
|
145
|
Martín-Suárez S, Abiega O, Ricobaraza A, Hernandez-Alcoceba R, Encinas JM. Alterations of the Hippocampal Neurogenic Niche in a Mouse Model of Dravet Syndrome. Front Cell Dev Biol 2020; 8:654. [PMID: 32793597 PMCID: PMC7385077 DOI: 10.3389/fcell.2020.00654] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/01/2020] [Indexed: 01/24/2023] Open
Abstract
Hippocampal neurogenesis, the process by which neural stem cells (NSCs) continuously generate new neurons in the dentate gyrus (DG) of most mammals including humans, is chiefly regulated by neuronal activity. Thus, severe alterations have been found in samples from epilepsy patients and in the hippocampal neurogenic niche in mouse models of epilepsy. Reactive-like and gliogenic NSCs plus aberrant newborn neurons with altered migration, morphology, and functional properties are induced by seizures in experimental models of temporal lobe epilepsy. Hippocampal neurogenesis participates in memory and learning and in the control of anxiety and stress. It has been therefore hypothesized that part of the cognitive symptoms associated with epilepsy could be promoted by impaired hippocampal neurogenesis. We here analyze for the first time the alterations of the neurogenic niche in a novel mouse model of Dravet syndrome (DS), a genetic encephalopathy with severe epilepsy in infancy and multiple neurological comorbidities. Scn1aWT/A1783V mice, hereafter referred to as DS, carrying a heterozygous and clinically relevant SCN1A mutation (A1783V) recapitulate the disease at the genetic and phenotypic levels. We demonstrate that in the neurogenic niche of young adult DS mice there are fewer NSCs, they have impaired cell division and bear reactive-like morphology. In addition, there is significant aberrant neurogenesis. Newborn immature neurons migrate abnormally, and several morphological features are drastically changed. Thus, this study shows for the first time important modifications in hippocampal neurogenesis in DS and opens venues for further research on this topic.
Collapse
Affiliation(s)
- Soraya Martín-Suárez
- The Neural Stem Cell and Neurogenesis Laboratory, Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Oihane Abiega
- The Neural Stem Cell and Neurogenesis Laboratory, Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Ana Ricobaraza
- Gene Therapy Program CIMA, IdiSNA, Navarra Institute for Health Research, University of Navarra, Pamplona, Spain
| | - Rubén Hernandez-Alcoceba
- Gene Therapy Program CIMA, IdiSNA, Navarra Institute for Health Research, University of Navarra, Pamplona, Spain
| | - Juan Manuel Encinas
- The Neural Stem Cell and Neurogenesis Laboratory, Achucarro Basque Center for Neuroscience, Leioa, Spain.,Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain.,IKERBASQUE, The Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
146
|
Kerloch T, Clavreul S, Goron A, Abrous DN, Pacary E. Dentate Granule Neurons Generated During Perinatal Life Display Distinct Morphological Features Compared With Later-Born Neurons in the Mouse Hippocampus. Cereb Cortex 2020; 29:3527-3539. [PMID: 30215686 DOI: 10.1093/cercor/bhy224] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/06/2018] [Indexed: 02/07/2023] Open
Abstract
In nonhuman mammals and in particular in rodents, most granule neurons of the dentate gyrus (DG) are generated during development and yet little is known about their properties compared with adult-born neurons. Although it is generally admitted that these populations are morphologically indistinguishable once mature, a detailed analysis of developmentally born neurons is lacking. Here, we used in vivo electroporation to label dentate granule cells (DGCs) generated in mouse embryos (E14.5) or in neonates (P0) and followed their morphological development up to 6 months after birth. By comparison with mature retrovirus-labeled DGCs born at weaning (P21) or young adult (P84) stages, we provide the evidence that perinatally born neurons, especially embryonically born cells, are morphologically distinct from later-born neurons and are thus easily distinguishable. In addition, our data indicate that semilunar and hilar GCs, 2 populations in ectopic location, are generated during the embryonic and the neonatal periods, respectively. Thus, our findings provide new insights into the development of the different populations of GCs in the DG and open new questions regarding their function in the brain.
Collapse
Affiliation(s)
- Thomas Kerloch
- INSERM U1215, Neurocentre Magendie, Bordeaux, France.,Université de Bordeaux, Bordeaux, France
| | - Solène Clavreul
- INSERM U1215, Neurocentre Magendie, Bordeaux, France.,Université de Bordeaux, Bordeaux, France
| | - Adeline Goron
- INSERM U1215, Neurocentre Magendie, Bordeaux, France.,Université de Bordeaux, Bordeaux, France
| | - Djoher Nora Abrous
- INSERM U1215, Neurocentre Magendie, Bordeaux, France.,Université de Bordeaux, Bordeaux, France
| | - Emilie Pacary
- INSERM U1215, Neurocentre Magendie, Bordeaux, France.,Université de Bordeaux, Bordeaux, France
| |
Collapse
|
147
|
Labusch M, Mancini L, Morizet D, Bally-Cuif L. Conserved and Divergent Features of Adult Neurogenesis in Zebrafish. Front Cell Dev Biol 2020; 8:525. [PMID: 32695781 PMCID: PMC7338623 DOI: 10.3389/fcell.2020.00525] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/03/2020] [Indexed: 12/14/2022] Open
Abstract
Adult neurogenesis, i.e., the generation of neurons from neural stem cells (NSCs) in the adult brain, contributes to brain plasticity in all vertebrates. It varies, however, greatly in extent, location and physiological characteristics between species. During the last decade, the teleost zebrafish (D. rerio) was increasingly used to study the molecular and cellular properties of adult NSCs, in particular as a prominent NSC population was discovered at the ventricular surface of the dorsal telencephalon (pallium), in territories homologous to the adult neurogenic niches of rodents. This model, for its specific features (large NSC population, amenability to intravital imaging, high regenerative capacity) allowed rapid progress in the characterization of basic adult NSC features. We review here these findings, with specific comparisons with the situation in rodents. We specifically discuss the cellular nature of NSCs (astroglial or neuroepithelial cells), their heterogeneities and their neurogenic lineages, and the mechanisms controlling NSC quiescence and fate choices, which all impact the neurogenic output. We further discuss the regulation of NSC activity in response to physiological triggers and non-physiological conditions such as regenerative contexts.
Collapse
Affiliation(s)
- Miriam Labusch
- Zebrafish Neurogenetics Unit, Institut Pasteur, UMR 3738, CNRS, Team Supported by the Ligue Nationale Contre le Cancer, Paris, France.,Sorbonne Université, Collège Doctoral, Paris, France
| | - Laure Mancini
- Zebrafish Neurogenetics Unit, Institut Pasteur, UMR 3738, CNRS, Team Supported by the Ligue Nationale Contre le Cancer, Paris, France.,Sorbonne Université, Collège Doctoral, Paris, France
| | - David Morizet
- Zebrafish Neurogenetics Unit, Institut Pasteur, UMR 3738, CNRS, Team Supported by the Ligue Nationale Contre le Cancer, Paris, France.,Sorbonne Université, Collège Doctoral, Paris, France
| | - Laure Bally-Cuif
- Zebrafish Neurogenetics Unit, Institut Pasteur, UMR 3738, CNRS, Team Supported by the Ligue Nationale Contre le Cancer, Paris, France
| |
Collapse
|
148
|
Mira H, Morante J. Neurogenesis From Embryo to Adult - Lessons From Flies and Mice. Front Cell Dev Biol 2020; 8:533. [PMID: 32695783 PMCID: PMC7339912 DOI: 10.3389/fcell.2020.00533] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/08/2020] [Indexed: 12/30/2022] Open
Abstract
The human brain is composed of billions of cells, including neurons and glia, with an undetermined number of subtypes. During the embryonic and early postnatal stages, the vast majority of these cells are generated from neural progenitors and stem cells located in all regions of the neural tube. A smaller number of neurons will continue to be generated throughout our lives, in localized neurogenic zones, mainly confined at least in rodents to the subependymal zone of the lateral ventricles and the subgranular zone of the hippocampal dentate gyrus. During neurogenesis, a combination of extrinsic cues interacting with temporal and regional intrinsic programs are thought to be critical for increasing neuronal diversity, but their underlying mechanisms need further elucidation. In this review, we discuss the recent findings in Drosophila and mammals on the types of cell division and cell interactions used by neural progenitors and stem cells to sustain neurogenesis, and how they are influenced by glia.
Collapse
Affiliation(s)
- Helena Mira
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Javier Morante
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas y Universidad Miguel Hernandez, Alicante, Spain
| |
Collapse
|
149
|
Licht T, Sasson E, Bell B, Grunewald M, Kumar S, Kreisel T, Ben-Zvi A, Keshet E. Hippocampal neural stem cells facilitate access from circulation via apical cytoplasmic processes. eLife 2020; 9:52134. [PMID: 32496193 PMCID: PMC7297534 DOI: 10.7554/elife.52134] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 06/03/2020] [Indexed: 12/13/2022] Open
Abstract
Blood vessels (BVs) are considered an integral component of neural stem cells (NSCs) niches. NSCs in the dentate gyrus (DG(have enigmatic elaborated apical cellular processes that are associated with BVs. Whether this contact serves as a mechanism for delivering circulating molecules is not known. Here we uncovered a previously unrecognized communication route allowing exclusive direct access of blood-borne substances to hippocampal NSCs. BBB-impermeable fluorescent tracer injected transcardially to mice is selectively uptaken by DG NSCs within a minute, via the vessel-associated apical processes. These processes, measured >30 nm in diameter, establish direct membrane-to-membrane contact with endothelial cells in specialized areas of irregular endothelial basement membrane and enriched with vesicular activity. Doxorubicin, a brain-impermeable chemotherapeutic agent, is also readily and selectively uptaken by NSCs and reduces their proliferation, which might explain its problematic anti-neurogenic or cognitive side-effect. The newly-discovered NSC-BV communication route explains how circulatory neurogenic mediators are 'sensed' by NSCs.
Collapse
Affiliation(s)
- Tamar Licht
- Department of Developmental Biology and Cancer Research, Faculty of Medicine, the Hebrew University, Jerusalem, Israel.,Department of Medical Neurobiology, Faculty of Medicine, the Hebrew University, Jerusalem, Israel
| | - Esther Sasson
- Department of Developmental Biology and Cancer Research, Faculty of Medicine, the Hebrew University, Jerusalem, Israel
| | - Batia Bell
- Department of Developmental Biology and Cancer Research, Faculty of Medicine, the Hebrew University, Jerusalem, Israel
| | - Myriam Grunewald
- Department of Developmental Biology and Cancer Research, Faculty of Medicine, the Hebrew University, Jerusalem, Israel
| | - Saran Kumar
- Department of Developmental Biology and Cancer Research, Faculty of Medicine, the Hebrew University, Jerusalem, Israel
| | - Tirzah Kreisel
- Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University Givat Ram, Jerusalem, Israel
| | - Ayal Ben-Zvi
- Department of Developmental Biology and Cancer Research, Faculty of Medicine, the Hebrew University, Jerusalem, Israel
| | - Eli Keshet
- Department of Developmental Biology and Cancer Research, Faculty of Medicine, the Hebrew University, Jerusalem, Israel
| |
Collapse
|
150
|
Matsuda T, Nakashima K. Natural and forced neurogenesis in the adult brain: Mechanisms and their possible application to treat neurological disorders. Neurosci Res 2020; 166:1-11. [PMID: 32497571 DOI: 10.1016/j.neures.2020.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 01/17/2023]
Abstract
Neural stem cells (NSCs) in the adult hippocampus generate new neurons via a process referred to as neurogenesis, supporting cognitive functions. Since altered neurogenesis has been reportedly associated with several diseases such as epilepsy, the molecular basis of NSC activity is an important focus in the study of neurogenesis. Furthermore, facilitation of neurogenesis in the injured brain would be an ideal approach to replenish lost neurons for damage recovery. However, natural neurogenesis by endogenous NSCs in the adult brain is insufficient for complete recovery after severe injury. Recent advances in understanding forced neurogenesis from brain-resident non-neuronal cells by direct reprogramming and clearing hurdles to achieve it have improved the ability to replace damaged neurons in the brain. In this review, we describe molecular mechanisms underlying natural and forced neurogenesis, and discuss future directions for treatments of diseases in the central nervous system.
Collapse
Affiliation(s)
- Taito Matsuda
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Kinichi Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|