101
|
Lanekoff I, Sharma VV, Marques C. Single-cell metabolomics: where are we and where are we going? Curr Opin Biotechnol 2022; 75:102693. [DOI: 10.1016/j.copbio.2022.102693] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/12/2022] [Accepted: 01/20/2022] [Indexed: 12/11/2022]
|
102
|
More TH, Hiller K. Complexity of subcellular metabolism: strategies for compartment-specific profiling. Curr Opin Biotechnol 2022; 75:102711. [DOI: 10.1016/j.copbio.2022.102711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 11/03/2022]
|
103
|
Jain A, Zoncu R. Organelle transporters and inter-organelle communication as drivers of metabolic regulation and cellular homeostasis. Mol Metab 2022; 60:101481. [PMID: 35342037 PMCID: PMC9043965 DOI: 10.1016/j.molmet.2022.101481] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/14/2022] [Accepted: 03/21/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Spatial compartmentalization of metabolic pathways within membrane-separated organelles is key to the ability of eukaryotic cells to precisely regulate their biochemical functions. Membrane-bound organelles such as mitochondria, endoplasmic reticulum (ER) and lysosomes enable the concentration of metabolic precursors within optimized chemical environments, greatly accelerating the efficiency of both anabolic and catabolic reactions, enabling division of labor and optimal utilization of resources. However, metabolic compartmentalization also poses a challenge to cells because it creates spatial discontinuities that must be bridged for reaction cascades to be connected and completed. To do so, cells employ different methods to coordinate metabolic fluxes occurring in different organelles, such as membrane-localized transporters to facilitate regulated metabolite exchange between mitochondria and lysosomes, non-vesicular transport pathways via physical contact sites connecting the ER with both mitochondria and lysosomes, as well as localized regulatory signaling processes that coordinately regulate the activity of all these organelles. SCOPE OF REVIEW This review covers how cells use membrane transporters, membrane contact sites, and localized signaling pathways to mediate inter-organelle communication and coordinate metabolism. We also describe how disruption of inter-organelle communication is an emerging driver in a multitude of diseases, from cancer to neurodegeneration. MAJOR CONCLUSIONS Effective communication among organelles is essential to cellular health and function. Identifying the major molecular players involved in mediating metabolic coordination between organelles will further our understanding of cellular metabolism in health and lead us to design better therapeutics against dysregulated metabolism in disease.
Collapse
Affiliation(s)
- Aakriti Jain
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Roberto Zoncu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
104
|
Skirycz A, Fernie AR. Past accomplishments and future challenges of the multi-omics characterization of leaf growth. PLANT PHYSIOLOGY 2022; 189:473-489. [PMID: 35325227 PMCID: PMC9157134 DOI: 10.1093/plphys/kiac136] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
The advent of omics technologies has revolutionized biology and advanced our understanding of all biological processes, including major developmental transitions in plants and animals. Here, we review the vast knowledge accumulated concerning leaf growth in terms of transcriptional regulation before turning our attention to the historically less well-characterized alterations at the protein and metabolite level. We will then discuss how the advent of biochemical methods coupled with metabolomics and proteomics can provide insight into the protein-protein and protein-metabolite interactome of the growing leaves. We finally highlight the substantial challenges in detection, spatial resolution, integration, and functional validation of the omics results, focusing on metabolomics as a prerequisite for a comprehensive understanding of small-molecule regulation of plant growth.
Collapse
Affiliation(s)
- Aleksandra Skirycz
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
- Boyce Thompson Institute, Ithaca, New York 14853, USA
- Cornell University, Ithaca, New York 14853, USA
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
| |
Collapse
|
105
|
Yang J, Huang L, Qian K. Nanomaterials-assisted metabolic analysis toward in vitro diagnostics. EXPLORATION (BEIJING, CHINA) 2022; 2:20210222. [PMID: 37323704 PMCID: PMC10191060 DOI: 10.1002/exp.20210222] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/08/2022] [Indexed: 06/15/2023]
Abstract
In vitro diagnostics (IVD) has played an indispensable role in healthcare system by providing necessary information to indicate disease condition and guide therapeutic decision. Metabolic analysis can be the primary choice to facilitate the IVD since it characterizes the downstream metabolites and offers real-time feedback of the human body. Nanomaterials with well-designed composition and nanostructure have been developed for the construction of high-performance detection platforms toward metabolic analysis. Herein, we summarize the recent progress of nanomaterials-assisted metabolic analysis and the related applications in IVD. We first introduce the important role that nanomaterials play in metabolic analysis when coupled with different detection platforms, including electrochemical sensors, optical spectrometry, and mass spectrometry. We further highlight the nanomaterials-assisted metabolic analysis toward IVD applications, from the perspectives of both the targeted biomarker quantitation and untargeted fingerprint extraction. This review provides fundamental insights into the function of nanomaterials in metabolic analysis, thus facilitating the design of next-generation diagnostic devices in clinical practice.
Collapse
Affiliation(s)
- Jing Yang
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering, Institute of Medical Robotics and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghaiChina
- Department of Obstetrics and Gynecology, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Lin Huang
- Country Department of Clinical Laboratory MedicineShanghai Chest HospitalShanghai Jiao Tong UniversityShanghaiChina
| | - Kun Qian
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering, Institute of Medical Robotics and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghaiChina
- Department of Obstetrics and Gynecology, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
106
|
Morgan EW, Perdew GH, Patterson AD. Multi-Omics Strategies for Investigating the Microbiome in Toxicology Research. Toxicol Sci 2022; 187:189-213. [PMID: 35285497 PMCID: PMC9154275 DOI: 10.1093/toxsci/kfac029] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Microbial communities on and within the host contact environmental pollutants, toxic compounds, and other xenobiotic compounds. These communities of bacteria, fungi, viruses, and archaea possess diverse metabolic potential to catabolize compounds and produce new metabolites. Microbes alter chemical disposition thus making the microbiome a natural subject of interest for toxicology. Sequencing and metabolomics technologies permit the study of microbiomes altered by acute or long-term exposure to xenobiotics. These investigations have already contributed to and are helping to re-interpret traditional understandings of toxicology. The purpose of this review is to provide a survey of the current methods used to characterize microbes within the context of toxicology. This will include discussion of commonly used techniques for conducting omic-based experiments, their respective strengths and deficiencies, and how forward-looking techniques may address present shortcomings. Finally, a perspective will be provided regarding common assumptions that currently impede microbiome studies from producing causal explanations of toxicologic mechanisms.
Collapse
Affiliation(s)
- Ethan W Morgan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Gary H Perdew
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Andrew D Patterson
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
107
|
Pedley AM, Boylan JP, Chan CY, Kennedy EL, Kyoung M, Benkovic SJ. Purine biosynthetic enzymes assemble into liquid-like condensates dependent on the activity of chaperone protein HSP90. J Biol Chem 2022; 298:101845. [PMID: 35307352 PMCID: PMC9034097 DOI: 10.1016/j.jbc.2022.101845] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 01/18/2023] Open
Abstract
Enzymes within the de novo purine biosynthetic pathway spatially organize into dynamic intracellular assemblies called purinosomes. The formation of purinosomes has been correlated with growth conditions resulting in high purine demand, and therefore, the cellular advantage of complexation has been hypothesized to enhance metabolite flux through the pathway. However, the properties of this cellular structure are unclear. Here, we define the purinosome in a transient expression system as a biomolecular condensate using fluorescence microscopy. We show that purinosomes, as denoted by formylglycinamidine ribonucleotide synthase granules in purine-depleted HeLa cells, are spherical and appear to coalesce when two come into contact, all liquid-like characteristics that are consistent with previously reported condensates. We further explored the biophysical and biochemical means that drive the liquid-liquid phase separation of these structures. We found that the process of enzyme condensation into purinosomes is likely driven by the oligomeric state of the pathway enzymes and not a result of intrinsic disorder, the presence of low-complexity domains, the assistance of RNA scaffolds, or changes in intracellular pH. Finally, we demonstrate that the heat shock protein 90 KDa helps to regulate the physical properties of the condensate and maintain their liquid-like state inside HeLa cells. We show that disruption of heat shock protein 90 KDa activity induced the transformation of formylglycinamidine ribonucleotide synthase clusters into more irregularly shaped condensates, suggesting that its chaperone activity is essential for purinosomes to retain their liquid-like properties. This refined view of the purinosome offers new insight into how metabolic enzymes spatially organize into dynamic condensates within human cells.
Collapse
Affiliation(s)
- Anthony M Pedley
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Jack P Boylan
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Chung Yu Chan
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Erin L Kennedy
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Minjoung Kyoung
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Stephen J Benkovic
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA.
| |
Collapse
|
108
|
Zhang D, Li X, Zheng W, Gui L, Yang Y, Li A, Liu Y, Li T, Deng C, Liu J, Cheng J, Yang H, Gong M. Investigating the Biological Effect of Multidimensional Ti 3C 2 (MXene)-Based Nanomaterials through a Metabolomics Approach: a Multidimensional-Determined Alteration in Energy Metabolism. CHEMISTRY OF MATERIALS 2022. [DOI: 10.1021/acs.chemmater.2c00381] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Dingkun Zhang
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xin Li
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wen Zheng
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Luolan Gui
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yin Yang
- Department of Clinical Research Management, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ang Li
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yueqiu Liu
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tao Li
- Laboratory of Mitochondrial and Metabolism, Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Cheng Deng
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jingping Liu
- Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jingqiu Cheng
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hao Yang
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Meng Gong
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
109
|
Petty HR. Enzyme Trafficking and Co-Clustering Precede and Accurately Predict Human Breast Cancer Recurrences: An Interdisciplinary Review. Am J Physiol Cell Physiol 2022; 322:C991-C1010. [PMID: 35385324 DOI: 10.1152/ajpcell.00042.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Although great effort has been expended to understand cancer's origins, less attention has been given to the primary cause of cancer deaths - cancer recurrences and their sequelae. This interdisciplinary review addresses mechanistic features of aggressive cancer by studying metabolic enzyme patterns within ductal carcinoma in situ (DCIS) of the breast lesions. DCIS lesions from patients who did or did not experience a breast cancer recurrence were compared. Several proteins, including phospho-Ser226-glucose transporter type 1, phosphofructokinase type L and phosphofructokinase/fructose 2,6-bisphosphatase type 4 are found in nucleoli of ductal epithelial cells in samples from patients who will not subsequently recur, but traffic to the cell periphery in samples from patients who will experience a cancer recurrence. Large co-clusters of enzymes near plasmalemmata will enhance product formation because enzyme concentrations in clusters are very high while solvent molecules and solutes diffuse through small channels. These structural changes will accelerate aerobic glycolysis. Agglomerations of pentose phosphate pathway and glutathione synthesis enzymes enhance GSH formation. As aggressive cancer lesions are incomplete at early stages, they may be unrecognizable. We have found that machine learning provides superior analyses of tissue images and may be used to identify biomarker patterns associated with recurrent and non-recurrent patients with high accuracy. This suggests a new prognostic test to predict DCIS patients who are likely to recur and those who are at low risk for recurrence. Mechanistic interpretations provide a deeper understanding of anti-cancer drug action and suggest that aggressive metastatic cancer cells are sensitive to reductive chemotherapy.
Collapse
Affiliation(s)
- Howard R Petty
- Dept. of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
110
|
Mehta S, Zhang J. Liquid-liquid phase separation drives cellular function and dysfunction in cancer. Nat Rev Cancer 2022; 22:239-252. [PMID: 35149762 PMCID: PMC10036213 DOI: 10.1038/s41568-022-00444-7] [Citation(s) in RCA: 119] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/12/2022] [Indexed: 12/11/2022]
Abstract
Cancer is a disease of uncontrollably reproducing cells. It is governed by biochemical pathways that have escaped the regulatory bounds of normal homeostatic balance. This balance is maintained through precise spatiotemporal regulation of these pathways. The formation of biomolecular condensates via liquid-liquid phase separation (LLPS) has recently emerged as a widespread mechanism underlying the spatiotemporal coordination of biological activities in cells. Biomolecular condensates are widely observed to directly regulate key cellular processes involved in cancer cell pathology, and the dysregulation of LLPS is increasingly implicated as a previously hidden driver of oncogenic activity. In this Perspective, we discuss how LLPS shapes the biochemical landscape of cancer cells.
Collapse
Affiliation(s)
- Sohum Mehta
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA.
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
111
|
He J, Zou LN, Pareek V, Benkovic SJ. Multienzyme interactions of the de novo purine biosynthetic protein PAICS facilitate purinosome formation and metabolic channeling. J Biol Chem 2022; 298:101853. [PMID: 35331738 PMCID: PMC9035706 DOI: 10.1016/j.jbc.2022.101853] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 02/09/2023] Open
Abstract
There is growing evidence that mammalian cells deploy a mitochondria-associated metabolon called the purinosome to perform channeled de novo purine biosynthesis (DNPB). However, the molecular mechanisms of this substrate-channeling pathway are not well defined. Here, we present molecular evidence of protein-protein interactions (PPIs) between the human bifunctional phosphoribosylaminoimidazole carboxylase/succinocarboxamide synthetase (PAICS) and other known DNPB enzymes. We employed two orthogonal approaches: bimolecular fluorescence complementation, to probe PPIs inside live, intact cells, and co-immunoprecipitation using StrepTag-labeled PAICS that was reintegrated into the genome of PAICS-knockout HeLa cells (crPAICS). With the exception of amidophosphoribosyltransferase, the first enzyme of the DNPB pathway, we discovered PAICS interacts with all other known DNPB enzymes and with MTHFD1, an enzyme which supplies the 10-formyltetrahydrofolate cofactor essential for DNPB. We show these interactions are present in cells grown in both purine-depleted and purine-rich conditions, suggesting at least a partial assembly of these enzymes may be present regardless of the activity of the DNPB pathway. We also demonstrate that tagging of PAICS on its C terminus disrupts these interactions and that this disruption is correlated with disturbed DNPB activity. Finally, we show that crPAICS cells with reintegrated N-terminally tagged PAICS regained effective DNPB with metabolic signatures of channeled synthesis, whereas crPAICS cells that reintegrated C-terminally tagged PAICS exhibit reduced DNPB intermediate pools and a perturbed partitioning of inosine monophosphate into AMP and GMP. Our results provide molecular evidence in support of purinosomes and suggest perturbing PPIs between DNPB enzymes negatively impact metabolite flux through this important pathway.
Collapse
Affiliation(s)
- Jingxuan He
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Ling-Nan Zou
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Vidhi Pareek
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Stephen J. Benkovic
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA,For correspondence: Stephen J. Benkovic
| |
Collapse
|
112
|
Combined Targeted and Untargeted Profiling of HeLa Cells Deficient in Purine De Novo Synthesis. Metabolites 2022; 12:metabo12030241. [PMID: 35323684 PMCID: PMC8948957 DOI: 10.3390/metabo12030241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/01/2022] [Accepted: 03/09/2022] [Indexed: 12/10/2022] Open
Abstract
Three genetically determined enzyme defects of purine de novo synthesis (PDNS) have been identified so far in humans: adenylosuccinate lyase (ADSL) deficiency, 5-amino-4-imidazole carboxamide-ribosiduria (AICA-ribosiduria), and deficiency in bifunctional enzyme phosphoribosylaminoimidazole carboxylase and phosphoribosylaminoimidazolesuccinocarboxamide synthase (PAICS). Clinical signs of these defects are mainly neurological, such as seizures, psychomotor retardation, epilepsy, autistic features, etc. This work aims to describe the metabolic changes of CRISPR-Cas9 genome-edited HeLa cells deficient in the individual steps of PDNS to better understand known and potential defects of the pathway in humans. High-performance liquid chromatography coupled with mass spectrometry was used for both targeted and untargeted metabolomic analyses. The statistically significant features from the untargeted study were identified by fragmentation analysis. Data from the targeted analysis were processed in Cytoscape software to visualize the most affected metabolic pathways. Statistical significance of PDNS intermediates preceding deficient enzymes was the highest (p-values 10 × 10−7–10 × 10−15) in comparison with the metabolites from other pathways (p-values of up to 10 × 10−7). Disturbed PDNS resulted in an altered pool of adenine and guanine nucleotides. However, the adenylate energy charge was not different from controls. Different profiles of acylcarnitines observed among deficient cell lines might be associated with a specific enzyme deficiency rather than global changes related to the PDNS pathway. Changes detected in one-carbon metabolism might reduce the methylation activity of the deficient cells, thus affecting the modification state of DNA, RNA, and proteins.
Collapse
|
113
|
Qin Y, Gao C, Luo J. Metabolism Characteristics of Th17 and Regulatory T Cells in Autoimmune Diseases. Front Immunol 2022; 13:828191. [PMID: 35281063 PMCID: PMC8913504 DOI: 10.3389/fimmu.2022.828191] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
The abnormal number and functional deficiency of immune cells are the pathological basis of various diseases. Recent years, the imbalance of Th17/regulatory T (Treg) cell underlies the occurrence and development of inflammation in autoimmune diseases (AID). Currently, studies have shown that material and energy metabolism is essential for maintaining cell survival and normal functions and the altered metabolic state of immune cells exists in a variety of AID. This review summarizes the biology and functions of Th17 and Treg cells in AID, with emphasis on the advances of the roles and regulatory mechanisms of energy metabolism in activation, differentiation and physiological function of Th17 and Treg cells, which will facilitate to provide targets for the treatment of immune-mediated diseases.
Collapse
Affiliation(s)
- Yan Qin
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Chong Gao
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Jing Luo
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- *Correspondence: Jing Luo,
| |
Collapse
|
114
|
Abstract
Over the past fifteen years, we have unveiled a new mechanism by which cells achieve greater efficiency in de novo purine biosynthesis. This mechanism relies on the compartmentalization of de novo purine biosynthetic enzymes into a dynamic complex called the purinosome. In this review, we highlight our current understanding of the purinosome with emphasis on its biophysical properties and function and on the cellular mechanisms that regulate its assembly. We propose a model for functional purinosomes in which they consist of at least ten enzymes that localize near mitochondria and carry out de novo purine biosynthesis by metabolic channeling. We conclude by discussing challenges and opportunities associated with studying the purinosome and analogous metabolons. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Anthony M Pedley
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA;
| | - Vidhi Pareek
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA; .,Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Stephen J Benkovic
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA;
| |
Collapse
|
115
|
Zhu X, Xu T, Peng C, Wu S. Advances in MALDI Mass Spectrometry Imaging Single Cell and Tissues. Front Chem 2022; 9:782432. [PMID: 35186891 PMCID: PMC8850921 DOI: 10.3389/fchem.2021.782432] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/17/2021] [Indexed: 12/26/2022] Open
Abstract
Compared with conventional optical microscopy techniques, mass spectrometry imaging (MSI) or imaging mass spectrometry (IMS) is a powerful, label-free analytical technique, which can sensitively and simultaneously detect, quantify, and map hundreds of biomolecules, such as peptides, proteins, lipid, and other organic compounds in cells and tissues. So far, although several soft ionization techniques, such as desorption electrospray ionization (DESI) and secondary ion mass spectrometry (SIMS) have been used for imaging biomolecules, matrix-assisted laser desorption/ionization (MALDI) is still the most widespread MSI scanning method. Here, we aim to provide a comprehensive review of MALDI-MSI with an emphasis on its advances of the instrumentation, methods, application, and future directions in single cell and biological tissues.
Collapse
Affiliation(s)
- Xiaoping Zhu
- Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China
- Research Center of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Tianyi Xu
- Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China
- Research Center of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Chen Peng
- Research Center of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Shihua Wu
- Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China
- Research Center of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zhejiang University, Hangzhou, China
- *Correspondence: Shihua Wu, ; Shihua Wu,
| |
Collapse
|
116
|
How evolution dismantles and reassembles multienzyme complexes. Proc Natl Acad Sci U S A 2022; 119:2120286118. [PMID: 34996854 PMCID: PMC8740704 DOI: 10.1073/pnas.2120286118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
117
|
Hamm G, Maglennon G, Williamson B, Macdonald R, Doherty A, Jones S, Harris J, Blades J, Harmer AR, Barton P, Rawlins PB, Smith P, Winter-Holt J, McMurray L, Johansson J, Fitzpatrick P, McCoull W, Coen M. Pharmacological inhibition of MERTK induces in vivo retinal degeneration: a multimodal imaging ocular safety assessment. Arch Toxicol 2022; 96:613-624. [PMID: 34973110 PMCID: PMC8837544 DOI: 10.1007/s00204-021-03197-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 11/11/2021] [Indexed: 12/26/2022]
Abstract
The receptor tyrosine kinase, MERTK, plays an essential role in homeostasis of the retina via efferocytosis of shed outer nuclear segments of photoreceptors. The Royal College of Surgeons rat model of retinal degeneration has been linked to loss-of-function of MERTK, and together with the MERTK knock-out mouse, phenocopy retinitis pigmentosa in humans with MERTK mutations. Given recent efforts and interest in MERTK as a potential immuno-oncology target, development of a strategy to assess ocular safety at an early pre-clinical stage is critical. We have applied a state-of-the-art, multi-modal imaging platform to assess the in vivo effects of pharmacological inhibition of MERTK in mice. This involved the application of mass spectrometry imaging (MSI) to characterize the ocular spatial distribution of our highly selective MERTK inhibitor; AZ14145845, together with histopathology and transmission electron microscopy to characterize pathological and ultra-structural change in response to MERTK inhibition. In addition, we assessed the utility of a human retinal in vitro cell model to identify perturbation of phagocytosis post MERTK inhibition. We identified high localized total compound concentrations in the retinal pigment epithelium (RPE) and retinal lesions following 28 days of treatment with AZ14145845. These lesions were present in 4 of 8 treated animals, and were characterized by a thinning of the outer nuclear layer, loss of photoreceptors (PR) and accumulation of photoreceptor outer segments at the interface of the RPE and PRs. Furthermore, the lesions were very similar to that shown in the RCS rat and MERTK knock-out mouse, suggesting a MERTK-induced mechanism of PR cell death. This was further supported by the observation of reduced phagocytosis in the human retinal cell model following treatment with AZ14145845. Our study provides a viable, translational strategy to investigate the pre-clinical toxicity of MERTK inhibitors but is equally transferrable to novel chemotypes.
Collapse
Affiliation(s)
- Gregory Hamm
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Gareth Maglennon
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | | | - Ruth Macdonald
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Ann Doherty
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Stewart Jones
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Jayne Harris
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - James Blades
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Alexander R Harmer
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | | | | | - Paul Smith
- Oncology R&D, AstraZeneca, Cambridge, UK
| | | | | | - Julia Johansson
- Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Paul Fitzpatrick
- Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Muireann Coen
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK.
| |
Collapse
|
118
|
Optimization of metabolomic data processing using NOREVA. Nat Protoc 2022; 17:129-151. [PMID: 34952956 DOI: 10.1038/s41596-021-00636-9] [Citation(s) in RCA: 115] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022]
Abstract
A typical output of a metabolomic experiment is a peak table corresponding to the intensity of measured signals. Peak table processing, an essential procedure in metabolomics, is characterized by its study dependency and combinatorial diversity. While various methods and tools have been developed to facilitate metabolomic data processing, it is challenging to determine which processing workflow will give good performance for a specific metabolomic study. NOREVA, an out-of-the-box protocol, was therefore developed to meet this challenge. First, the peak table is subjected to many processing workflows that consist of three to five defined calculations in combinatorially determined sequences. Second, the results of each workflow are judged against objective performance criteria. Third, various benchmarks are analyzed to highlight the uniqueness of this newly developed protocol in (1) evaluating the processing performance based on multiple criteria, (2) optimizing data processing by scanning thousands of workflows, and (3) allowing data processing for time-course and multiclass metabolomics. This protocol is implemented in an R package for convenient accessibility and to protect users' data privacy. Preliminary experience in R language would facilitate the usage of this protocol, and the execution time may vary from several minutes to a couple of hours depending on the size of the analyzed data.
Collapse
|
119
|
|
120
|
Boon R. Metabolic Fuel for Epigenetic: Nuclear Production Meets Local Consumption. Front Genet 2021; 12:768996. [PMID: 34804127 PMCID: PMC8595138 DOI: 10.3389/fgene.2021.768996] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/20/2021] [Indexed: 12/28/2022] Open
Abstract
Epigenetic modifications are responsible for finetuning gene expression profiles to the needs of cells, tissues, and organisms. To rapidly respond to environmental changes, the activity of chromatin modifiers critically depends on the concentration of a handful of metabolites that act as substrates and co-factors. In this way, these enzymes act as metabolic sensors that directly link gene expression to metabolic states. Although metabolites can easily diffuse through the nuclear pore, molecular mechanisms must be in place to regulate epigenetic marker deposition in specific nuclear subdomains or even on single loci. In this review, I explore the possible subcellular sites of metabolite production that influence the epigenome. From the relationship between cytoplasmic metabolism and nuclear metabolite deposition, I converse to the description of a compartmentalized nuclear metabolism. Last, I elaborate on the possibility of metabolic enzymes to operate in phase-separated nuclear microdomains formed by multienzyme and chromatin-bound protein complexes.
Collapse
Affiliation(s)
- Ruben Boon
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, United States.,The Broad Institute of Harvard and MIT, Cambridge, MA, United States.,Laboratory for Functional Epigenetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|
121
|
Xu Y, Wang W, Yao J, Yang M, Guo Y, Deng Z, Mao Q, Li S, Duan L. Comparative proteomics suggests the mode of action of a novel molluscicide against the invasive apple snail Pomacea canaliculata, intermediate host of Angiostrongylus cantonensis. Mol Biochem Parasitol 2021; 247:111431. [PMID: 34813866 DOI: 10.1016/j.molbiopara.2021.111431] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/18/2022]
Abstract
Angiostrongylus cantonensis is a zoonotic parasitic nematode that is the most common cause of human eosinophilic meningitis. The invasive apple snail Pomacea canaliculata is an important intermediate host of A. cantonensis and contributes to its spread. P. canaliculata control will help prevent its invasion and transmission of A. cantonensis. The new molluscicide PBQ (1-(4-chlorophenyl)-3-(pyridin-3-yl)urea) exhibits great potency against P. canaliculata and has low toxicity against mammals and non-target aquatic organisms. We studied the mode of action of PBQ using TMT-based comparative quantitative proteomics analysis between PBQ-treated and control P. canaliculata snails. A total of 3151 proteins were identified, and 245 of these proteins were significantly differentially expressed with 135 downregulated and 110 upregulated. GO and KEGG enrichment analyses identified GO terms and KEGG pathways involved in de novo purine biosynthesis, ribosome components and translation process were significantly enriched and downregulated. The results indicated that PBQ treatment had substantial effects on the synthesis of genetic material, translation process, and protein synthesis of P. canaliculata and were likely the main cause of snail mortality.
Collapse
Affiliation(s)
- Yingxiang Xu
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China; NHC Key Laboratory of Parasite and Vector Biology, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025, China
| | - Weisi Wang
- NHC Key Laboratory of Parasite and Vector Biology, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025, China
| | - Junmin Yao
- NHC Key Laboratory of Parasite and Vector Biology, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025, China
| | - Minli Yang
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China.
| | - Yunhai Guo
- NHC Key Laboratory of Parasite and Vector Biology, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025, China
| | - Zhuohui Deng
- Guangdong Provincial Center for Disease Control and Prevention, WHO Collaborating Centre for Surveillance, Research and Training of Emerging Infectious Diseases, Guangzhou, 511430, China
| | - Qiang Mao
- Guangdong Provincial Center for Disease Control and Prevention, WHO Collaborating Centre for Surveillance, Research and Training of Emerging Infectious Diseases, Guangzhou, 511430, China
| | - Shizhu Li
- NHC Key Laboratory of Parasite and Vector Biology, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025, China
| | - Liping Duan
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China; NHC Key Laboratory of Parasite and Vector Biology, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025, China.
| |
Collapse
|
122
|
Yuan Y, Dong FX, Liu X, Xiao HB, Zhou ZG. Liquid Chromatograph-Mass Spectrometry-Based Non-targeted Metabolomics Discovery of Potential Endogenous Biomarkers Associated With Prostatitis Rats to Reveal the Effects of Magnoflorine. Front Pharmacol 2021; 12:741378. [PMID: 34790120 PMCID: PMC8591080 DOI: 10.3389/fphar.2021.741378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/27/2021] [Indexed: 11/24/2022] Open
Abstract
Magnoflorine (Mag) has multiple pharmacological activities for the prevention and treatment of prostatitis. However, its molecular mechanisms andpharmacological targets are not clear. In this study, the ultra-performance liquid tandem mass spectrometry-based metabolomics method was used to clarify the intervention of Mag against prostatitis and the biological mechanism. A total of 25 biomarkers associated with the prostatitis model were identified by metabolomics, and a number of metabolic pathways closely related to the model were obtained by MetPA analysis. After given Mag treatment, the results of each indicator were shown that Mag alkaloid could inhibit the development of prostatitis effectively. We found that Mag had regulative effects on potential biomarkers of prostatitis model, which can regulate them to the control group. Our results indicated that alkaloids have an effective intervention therapy for prostatitis, and five types of metabolic pathways closely related to prostatitis model were obtained, including phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism, tyrosine metabolism, arginine and proline metabolism, glycine, serine and threonine metabolism, alanine, aspartate and glutamate metabolism. This study has provided the basic experimental data for the development of Mag in the prevention and treatment of prostatitis.
Collapse
Affiliation(s)
- Yin Yuan
- Department of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fei-Xue Dong
- First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xu Liu
- Department of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hong-Bin Xiao
- Department of Basic Medicine, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhong-Guang Zhou
- Research Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
123
|
Reina-Campos M, Scharping NE, Goldrath AW. CD8 + T cell metabolism in infection and cancer. Nat Rev Immunol 2021; 21:718-738. [PMID: 33981085 PMCID: PMC8806153 DOI: 10.1038/s41577-021-00537-8] [Citation(s) in RCA: 255] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2021] [Indexed: 02/03/2023]
Abstract
Cytotoxic CD8+ T cells play a key role in the elimination of intracellular infections and malignant cells and can provide long-term protective immunity. In the response to infection, CD8+ T cell metabolism is coupled to transcriptional, translational and epigenetic changes that are driven by extracellular metabolites and immunological signals. These programmes facilitate the adaptation of CD8+ T cells to the diverse and dynamic metabolic environments encountered in the circulation and in the tissues. In the setting of disease, both cell-intrinsic and cell-extrinsic metabolic cues contribute to CD8+ T cell dysfunction. In addition, changes in whole-body metabolism, whether through voluntary or disease-induced dietary alterations, can influence CD8+ T cell-mediated immunity. Defining the metabolic adaptations of CD8+ T cells in specific tissue environments informs our understanding of how these cells protect against pathogens and tumours and maintain tissue health at barrier sites. Here, we highlight recent findings revealing how metabolic networks enforce specific CD8+ T cell programmes and discuss how metabolism is integrated with CD8+ T cell differentiation and function and determined by environmental cues.
Collapse
Affiliation(s)
- Miguel Reina-Campos
- Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - Nicole E. Scharping
- Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - Ananda W. Goldrath
- Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, La Jolla, CA, USA.,
| |
Collapse
|
124
|
Hu J, Liu F, Chen Y, Shangguan G, Ju H. Mass Spectrometric Biosensing: A Powerful Approach for Multiplexed Analysis of Clinical Biomolecules. ACS Sens 2021; 6:3517-3535. [PMID: 34529414 DOI: 10.1021/acssensors.1c01394] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Rapid and sensitive detection of clinical biomolecules in a multiplexed fashion is of great importance for accurate diagnosis of diseases. Mass spectrometric (MS) approaches are exceptionally suitable for clinical analysis due to its high throughput, high sensitivity, and reliable qualitative and quantitative capabilities. To break through the bottleneck of MS technique for detecting high-molecular-weight substances with low ionization efficiency, the concept of mass spectrometric biosensing has been put forward by adopting mass spectrometric chips to recognize the targets and mass spectrometry to detect the signals switched by the recognition. In this review, the principle of mass spectrometric sensing, the construction of different mass tags used for biosensing, and the typical combination mode of mass spectrometric imaging (MSI) technique are summarized. Future perspectives including the design of portable matching platforms, exploitation of novel mass tags, development of effective signal amplification strategies, and standardization of MSI methodologies are proposed to promote the advancements and practical applications of mass spectrometric biosensing.
Collapse
Affiliation(s)
- Junjie Hu
- College of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining 272067, China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Fei Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yunlong Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Guoqiang Shangguan
- College of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining 272067, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
125
|
Tsugawa H, Rai A, Saito K, Nakabayashi R. Metabolomics and complementary techniques to investigate the plant phytochemical cosmos. Nat Prod Rep 2021; 38:1729-1759. [PMID: 34668509 DOI: 10.1039/d1np00014d] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Covering: up to 2021Plants and their associated microbial communities are known to produce millions of metabolites, a majority of which are still not characterized and are speculated to possess novel bioactive properties. In addition to their role in plant physiology, these metabolites are also relevant as existing and next-generation medicine candidates. Elucidation of the plant metabolite diversity is thus valuable for the successful exploitation of natural resources for humankind. Herein, we present a comprehensive review on recent metabolomics approaches to illuminate molecular networks in plants, including chemical isolation and enzymatic production as well as the modern metabolomics approaches such as stable isotope labeling, ultrahigh-resolution mass spectrometry, metabolome imaging (spatial metabolomics), single-cell analysis, cheminformatics, and computational mass spectrometry. Mass spectrometry-based strategies to characterize plant metabolomes through metabolite identification and annotation are described in detail. We also highlight the use of phytochemical genomics to mine genes associated with specialized metabolites' biosynthesis. Understanding the metabolic diversity through biotechnological advances is fundamental to elucidate the functions of the plant-derived specialized metabolome.
Collapse
Affiliation(s)
- Hiroshi Tsugawa
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. .,RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.,Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588, Japan.,Graduate School of Medical Life Science, Yokohama City University, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Amit Rai
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. .,Plant Molecular Science Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. .,Plant Molecular Science Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Ryo Nakabayashi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
126
|
Liu J, Cui J, Wei X, Li W, Liu C, Li X, Chen M, Fan Y, Wang J. Investigation on selenium and mercury interactions and the distribution patterns in mice organs with LA-ICP-MS imaging. Anal Chim Acta 2021; 1182:338941. [PMID: 34602200 DOI: 10.1016/j.aca.2021.338941] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 10/20/2022]
Abstract
It is the first time to investigate local distribution patterns of mercury (Hg) in mice organs after Hg and Se exposure with detection of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Two batch of adult mice were employed to be exposed to inorganic mercury (iHg) and methylmercury (MeHg) with or without Se at the dose of 55 μmol kg-1. Tissue sections of brain, kidney, liver, and spleen from one batch mice were prepared to get local imaging of Hg by LA-ICP-MS. Tissues from another batch mice were used to quantify Hg and Se in tissues with ICP-MS after acid digestion. The results indicated that, for mice exposed to iHg, Hg mainly distributed in kidney, a little in liver, and hardly in brain and spleen; for mice exposed to MeHg, lower amount of Hg was found in kidney, liver and spleen, and almost no Hg was found in brain. It was interesting that for Hg and Se co-administration groups, higher level of Hg was observed in kidney, liver, spleen and even in brain than single Hg administration groups. In addition, Se level in organ tissues increased obviously not only in Se exposure group but also in MeHg exposure group, while the phenomenon was not observed in iHg exposure group. HepG2 cells were employed to investigate Se and Hg interactions in single cell level, similar bioaccumulation behavior of Hg was found between cells and mice organs. Higher level of Hg was observed in cells cultured with Se and Hg medium than cells cultured with single Hg medium. The results are expected to provide new insight to investigate Hg and Se interactions in animal bodies and in-vitro cells.
Collapse
Affiliation(s)
- Jinhui Liu
- , Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jiasen Cui
- , School and Hospital of Stomatology, Department of Oral Pathology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases. Shenyang, 110001, China
| | - Xing Wei
- , Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Weitao Li
- , Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Chunran Liu
- , School and Hospital of Stomatology, Department of Oral Pathology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases. Shenyang, 110001, China
| | - Xuewen Li
- , School and Hospital of Stomatology, Department of Oral Pathology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases. Shenyang, 110001, China
| | - Mingli Chen
- , Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China.
| | - Yu Fan
- , School and Hospital of Stomatology, Department of Oral Pathology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases. Shenyang, 110001, China.
| | - Jianhua Wang
- , Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China.
| |
Collapse
|
127
|
Abstract
Hypoxia inhibits the tricarboxylic acid (TCA) cycle and leaves glycolysis as the primary metabolic pathway responsible for converting glucose into usable energy. However, the mechanisms that compensate for this loss in energy production due to TCA cycle inactivation remain poorly understood. Glycolysis enzymes are typically diffuse and soluble in the cytoplasm under normoxic conditions. In contrast, recent studies have revealed dynamic compartmentalization of glycolysis enzymes in response to hypoxic stress in yeast, C. elegans and mammalian cells. These messenger ribonucleoprotein (mRNP) structures, termed glycolytic (G) bodies in yeast, lack membrane enclosure and display properties of phase-separated biomolecular condensates. Disruption of condensate formation correlates with defects such as impaired synaptic function in C. elegans neurons and decreased glucose flux in yeast. Concentrating glycolysis enzymes into condensates may lead to their functioning as 'metabolons' that enhance rates of glucose utilization for increased energy production. Besides condensates, glycolysis enzymes functionally associate in other organisms and specific tissues through protein-protein interactions and membrane association. However, as discussed in this Review, the functional consequences of coalescing glycolytic machinery are only just beginning to be revealed. Through ongoing studies, we anticipate the physiological importance of metabolic regulation mediated by the compartmentalization of glycolysis enzymes will continue to emerge.
Collapse
Affiliation(s)
- Gregory G Fuller
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - John K Kim
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
128
|
Zhu G, Shao Y, Liu Y, Pei T, Li L, Zhang D, Guo G, Wang X. Single-cell metabolite analysis by electrospray ionization mass spectrometry. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116351] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
129
|
Yuan Z, Zhou Q, Cai L, Pan L, Sun W, Qumu S, Yu S, Feng J, Zhao H, Zheng Y, Shi M, Li S, Chen Y, Zhang X, Zhang MQ. SEAM is a spatial single nuclear metabolomics method for dissecting tissue microenvironment. Nat Methods 2021; 18:1223-1232. [PMID: 34608315 DOI: 10.1038/s41592-021-01276-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 08/18/2021] [Indexed: 02/08/2023]
Abstract
Spatial metabolomics can reveal intercellular heterogeneity and tissue organization. Here we report on the spatial single nuclear metabolomics (SEAM) method, a flexible platform combining high-spatial-resolution imaging mass spectrometry and a set of computational algorithms that can display multiscale and multicolor tissue tomography together with identification and clustering of single nuclei by their in situ metabolic fingerprints. We first applied SEAM to a range of wild-type mouse tissues, then delineated a consistent pattern of metabolic zonation in mouse liver. We further studied the spatial metabolic profile in the human fibrotic liver. We discovered subpopulations of hepatocytes with special metabolic features associated with their proximity to the fibrotic niche, and validated this finding by spatial transcriptomics with Geo-seq. These demonstrations highlighted SEAM's ability to explore the spatial metabolic profile and tissue histology at the single-cell level, leading to a deeper understanding of tissue metabolic organization.
Collapse
Affiliation(s)
- Zhiyuan Yuan
- MOE Key Laboratory of Bioinformatics, Bioinformatics Division and Center for Synthetic and Systems Biology, BNRist, Institute of TCM-X, Department of Automation, Tsinghua University, Beijing, China
| | - Qiming Zhou
- MOE Key Laboratory of Bioinformatics, Bioinformatics Division and Center for Synthetic and Systems Biology, BNRist, School of Life Sciences, Tsinghua University, Beijing, China
| | - Lesi Cai
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Lin Pan
- Institute of Clinical Medicine, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Science, Beijing, China
| | - Weiliang Sun
- Institute of Clinical Medicine, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Science, Beijing, China
| | - Shiwei Qumu
- Department of Pulmonary and Critical Care Medicine, China-Japan Friend Hospital, National Clinical Research Center for Respiratory Diseases, Beijing, China
| | - Si Yu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiaxin Feng
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Hansen Zhao
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Yongchang Zheng
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Minglei Shi
- MOE Key Laboratory of Bioinformatics, Bioinformatics Division and Center for Synthetic and Systems Biology, BNRist, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Shao Li
- MOE Key Laboratory of Bioinformatics, Bioinformatics Division and Center for Synthetic and Systems Biology, BNRist, Institute of TCM-X, Department of Automation, Tsinghua University, Beijing, China
| | - Yang Chen
- MOE Key Laboratory of Bioinformatics, Bioinformatics Division and Center for Synthetic and Systems Biology, BNRist, Institute of TCM-X, Department of Automation, Tsinghua University, Beijing, China. .,The State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China.
| | - Xinrong Zhang
- Department of Chemistry, Tsinghua University, Beijing, China.
| | - Michael Q Zhang
- MOE Key Laboratory of Bioinformatics, Bioinformatics Division and Center for Synthetic and Systems Biology, BNRist, Institute of TCM-X, Department of Automation, Tsinghua University, Beijing, China. .,MOE Key Laboratory of Bioinformatics, Bioinformatics Division and Center for Synthetic and Systems Biology, BNRist, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China. .,Department of Biological Sciences, Center for Systems Biology, The University of Texas, Richardson, TX, USA.
| |
Collapse
|
130
|
Li X, Cai S, He Z, Reilly J, Zeng Z, Strang N, Shu X. Metabolomics in Retinal Diseases: An Update. BIOLOGY 2021; 10:944. [PMID: 34681043 PMCID: PMC8533136 DOI: 10.3390/biology10100944] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 12/17/2022]
Abstract
Retinal diseases are a leading cause of visual loss and blindness, affecting a significant proportion of the population worldwide and having a detrimental impact on quality of life, with consequent economic burden. The retina is highly metabolically active, and a number of retinal diseases are associated with metabolic dysfunction. To better understand the pathogenesis underlying such retinopathies, new technology has been developed to elucidate the mechanism behind retinal diseases. Metabolomics is a relatively new "omics" technology, which has developed subsequent to genomics, transcriptomics, and proteomics. This new technology can provide qualitative and quantitative information about low-molecular-weight metabolites (M.W. < 1500 Da) in a given biological system, which shed light on the physiological or pathological state of a cell or tissue sample at a particular time point. In this article we provide an extensive review of the application of metabolomics to retinal diseases, with focus on age-related macular degeneration (AMD), diabetic retinopathy (DR), retinopathy of prematurity (ROP), glaucoma, and retinitis pigmentosa (RP).
Collapse
Affiliation(s)
- Xing Li
- School of Basic Medical Sciences, Shaoyang University, Shaoyang 422000, China; (X.L.); (Z.H.)
| | - Shichang Cai
- Department of Human Anatomy, School of Medicine, Hunan University of Medicine, Huaihua 418000, China;
| | - Zhiming He
- School of Basic Medical Sciences, Shaoyang University, Shaoyang 422000, China; (X.L.); (Z.H.)
| | - James Reilly
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK;
| | - Zhihong Zeng
- College of Biological and Environmental Engineering, Changsha University, Changsha 410022, China;
| | - Niall Strang
- Department of Vision Science, Glasgow Caledonian University, Glasgow G4 0BA, UK;
| | - Xinhua Shu
- School of Basic Medical Sciences, Shaoyang University, Shaoyang 422000, China; (X.L.); (Z.H.)
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK;
- Department of Vision Science, Glasgow Caledonian University, Glasgow G4 0BA, UK;
| |
Collapse
|
131
|
A Targeted Serum Metabolomics GC-MS Approach Identifies Predictive Blood Biomarkers for Retained Placenta in Holstein Dairy Cows. Metabolites 2021; 11:metabo11090633. [PMID: 34564449 PMCID: PMC8466882 DOI: 10.3390/metabo11090633] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 01/09/2023] Open
Abstract
The retained placenta is a common pathology of dairy cows. It is associated with a significant drop in the dry matter intake, milk yield, and increased susceptibility of dairy cows to metritis, mastitis, and displaced abomasum. The objective of this study was to identify metabolic alterations that precede and are associated with the disease occurrence. Blood samples were collected from 100 dairy cows at −8 and −4 weeks prior to parturition and on the day of retained placenta, and only 16 healthy cows and 6 cows affected by retained placenta were selected to measure serum polar metabolites by a targeted gas chromatography–mass spectroscopy (GC-MS) metabolomics approach. A total of 27 metabolites were identified and quantified in the serum. There were 10, 18, and 17 metabolites identified as being significantly altered during the three time periods studied. However, only nine metabolites were identified as being shared among the three time periods including five amino acids (Asp, Glu, Ser, Thr, and Tyr), one sugar (myo-inositol), phosphoric acid, and urea. The identified metabolites can be used as predictive biomarkers for the risk of retained placenta in dairy cows and might help explain the metabolic processes that occur prior to the incidence of the disease and throw light on the pathomechanisms of the disease.
Collapse
|
132
|
Pareek V, Sha Z, He J, Wingreen NS, Benkovic SJ. Metabolic channeling: predictions, deductions, and evidence. Mol Cell 2021; 81:3775-3785. [PMID: 34547238 PMCID: PMC8485759 DOI: 10.1016/j.molcel.2021.08.030] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/18/2021] [Accepted: 08/21/2021] [Indexed: 12/19/2022]
Abstract
With the elucidation of myriad anabolic and catabolic enzyme-catalyzed cellular pathways crisscrossing each other, an obvious question arose: how could these networks operate with maximal catalytic efficiency and minimal interference? A logical answer was the postulate of metabolic channeling, which in its simplest embodiment assumes that the product generated by one enzyme passes directly to a second without diffusion into the surrounding medium. This tight coupling of activities might increase a pathway's metabolic flux and/or serve to sequester unstable/toxic/reactive intermediates as well as prevent their access to other networks. Here, we present evidence for this concept, commencing with enzymes that feature a physical molecular tunnel, to multi-enzyme complexes that retain pathway substrates through electrostatics or enclosures, and finally to metabolons that feature collections of enzymes assembled into clusters with variable stoichiometric composition. Lastly, we discuss the advantages of reversibly assembled metabolons in the context of the purinosome, the purine biosynthesis metabolon.
Collapse
Affiliation(s)
- Vidhi Pareek
- Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Zhou Sha
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | - Jingxuan He
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | - Ned S Wingreen
- Department of Molecular Biology and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Stephen J Benkovic
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
133
|
Fulghum KL, Audam TN, Lorkiewicz PK, Zheng Y, Merchant M, Cummins TD, Dean WL, Cassel TA, Fan TWM, Hill BG. In vivo deep network tracing reveals phosphofructokinase-mediated coordination of biosynthetic pathway activity in the myocardium. J Mol Cell Cardiol 2021; 162:32-42. [PMID: 34487754 PMCID: PMC8766935 DOI: 10.1016/j.yjmcc.2021.08.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/23/2021] [Accepted: 08/27/2021] [Indexed: 12/22/2022]
Abstract
Glucose metabolism comprises numerous amphibolic metabolites that provide precursors for not only the synthesis of cellular building blocks but also for ATP production. In this study, we tested how phosphofructokinase-1 (PFK1) activity controls the fate of glucose-derived carbon in murine hearts in vivo. PFK1 activity was regulated by cardiac-specific overexpression of kinase- or phosphatase-deficient 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase transgenes in mice (termed GlycoLo or GlycoHi mice, respectively). Dietary delivery of 13C6-glucose to these mice, followed by deep network metabolic tracing, revealed that low rates of PFK1 activity promote selective routing of glucose-derived carbon to the purine synthesis pathway to form 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR). Consistent with a mechanism of physical channeling, we found multimeric protein complexes that contained phosphoribosylaminoimidazole carboxylase (PAICS)—an enzyme important for AICAR biosynthesis, as well as chaperone proteins such as Hsp90 and other metabolic enzymes. We also observed that PFK1 influenced glucose-derived carbon deposition in glycogen, but did not affect hexosamine biosynthetic pathway activity. These studies demonstrate the utility of deep network tracing to identify metabolic channeling and changes in biosynthetic pathway activity in the heart in vivo and present new potential mechanisms by which metabolic branchpoint reactions modulate biosynthetic pathways.
Collapse
Affiliation(s)
- Kyle L Fulghum
- Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States of America; Department of Physiology, University of Louisville, Louisville, KY, United States of America
| | - Timothy N Audam
- Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States of America; Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, United States of America
| | - Pawel K Lorkiewicz
- Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States of America; Department of Chemistry, University of Louisville, Louisville, KY, United States of America
| | - Yuting Zheng
- Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States of America
| | - Michael Merchant
- Division of Nephrology, Department of Medicine, University of Louisville, Louisville, KY, United States of America
| | - Timothy D Cummins
- Division of Nephrology, Department of Medicine, University of Louisville, Louisville, KY, United States of America
| | - William L Dean
- Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States of America
| | - Teresa A Cassel
- Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, KY, United States of America
| | - Teresa W M Fan
- Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, KY, United States of America
| | - Bradford G Hill
- Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States of America.
| |
Collapse
|
134
|
Jeckel H, Drescher K. Advances and opportunities in image analysis of bacterial cells and communities. FEMS Microbiol Rev 2021; 45:fuaa062. [PMID: 33242074 PMCID: PMC8371272 DOI: 10.1093/femsre/fuaa062] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/20/2020] [Indexed: 12/16/2022] Open
Abstract
The cellular morphology and sub-cellular spatial structure critically influence the function of microbial cells. Similarly, the spatial arrangement of genotypes and phenotypes in microbial communities has important consequences for cooperation, competition, and community functions. Fluorescence microscopy techniques are widely used to measure spatial structure inside living cells and communities, which often results in large numbers of images that are difficult or impossible to analyze manually. The rapidly evolving progress in computational image analysis has recently enabled the quantification of a large number of properties of single cells and communities, based on traditional analysis techniques and convolutional neural networks. Here, we provide a brief introduction to core concepts of automated image processing, recent software tools and how to validate image analysis results. We also discuss recent advances in image analysis of microbial cells and communities, and how these advances open up opportunities for quantitative studies of spatiotemporal processes in microbiology, based on image cytometry and adaptive microscope control.
Collapse
Affiliation(s)
- Hannah Jeckel
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 16, 35043 Marburg, Germany
- Department of Physics, Philipps-Universität Marburg, Karl-von-Frisch-Str. 16, 35043 Marburg, Germany
| | - Knut Drescher
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 16, 35043 Marburg, Germany
- Department of Physics, Philipps-Universität Marburg, Karl-von-Frisch-Str. 16, 35043 Marburg, Germany
- Synmikro Center for Synthetic Microbiology, Karl-von-Frisch-Str. 16, 35043 Marburg, Germany
| |
Collapse
|
135
|
Liquid-liquid phase separation: a principal organizer of the cell's biochemical activity architecture. Trends Pharmacol Sci 2021; 42:845-856. [PMID: 34373114 DOI: 10.1016/j.tips.2021.07.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/28/2021] [Accepted: 07/13/2021] [Indexed: 12/25/2022]
Abstract
Numerous processes occur simultaneously in the cell both for normal function and in response to changes in the environment. The ability of cells to segregate biochemical reactions into separate compartments is essential to ensure specificity and efficiency in cellular processes. The discovery of liquid-liquid phase separation as a mechanism of compartmentalization has revised our thinking regarding the intracellular organization of molecular pathways such as signal transduction. Here, we highlight recent studies that advance our understanding of how phase separation impacts the organization of biochemical processes, with a particular focus on the tools used to study the functional impact of phase separation. In addition, we offer some of our perspectives on the pathological consequences of dysregulated phase separation in biochemical pathways.
Collapse
|
136
|
Ikeda Y, Hirayama A, Kofuji S, Hirota Y, Kamata R, Osaka N, Fujii Y, Sasaki M, Ikeda S, Smith EP, Bachoo R, Soga T, Sasaki AT. SI-MOIRAI: A new method to identify and quantify the metabolic fate of nucleotides. J Biochem 2021; 170:699-711. [PMID: 34244779 DOI: 10.1093/jb/mvab077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/22/2021] [Indexed: 11/13/2022] Open
Abstract
Since the discovery of nucleotides over 100 years ago, extensive studies have revealed the importance of nucleotides for homeostasis, health, and disease. However, there remains no established method to investigate quantitively and accurately intact nucleotide incorporation into RNA and DNA. Herein, we report a new method, Stable-Isotope Measure Of Influxed Ribonucleic Acid Index (SI-MOIRAI), for the identification and quantification of the metabolic fate of ribonucleotides and their precursors. SI-MOIRAI, named after Greek goddesses of fate, combines a stable isotope-labeling flux assay with mass spectrometry to enable quantification of the newly synthesized ribonucleotides into r/m/tRNA under a metabolic stationary state. Using glioblastoma U87MG cells and a patient-derived xenograft (PDX) glioblastoma mouse model, SI-MOIRAI analyses showed that newly synthesized GTP was particularly and disproportionally highly utilized for rRNA and tRNA synthesis but not for mRNA synthesis in glioblastoma (GBM) in vitro and in vivo. Furthermore, newly synthesized pyrimidine nucleotides exhibited a significantly lower utilization rate for RNA synthesis than newly synthesized purine nucleotides. The results reveal the existence of discrete pathways and compartmentalization of purine and pyrimidine metabolism designated for RNA synthesis, demonstrating the capacity of SI-MOIRAI to reveal previously unknown aspects of nucleotide biology.
Collapse
Affiliation(s)
- Yoshiki Ikeda
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.,Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka, 573-1010, Japan
| | - Akiyoshi Hirayama
- Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0052, Japan
| | - Satoshi Kofuji
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.,Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Yoshihisa Hirota
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.,Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, 337-8570, Japan
| | - Ryo Kamata
- Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0052, Japan
| | - Natsuki Osaka
- Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0052, Japan
| | - Yuki Fujii
- Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Mika Sasaki
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Satsuki Ikeda
- Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0052, Japan
| | - Eric P Smith
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Robert Bachoo
- Department of Internal Medicine; Harold C. Simmons Comprehensive Cancer Center; Annette G. Strauss Center for Neuro-Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.,Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0052, Japan
| | - Atsuo T Sasaki
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.,Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0052, Japan.,Department of Cancer Biology, University of Cincinnati College of Medicine, OH, 45267, USA.,Department of Neurosurgery, Brain Tumor Center at UC Gardner Neuroscience Institute, Cincinnati, OH, 45267, USA
| |
Collapse
|
137
|
Zhang Y, Lee DS, Meir Y, Brangwynne CP, Wingreen NS. Mechanical Frustration of Phase Separation in the Cell Nucleus by Chromatin. PHYSICAL REVIEW LETTERS 2021; 126:258102. [PMID: 34241518 PMCID: PMC8604804 DOI: 10.1103/physrevlett.126.258102] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 05/18/2021] [Indexed: 05/07/2023]
Abstract
Liquid-liquid phase separation is a fundamental mechanism underlying subcellular organization. Motivated by the striking observation that optogenetically generated droplets in the nucleus display suppressed coarsening dynamics, we study the impact of chromatin mechanics on droplet phase separation. We combine theory and simulation to show that cross-linked chromatin can mechanically suppress droplets' coalescence and ripening, as well as quantitatively control their number, size, and placement. Our results highlight the role of the subcellular mechanical environment on condensate regulation.
Collapse
Affiliation(s)
- Yaojun Zhang
- Department of Physics, Princeton University, Princeton, NJ 08544, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Daniel S.W. Lee
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Yigal Meir
- Department of Physics, Princeton University, Princeton, NJ 08544, USA
- Department of Physics, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Clifford P. Brangwynne
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Ned S. Wingreen
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
138
|
Benkovic SJ. From Bioorganic Models to Cells. Annu Rev Biochem 2021; 90:57-76. [PMID: 34153218 DOI: 10.1146/annurev-biochem-062320-062929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
I endeavor to share how various choices-some deliberate, some unconscious-and the unmistakable influence of many others shaped my scientific pursuits. I am fascinated by how two long-term, major streams of my research, DNA replication and purine biosynthesis, have merged with unexpected interconnections. If I have imparted to many of the talented individuals who have passed through my lab a degree of my passion for uncloaking the mysteries hidden in scientific research and an understanding of the honesty and rigor it demands and its impact on the world community, then my mentorship has been successful.
Collapse
Affiliation(s)
- Stephen J Benkovic
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA;
| |
Collapse
|
139
|
Li D, Gaquerel E. Next-Generation Mass Spectrometry Metabolomics Revives the Functional Analysis of Plant Metabolic Diversity. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:867-891. [PMID: 33781077 DOI: 10.1146/annurev-arplant-071720-114836] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The remarkable diversity of specialized metabolites produced by plants has inspired several decades of research and nucleated a long list of theories to guide empirical ecological studies. However, analytical constraints and the lack of untargeted processing workflows have long precluded comprehensive metabolite profiling and, consequently, the collection of the critical currencies to test theory predictions for the ecological functions of plant metabolic diversity. Developments in mass spectrometry (MS) metabolomics have revolutionized the large-scale inventory and annotation of chemicals from biospecimens. Hence, the next generation of MS metabolomics propelled by new bioinformatics developments provides a long-awaited framework to revisit metabolism-centered ecological questions, much like the advances in next-generation sequencing of the last two decades impacted all research horizons in genomics. Here, we review advances in plant (computational) metabolomics to foster hypothesis formulation from complex metabolome data. Additionally, we reflect on how next-generation metabolomics could reinvigorate the testing of long-standing theories on plant metabolic diversity.
Collapse
Affiliation(s)
- Dapeng Li
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany;
| | - Emmanuel Gaquerel
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, 67084 Strasbourg, France;
| |
Collapse
|
140
|
Tounta V, Liu Y, Cheyne A, Larrouy-Maumus G. Metabolomics in infectious diseases and drug discovery. Mol Omics 2021; 17:376-393. [PMID: 34125125 PMCID: PMC8202295 DOI: 10.1039/d1mo00017a] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/12/2021] [Indexed: 12/23/2022]
Abstract
Metabolomics has emerged as an invaluable tool that can be used along with genomics, transcriptomics and proteomics to understand host-pathogen interactions at small-molecule levels. Metabolomics has been used to study a variety of infectious diseases and applications. The most common application of metabolomics is for prognostic and diagnostic purposes, specifically the screening of disease-specific biomarkers by either NMR-based or mass spectrometry-based metabolomics. In addition, metabolomics is of great significance for the discovery of druggable metabolic enzymes and/or metabolic regulators through the use of state-of-the-art flux analysis, for example, via the elucidation of metabolic mechanisms. This review discusses the application of metabolomics technologies to biomarker screening, the discovery of drug targets in infectious diseases such as viral, bacterial and parasite infections and immunometabolomics, highlights the challenges associated with accessing metabolite compartmentalization and discusses the available tools for determining local metabolite concentrations.
Collapse
Affiliation(s)
- Vivian Tounta
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College LondonLondonUK
| | - Yi Liu
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College LondonLondonUK
| | - Ashleigh Cheyne
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College LondonLondonUK
| | - Gerald Larrouy-Maumus
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College LondonLondonUK
| |
Collapse
|
141
|
Daniels VW, Zoeller JJ, van Gastel N, McQueeney KE, Parvin S, Potter DS, Fell GG, Ferreira VG, Yilma B, Gupta R, Spetz J, Bhola PD, Endress JE, Harris IS, Carrilho E, Sarosiek KA, Scadden DT, Brugge JS, Letai A. Metabolic perturbations sensitize triple-negative breast cancers to apoptosis induced by BH3 mimetics. Sci Signal 2021; 14:14/686/eabc7405. [PMID: 34103421 DOI: 10.1126/scisignal.abc7405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cancer cells have differential metabolic dependencies compared to their nonmalignant counterparts. However, few metabolism-targeting compounds have been successful in clinical trials. Here, we investigated the metabolic vulnerabilities of triple-negative breast cancer (TNBC), particularly those metabolic perturbations that increased mitochondrial apoptotic priming and sensitivity to BH3 mimetics (drugs that antagonize antiapoptotic proteins). We used high-throughput dynamic BH3 profiling (HT-DBP) to screen a library of metabolism-perturbing small molecules, which revealed inhibitors of the enzyme nicotinamide phosphoribosyltransferase (NAMPT) as top candidates. In some TNBC cells but not in nonmalignant cells, NAMPT inhibitors increased overall apoptotic priming and induced dependencies on specific antiapoptotic BCL-2 family members. Treatment of TNBC cells with NAMPT inhibitors sensitized them to subsequent treatment with BH3 mimetics. The combination of a NAMPT inhibitor (FK866) and an MCL-1 antagonist (S63845) reduced tumor growth in a TNBC patient-derived xenograft model in vivo. We found that NAMPT inhibition reduced NAD+ concentrations below a critical threshold that resulted in depletion of adenine, which was the metabolic trigger that primed TNBC cells for apoptosis. These findings demonstrate a close interaction between metabolic and mitochondrial apoptotic signaling pathways and reveal that exploitation of a tumor-specific metabolic vulnerability can sensitize some TNBC to BH3 mimetics.
Collapse
Affiliation(s)
- Veerle W Daniels
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Ludwig Center at Harvard, Boston, MA 02215, USA
| | - Jason J Zoeller
- Ludwig Center at Harvard, Boston, MA 02215, USA.,Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | - Nick van Gastel
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.,Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.,Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Kelley E McQueeney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Salma Parvin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Danielle S Potter
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Geoffrey G Fell
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Vinícius G Ferreira
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP 13568-250, Brazil.,Instituto Nacional de Ciência e Tecnologia de Bioanalítica, INCTBio, Campinas, SP 13083-970, Brazil
| | - Binyam Yilma
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Rajat Gupta
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Johan Spetz
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02215, USA
| | - Patrick D Bhola
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jennifer E Endress
- Ludwig Center at Harvard, Boston, MA 02215, USA.,Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | - Isaac S Harris
- Ludwig Center at Harvard, Boston, MA 02215, USA.,Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA.,Department of Biomedical Genetics and Wilmot Cancer Institute, University of Rochester Medical Center, 601 Elmwood Ave., Rochester, NY 14642, USA
| | - Emanuel Carrilho
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP 13568-250, Brazil.,Instituto Nacional de Ciência e Tecnologia de Bioanalítica, INCTBio, Campinas, SP 13083-970, Brazil
| | - Kristopher A Sarosiek
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02215, USA
| | - David T Scadden
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.,Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.,Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Joan S Brugge
- Ludwig Center at Harvard, Boston, MA 02215, USA.,Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | - Anthony Letai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA. .,Ludwig Center at Harvard, Boston, MA 02215, USA
| |
Collapse
|
142
|
Abstract
The expanding field of stem cell metabolism has been supported by technical advances in metabolite profiling and novel functional analyses. While use of these methodologies has been fruitful, many challenges are posed by the intricacies of culturing stem cells in vitro, along with the distinctive scarcity of adult tissue stem cells and the complexities of their niches in vivo. This review provides an examination of the methodologies used to characterize stem cell metabolism, highlighting their utility while placing a sharper focus on their limitations and hurdles the field needs to overcome for the optimal study of stem cell metabolic networks.
Collapse
|
143
|
Sparvero LJ, Tian H, Amoscato AA, Sun W, Anthonymuthu TS, Tyurina YY, Kapralov O, Javadov S, He R, Watkins SC, Winograd N, Kagan VE, Bayır H. Direct Mapping of Phospholipid Ferroptotic Death Signals in Cells and Tissues by Gas Cluster Ion Beam Secondary Ion Mass Spectrometry (GCIB‐SIMS). Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Louis J. Sparvero
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health University of Pittsburgh Pittsburgh PA 15261 USA
- Department of Critical Care Medicine and Children's Neuroscience Institute UPMC Children's Hospital of Pittsburgh Pittsburgh PA 15261 USA
| | - Hua Tian
- Department of Chemistry Pennsylvania State University University Park State College PA 16802 USA
| | - Andrew A. Amoscato
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health University of Pittsburgh Pittsburgh PA 15261 USA
| | - Wan‐Yang Sun
- College of Pharmacy Jinan University Guangzhou Guangdong 510632 China
| | - Tamil S. Anthonymuthu
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health University of Pittsburgh Pittsburgh PA 15261 USA
- Department of Critical Care Medicine and Children's Neuroscience Institute UPMC Children's Hospital of Pittsburgh Pittsburgh PA 15261 USA
| | - Yulia Y. Tyurina
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health University of Pittsburgh Pittsburgh PA 15261 USA
| | - Oleksandr Kapralov
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health University of Pittsburgh Pittsburgh PA 15261 USA
| | - Sabzali Javadov
- Department of Physiology School of Medicine University of Puerto Rico San Juan PR 00936-5067 USA
| | - Rong‐Rong He
- College of Pharmacy and School of Traditional Chinese Medicine Jinan University Guangzhou Guangdong 510632 China
| | - Simon C. Watkins
- Department of Cell Biology and Center for Biological Imaging University of Pittsburgh Pittsburgh PA 15261 USA
| | - Nicholas Winograd
- Department of Chemistry Pennsylvania State University University Park State College PA 16802 USA
| | - Valerian E. Kagan
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health University of Pittsburgh Pittsburgh PA 15261 USA
- Department of Critical Care Medicine and Children's Neuroscience Institute UPMC Children's Hospital of Pittsburgh Pittsburgh PA 15261 USA
| | - Hülya Bayır
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health University of Pittsburgh Pittsburgh PA 15261 USA
- Department of Critical Care Medicine and Children's Neuroscience Institute UPMC Children's Hospital of Pittsburgh Pittsburgh PA 15261 USA
| |
Collapse
|
144
|
Sparvero LJ, Tian H, Amoscato AA, Sun WY, Anthonymuthu TS, Tyurina YY, Kapralov O, Javadov S, He RR, Watkins SC, Winograd N, Kagan VE, Bayır H. Direct Mapping of Phospholipid Ferroptotic Death Signals in Cells and Tissues by Gas Cluster Ion Beam Secondary Ion Mass Spectrometry (GCIB-SIMS). Angew Chem Int Ed Engl 2021; 60:11784-11788. [PMID: 33684237 PMCID: PMC8243396 DOI: 10.1002/anie.202102001] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Indexed: 12/14/2022]
Abstract
Peroxidized phosphatidylethanolamine (PEox) species have been identified by liquid chromatography mass spectrometry (LC-MS) as predictive biomarkers of ferroptosis, a new program of regulated cell death. However, the presence and subcellular distribution of PEox in specific cell types and tissues have not been directly detected by imaging protocols. By applying gas cluster ion beam secondary ion mass spectrometry (GCIB-SIMS) imaging with a 70 keV (H2 O)n+ (n>28 000) cluster ion beam, we were able to map PEox with 1.2 μm spatial resolution at the single cell/subcellular level in ferroptotic H9c2 cardiomyocytes and cortical/hippocampal neurons after traumatic brain injury. Application of this protocol affords visualization of physiologically relevant levels of very low abundance (20 pmol μmol-1 lipid) peroxidized lipids in subcellular compartments and their accumulation in disease conditions.
Collapse
Affiliation(s)
- Louis J. Sparvero
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health University of Pittsburgh, Pittsburgh, PA 15261 (USA)
- Department of Critical Care Medicine and Children’s Neuroscience Institute UPMC Children’s Hospital of Pittsburgh Pittsburgh, PA 15261 (USA)
| | - Hua Tian
- Department of Chemistry, Pennsylvania State University University Park, State College, PA 16802 (USA)
| | - Andrew A. Amoscato
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health University of Pittsburgh, Pittsburgh, PA 15261 (USA)
| | - Wan-Yang Sun
- College of Pharmacy, Jinan University Guangzhou, Guangdong 510632 (China)
| | - Tamil S. Anthonymuthu
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health University of Pittsburgh, Pittsburgh, PA 15261 (USA)
- Department of Critical Care Medicine and Children’s Neuroscience Institute UPMC Children’s Hospital of Pittsburgh Pittsburgh, PA 15261 (USA)
| | - Yulia Y. Tyurina
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health University of Pittsburgh, Pittsburgh, PA 15261 (USA)
| | - Oleksandr Kapralov
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health University of Pittsburgh, Pittsburgh, PA 15261 (USA)
| | - Sabzali Javadov
- Department of Physiology, School of Medicine University of Puerto Rico, San Juan, PR 00936-5067 (USA)
| | - Rong-Rong He
- College of Pharmacy and School of Traditional Chinese Medicine Jinan University, Guangzhou, Guangdong 510632 (China)
| | - Simon C. Watkins
- Department of Cell Biology and Center for Biological Imaging University of Pittsburgh, Pittsburgh, PA 15261 (USA)
| | - Nicholas Winograd
- Department of Chemistry, Pennsylvania State University University Park, State College, PA 16802 (USA)
| | - Valerian E. Kagan
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health University of Pittsburgh, Pittsburgh, PA 15261 (USA)
- Department of Critical Care Medicine and Children’s Neuroscience Institute UPMC Children’s Hospital of Pittsburgh Pittsburgh, PA 15261 (USA)
| | - Hülya Bayır
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health University of Pittsburgh, Pittsburgh, PA 15261 (USA)
- Department of Critical Care Medicine and Children’s Neuroscience Institute UPMC Children’s Hospital of Pittsburgh Pittsburgh, PA 15261 (USA)
| |
Collapse
|
145
|
Corral-Jara KF, Rosas da Silva G, Fierro NA, Soumelis V. Modeling the Th17 and Tregs Paradigm: Implications for Cancer Immunotherapy. Front Cell Dev Biol 2021; 9:675099. [PMID: 34026764 PMCID: PMC8137995 DOI: 10.3389/fcell.2021.675099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022] Open
Abstract
CD4 + T cell differentiation is governed by gene regulatory and metabolic networks, with both networks being highly interconnected and able to adapt to external stimuli. Th17 and Tregs differentiation networks play a critical role in cancer, and their balance is affected by the tumor microenvironment (TME). Factors from the TME mediate recruitment and expansion of Th17 cells, but these cells can act with pro or anti-tumor immunity. Tregs cells are also involved in tumor development and progression by inhibiting antitumor immunity and promoting immunoevasion. Due to the complexity of the underlying molecular pathways, the modeling of biological systems has emerged as a promising solution for better understanding both CD4 + T cell differentiation and cancer cell behavior. In this review, we present a context-dependent vision of CD4 + T cell transcriptomic and metabolic network adaptability. We then discuss CD4 + T cell knowledge-based models to extract the regulatory elements of Th17 and Tregs differentiation in multiple CD4 + T cell levels. We highlight the importance of complementing these models with data from omics technologies such as transcriptomics and metabolomics, in order to better delineate existing Th17 and Tregs bifurcation mechanisms. We were able to recompilate promising regulatory components and mechanisms of Th17 and Tregs differentiation under normal conditions, which we then connected with biological evidence in the context of the TME to better understand CD4 + T cell behavior in cancer. From the integration of mechanistic models with omics data, the transcriptomic and metabolomic reprograming of Th17 and Tregs cells can be predicted in new models with potential clinical applications, with special relevance to cancer immunotherapy.
Collapse
Affiliation(s)
- Karla F. Corral-Jara
- Computational Systems Biology Team, Institut de Biologie de l’Ecole Normale Supérieure, CNRS UMR 8197, INSERM U1024, Ecole Normale Supérieure, PSL Research University, Paris, France
| | | | - Nora A. Fierro
- Department of Immunology, Biomedical Research Institute, National Autonomous University of Mexico, Mexico City, Mexico
| | - Vassili Soumelis
- Université de Paris, INSERM U976, France and AP-HP, Hôpital Saint-Louis, Immunology-Histocompatibility Department, Paris, France
| |
Collapse
|
146
|
Tian T, Fan J, Elf SE. Metabolon: a novel cellular structure that regulates specific metabolic pathways. Cancer Commun (Lond) 2021; 41:439-441. [PMID: 33939322 PMCID: PMC8211336 DOI: 10.1002/cac2.12154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/09/2021] [Indexed: 01/27/2023] Open
Abstract
This manuscript of research highlight focused on one paper recently published in Nature Metabolism entitled "Mitochondrial Long Non-coding RNA GAS5 Tunes TCA Metabolism in Response to Nutrient Stress" from Lin Aifu's group in Zhejiang University. In this manuscript, we discussed the novel findings in Lin's paper and concluded that the metabolon is emerging as a novel cellular structure that regulates specific metabolic pathways.
Collapse
Affiliation(s)
- Tian Tian
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Jun Fan
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Shannon Elisabeth Elf
- The Ben May Department for Cancer Research, the University of Chicago, Chicago, Illinois, 60637, USA
| |
Collapse
|
147
|
Zaccherini G, Aguilar F, Caraceni P, Clària J, Lozano JJ, Fenaille F, Castelli F, Junot C, Curto A, Formentin C, Weiss E, Bernardi M, Jalan R, Angeli P, Moreau R, Arroyo V. Assessing the role of amino acids in systemic inflammation and organ failure in patients with ACLF. J Hepatol 2021; 74:1117-1131. [PMID: 33276029 DOI: 10.1016/j.jhep.2020.11.035] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 11/16/2020] [Accepted: 11/22/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND & AIMS Systemic inflammation and organ failure(s) are the hallmarks of acute-on-chronic liver failure (ACLF), yet their pathogenesis remains uncertain. Herein, we aimed to assess the role of amino acids in these processes in patients with ACLF. METHODS The blood metabolomic database of the CANONIC study (comprising 137 metabolites, with 43% related to amino acids) - obtained in 181 patients with ACLF and 650 with acute decompensation without ACLF (AD) - was reanalyzed with a focus on amino acids, in particular 9 modules of co-regulated metabolites. We also compared blood metabolite levels between ACLF and AD. RESULTS The main findings in ACLF were: i) Metabolite modules were increased in parallel with increased levels of markers of systemic inflammation and oxidative stress. ii) Seventy percent of proteinogenic amino acids were present and most were increased. iii) A metabolic network, comprising the amino acids aspartate, glutamate, the serine-glycine one-carbon metabolism (folate cycle), and methionine cycle, was activated, suggesting increased purine and pyrimidine nucleotide synthesis. iv) Cystathionine, L-cystine, glutamate and pyroglutamate, which are involved in the transsulfuration pathway (a methionine cycle branch) were increased, consistent with increased synthesis of the antioxidant glutathione. v) Intermediates of the catabolism of 5 out of the 6 ketogenic amino acids were increased. vi) The levels of spermidine (a polyamine inducer of autophagy with anti-inflammatory effects) were decreased. CONCLUSIONS In ACLF, blood amino acids fueled protein and nucleotide synthesis required for the intense systemic inflammatory response. Ketogenic amino acids were extensively catabolized to produce energy substrates in peripheral organs, an effect that was insufficient because organs failed. Finally, the decrease in spermidine levels may cause a defect in autophagy contributing to the proinflammatory phenotype in ACLF. LAY SUMMARY Systemic inflammation and organ failures are hallmarks of acute-on-chronic liver failure (ACLF). Herein, we aimed to characterize the role of amino acids in these processes. The blood metabolome of patients with acutely decompensated cirrhosis, and particularly those with ACLF, reveals evidence of intense skeletal muscle catabolism. Importantly, amino acids (along with glucose), are used for intense anabolic, energy-consuming metabolism in patients with ACLF, presumably to support de novo nucleotide and protein synthesis in the activated innate immune system.
Collapse
Affiliation(s)
- Giacomo Zaccherini
- EF Clif, EASL-CLIF Consortium and Grifols Chair, Barcelona, Spain; Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Ferran Aguilar
- EF Clif, EASL-CLIF Consortium and Grifols Chair, Barcelona, Spain
| | - Paolo Caraceni
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Joan Clària
- EF Clif, EASL-CLIF Consortium and Grifols Chair, Barcelona, Spain; Hospital Clínic-IDIBAPS, Universitat de Barcelona, Barcelona, Spain; CIBERehd, Barcelona, Spain
| | | | - François Fenaille
- Service de Pharmacologie et Immuno-Analyse (SPI), Laboratoire d'Etude du Métabolisme des Médicaments, CEA, INRA, Université Paris Saclay, MetaboHUB, F-91191, Gif-sur-Yvette, France
| | - Florence Castelli
- Service de Pharmacologie et Immuno-Analyse (SPI), Laboratoire d'Etude du Métabolisme des Médicaments, CEA, INRA, Université Paris Saclay, MetaboHUB, F-91191, Gif-sur-Yvette, France
| | - Christophe Junot
- Service de Pharmacologie et Immuno-Analyse (SPI), Laboratoire d'Etude du Métabolisme des Médicaments, CEA, INRA, Université Paris Saclay, MetaboHUB, F-91191, Gif-sur-Yvette, France
| | - Anna Curto
- EF Clif, EASL-CLIF Consortium and Grifols Chair, Barcelona, Spain
| | - Chiara Formentin
- Unit of Internal Medicine and Hepatology, Dept. of Medicine, DIMED, University of Padova, Italy
| | - Emmanuel Weiss
- EF Clif, EASL-CLIF Consortium and Grifols Chair, Barcelona, Spain; Assistance Publique - Hôpitaux de Paris (AP-HP), Department of Anesthesiology and Critical Care, Beaujon hospital, DMU Parabol, AP-HP Nord, Paris, France
| | - Mauro Bernardi
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Rajiv Jalan
- EF Clif, EASL-CLIF Consortium and Grifols Chair, Barcelona, Spain; Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| | - Paolo Angeli
- EF Clif, EASL-CLIF Consortium and Grifols Chair, Barcelona, Spain; Unit of Internal Medicine and Hepatology, Dept. of Medicine, DIMED, University of Padova, Italy
| | - Richard Moreau
- EF Clif, EASL-CLIF Consortium and Grifols Chair, Barcelona, Spain; Inserm, Université de Paris, Centre de Recherche sur l'Inflammation (CRI), Paris, France; Assistance Publique - Hôpitaux de Paris, Service d'Hépatologie, Hôpital Beaujon, Clichy; France.
| | - Vicente Arroyo
- EF Clif, EASL-CLIF Consortium and Grifols Chair, Barcelona, Spain
| |
Collapse
|
148
|
Megarity CF, Siritanaratkul B, Herold RA, Morello G, Armstrong FA. Electron flow between the worlds of Marcus and Warburg. J Chem Phys 2021; 153:225101. [PMID: 33317312 DOI: 10.1063/5.0024701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Living organisms are characterized by the ability to process energy (all release heat). Redox reactions play a central role in biology, from energy transduction (photosynthesis, respiratory chains) to highly selective catalyzed transformations of complex molecules. Distance and scale are important: electrons transfer on a 1 nm scale, hydrogen nuclei transfer between molecules on a 0.1 nm scale, and extended catalytic processes (cascades) operate most efficiently when the different enzymes are under nanoconfinement (10 nm-100 nm scale). Dynamic electrochemistry experiments (defined broadly within the term "protein film electrochemistry," PFE) reveal details that are usually hidden in conventional kinetic experiments. In PFE, the enzyme is attached to an electrode, often in an innovative way, and electron-transfer reactions, individual or within steady-state catalytic flow, can be analyzed in terms of precise potentials, proton coupling, cooperativity, driving-force dependence of rates, and reversibility (a mark of efficiency). The electrochemical experiments reveal subtle factors that would have played an essential role in molecular evolution. This article describes how PFE is used to visualize and analyze different aspects of biological redox chemistry, from long-range directional electron transfer to electron/hydride (NADPH) interconversion by a flavoenzyme and finally to NADPH recycling in a nanoconfined enzyme cascade.
Collapse
Affiliation(s)
- Clare F Megarity
- Department of Chemistry, University of Oxford, Oxford OX1 3QR, United Kingdom
| | | | - Ryan A Herold
- Department of Chemistry, University of Oxford, Oxford OX1 3QR, United Kingdom
| | - Giorgio Morello
- Department of Chemistry, University of Oxford, Oxford OX1 3QR, United Kingdom
| | - Fraser A Armstrong
- Department of Chemistry, University of Oxford, Oxford OX1 3QR, United Kingdom
| |
Collapse
|
149
|
Taylor M, Lukowski JK, Anderton CR. Spatially Resolved Mass Spectrometry at the Single Cell: Recent Innovations in Proteomics and Metabolomics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:872-894. [PMID: 33656885 PMCID: PMC8033567 DOI: 10.1021/jasms.0c00439] [Citation(s) in RCA: 150] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 05/02/2023]
Abstract
Biological systems are composed of heterogeneous populations of cells that intercommunicate to form a functional living tissue. Biological function varies greatly across populations of cells, as each single cell has a unique transcriptome, proteome, and metabolome that translates to functional differences within single species and across kingdoms. Over the past decade, substantial advancements in our ability to characterize omic profiles on a single cell level have occurred, including in multiple spectroscopic and mass spectrometry (MS)-based techniques. Of these technologies, spatially resolved mass spectrometry approaches, including mass spectrometry imaging (MSI), have shown the most progress for single cell proteomics and metabolomics. For example, reporter-based methods using heavy metal tags have allowed for targeted MS investigation of the proteome at the subcellular level, and development of technologies such as laser ablation electrospray ionization mass spectrometry (LAESI-MS) now mean that dynamic metabolomics can be performed in situ. In this Perspective, we showcase advancements in single cell spatial metabolomics and proteomics over the past decade and highlight important aspects related to high-throughput screening, data analysis, and more which are vital to the success of achieving proteomic and metabolomic profiling at the single cell scale. Finally, using this broad literature summary, we provide a perspective on how the next decade may unfold in the area of single cell MS-based proteomics and metabolomics.
Collapse
Affiliation(s)
- Michael
J. Taylor
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jessica K. Lukowski
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Christopher R. Anderton
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
150
|
Dilmetz BA, Lee Y, Condina MR, Briggs M, Young C, Desire CT, Klingler‐Hoffmann M, Hoffmann P. Novel technical developments in mass spectrometry imaging in 2020: A mini review. ANALYTICAL SCIENCE ADVANCES 2021; 2:225-237. [PMID: 38716449 PMCID: PMC10989618 DOI: 10.1002/ansa.202000176] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/25/2020] [Accepted: 03/01/2021] [Indexed: 11/17/2024]
Abstract
The applicability of mass spectrometry imaging (MSI) has exponentially increased with the improvement of sample preparation, instrumentation (spatial resolution) and data analysis. The number of MSI publications listed in PubMed continues to grow with 378 published articles in 2020-2021. Initially, MSI was just sensitive enough to identify molecular features correlating with distinct tissue regions, similar to the resolution achieved by visual inspection after standard immunohistochemical staining. Although the spatial resolution was limited compared with other imaging modalities, the molecular intensity mapping added a new exciting capability. Over the past decade, significant improvements in every step of the workflow and most importantly in instrumentation were made, which now enables the molecular analysis at a cellular and even subcellular level. Here, we summarize the latest developments in MSI, with a focus on the latest approaches for tissue-based imaging described in 2020.
Collapse
Affiliation(s)
- Brooke A. Dilmetz
- Future Industries InstituteUniversity of South AustraliaAdelaideAustralia
| | - Yea‐Rin Lee
- Future Industries InstituteUniversity of South AustraliaAdelaideAustralia
- Clinical and Health Sciences, Health and Biomedical InnovationUniversity of South AustraliaAdelaideAustralia
- Discipline of Orthopaedics and Trauma, Adelaide Medical SchoolThe University of AdelaideAdelaideAustralia
| | - Mark R. Condina
- Future Industries InstituteUniversity of South AustraliaAdelaideAustralia
| | - Matthew Briggs
- Future Industries InstituteUniversity of South AustraliaAdelaideAustralia
| | - Clifford Young
- Future Industries InstituteUniversity of South AustraliaAdelaideAustralia
| | | | | | - Peter Hoffmann
- Future Industries InstituteUniversity of South AustraliaAdelaideAustralia
| |
Collapse
|