101
|
Ma S, Caligiuri MA, Yu J. Harnessing IL-15 signaling to potentiate NK cell-mediated cancer immunotherapy. Trends Immunol 2022; 43:833-847. [PMID: 36058806 PMCID: PMC9612852 DOI: 10.1016/j.it.2022.08.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 10/14/2022]
Abstract
Natural killer (NK) cells, a crucial component of the innate immune system, have long been of clinical interest for their antitumor properties. Almost every aspect of NK cell immunity is regulated by interleukin-15 (IL-15), a cytokine in the common γ-chain family. Several current clinical trials are using IL-15 or its analogs to treat various cancers. Moreover, NK cells are being genetically modified to produce membrane-bound or secretory IL-15. Here, we discuss the key role of IL-15 signaling in NK cell immunity and provide an up-to-date overview of IL-15 in NK cell therapy.
Collapse
Affiliation(s)
- Shoubao Ma
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Michael A Caligiuri
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Comprehensive Cancer Center, City of Hope, Los Angeles, CA 91010, USA.
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Comprehensive Cancer Center, City of Hope, Los Angeles, CA 91010, USA; Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Los Angeles, CA 91010, USA.
| |
Collapse
|
102
|
Li WH, Su JY, Li YM. Rational Design of T-Cell- and B-Cell-Based Therapeutic Cancer Vaccines. Acc Chem Res 2022; 55:2660-2671. [PMID: 36048514 DOI: 10.1021/acs.accounts.2c00360] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cancer vaccines provide an efficient strategy to enhance tumor-specific immune responses by redeploying immune systems. Despite the approval of the first cancer vaccine (Sipuleucel-T) by the U.S. Food and Drug Administration in 2010, most therapeutic cancer vaccines fail in clinical trials. Basically, tumor-specific immune responses rely on not only T-cell but also B-cell immunity, which indicates that cancer vaccines should leverage both arms of the adaptive immune system. For example, CD8+ T cells activated by antigen-presenting cells (APCs) recognize and directly kill tumor cells via peptide-bound major histocompatibility complex (pMHC). B cells recognize antigen with no need of pMHC and require CD4+ T cells for sufficient activation and antibody generation, enabling antibody-mediated nondirect killing on tumor cells. Considering the different mechanisms of T-cell and B-cell activation, the rational design of therapeutic cancer vaccines should consider several factors, including antigen selection and recognition, immune activation, vaccine delivery, and repeatable vaccination, which can be advanced by chemical strategies.In this Account, we summarize our recent contributions to the development of effective T-cell- and B-cell-based therapeutic cancer vaccines. For T-cell-based vaccines, we focus on adjuvants as the key component for controllable APC activation and T-cell priming. Not only synthetic molecular agonists of pattern recognition receptors (PRRs) but also adjuvant nanomaterials were explored to satisfy diversiform vaccine designs. For example, a type of natural cyclic dinucleotide (CDN) that was chemically modified with fluorination and ipsilateral phosphorothioation to activate the stimulator of interferon gene (STING) was found to mediate antitumor responses. It retains structural similarity to the parent CDN scaffold but possesses increased stability, cellular uptake, and immune activation for antitumor treatment. It also facilitates facile conjugation with other agonists, which not only enhances APC-targeting delivery but also balances cellular and humoral antitumor responses. We also explored the intrinsic properties of nanomaterials that allow them to serve as adjuvants. A black phosphorus nanosheet-based nanovaccine was constructed and found to strongly potentiate antigen-specific T-cell antitumor immune responses through multiple immune-potentiating properties, leading to a highly integrated nanomaterial-based adjuvant design. For B-cell-based vaccines, multicomponent and multivalent strategies were applied to improve the immunogenicity. A multicomponent linear vaccine conjugate coordinates helper T (Th) cells and APCs to proliferate and differentiates B cells for enhanced antitumor immunoglobulin G antibody responses. To further improve antigen recognition, clustered designs on a multivalent epitope were applied by generating various structures, including branched lysine-based peptides, natural multivalent scaffold molecules, and self-assembled nanofibers. We also engineered nano- and microvaccine systems to optimize systemic and localized vaccination. A multilayer-assembled nanovaccine successfully integrated antigens and multiple agonists to modulate APC activation. A DNA hydrogel contributed to the control of APC's immune behaviors, including cell recruitment, activation, and migration, and induced robust antitumor responses as an all-in-one designable platform. In this Account, by summarizing strategies for both T-cell- and B-cell-based vaccine design, we not only compare the differences but also address the intrinsic uniformity between such vaccine designs and further discuss the potential of a combined T-cell- and B-cell-based vaccine, which highlights the applicability and feasibility of chemical strategies.
Collapse
Affiliation(s)
- Wen-Hao Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, 30 Shuangqing Road, Haidian District, Beijing 100084, China
| | - Jing-Yun Su
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, 30 Shuangqing Road, Haidian District, Beijing 100084, China
| | - Yan-Mei Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, 30 Shuangqing Road, Haidian District, Beijing 100084, China.,Beijing Institute for Brain Disorders, 10 Youanmenwai Xitoutiao, Fengtai District, Beijing 100069, China.,Center for Synthetic and Systems Biology, Tsinghua University, 30 Shuangqing Road, Haidian District, Beijing 100084, China
| |
Collapse
|
103
|
Watkins-Schulz R, Batty CJ, Stiepel RT, Schmidt ME, Sandor AM, Chou WC, Ainslie KM, Bachelder EM, Ting JPY. Microparticle Delivery of a STING Agonist Enables Indirect Activation of NK Cells by Antigen-Presenting Cells. Mol Pharm 2022; 19:3125-3138. [PMID: 35913984 DOI: 10.1021/acs.molpharmaceut.2c00207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Natural killer (NK) cells are an important member of the innate immune system and can participate in direct tumor cell killing in response to immunotherapies. One class of immunotherapy is stimulator of interferon gene (STING) agonists, which result in a robust type I interferon (IFN-I) response. Most mechanistic studies involving STING have focused on macrophages and T cells. Nevertheless, NK cells are also activated by IFN-I, but the effect of STING activation on NK cells remains to be adequately investigated. We show that both direct treatment with soluble STING agonist cyclic di-guanosine monophosphate-adenosine monophosphate (cGAMP) and indirect treatment with cGAMP encapsulated in microparticles (MPs) result in NK cell activation in vitro, although the former requires 100× more cGAMP than the latter. Additionally, direct activation with cGAMP leads to NK cell death. Indirect activation with cGAMP MPs does not result in NK cell death but rather cell activation and cell killing in vitro. In vivo, treatment with soluble cGAMP and cGAMP MPs both cause short-term activation, whereas only cGAMP MP treatment produces long-term changes in NK cell activation markers. Thus, this work indicates that treatment with an encapsulated STING agonist activates NK cells more efficiently than that with soluble cGAMP. In both the in vitro and in vivo systems, the MP delivery system results in more robust effects at a greatly reduced dosage. These results have potential applications in aiding the improvement of cancer immunotherapies.
Collapse
Affiliation(s)
- Rebekah Watkins-Schulz
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Cole J Batty
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Rebeca T Stiepel
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Megan E Schmidt
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Adam M Sandor
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Wei-Chun Chou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Kristy M Ainslie
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Eric M Bachelder
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Jenny P-Y Ting
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Center for Translational Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
104
|
Su JY, Li WH, Li YM. New opportunities for immunomodulation of the tumour microenvironment using chemical tools. Chem Soc Rev 2022; 51:7944-7970. [PMID: 35996977 DOI: 10.1039/d2cs00486k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Immunotherapy is recognised as an attractive method for the treatment of cancer, and numerous treatment strategies have emerged over recent years. Investigations of the tumour microenvironment (TME) have led to the identification of many potential therapeutic targets and methods. However, many recently applied immunotherapies are based on previously identified strategies, such as boosting the immune response by combining commonly used stimulators, and the release of drugs through changes in pH. Although methodological improvements such as structural optimisation and combining strategies can be undertaken, applying those novel targets and methods in immunotherapy remains an important goal. In this review, we summarise the latest research on the TME, and discuss how small molecules, immune cells, and their interactions with tumour cells can be regulated in the TME. Additionally, the techniques currently employed for delivery of these agents to the TME are also mentioned. Strategies to modulate cell phenotypes and interactions between immune cells and tumours are mainly discussed. We consider both modulatory and targeting methods aiming to bridge the gap between the TME and chemical modulation thereof.
Collapse
Affiliation(s)
- Jing-Yun Su
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China.
| | - Wen-Hao Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China.
| | - Yan-Mei Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China. .,Center for Synthetic and Systems Biology, Tsinghua University, 100084 Beijing, China.,Beijing Institute for Brain Disorders, 100069 Beijing, China
| |
Collapse
|
105
|
Knelson EH, Ivanova EV, Tarannum M, Campisi M, Lizotte PH, Booker MA, Ozgenc I, Noureddine M, Meisenheimer B, Chen M, Piel B, Spicer N, Obua B, Messier CM, Shannon E, Mahadevan NR, Tani T, Schol PJ, Lee-Hassett AM, Zlota A, Vo HV, Ha M, Bertram AA, Han S, Thai TC, Gustafson CE, Venugopal K, Haggerty TJ, Albertson TP, Hartley AV, Eser PO, Li ZH, Cañadas I, Vivero M, De Rienzo A, Richards WG, Abu-Yousif AO, Appleman VA, Gregory RC, Parent A, Lineberry N, Smith EL, Jänne PA, Miret JJ, Tolstorukov MY, Romee R, Paweletz CP, Bueno R, Barbie DA. Activation of Tumor-Cell STING Primes NK-Cell Therapy. Cancer Immunol Res 2022; 10:947-961. [PMID: 35678717 PMCID: PMC9357206 DOI: 10.1158/2326-6066.cir-22-0017] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/07/2022] [Accepted: 05/31/2022] [Indexed: 02/05/2023]
Abstract
Activation of the stimulator of interferon genes (STING) pathway promotes antitumor immunity but STING agonists have yet to achieve clinical success. Increased understanding of the mechanism of action of STING agonists in human tumors is key to developing therapeutic combinations that activate effective innate antitumor immunity. Here, we report that malignant pleural mesothelioma cells robustly express STING and are responsive to STING agonist treatment ex vivo. Using dynamic single-cell RNA sequencing of explants treated with a STING agonist, we observed CXCR3 chemokine activation primarily in tumor cells and cancer-associated fibroblasts, as well as T-cell cytotoxicity. In contrast, primary natural killer (NK) cells resisted STING agonist-induced cytotoxicity. STING agonists enhanced migration and killing of NK cells and mesothelin-targeted chimeric antigen receptor (CAR)-NK cells, improving therapeutic activity in patient-derived organotypic tumor spheroids. These studies reveal the fundamental importance of using human tumor samples to assess innate and cellular immune therapies. By functionally profiling mesothelioma tumor explants with elevated STING expression in tumor cells, we uncovered distinct consequences of STING agonist treatment in humans that support testing combining STING agonists with NK and CAR-NK cell therapies.
Collapse
Affiliation(s)
- Erik H. Knelson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Elena V. Ivanova
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mubin Tarannum
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Marco Campisi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Patrick H. Lizotte
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Matthew A. Booker
- Department of Informatics and Analytics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ismail Ozgenc
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Moataz Noureddine
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Brittany Meisenheimer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Minyue Chen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Brandon Piel
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nathaniel Spicer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Bonje Obua
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Cameron M. Messier
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Erin Shannon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Graduate Medical Sciences Program, Boston University School of Medicine, Boston, MA, USA
| | - Navin R. Mahadevan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Tetsuo Tani
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Pieter J. Schol
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Anna M. Lee-Hassett
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ari Zlota
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ha V. Vo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Minh Ha
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Arrien A. Bertram
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Saemi Han
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Tran C. Thai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Kartika Venugopal
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Timothy J. Haggerty
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Antja-Voy Hartley
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Pinar O. Eser
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ze-Hua Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Israel Cañadas
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Marina Vivero
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | | | | | | | | | | | - Alexander Parent
- Takeda Development Center Americas, Inc. (TDCA), Lexington, MA, USA
| | - Neil Lineberry
- Takeda Development Center Americas, Inc. (TDCA), Lexington, MA, USA
| | - Eric L. Smith
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Pasi A. Jänne
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Juan J. Miret
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Rizwan Romee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Cloud P. Paweletz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Raphael Bueno
- Deparment of Surgery, Brigham and Women’s Hospital, Boston, MA, USA
| | - David A. Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
106
|
Su T, Cheng F, Qi J, Zhang Y, Zhou S, Mei L, Fu S, Zhang F, Lin S, Zhu G. Responsive Multivesicular Polymeric Nanovaccines that Codeliver STING Agonists and Neoantigens for Combination Tumor Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201895. [PMID: 35712773 PMCID: PMC9376841 DOI: 10.1002/advs.202201895] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/17/2022] [Indexed: 05/19/2023]
Abstract
Immune checkpoint blockade (ICB) has significantly advanced cancer immunotherapy, yet its patient response rates are generally low. Vaccines, including immunostimulant-adjuvanted peptide antigens, can improve ICB. The emerging neoantigens generated by cancer somatic mutations elicit cancer-specific immunity for personalized immunotherapy; the novel cyclic dinucleotide (CDN) adjuvants activate stimulator of interferon genes (STING) for antitumor type I interferon (IFN-I) responses. However, CDN/neoantigen vaccine development has been limited by the poor antigen/adjuvant codelivery. Here, pH-responsive CDN/neoantigen codelivering nanovaccines (NVs) for ICB combination tumor immunotherapy are reported. pH-responsive polymers are synthesized to be self-assembled into multivesicular nanoparticles (NPs) at physiological pH and disassembled at acidic conditions. NPs with high CDN/antigen coloading are selected as NVs for CDN/antigen codelivery to antigen presenting cells (APCs) in immunomodulatory lymph nodes (LNs). In the acidic endosome of APCs, pH-responsive NVs facilitate the vaccine release and escape into cytosol, where CDNs activate STING for IFN-I responses and antigens are presented by major histocompatibility complex (MHC) for T-cell priming. In mice, NVs elicit potent antigen-specific CD8+ T-cell responses with immune memory, and reduce multifaceted tumor immunosuppression. In syngeneic murine tumors, NVs show robust ICB combination therapeutic efficacy. Overall, these CDN/neoantigen-codelivering NVs hold the potential for ICB combination tumor immunotherapy.
Collapse
Affiliation(s)
- Ting Su
- Center for Translational MedicinePrecision Medicine InstituteThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences; Institute for Structural Biology and Drug DiscoverySchool of Pharmacy; The Developmental Therapeutics ProgramMassey Cancer CenterVirginia Commonwealth UniversityRichmondVA23298USA
| | - Furong Cheng
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences; Institute for Structural Biology and Drug DiscoverySchool of Pharmacy; The Developmental Therapeutics ProgramMassey Cancer CenterVirginia Commonwealth UniversityRichmondVA23298USA
| | - Jialong Qi
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences; Institute for Structural Biology and Drug DiscoverySchool of Pharmacy; The Developmental Therapeutics ProgramMassey Cancer CenterVirginia Commonwealth UniversityRichmondVA23298USA
| | - Yu Zhang
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences; Institute for Structural Biology and Drug DiscoverySchool of Pharmacy; The Developmental Therapeutics ProgramMassey Cancer CenterVirginia Commonwealth UniversityRichmondVA23298USA
| | - Shurong Zhou
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences; Institute for Structural Biology and Drug DiscoverySchool of Pharmacy; The Developmental Therapeutics ProgramMassey Cancer CenterVirginia Commonwealth UniversityRichmondVA23298USA
| | - Lei Mei
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences; Institute for Structural Biology and Drug DiscoverySchool of Pharmacy; The Developmental Therapeutics ProgramMassey Cancer CenterVirginia Commonwealth UniversityRichmondVA23298USA
| | - Shiwei Fu
- Department of ChemistryUniversity of MiamiCoral GablesFL33146USA
- The Dr. John T. Macdonald Foundation Biomedical Nanotechnology InstituteUniversity of MiamiMiamiFL33136USA
| | - Fuwu Zhang
- Department of ChemistryUniversity of MiamiCoral GablesFL33146USA
- The Dr. John T. Macdonald Foundation Biomedical Nanotechnology InstituteUniversity of MiamiMiamiFL33136USA
| | - Shuibin Lin
- Center for Translational MedicinePrecision Medicine InstituteThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
| | - Guizhi Zhu
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences; Institute for Structural Biology and Drug DiscoverySchool of Pharmacy; The Developmental Therapeutics ProgramMassey Cancer CenterVirginia Commonwealth UniversityRichmondVA23298USA
| |
Collapse
|
107
|
Harnessing natural killer cells for cancer immunotherapy: dispatching the first responders. Nat Rev Drug Discov 2022; 21:559-577. [PMID: 35314852 PMCID: PMC10019065 DOI: 10.1038/s41573-022-00413-7] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2022] [Indexed: 02/07/2023]
Abstract
Natural killer (NK) cells have crucial roles in the innate immunosurveillance of cancer and viral infections. They are 'first responders' that can spontaneously recognize abnormal cells in the body, rapidly eliminate them through focused cytotoxicity mechanisms and potently produce pro-inflammatory cytokines and chemokines that recruit and activate other immune cells to initiate an adaptive response. From the initial discovery of the diverse cell surface receptors on NK cells to the characterization of regulatory events that control their function, our understanding of the basic biology of NK cells has improved dramatically in the past three decades. This advanced knowledge has revealed increased mechanistic complexity, which has opened the doors to the development of a plethora of exciting new therapeutics that can effectively manipulate and target NK cell functional responses, particularly in cancer patients. Here, we summarize the basic mechanisms that regulate NK cell biology, review a wide variety of drugs, cytokines and antibodies currently being developed and used to stimulate NK cell responses, and outline evolving NK cell adoptive transfer approaches to treat cancer.
Collapse
|
108
|
Chen X, Jiang L, Liu X. Natural killer cells: the next wave in cancer immunotherapy. Front Immunol 2022; 13:954804. [PMID: 35967421 PMCID: PMC9364606 DOI: 10.3389/fimmu.2022.954804] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/30/2022] [Indexed: 12/05/2022] Open
Abstract
Immunotherapies focusing on rejuvenating T cell activities, like PD-1/PD-L1 and CTLA-4 blockade, have unprecedentedly revolutionized the landscape of cancer treatment. Yet a previously underexplored component of the immune system - natural killer (NK) cell, is coming to the forefront of immunotherapeutic attempts. In this review, we discuss the contributions of NK cells in the success of current immunotherapies, provide an overview of the current preclinical and clinical strategies at harnessing NK cells for cancer treatment, and highlight that NK cell-mediated therapies emerge as a major target in the next wave of cancer immunotherapy.
Collapse
Affiliation(s)
- Xin Chen
- Department of Biology, BeiGene (Beijing) Co., Ltd., Beijing, China
| | | | | |
Collapse
|
109
|
Berger G, Knelson EH, Jimenez-Macias JL, Nowicki MO, Han S, Panagioti E, Lizotte PH, Adu-Berchie K, Stafford A, Dimitrakakis N, Zhou L, Chiocca EA, Mooney DJ, Barbie DA, Lawler SE. STING activation promotes robust immune response and NK cell-mediated tumor regression in glioblastoma models. Proc Natl Acad Sci U S A 2022; 119:e2111003119. [PMID: 35787058 PMCID: PMC9282249 DOI: 10.1073/pnas.2111003119] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 05/08/2022] [Indexed: 01/07/2023] Open
Abstract
Immunotherapy has had a tremendous impact on cancer treatment in the past decade, with hitherto unseen responses at advanced and metastatic stages of the disease. However, the aggressive brain tumor glioblastoma (GBM) is highly immunosuppressive and remains largely refractory to current immunotherapeutic approaches. The stimulator of interferon genes (STING) DNA sensing pathway has emerged as a next-generation immunotherapy target with potent local immune stimulatory properties. Here, we investigated the status of the STING pathway in GBM and the modulation of the brain tumor microenvironment (TME) with the STING agonist ADU-S100. Our data reveal the presence of STING in human GBM specimens, where it stains strongly in the tumor vasculature. We show that human GBM explants can respond to STING agonist treatment by secretion of inflammatory cytokines. In murine GBM models, we show a profound shift in the tumor immune landscape after STING agonist treatment, with massive infiltration of the tumor-bearing hemisphere with innate immune cells including inflammatory macrophages, neutrophils, and natural killer (NK) populations. Treatment of established murine intracranial GL261 and CT-2A tumors by biodegradable ADU-S100-loaded intracranial implants demonstrated a significant increase in survival in both models and long-term survival with immune memory in GL261. Responses to treatment were abolished by NK cell depletion. This study reveals therapeutic potential and deep remodeling of the TME by STING activation in GBM and warrants further examination of STING agonists alone or in combination with other immunotherapies such as cancer vaccines, chimeric antigen receptor T cells, NK therapies, and immune checkpoint blockade.
Collapse
Affiliation(s)
- Gilles Berger
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
- Microbiology, Bioorganic and Macromolecular Chemistry, Faculty of Pharmacy, Université Libre de Bruxelles, Brussels 1050, Belgium
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138
| | - Erik H. Knelson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115
| | - Jorge L. Jimenez-Macias
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Michal O. Nowicki
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Saemi Han
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115
| | - Eleni Panagioti
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Patrick H. Lizotte
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115
- Human Tumor Profiling Group, Belfer Center for Applied Cancer Science, Boston, MA 02115
| | - Kwasi Adu-Berchie
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138
| | - Alexander Stafford
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138
| | - Nikolaos Dimitrakakis
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138
| | - Lanlan Zhou
- Legorreta Cancer Center, Brown University, Providence, RI 02912
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02912
| | - E. Antonio Chiocca
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - David J. Mooney
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
| | - David A. Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115
| | - Sean E. Lawler
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
110
|
Chamma H, Vila IK, Taffoni C, Turtoi A, Laguette N. Activation of STING in the pancreatic tumor microenvironment: A novel therapeutic opportunity. Cancer Lett 2022; 538:215694. [PMID: 35489447 DOI: 10.1016/j.canlet.2022.215694] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/21/2022] [Accepted: 04/15/2022] [Indexed: 12/20/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a cancer of poor prognosis that presents with a dense desmoplastic stroma that contributes to therapeutic failure. PDAC patients are mostly unresponsive to immunotherapy. However, hopes to elicit response to immunotherapy have emerged with novel strategies targeting the Stimulator of Interferon Genes (STING) protein, which is a major regulator of tumor-associated inflammation. Combination of STING agonists with conventional immunotherapy approaches has proven to potentiate therapeutic benefits in several cancers. However, recent data underscore that the output of STING activation varies depending on the cellular and tissue context. This suggests that tumor heterogeneity, and in particular the heterogeneity of the tumor microenvironment (TME), is a key factor determining whether STING activation would bear benefits for patients. In this review, we discuss the potential benefits of STING activation in PDAC. To this aim, we describe the major components of the PDAC TME, and the expected consequences of STING activation.
Collapse
Affiliation(s)
- Hanane Chamma
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Molecular Basis of Inflammation Laboratory, Montpellier, France
| | - Isabelle K Vila
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Molecular Basis of Inflammation Laboratory, Montpellier, France
| | - Clara Taffoni
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Molecular Basis of Inflammation Laboratory, Montpellier, France
| | - Andrei Turtoi
- Tumor Microenvironment Laboratory, Institut de Recherche en Cancérologie de Montpellier, Université de Montpellier, INSERM U1194, 34000, Montpellier, France.
| | - Nadine Laguette
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Molecular Basis of Inflammation Laboratory, Montpellier, France.
| |
Collapse
|
111
|
Lee D, Huntoon K, Kang M, Lu Y, Gallup T, Jiang W, Kim BYS. Harnessing cGAS‐STING Pathway for Cancer Immunotherapy: From Bench to Clinic. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202200040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- DaeYong Lee
- Department of Neurosurgery The University of Texas MD Anderson Cancer Center Houston TX 77030 USA
| | - Kristin Huntoon
- Department of Neurosurgery The University of Texas MD Anderson Cancer Center Houston TX 77030 USA
| | - Minjeong Kang
- Department of radiation oncology The University of Texas MD Anderson Cancer Center Houston TX 77030 USA
| | - Yifei Lu
- Department of Neurosurgery The University of Texas MD Anderson Cancer Center Houston TX 77030 USA
| | - Thomas Gallup
- Department of Neurosurgery The University of Texas MD Anderson Cancer Center Houston TX 77030 USA
| | - Wen Jiang
- Department of radiation oncology The University of Texas MD Anderson Cancer Center Houston TX 77030 USA
| | - Betty Y S Kim
- Department of Neurosurgery The University of Texas MD Anderson Cancer Center Houston TX 77030 USA
| |
Collapse
|
112
|
Cortés-Kaplan S, Kurdieh R, Hasim MS, Kaczmarek S, Taha Z, Maznyi G, McComb S, Lee SH, Diallo JS, Ardolino M. A New Functional Screening Platform Identifies Colistin Sulfate as an Enhancer of Natural Killer Cell Cytotoxicity. Cancers (Basel) 2022; 14:cancers14122832. [PMID: 35740500 PMCID: PMC9221353 DOI: 10.3390/cancers14122832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/07/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary The use of small compounds in cancer immunotherapy has been limited so far. Her we screen for drugs that enhanced the ability of immune cells to kill tumor cells and identified the molecule Colistin Sulfate as a booster of immune activity. Abstract Due to their crucial role in tumor immunity, NK cells have quickly became a prime target for immunotherapies, with the adoptive transfer of NK cells and the use of NK cell engagers quickly moving to the clinical stage. On the other hand, only a few studies have focused on small molecule drugs capable of unleashing NK cells against cancer. In this context, repurposing small molecules is an attractive strategy to identify new immunotherapies from already approved drugs. Here, we developed a new platform to screen small molecule compounds based on a high-throughput luciferase-release cytotoxicity assay. We tested 1200 FDA approved drugs from the Prestwick Chemical Library, to identify compounds that increase NK cells’ cytotoxic potential. We found that the antibiotic colistin sulfate increased the cytotoxicity of human NK cells towards cancer cells. The effect of colistin was short lived and was not observed when NK cells were pretreated with the drug, showing how NK cell activity was potentiated only when the compound was present at the time of recognition of cancer cells. Further studies are needed to uncover the mechanism of action and the pre-clinical efficacy of colistin sulfate in mouse cancer models.
Collapse
Affiliation(s)
- Serena Cortés-Kaplan
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; (S.C.-K.); (R.K.); (M.S.H.); (Z.T.); (G.M.); (J.-S.D.)
- CI3, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (S.K.); (S.M.); (S.-H.L.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Reem Kurdieh
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; (S.C.-K.); (R.K.); (M.S.H.); (Z.T.); (G.M.); (J.-S.D.)
- CI3, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (S.K.); (S.M.); (S.-H.L.)
| | - Mohamed S. Hasim
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; (S.C.-K.); (R.K.); (M.S.H.); (Z.T.); (G.M.); (J.-S.D.)
- CI3, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (S.K.); (S.M.); (S.-H.L.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Shelby Kaczmarek
- CI3, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (S.K.); (S.M.); (S.-H.L.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Zaid Taha
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; (S.C.-K.); (R.K.); (M.S.H.); (Z.T.); (G.M.); (J.-S.D.)
- CI3, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (S.K.); (S.M.); (S.-H.L.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Glib Maznyi
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; (S.C.-K.); (R.K.); (M.S.H.); (Z.T.); (G.M.); (J.-S.D.)
- CI3, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (S.K.); (S.M.); (S.-H.L.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Scott McComb
- CI3, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (S.K.); (S.M.); (S.-H.L.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON K1A 0R6, Canada
| | - Seung-Hwan Lee
- CI3, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (S.K.); (S.M.); (S.-H.L.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Jean-Simon Diallo
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; (S.C.-K.); (R.K.); (M.S.H.); (Z.T.); (G.M.); (J.-S.D.)
- CI3, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (S.K.); (S.M.); (S.-H.L.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Michele Ardolino
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; (S.C.-K.); (R.K.); (M.S.H.); (Z.T.); (G.M.); (J.-S.D.)
- CI3, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (S.K.); (S.M.); (S.-H.L.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Correspondence: ; Tel.: +1-613-737-8899 (ext. 77257)
| |
Collapse
|
113
|
Gao J, Zheng M, Wu X, Zhang H, Su H, Dang Y, Ma M, Wang F, Xu J, Chen L, Liu T, Chen J, Zhang F, Yang L, Xu Q, Hu X, Wang H, Fei Y, Chen C, Liu H. CDK inhibitor Palbociclib targets STING to alleviate autoinflammation. EMBO Rep 2022; 23:e53932. [PMID: 35403787 PMCID: PMC9171422 DOI: 10.15252/embr.202153932] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/18/2022] [Accepted: 03/25/2022] [Indexed: 12/29/2022] Open
Abstract
Aberrant activation of stimulator of interferon genes (STING) is tightly associated with multiple types of disease, including cancer, infection, and autoimmune diseases. However, the development of STING modulators for the therapy of STING-related diseases is still an unmet clinical need. We employed a high-throughput screening approach based on the interaction of small-molecule chemical compounds with recombinant STING protein to identify functional STING modulators. Intriguingly, the cyclin-dependent protein kinase (CDK) inhibitor Palbociclib was found to directly bind STING and inhibit its activation in both mouse and human cells. Mechanistically, Palbociclib targets Y167 of STING to block its dimerization, its binding with cyclic dinucleotides, and its trafficking. Importantly, Palbociclib alleviates autoimmune disease features induced by dextran sulphate sodium or genetic ablation of three prime repair exonuclease 1 (Trex1) in mice in a STING-dependent manner. Our work identifies Palbociclib as a novel pharmacological inhibitor of STING that abrogates its homodimerization and provides a basis for the fast repurposing of this Food and Drug Administration-approved drug for the therapy of autoinflammatory diseases.
Collapse
Affiliation(s)
- Jiani Gao
- Department of Thoracic SurgeryShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
- Clinical and Translational Research CenterShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Mengge Zheng
- Clinical and Translational Research CenterShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Xiangyang Wu
- Clinical and Translational Research CenterShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Hang Zhang
- Department of Optical Science and EngineeringShanghai Engineering Research Center of Ultra‐Precision Optical ManufacturingKey Laboratory of Micro and Nano Photonic Structures (Ministry of Education)Fudan UniversityShanghaiChina
| | - Hang Su
- Department of Thoracic SurgeryShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Yifang Dang
- Clinical and Translational Research CenterShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
- Shanghai Key Laboratory of TuberculosisShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Mingtong Ma
- Clinical and Translational Research CenterShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Fei Wang
- Clinical and Translational Research CenterShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Junfang Xu
- Clinical and Translational Research CenterShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Li Chen
- Clinical and Translational Research CenterShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Tianhao Liu
- Clinical and Translational Research CenterShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Jianxia Chen
- Clinical and Translational Research CenterShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
- Shanghai Key Laboratory of TuberculosisShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Fan Zhang
- Clinical and Translational Research CenterShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Li Yang
- Clinical and Translational Research CenterShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Qinghua Xu
- Clinical and Translational Research CenterShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Xuefei Hu
- Department of Thoracic SurgeryShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Heyong Wang
- Central LaboratoryShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Yiyan Fei
- Department of Optical Science and EngineeringShanghai Engineering Research Center of Ultra‐Precision Optical ManufacturingKey Laboratory of Micro and Nano Photonic Structures (Ministry of Education)Fudan UniversityShanghaiChina
| | - Chang Chen
- Department of Thoracic SurgeryShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Haipeng Liu
- Clinical and Translational Research CenterShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
- Shanghai Key Laboratory of TuberculosisShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
- Central LaboratoryShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
- Institute of Nuclear MedicineTongji University School of MedicineShanghaiChina
| |
Collapse
|
114
|
QnAs with David H. Raulet. Proc Natl Acad Sci U S A 2022; 119:e2206832119. [PMID: 35648834 PMCID: PMC9191770 DOI: 10.1073/pnas.2206832119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
|
115
|
Carideo Cunniff E, Sato Y, Mai D, Appleman VA, Iwasaki S, Kolev V, Matsuda A, Shi J, Mochizuki M, Yoshikawa M, Huang J, Shen L, Haridas S, Shinde V, Gemski C, Roberts ER, Ghasemi O, Bazzazi H, Menon S, Traore T, Shi P, Thelen TD, Conlon J, Abu-Yousif AO, Arendt C, Shaw MH, Okaniwa M. TAK-676: A Novel Stimulator of Interferon Genes (STING) Agonist Promoting Durable IFN-dependent Antitumor Immunity in Preclinical Studies. CANCER RESEARCH COMMUNICATIONS 2022; 2:489-502. [PMID: 36923556 PMCID: PMC10010323 DOI: 10.1158/2767-9764.crc-21-0161] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/30/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022]
Abstract
Oncology therapies targeting the immune system have improved patient outcomes across a wide range of tumor types, but resistance due to an inadequate T-cell response in a suppressive tumor microenvironment (TME) remains a significant problem. New therapies that activate an innate immune response and relieve this suppression may be beneficial to overcome this hurdle. TAK-676 is a synthetic novel stimulator of interferon genes (STING) agonist designed for intravenous administration. Here we demonstrate that TAK-676 dose-dependently triggers activation of the STING signaling pathway and activation of type I interferons. Furthermore, we show that TAK-676 is a highly potent modulator of both the innate and adaptive immune system and that it promotes the activation of dendritic cells, natural killer cells, and T cells in preclinical models. In syngeneic murine tumor models in vivo, TAK-676 induces dose-dependent cytokine responses and increases the activation and proliferation of immune cells within the TME and tumor-associated lymphoid tissue. We also demonstrate that TAK-676 dosing results in significant STING-dependent antitumor activity, including complete regressions and durable memory T-cell immunity. We show that TAK-676 is well tolerated, exhibits dose-proportional pharmacokinetics in plasma, and exhibits higher exposure in tumor. The intravenous administration of TAK-676 provides potential treatment benefit in a broad range of tumor types. Further study of TAK-676 in first-in-human phase I trials is ongoing. Significance TAK-676 is a novel systemic STING agonist demonstrating robust activation of innate and adaptive immune activity resulting in durable antitumor responses within multiple syngeneic tumor models. Clinical investigation of TAK-676 is ongoing.
Collapse
Affiliation(s)
| | - Yosuke Sato
- Takeda Development Center Americas, Inc. (TDCA), Lexington, Massachusetts
| | - Doanh Mai
- Takeda Development Center Americas, Inc. (TDCA), Lexington, Massachusetts
| | - Vicky A Appleman
- Takeda Development Center Americas, Inc. (TDCA), Lexington, Massachusetts
| | - Shinji Iwasaki
- Takeda Pharmaceutical Company, Ltd., Fujisawa, Kanagawa, Japan
| | - Vihren Kolev
- Takeda Development Center Americas, Inc. (TDCA), Lexington, Massachusetts
| | - Atsushi Matsuda
- Takeda Pharmaceutical Company, Ltd., Fujisawa, Kanagawa, Japan
| | - Judy Shi
- Takeda Development Center Americas, Inc. (TDCA), Lexington, Massachusetts
| | | | | | - Jian Huang
- Takeda Development Center Americas, Inc. (TDCA), Lexington, Massachusetts
| | - Luhua Shen
- Takeda Development Center Americas, Inc. (TDCA), Lexington, Massachusetts
| | - Satyajeet Haridas
- Takeda Development Center Americas, Inc. (TDCA), Lexington, Massachusetts
| | - Vaishali Shinde
- Takeda Development Center Americas, Inc. (TDCA), Lexington, Massachusetts
| | - Chris Gemski
- Takeda Development Center Americas, Inc. (TDCA), Lexington, Massachusetts
| | - Emily R Roberts
- Takeda Development Center Americas, Inc. (TDCA), Lexington, Massachusetts
| | - Omid Ghasemi
- Takeda Development Center Americas, Inc. (TDCA), Lexington, Massachusetts
| | - Hojjat Bazzazi
- Takeda Development Center Americas, Inc. (TDCA), Lexington, Massachusetts
| | - Saurabh Menon
- Takeda Development Center Americas, Inc. (TDCA), Lexington, Massachusetts
| | - Tary Traore
- Takeda Development Center Americas, Inc. (TDCA), Lexington, Massachusetts
| | - Pu Shi
- Takeda Development Center Americas, Inc. (TDCA), Lexington, Massachusetts
| | - Tennille D Thelen
- Takeda Development Center Americas, Inc. (TDCA), Lexington, Massachusetts
| | - Joseph Conlon
- Takeda Development Center Americas, Inc. (TDCA), Lexington, Massachusetts
| | - Adnan O Abu-Yousif
- Takeda Development Center Americas, Inc. (TDCA), Lexington, Massachusetts
| | - Christopher Arendt
- Takeda Development Center Americas, Inc. (TDCA), Lexington, Massachusetts
| | - Michael H Shaw
- Takeda Development Center Americas, Inc. (TDCA), Lexington, Massachusetts
| | - Masanori Okaniwa
- Takeda Development Center Americas, Inc. (TDCA), Lexington, Massachusetts
| |
Collapse
|
116
|
Wolf NK, Blaj C, Picton LK, Snyder G, Zhang L, Nicolai CJ, Ndubaku CO, McWhirter SM, Garcia KC, Raulet DH. Synergy of a STING agonist and an IL-2 superkine in cancer immunotherapy against MHC I-deficient and MHC I + tumors. Proc Natl Acad Sci U S A 2022; 119:e2200568119. [PMID: 35588144 PMCID: PMC9295797 DOI: 10.1073/pnas.2200568119] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/15/2022] [Indexed: 01/01/2023] Open
Abstract
Cyclic dinucleotides (CDN) and Toll-like receptor (TLR) ligands mobilize antitumor responses by natural killer (NK) cells and T cells, potentially serving as complementary therapies to immune checkpoint therapy. In the clinic thus far, however, CDN therapy targeting stimulator of interferon genes (STING) protein has yielded mixed results, perhaps because it initiates responses potently but does not provide signals to sustain activation and proliferation of activated cytotoxic lymphocytes. To improve efficacy, we combined CDN with a half life-extended interleukin-2 (IL-2) superkine, H9-MSA (mouse serum albumin). CDN/H9-MSA therapy induced dramatic long-term remissions of the most difficult to treat major histocompatibility complex class I (MHC I)–deficient and MHC I+ tumor transplant models. H9-MSA combined with CpG oligonucleotide also induced potent responses. Mechanistically, tumor elimination required CD8 T cells and not NK cells in the case of MHC I+ tumors and NK cells but not CD8 T cells in the case of MHC-deficient tumors. Furthermore, combination therapy resulted in more prolonged and more intense NK cell activation, cytotoxicity, and expression of cytotoxic effector molecules in comparison with monotherapy. Remarkably, in a primary autochthonous sarcoma model that is refractory to PD-1 checkpoint therapy, the combination of CDN/H9-MSA with checkpoint therapy yielded long-term remissions in the majority of the animals, mediated by T cells and NK cells. This combination therapy has the potential to activate responses in tumors resistant to current therapies and prevent MHC I loss accompanying acquired resistance of tumors to checkpoint therapy.
Collapse
Affiliation(s)
- Natalie K. Wolf
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Cristina Blaj
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Lora K. Picton
- HHMI, Stanford University School of Medicine, Stanford, CA 94305
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Gail Snyder
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Li Zhang
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Christopher J. Nicolai
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | | | | | - K. Christopher Garcia
- HHMI, Stanford University School of Medicine, Stanford, CA 94305
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - David H. Raulet
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| |
Collapse
|
117
|
Lu Y, Yuan X, Wang M, He Z, Li H, Wang J, Li Q. Gut microbiota influence immunotherapy responses: mechanisms and therapeutic strategies. J Hematol Oncol 2022; 15:47. [PMID: 35488243 PMCID: PMC9052532 DOI: 10.1186/s13045-022-01273-9] [Citation(s) in RCA: 189] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/20/2022] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota have long been recognized to play a key role in human health and disease. Currently, several lines of evidence from preclinical to clinical research have gradually established that the gut microbiota can modulate antitumor immunity and affect the efficacy of cancer immunotherapies, especially immune checkpoint inhibitors (ICIs). Deciphering the underlying mechanisms reveals that the gut microbiota reprogram the immunity of the tumor microenvironment (TME) by engaging innate and/or adaptive immune cells. Notably, one of the primary modes by which the gut microbiota modulate antitumor immunity is by means of metabolites, which are small molecules that could spread from their initial location of the gut and impact local and systemic antitumor immune response to promote ICI efficiency. Mechanistic exploration provides novel insights for developing rational microbiota-based therapeutic strategies by manipulating gut microbiota, such as fecal microbiota transplantation (FMT), probiotics, engineered microbiomes, and specific microbial metabolites, to augment the efficacy of ICI and advance the age utilization of microbiota precision medicine.
Collapse
Affiliation(s)
- Yuting Lu
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Xiangliang Yuan
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Miao Wang
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Zhihao He
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Hongzhong Li
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Ji Wang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Qin Li
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
118
|
Paschen A, Melero I, Ribas A. Central Role of the Antigen-Presentation and Interferon-γ Pathways in Resistance to Immune Checkpoint Blockade. ANNUAL REVIEW OF CANCER BIOLOGY 2022. [DOI: 10.1146/annurev-cancerbio-070220-111016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Resistance to immunotherapy is due in some instances to the acquired stealth mechanisms of tumor cells that lose expression of MHC class I antigen–presenting molecules or downregulate their class I antigen–presentation pathways. Most dramatically, biallelic β2-microglobulin (B2M) loss leads to complete loss of MHC class I expression and to invisibility to CD8+ T cells. MHC class I expression and antigen presentation are potently upregulated by interferon-γ (IFNγ) in a manner that depends on IFNγ receptor (IFNGR) signaling via JAK1 and JAK2. Mutations in these molecules lead to IFNγ unresponsiveness and mediate loss of recognition and killing by cytotoxic T lymphocytes. Loss of MHC class I augments sensitivity of tumor cells to be killed by natural killer (NK) lymphocytes, and this mechanism could be exploited to revert resistance, for instance, with interleukin-2 (IL-2)-based agents. Moreover, in some experimental models,potent local type I interferon responses, such as those following intratumoral injection of Toll-like receptor 9 (TLR9) or TLR3 agonists, revert resistance due to mutations of JAKs.
Collapse
Affiliation(s)
- Annette Paschen
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK) Partner Site Essen/Düsseldorf, Essen, Germany
| | - Ignacio Melero
- University Clinic of Navarre (CUN) and Centre of Applied Medical Research (CIMA), University of Navarre, Pamplona, Spain
- CIBERONC (Consorcio Centro de Investigación Biomédica en Red de Cáncer), Madrid, Spain
| | - Antoni Ribas
- Department of Medicine, Department of Surgery, and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, USA
| |
Collapse
|
119
|
LaFleur MW, Sharpe AH. CRISPR Screens to Identify Regulators of Tumor Immunity. ANNUAL REVIEW OF CANCER BIOLOGY 2022; 6:103-122. [PMID: 35989706 PMCID: PMC9389862 DOI: 10.1146/annurev-cancerbio-070120-094725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cancer immunotherapies, such as immune checkpoint blockade (ICB), have been used in a wide range of tumor types with immense clinical benefit. However, ICB does not work in all patients, and attempts to combine ICB with other immune-based therapies have not lived up to their initial promise. Thus, there is a significant unmet need to discover new targets and combination therapies to extend the benefits of immunotherapy to more patients. Systems biology approaches are well suited for addressing this problem because these approaches enable evaluation of many gene targets simultaneously and ranking their relative importance for a phenotype of interest. As such, loss-of-function CRISPR screens are an emerging set of tools being used to prioritize gene targets for modulating pathways of interest in tumor and immune cells. This review describes the first screens performed to discover cancer immunotherapy targets and the technological advances that will enable next-generation screens.
Collapse
Affiliation(s)
- Martin W LaFleur
- Department of Immunology and Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Arlene H Sharpe
- Department of Immunology and Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
120
|
Garland KM, Sheehy TL, Wilson JT. Chemical and Biomolecular Strategies for STING Pathway Activation in Cancer Immunotherapy. Chem Rev 2022; 122:5977-6039. [PMID: 35107989 PMCID: PMC8994686 DOI: 10.1021/acs.chemrev.1c00750] [Citation(s) in RCA: 143] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The stimulator of interferon genes (STING) cellular signaling pathway is a promising target for cancer immunotherapy. Activation of the intracellular STING protein triggers the production of a multifaceted array of immunostimulatory molecules, which, in the proper context, can drive dendritic cell maturation, antitumor macrophage polarization, T cell priming and activation, natural killer cell activation, vascular reprogramming, and/or cancer cell death, resulting in immune-mediated tumor elimination and generation of antitumor immune memory. Accordingly, there is a significant amount of ongoing preclinical and clinical research toward further understanding the role of the STING pathway in cancer immune surveillance as well as the development of modulators of the pathway as a strategy to stimulate antitumor immunity. Yet, the efficacy of STING pathway agonists is limited by many drug delivery and pharmacological challenges. Depending on the class of STING agonist and the desired administration route, these may include poor drug stability, immunocellular toxicity, immune-related adverse events, limited tumor or lymph node targeting and/or retention, low cellular uptake and intracellular delivery, and a complex dependence on the magnitude and kinetics of STING signaling. This review provides a concise summary of the STING pathway, highlighting recent biological developments, immunological consequences, and implications for drug delivery. This review also offers a critical analysis of an expanding arsenal of chemical strategies that are being employed to enhance the efficacy, safety, and/or clinical utility of STING pathway agonists and lastly draws attention to several opportunities for therapeutic advancements.
Collapse
Affiliation(s)
- Kyle M Garland
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, 37235 United States
| | - Taylor L Sheehy
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, 37235 United States
| | - John T Wilson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, 37235 United States
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, 37235 United States
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, 37232 United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical Center, Nashville, Tennessee, 37232 United States
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, Tennessee, 37232 United States
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, 37232 United States
| |
Collapse
|
121
|
Da Y, Liu Y, Hu Y, Liu W, Ma J, Lu N, Zhang C, Zhang C. STING agonist cGAMP enhances anti-tumor activity of CAR-NK cells against pancreatic cancer. Oncoimmunology 2022; 11:2054105. [PMID: 35371622 PMCID: PMC8967397 DOI: 10.1080/2162402x.2022.2054105] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Activation of the stimulator of interferon gene (STING)-mediated innate immune response has been suggested as a promising therapeutic strategy for cancers. However, the effects of STING agonist on natural killer (NK) cell-mediated anti-tumor responses in pancreatic cancer remains unknown. Herein, we evaluated the effects of a classical STING agonist cyclic GMP-AMP (cGAMP) on NK cells in pancreatic cancer. We found that cGAMP could directly activate NK cells and enhance the sensitivity of pancreatic cancer cells to NK cell cytotoxicity, suggesting that cGAMP may become a potential adjuvant for NK cell therapy. In addition, combination of CAR-NK-92 cells targeting mesothelin and cGAMP displayed greater antitumor efficacy by inhibiting tumor growth and prolonging survival of the mouse model of pancreatic cancer. These results suggest that the combination of a STING agonist and NK cells may become a novel immunotherapy strategy for pancreatic cancer.
Collapse
Affiliation(s)
- Yanyan Da
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
- Precision Medicine Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yuxia Liu
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
- Nk CellTech Co., Ltd., Shanghai International Medical Park, Pudong New Area, Shanghai, China
| | - Yuan Hu
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
- Nk CellTech Co., Ltd., Shanghai International Medical Park, Pudong New Area, Shanghai, China
| | - Wenzeng Liu
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Junpeng Ma
- Precision Medicine Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Nan Lu
- Institute of Diagnostics, School of Medicine, Shandong University, Jinan, Shandong, China
| | - Chengsheng Zhang
- Precision Medicine Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Cancer Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Cai Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
- Nk CellTech Co., Ltd., Shanghai International Medical Park, Pudong New Area, Shanghai, China
| |
Collapse
|
122
|
Huang KC, Chanda D, McGrath S, Dixit V, Zhang C, Wu J, Tendyke K, Yao H, Hukkanen R, Taylor N, Verbel D, Kim DS, Endo A, Noland TA, Chen Y, Matijevic M, Wang J, Hutz J, Sarwar N, Fang FG, Bao X. Pharmacological Activation of STING in Bladder Induces Potent Anti-tumor Immunity in Non-Muscle Invasive Murine Bladder Cancer. Mol Cancer Ther 2022; 21:914-924. [PMID: 35313332 DOI: 10.1158/1535-7163.mct-21-0780] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/25/2022] [Accepted: 03/09/2022] [Indexed: 11/16/2022]
Abstract
Schweinfurthins, a class of natural products, have attracted considerable interest for novel therapy development because of their selective and potent anti-proliferative activity against human cancer cells. However, the underlying mechanism is not well understood. Herein, we demonstrated that schweinfurthins preferentially inhibited the proliferation of PTEN deficient cancer cells by indirect inhibition of AKT phosphorylation. Intracellularly, schweinfurthins and their analogs arrested trans-Golgi-network trafficking, likely by binding to oxysterol-binding proteins, leading to an effective inhibition of mTOR/AKT signaling through inducing endoplasmic reticulum stress and suppressing both lipid raft-mediated PI3K activation and mTOR/RheB complex formation. Moreover, schweinfurthins were found to be highly potent toward PTEN-deficient B cell lymphoma cells, and displayed two orders of magnitude lower activity toward normal human peripheral blood mononuclear cells and primary fibroblasts in vitro. These results revealed a previously unrecognized role of schweinfurthins in trans-Golgi-network trafficking and linked mechanistically this cellular effect with mTOR/AKT signaling and with cancer cell survival and growth. Our findings suggest a new opportunity to modulate oncogenic signaling by interfering with TGN trafficking to treat mTOR/AKT-dependent human cancers.
Collapse
Affiliation(s)
| | - Dinesh Chanda
- Johnson & Johnson (United States), Cambridge, MA, United States
| | | | | | - Chi Zhang
- Dewpoint Therapeutics, Boston, United States
| | - Jiayi Wu
- H3biomedicine Inc, United States
| | | | - Huilan Yao
- H3 Biomedicine, Cambridge, United States
| | | | - Noel Taylor
- Eisai (United States), Andover, United States
| | | | | | | | | | - Yu Chen
- Eisai Inc, Cambridge, United States
| | - Mark Matijevic
- Boston Pharmaceuticals, Cambridge, Massachusetts, United States
| | - John Wang
- Eisai (United States), Andover, Massachusetts, United States
| | - Janna Hutz
- Eisai, Inc., Cambridge, MA, United States
| | | | | | - Xingfeng Bao
- H3biomedicine Inc., Cambridge, MA, United States
| |
Collapse
|
123
|
Zhao S, Xu B, Ma W, Chen H, Jiang C, Cai J, Meng X. DNA Damage Repair in Brain Tumor Immunotherapy. Front Immunol 2022; 12:829268. [PMID: 35095931 PMCID: PMC8792754 DOI: 10.3389/fimmu.2021.829268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 12/22/2021] [Indexed: 12/01/2022] Open
Abstract
With the gradual understanding of tumor development, many tumor therapies have been invented and applied in clinical work, and immunotherapy has been widely concerned as an emerging hot topic in the last decade. It is worth noting that immunotherapy is nowadays applied under too harsh conditions, and many tumors are defined as “cold tumors” that are not sensitive to immunotherapy, and brain tumors are typical of them. However, there is much evidence that suggests a link between DNA damage repair mechanisms and immunotherapy. This may be a breakthrough for the application of immunotherapy in brain tumors. Therefore, in this review, first, we will describe the common pathways of DNA damage repair. Second, we will focus on immunotherapy and analyze the mechanisms of DNA damage repair involved in the immune process. Third, we will review biomarkers that have been or may be used to evaluate immunotherapy for brain tumors, such as TAMs, RPA, and other molecules that may provide a precursor assessment for the rational implementation of immunotherapy for brain tumors. Finally, we will discuss the rational combination of immunotherapy with other therapeutic approaches that have an impact on the DNA damage repair process in order to open new pathways for the application of immunotherapy in brain tumors, to maximize the effect of immunotherapy on DNA damage repair mechanisms, and to provide ideas and guidance for immunotherapy in brain tumors.
Collapse
Affiliation(s)
- Shihong Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Boya Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenbin Ma
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hao Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chuanlu Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jinquan Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiangqi Meng
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
124
|
Johnson CDL, Zale NE, Frary ED, Lomakin JA. Feeder-Cell-Free and Serum-Free Expansion of Natural Killer Cells Using Cloudz Microspheres, G-Rex6M, and Human Platelet Lysate. Front Immunol 2022; 13:803380. [PMID: 35320938 PMCID: PMC8934851 DOI: 10.3389/fimmu.2022.803380] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/26/2022] [Indexed: 11/18/2022] Open
Abstract
The versatility of natural killer cells has ignited growing interest in their therapeutic use for cancer and other immunotherapy treatments. However, NK cells compose a small portion of peripheral blood mononuclear cells (5%–20% of PBMCs) and clinical doses require billions of cells. Manufacturing suitable doses of NK cells remains a major challenge for NK immunotherapy. The current standard for expanding NK cells relies on feeder cells and fetal bovine serum to achieve large expansion, but both encounter regulatory concerns. We developed NK Cloudz, a dissolvable polymer-based microsphere platform, as an alternative to a feeder cell approach to expand NK cells. We demonstrated that a combination of NK Cloudz, a G-Rex6M culture vessel, and GMP Human Platelet Lysate expanded NK cells 387 ± 100-fold in 10 days from a PBMC starting population. The NK purity, viability, and cytotoxicity were similar to both a feeder cell protocol and an FBS-based protocol. Additionally, we found no significant differences between FBS and GMP Human Platelet Lysate and concluded that platelet lysate is a good xeno-free alternative to FBS for NK expansion. Overall, we demonstrated a feeder-cell-free and FBS-free protocol that leverages NK Cloudz as a promising step toward a commercial GMP manufacturing method to expand NK cells for therapeutic use.
Collapse
|
125
|
Si W, Liang H, Bugno J, Xu Q, Ding X, Yang K, Fu Y, Weichselbaum RR, Zhao X, Wang L. Lactobacillus rhamnosus GG induces cGAS/STING- dependent type I interferon and improves response to immune checkpoint blockade. Gut 2022; 71:521-533. [PMID: 33685966 PMCID: PMC8710942 DOI: 10.1136/gutjnl-2020-323426] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Our goals were to evaluate the antitumour efficacy of Lactobacillus rhamnosus GG (LGG) in combination with immune checkpoint blockade (ICB) immunotherapies on tumour growth and to investigate the underlying mechanisms. DESIGN We used murine models of colorectal cancer and melanoma to evaluate whether oral administration of LGG improves the efficacy of ICB therapies. We performed the whole genome shotgun metagenome sequencing of intestinal contents and RNA sequencing of dendritic cells (DCs). In a series of in vitro and in vivo experiments, we further defined the immunological and molecular mechanisms of LGG-mediated antitumour immunity. RESULTS We demonstrate that oral administration of live LGG augmented the antitumour activity of anti-programmed cell death 1 (PD-1) immunotherapy by increasing tumour-infiltrating DCs and T cells. Moreover, the combination treatment shifted the gut microbial community towards enrichment in Lactobacillus murinus and Bacteroides uniformis, that are known to increase DC activation and CD8+tumour recruitment. Mechanistically, treatment with live LGG alone or in combination with anti-PD-1 antibody triggered type I interferon (IFN) production in DCs, enhancing the cross-priming of antitumour CD8+ T cells. In DCs, cyclic GMP-AMP synthase (cGAS)/stimulator of IFN genes (STING) was required for IFN-β induction in response to LGG, as evidenced by the significant decrease in IFN-β levels in cGAS or STING-deficient DCs. LGG induces IFN-β production via the cGAS/STING/TANK binding kinase 1/interferon regulatory factor 7 axis in DCs. CONCLUSION Our findings have offered valuable insight into the molecular mechanisms of live LGG-mediated antitumour immunity and establish an empirical basis for developing oral administration of live LGG as a combination agent with ICB for cancer therapies.
Collapse
Affiliation(s)
- Wei Si
- Department of Animal Science, McGill University, Montreal, Quebec, Canada
| | - Hua Liang
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois, USA,The Ludwig Center for Metastasis Research, University of Chicago, Chicago, Illinois, USA
| | - Jason Bugno
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois, USA,The Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago, Illinois, USA
| | - Qi Xu
- Department of Animal Science, McGill University, Montreal, Quebec, Canada
| | - Xingchen Ding
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Kaiting Yang
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois, USA,The Ludwig Center for Metastasis Research, University of Chicago, Chicago, Illinois, USA
| | - Yanbin Fu
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois, USA,The Ludwig Center for Metastasis Research, University of Chicago, Chicago, Illinois, USA
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois, USA .,The Ludwig Center for Metastasis Research, University of Chicago, Chicago, Illinois, USA
| | - Xin Zhao
- Department of Animal Science, McGill University, Montreal, Quebec, Canada
| | - Liangliang Wang
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois, USA .,The Ludwig Center for Metastasis Research, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
126
|
Meric-Bernstam F, Sweis RF, Hodi FS, Messersmith WA, Andtbacka RHI, Ingham M, Lewis N, Chen X, Pelletier M, Chen X, Wu J, McWhirter SM, Müller T, Nair N, Luke JJ. Phase I Dose-Escalation Trial of MIW815 (ADU-S100), an Intratumoral STING Agonist, in Patients with Advanced/Metastatic Solid Tumors or Lymphomas. Clin Cancer Res 2022; 28:677-688. [PMID: 34716197 DOI: 10.1158/1078-0432.ccr-21-1963] [Citation(s) in RCA: 155] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/31/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE This phase I study assessed the safety, pharmacokinetics (PKs), and efficacy of MIW815 (ADU-S100), a novel synthetic cyclic dinucleotide that activates the stimulator of IFN genes (STING) pathway, in patients with advanced/metastatic cancers. PATIENTS AND METHODS Patients (n = 47) received weekly i.t. injections of MIW815, 50 to 6,400 μg, on a 3-weeks-on/1-week-off schedule. RESULTS A maximum tolerated dose was not reached. Most common treatment-related adverse events were pyrexia (17%), chills, and injection-site pain (each 15%). MIW815 was rapidly absorbed from the injection site with dose-proportional PK, a rapid terminal plasma half-life (approximately 24 minutes), and high interindividual variability. One patient had a partial response (PR; Merkel cell carcinoma); two patients had unconfirmed PR (parotid cancer, myxofibrosarcoma). Lesion size was stable or decreased in 94% of evaluable, injected lesions. RNA expression and immune infiltration assessments in paired tumor biopsies did not reveal significant on-treatment changes. However, increases in inflammatory cytokines and peripheral blood T-cell clonal expansion suggested systemic immune activation. CONCLUSIONS MIW815 was well tolerated in patients with advanced/metastatic cancers. Clinical activity of single-agent MIW815 was limited in this first-in-human study; however, evidence of systemic immune activation was seen.
Collapse
Affiliation(s)
- Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | - Wells A Messersmith
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | | | - Matthew Ingham
- Columbia University Irving Medical Center, New York, New York
| | - Nancy Lewis
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey
| | - Xinhui Chen
- Novartis Institutes for BioMedical Research, East Hanover, New Jersey
| | - Marc Pelletier
- Novartis Institute for Biomedical Research, Cambridge, Massachusetts
| | - Xueying Chen
- Novartis Institute for Biomedical Research, Cambridge, Massachusetts
| | - Jincheng Wu
- Novartis Institute for Biomedical Research, Cambridge, Massachusetts
| | | | | | - Nitya Nair
- Aduro Biotech, Inc., Berkeley, California
| | - Jason J Luke
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| |
Collapse
|
127
|
Milling LE, Garafola D, Agarwal Y, Wu S, Thomas A, Donahue N, Adams J, Thai N, Suh H, Irvine DJ. Neoadjuvant STING Activation, Extended Half-life IL2, and Checkpoint Blockade Promote Metastasis Clearance via Sustained NK-cell Activation. Cancer Immunol Res 2022; 10:26-39. [PMID: 34686488 PMCID: PMC8732307 DOI: 10.1158/2326-6066.cir-21-0247] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/18/2021] [Accepted: 10/20/2021] [Indexed: 01/09/2023]
Abstract
Combination immunotherapy treatments that recruit both innate and adaptive immunity have the potential to increase cancer response rates by engaging a more complete repertoire of effector mechanisms. Here, we combined intratumoral STimulator of INterferon Genes (STING) agonist therapy with systemically injected extended half-life IL2 and anti-PD-1 checkpoint blockade (hereafter CIP therapy) to drive innate and adaptive antitumor immunity in models of triple-negative breast cancer. Unlike treatment with the individual components, this trivalent immunotherapy halted primary tumor progression and led to long-term remission for a majority of animals in two spontaneously metastasizing orthotopic breast tumor models, though only as a neoadjuvant therapy but not adjuvant therapy. CIP therapy induced antitumor T-cell responses, but protection from metastatic relapse depended on natural killer (NK) cells. The combination of STING agonists with IL2/anti-PD-1 synergized to stimulate sustained granzyme and cytokine expression by lung-infiltrating NK cells. Type I IFNs generated as a result of STING agonism, combined with IL2, acted in a positive-feedback loop by enhancing the expression of IFNAR-1 and CD25 on lung NK cells. These results suggest that NK cells can be therapeutically targeted to effectively eliminate tumor metastases.See related Spotlight by Demaria, p. 3.
Collapse
Affiliation(s)
- Lauren E Milling
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Daniel Garafola
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Yash Agarwal
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Shengwei Wu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Ayush Thomas
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Nathan Donahue
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Josetta Adams
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Nikki Thai
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Heikyung Suh
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Darrell J Irvine
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts.
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Howard Hughes Medical Institute, Chevy Chase, Maryland
| |
Collapse
|
128
|
Allosteric inhibition reveals SHP2-mediated tumor immunosuppression in colon cancer by single-cell transcriptomics. Acta Pharm Sin B 2022; 12:149-166. [PMID: 35127377 PMCID: PMC8802865 DOI: 10.1016/j.apsb.2021.08.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 12/20/2022] Open
Abstract
Colorectal cancer (CRC), a malignant tumor worldwide consists of microsatellite instability (MSI) and stable (MSS) phenotypes. Although SHP2 is a hopeful target for cancer therapy, its relationship with innate immunosuppression remains elusive. To address that, single-cell RNA sequencing was performed to explore the role of SHP2 in all cell types of tumor microenvironment (TME) from murine MC38 xenografts. Intratumoral cells were found to be functionally heterogeneous and responded significantly to SHP099, a SHP2 allosteric inhibitor. The malignant evolution of tumor cells was remarkably arrested by SHP099. Mechanistically, STING-TBK1-IRF3-mediated type I interferon signaling was highly activated by SHP099 in infiltrated myeloid cells. Notably, CRC patients with MSS phenotype exhibited greater macrophage infiltration and more potent SHP2 phosphorylation in CD68+ macrophages than MSI-high phenotypes, suggesting the potential role of macrophagic SHP2 in TME. Collectively, our data reveals a mechanism of innate immunosuppression mediated by SHP2, suggesting that SHP2 is a promising target for colon cancer immunotherapy.
Collapse
Key Words
- APC, antigen-presenting cell
- BTLA, B- and T-lymphocyte attenuator
- CNVs, copy number variations
- CRC, colorectal cancer
- Colorectal cancer
- DSBs, double-strand breaks
- GSEA, gene set enrichment analysis
- KRAS, Kirsten rat sarcoma viral oncogene homolog
- MAPK, mitogen-activated kinase
- MSI, microsatellite instability
- MSS, microsatellite stable
- Macrophage
- PCA, principal component analysis
- PD-1, programmed cell death 1
- PTPN11
- SHP099
- STING
- STING, stimulator of interferon genes
- TME, tumor microenvironment
- Tumor microenvironment
- Type I interferon
- scRNA-seq
- scRNA-seq, single-cell RNA-sequencing
- t-SNE, t-distributed stochastic neighbor embedding
Collapse
|
129
|
Kim S, Kim SA, Han J, Kim IS. Rho-Kinase as a Target for Cancer Therapy and Its Immunotherapeutic Potential. Int J Mol Sci 2021; 22:ijms222312916. [PMID: 34884721 PMCID: PMC8657458 DOI: 10.3390/ijms222312916] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer immunotherapy is fast rising as a prominent new pillar of cancer treatment, harnessing the immune system to fight against numerous types of cancer. Rho-kinase (ROCK) pathway is involved in diverse cellular activities, and is therefore the target of interest in various diseases at the cellular level including cancer. Indeed, ROCK is well-known for its involvement in the tumor cell and tumor microenvironment, especially in its ability to enhance tumor cell progression, migration, metastasis, and extracellular matrix remodeling. Importantly, ROCK is also considered to be a novel and effective modulator of immune cells, although further studies are needed. In this review article, we describe the various activities of ROCK and its potential to be utilized in cancer treatment, particularly in cancer immunotherapy, by shining a light on its activities in the immune system.
Collapse
Affiliation(s)
- Seohyun Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea; (S.K.); (S.A.K.); (J.H.)
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Seong A. Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea; (S.K.); (S.A.K.); (J.H.)
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Jihoon Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea; (S.K.); (S.A.K.); (J.H.)
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - In-San Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea; (S.K.); (S.A.K.); (J.H.)
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
- Correspondence:
| |
Collapse
|
130
|
Garland KM, Rosch JC, Carson CS, Wang-Bishop L, Hanna A, Sevimli S, Van Kaer C, Balko JM, Ascano M, Wilson JT. Pharmacological Activation of cGAS for Cancer Immunotherapy. Front Immunol 2021; 12:753472. [PMID: 34899704 PMCID: PMC8662543 DOI: 10.3389/fimmu.2021.753472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/29/2021] [Indexed: 01/23/2023] Open
Abstract
When compartmentally mislocalized within cells, nucleic acids can be exceptionally immunostimulatory and can even trigger the immune-mediated elimination of cancer. Specifically, the accumulation of double-stranded DNA in the cytosol can efficiently promote antitumor immunity by activating the cGAMP synthase (cGAS) / stimulator of interferon genes (STING) cellular signaling pathway. Targeting this cytosolic DNA sensing pathway with interferon stimulatory DNA (ISD) is therefore an attractive immunotherapeutic strategy for the treatment of cancer. However, the therapeutic activity of ISD is limited by several drug delivery barriers, including susceptibility to deoxyribonuclease degradation, poor cellular uptake, and inefficient cytosolic delivery. Here, we describe the development of a nucleic acid immunotherapeutic, NanoISD, which overcomes critical delivery barriers that limit the activity of ISD and thereby promotes antitumor immunity through the pharmacological activation of cGAS at the forefront of the STING pathway. NanoISD is a nanoparticle formulation that has been engineered to confer deoxyribonuclease resistance, enhance cellular uptake, and promote endosomal escape of ISD into the cytosol, resulting in potent activation of the STING pathway via cGAS. NanoISD mediates the local production of proinflammatory cytokines via STING signaling. Accordingly, the intratumoral administration of NanoISD induces the infiltration of natural killer cells and T lymphocytes into murine tumors. The therapeutic efficacy of NanoISD is demonstrated in preclinical tumor models by attenuated tumor growth, prolonged survival, and an improved response to immune checkpoint blockade therapy.
Collapse
Affiliation(s)
- Kyle M. Garland
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States
| | - Jonah C. Rosch
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States
| | - Carcia S. Carson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| | - Lihong Wang-Bishop
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States
| | - Ann Hanna
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Sema Sevimli
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States
| | - Casey Van Kaer
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| | - Justin M. Balko
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Manuel Ascano
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN, United States
| | - John T. Wilson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
131
|
Perera SA, Kopinja JE, Ma Y, Muise ES, Laskey J, Chakravarthy K, Chen Y, Cui L, Presland J, Sathe M, Javaid S, Minnihan E, Ferguson H, Piesvaux J, Pan BS, Zhao S, Sharma SK, Woo HC, Pucci V, Knemeyer I, Cemerski S, Cumming J, Trotter BW, Tse A, Khilnani A, Ranganath S, Long BJ, Bennett DJ, Addona GH. STimulator of INterferon Genes Agonism Accelerates Anti-tumor Activity in Poorly Immunogenic Tumors. Mol Cancer Ther 2021; 21:282-293. [PMID: 34815361 DOI: 10.1158/1535-7163.mct-21-0136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/18/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022]
Abstract
The innate immune agonist STING (STimulator of INterferon Genes) binds its natural ligand 2'3'-cGAMP (cyclic guanosine-adenosine monophosphate) and initiates type I interferon production. This promotes systemic antigen-specific CD8+ T-cell priming that eventually provides potent anti-tumor activity. To exploit this mechanism, we synthesized a novel STING agonist, MSA-1, that activates both mouse and human STING with higher in vitro potency than cGAMP. Following intratumoral (IT) administration of MSA-1 to a panel of syngeneic mouse tumors on immune-competent mice, cytokine upregulation and its exposure were detected in plasma, other tissues, injected tumors, and noninjected tumors. This was accompanied by effective anti-tumor activity. Mechanistic studies in immune-deficient mice suggested that anti-tumor activity of IT-dosed STING agonists is in part due to necrosis and/or innate immune responses such as tumor necrosis factor α (TNF-α) activity, but development of a robust adaptive anti-tumor immunity is necessary for complete tumor elimination. Combination with PD-1 blockade in anti-PD-1-resistant murine models demonstrated that MSA-1 may synergize with checkpoint inhibitors but can also provide superior tumor control as a single agent. We show for the first time that potent cyclic dinucleotides can promote a rapid and stronger induction of the same genes eventually regulated by PD-1 blockade. This may have contributed to the relatively early tumor control observed with MSA-1. Taken together, these data strongly support the development of STING agonists as therapy for patients with aggressive tumors that are partially responsive or nonresponsive to single-agent anti-PD-1 treatment by enhancing the anti-PD-1 immune profile.
Collapse
Affiliation(s)
| | | | - Yanhong Ma
- Quantitative Biosciences, Merck and Co. Inc
| | | | | | | | | | - Long Cui
- Quantitative Biosciences, Merck and Co. Inc
| | | | - Manjiri Sathe
- Discovery, Preclinical and Translational Medicine, Merck & Co., Inc
| | | | | | | | | | | | | | | | | | | | | | - Saso Cemerski
- Discovery and Translational Immunology, Cue BioPharma
| | | | | | - Archie Tse
- Research and Translational Medicine and Early Development, CStone Pharmaceuticals
| | | | | | | | | | | |
Collapse
|
132
|
Shang M, Lu K, Guan W, Cao S, Ren M, Zhou C. 2',3'-Cyclic GMP-AMP Dinucleotides for STING-Mediated Immune Modulation: Principles, Immunotherapeutic Potential, and Synthesis. ChemMedChem 2021; 17:e202100671. [PMID: 34807508 DOI: 10.1002/cmdc.202100671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Indexed: 11/09/2022]
Abstract
The cGAS-STING pathway discovered ten years ago is an important component of the innate immune system. Activation of cGAS-STING triggers downstream signalling, such as TBK1-IRF3, NF-κB and autophagy, which in turn leads to antipathogen responses, durable antitumour immunity or autoimmune diseases. 2',3'-Cyclic GMP-AMP dinucleotides (2',3'-cGAMP), the key second messengers produced by cGAS, play a pivotal role in cGAS-STING signalling by binding and activating STING. Thus, 2',3'-cGAMP has immunotherapeutic potential, which in turn has stimulated research on the design and synthesis of 2',3'-cGAMP analogues for clinical applications over the past ten years. This review presents the discovery, metabolism, and function of 2',3'-cGAMP in the cGAS-STING innate immune signalling axis. The enzymatic and chemical syntheses of 2',3'-cGAMP analogues as STING-targeting therapeutics are also summarized.
Collapse
Affiliation(s)
- Mengdi Shang
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Kuan Lu
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Wenli Guan
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Shujie Cao
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Mengtian Ren
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Chuanzheng Zhou
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
133
|
Chernosky NM, Tamagno I. The Role of the Innate Immune System in Cancer Dormancy and Relapse. Cancers (Basel) 2021; 13:5621. [PMID: 34830776 PMCID: PMC8615859 DOI: 10.3390/cancers13225621] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
Metastatic spread and recurrence are intimately linked to therapy failure, which remains an overarching clinical challenge for patients with cancer. Cancer cells often disseminate early in the disease process and can remain dormant for years or decades before re-emerging as metastatic disease, often after successful treatment. The interactions of dormant cancer cells and their metastatic niche, comprised of various stromal and immune cells, can determine the length of time that cancer cells remain dormant, as well as when they reactivate. New studies are defining how innate immune cells in the primary tumor may be corrupted to help facilitate many aspects of dissemination and re-emergence from a dormant state. Although the scientific literature has partially shed light on the drivers of immune escape in cancer, the specific mechanisms regulating metastasis and dormancy in the context of anti-tumor immunity are still mostly unknown. This review follows the journey of metastatic cells from dissemination to dormancy and the onset of metastatic outgrowth and recurrent tumor development, with emphasis on the role of the innate immune system. To this end, further research identifying how immune cells interact with cancer cells at each step of cancer progression will pave the way for new therapies that target the reactivation of dormant cancer cells into recurrent, metastatic cancers.
Collapse
Affiliation(s)
- Noah M. Chernosky
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ilaria Tamagno
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
134
|
Sun X, Zhang Y, Li J, Park KS, Han K, Zhou X, Xu Y, Nam J, Xu J, Shi X, Wei L, Lei YL, Moon JJ. Amplifying STING activation by cyclic dinucleotide-manganese particles for local and systemic cancer metalloimmunotherapy. NATURE NANOTECHNOLOGY 2021; 16:1260-1270. [PMID: 34594005 PMCID: PMC8595610 DOI: 10.1038/s41565-021-00962-9] [Citation(s) in RCA: 311] [Impact Index Per Article: 77.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 07/23/2021] [Indexed: 05/19/2023]
Abstract
Nutritional metal ions play critical roles in many important immune processes. Hence, the effective modulation of metal ions may open up new forms of immunotherapy, termed as metalloimmunotherapy. Here, we demonstrate a prototype of cancer metalloimmunotherapy using cyclic dinucleotide (CDN) stimulator of interferon genes (STING) agonists and Mn2+. We screened various metal ions and discovered specific metal ions augmented STING agonist activity, wherein Mn2+ promoted a 12- to 77-fold potentiation effect across the prevalent human STING haplotypes. Notably, Mn2+ coordinated with CDN STING agonists to self-assemble into a nanoparticle (CDN-Mn2+ particle, CMP) that effectively delivered STING agonists to immune cells. The CMP, administered either by local intratumoural or systemic intravenous injection, initiated robust anti-tumour immunity, achieving remarkable therapeutic efficacy with minute doses of STING agonists in multiple murine tumour models. Overall, the CMP offers a new platform for local and systemic cancer treatments, and this work underscores the great potential of coordination nanomedicine for metalloimmunotherapy.
Collapse
Affiliation(s)
- Xiaoqi Sun
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Yu Zhang
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Jiaqian Li
- Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Kyung Soo Park
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Kai Han
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Xingwu Zhou
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Yao Xu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Jutaek Nam
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| | - Jin Xu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Xiaoyue Shi
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Lei Wei
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Yu Leo Lei
- Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Otolaryngology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
135
|
Liu L, Cai L, Du X, Zhao J, Zhao Y, Zou C, Yu S, Zhang C, Ye P, Su X, Yan X, Li W. Anti-tumour effect of in situ vaccines combined with VEGFR inhibitors in the treatment of metastatic cervical cancer. Int Immunopharmacol 2021; 101:108302. [PMID: 34717193 DOI: 10.1016/j.intimp.2021.108302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/05/2021] [Accepted: 10/21/2021] [Indexed: 11/30/2022]
Abstract
Cervical cancer is the fourth most common malignant tumor in the world, for advanced cervical cancer, more than 30% of patients continue to have tumor and relapse or metastasis after the traditional treatment (concurrent chemoradiotherapy), and the response rate of immune checkpoint inhibitor (PD-1) is less 15%, so additional approaches are required. In situ vaccine is a very promising immunotherapy strategy. In the preclinical study, the combination of CPG and anti-Ox40 antibody can completely resolve injection site tumours and distant tumours and leads to the recovery of most mice with lymphoma. However, our early exploration process found that the effect of CpG + OX40 in the treatment of advanced cervical cancer is not ideal. Hence, we explored the anti-tumor effect of CpG + OX40 combined with anti-angiogenic therapy for the first time. The results showed that the combination significantly inhibited the proliferation of primary and secondary tumor volume and prolonged the survival time of mice, compared with the control group, CD3+, CD4 + and CD8 + T cells in the combined group showed an increasing trend. In addition, in terms of metabolism, the anti-vascular effect of anlotinib can significantly reduce the blood supply and metabolic level of tumor, the expression of Ki67 and CD31 in the control group was significantly higher than that in each administration group. In conclusion, our preclinical research results showed that the combination of in situ vaccine and anti-angiogenic therapy has a good anti-tumor effect, and may potentially offer an effective treatment option for patients with advanced cervical cancer.
Collapse
Affiliation(s)
- Lixiao Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Luya Cai
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Xuedan Du
- Department of Chemoradiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Jinduo Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Ye Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Chengyang Zou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Shanshan Yu
- Department of Chemoradiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Chunhong Zhang
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Piaopiao Ye
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Xiaoping Su
- School of Basic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325000, PR China; Department of Gastroenterology, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, PR China.
| | - Xiaojian Yan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China; Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Women's Hospital and Institute of Translation Medicine, Zhejiang University School of Medicine, Hangzhou, PR China.
| | - Wenfeng Li
- Department of Chemoradiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China.
| |
Collapse
|
136
|
Lam KC, Araya RE, Huang A, Chen Q, Di Modica M, Rodrigues RR, Lopès A, Johnson SB, Schwarz B, Bohrnsen E, Cogdill AP, Bosio CM, Wargo JA, Lee MP, Goldszmid RS. Microbiota triggers STING-type I IFN-dependent monocyte reprogramming of the tumor microenvironment. Cell 2021; 184:5338-5356.e21. [PMID: 34624222 PMCID: PMC8650838 DOI: 10.1016/j.cell.2021.09.019] [Citation(s) in RCA: 302] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 06/27/2021] [Accepted: 09/13/2021] [Indexed: 12/14/2022]
Abstract
The tumor microenvironment (TME) influences cancer progression and therapy response. Therefore, understanding what regulates the TME immune compartment is vital. Here we show that microbiota signals program mononuclear phagocytes in the TME toward immunostimulatory monocytes and dendritic cells (DCs). Single-cell RNA sequencing revealed that absence of microbiota skews the TME toward pro-tumorigenic macrophages. Mechanistically, we show that microbiota-derived stimulator of interferon genes (STING) agonists induce type I interferon (IFN-I) production by intratumoral monocytes to regulate macrophage polarization and natural killer (NK) cell-DC crosstalk. Microbiota modulation with a high-fiber diet triggered the intratumoral IFN-I-NK cell-DC axis and improved the efficacy of immune checkpoint blockade (ICB). We validated our findings in individuals with melanoma treated with ICB and showed that the predicted intratumoral IFN-I and immune compositional differences between responder and non-responder individuals can be transferred by fecal microbiota transplantation. Our study uncovers a mechanistic link between the microbiota and the innate TME that can be harnessed to improve cancer therapies.
Collapse
Affiliation(s)
- Khiem C Lam
- Inflammatory Cell Dynamics Section, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Romina E Araya
- Inflammatory Cell Dynamics Section, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - April Huang
- Inflammatory Cell Dynamics Section, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; Leidos Biomedical Research, Bethesda, MD 20892, USA
| | - Quanyi Chen
- Inflammatory Cell Dynamics Section, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; Kelly Government Solutions, Bethesda, MD 20892, USA
| | - Martina Di Modica
- Inflammatory Cell Dynamics Section, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Richard R Rodrigues
- Leidos Biomedical Research, Bethesda, MD 20892, USA; Microbiome and Genetics Core, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Amélie Lopès
- Inflammatory Cell Dynamics Section, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Sarah B Johnson
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Benjamin Schwarz
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, MT 59840, USA
| | - Eric Bohrnsen
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, MT 59840, USA
| | - Alexandria P Cogdill
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Catharine M Bosio
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, MT 59840, USA
| | - Jennifer A Wargo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Maxwell P Lee
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Romina S Goldszmid
- Inflammatory Cell Dynamics Section, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
137
|
Xu J, Solban N, Wang Y, Ferguson H, Perera S, Lin K, Cai M, Paul M, Schutt EG, Larsen CT, Li R, Saklatvala R, Long BJ, Ranganath S, Procopio AT, Mittal S, Templeton AC. Sonoporation‐Enhanced Delivery of STING Agonist Induced Robust Immune Modulation and Tumor Regression. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jun Xu
- Department of Pharmaceutical Sciences and Clinical Supply Merck & Co., Inc. Kenilworth NJ 07033 USA
| | - Nicolas Solban
- Department of Quantitative Biosciences Merck & Co., Inc. Kenilworth NJ 07033 USA
| | - Yun Wang
- Department of Discovery Oncology Merck & Co., Inc. Kenilworth NJ 07033 USA
- Valo Health Lexington MA 0 2421 USA
| | - Heidi Ferguson
- Department of Pharmaceutical Sciences and Clinical Supply Merck & Co., Inc. Kenilworth NJ 07033 USA
| | - Samanthi Perera
- Department of Quantitative Biosciences Merck & Co., Inc. Kenilworth NJ 07033 USA
| | - Ken Lin
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism Merck & Co., Inc. Kenilworth NJ 07033 USA
- BridgeBio Pharma Palo Alto CA 94 301 USA
| | - Mingmei Cai
- Department of Quantitative Biosciences Merck & Co., Inc. Kenilworth NJ 07033 USA
| | - Miller Paul
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism Merck & Co., Inc. Kenilworth NJ 07033 USA
| | | | | | | | - Robert Saklatvala
- Department of Pharmaceutical Sciences and Clinical Supply Merck & Co., Inc. Kenilworth NJ 07033 USA
- Kallyope Inc. New York NY 10 016 USA
| | - Brian J. Long
- Department of Quantitative Biosciences Merck & Co., Inc. Kenilworth NJ 07033 USA
| | - Sheila Ranganath
- Department of Discovery Oncology Merck & Co., Inc. Kenilworth NJ 07033 USA
- LifeMine Therapeutics Cambridge MA 0 2140 USA
| | - Adam T. Procopio
- Department of Pharmaceutical Sciences and Clinical Supply Merck & Co., Inc. Kenilworth NJ 07033 USA
| | - Sachin Mittal
- Department of Pharmaceutical Sciences and Clinical Supply Merck & Co., Inc. Kenilworth NJ 07033 USA
| | - Allen C. Templeton
- Department of Pharmaceutical Sciences and Clinical Supply Merck & Co., Inc. Kenilworth NJ 07033 USA
| |
Collapse
|
138
|
Yan H, Chen W. The Promise and Challenges of Cyclic Dinucleotides as Molecular Adjuvants for Vaccine Development. Vaccines (Basel) 2021; 9:917. [PMID: 34452042 PMCID: PMC8402453 DOI: 10.3390/vaccines9080917] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 12/14/2022] Open
Abstract
Cyclic dinucleotides (CDNs), originally discovered as bacterial second messengers, play critical roles in bacterial signal transduction, cellular processes, biofilm formation, and virulence. The finding that CDNs can trigger the innate immune response in eukaryotic cells through the stimulator of interferon genes (STING) signalling pathway has prompted the extensive research and development of CDNs as potential immunostimulators and novel molecular adjuvants for induction of systemic and mucosal innate and adaptive immune responses. In this review, we summarize the chemical structure, biosynthesis regulation, and the role of CDNs in enhancing the crosstalk between host innate and adaptive immune responses. We also discuss the strategies to improve the efficient delivery of CDNs and the recent advance and future challenges in the development of CDNs as potential adjuvants in prophylactic vaccines against infectious diseases and in therapeutic vaccines against cancers.
Collapse
Affiliation(s)
- Hongbin Yan
- Department of Chemistry, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Wangxue Chen
- Human Health and Therapeutics Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
139
|
Fuertes MB, Domaica CI, Zwirner NW. Leveraging NKG2D Ligands in Immuno-Oncology. Front Immunol 2021; 12:713158. [PMID: 34394116 PMCID: PMC8358801 DOI: 10.3389/fimmu.2021.713158] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/02/2021] [Indexed: 12/14/2022] Open
Abstract
Immune checkpoint inhibitors (ICI) revolutionized the field of immuno-oncology and opened new avenues towards the development of novel assets to achieve durable immune control of cancer. Yet, the presence of tumor immune evasion mechanisms represents a challenge for the development of efficient treatment options. Therefore, combination therapies are taking the center of the stage in immuno-oncology. Such combination therapies should boost anti-tumor immune responses and/or target tumor immune escape mechanisms, especially those created by major players in the tumor microenvironment (TME) such as tumor-associated macrophages (TAM). Natural killer (NK) cells were recently positioned at the forefront of many immunotherapy strategies, and several new approaches are being designed to fully exploit NK cell antitumor potential. One of the most relevant NK cell-activating receptors is NKG2D, a receptor that recognizes 8 different NKG2D ligands (NKG2DL), including MICA and MICB. MICA and MICB are poorly expressed on normal cells but become upregulated on the surface of damaged, transformed or infected cells as a result of post-transcriptional or post-translational mechanisms and intracellular pathways. Their engagement of NKG2D triggers NK cell effector functions. Also, MICA/B are polymorphic and such polymorphism affects functional responses through regulation of their cell-surface expression, intracellular trafficking, shedding of soluble immunosuppressive isoforms, or the affinity of NKG2D interaction. Although immunotherapeutic approaches that target the NKG2D-NKG2DL axis are under investigation, several tumor immune escape mechanisms account for reduced cell surface expression of NKG2DL and contribute to tumor immune escape. Also, NKG2DL polymorphism determines functional NKG2D-dependent responses, thus representing an additional challenge for leveraging NKG2DL in immuno-oncology. In this review, we discuss strategies to boost MICA/B expression and/or inhibit their shedding and propose that combination strategies that target MICA/B with antibodies and strategies aimed at promoting their upregulation on tumor cells or at reprograming TAM into pro-inflammatory macrophages and remodeling of the TME, emerge as frontrunners in immuno-oncology because they may unleash the antitumor effector functions of NK cells and cytotoxic CD8 T cells (CTL). Pursuing several of these pipelines might lead to innovative modalities of immunotherapy for the treatment of a wide range of cancer patients.
Collapse
Affiliation(s)
- Mercedes Beatriz Fuertes
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Carolina Inés Domaica
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Norberto Walter Zwirner
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina.,Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
140
|
Zheng B, Yu Y, Pan Z, Feng Y, Zhao H, Han Q, Zhang J. HBsAg Dampened STING Associated Activation of NK Cells in HBeAg-Negative CHB Patients. Int J Mol Sci 2021; 22:ijms22147643. [PMID: 34299262 PMCID: PMC8304816 DOI: 10.3390/ijms22147643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/08/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023] Open
Abstract
NK cells play crucial roles in defending against persistent HBV. However, NK cells present dysfunction in chronic hepatitis B virus (CHB) infection, and the associated mechanism is still not fully understood. Except for the regulatory receptors, NK cells could also be regulated by the surface and intracellular pattern recognition receptors (PRRs). In the present study, we found that the level of the adaptor of DNA sensor STING in NK cells was significantly decreased in HBeAg-negative CHB patients, and it was positively associated with the degranulation ability of NK cells. Compared to NK cells from healthy donors, NK cells from HBeAg-negative CHB patients displayed a lower responsiveness to cGAMP stimulation. Further investigation showed that HBsAg could inhibit the STING expression in NK cells and suppress the response of NK cells to cGAMP. Significantly, STAT3 was identified to be a transcription factor that directly regulated STING transcription by binding to the promoter. In addition, STAT3 positively regulated the STING associated IFN-α response of NK cells. These findings suggested that STING is an important adaptor in NK cell recognition and activation, while HBsAg disturbs NK cell function by the STAT3-STING axis, providing a new mechanism of NK disability in HBeAg-negative CHB infection.
Collapse
|
141
|
Nakamura T, Sato T, Endo R, Sasaki S, Takahashi N, Sato Y, Hyodo M, Hayakawa Y, Harashima H. STING agonist loaded lipid nanoparticles overcome anti-PD-1 resistance in melanoma lung metastasis via NK cell activation. J Immunother Cancer 2021; 9:jitc-2021-002852. [PMID: 34215690 PMCID: PMC8256839 DOI: 10.1136/jitc-2021-002852] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2021] [Indexed: 12/14/2022] Open
Abstract
Background Resistance to an immune checkpoint inhibitor (ICI) is a major obstacle in cancer immunotherapy. The causes of ICI resistance include major histocompatibility complex (MHC)/histocompatibility locus antigen (HLA) class I loss, neoantigen loss, and incomplete antigen presentation. Elimination by natural killer (NK) cells would be expected to be an effective strategy for the treatment of these ICI-resistant tumors. We previously demonstrated that a lipid nanoparticle containing a stimulator of an interferon gene (STING) agonist (STING-LNP) efficiently induced antitumor activity via the activation of NK cells. Thus, we evaluated the potential of reducing ICI resistance by STING-LNPs. Methods Lung metastasis of a B16-F10 mouse melanoma was used as an anti-programmed cell death 1 (anti-PD-1)-resistant mouse model. The mice were intravenously injected with the STING-LNP and the mechanism responsible for the improvement of anti-PD-1 resistance by the STING-LNPs was analyzed by RT-qPCR and flow cytometry. The dynamics of STING-LNP were also investigated. Results Although anti-PD-1 monotherapy failed to induce an antitumor effect, the combination of the STING-LNP and anti-PD-1 exerted a synergistic antitumor effect. Our results indicate that the STING-LNP treatment significantly increased the expression of CD3, CD4, NK1.1, PD-1 and interferon (IFN)-γ in lung metastases. This change appears to be initiated by the type I IFN produced by liver macrophages that contain the internalized STING-LNPs, leading to the systemic activation of NK cells that express PD-1. The activated NK cells appeared to produce IFN-γ, resulting in an increase in the expression of the PD ligand 1 (PD-L1) in cancer cells, thus leading to a synergistic antitumor effect when anti-PD-1 is administered. Conclusions We provide a demonstration to show that a STING-LNP treatment can overcome PD-1 resistance in a B16-F10 lung metastasis model. The mechanism responsible for this indicates that NK cells are activated by stimulating the STING pathway which, in turn, induced the expression of PD-L1 on cancer cells. Based on the findings reported herein, the STING-LNP represents a promising candidate for use in combination therapy with anti-PD-1-resistant tumors.
Collapse
Affiliation(s)
- Takashi Nakamura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takanori Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Rikito Endo
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Shun Sasaki
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Naomichi Takahashi
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yusuke Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Mamoru Hyodo
- Department of Applied Chemistry, Faculty of Engineering, Aichi Institute of Technology, Toyota, Aichi, Japan
| | - Yoshihiro Hayakawa
- Department of Applied Chemistry, Faculty of Engineering, Aichi Institute of Technology, Toyota, Aichi, Japan
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
142
|
Mattiola I. Immune Circuits to Shape Natural Killer Cells in Cancer. Cancers (Basel) 2021; 13:cancers13133225. [PMID: 34203391 PMCID: PMC8267947 DOI: 10.3390/cancers13133225] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Natural killer (NK) cells are circulating innate lymphocytes endowed with antitumoral functions. NK cells are the innate counterpart of effector T cells and among the first cells responding to infections and tumors. In this review, the immune circuits regulating the NK cell antitumoral functions and the possible strategies to shape natural killing in cancer will be discussed. Abstract Natural killer (NK) cells are innate lymphoid cells playing an important role in anti-cancer immunity. NK cells are efficient in controlling the spreading of metastasis but are not very powerful in fighting against primary tumors. The NK cell capability to infiltrate and persist in the tumor microenvironment and to exert their antitumoral functions is often limited by tumor escape mechanisms. These tumor-mediated strategies not only induce NK cell tolerance but also interfere with the NK cell-dependent immune networking. This review will provide an overview of the tumor escape mechanisms impacting NK cells, identify the immune circuits regulating the NK cell-dependent antitumor immunity and revise the emerging therapeutic approaches to unleash NK cells in cancer.
Collapse
Affiliation(s)
- Irene Mattiola
- Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany;
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch Strasse 2, 10117 Berlin, Germany
- Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
143
|
Conventional NK cells and tissue-resident ILC1s join forces to control liver metastasis. Proc Natl Acad Sci U S A 2021; 118:2026271118. [PMID: 34183415 DOI: 10.1073/pnas.2026271118] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The liver is a major metastatic target organ, and little is known about the role of immunity in controlling hepatic metastases. Here, we discovered that the concerted and nonredundant action of two innate lymphocyte subpopulations, conventional natural killer cells (cNKs) and tissue-resident type I innate lymphoid cells (trILC1s), is essential for antimetastatic defense. Using different preclinical models for liver metastasis, we found that trILC1 controls metastatic seeding, whereas cNKs restrain outgrowth. Whereas the killing capacity of trILC1s was not affected by the metastatic microenvironment, the phenotype and function of cNK cells were affected in a cancer type-specific fashion. Thus, individual cancer cell lines orchestrate the emergence of unique cNK subsets, which respond differently to tumor-derived factors. Our findings will contribute to the development of therapies for liver metastasis involving hepatic innate cells.
Collapse
|
144
|
Chen R, Du J, Zhu H, Ling Q. The role of cGAS-STING signalling in liver diseases. JHEP Rep 2021; 3:100324. [PMID: 34381984 PMCID: PMC8340306 DOI: 10.1016/j.jhepr.2021.100324] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/20/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Abstract
The recently identified novel cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS) activates the downstream adaptor protein stimulator of interferon genes (STING) by catalysing the synthesis of cyclic GMP-AMP. This in turn initiates an innate immune response through the release of various cytokines, including type I interferon. Foreign DNA (microbial infection) or endogenous DNA (nuclear or mitochondrial leakage) can serve as cGAS ligands and lead to the activation of cGAS-STING signalling. Therefore, the cGAS-STING pathway plays essential roles in infectious diseases, sterile inflammation, tumours, and autoimmune diseases. In addition, cGAS-STING signalling affects the progression of liver inflammation through other mechanisms, such as autophagy and metabolism. In this review, we summarise recent advances in our understanding of the role of cGAS-STING signalling in the innate immune modulation of different liver diseases. Furthermore, we discuss the therapeutic potential of targeting the cGAS-STING pathway in the treatment of liver diseases.
Collapse
Key Words
- AIM2, absent in melanoma 2
- ALD, alcohol-related liver disease
- APCs, antigen-presenting cells
- CDNs, cyclic dinucleotides
- DAMPs, damage-associated molecular patterns
- DCs, dendritic cells
- ER, endoplasmic reticulum
- GVHD, graft-versus-host disease
- HCC, hepatocellular carcinoma
- HSCs, hepatic stellate cells
- IFN-I, type I interferon
- IL, interleukin
- IRF3, interferon regulatory factor 3
- IRI, ischaemia refusion injury
- KCs, Kupffer cells
- LSECs, liver sinusoidal endothelial cells
- MHC, major histocompatibility complex
- NAFLD, non-alcoholic fatty liver disease
- NK cells, natural killer cells
- NPCs, non-parenchymal cells
- PAMPs, pathogen-associated molecular patterns
- PD-1, programmed cell death protein-1
- PD-L1, programmed cell death protein ligand-1
- PPRs, pattern recognition receptors
- SAVI, STING-associated vasculopathy with onset in infancy
- STING, stimulator of interferon genes
- TBK1, TANK-binding kinase 1
- TGF-β1, transforming growth factor-β1
- TLR, Toll-like receptor
- TNF, tumour necrosis factor
- XRCC, X-ray repair cross complementing
- aHSCT, allogeneic haematopoietic stem cell transplantation
- cGAMP, cyclic guanosine monophosphate-adenosine monophosphate
- cGAS, cyclic guanosine monophosphate-adenosine monophosphate synthase
- cGAS-STING signalling
- dsDNA, double-strand DNA
- hepatocellular carcinoma
- innate immune response
- liver injury
- mTOR, mammalian target of rapamycin
- mtDNA, mitochondrial DNA
- nonalcoholic fatty liver disease
- siRNA, small interfering RNA
- ssRNA, single-stranded RNA
- viral hepatitis
Collapse
Affiliation(s)
- Ruihan Chen
- Department of Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiamin Du
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hong Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qi Ling
- Department of Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
145
|
Cordova A, Ritchie C, Böhnert V, Li L. Human SLC46A2 Is the Dominant cGAMP Importer in Extracellular cGAMP-Sensing Macrophages and Monocytes. ACS CENTRAL SCIENCE 2021; 7:1073-1088. [PMID: 34235268 PMCID: PMC8228594 DOI: 10.1021/acscentsci.1c00440] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Indexed: 05/04/2023]
Abstract
Administration of exogenous CDNs to activate the cGAMP-STING pathway is a promising therapeutic strategy to unleash the full potential of cancer immunotherapy. This strategy mirrors the role of endogenous extracellular cGAMP, an immunotransmitter that is transferred from cancer cells to cGAMP-sensing cells in the host, promoting immunity. However, the CDN import mechanisms used by host cells within tumors remain unknown. Here we identified the protein SLC46A2 as the dominant cGAMP importer in primary human monocytes. Furthermore, we discovered that monocytes and M1-polarized macrophages directly sense tumor-derived extracellular cGAMP in murine tumors. Finally, we demonstrated that SLC46A2 is the dominant cGAMP importer in monocyte-derived macrophages. Together, we provide the first cellular and molecular mechanisms of cGAMP as an immunotransmitter, paving the way for effective STING pathway therapeutics.
Collapse
Affiliation(s)
- Anthony
F. Cordova
- Department of Biochemistry and Institute of Chemistry, Engineering, and Medicine
for Human Health (ChEM-H), Stanford University, Stanford, California 94305, United States
| | - Christopher Ritchie
- Department of Biochemistry and Institute of Chemistry, Engineering, and Medicine
for Human Health (ChEM-H), Stanford University, Stanford, California 94305, United States
| | - Volker Böhnert
- Department of Biochemistry and Institute of Chemistry, Engineering, and Medicine
for Human Health (ChEM-H), Stanford University, Stanford, California 94305, United States
| | - Lingyin Li
- Department of Biochemistry and Institute of Chemistry, Engineering, and Medicine
for Human Health (ChEM-H), Stanford University, Stanford, California 94305, United States
| |
Collapse
|
146
|
Zhang Y, Yang Q, Zeng X, Wang M, Dong S, Yang B, Tu X, Wei T, Xie W, Zhang C, Guo Q, Kloeber JA, Cao Y, Guo G, Zhou Q, Zhao F, Huang J, Liu L, Zhang K, Wang M, Yin P, Luo K, Deng M, Kim W, Hou J, Shi Y, Zhu Q, Chen L, Hu S, Yue J, Pi G, Lou Z. MET amplification attenuates lung tumor response to immunotherapy by inhibiting STING. Cancer Discov 2021; 11:2726-2737. [PMID: 34099454 DOI: 10.1158/2159-8290.cd-20-1500] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 04/23/2021] [Accepted: 06/02/2021] [Indexed: 11/16/2022]
Abstract
Immune checkpoint blockade (ICB) has revolutionized cancer therapy. However, the response of patients to ICB is difficult to predict. Here, we examined 81 lung cancer patients under ICB treatment and found that patients with MET amplification were resistant to ICB and had a poor progress-free survival. Tumors with MET amplifications had significantly decreased STING levels and antitumor T cell infiltration. Furthermore, we performed deep single-cell RNA sequencing on more than 20000 single immune cells and identified an immunosuppressive signature with increased subsets of XIST- and CD96-positive exhausted NK cells and decreased CD8+ T cell and NK cell populations in patients with MET-amplification. Mechanistically, we found that oncogenic MET signaling induces phosphorylation of UPF1 and downregulates tumor cell STING expression via modulation of the 3'-UTR length of STING by UPF1. Decreased efficiency of ICB by MET amplification can be overcome by inhibiting MET.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Qifan Yang
- Tongji Medical College, Huazhong University of Science and Technology
| | - Xiangyu Zeng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | | | | | | | | | - Ting Wei
- Division of Biomedical Statistics and Informatics, Mayo Clinic
| | | | | | - Qiang Guo
- School of Pharmaceutical Science, Sun Yat-sen University
| | | | | | - Guijie Guo
- Institute of Microbiology, Chinese Academy of Sciences
| | | | | | | | - Li Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Kai Zhang
- Tongji Medical College, Huazhong University of Science and Technology
| | | | | | | | - Min Deng
- Department of Oncology, Mayo Clinic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Roehle K, Qiang L, Ventre KS, Heid D, Ali LR, Lenehan P, Heckler M, Crowley SJ, Stump CT, Ro G, Godicelj A, Bhuiyan AM, Yang A, Quiles Del Rey M, Biary T, Luoma AM, Bruck PT, Tegethoff JF, Nopper SL, Li J, Byrne KT, Pelletier M, Wucherpfennig KW, Stanger BZ, Akin JJ, Mancias JD, Agudo J, Dougan M, Dougan SK. cIAP1/2 antagonism eliminates MHC class I-negative tumors through T cell-dependent reprogramming of mononuclear phagocytes. Sci Transl Med 2021; 13:eabf5058. [PMID: 34011631 PMCID: PMC8406785 DOI: 10.1126/scitranslmed.abf5058] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/23/2021] [Accepted: 04/26/2021] [Indexed: 01/19/2023]
Abstract
Loss of major histocompatibility complex (MHC) class I and interferon-γ (IFN-γ) sensing are major causes of primary and acquired resistance to checkpoint blockade immunotherapy. Thus, additional treatment options are needed for tumors that lose expression of MHC class I. The cellular inhibitor of apoptosis proteins 1 and 2 (cIAP1/2) regulate classical and alternative nuclear factor κB (NF-κB) signaling. Induction of noncanonical NF-κB signaling with cIAP1/2 antagonists mimics costimulatory signaling, augmenting antitumor immunity. We show that induction of noncanonical NF-κB signaling induces T cell-dependent immune responses, even in β2-microglobulin (β2M)-deficient tumors, demonstrating that direct CD8 T cell recognition of tumor cell-expressed MHC class I is not required. Instead, T cell-produced lymphotoxin reprograms both mouse and human macrophages to be tumoricidal. In wild-type mice, but not mice incapable of antigen-specific T cell responses, cIAP1/2 antagonism reduces tumor burden by increasing phagocytosis of live tumor cells. Efficacy is augmented by combination with CD47 blockade. Thus, activation of noncanonical NF-κB stimulates a T cell-macrophage axis that curtails growth of tumors that are resistant to checkpoint blockade because of loss of MHC class I or IFN-γ sensing. These findings provide a potential mechanism for controlling checkpoint blockade refractory tumors.
Collapse
Affiliation(s)
- Kevin Roehle
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Li Qiang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Katherine S Ventre
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Daniel Heid
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Lestat R Ali
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Patrick Lenehan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Max Heckler
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Stephanie J Crowley
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Courtney T Stump
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Gabrielle Ro
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Anže Godicelj
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Aladdin M Bhuiyan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Annan Yang
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Maria Quiles Del Rey
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Tamara Biary
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Adrienne M Luoma
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Patrick T Bruck
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jana F Tegethoff
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Svenja L Nopper
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jinyang Li
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katelyn T Byrne
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marc Pelletier
- Novartis Institute for Biomedical Research, Cambridge, MA 02139, USA
| | - Kai W Wucherpfennig
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Ben Z Stanger
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James J Akin
- Novartis Institute for Biomedical Research, Cambridge, MA 02139, USA
| | - Joseph D Mancias
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Judith Agudo
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Michael Dougan
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Stephanie K Dougan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
148
|
Jacobs B, Gebel V, Heger L, Grèze V, Schild H, Dudziak D, Ullrich E. Characterization and Manipulation of the Crosstalk Between Dendritic and Natural Killer Cells Within the Tumor Microenvironment. Front Immunol 2021; 12:670540. [PMID: 34054844 PMCID: PMC8160470 DOI: 10.3389/fimmu.2021.670540] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/19/2021] [Indexed: 01/22/2023] Open
Abstract
Cellular therapy has entered the daily clinical life with the approval of CAR T cell therapeutics and dendritic cell (DCs) vaccines in the US and the EU. In addition, numerous other adoptive cellular products, including natural killer (NK) cells, are currently evaluated in early phase I/ II clinical trials for the treatment of cancer patients. Despite these promising accomplishments, various challenges remain to be mastered in order to ensure sustained therapeutic success. These include the identification of strategies by which tumor cells escape the immune system or establish an immunosuppressive tumor microenvironment (TME). As part of the innate immune system, DCs and NK cells are both present within the TME of various tumor entities. While NK cells are well known for their intrinsic anti-tumor activity by their cytotoxicity capacities and the secretion of pro-inflammatory cytokines, the role of DCs within the TME is a double-edged sword as different DC subsets have been described with either tumor-promoting or -inhibiting characteristics. In this review, we will discuss recent findings on the interaction of DCs and NK cells under physiological conditions and within the TME. One focus is the crosstalk of various DC subsets with NK cells and their impact on the progression or inhibition of tumor growth. In addition, we will provide suggestions to overcome the immunosuppressive outcome of the interaction of DCs and NK cells within the TME.
Collapse
Affiliation(s)
- Benedikt Jacobs
- Department of Internal Medicine 5, Haematology and Oncology, Friedrich Alexander University Erlangen-Nuremberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Veronika Gebel
- Children's Hospital, Goethe-University Frankfurt, Frankfurt, Germany.,Experimental Immunology, Goethe University Frankfurt , Frankfurt, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - Lukas Heger
- Department of Dermatology, Laboratory of Dendritic Cell Biology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Victoria Grèze
- Children's Hospital, Goethe-University Frankfurt, Frankfurt, Germany.,Experimental Immunology, Goethe University Frankfurt , Frankfurt, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - Hansjörg Schild
- Institute of Immunology, University Medical Center Mainz, Mainz, Germany.,Research Centre for Immunotherapy, University Medical Center Mainz, Mainz, Germany
| | - Diana Dudziak
- Department of Dermatology, Laboratory of Dendritic Cell Biology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Evelyn Ullrich
- Children's Hospital, Goethe-University Frankfurt, Frankfurt, Germany.,Experimental Immunology, Goethe University Frankfurt , Frankfurt, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| |
Collapse
|
149
|
Shaver KA, Croom-Perez TJ, Copik AJ. Natural Killer Cells: The Linchpin for Successful Cancer Immunotherapy. Front Immunol 2021; 12:679117. [PMID: 33995422 PMCID: PMC8115550 DOI: 10.3389/fimmu.2021.679117] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/09/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer immunotherapy is a highly successful and rapidly evolving treatment modality that works by augmenting the body’s own immune system. While various immune stimulation strategies such as PD-1/PD-L1 or CTLA-4 checkpoint blockade result in robust responses, even in patients with advanced cancers, the overall response rate is low. While immune checkpoint inhibitors are known to enhance cytotoxic T cells’ antitumor response, current evidence suggests that immune responses independent of cytotoxic T cells, such as Natural Killer (NK) cells, play crucial role in the efficacy of immunotherapeutic interventions. NK cells hold a distinct role in potentiating the innate immune response and activating the adaptive immune system. This review highlights the importance of the early actions of the NK cell response and the pivotal role NK cells hold in priming the immune system and setting the stage for successful response to cancer immunotherapy. Yet, in many patients the NK cell compartment is compromised thus lowering the chances of successful outcomes of many immunotherapies. An overview of mechanisms that can drive NK cell dysfunction and hinder immunotherapy success is provided. Rather than relying on the likely dysfunctional endogenous NK cells to work with immunotherapies, adoptive allogeneic NK cell therapies provide a viable solution to increase response to immunotherapies. This review highlights the advances made in development of NK cell therapeutics for clinical application with evidence supporting their combinatorial application with other immune-oncology approaches to improve outcomes of immunotherapies.
Collapse
Affiliation(s)
- Kari A Shaver
- College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Tayler J Croom-Perez
- Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Alicja J Copik
- Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL, United States
| |
Collapse
|
150
|
Dosta P, Cryer AM, Prado M, Dion MZ, Ferber S, Kalash S, Artzi N. Delivery of Stimulator of Interferon Genes (STING) Agonist Using Polypeptide‐Modified Dendrimer Nanoparticles in the Treatment of Melanoma. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Pere Dosta
- Institute for Medical Engineering and Science Massachusetts Institute of Technology Cambridge MA 02139 USA
- Department of Medicine Division of Engineering in Medicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| | - Alexander M. Cryer
- Institute for Medical Engineering and Science Massachusetts Institute of Technology Cambridge MA 02139 USA
- Department of Medicine Division of Engineering in Medicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| | - Michaela Prado
- Institute for Medical Engineering and Science Massachusetts Institute of Technology Cambridge MA 02139 USA
- Department of Medicine Division of Engineering in Medicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| | - Michelle Z. Dion
- Institute for Medical Engineering and Science Massachusetts Institute of Technology Cambridge MA 02139 USA
- Department of Medicine Division of Engineering in Medicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| | - Shiran Ferber
- Institute for Medical Engineering and Science Massachusetts Institute of Technology Cambridge MA 02139 USA
- Department of Medicine Division of Engineering in Medicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| | - Santhosh Kalash
- Institute for Medical Engineering and Science Massachusetts Institute of Technology Cambridge MA 02139 USA
- Department of Medicine Division of Engineering in Medicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| | - Natalie Artzi
- Institute for Medical Engineering and Science Massachusetts Institute of Technology Cambridge MA 02139 USA
- Department of Medicine Division of Engineering in Medicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| |
Collapse
|