101
|
Understanding the Human T Cell Response to Dengue Virus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1062:241-250. [PMID: 29845537 DOI: 10.1007/978-981-10-8727-1_17] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Our understanding of how T cells respond to dengue virus has greatly advanced in the last decade but important questions still remain unanswered. Dengue virus infection elicits a broad anti-viral T cell response with NS3, NS4b and NS5 being the main targets for CD8+ T cells, which dominate the response while the structural proteins capsid, envelope and the secreted protein NS1 are the preferential targets for CD4+ T cells. Upon T cell activation during acute dengue infection, dengue-specific T cells acquire expression of the skin-homing marker cutaneous associated antigen (CLA) and they can be found at high frequencies in the skin of infected patients. This suggests that the skin represents an important site for the immuno surveillance of dengue virus. The immunoprotective role of skin-homing dengue-specific T cells, their potential involvement in pathological skin manifestations and their long-term persistence as tissue resident T cells to provide immediate onsite protection are open questions that we are currently investigating. The contribution of pre-existing dengue-specific T cells towards protective immunity and/or immunopathology during secondary dengue infection remains a major knowledge gap. The evidence supporting these opposing outcomes and our current understanding of the characteristics of the human T cell response to dengue virus will be discussed.
Collapse
|
102
|
In vivo electroporation enhances vaccine-mediated therapeutic control of human papilloma virus-associated tumors by the activation of multifunctional and effector memory CD8 + T cells. Vaccine 2017; 35:7240-7249. [PMID: 29174677 DOI: 10.1016/j.vaccine.2017.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/01/2017] [Accepted: 11/07/2017] [Indexed: 12/11/2022]
Abstract
In vivo electroporation (EP) has reignited the clinical interest on DNA vaccines as immunotherapeutic approaches to control different types of cancer. EP has been associated with increased immune response potency, but its capacity in influencing immunomodulation remains unclear. Here we evaluated the impact of in vivo EP on the induction of cellular immune responses and therapeutic effects of a DNA vaccine targeting human papillomavirus-induced tumors. Our results demonstrate that association of EP with the conventional intramuscular administration route promoted a more efficient activation of multifunctional and effector memory CD8+ T cells with enhanced cytotoxic activity. Furthermore, EP increased tumor infiltration of CD8+ T cells and avoided tumor recurrences. Finally, our results demonstrated that EP promotes local migration of antigen presenting cells that enhances with vaccine co-delivery. Altogether the present evidences shed further light on the in vivo electroporation action and its impact on the immunogenicity of DNA vaccines.
Collapse
|
103
|
Cao B, Wang Q, Zhang H, Zhu G, Lang J. Two immune-enhanced molecular subtypes differ in inflammation, checkpoint signaling and outcome of advanced head and neck squamous cell carcinoma. Oncoimmunology 2017; 7:e1392427. [PMID: 29308323 DOI: 10.1080/2162402x.2017.1392427] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/09/2017] [Accepted: 10/11/2017] [Indexed: 01/22/2023] Open
Abstract
The immune environment of primary tumor is associated with the clinical response and benefit of immunotherapy. This study aims to investigate the intratumoral immune profile and its clinical relevance in advanced head and neck squamous cell carcinoma (HNSCC). Gene expression profiles of 401 HNSCCs at stage III-IVB from two cohorts (The Cancer Genome Atlas, TCGA, n = 203; the Leipzig Head and Neck Group, LHNG, n = 198) were involved in this analysis. Based on the global immune-related genes, four gene expression subtypes (C1-4) were identified in HNSCCs. Overall, subtypes C2 and C3 showed upregulation of immune profiles and increased tumor lymphocyte infiltration, exhibiting an enhanced immune microenvironment (EIME). However, the two EIME subtypes revealed differences in immune markers and clinical features. Subtype C2 showed higher expression of macrophage signature, whereas subtype C3 was more associated with B cell infiltration. T cell and NK cell infiltration was not different between C2 and C3 subtypes. The subtype C2 tumors were characterized by inflammation compared with subtype C3. Although the checkpoint receptors PD1 and CTLA4 expressed equally between the EIME subtypes, their ligands (PD-L1/PD-L2, CD86/CD80) were significantly upregulated in subtype C2 compared with C3. HPV-positive tumors were predominantly enriched in subtype C3 but not in C2. Furthermore, patients in subtype C2 had a worse outcome than those in C3. In summary, two immune-enhanced subtypes with different immune characteristics and clinical features were identified in advanced HNSCC. The different immune microenvironments among HNSCC subgroups may provide new insights into the strategy of immunotherapy.
Collapse
Affiliation(s)
- Bangrong Cao
- Department of Basic Research, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qifeng Wang
- Department of Radiation Oncology, and Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Huan Zhang
- Department of Basic Research, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Guiquan Zhu
- Department of Head and Neck Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jinyi Lang
- Department of Radiation Oncology, and Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
104
|
Bellon M, Nicot C. Telomere Dynamics in Immune Senescence and Exhaustion Triggered by Chronic Viral Infection. Viruses 2017; 9:v9100289. [PMID: 28981470 PMCID: PMC5691640 DOI: 10.3390/v9100289] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/28/2017] [Accepted: 09/29/2017] [Indexed: 02/06/2023] Open
Abstract
The progressive loss of immunological memory during aging correlates with a reduced proliferative capacity and shortened telomeres of T cells. Growing evidence suggests that this phenotype is recapitulated during chronic viral infection. The antigenic volume imposed by persistent and latent viruses exposes the immune system to unique challenges that lead to host T-cell exhaustion, characterized by impaired T-cell functions. These dysfunctional memory T cells lack telomerase, the protein capable of extending and stabilizing chromosome ends, imposing constraints on telomere dynamics. A deleterious consequence of this excessive telomere shortening is the premature induction of replicative senescence of viral-specific CD8+ memory T cells. While senescent cells are unable to expand, they can survive for extended periods of time and are more resistant to apoptotic signals. This review takes a closer look at T-cell exhaustion in chronic viruses known to cause human disease: Epstein–Barr virus (EBV), Hepatitis B/C/D virus (HBV/HCV/HDV), human herpesvirus 8 (HHV-8), human immunodeficiency virus (HIV), human T-cell leukemia virus type I (HTLV-I), human papillomavirus (HPV), herpes simplex virus-1/2 (HSV-1/2), and Varicella–Zoster virus (VZV). Current literature linking T-cell exhaustion with critical telomere lengths and immune senescence are discussed. The concept that enduring antigen stimulation leads to T-cell exhaustion that favors telomere attrition and a cell fate marked by enhanced T-cell senescence appears to be a common endpoint to chronic viral infections.
Collapse
Affiliation(s)
- Marcia Bellon
- Department of Pathology, Center for Viral Pathogenesis, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Christophe Nicot
- Department of Pathology, Center for Viral Pathogenesis, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
105
|
Dzutsev A, Hogg A, Sui Y, Solaymani-Mohammadi S, Yu H, Frey B, Wang Y, Berzofsky JA. Differential T cell homing to colon vs. small intestine is imprinted by local CD11c + APCs that determine homing receptors. J Leukoc Biol 2017; 102:1381-1388. [PMID: 28951425 DOI: 10.1189/jlb.1a1116-463rr] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 01/07/2023] Open
Abstract
Mechanisms that imprint T cell homing to the small intestine have been well studied; however, those for homing to the colon are poorly understood. Recently, we found that these are distinct subcompartments of the gut mucosal immune system, which implies differential homing. Here, we show that colonic CD11c+ APCs imprint CD8+ T cell preferential homing to the colon, in contrast to those from the small intestine that imprint CD8+ T cell homing to the small intestine, and that the differences are related to the variable ability of APCs to induce α4β7-integrin and CCR9 expression on T cells. Colon APCs also expressed lower levels of retinoic acid-producing enzymes that are known to control the mucosal homing of T cells. These findings are the first to our knowledge to directly demonstrate that colon APCs imprint T cells to selectively home to the large bowel, which is critical for the design of successful T cell-based therapies and vaccines, such as colon cancer immunotherapy and HIV vaccines.
Collapse
Affiliation(s)
- Amiran Dzutsev
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Alison Hogg
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Yongjun Sui
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | | | - Huifeng Yu
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Blake Frey
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Yichuan Wang
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Jay A Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|
106
|
Haddadi S, Thanthrige-Don N, Afkhami S, Khera A, Jeyanathan M, Xing Z. Expression and role of VLA-1 in resident memory CD8 T cell responses to respiratory mucosal viral-vectored immunization against tuberculosis. Sci Rep 2017; 7:9525. [PMID: 28842633 PMCID: PMC5573413 DOI: 10.1038/s41598-017-09909-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/31/2017] [Indexed: 11/29/2022] Open
Abstract
Lung resident memory T cells (TRM) characterized by selective expression of mucosal integrins VLA-1 (α1β1) and CD103 (αEβ7) are generated following primary respiratory viral infections. Despite recent progress, the generation of lung TRM and the role of mucosal integrins following viral vector respiratory mucosal immunization still remains poorly understood. Here by using a replication-defective viral vector tuberculosis vaccine, we show that lung Ag-specific CD8 T cells express both VLA-1 and CD103 following respiratory mucosal immunization. However, VLA-1 and CD103 are acquired in differential tissue sites with the former acquired during T cell priming in the draining lymph nodes and the latter acquired after T cells entered the lung. Once in the lung, Ag-specific CD8 T cells continue to express VLA-1 at high levels through the effector/expansion, contraction, and memory phases of T cell responses. Using a functional VLA-1 blocking mAb, we show that VLA-1 is not required for trafficking of these cells to the lung, but it negatively regulates them in the contraction phase. Furthermore, VLA-1 plays a negligible role in the maintenance of these cells in the lung. Our study provides new information on vaccine-inducible lung TRM and shall help develop effective viral vector respiratory mucosal tuberculosis vaccination strategies.
Collapse
Affiliation(s)
- Siamak Haddadi
- McMaster Immunology Research Centre, Department of Pathology & Molecular Medicine, Hamilton, Ontario, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Niroshan Thanthrige-Don
- McMaster Immunology Research Centre, Department of Pathology & Molecular Medicine, Hamilton, Ontario, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Sam Afkhami
- McMaster Immunology Research Centre, Department of Pathology & Molecular Medicine, Hamilton, Ontario, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Amandeep Khera
- McMaster Immunology Research Centre, Department of Pathology & Molecular Medicine, Hamilton, Ontario, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Mangalakumari Jeyanathan
- McMaster Immunology Research Centre, Department of Pathology & Molecular Medicine, Hamilton, Ontario, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Zhou Xing
- McMaster Immunology Research Centre, Department of Pathology & Molecular Medicine, Hamilton, Ontario, Canada. .,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
107
|
Jeyanathan M, Afkhami S, Khera A, Mandur T, Damjanovic D, Yao Y, Lai R, Haddadi S, Dvorkin-Gheva A, Jordana M, Kunkel SL, Xing Z. CXCR3 Signaling Is Required for Restricted Homing of Parenteral Tuberculosis Vaccine-Induced T Cells to Both the Lung Parenchyma and Airway. THE JOURNAL OF IMMUNOLOGY 2017; 199:2555-2569. [PMID: 28827285 DOI: 10.4049/jimmunol.1700382] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/24/2017] [Indexed: 01/19/2023]
Abstract
Although most novel tuberculosis (TB) vaccines are designed for delivery via the muscle or skin for enhanced protection in the lung, it has remained poorly understood whether systemic vaccine-induced memory T cells can readily home to the lung mucosa prior to and shortly after pathogen exposure. We have investigated this issue by using a model of parenteral TB immunization and intravascular immunostaining. We find that systemically induced memory T cells are restricted to the blood vessels in the lung, unable to populate either the lung parenchymal tissue or the airway under homeostatic conditions. We further find that after pulmonary TB infection, it still takes many days before such T cells can enter the lung parenchymal tissue and airway. We have identified the acquisition of CXCR3 expression by circulating T cells to be critical for their entry to these lung mucosal compartments. Our findings offer new insights into mucosal T cell biology and have important implications in vaccine strategies against pulmonary TB and other intracellular infections in the lung.
Collapse
Affiliation(s)
- Mangalakumari Jeyanathan
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario L8S 4K1, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; and
| | - Sam Afkhami
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario L8S 4K1, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; and
| | - Amandeep Khera
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario L8S 4K1, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; and
| | - Talveer Mandur
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario L8S 4K1, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; and
| | - Daniela Damjanovic
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario L8S 4K1, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; and
| | - Yushi Yao
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario L8S 4K1, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; and
| | - Rocky Lai
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario L8S 4K1, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; and
| | - Siamak Haddadi
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario L8S 4K1, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; and
| | - Anna Dvorkin-Gheva
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario L8S 4K1, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; and
| | - Manel Jordana
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario L8S 4K1, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; and
| | - Steven L Kunkel
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Zhou Xing
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario L8S 4K1, Canada; .,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; and
| |
Collapse
|
108
|
Aznar MA, Tinari N, Rullán AJ, Sánchez-Paulete AR, Rodriguez-Ruiz ME, Melero I. Intratumoral Delivery of Immunotherapy-Act Locally, Think Globally. THE JOURNAL OF IMMUNOLOGY 2017; 198:31-39. [PMID: 27994166 DOI: 10.4049/jimmunol.1601145] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/31/2016] [Indexed: 12/16/2022]
Abstract
Immune mechanisms have evolved to cope with local entry of microbes acting in a confined fashion but eventually inducing systemic immune memory. Indeed, in situ delivery of a number of agents into tumors can mimic in the malignant tissue the phenomena that control intracellular infection leading to the killing of infected cells. Vascular endothelium activation and lymphocyte attraction, together with dendritic cell-mediated cross-priming, are the key elements. Intratumoral therapy with pathogen-associated molecular patterns or recombinant viruses is being tested in the clinic. Cell therapies can be also delivered intratumorally, including infusion of autologous dendritic cells and even tumor-reactive T lymphocytes. Intralesional virotherapy with an HSV vector expressing GM-CSF has been recently approved by the Food and Drug Administration for the treatment of unresectable melanoma. Immunomodulatory monoclonal Abs have also been successfully applied intratumorally in animal models. Local delivery means less systemic toxicity while focusing the immune response on the malignancy and the affected draining lymph nodes.
Collapse
Affiliation(s)
- M Angela Aznar
- Division of Immunology and Immunotherapy, Center for Applied Medical Research, University of Navarra, Pamplona 31008, Spain
| | - Nicola Tinari
- Department of Experimental and Clinical Sciences, G. D'Annunzio University and Foundation, Chieti 66100, Italy
| | - Antonio J Rullán
- Department of Medical Oncology, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona 08908, Spain; and
| | - Alfonso R Sánchez-Paulete
- Division of Immunology and Immunotherapy, Center for Applied Medical Research, University of Navarra, Pamplona 31008, Spain
| | - María E Rodriguez-Ruiz
- Division of Immunology and Immunotherapy, Center for Applied Medical Research, University of Navarra, Pamplona 31008, Spain.,University Clinic, University of Navarra and Health Research Institute of Navarra, 31008 Pamplona, Spain
| | - Ignacio Melero
- Division of Immunology and Immunotherapy, Center for Applied Medical Research, University of Navarra, Pamplona 31008, Spain; .,University Clinic, University of Navarra and Health Research Institute of Navarra, 31008 Pamplona, Spain
| |
Collapse
|
109
|
Granier C, Blanc C, Karaki S, Tran T, Roussel H, Tartour E. Tissue-resident memory T cells play a key role in the efficacy of cancer vaccines. Oncoimmunology 2017; 6:e1358841. [PMID: 29147623 DOI: 10.1080/2162402x.2017.1358841] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 10/19/2022] Open
Abstract
Resident memory CD8+T cells (TRM) usually defined by the CD103 marker represent a new subset of long-lived memory T cells that remain in the tissues. We directly demonstrate their specific role in cancer vaccine-induced tumor regression. In human, they also seem to play a major role in tumor immunosurveillance.
Collapse
Affiliation(s)
- C Granier
- INSERMU970, Université Paris Descartes Sorbonne Paris-Cité, 56 Rue Leblanc Paris, France
| | - C Blanc
- INSERMU970, Université Paris Descartes Sorbonne Paris-Cité, 56 Rue Leblanc Paris, France
| | - S Karaki
- INSERMU970, Université Paris Descartes Sorbonne Paris-Cité, 56 Rue Leblanc Paris, France
| | - T Tran
- INSERMU970, Université Paris Descartes Sorbonne Paris-Cité, 56 Rue Leblanc Paris, France
| | - H Roussel
- INSERMU970, Université Paris Descartes Sorbonne Paris-Cité, 56 Rue Leblanc Paris, France
| | - E Tartour
- INSERMU970, Université Paris Descartes Sorbonne Paris-Cité, 56 Rue Leblanc Paris, France.,Hopital Européen Georges Pompidou, Department of Immunology, 20 Rue Leblanc Paris, France.,Equipe Labellisée Ligue Contre le Cancer, Paris, France
| |
Collapse
|
110
|
Integrating Next-Generation Dendritic Cell Vaccines into the Current Cancer Immunotherapy Landscape. Trends Immunol 2017; 38:577-593. [DOI: 10.1016/j.it.2017.05.006] [Citation(s) in RCA: 222] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/03/2017] [Accepted: 05/10/2017] [Indexed: 12/22/2022]
|
111
|
Bullock TN. TNF-receptor superfamily agonists as molecular adjuvants for cancer vaccines. Curr Opin Immunol 2017; 47:70-77. [PMID: 28750279 PMCID: PMC5626616 DOI: 10.1016/j.coi.2017.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 07/03/2017] [Accepted: 07/05/2017] [Indexed: 01/25/2023]
Abstract
Cancer vaccines have offered unrequited hope as a mechanism for rapidly and potently eliciting a patient's immune system to counter tumors. Initial results from preclinical mouse models have not translated to substantial benefit to patients, suggesting that either the targets or the vaccination approach were inadequate. Recent innovations in antigen identification have spiked renewed interest vaccination technologies. This has coincided with a detailed molecular understanding of the coordinated steps in postactivation support of T cell proliferation, differentiation and survival, leading to the development of novel targets and combinations that are substantially more effective than first and second generation cancer vaccines in preclinical models. Within this cluster of developments, the TNF-receptor superfamily members have emerged as attractive candidates for clinical implementation. Here we review recent developments in the mechanisms of action of TNFRSF agonists, and how their activity is potentiated by integration co-targeting pattern recognition receptors.
Collapse
Affiliation(s)
- Timothy Nj Bullock
- Department of Pathology and Human Immune Therapy Center, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
112
|
Enamorado M, Iborra S, Priego E, Cueto FJ, Quintana JA, Martínez-Cano S, Mejías-Pérez E, Esteban M, Melero I, Hidalgo A, Sancho D. Enhanced anti-tumour immunity requires the interplay between resident and circulating memory CD8 + T cells. Nat Commun 2017; 8:16073. [PMID: 28714465 PMCID: PMC5520051 DOI: 10.1038/ncomms16073] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 05/25/2017] [Indexed: 12/18/2022] Open
Abstract
The goal of successful anti-tumoural immunity is the development of long-term protective immunity to prevent relapse. Infiltration of tumours with CD8+ T cells with a resident memory (Trm) phenotype correlates with improved survival. However, the interplay of circulating CD8+ T cells and Trm cells remains poorly explored in tumour immunity. Using different vaccination strategies that fine-tune the generation of Trm cells or circulating memory T cells, here we show that, while both subsets are sufficient for anti-tumour immunity, the presence of Trm cells improves anti-tumour efficacy. Transferred central memory T cells (Tcm) generate Trm cells following viral infection or tumour challenge. Anti-PD-1 treatment promotes infiltration of transferred Tcm cells within tumours, improving anti-tumour immunity. Moreover, Batf3-dependent dendritic cells are essential for reactivation of circulating memory anti-tumour response. Our findings show the plasticity, collaboration and requirements for reactivation of memory CD8+ T cells subsets needed for optimal tumour vaccination and immunotherapy.
Collapse
Affiliation(s)
- Michel Enamorado
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro, 3, Madrid 28029, Spain
| | - Salvador Iborra
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro, 3, Madrid 28029, Spain
| | - Elena Priego
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro, 3, Madrid 28029, Spain.,Universidad Autónoma de Madrid, Arzobispo Morcillo 4, Madrid 28029, Spain
| | - Francisco J Cueto
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro, 3, Madrid 28029, Spain.,Universidad Autónoma de Madrid, Arzobispo Morcillo 4, Madrid 28029, Spain
| | - Juan A Quintana
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro, 3, Madrid 28029, Spain
| | - Sarai Martínez-Cano
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro, 3, Madrid 28029, Spain
| | - Ernesto Mejías-Pérez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Darwin 3, Madrid 28049, Spain
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Darwin 3, Madrid 28049, Spain
| | - Ignacio Melero
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 31008 Pamplona, Spain.,University Clinic, University of Navarra and Instituto de Investigación Sanitaria de Navarra (IdISNA), Pío XII, 55, 31008 Pamplona, Spain
| | - Andrés Hidalgo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro, 3, Madrid 28029, Spain.,Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität, Pettenkoferstrasse 9, 80336 Munich, Germany
| | - David Sancho
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro, 3, Madrid 28029, Spain
| |
Collapse
|
113
|
Synthetic melanin bound to subunit vaccine antigens significantly enhances CD8+ T-cell responses. PLoS One 2017; 12:e0181403. [PMID: 28715455 PMCID: PMC5513539 DOI: 10.1371/journal.pone.0181403] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 07/02/2017] [Indexed: 02/07/2023] Open
Abstract
Cytotoxic T-lymphocytes (CTLs) play a key role in immunity against cancer; however, the induction of CTL responses with currently available vaccines remains difficult. Because several reports have suggested that pigmentation and immunity might be functionally linked, we investigated whether melanin can act as an adjuvant in vaccines. Short synthetic peptides (8-35 amino acids long) containing T-cell epitopes were mixed with a solution of L-Dopa, a precursor of melanin. The mixture was then oxidized to generate nanoparticles of melanin-bound peptides. Immunization with melanin-bound peptides efficiently triggered CTL responses in mice, even against self-antigens and at a very low dose of peptides (microgram range). Immunization against a tumor antigen inhibited the growth of established tumors in mice, an effect that was abrogated by the depletion of CD8+ lymphocytes. These results demonstrate the efficacy of melanin as a vaccine adjuvant.
Collapse
|
114
|
Sun Y, Peng S, Yang A, Farmer E, Wu TC, Hung CF. Coinjection of IL2 DNA enhances E7-specific antitumor immunity elicited by intravaginal therapeutic HPV DNA vaccination with electroporation. Gene Ther 2017; 24:408-415. [PMID: 28492521 PMCID: PMC5510480 DOI: 10.1038/gt.2017.38] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/16/2017] [Accepted: 05/04/2017] [Indexed: 01/19/2023]
Abstract
The generation and use of therapeutic human papillomavirus (HPV) DNA vaccines represent an appealing treatment method against HPV-associated cervical cancer owing to their safety and durability. Previously, we created a therapeutic HPV DNA vaccine candidate by linking the HPV16-E7 DNA sequence to calreticulin (CRT/E7), which we showed could generate significant E7-specific cytotoxic T lymphocyte (CTL)-mediated antitumor immune responses against HPV16 oncogenes expressing murine tumor model TC-1. Here we assess the therapeutic efficacy of intravaginal immunization with pcDNA3-CRT/E7 followed by electroporation. In addition, we examined whether coadministration of DNA-encoding interleukin 2 (IL2) with the pcDNA3-CRT/E7 could improve the T-cell responses elicited by pcDNA3-CRT/E7. TC-1 tumor-bearing mice vaccinated intravaginally with both pcDNA3-CRT/E7 and IL2 DNA followed by electroporation induced stronger local antitumor CTL response in comparison to mice that received other treatment regimens. Additionally, we found that coadministration of IL2 DNA with pcDNA3-CRT/E7 modified the tumor microenvironment by decreasing the population of regulatory T cells and myeloid-derived suppressor cells relative to that of CTLs. Our data demonstrate the translational potential of local administration of IL2 and pcDNA3-CRT/E7 followed by electroporation in treating cervicovaginal tumors.
Collapse
Affiliation(s)
- Yunyan Sun
- Department of Obstetrics and Gynecology, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai, China
- Departments of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, United States
| | - Shiwen Peng
- Departments of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, United States
| | - Andrew Yang
- Departments of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, United States
| | - Emily Farmer
- Departments of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, United States
| | - T.-C. Wu
- Departments of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, United States
- Departments of Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, United States
- Departments of Molecular Microbiology and Immunology, Johns Hopkins Medical Institutions, Baltimore, MD, United States
- Departments of Obstetrics and Gynecology, Johns Hopkins Medical Institutions, Baltimore, MD, United States
| | - Chien-Fu Hung
- Departments of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, United States
- Departments of Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, United States
| |
Collapse
|
115
|
Yang Z, Xu M, Jia Z, Zhang Y, Wang L, Zhang H, Wang J, Song M, Zhao Y, Wu Z, Zhao L, Yin Z, Hong Z. A novel antigen delivery system induces strong humoral and CTL immune responses. Biomaterials 2017; 134:51-63. [DOI: 10.1016/j.biomaterials.2017.04.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/17/2017] [Accepted: 04/19/2017] [Indexed: 12/17/2022]
|
116
|
Nizard M, Roussel H, Diniz MO, Karaki S, Tran T, Voron T, Dransart E, Sandoval F, Riquet M, Rance B, Marcheteau E, Fabre E, Mandavit M, Terme M, Blanc C, Escudie JB, Gibault L, Barthes FLP, Granier C, Ferreira LCS, Badoual C, Johannes L, Tartour E. Induction of resident memory T cells enhances the efficacy of cancer vaccine. Nat Commun 2017; 8:15221. [PMID: 28537262 PMCID: PMC5458068 DOI: 10.1038/ncomms15221] [Citation(s) in RCA: 210] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 03/10/2017] [Indexed: 12/20/2022] Open
Abstract
Tissue-resident memory T cells (Trm) represent a new subset of long-lived memory T cells that remain in tissue and do not recirculate. Although they are considered as early immune effectors in infectious diseases, their role in cancer immunosurveillance remains unknown. In a preclinical model of head and neck cancer, we show that intranasal vaccination with a mucosal vector, the B subunit of Shiga toxin, induces local Trm and inhibits tumour growth. As Trm do not recirculate, we demonstrate their crucial role in the efficacy of cancer vaccine with parabiosis experiments. Blockade of TFGβ decreases the induction of Trm after mucosal vaccine immunization, resulting in the lower efficacy of cancer vaccine. In order to extrapolate this role of Trm in humans, we show that the number of Trm correlates with a better overall survival in lung cancer in multivariate analysis. The induction of Trm may represent a new surrogate biomarker for the efficacy of cancer vaccine. This study also argues for the development of vaccine strategies designed to elicit them.
Collapse
Affiliation(s)
- Mevyn Nizard
- INSERM U970, Université Paris Descartes, Sorbonne Paris-Cité, 56 Rue Leblanc, Paris 75015, France.,Equipe Labellisée Ligue Contre le Cancer, Paris 75015, France
| | - Hélène Roussel
- INSERM U970, Université Paris Descartes, Sorbonne Paris-Cité, 56 Rue Leblanc, Paris 75015, France.,Equipe Labellisée Ligue Contre le Cancer, Paris 75015, France.,Department of Pathology, Hopital Européen Georges Pompidou, 20 Rue Leblanc, Paris 75015, France
| | - Mariana O Diniz
- INSERM U970, Université Paris Descartes, Sorbonne Paris-Cité, 56 Rue Leblanc, Paris 75015, France.,Institute of Biomedical Sciences, University of Sao Paulo, Av Prof Lineu Prestes, Sao Paulo SP-CEP 05508-900, Brazil
| | - Soumaya Karaki
- INSERM U970, Université Paris Descartes, Sorbonne Paris-Cité, 56 Rue Leblanc, Paris 75015, France.,Equipe Labellisée Ligue Contre le Cancer, Paris 75015, France
| | - Thi Tran
- INSERM U970, Université Paris Descartes, Sorbonne Paris-Cité, 56 Rue Leblanc, Paris 75015, France.,Equipe Labellisée Ligue Contre le Cancer, Paris 75015, France
| | - Thibault Voron
- INSERM U970, Université Paris Descartes, Sorbonne Paris-Cité, 56 Rue Leblanc, Paris 75015, France.,Equipe Labellisée Ligue Contre le Cancer, Paris 75015, France
| | - Estelle Dransart
- Institut Curie, PSL Research University, Chemical Biology of Membranes and Therapeutic Delivery Unit, INSERM U 1143, CNRS UMR3666, 26 Rue d'Ulm 75248, Paris Cedex 05, France
| | - Federico Sandoval
- INSERM U970, Université Paris Descartes, Sorbonne Paris-Cité, 56 Rue Leblanc, Paris 75015, France.,Equipe Labellisée Ligue Contre le Cancer, Paris 75015, France
| | - Marc Riquet
- Hopital Europeen Georges Pompidou, Chrirurgie Thoracique Générale, Oncologique et Transplantation, 20 Rue Leblanc, Paris 75015, France
| | - Bastien Rance
- Department of Medical Bioinformatics, Hopital Européen Georges Pompidou, 20 Rue Leblanc, Paris 75015, France
| | - Elie Marcheteau
- INSERM U970, Université Paris Descartes, Sorbonne Paris-Cité, 56 Rue Leblanc, Paris 75015, France.,Equipe Labellisée Ligue Contre le Cancer, Paris 75015, France
| | - Elizabeth Fabre
- Departement of Medical Oncology, Hopital Européen Georges Pompidou, 20 Rue Leblanc, Paris 75015, France
| | - Marion Mandavit
- INSERM U970, Université Paris Descartes, Sorbonne Paris-Cité, 56 Rue Leblanc, Paris 75015, France.,Equipe Labellisée Ligue Contre le Cancer, Paris 75015, France
| | - Magali Terme
- INSERM U970, Université Paris Descartes, Sorbonne Paris-Cité, 56 Rue Leblanc, Paris 75015, France.,Equipe Labellisée Ligue Contre le Cancer, Paris 75015, France
| | - Charlotte Blanc
- INSERM U970, Université Paris Descartes, Sorbonne Paris-Cité, 56 Rue Leblanc, Paris 75015, France.,Equipe Labellisée Ligue Contre le Cancer, Paris 75015, France
| | - Jean-Baptiste Escudie
- Department of Medical Bioinformatics, Hopital Européen Georges Pompidou, 20 Rue Leblanc, Paris 75015, France
| | - Laure Gibault
- Department of Pathology, Hopital Européen Georges Pompidou, 20 Rue Leblanc, Paris 75015, France
| | - Françoise Le Pimpec Barthes
- Hopital Europeen Georges Pompidou, Chrirurgie Thoracique Générale, Oncologique et Transplantation, 20 Rue Leblanc, Paris 75015, France
| | - Clemence Granier
- INSERM U970, Université Paris Descartes, Sorbonne Paris-Cité, 56 Rue Leblanc, Paris 75015, France.,Equipe Labellisée Ligue Contre le Cancer, Paris 75015, France
| | - Luis C S Ferreira
- Institute of Biomedical Sciences, University of Sao Paulo, Av Prof Lineu Prestes, Sao Paulo SP-CEP 05508-900, Brazil
| | - Cecile Badoual
- INSERM U970, Université Paris Descartes, Sorbonne Paris-Cité, 56 Rue Leblanc, Paris 75015, France.,Equipe Labellisée Ligue Contre le Cancer, Paris 75015, France.,Department of Pathology, Hopital Européen Georges Pompidou, 20 Rue Leblanc, Paris 75015, France
| | - Ludger Johannes
- Institut Curie, PSL Research University, Chemical Biology of Membranes and Therapeutic Delivery Unit, INSERM U 1143, CNRS UMR3666, 26 Rue d'Ulm 75248, Paris Cedex 05, France
| | - Eric Tartour
- INSERM U970, Université Paris Descartes, Sorbonne Paris-Cité, 56 Rue Leblanc, Paris 75015, France.,Equipe Labellisée Ligue Contre le Cancer, Paris 75015, France.,Department of Pathology, Hopital Européen Georges Pompidou, 20 Rue Leblanc, Paris 75015, France
| |
Collapse
|
117
|
Garg AD, Vara Perez M, Schaaf M, Agostinis P, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Dendritic cell-based anticancer immunotherapy. Oncoimmunology 2017; 6:e1328341. [PMID: 28811970 DOI: 10.1080/2162402x.2017.1328341] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 05/05/2017] [Indexed: 12/11/2022] Open
Abstract
Dendritic cell (DC)-based vaccines against cancer have been extensively developed over the past two decades. Typically DC-based cancer immunotherapy entails loading patient-derived DCs with an appropriate source of tumor-associated antigens (TAAs) and efficient DC stimulation through a so-called "maturation cocktail" (typically a combination of pro-inflammatory cytokines and Toll-like receptor agonists), followed by DC reintroduction into patients. DC vaccines have been documented to (re)activate tumor-specific T cells in both preclinical and clinical settings. There is considerable clinical interest in combining DC-based anticancer vaccines with T cell-targeting immunotherapies. This reflects the established capacity of DC-based vaccines to generate a pool of TAA-specific effector T cells and facilitate their infiltration into the tumor bed. In this Trial Watch, we survey the latest trends in the preclinical and clinical development of DC-based anticancer therapeutics. We also highlight how the emergence of immune checkpoint blockers and adoptive T-cell transfer-based approaches has modified the clinical niche for DC-based vaccines within the wide cancer immunotherapy landscape.
Collapse
Affiliation(s)
- Abhishek D Garg
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Monica Vara Perez
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Marco Schaaf
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,INSERM, U1015, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France.,Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
| | - Guido Kroemer
- Université Paris Descartes/Paris V, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France.,Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM, U1138, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.,Pôle de Biologie, Hopitâl Européen George Pompidou, AP-HP, Paris, France
| | - Lorenzo Galluzzi
- Université Paris Descartes/Paris V, Paris, France.,Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA
| |
Collapse
|
118
|
Takamura S. Persistence in Temporary Lung Niches: A Survival Strategy of Lung-Resident Memory CD8 + T Cells. Viral Immunol 2017; 30:438-450. [PMID: 28418771 PMCID: PMC5512299 DOI: 10.1089/vim.2017.0016] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Respiratory virus infections, such as those mediated by influenza virus, parainfluenza virus, respiratory syncytial virus (RSV), severe acute respiratory syndrome coronavirus (SARS-CoV), rhinovirus, and adenovirus, are responsible for substantial morbidity and mortality, especially in children and older adults. Furthermore, the potential emergence of highly pathogenic strains of influenza virus poses a significant public health threat. Thus, the development of vaccines capable of eliciting long-lasting protective immunity to those pathogens is a major public health priority. CD8+ Tissue-resident memory T (TRM) cells are a newly defined population that resides permanently in the nonlymphoid tissues including the lung. These cells are capable of providing local protection immediately after infection, thereby promoting rapid host recovery. Recent studies have offered new insights into the anatomical niches that harbor lung CD8+ TRM cells, and also identified the requirement and limitations of TRM maintenance. However, it remains controversial whether lung CD8+ TRM cells are continuously replenished by new cells from the circulation or permanently lodged in this site. A better understanding of how lung CD8+ TRM cells are generated and maintained and the tissue-specific factors that drive local TRM formation is required for optimal vaccine development. This review focuses on recent advance in our understanding of CD8+ TRM cell establishment and maintenance in the lung, and describes how those processes are uniquely regulated in this tissue.
Collapse
Affiliation(s)
- Shiki Takamura
- Department of Immunology, Kindai University , Faculty of Medicine, Osaka, Japan
| |
Collapse
|
119
|
Mokhtar H, Biffar L, Somavarapu S, Frossard JP, McGowan S, Pedrera M, Strong R, Edwards JC, Garcia-Durán M, Rodriguez MJ, Stewart GR, Steinbach F, Graham SP. Evaluation of hydrophobic chitosan-based particulate formulations of porcine reproductive and respiratory syndrome virus vaccine candidate T cell antigens. Vet Microbiol 2017; 209:66-74. [PMID: 28228336 DOI: 10.1016/j.vetmic.2017.01.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/21/2016] [Accepted: 01/30/2017] [Indexed: 01/06/2023]
Abstract
PRRS control is hampered by the inadequacies of existing vaccines to combat the extreme diversity of circulating viruses. Since immune clearance of PRRSV infection may not be dependent on the development of neutralising antibodies and the identification of broadly-neutralising antibody epitopes have proven elusive, we hypothesised that conserved T cell antigens represent potential candidates for development of a novel PRRS vaccine. Previously we had identified the M and NSP5 proteins as well-conserved targets of polyfunctional CD8 and CD4 T cells. To assess their vaccine potential, peptides representing M and NSP5 were encapsulated in hydrophobically-modified chitosan particles adjuvanted by incorporation of a synthetic multi-TLR2/TLR7 agonist and coated with a model B cell PRRSV antigen. For comparison, empty particles and adjuvanted particles encapsulating inactivated PRRSV-1 were prepared. Vaccination with the particulate formulations induced antigen-specific antibody responses, which were most pronounced following booster immunisation. M and NSP5-specific CD4, but not CD8, T cell IFN-γ reactivity was measurable following the booster immunisation in a proportion of animals vaccinated with peptide-loaded particles. Upon challenge, CD4 and CD8 T cell reactivity was detected in all groups, with the greatest responses being detected in the peptide vaccinated group but with limited evidence of an enhanced control of viraemia. Analysis of the lungs during the resolution of infection showed significant M/NSP5 specific IFN-γ responses from CD8 rather than CD4 T cells. Vaccine primed CD8 T cell responses may therefore be required for protection and future work should focus on enhancing the cross-presentation of M/NSP5 to CD8 T cells.
Collapse
Affiliation(s)
- Helen Mokhtar
- Virology Department, Animal and Plant Health Agency, Addlestone, KT15 3NB, United Kingdom; Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, United Kingdom
| | - Lucia Biffar
- Virology Department, Animal and Plant Health Agency, Addlestone, KT15 3NB, United Kingdom
| | - Satyanarayana Somavarapu
- School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom
| | - Jean-Pierre Frossard
- Virology Department, Animal and Plant Health Agency, Addlestone, KT15 3NB, United Kingdom
| | - Sarah McGowan
- Virology Department, Animal and Plant Health Agency, Addlestone, KT15 3NB, United Kingdom
| | - Miriam Pedrera
- Virology Department, Animal and Plant Health Agency, Addlestone, KT15 3NB, United Kingdom
| | - Rebecca Strong
- Virology Department, Animal and Plant Health Agency, Addlestone, KT15 3NB, United Kingdom
| | - Jane C Edwards
- Virology Department, Animal and Plant Health Agency, Addlestone, KT15 3NB, United Kingdom
| | | | | | - Graham R Stewart
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, United Kingdom
| | - Falko Steinbach
- Virology Department, Animal and Plant Health Agency, Addlestone, KT15 3NB, United Kingdom; Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, United Kingdom
| | - Simon P Graham
- Virology Department, Animal and Plant Health Agency, Addlestone, KT15 3NB, United Kingdom; Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, United Kingdom.
| |
Collapse
|
120
|
Granier C, Soumelis V, Mandavit M, Gibault L, Belazzoug R, de Guillebon E, Badoual C, Tartour E, Roussel H. Les « immune checkpoints », comment ça marche. Ann Pathol 2017; 37:18-28. [DOI: 10.1016/j.annpat.2016.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 12/06/2016] [Indexed: 01/21/2023]
|
121
|
Pagès F, Granier C, Kirilovsky A, Elsissy C, Tartour E. Biomarqueurs prédictifs de réponse aux traitements bloquant les voies de costimulation inhibitrices. Bull Cancer 2017; 103 Suppl 1:S151-S159. [PMID: 28057179 DOI: 10.1016/s0007-4551(16)30373-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Immunotherapies targeting co-inhibitory receptors recently open a new promising approach of cancer treatment. Indeed, an objective clinical response was observed after treatment by anti-CTLA-4 and anti-PD-1 in many indications but the treatment still failed in 70 to 80 % of cases treated. Given the adverse effects and the high cost of these therapies, there is a need for the development of biomarkers. This review focus on potential predictive biomarkers. In peripheral blood, high level of Il-2 soluble receptor at baseline and absence of ICOS+ CD4-T lymphocytes induction may be associated with the absence of clinical response for melanoma patients treated by ipilimumab (anti-CTLA-4). PD-L1 - PD-1 ligand- expression on cancer lung adenocarcinoma and melanoma is associated with an improved clinical response to anti-PD-1/PD-L1. Nevertheless, a standardization of the biological assays is needed before a clinical translation. CD8-T cell tumor infiltration seems to be a prerequisite to an optimal clinical response after anti-PD-1/PD-L1 administration. In situ high mutational load is associated with a CD8-T cell infiltration and a higher rate of anti-PD-1 and anti-CTLA-4 response. If we consider a more holistic approach, the role of the gut microbiota in the response to these treatments is now well established in pre-clinical experiments. The universal marker is not identified so far, but the reliable marker should be in the tumor compartment and combining multiples markers could be suitable to predict response in different contexts.
Collapse
Affiliation(s)
- Franck Pagès
- Service d'immunologie biologique, plateforme d'immunomonitoring, hôpital européen Georges-Pompidou, AP-HP, Paris, France; Centre de recherche des Cordeliers, INSERM, eq15, UMRS 1138, Paris, France.
| | - Clémence Granier
- Université Paris-Descartes, Sorbonne-Paris-Cité, INSERM U970, Paris, France
| | - Amos Kirilovsky
- Service d'immunologie biologique, plateforme d'immunomonitoring, hôpital européen Georges-Pompidou, AP-HP, Paris, France; Centre de recherche des Cordeliers, INSERM, eq15, UMRS 1138, Paris, France
| | - Carine Elsissy
- Service d'immunologie biologique, plateforme d'immunomonitoring, hôpital européen Georges-Pompidou, AP-HP, Paris, France; Centre de recherche des Cordeliers, INSERM, eq15, UMRS 1138, Paris, France
| | - Eric Tartour
- Service d'immunologie biologique, plateforme d'immunomonitoring, hôpital européen Georges-Pompidou, AP-HP, Paris, France; Université Paris-Descartes, Sorbonne-Paris-Cité, INSERM U970, Paris, France.
| |
Collapse
|
122
|
Davies MN, Pere H, Bosschem I, Haesebrouck F, Flahou B, Tartour E, Flower DR, Tough DF, Bayry J. In Silico Adjuvant Design and Validation. Methods Mol Biol 2017; 1494:107-125. [PMID: 27718189 DOI: 10.1007/978-1-4939-6445-1_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Adjuvants are substances that boost the protective immune response to vaccine antigens. The majority of known adjuvants have been identified through the use of empirical approaches. Our aim was to identify novel adjuvants with well-defined cellular and molecular mechanisms by combining a knowledge of immunoregulatory mechanisms with an in silico approach. CD4+CD25+FoxP3+ regulatory T cells (Tregs) inhibit the protective immune responses to vaccines by suppressing the activation of antigen presenting cells such as dendritic cells (DCs). In this chapter, we describe the identification and functional validation of small molecule antagonists to CCR4, a chemokine receptor expressed on Tregs. The CCR4 binds the chemokines CCL22 and CCL17 that are produced in large amounts by activated innate cells including DCs. In silico identified small molecule CCR4 antagonists inhibited the migration of Tregs both in vitro and in vivo and when combined with vaccine antigens, significantly enhanced protective immune responses in experimental models.
Collapse
Affiliation(s)
- Matthew N Davies
- Translational Oncogenomics Laboratory, Centre for Evolution and Cancer, Division of Molecular Pathology, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Helene Pere
- INSERM U970 PARCC (Paris Cardiovascular Research Center), Université Paris Descartes, Sorbonne Paris Cité, Paris, 75015, France
- Hôpital Européen Georges-Pompidou, Service d'Immunologie Biologique, AP-HP, Paris, 75015, France
| | - Iris Bosschem
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Bram Flahou
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Eric Tartour
- INSERM U970 PARCC (Paris Cardiovascular Research Center), Université Paris Descartes, Sorbonne Paris Cité, Paris, 75015, France
- Hôpital Européen Georges-Pompidou, Service d'Immunologie Biologique, AP-HP, Paris, 75015, France
| | - Darren R Flower
- School of Life and Health Sciences, University of Aston, Aston Triangle, Birmingham, B4 7ET, UK
| | - David F Tough
- Epinova Discovery Performance Unit, Immuno-inflammation Therapeutic Area, GlaxoSmithKline, Medicines Discovery Centre, SG1 2NY, Stevenage, UK
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale, Unité 1138, Paris, 75006, France.
- Equipe-Immunopathology and Therapeutic Immunointervention, Centre de Recherche des Cordeliers, 15 rue de l'Ecole de Médicine, Paris, 75006, France.
- Sorbonne Universités, UPMC Universités Paris 06, UMR S 1138, Paris, 75006, France.
- Université Paris Descartes, Sorbonne Paris Cité, UMR S 1138, Paris, 75006, France.
| |
Collapse
|
123
|
Shahjahan Miah SM, Erick TK, Emerich DF. Dendritic Cell-Based Cancer Therapies: Current Status and Future Directions. CELL THERAPY 2017. [DOI: 10.1007/978-3-319-57153-9_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
124
|
Murray T, Fuertes Marraco SA, Baumgaertner P, Bordry N, Cagnon L, Donda A, Romero P, Verdeil G, Speiser DE. Very Late Antigen-1 Marks Functional Tumor-Resident CD8 T Cells and Correlates with Survival of Melanoma Patients. Front Immunol 2016; 7:573. [PMID: 28018343 PMCID: PMC5150229 DOI: 10.3389/fimmu.2016.00573] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 11/23/2016] [Indexed: 11/13/2022] Open
Abstract
A major limiting factor in the success of immunotherapy is tumor infiltration by CD8+ T cells, a process that remains poorly understood. In the present study, we characterized homing receptors expressed by human melanoma-specific CD8+ T cells. Our data reveal that P-selectin binding and expression of the retention integrin, very late antigen (VLA)-1, by vaccine-induced T cells correlate with longer patient survival. Furthermore, we demonstrate that CD8+VLA-1+ tumor-infiltrating lymphocytes (TILs) are highly enriched in melanoma metastases in diverse tissues. VLA-1-expressing TIL frequently co-express CD69 and CD103, indicating tissue-resident memory T cells (TRM) differentiation. We employed a mouse model of melanoma to further characterize VLA-1-expressing TIL. Our data show that VLA-1+ TRM develop in murine tumors within 2 weeks, where they exhibit increased activation status, as well as superior effector functions. In addition, in vivo blockade of either VLA-1 or CD103 significantly impaired control of subcutaneous tumors. Together, our data indicate that VLA-1+ TRM develop in tumors and play an important role in tumor immunity, presenting novel targets for the optimization of cancer immunotherapy.
Collapse
Affiliation(s)
- Timothy Murray
- Ludwig Cancer Research, Department of Oncology, University of Lausanne , Lausanne , Switzerland
| | | | - Petra Baumgaertner
- Ludwig Cancer Research, Department of Oncology, University of Lausanne , Lausanne , Switzerland
| | - Natacha Bordry
- Ludwig Cancer Research, Department of Oncology, University of Lausanne , Lausanne , Switzerland
| | - Laurène Cagnon
- Ludwig Cancer Research, Department of Oncology, University of Lausanne , Lausanne , Switzerland
| | - Alena Donda
- Ludwig Cancer Research, Department of Oncology, University of Lausanne , Lausanne , Switzerland
| | - Pedro Romero
- Ludwig Cancer Research, Department of Oncology, University of Lausanne , Lausanne , Switzerland
| | - Grégory Verdeil
- Ludwig Cancer Research, Department of Oncology, University of Lausanne , Lausanne , Switzerland
| | - Daniel E Speiser
- Ludwig Cancer Research, Department of Oncology, University of Lausanne , Lausanne , Switzerland
| |
Collapse
|
125
|
Rivino L, Lim MQ. CD4 + and CD8 + T-cell immunity to Dengue - lessons for the study of Zika virus. Immunology 2016; 150:146-154. [PMID: 27763656 DOI: 10.1111/imm.12681] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/12/2016] [Accepted: 10/17/2016] [Indexed: 12/11/2022] Open
Abstract
Dengue virus (DENV) and Zika virus (ZIKV) are rapidly emerging mosquito-borne flaviviruses that represent a public health concern. Understanding host protective immunity to these viruses is critical for the design of optimal vaccines. Over a decade of research has highlighted a significant contribution of the T-cell response to both protection and/or disease enhancement during DENV infection, the latter being mainly associated with sub-optimal cross-reactive T-cell responses during secondary infections. Phase IIb/III clinical trials of the first licensed tetravalent dengue vaccine highlight increased vaccine efficacy in dengue-immune as opposed to dengue-naive vaccinees, suggesting a possible immunoprotective role of pre-existing DENV-specific T cells that are boosted upon vaccination. No vaccine is available for ZIKV and little is known about the T-cell response to this virus. ZIKV and DENV are closely related viruses with a sequence identity ranging from 44% and 56% for the structural proteins capsid and envelope to 68% for the more conserved non-structural proteins NS3/NS5, which represent the main targets of the CD4+ and CD8+ T-cell response to DENV, respectively. In this review we discuss our current knowledge of T-cell immunity to DENV and what it can teach us for the study of ZIKV. The extent of T-cell cross-reactivity towards ZIKV of pre-existing DENV-specific memory T cells and its potential impact on protective immunity and/or immunopathology will also be discussed.
Collapse
Affiliation(s)
- Laura Rivino
- Emerging Infectious Disease Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Mei Qiu Lim
- Emerging Infectious Disease Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
126
|
Brinza L, Djebali S, Tomkowiak M, Mafille J, Loiseau C, Jouve PE, de Bernard S, Buffat L, Lina B, Ottmann M, Rosa-Calatrava M, Schicklin S, Bonnefoy N, Lauvau G, Grau M, Wencker M, Arpin C, Walzer T, Leverrier Y, Marvel J. Immune signatures of protective spleen memory CD8 T cells. Sci Rep 2016; 6:37651. [PMID: 27883012 PMCID: PMC5121635 DOI: 10.1038/srep37651] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/28/2016] [Indexed: 01/09/2023] Open
Abstract
Memory CD8 T lymphocyte populations are remarkably heterogeneous and differ in their ability to protect the host. In order to identify the whole range of qualities uniquely associated with protective memory cells we compared the gene expression signatures of two qualities of memory CD8 T cells sharing the same antigenic-specificity: protective (Influenza-induced, Flu-TM) and non-protective (peptide-induced, TIM) spleen memory CD8 T cells. Although Flu-TM and TIM express classical phenotypic memory markers and are polyfunctional, only Flu-TM protects against a lethal viral challenge. Protective memory CD8 T cells express a unique set of genes involved in migration and survival that correlate with their unique capacity to rapidly migrate within the infected lung parenchyma in response to influenza infection. We also enlighten a new set of poised genes expressed by protective cells that is strongly enriched in cytokines and chemokines such as Ccl1, Ccl9 and Gm-csf. CCL1 and GM-CSF genes are also poised in human memory CD8 T cells. These immune signatures are also induced by two other pathogens (vaccinia virus and Listeria monocytogenes). The immune signatures associated with immune protection were identified on circulating cells, i.e. those that are easily accessible for immuno-monitoring and could help predict vaccines efficacy.
Collapse
Affiliation(s)
- Lilia Brinza
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, F-69007, LYON, France
| | - Sophia Djebali
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, F-69007, LYON, France
| | - Martine Tomkowiak
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, F-69007, LYON, France
| | - Julien Mafille
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, F-69007, LYON, France
| | - Céline Loiseau
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, F-69007, LYON, France
| | | | | | | | - Bruno Lina
- Laboratoire Virpath EA4610, Faculté de Médecine Lyon Est, Université Claude Bernard Lyon 1, Université de Lyon, France.,Laboratoire de Virologie, CNR des virus influenza, Hospices Civils de Lyon, Lyon, France
| | - Michèle Ottmann
- Laboratoire Virpath EA4610, Faculté de Médecine Lyon Est, Université Claude Bernard Lyon 1, Université de Lyon, France
| | - Manuel Rosa-Calatrava
- Laboratoire Virpath EA4610, Faculté de Médecine Lyon Est, Université Claude Bernard Lyon 1, Université de Lyon, France
| | - Stéphane Schicklin
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, F-69007, LYON, France
| | - Nathalie Bonnefoy
- IRCM, Institut de Recherche en Cancérologie de Montpellier; INSERM, U896; Université Montpellier 1; CRLC Val d'Aurelle Paul Lamarque, Montpellier, France
| | - Grégoire Lauvau
- Albert Einstein College of Medicine, Department of Microbiology and Immunology, Bronx, NY 10461, USA
| | - Morgan Grau
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, F-69007, LYON, France
| | - Mélanie Wencker
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, F-69007, LYON, France
| | - Christophe Arpin
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, F-69007, LYON, France
| | - Thierry Walzer
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, F-69007, LYON, France
| | - Yann Leverrier
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, F-69007, LYON, France
| | - Jacqueline Marvel
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, F-69007, LYON, France
| |
Collapse
|
127
|
Is There Still Room for Cancer Vaccines at the Era of Checkpoint Inhibitors. Vaccines (Basel) 2016; 4:vaccines4040037. [PMID: 27827885 PMCID: PMC5192357 DOI: 10.3390/vaccines4040037] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 10/23/2016] [Accepted: 10/31/2016] [Indexed: 02/07/2023] Open
Abstract
Checkpoint inhibitor (CPI) blockade is considered to be a revolution in cancer therapy, although most patients (70%–80%) remain resistant to this therapy. It has been hypothesized that only tumors with high mutation rates generate a natural antitumor T cell response, which could be revigorated by this therapy. In patients with no pre-existing antitumor T cells, a vaccine-induced T cell response is a rational option to counteract clinical resistance. This hypothesis has been validated in preclinical models using various cancer vaccines combined with inhibitory pathway blockade (PD-1-PDL1-2, CTLA-4-CD80-CD86). Enhanced T cell infiltration of various tumors has been demonstrated following this combination therapy. The timing of this combination appears to be critical to the success of this therapy and multiple combinations of immunomodulating antibodies (CPI antagonists or costimulatory pathway agonists) have reinforced the synergy with cancer vaccines. Only limited results are available in humans and this combined approach has yet to be validated. Comprehensive monitoring of the regulation of CPI and costimulatory molecules after administration of immunomodulatory antibodies (anti-PD1/PD-L1, anti-CTLA-4, anti-OX40, etc.) and cancer vaccines should help to guide the selection of the best combination and timing of this therapy.
Collapse
|
128
|
Kakhi Z, Frisch B, Heurtault B, Pons F. Liposomal constructs for antitumoral vaccination by the nasal route. Biochimie 2016; 130:14-22. [DOI: 10.1016/j.biochi.2016.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 07/06/2016] [Indexed: 11/27/2022]
|
129
|
Daillère R, Vétizou M, Waldschmitt N, Yamazaki T, Isnard C, Poirier-Colame V, Duong CPM, Flament C, Lepage P, Roberti MP, Routy B, Jacquelot N, Apetoh L, Becharef S, Rusakiewicz S, Langella P, Sokol H, Kroemer G, Enot D, Roux A, Eggermont A, Tartour E, Johannes L, Woerther PL, Chachaty E, Soria JC, Golden E, Formenti S, Plebanski M, Madondo M, Rosenstiel P, Raoult D, Cattoir V, Boneca IG, Chamaillard M, Zitvogel L. Enterococcus hirae and Barnesiella intestinihominis Facilitate Cyclophosphamide-Induced Therapeutic Immunomodulatory Effects. Immunity 2016; 45:931-943. [PMID: 27717798 DOI: 10.1016/j.immuni.2016.09.009] [Citation(s) in RCA: 568] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 06/28/2016] [Accepted: 07/22/2016] [Indexed: 12/11/2022]
Abstract
The efficacy of the anti-cancer immunomodulatory agent cyclophosphamide (CTX) relies on intestinal bacteria. How and which relevant bacterial species are involved in tumor immunosurveillance, and their mechanism of action are unclear. Here, we identified two bacterial species, Enterococcus hirae and Barnesiella intestinihominis that are involved during CTX therapy. Whereas E. hirae translocated from the small intestine to secondary lymphoid organs and increased the intratumoral CD8/Treg ratio, B. intestinihominis accumulated in the colon and promoted the infiltration of IFN-γ-producing γδT cells in cancer lesions. The immune sensor, NOD2, limited CTX-induced cancer immunosurveillance and the bioactivity of these microbes. Finally, E. hirae and B. intestinihominis specific-memory Th1 cell immune responses selectively predicted longer progression-free survival in advanced lung and ovarian cancer patients treated with chemo-immunotherapy. Altogether, E. hirae and B. intestinihominis represent valuable "oncomicrobiotics" ameliorating the efficacy of the most common alkylating immunomodulatory compound.
Collapse
Affiliation(s)
- Romain Daillère
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, Villejuif, 94805, France; Institut National de la Santé Et de la Recherche Medicale (INSERM), U1015, GRCC, Villejuif, 94805, France; University of Paris-Saclay, Kremlin Bicêtre, 94270, France
| | - Marie Vétizou
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, Villejuif, 94805, France; Institut National de la Santé Et de la Recherche Medicale (INSERM), U1015, GRCC, Villejuif, 94805, France; University of Paris-Saclay, Kremlin Bicêtre, 94270, France
| | - Nadine Waldschmitt
- University Lille, CNRS, Inserm, CHRU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL, Centre d'Infection et d'Immunité de Lille, 59000 Lille, France
| | - Takahiro Yamazaki
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, Villejuif, 94805, France; Institut National de la Santé Et de la Recherche Medicale (INSERM), U1015, GRCC, Villejuif, 94805, France
| | - Christophe Isnard
- Université de Caen Basse-Normandie, EA4655 U2RM (Équipe Antibio-Résistance), Caen, 14033, France; CHU de Caen, Service de Microbiologie, Caen, 14033, France
| | - Vichnou Poirier-Colame
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, Villejuif, 94805, France; Institut National de la Santé Et de la Recherche Medicale (INSERM), U1015, GRCC, Villejuif, 94805, France; University of Paris-Saclay, Kremlin Bicêtre, 94270, France
| | - Connie P M Duong
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, Villejuif, 94805, France; Institut National de la Santé Et de la Recherche Medicale (INSERM), U1015, GRCC, Villejuif, 94805, France; Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, 94805, France
| | - Caroline Flament
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, Villejuif, 94805, France; Institut National de la Santé Et de la Recherche Medicale (INSERM), U1015, GRCC, Villejuif, 94805, France; Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, 94805, France
| | - Patricia Lepage
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Maria Paula Roberti
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, Villejuif, 94805, France; Institut National de la Santé Et de la Recherche Medicale (INSERM), U1015, GRCC, Villejuif, 94805, France; Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, 94805, France
| | - Bertrand Routy
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, Villejuif, 94805, France; Institut National de la Santé Et de la Recherche Medicale (INSERM), U1015, GRCC, Villejuif, 94805, France; University of Paris-Saclay, Kremlin Bicêtre, 94270, France
| | - Nicolas Jacquelot
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, Villejuif, 94805, France; Institut National de la Santé Et de la Recherche Medicale (INSERM), U1015, GRCC, Villejuif, 94805, France; University of Paris-Saclay, Kremlin Bicêtre, 94270, France
| | - Lionel Apetoh
- Lipids, Nutrition, Cancer, INSERM, U866, Dijon, 21078, France; Department of Medicine, Université de Bourgogne Franche-Comté, Dijon, 21078, France; Department of Oncology, Centre Georges François Leclerc, Dijon, 21000, France
| | - Sonia Becharef
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, Villejuif, 94805, France; Institut National de la Santé Et de la Recherche Medicale (INSERM), U1015, GRCC, Villejuif, 94805, France; Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, 94805, France
| | - Sylvie Rusakiewicz
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, Villejuif, 94805, France; Institut National de la Santé Et de la Recherche Medicale (INSERM), U1015, GRCC, Villejuif, 94805, France; Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, 94805, France
| | - Philippe Langella
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Harry Sokol
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France; AVENIR Team Gut Microbiota and Immunity, ERL, INSERM U 1157/UMR 7203, Faculté de Médecine, Saint-Antoine, Université Pierre et Marie Curie (UPMC), Paris, 75012, France; Service de Gastroentérologie, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris (APHP), Paris, 75012, France
| | - Guido Kroemer
- INSERM U848, 94805 Villejuif, France; Metabolomics Platform, Institut Gustave Roussy, Villejuif, 94805, France; Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, INSERM U 1138, Paris, 75006, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, 75015, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, 75006, France; Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, 17176, Sweden
| | - David Enot
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, Villejuif, 94805, France; Metabolomics Platform, Institut Gustave Roussy, Villejuif, 94805, France
| | - Antoine Roux
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, Villejuif, 94805, France; Institut National de la Santé Et de la Recherche Medicale (INSERM), U1015, GRCC, Villejuif, 94805, France; University of Paris-Saclay, Kremlin Bicêtre, 94270, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, 75006, France
| | - Alexander Eggermont
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, Villejuif, 94805, France; University of Paris-Saclay, Kremlin Bicêtre, 94270, France
| | - Eric Tartour
- INSERM U970, Paris Cardiovascular Research Center, Université Paris-Descartes, Sorbonne Paris Cité, Paris, 75015, France; Service d'immunologie biologique, Hôpital Européen Georges Pompidou, Paris, 75015 France
| | - Ludger Johannes
- INSERM U1143, 75005 Paris, France; Institut Curie, PSL Research University, Endocytic Trafficking and Therapeutic Delivery group, Paris, 75248, France; CNRS UMR 3666, Paris, 75005, France
| | | | | | - Jean-Charles Soria
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, Villejuif, 94805, France; University of Paris-Saclay, Kremlin Bicêtre, 94270, France
| | - Encouse Golden
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Silvia Formenti
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Magdalena Plebanski
- Department of Immunology and Pathology, Monash University, Alfred Hospital Precinct, Melbourne, Prahran, Victoria 3181, Australia
| | - Mutsa Madondo
- Department of Immunology and Pathology, Monash University, Alfred Hospital Precinct, Melbourne, Prahran, Victoria 3181, Australia
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Didier Raoult
- AIX MARSEILLE UNIVERSITE, URMITE (Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes), UMR 7278, INSERM 1095, IRD 198, Faculté de Médecine, Marseille 13005, France
| | - Vincent Cattoir
- Université de Caen Basse-Normandie, EA4655 U2RM (Équipe Antibio-Résistance), Caen, 14033, France; CHU de Caen, Service de Microbiologie, Caen, 14033, France; CNR de la Résistance aux Antibiotiques, Laboratoire Associé Entérocoques, Caen, 14033, France
| | - Ivo Gomperts Boneca
- Institut Pasteur, Unit Biology and Genetics of the bacterial Cell Wall, Paris, 75015, France
| | - Mathias Chamaillard
- University Lille, CNRS, Inserm, CHRU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL, Centre d'Infection et d'Immunité de Lille, 59000 Lille, France
| | - Laurence Zitvogel
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, Villejuif, 94805, France; Institut National de la Santé Et de la Recherche Medicale (INSERM), U1015, GRCC, Villejuif, 94805, France; University of Paris-Saclay, Kremlin Bicêtre, 94270, France; Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, 94805, France.
| |
Collapse
|
130
|
Granier C, Karaki S, Roussel H, Badoual C, Tran T, Anson M, Fabre E, Oudard S, Tartour E. Immunothérapie des cancers : rationnel et avancées récentes. Rev Med Interne 2016; 37:694-700. [DOI: 10.1016/j.revmed.2016.05.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 05/28/2016] [Indexed: 12/24/2022]
|
131
|
Ruane D, Do Y, Brane L, Garg A, Bozzacco L, Kraus T, Caskey M, Salazar A, Trumpheller C, Mehandru S. A dendritic cell targeted vaccine induces long-term HIV-specific immunity within the gastrointestinal tract. Mucosal Immunol 2016; 9:1340-52. [PMID: 26732678 PMCID: PMC5819881 DOI: 10.1038/mi.2015.133] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 11/20/2015] [Indexed: 02/04/2023]
Abstract
Despite significant therapeutic advances for HIV-1 infected individuals, a preventative HIV-1 vaccine remains elusive. Studies focusing on early transmission events, including the observation that there is a profound loss of gastrointestinal (GI) CD4(+) T cells during acute HIV-1 infection, highlight the importance of inducing HIV-specific immunity within the gut. Here we report on the generation of cellular and humoral immune responses in the intestines by a mucosally administered, dendritic cell (DC) targeted vaccine. Our results show that nasally delivered α-CD205-p24 vaccine in combination with polyICLC, induced polyfunctional immune responses within naso-pulmonary lymphoid sites that disseminated widely to systemic and mucosal (GI tract and the vaginal epithelium) sites. Qualitatively, while α-CD205-p24 prime-boost immunization generated CD4(+) T-cell responses, heterologous prime-boost immunization with α-CD205-p24 and NYVAC gag-p24 generated high levels of HIV-specific CD4(+) and CD8(+) T cells within the GI tract. Finally, DC-targeting enhanced the amplitude and longevity of vaccine-induced immune responses in the GI tract. This is the first report of a nasally delivered, DC-targeted vaccine to generate HIV-specific immune responses in the GI tract and will potentially inform the design of preventative approaches against HIV-1 and other mucosal infections.
Collapse
MESH Headings
- AIDS Vaccines/administration & dosage
- AIDS Vaccines/biosynthesis
- AIDS Vaccines/immunology
- Administration, Intranasal
- Animals
- Antigens, CD/genetics
- Antigens, CD/immunology
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- Carboxymethylcellulose Sodium/analogs & derivatives
- Carboxymethylcellulose Sodium/pharmacology
- Dendritic Cells/cytology
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Female
- Gastrointestinal Tract/cytology
- Gastrointestinal Tract/drug effects
- Gastrointestinal Tract/immunology
- HIV Core Protein p24/genetics
- HIV Core Protein p24/immunology
- HIV Infections/immunology
- HIV Infections/prevention & control
- HIV Infections/virology
- HIV-1/genetics
- HIV-1/immunology
- Humans
- Immunity, Cellular/drug effects
- Immunity, Humoral/drug effects
- Immunization, Secondary
- Interferon Inducers/pharmacology
- Lectins, C-Type/genetics
- Lectins, C-Type/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Minor Histocompatibility Antigens/genetics
- Minor Histocompatibility Antigens/immunology
- Poly I-C/pharmacology
- Polylysine/analogs & derivatives
- Polylysine/pharmacology
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/immunology
- Vaccination/methods
- Viral Vaccines/administration & dosage
- Viral Vaccines/immunology
- gag Gene Products, Human Immunodeficiency Virus/genetics
- gag Gene Products, Human Immunodeficiency Virus/immunology
Collapse
Affiliation(s)
- D Ruane
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Laboratory of Cellular Physiology and Immunology, Rockefeller University, New York, New York, USA
| | - Y Do
- Laboratory of Cellular Physiology and Immunology, Rockefeller University, New York, New York, USA
- School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - L Brane
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Laboratory of Cellular Physiology and Immunology, Rockefeller University, New York, New York, USA
| | - A Garg
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - L Bozzacco
- Laboratory of Cellular Physiology and Immunology, Rockefeller University, New York, New York, USA
| | - T Kraus
- Division of Obstetrics, Gynecology and Reproductive Science Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - M Caskey
- Laboratory of Cellular Physiology and Immunology, Rockefeller University, New York, New York, USA
| | - A Salazar
- Oncovir, Washington, District of Columbia, USA
| | - C Trumpheller
- Laboratory of Cellular Physiology and Immunology, Rockefeller University, New York, New York, USA
| | - S Mehandru
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Laboratory of Cellular Physiology and Immunology, Rockefeller University, New York, New York, USA
| |
Collapse
|
132
|
Vaccine-induced tumor regression requires a dynamic cooperation between T cells and myeloid cells at the tumor site. Oncotarget 2016; 6:27832-46. [PMID: 26337837 PMCID: PMC4695029 DOI: 10.18632/oncotarget.4940] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/29/2015] [Indexed: 12/31/2022] Open
Abstract
Most cancer immunotherapies under present investigation are based on the belief that cytotoxic T cells are the most important anti-tumoral immune cells, whereas intra-tumoral macrophages would rather play a pro-tumoral role. We have challenged this antagonistic point of view and searched for collaborative contributions by tumor-infiltrating T cells and macrophages, reminiscent of those observed in anti-infectious responses. We demonstrate that, in a model of therapeutic vaccination, cooperation between myeloid cells and T cells is indeed required for tumor rejection. Vaccination elicited an early rise of CD11b+ myeloid cells that preceded and conditioned the intra-tumoral accumulation of CD8+ T cells. Conversely, CD8+ T cells and IFNγ production activated myeloid cells were required for tumor regression. A 4-fold reduction of CD8+ T cell infiltrate in CXCR3KO mice did not prevent tumor regression, whereas a reduction of tumor-infiltrating myeloid cells significantly interfered with vaccine efficiency. We show that macrophages from regressing tumors can kill tumor cells in two ways: phagocytosis and TNFα release. Altogether, our data suggest new strategies to improve the efficiency of cancer immunotherapies, by promoting intra-tumoral cooperation between macrophages and T cells.
Collapse
|
133
|
Abstract
Cancer heterogeneity, a hallmark enabling clonal survival and therapy resistance, is shaped by active immune responses. Antigen-specific T cells can control cancer, as revealed clinically by immunotherapeutics such as adoptive T-cell transfer and checkpoint blockade. The host immune system is thus a powerful tool that, if better harnessed, could significantly enhance the efficacy of cytotoxic therapy and improve outcomes for cancer sufferers. To realize this vision, however, a number of research frontiers must be tackled. These include developing strategies for neutralizing tumor-promoting inflammation, broadening T-cell repertoires (via vaccination), and elucidating the mechanisms by which immune cells organize tumor microenvironments to regulate T-cell activity. Such efforts will pave the way for identifying new targets for combination therapies that overcome resistance to current treatments and promote long-term cancer control.
Collapse
|
134
|
Choi YW, Kang MC, Seo YB, Namkoong H, Park Y, Choi DH, Suh YS, Lee SW, Sung YC, Jin HT. Intravaginal Administration of Fc-Fused IL7 Suppresses the Cervicovaginal Tumor by Recruiting HPV DNA Vaccine-Induced CD8 T Cells. Clin Cancer Res 2016; 22:5898-5908. [PMID: 27407095 DOI: 10.1158/1078-0432.ccr-16-0423] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 06/01/2016] [Accepted: 06/21/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE The induction of tissue-localized virus-specific CD8 T-cell response is essential for the development of an effective therapeutic vaccine against genital diseases, such as cervical cancer and genital herpes. Here, we aimed to elucidate the immunologic role of IL7 in the induction of mucosal cellular immunity. EXPERIMENTAL DESIGN IL7 was engineered through Fc fusion to enhance mucosal delivery across the genital epithelial barrier. The immunomodulatory role of IL7 was evaluated by monitoring the kinetics of various immune cells and measuring the expression of chemokines and cytokines after intravaginal administration of Fc-fused IL7 (IL7-Fc). The antitumor effects of intramuscular human papillomavirus (HPV) DNA vaccine or topical IL7-Fc alone or in a combinational regimen on mice survival were compared using a orthotopic cervical cancer model. RESULTS Intravaginal treatment of IL7-Fc, but not native IL7, induces upregulation of chemokines (CXCL10, CCL3, CCL4, and CCL5), cytokines (IFNγ, TNFα, IL6, and IL1β), and an adhesion molecule (VCAM-1) in the genital tract, leading to the recruitment of several leukocytes, including CD4, CD8, γδ T cells, and dendritic cells. Importantly, in this murine cervical cancer model, topical administration of IL7-Fc after intramuscular HPV DNA vaccination increases the number of HPV-specific CD8 T cells in the genital mucosa, but not in the spleen, leading to stronger antitumor activity than the HPV DNA vaccine alone. CONCLUSIONS Our findings provide an important insight into the immunomodulatory role of IL7-Fc via topical application and the design of therapeutic vaccine regimen that induces effective genital-mucosal CD8 T-cell responses. Clin Cancer Res; 22(23); 5898-908. ©2016 AACR.
Collapse
Affiliation(s)
- Young Woo Choi
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Moon Cheol Kang
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Yong Bok Seo
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Hong Namkoong
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Yunji Park
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Dong-Hoon Choi
- Research Institute, Genexine Inc., Korea Bio Park, Seongnam, Gyeonggi-do, Republic of Korea
| | - You Suk Suh
- Research Institute, Genexine Inc., Korea Bio Park, Seongnam, Gyeonggi-do, Republic of Korea
| | - Seung-Woo Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea.,Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Young Chul Sung
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea. .,Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea.,Research Institute, Genexine Inc., Korea Bio Park, Seongnam, Gyeonggi-do, Republic of Korea
| | - Hyun-Tak Jin
- Research Institute, Biodion Inc, Korea Bio Park, Seongnam, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
135
|
Macedo R, Rochefort J, Guillot-Delost M, Tanaka K, Le Moignic A, Noizat C, Baillou C, Mateo V, Carpentier AF, Tartour E, Bertolus C, Bellier B, Lescaille G, Lemoine FM. Intra-cheek immunization as a novel vaccination route for therapeutic vaccines of head and neck squamous cell carcinomas using plasmo virus-like particles. Oncoimmunology 2016; 5:e1164363. [PMID: 27622018 DOI: 10.1080/2162402x.2016.1164363] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/26/2016] [Accepted: 03/07/2016] [Indexed: 01/30/2023] Open
Abstract
Despite current therapy, head and neck squamous cell carcinomas (HNSCCs) arising from various mucosal sites of the upper aero-digestive tract frequently relapse in a loco-regional manner and have a poor prognosis. Our objective was to validate an innovative mucosal route of vaccination using plasmo virus-like particles (pVLPs) in a pre-clinical orthotopic model of HNSCCs. For this purpose, we used pVLP-E7, that are plasmid DNA encoding retroviral virus-like particles carrying a truncated E7 oncoprotein from HPV-16 as antigen model, to vaccinate mice bearing pre-established TC-1 tumors implanted into the buccal mucosa. pVLP-E7 were combined with clinical grade TLR agonists (Imiquimod and CpG-ODN). In this pre-clinical orthotopic model, whose tumor microenvironment resembles to those of human HNSCCs, different mucosal vaccination routes were tested for their ability to elicit efficient immune and antitumoral responses. Results showed that mucosal intra-cheek (IC) vaccinations using pVLP-E7, comparatively to intradermic vaccinations (ID), gave rise to higher mobilization of mucosal (CD49a(+)) CD8(+) specific effector T cells in both tumor draining lymph nodes (TdLNs) and tumor microenvironment resulting in better antitumor effects and in a long-term protection against tumor rechallenge. In vivo CD8(+) depletion demonstrated that antitumoral effects were fully dependent upon the presence of CD8(+) T cells. Validation of IC mucosal vaccinations with pVLPs combined with adjuvants using a pre-clinical orthotopic model of HNSCC provides valuable pre-clinical data to rapidly envision the use of such therapeutic vaccines in patients with HNSCCs, inasmuch as vaccinal components and adjuvants can be easily obtained as clinical grade reagents.
Collapse
Affiliation(s)
- Rodney Macedo
- Sorbonne Universités, UPMC/Paris 06, UMR-S INSERM U1135, CNRS ERL 8255, Center d'Immunologie et Maladies Infectieuses (CIMI-Paris) , Paris, France
| | - Juliette Rochefort
- Sorbonne Universités, UPMC/Paris 06, UMR-S INSERM U1135, CNRS ERL 8255, Center d'Immunologie et Maladies Infectieuses (CIMI-Paris), Paris, France; Paris Diderot/Paris 07, Sorbonne Paris Cité, Assistance Publique-Hôpitaux de Paris (AP-HP), Groupe hospitalier Pitié-Salpêtrière, Department of Odontology, Paris, France
| | - Maude Guillot-Delost
- Sorbonne Universités, UPMC/Paris 06, UMR-S INSERM U1135, CNRS ERL 8255, Center d'Immunologie et Maladies Infectieuses (CIMI-Paris) , Paris, France
| | - Kae Tanaka
- Sorbonne Universités, UPMC/Paris 06, UMR-S INSERM U1135, CNRS ERL 8255, Center d'Immunologie et Maladies Infectieuses (CIMI-Paris) , Paris, France
| | - Aline Le Moignic
- Sorbonne Universités, UPMC/Paris 06, UMR-S INSERM U1135, CNRS ERL 8255, Center d'Immunologie et Maladies Infectieuses (CIMI-Paris) , Paris, France
| | - Clara Noizat
- Sorbonne Universités, UPMC/Paris 06, UMR-S INSERM U1135, CNRS ERL 8255, Center d'Immunologie et Maladies Infectieuses (CIMI-Paris) , Paris, France
| | - Claude Baillou
- Sorbonne Universités, UPMC/Paris 06, UMR-S INSERM U1135, CNRS ERL 8255, Center d'Immunologie et Maladies Infectieuses (CIMI-Paris) , Paris, France
| | - Véronique Mateo
- Sorbonne Universités, UPMC/Paris 06, UMR-S INSERM U1135, CNRS ERL 8255, Center d'Immunologie et Maladies Infectieuses (CIMI-Paris) , Paris, France
| | - Antoine F Carpentier
- Université Paris 13, AP-HP, Hôpital Avicenne, Department of Neurology , Bobigny, France
| | - Eric Tartour
- Paris Descartes/Paris 05, Sorbonne Paris Cité, INSERM U970, Paris-Cardiovascular Research Center (PARC), AP-HP, Hôpital Européen Georges Pompidou, Service d'Immunologie Biologique , Paris, France
| | - Chloé Bertolus
- Sorbonne Universités, UPMC/Paris 06, UMR-S INSERM U1135, CNRS ERL 8255, Center d'Immunologie et Maladies Infectieuses (CIMI-Paris), Paris, France; Sorbonne Universités, UPMC Univ-Paris 06, AP-HP, Groupe hospitalier Pitié-Salpêtrière, Department of Maxillofacial Surgery, Paris, France
| | - Bertrand Bellier
- Sorbonne Universités, UPMC/Paris 06, UMR-S INSERM U959, CNRS, FRE 3632, Immunology-Immunopathology-Immunotherapy (I3) , Paris, France
| | - Géraldine Lescaille
- Sorbonne Universités, UPMC/Paris 06, UMR-S INSERM U1135, CNRS ERL 8255, Center d'Immunologie et Maladies Infectieuses (CIMI-Paris), Paris, France; Paris Diderot/Paris 07, Sorbonne Paris Cité, Assistance Publique-Hôpitaux de Paris (AP-HP), Groupe hospitalier Pitié-Salpêtrière, Department of Odontology, Paris, France
| | - François M Lemoine
- Sorbonne Universités, UPMC/Paris 06, UMR-S INSERM U1135, CNRS ERL 8255, Center d'Immunologie et Maladies Infectieuses (CIMI-Paris), Paris, France; AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Department of Biotherapies, Paris, France
| |
Collapse
|
136
|
Tran T, Diniz MO, Dransart E, Gey A, Merillon N, Lone YC, Godefroy S, Sibley C, Ferreira LC, Medioni J, Oudard S, Johannes L, Tartour E. A Therapeutic Her2/neu Vaccine Targeting Dendritic Cells Preferentially Inhibits the Growth of Low Her2/neu-Expressing Tumor in HLA-A2 Transgenic Mice. Clin Cancer Res 2016; 22:4133-44. [PMID: 27006496 DOI: 10.1158/1078-0432.ccr-16-0044] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/06/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE E75, a peptide derived from the Her2/neu protein, is the most clinically advanced vaccine approach against breast cancer. In this study, we aimed to optimize the E75 vaccine using a delivery vector targeting dendritic cells, the B-subunit of Shiga toxin (STxB), and to assess the role of various parameters (Her2/neu expression, combination with trastuzumab) in the efficacy of this cancer vaccine in a relevant preclinical model. EXPERIMENTAL DESIGN We compared the differential ability of the free E75 peptide or the STxB-E75 vaccine to elicit CD8(+) T cells, and the impact of the vaccine on murine HLA-A2 tumors expressing low or high levels of Her2/neu. RESULTS STxB-E75 synergized with granulocyte macrophage colony-stimulating factors and CpG and proved to be more efficient than the free E75 peptide in the induction of multifunctional and high-avidity E75-specific anti-CD8(+) T cells resulting in a potent tumor protection in HLA-A2 transgenic mice. High expression of HER2/neu inhibited the expression of HLA-class I molecules, leading to a poor recognition of human or murine tumors by E75-specific cytotoxic CD8(+) T cells. In line with these results, STxB-E75 preferentially inhibited the growth of HLA-A2 tumors expressing low levels of Her2/neu. Coadministration of anti-Her2/neu mAb potentiated this effect. CONCLUSIONS STxB-E75 vaccine is a potent candidate to be tested in patients with low Her2/neu-expressing tumors. It could also be indicated in patients expressing high levels of Her2/neu and low intratumoral T-cell infiltration to boost the recruitment of T cells-a key parameter in the efficacy of anti-Her2/neu mAb therapy. Clin Cancer Res; 22(16); 4133-44. ©2016 AACR.
Collapse
Affiliation(s)
- Thi Tran
- INSERM U970, Université Paris Descartes, Sorbonne Paris-Cité, Paris, France. Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Mariana O Diniz
- INSERM U970, Université Paris Descartes, Sorbonne Paris-Cité, Paris, France. Equipe Labellisée Ligue Contre le Cancer, Paris, France. Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Estelle Dransart
- Institut Curie, PSL Research University, Chemical Biology of Membranes and Therapeutic Delivery Unit. INSERM, U 1143. CNRS, UMR 3666, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - Alain Gey
- Service d'Immunologie biologique, Hopital Européen Georges Pompidou-APHP, Paris, France
| | - Nathalie Merillon
- INSERM U970, Université Paris Descartes, Sorbonne Paris-Cité, Paris, France
| | - Yu Chun Lone
- Inserm U-1014, Université Paris XI, Groupe Hospitalier Paul-Brousse, France
| | | | | | - Luis Cs Ferreira
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jacques Medioni
- Service d'Oncologie Médicale, Hopital Européen Georges Pompidou, Paris, France
| | - Stephane Oudard
- INSERM U970, Université Paris Descartes, Sorbonne Paris-Cité, Paris, France. Equipe Labellisée Ligue Contre le Cancer, Paris, France. Service d'Oncologie Médicale, Hopital Européen Georges Pompidou, Paris, France
| | - Ludger Johannes
- Institut Curie, PSL Research University, Chemical Biology of Membranes and Therapeutic Delivery Unit. INSERM, U 1143. CNRS, UMR 3666, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - Eric Tartour
- INSERM U970, Université Paris Descartes, Sorbonne Paris-Cité, Paris, France. Equipe Labellisée Ligue Contre le Cancer, Paris, France. Service d'Immunologie biologique, Hopital Européen Georges Pompidou-APHP, Paris, France.
| |
Collapse
|
137
|
Karaki S, Pere H, Badoual C, Tartour E. Hope in the Long Road Toward the Development of a Therapeutic Human Papillomavirus Vaccine. Clin Cancer Res 2016; 22:2317-9. [DOI: 10.1158/1078-0432.ccr-16-0216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 02/15/2016] [Indexed: 11/16/2022]
|
138
|
Bialkowski L, van Weijnen A, Van der Jeught K, Renmans D, Daszkiewicz L, Heirman C, Stangé G, Breckpot K, Aerts JL, Thielemans K. Intralymphatic mRNA vaccine induces CD8 T-cell responses that inhibit the growth of mucosally located tumours. Sci Rep 2016; 6:22509. [PMID: 26931556 PMCID: PMC4773884 DOI: 10.1038/srep22509] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 02/16/2016] [Indexed: 01/01/2023] Open
Abstract
The lack of appropriate mouse models is likely one of the reasons of a limited translational success rate of therapeutic vaccines against cervical cancer, as rapidly growing ectopic tumours are commonly used for preclinical studies. In this work, we demonstrate that the tumour microenvironment of TC-1 tumours differs significantly depending on the anatomical location of tumour lesions (i.e. subcutaneously, in the lungs and in the genital tract). Our data demonstrate that E7-TriMix mRNA vaccine-induced CD8+ T lymphocytes migrate into the tumour nest and control tumour growth, although they do not express mucosa-associated markers such as CD103 or CD49a. We additionally show that despite the presence of the antigen-specific T cells in the tumour lesions, the therapeutic outcomes in the genital tract model remain limited. Here, we report that such a hostile tumour microenvironment can be reversed by cisplatin treatment, leading to a complete regression of clinically relevant tumours when combined with mRNA immunization. We thereby demonstrate the necessity of utilizing clinically relevant models for preclinical evaluation of anticancer therapies and the importance of a simultaneous combination of anticancer immune response induction with targeting of tumour environment.
Collapse
Affiliation(s)
- Lukasz Bialkowski
- Laboratory of Molecular and Cellular Therapy, Vrije Universiteit Brussel, Laarbeeklaan 103E, 1090 Brussels, Belgium
| | - Alexia van Weijnen
- Laboratory of Molecular and Cellular Therapy, Vrije Universiteit Brussel, Laarbeeklaan 103E, 1090 Brussels, Belgium
| | - Kevin Van der Jeught
- Laboratory of Molecular and Cellular Therapy, Vrije Universiteit Brussel, Laarbeeklaan 103E, 1090 Brussels, Belgium
| | - Dries Renmans
- Laboratory of Molecular and Cellular Therapy, Vrije Universiteit Brussel, Laarbeeklaan 103E, 1090 Brussels, Belgium
| | - Lidia Daszkiewicz
- Laboratory of Molecular and Cellular Therapy, Vrije Universiteit Brussel, Laarbeeklaan 103E, 1090 Brussels, Belgium
| | - Carlo Heirman
- Laboratory of Molecular and Cellular Therapy, Vrije Universiteit Brussel, Laarbeeklaan 103E, 1090 Brussels, Belgium
| | - Geert Stangé
- Diabetes Research Center, Vrije Universiteit Brussel, Laarbeeklaan 103E, 1090 Brussels, Belgium
| | - Karine Breckpot
- Laboratory of Molecular and Cellular Therapy, Vrije Universiteit Brussel, Laarbeeklaan 103E, 1090 Brussels, Belgium
| | - Joeri L Aerts
- Laboratory of Molecular and Cellular Therapy, Vrije Universiteit Brussel, Laarbeeklaan 103E, 1090 Brussels, Belgium
| | - Kris Thielemans
- Laboratory of Molecular and Cellular Therapy, Vrije Universiteit Brussel, Laarbeeklaan 103E, 1090 Brussels, Belgium
| |
Collapse
|
139
|
Koshy ST, Mooney DJ. Biomaterials for enhancing anti-cancer immunity. Curr Opin Biotechnol 2016; 40:1-8. [PMID: 26896596 DOI: 10.1016/j.copbio.2016.02.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 12/29/2022]
Abstract
Cancer immunotherapy is becoming a standard approach to treat many cancers. However, shortcomings of current methods limit therapeutic benefit in many patients. Rationally designed biomaterial strategies to deliver immune modulatory drugs can potentially show improved safety profiles, while providing multifunctional and spatiotemporally controlled signals to immune cells to improve their anti-cancer activity. This brief review describes biomaterials-based strategies that enhance immune cell function at various tissue sites to improve anti-cancer immunity. Continued collaboration between bioengineers, immunologists, industry, and clinicians is required for biomaterial-based immunotherapy strategies to continue moving to the clinic.
Collapse
Affiliation(s)
- Sandeep T Koshy
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
140
|
Rivino L, Kumaran EA, Thein TL, Too CT, Gan VCH, Hanson BJ, Wilder-Smith A, Bertoletti A, Gascoigne NRJ, Lye DC, Leo YS, Akbar AN, Kemeny DM, MacAry PA. Virus-specific T lymphocytes home to the skin during natural dengue infection. Sci Transl Med 2015; 7:278ra35. [PMID: 25761891 DOI: 10.1126/scitranslmed.aaa0526] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Dengue, which is the most prevalent mosquito-borne viral disease afflicting human populations, causes a spectrum of clinical symptoms that include fever, muscle and joint pain, maculopapular skin rash, and hemorrhagic manifestations. Patients infected with dengue develop a broad antigen-specific T lymphocyte response, but the phenotype and functional properties of these cells are only partially understood. We show that natural infection induces dengue-specific CD8(+) T lymphocytes that are highly activated and proliferating, exhibit antiviral effector functions, and express CXCR3, CCR5, and the skin-homing marker cutaneous lymphocyte-associated antigen (CLA). In the same patients, bystander human cytomegalovirus -specific CD8(+) T cells are also activated during acute dengue infection but do not express the same tissue-homing phenotype. We show that CLA expression by circulating dengue-specific CD4(+) and CD8(+) T cells correlates with their in vivo ability to traffic to the skin during dengue infection. The juxtaposition of dengue-specific T cells with virus-permissive cell types at sites of possible dengue exposure represents a previously uncharacterized form of immune surveillance for this virus. These findings suggest that vaccination strategies may need to induce dengue-specific T cells with similar homing properties to provide durable protection against dengue viruses.
Collapse
Affiliation(s)
- Laura Rivino
- Immunology Programme, Life Sciences Institute and Department of Microbiology, National University of Singapore, Singapore 117456, Singapore. Programme in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore 169857, Singapore.
| | - Emmanuelle A Kumaran
- Immunology Programme, Life Sciences Institute and Department of Microbiology, National University of Singapore, Singapore 117456, Singapore
| | - Tun-Linn Thein
- Institute of Infectious Diseases and Epidemiology, Communicable Disease Centre, Tan Tock Seng Hospital, Singapore 308433, Singapore
| | - Chien Tei Too
- Immunology Programme, Life Sciences Institute and Department of Microbiology, National University of Singapore, Singapore 117456, Singapore
| | - Victor Chih Hao Gan
- Institute of Infectious Diseases and Epidemiology, Communicable Disease Centre, Tan Tock Seng Hospital, Singapore 308433, Singapore
| | - Brendon J Hanson
- Defense Medical and Environmental Research Institute, National Laboratories, Singapore 118230, Singapore
| | - Annelies Wilder-Smith
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Antonio Bertoletti
- Programme in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore 169857, Singapore. Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore 117609, Singapore
| | - Nicholas R J Gascoigne
- Immunology Programme, Life Sciences Institute and Department of Microbiology, National University of Singapore, Singapore 117456, Singapore
| | - David Chien Lye
- Institute of Infectious Diseases and Epidemiology, Communicable Disease Centre, Tan Tock Seng Hospital, Singapore 308433, Singapore
| | - Yee Sin Leo
- Institute of Infectious Diseases and Epidemiology, Communicable Disease Centre, Tan Tock Seng Hospital, Singapore 308433, Singapore. Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Arne N Akbar
- Division of Infection and Immunity, University College of London, London WC1E 6BT, UK
| | - David M Kemeny
- Immunology Programme, Life Sciences Institute and Department of Microbiology, National University of Singapore, Singapore 117456, Singapore
| | - Paul A MacAry
- Immunology Programme, Life Sciences Institute and Department of Microbiology, National University of Singapore, Singapore 117456, Singapore
| |
Collapse
|
141
|
Abstract
Dengue virus infections are increasing at an alarming rate in many tropical and subtropical countries and represent, in some of these areas, a leading cause of hospitalization and death among children. The lack of a clear definition of the correlates of protection from severe dengue disease represents a major hurdle for vaccine development. In particular, the role of T lymphocytes during dengue infection remains unclear and there is evidence suggesting that these cells may be important for both protective immunity and/or immunopathology. In this review we discuss the findings that support a protective role of T cells versus those supporting their involvement in pathogenesis. A better understanding of T cell immunity is urgently needed for the development of safe and efficacious vaccines.
Collapse
Affiliation(s)
- Laura Rivino
- a Program in Emerging Infectious Diseases , Duke-NUS Graduate Medical School , Singapore
| |
Collapse
|
142
|
Nizard M, Roussel H, Tartour E. Resident Memory T Cells as Surrogate Markers of the Efficacy of Cancer Vaccines. Clin Cancer Res 2015; 22:530-2. [DOI: 10.1158/1078-0432.ccr-15-2364] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/14/2015] [Indexed: 11/16/2022]
|
143
|
Jeyanathan M, Thanthrige-Don N, Afkhami S, Lai R, Damjanovic D, Zganiacz A, Feng X, Yao XD, Rosenthal KL, Medina MF, Gauldie J, Ertl HC, Xing Z. Novel chimpanzee adenovirus-vectored respiratory mucosal tuberculosis vaccine: overcoming local anti-human adenovirus immunity for potent TB protection. Mucosal Immunol 2015; 8:1373-87. [PMID: 25872483 DOI: 10.1038/mi.2015.29] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 03/20/2015] [Indexed: 02/07/2023]
Abstract
Pulmonary tuberculosis (TB) remains to be a major global health problem despite many decades of parenteral use of Bacillus Calmette-Guérin (BCG) vaccine. Developing safe and effective respiratory mucosal TB vaccines represents a unique challenge. Over the past decade or so, the human serotype 5 adenovirus (AdHu5)-based TB vaccine has emerged as one of the most promising candidates based on a plethora of preclinical and early clinical studies. However, anti-AdHu5 immunity widely present in the lung of humans poses a serious gap and limitation to its real-world applications. In this study we have developed a novel chimpanzee adenovirus 68 (AdCh68)-vectored TB vaccine amenable to the respiratory route of vaccination. We have evaluated AdCh68-based TB vaccine for its safety, T-cell immunogenicity, and protective efficacy in relevant animal models of human pulmonary TB with or without parenteral BCG priming. We have also compared AdCh68-based TB vaccine with its AdHu5 counterpart in both naive animals and those with preexisting anti-AdHu5 immunity in the lung. We provide compelling evidence that AdCh68-based TB vaccine is not only safe when delivered to the respiratory tract but, importantly, is also superior to its AdHu5 counterpart in induction of T-cell responses and immune protection, and limiting lung immunopathology in the presence of preexisting anti-AdHu5 immunity in the lung. Our findings thus suggest AdCh68-based TB vaccine to be an ideal candidate for respiratory mucosal immunization, endorsing its further clinical development in humans.
Collapse
Affiliation(s)
- M Jeyanathan
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - N Thanthrige-Don
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - S Afkhami
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - R Lai
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - D Damjanovic
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - A Zganiacz
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - X Feng
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - X-D Yao
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - K L Rosenthal
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - M Fe Medina
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - J Gauldie
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - H C Ertl
- Department of Immunology, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Z Xing
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
144
|
Sun YY, Peng S, Han L, Qiu J, Song L, Tsai Y, Yang B, Roden RBS, Trimble CL, Hung CF, Wu TC. Local HPV Recombinant Vaccinia Boost Following Priming with an HPV DNA Vaccine Enhances Local HPV-Specific CD8+ T-cell-Mediated Tumor Control in the Genital Tract. Clin Cancer Res 2015; 22:657-69. [PMID: 26420854 DOI: 10.1158/1078-0432.ccr-15-0234] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 09/15/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE Two viral oncoproteins, E6 and E7, are expressed in all human papillomavirus (HPV)-infected cells, from initial infection in the genital tract to metastatic cervical cancer. Intramuscular vaccination of women with high-grade cervical intraepithelial neoplasia (CIN2/3) twice with a naked DNA vaccine, pNGVL4a-sig/E7(detox)/HSP70, and a single boost with HPVE6/E7 recombinant vaccinia vaccine (TA-HPV) elicited systemic HPV-specific CD8 T-cell responses that could traffic to the lesion and was associated with regression in some patients (NCT00788164). EXPERIMENTAL DESIGN Here, we examine whether alteration of this vaccination regimen by administration of TA-HPV vaccination in the cervicovaginal tract, rather than intramuscular (IM) delivery, can more effectively recruit antigen-specific T cells in an orthotopic syngeneic mouse model of HPV16(+) cervical cancer (TC-1 luc). RESULTS We found that pNGVL4a-sig/E7(detox)/HSP70 vaccination followed by cervicovaginal vaccination with TA-HPV increased accumulation of total and E7-specific CD8(+) T cells in the cervicovaginal tract and better controlled E7-expressing cervicovaginal TC-1 luc tumor than IM administration of TA-HPV. Furthermore, the E7-specific CD8(+) T cells in the cervicovaginal tract generated through the cervicovaginal route of vaccination expressed the α4β7 integrin and CCR9, which are necessary for the homing of the E7-specific CD8(+) T cells to the cervicovaginal tract. Finally, we show that cervicovaginal vaccination with TA-HPV can induce potent local HPV-16 E7 antigen-specific CD8(+) T-cell immune responses regardless of whether an HPV DNA vaccine priming vaccination was administered IM or within the cervicovaginal tract. CONCLUSIONS Our results support future clinical translation using cervicovaginal TA-HPV vaccination.
Collapse
Affiliation(s)
- Yun-Yan Sun
- Department of Obstetrics and Gynecology, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai, China. Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Shiwen Peng
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Liping Han
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland. Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jin Qiu
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland. Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Liwen Song
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland. Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Yachea Tsai
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Benjamin Yang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Richard B S Roden
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland. Department of Obstetrics and Gynecology, Johns Hopkins Medical Institutions, Baltimore, Maryland. Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Cornelia L Trimble
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland. Department of Obstetrics and Gynecology, Johns Hopkins Medical Institutions, Baltimore, Maryland. Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Chien-Fu Hung
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland. Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - T-C Wu
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland. Department of Obstetrics and Gynecology, Johns Hopkins Medical Institutions, Baltimore, Maryland. Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, Maryland. Department of Molecular Microbiology and Immunology, Johns Hopkins Medical Institutions, Baltimore, Maryland.
| |
Collapse
|
145
|
Zitvogel L, Galluzzi L, Viaud S, Vétizou M, Daillère R, Merad M, Kroemer G. Cancer and the gut microbiota: an unexpected link. Sci Transl Med 2015; 7:271ps1. [PMID: 25609166 DOI: 10.1126/scitranslmed.3010473] [Citation(s) in RCA: 315] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Changes in the interactions among the gut microbiota, intestinal epithelium, and host immune system are associated with many diseases, including cancer. We discuss how environmental factors infuence this cross-talk during oncogenesis and tumor progression and how manipulations of the gut microbiota might improve the clinical activity of anticancer agents.
Collapse
Affiliation(s)
- Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Center, F-94805 Villejuif, France. INSERM, U1015, CICBT507, F-94805 Villejuif, France.
| | - Lorenzo Galluzzi
- Gustave Roussy Comprehensive Cancer Center, F-94805 Villejuif, France. Equipe 11 Labellisée par la Ligue Nationale Contre le Cancer, Centre de Recherche des Cordeliers, F-75006 Paris, France. Université Paris Descartes/Paris V, Sorbonne Paris Cité, F-75006 Paris, France. INSERM, U1138, F-75006 Paris, France
| | - Sophie Viaud
- Gustave Roussy Comprehensive Cancer Center, F-94805 Villejuif, France. INSERM, U1015, CICBT507, F-94805 Villejuif, France
| | - Marie Vétizou
- Gustave Roussy Comprehensive Cancer Center, F-94805 Villejuif, France. INSERM, U1015, CICBT507, F-94805 Villejuif, France
| | - Romain Daillère
- Gustave Roussy Comprehensive Cancer Center, F-94805 Villejuif, France. INSERM, U1015, CICBT507, F-94805 Villejuif, France
| | - Miriam Merad
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Guido Kroemer
- Equipe 11 Labellisée par la Ligue Nationale Contre le Cancer, Centre de Recherche des Cordeliers, F-75006 Paris, France. Université Paris Descartes/Paris V, Sorbonne Paris Cité, F-75006 Paris, France. INSERM, U1138, F-75006 Paris, France. Pôle de Biologie, Hôpital Européen Georges Pompidou F-75015, AP-HP, Paris, France. Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Center, F-94805 Villejuif, France
| |
Collapse
|
146
|
Phenotype and function of nasal dendritic cells. Mucosal Immunol 2015; 8:1083-98. [PMID: 25669151 PMCID: PMC4532662 DOI: 10.1038/mi.2014.135] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 12/25/2014] [Indexed: 02/04/2023]
Abstract
Intranasal (i.n.) vaccination generates immunity across local, regional, and distant sites. However, nasal dendritic cells (DCs), pivotal for the induction of i.n. vaccine-induced immune responses, have not been studied in detail. Here, by using a variety of parameters, we define nasal DCs in mice and humans. Distinct subsets of "classical" DCs, dependent on the transcription factor zbtb46 were identified in the murine nose. The murine nasal DCs were Fms-related tyrosine 3 kinase ligand responsive and displayed unique phenotypic and functional characteristics, including the ability to present antigen, induce an allogeneic T-cell response, and migrate in response to lipopolysaccharide or live bacterial pathogens. Importantly, in a cohort of human volunteers, BDCA-1(+) DCs were observed to be the dominant nasal DC population at steady state. During chronic inflammation, the frequency of both BDCA-1(+) and BDCA-3(hi) DCs was reduced in the nasal tissue, associating the loss of these immune sentinels with chronic nasal inflammation. The present study is the first detailed description of the phenotypic, ontogenetic, and functional properties of nasal DCs, and will inform the design of preventative immunization strategies as well as therapeutic modalities against chronic rhinosinusitis.
Collapse
|
147
|
Nizard M, Diniz MO, Roussel H, Tran T, Ferreira LC, Badoual C, Tartour E. Mucosal vaccines: novel strategies and applications for the control of pathogens and tumors at mucosal sites. Hum Vaccin Immunother 2015; 10:2175-87. [PMID: 25424921 DOI: 10.4161/hv.29269] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The mucosal immune system displays several adaptations reflecting the exposure to the external environment. The efficient induction of mucosal immune responses also requires specific approaches, such as the use of appropriate administration routes and specific adjuvants and/or delivery systems. In contrast to vaccines delivered via parenteral routes, experimental, and clinical evidences demonstrated that mucosal vaccines can efficiently induce local immune responses to pathogens or tumors located at mucosal sites as well as systemic response. At least in part, such features can be explained by the compartmentalization of mucosal B and T cell populations that play important roles in the modulation of local immune responses. In the present review, we discuss molecular and cellular features of the mucosal immune system as well as novel immunization approaches that may lead to the development of innovative and efficient vaccines targeting pathogens and tumors at different mucosal sites.
Collapse
Affiliation(s)
- Mevyn Nizard
- a INSERM U970; Universite Paris Descartes; Sorbonne Paris-Cité; Paris, France
| | | | | | | | | | | | | |
Collapse
|
148
|
Abstract
Recently, a number of promising approaches have been developed using synthetic chemistry, materials science, and bioengineering-based strategies to address challenges in the design of more effective cancer vaccines. At the stage of initial priming, potency can be improved by maximizing vaccine delivery to lymph nodes. Because lymphatic uptake from peripheral tissues is strongly size dependent, antigens and adjuvants packaged into optimally sized nanoparticles access the lymph node with much greater efficiency than unformulated vaccines. Once primed, T cells must home to the tumor site. Because T cells acquire the necessary surface receptors in the local lymph node draining the tissue of interest, vaccines must be engineered that reach organs, such as the lung and gut, which are common sites of tumor lesions but inaccessible by traditional vaccination routes. Particulate vaccine carriers can improve antigen exposure in these organs, resulting in greater lymphocyte priming. Immunomodulatory agents can also be injected directly into the tumor site to stimulate a systemic response capable of clearing even distal lesions; materials have been designed that entrap or slowly release immunomodulators at the tumor site, reducing systemic exposure and improving therapeutic efficacy. Finally, lessons learned from the design of biomaterial-based scaffolds in regenerative medicine have led to the development of implantable vaccines that recruit and activate antigen-presenting cells to drive antitumor immunity. Overall, these engineering strategies represent an expanding toolkit to create safe and effective cancer vaccines.
Collapse
Affiliation(s)
- Naveen K Mehta
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts. Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Kelly D Moynihan
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts. Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts. Ragon Institute of MGH, MIT and Harvard University, Boston, Massachusetts
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts. Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts. Ragon Institute of MGH, MIT and Harvard University, Boston, Massachusetts. Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts. Howard Hughes Medical Institute, Chevy Chase, Maryland.
| |
Collapse
|
149
|
Sun Y, Peng S, Qiu J, Miao J, Yang B, Jeang J, Hung CF, Wu TC. Intravaginal HPV DNA vaccination with electroporation induces local CD8+ T-cell immune responses and antitumor effects against cervicovaginal tumors. Gene Ther 2015; 22:528-35. [PMID: 25786869 PMCID: PMC4490060 DOI: 10.1038/gt.2015.17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 01/14/2015] [Accepted: 01/29/2015] [Indexed: 12/24/2022]
Abstract
Therapeutic human papillomavirus (HPV) vaccines have the potential to inhibit the progression of an established HPV infection to precancer and cancer lesions by targeting HPV oncoproteins. We have previously developed a therapeutic DNA vaccine encoding calreticulin (CRT) linked to E7, CRT/E7 DNA vaccine, for use in the treatment of HPV-associated lesions. Since the transfection efficiency of DNA vaccines administered in vivo is typically low, we examined the use of electroporation as well as different routes of administration to enhance antigen-specific tumor control. We tested the effects of the CRT/E7 DNA vaccine administered intramuscularly or intravaginally, with or without electroporation, on the generation of CD8+ T-cell immunity and therapeutic antitumor effects in HPV16 E7-expressing cervicovaginal tumor-bearing mice. We found that intravaginal vaccination of CRT/E7 DNA followed by electroporation-induced potent E7-specific CD8(+) T-cell responses in the cervicovaginal tract, compared with intramuscular injection followed by electroporation. Furthermore, tumor-bearing mice vaccinated intravaginally followed by electroporation had an enhanced survival, antitumor effects and local production of IFN-γ+CD8+ T cells compared with those vaccinated intramuscularly with electroporation. Thus, we show that intravaginal CRT/E7 DNA vaccination followed by electroporation generates the most potent therapeutic antitumor effects against an orthotopic E7-expressing tumor model. The current study will have significant clinical implications once a clinically applicable electroporation device for intravaginal use becomes available.
Collapse
Affiliation(s)
- Y Sun
- Department of Obstetrics and Gynecology, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai, China
- Departments of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - S Peng
- Departments of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - J Qiu
- Departments of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital of Tongji University Shanghai, Shanghai, China
| | - J Miao
- Departments of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Department of General Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - B Yang
- Departments of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - J Jeang
- Departments of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - C-F Hung
- Departments of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - T-C Wu
- Departments of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Department of Obstetrics and Gynecology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| |
Collapse
|
150
|
Peske JD, Woods AB, Engelhard VH. Control of CD8 T-Cell Infiltration into Tumors by Vasculature and Microenvironment. Adv Cancer Res 2015. [PMID: 26216636 DOI: 10.1016/bs.acr.2015.05.001] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
CD8 T-cells are a critical brake on the initial development of tumors. In established tumors, the presence of CD8 T-cells is correlated with a positive patient prognosis, although immunosuppressive mechanisms limit their effectiveness and they are rarely curative without manipulation. Cancer immunotherapies aim to shift the balance back to dominant antitumor immunity through antibody blockade of immunosuppressive signaling pathways, vaccination, and adoptive transfer of activated or engineered T-cells. These approaches have yielded striking responses in small subsets of patients with solid tumors, most notably those with melanoma. Importantly, the subset of patients who respond to vaccination or immunosuppression blockade therapies are those with CD8 T-cells present in the tumor prior to initiating therapy. While current adoptive cell therapy approaches can be dramatically effective, they require infusion of extremely large numbers of T-cells, but the number that actually infiltrates the tumor is very small. Thus, poor representation of CD8 T-cells in tumors is a fundamental hurdle to successful immunotherapy, over and above the well-established barrier of immunosuppression. In this review, we discuss the factors that determine whether immune cells are present in tumors, with a focus on the representation of cytotoxic CD8 T-cells. We emphasize the critically important role of tumor-associated vasculature as a gateway that enables the active infiltration of both effector and naïve CD8 T-cells that exert antitumor activity. We also discuss strategies to enhance the gateway function and extend the effectiveness of immunotherapies to a broader set of cancer patients.
Collapse
Affiliation(s)
- J David Peske
- Department of Microbiology, Immunology, and Cancer Biology, Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Amber B Woods
- Department of Microbiology, Immunology, and Cancer Biology, Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Victor H Engelhard
- Department of Microbiology, Immunology, and Cancer Biology, Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA.
| |
Collapse
|