101
|
Li Y, Jiang W, Mellins ED. TCR-like antibodies targeting autoantigen-mhc complexes: a mini-review. Front Immunol 2022; 13:968432. [PMID: 35967436 PMCID: PMC9363607 DOI: 10.3389/fimmu.2022.968432] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
T cell receptors (TCRs) recognize peptide antigens bound to major histocompatibility complex (MHC) molecules (p/MHC) that are expressed on cell surfaces; while B cell-derived antibodies (Abs) recognize soluble or cell surface native antigens of various types (proteins, carbohydrates, etc.). Immune surveillance by T and B cells thus inspects almost all formats of antigens to mount adaptive immune responses against cancer cells, infectious organisms and other foreign insults, while maintaining tolerance to self-tissues. With contributions from environmental triggers, the development of autoimmune disease is thought to be due to the expression of MHC risk alleles by antigen-presenting cells (APCs) presenting self-antigen (autoantigen), breaking through self-tolerance and activating autoreactive T cells, which orchestrate downstream pathologic events. Investigating and treating autoimmune diseases have been challenging, both because of the intrinsic complexity of these diseases and the need for tools targeting T cell epitopes (autoantigen-MHC). Naturally occurring TCRs with relatively low (micromolar) affinities to p/MHC are suboptimal for autoantigen-MHC targeting, whereas the use of engineered TCRs and their derivatives (e.g., TCR multimers and TCR-engineered T cells) are limited by unpredictable cross-reactivity. As Abs generally have nanomolar affinity, recent advances in engineering TCR-like (TCRL) Abs promise advantages over their TCR counterparts for autoantigen-MHC targeting. Here, we compare the p/MHC binding by TCRs and TCRL Abs, review the strategies for generation of TCRL Abs, highlight their application for identification of autoantigen-presenting APCs, and discuss future directions and limitations of TCRL Abs as immunotherapy for autoimmune diseases.
Collapse
Affiliation(s)
- Ying Li
- Department of Pediatrics, Divisions of Human Gene Therapy and Allergy, Immunology & Rheumatology, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Program in Immunology, Stanford University School of Medicine, Stanford, CA, United States
| | - Wei Jiang
- Department of Pediatrics, Divisions of Human Gene Therapy and Allergy, Immunology & Rheumatology, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Program in Immunology, Stanford University School of Medicine, Stanford, CA, United States
- *Correspondence: Wei Jiang, ; Elizabeth D. Mellins,
| | - Elizabeth D. Mellins
- Department of Pediatrics, Divisions of Human Gene Therapy and Allergy, Immunology & Rheumatology, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Program in Immunology, Stanford University School of Medicine, Stanford, CA, United States
- *Correspondence: Wei Jiang, ; Elizabeth D. Mellins,
| |
Collapse
|
102
|
Liu C, Liu H, Dasgupta M, Hellman LM, Zhang X, Qu K, Xue H, Wang Y, Fan F, Chang Q, Yu D, Ge L, Zhang Y, Cui Z, Zhang P, Heller B, Zhang H, Shi B, Baker BM, Liu C. Validation and promise of a TCR mimic antibody for cancer immunotherapy of hepatocellular carcinoma. Sci Rep 2022; 12:12068. [PMID: 35840635 PMCID: PMC9287321 DOI: 10.1038/s41598-022-15946-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/01/2022] [Indexed: 11/30/2022] Open
Abstract
Monoclonal antibodies are at the vanguard of the most promising cancer treatments. Whereas traditional therapeutic antibodies have been limited to extracellular antigens, T cell receptor mimic (TCRm) antibodies can target intracellular antigens presented by cell surface major histocompatibility complex (MHC) proteins. TCRm antibodies can therefore target a repertoire of otherwise undruggable cancer antigens. However, the consequences of off-target peptide/MHC recognition with engineered T cell therapies are severe, and thus there are significant safety concerns with TCRm antibodies. Here we explored the specificity and safety profile of a new TCRm-based T cell therapy for hepatocellular carcinoma (HCC), a solid tumor for which no effective treatment exists. We targeted an alpha-fetoprotein peptide presented by HLA-A*02 with a highly specific TCRm, which crystallographic structural analysis showed binds directly over the HLA protein and interfaces with the full length of the peptide. We fused the TCRm to the γ and δ subunits of a TCR, producing a signaling AbTCR construct. This was combined with an scFv/CD28 co-stimulatory molecule targeting glypican-3 for increased efficacy towards tumor cells. This AbTCR + co-stimulatory T cell therapy showed potent activity against AFP-positive cancer cell lines in vitro and an in an in vivo model and undetectable activity against AFP-negative cells. In an in-human safety assessment, no significant adverse events or cytokine release syndrome were observed and evidence of efficacy was seen. Remarkably, one patient with metastatic HCC achieved a complete remission after nine months and ultimately qualified for a liver transplant.
Collapse
Affiliation(s)
- Chang Liu
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Hong Liu
- Eureka Therapeutics Inc., 5858 Horton Street, Suite 170, Emeryville, CA, USA
| | - Moumita Dasgupta
- Department of Chemistry & Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN, USA
| | - Lance M Hellman
- Department of Chemistry & Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN, USA
| | - Xiaogang Zhang
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Kai Qu
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Hui Xue
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Yun Wang
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Fenling Fan
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Qi Chang
- Eureka Therapeutics Inc., 5858 Horton Street, Suite 170, Emeryville, CA, USA
| | - Duo Yu
- Eureka Therapeutics Inc., 5858 Horton Street, Suite 170, Emeryville, CA, USA
| | - Linhu Ge
- Eureka Therapeutics Inc., 5858 Horton Street, Suite 170, Emeryville, CA, USA
| | - Yu Zhang
- Eureka Therapeutics Inc., 5858 Horton Street, Suite 170, Emeryville, CA, USA
| | - Ziyou Cui
- Eureka Therapeutics Inc., 5858 Horton Street, Suite 170, Emeryville, CA, USA
| | - Pengbo Zhang
- Eureka Therapeutics Inc., 5858 Horton Street, Suite 170, Emeryville, CA, USA
| | - Bradley Heller
- Eureka Therapeutics Inc., 5858 Horton Street, Suite 170, Emeryville, CA, USA
| | - Hongbing Zhang
- Eureka Therapeutics Inc., 5858 Horton Street, Suite 170, Emeryville, CA, USA
| | - Bingyin Shi
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Brian M Baker
- Department of Chemistry & Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN, USA.
| | - Cheng Liu
- Eureka Therapeutics Inc., 5858 Horton Street, Suite 170, Emeryville, CA, USA.
| |
Collapse
|
103
|
Stein-Merlob AF, Ganatra S, Yang EH. T-cell Immunotherapy and Cardiovascular Disease: Chimeric Antigen Receptor T-cell and Bispecific T-cell Engager Therapies. Heart Fail Clin 2022; 18:443-454. [PMID: 35718418 DOI: 10.1016/j.hfc.2022.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chimeric antigen receptor (CAR) T-cell and bispecific T-cell engager (BiTE) therapies have revolutionized the treatment of refractory or relapsed leukemia and lymphoma. Increased use of these therapies has revealed signals of significant cardiotoxicity, including cardiomyopathy/heart failure, arrhythmia, myocardial injury, hemodynamic instability, and cardiovascular death mainly in the context of a profound inflammatory response to CAR T-cell antitumor effects known as cytokine release syndrome (CRS). Preexisting cardiovascular risk factors and disease may increase the risk of such cardiotoxicity. High index of suspicion and close monitoring is required for prompt recognition. Supportive hemodynamic care and targeted anti-IL-6 therapy, as well as possibly broader immunosuppression with corticosteroids, are the cornerstones of the management.
Collapse
Affiliation(s)
- Ashley F Stein-Merlob
- Division of Cardiology, Department of Medicine, University of California at Los Angeles, Los Angeles, CA, USA; Division of Cardiology, Department of Medicine, UCLA-Cardio-Oncology Program, University of California at Los Angeles, Los Angeles, CA, USA. https://twitter.com/A_SteinMerlob
| | - Sarju Ganatra
- Cardio-Oncology Program, Division of Cardiovascular Medicine, Department of Medicine, Lahey Hospital and Medical Center, Burlington, MA, USA.
| | - Eric H Yang
- Division of Cardiology, Department of Medicine, University of California at Los Angeles, Los Angeles, CA, USA; Division of Cardiology, Department of Medicine, UCLA-Cardio-Oncology Program, University of California at Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
104
|
Abstract
PURPOSE OF REVIEW To summarize the development of modified T-cell therapies in sarcomas and discuss relevant published and ongoing clinical trials to date. RECENT FINDINGS Numerous clinical trials are underway evaluating tumor-specific chimeric antigen receptor T cells and high affinity T-cell receptor (TCR)-transduced T cells in sarcomas. Notably, translocation-dependent synovial sarcoma and myxoid/round cell liposarcoma are the subject of several phase II trials evaluating TCRs targeting cancer testis antigens New York esophageal squamous cell carcinoma-1 (NY-ESO-1) and melanoma antigen-A4 (MAGE A4), and response rates of up to 60% have been observed for NY-ESO-1 directed, modified T cells in synovial sarcoma. Challenges posed by modified T-cell therapy include limitations conferred by HLA-restriction, non-immunogenic tumor microenvironments (TME), aggressive lymphodepletion and immune-mediated toxicities restricting coinfusion of cytokines. SUMMARY Cellular therapy to augment the adaptive immune response through delivery of modified T cells is an area of novel therapeutic development in sarcomas where a reliably expressed, ubiquitous target antigen can be identified. Therapeutic tools to improve the specificity, signaling, proliferation and persistence of modified TCRs and augment clinical responses through safe manipulation of the sarcoma TME will be necessary to harness the full potential of this approach.
Collapse
|
105
|
Xu R, Du S, Zhu J, Meng F, Liu B. Neoantigen-targeted TCR-T cell therapy for solid tumors: How far from clinical application. Cancer Lett 2022; 546:215840. [DOI: 10.1016/j.canlet.2022.215840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/09/2022] [Accepted: 07/22/2022] [Indexed: 11/25/2022]
|
106
|
Gawne P, Man F, Blower PJ, T. M. de Rosales R. Direct Cell Radiolabeling for in Vivo Cell Tracking with PET and SPECT Imaging. Chem Rev 2022; 122:10266-10318. [PMID: 35549242 PMCID: PMC9185691 DOI: 10.1021/acs.chemrev.1c00767] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Indexed: 02/07/2023]
Abstract
The arrival of cell-based therapies is a revolution in medicine. However, its safe clinical application in a rational manner depends on reliable, clinically applicable methods for determining the fate and trafficking of therapeutic cells in vivo using medical imaging techniques─known as in vivo cell tracking. Radionuclide imaging using single photon emission computed tomography (SPECT) or positron emission tomography (PET) has several advantages over other imaging modalities for cell tracking because of its high sensitivity (requiring low amounts of probe per cell for imaging) and whole-body quantitative imaging capability using clinically available scanners. For cell tracking with radionuclides, ex vivo direct cell radiolabeling, that is, radiolabeling cells before their administration, is the simplest and most robust method, allowing labeling of any cell type without the need for genetic modification. This Review covers the development and application of direct cell radiolabeling probes utilizing a variety of chemical approaches: organic and inorganic/coordination (radio)chemistry, nanomaterials, and biochemistry. We describe the key early developments and the most recent advances in the field, identifying advantages and disadvantages of the different approaches and informing future development and choice of methods for clinical and preclinical application.
Collapse
Affiliation(s)
- Peter
J. Gawne
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London, SE1 7EH, U.K.
| | - Francis Man
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London, SE1 7EH, U.K.
- Institute
of Pharmaceutical Science, School of Cancer
and Pharmaceutical Sciences, King’s College London, London, SE1 9NH, U.K.
| | - Philip J. Blower
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London, SE1 7EH, U.K.
| | - Rafael T. M. de Rosales
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London, SE1 7EH, U.K.
| |
Collapse
|
107
|
Ishihara M, Kitano S, Kageyama S, Miyahara Y, Yamamoto N, Kato H, Mishima H, Hattori H, Funakoshi T, Kojima T, Sasada T, Sato E, Okamoto S, Tomura D, Nukaya I, Chono H, Mineno J, Kairi MF, Diem Hoang Nguyen P, Simoni Y, Nardin A, Newell E, Fehlings M, Ikeda H, Watanabe T, Shiku H. NY-ESO-1-specific redirected T cells with endogenous TCR knockdown mediate tumor response and cytokine release syndrome. J Immunother Cancer 2022; 10:e003811. [PMID: 35768164 PMCID: PMC9244667 DOI: 10.1136/jitc-2021-003811] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Because of the shortage of ideal cell surface antigens, the development of T-cell receptor (TCR)-engineered T cells (TCR-T) that target intracellular antigens such as NY-ESO-1 is a promising approach for treating patients with solid tumors. However, endogenous TCRs in vector-transduced T cells have been suggested to impair cell-surface expression of transduced TCR while generating mispaired TCRs that can become self-reactive. METHODS We conducted a first-in-human phase I clinical trial with the TCR-transduced T-cell product (TBI-1301) in patients with NY-ESO-1-expressing solid tumors. In manufacturing TCR-T cells, we used a novel affinity-enhanced NY-ESO-1-specific TCR that was transduced by a retroviral vector that enables siRNA (small interfering RNA)-mediated silencing of endogenous TCR. The patients were divided into two cohorts. Cohort 1 was given a dose of 5×108 cells (whole cells including TCR-T cells) preconditioned with 1500 mg/m2 cyclophosphamide. Cohort 2 was given 5× 109 cells preconditioned with 1500 mg/m2 cyclophosphamide. RESULTS In vitro study showed that both the CD8+ and CD4+ T fractions of TCR-T cells exhibited cytotoxic effects against NY-ESO-1-expressing tumor cells. Three patients and six patients were allocated to cohort 1 and cohort 2, respectively. Three of the six patients who received 5×109 cells showed tumor response, while three patients developed early-onset cytokine release syndrome (CRS). One of the patients developed a grade 3 lung injury associated with the infiltration of the TCR-T cells. No siRNA-related adverse events other than CRS were observed. Cytokines including interleukin 6 I and monocyte chemotactic protein-1/chemokine (C-C motif) ligand (CCL2)increased in the sera of patients with CRS. In vitro analysis showed these cytokines were not secreted from the T cells infused. A significant fraction of the manufactured T cells in patients with CRS was found to express either CD244, CD39, or both at high levels. CONCLUSIONS The trial showed that endogenous TCR-silenced and affinity-enhanced NY-ESO-1 TCR-T cells were safely administered except for grade 3 lung injury. The TCR-T cell infusion exhibited significant tumor response and early-onset CRS in patients with tumors that express NY-ESO-1 at high levels. The differentiation properties of the manufactured T cells may be prognostic for TCR-T-related CRS. TRIAL REGISTRATION NUMBER NCT02366546.
Collapse
Affiliation(s)
| | - Shigehisa Kitano
- Division of Cancer Immunotherapy Development, Advanced Medical Development Center, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Experimental Therapeutics, National Cancer Institue Hospital, Tokyo, Japan
| | - Shinichi Kageyama
- Departments of Immuno-Gene Therapy and Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, Tsu, Japan
| | - Yoshihiro Miyahara
- Departments of Immuno-Gene Therapy and Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, Tsu, Japan
| | - Noboru Yamamoto
- Department of Experimental Therapeutics, National Cancer Institue Hospital, Tokyo, Japan
| | - Hidefumi Kato
- Department of Transfusion Medicine, Aichi Medical University, Nagakute, Japan
| | | | - Hiroyoshi Hattori
- Laboratory of Advanced Therapy, Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Takeru Funakoshi
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Takashi Kojima
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Tetsuro Sasada
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Eiichi Sato
- Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | - Hiroaki Ikeda
- Department of Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takashi Watanabe
- Departments of Immuno-Gene Therapy and Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hiroshi Shiku
- Departments of Immuno-Gene Therapy and Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
108
|
Development of Cancer Immunotherapies. Cancer Treat Res 2022; 183:1-48. [PMID: 35551655 DOI: 10.1007/978-3-030-96376-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cancer immunotherapy, or the utilization of components of the immune system to target and eliminate cancer, has become a highly active area of research in the past several decades and a common treatment strategy for several cancer types. The concept of harnessing the immune system for this purpose originated over 100 years ago when a physician by the name of William Coley successfully treated several of his cancer patients with a combination of live and attenuated bacteria, later known as "Coley's Toxins", after observing a subset of prior patients enter remission following their diagnosis with the common bacterial infection, erysipelas. However, it was not until late in the twentieth century that cancer immunotherapies were developed for widespread use, thereby transforming the treatment landscape of numerous cancer types. Pivotal studies elucidating molecular and cellular functions of immune cells, such as the discovery of IL-2 and production of monoclonal antibodies, fostered the development of novel techniques for studying the immune system and ultimately the development and approval of several cancer immunotherapies by the United States Food and Drug Association in the 1980s and 1990s, including the tuberculosis vaccine-Bacillus Calmette-Guérin, IL-2, and the CD20-targeting monoclonal antibody. Approval of the first therapeutic cancer vaccine, Sipuleucel-T, for the treatment of metastatic castration-resistant prostate cancer and the groundbreaking success and approval of immune checkpoint inhibitors and chimeric antigen receptor T cell therapy in the last decade, have driven an explosion of interest in and pursuit of novel cancer immunotherapy strategies. A broad range of modalities ranging from antibodies to adoptive T cell therapies is under investigation for the generalized treatment of a broad spectrum of cancers as well as personalized medicine. This chapter will focus on the recent advances, current strategies, and future outlook of immunotherapy development for the treatment of cancer.
Collapse
|
109
|
Mammalian Display Platform for the Maturation of Bispecific TCR-Based Molecules. Antibodies (Basel) 2022; 11:antib11020034. [PMID: 35645207 PMCID: PMC9150015 DOI: 10.3390/antib11020034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/22/2022] [Accepted: 04/29/2022] [Indexed: 02/06/2023] Open
Abstract
Bispecific T cell receptor (TCR)-based molecules capable of redirecting and activating T cells towards tumor cells represent a novel and promising class of biotherapeutics for the treatment of cancer. Usage of TCRs allows for targeting of intracellularly expressed and highly selective cancer antigens, but also requires a complex maturation process to increase the naturally low affinity and stability of TCRs. Even though TCR domains can be matured via phage and yeast display, these techniques share the disadvantages of non-human glycosylation patterns and the need for a later reformatting into the final bispecific format. Here, we describe the development and application of a Chinese Hamster Ovary (CHO) display for affinity engineering of TCRs in the context of the final bispecific TCR format. The recombinase-mediated cassette exchange (RCME)-based system allows for stable, single-copy integration of bispecific TCR molecules with high efficiency into a defined genetic locus of CHO cells. We used the system to isolate affinity-increased variants of bispecific T cell engaging receptor (TCER) molecules from a library encoding different CDR variants of a model TCR targeting preferentially expressed antigen in melanoma (PRAME). When expressed as a soluble protein, the selected TCER molecules exhibited strong reactivity against PRAME-positive tumor cells associated with a pronounced cytokine release from activated T cells. The obtained data support the usage of the CHO display-based maturation system for TCR affinity maturation in the context of the final bispecific TCER format.
Collapse
|
110
|
Chandran SS, Ma J, Klatt MG, Dündar F, Bandlamudi C, Razavi P, Wen HY, Weigelt B, Zumbo P, Fu SN, Banks LB, Yi F, Vercher E, Etxeberria I, Bestman WD, Da Cruz Paula A, Aricescu IS, Drilon A, Betel D, Scheinberg DA, Baker BM, Klebanoff CA. Immunogenicity and therapeutic targeting of a public neoantigen derived from mutated PIK3CA. Nat Med 2022; 28:946-957. [PMID: 35484264 PMCID: PMC9117146 DOI: 10.1038/s41591-022-01786-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 03/16/2022] [Indexed: 01/05/2023]
Abstract
Public neoantigens (NeoAgs) represent an elite class of shared cancer-specific epitopes derived from recurrently mutated driver genes. Here we describe a high-throughput platform combining single-cell transcriptomic and T cell receptor (TCR) sequencing to establish whether mutant PIK3CA, among the most frequently genomically altered driver oncogenes, generates an immunogenic public NeoAg. Using this strategy, we developed a panel of TCRs that recognize an endogenously processed neopeptide encompassing a common PIK3CA hotspot mutation restricted by the prevalent human leukocyte antigen (HLA)-A*03:01 allele. Mechanistically, immunogenicity to this public NeoAg arises from enhanced neopeptide/HLA complex stability caused by a preferred HLA anchor substitution. Structural studies indicated that the HLA-bound neopeptide presents a comparatively 'featureless' surface dominated by the peptide's backbone. To bind this epitope with high specificity and affinity, we discovered that a lead TCR clinical candidate engages the neopeptide through an extended interface facilitated by an unusually long CDR3β loop. In patients with diverse malignancies, we observed NeoAg clonal conservation and spontaneous immunogenicity to the neoepitope. Finally, adoptive transfer of TCR-engineered T cells led to tumor regression in vivo in mice bearing PIK3CA-mutant tumors but not wild-type PIK3CA tumors. Together, these findings establish the immunogenicity and therapeutic potential of a mutant PIK3CA-derived public NeoAg.
Collapse
Affiliation(s)
- Smita S Chandran
- Human Oncology and Pathogenesis Program (HOPP), Immuno-Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Parker Institute for Cancer Immunotherapy, New York, NY, USA.
| | - Jiaqi Ma
- Department of Chemistry and Biochemistry, University of Notre Dame, South Bend, IN, USA
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, USA
| | - Martin G Klatt
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Friederike Dündar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY, USA
| | - Chaitanya Bandlamudi
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pedram Razavi
- Human Oncology and Pathogenesis Program (HOPP), Immuno-Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Hannah Y Wen
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Britta Weigelt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Paul Zumbo
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY, USA
| | - Si Ning Fu
- Human Oncology and Pathogenesis Program (HOPP), Immuno-Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lauren B Banks
- Human Oncology and Pathogenesis Program (HOPP), Immuno-Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Fei Yi
- Human Oncology and Pathogenesis Program (HOPP), Immuno-Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Enric Vercher
- Human Oncology and Pathogenesis Program (HOPP), Immuno-Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Inaki Etxeberria
- Human Oncology and Pathogenesis Program (HOPP), Immuno-Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Watchain D Bestman
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Arnaud Da Cruz Paula
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ilinca S Aricescu
- Human Oncology and Pathogenesis Program (HOPP), Immuno-Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexander Drilon
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
- Early Drug Development Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Doron Betel
- Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - David A Scheinberg
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Brian M Baker
- Department of Chemistry and Biochemistry, University of Notre Dame, South Bend, IN, USA
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, USA
| | - Christopher A Klebanoff
- Human Oncology and Pathogenesis Program (HOPP), Immuno-Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Parker Institute for Cancer Immunotherapy, New York, NY, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA.
- Early Drug Development Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Cell Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
111
|
Donnadieu E, Luu M, Alb M, Anliker B, Arcangeli S, Bonini C, De Angelis B, Choudhary R, Espie D, Galy A, Holland C, Ivics Z, Kantari-Mimoun C, Kersten MJ, Köhl U, Kuhn C, Laugel B, Locatelli F, Marchiq I, Markman J, Moresco MA, Morris E, Negre H, Quintarelli C, Rade M, Reiche K, Renner M, Ruggiero E, Sanges C, Stauss H, Themeli M, Van den Brulle J, Hudecek M, Casucci M. Time to evolve: predicting engineered T cell-associated toxicity with next-generation models. J Immunother Cancer 2022; 10:jitc-2021-003486. [PMID: 35577500 PMCID: PMC9115021 DOI: 10.1136/jitc-2021-003486] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2022] [Indexed: 12/15/2022] Open
Abstract
Despite promising clinical results in a small subset of malignancies, therapies based on engineered chimeric antigen receptor and T-cell receptor T cells are associated with serious adverse events, including cytokine release syndrome and neurotoxicity. These toxicities are sometimes so severe that they significantly hinder the implementation of this therapeutic strategy. For a long time, existing preclinical models failed to predict severe toxicities seen in human clinical trials after engineered T-cell infusion. However, in recent years, there has been a concerted effort to develop models, including humanized mouse models, which can better recapitulate toxicities observed in patients. The Accelerating Development and Improving Access to CAR and TCR-engineered T cell therapy (T2EVOLVE) consortium is a public–private partnership directed at accelerating the preclinical development and increasing access to engineered T-cell therapy for patients with cancer. A key ambition in T2EVOLVE is to design new models and tools with higher predictive value for clinical safety and efficacy, in order to improve and accelerate the selection of lead T-cell products for clinical translation. Herein, we review existing preclinical models that are used to test the safety of engineered T cells. We will also highlight limitations of these models and propose potential measures to improve them.
Collapse
Affiliation(s)
| | - Maik Luu
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Miriam Alb
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Brigitte Anliker
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, Germany
| | - Silvia Arcangeli
- Innovative Immunotherapies Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Bonini
- Vita-Salute San Raffaele University, Milan, Italy.,Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Biagio De Angelis
- Department of Pediatric Hematology and Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Sapienza University of Rome, Rome, Italy
| | - Rashmi Choudhary
- Takeda Development Centers Americas, Inc, Lexington, Massachusetts, USA
| | - David Espie
- Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France.,CAR-T Cells Department, Invectys, Paris, France
| | - Anne Galy
- Accelerator of Technological Research in Genomic Therapy, INSERM US35, Corbeil-Essonnes, France
| | - Cam Holland
- Janssen Research and Development LLC, Spring House, PA, USA
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, Germany
| | | | - Marie Jose Kersten
- Department of Hematology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Ulrike Köhl
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany.,Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany.,Institute of Cellular Therapeutics, Hannover Medical School, Hannover, Germany
| | - Chantal Kuhn
- Takeda Development Centers Americas, Inc, Lexington, Massachusetts, USA
| | - Bruno Laugel
- Institut de Recherches Servier, Croissy sur seine, France
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Sapienza University of Rome, Rome, Italy
| | | | - Janet Markman
- Takeda Development Centers Americas, Inc, Lexington, Massachusetts, USA
| | - Marta Angiola Moresco
- Innovative Immunotherapies Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Emma Morris
- Institute of Immunity and Transplantation, University College London, London, UK
| | - Helene Negre
- Institut de Recherches Internationales Servier, Suresnes, France
| | - Concetta Quintarelli
- Department of Pediatric Hematology and Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Sapienza University of Rome, Rome, Italy
| | - Michael Rade
- Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Kristin Reiche
- Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany.,Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Matthias Renner
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, Germany
| | - Eliana Ruggiero
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Carmen Sanges
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Hans Stauss
- Institute of Immunity and Transplantation, University College London, London, UK
| | - Maria Themeli
- Department of Hematology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | | | - Michael Hudecek
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Monica Casucci
- Innovative Immunotherapies Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
112
|
Engineered cellular immunotherapies in cancer and beyond. Nat Med 2022; 28:678-689. [PMID: 35440724 DOI: 10.1038/s41591-022-01765-8] [Citation(s) in RCA: 147] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/02/2022] [Indexed: 12/11/2022]
Abstract
This year marks the tenth anniversary of cell therapy with chimeric antigen receptor (CAR)-modified T cells for refractory leukemia. The widespread commercial approval of genetically engineered T cells for a variety of blood cancers offers hope for patients with other types of cancer, and the convergence of human genome engineering and cell therapy technology holds great potential for generation of a new class of cellular therapeutics. In this Review, we discuss the goals of cellular immunotherapy in cancer, key challenges facing the field and exciting strategies that are emerging to overcome these obstacles. Finally, we outline how developments in the cancer field are paving the way for cellular immunotherapeutics in other diseases.
Collapse
|
113
|
Yen M, Ren J, Liu Q, Glassman CR, Sheahan TP, Picton LK, Moreira FR, Rustagi A, Jude KM, Zhao X, Blish CA, Baric RS, Su LL, Garcia KC. Facile discovery of surrogate cytokine agonists. Cell 2022; 185:1414-1430.e19. [PMID: 35325595 PMCID: PMC9021867 DOI: 10.1016/j.cell.2022.02.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/11/2022] [Accepted: 02/22/2022] [Indexed: 12/26/2022]
Abstract
Cytokines are powerful immune modulators that initiate signaling through receptor dimerization, but natural cytokines have structural limitations as therapeutics. We present a strategy to discover cytokine surrogate agonists by using modular ligands that exploit induced proximity and receptor dimer geometry as pharmacological metrics amenable to high-throughput screening. Using VHH and scFv to human interleukin-2/15, type-I interferon, and interleukin-10 receptors, we generated combinatorial matrices of single-chain bispecific ligands that exhibited diverse spectrums of functional activities, including potent inhibition of SARS-CoV-2 by surrogate interferons. Crystal structures of IL-2R:VHH complexes revealed that variation in receptor dimer geometries resulted in functionally diverse signaling outputs. This modular platform enabled engineering of surrogate ligands that compelled assembly of an IL-2R/IL-10R heterodimer, which does not naturally exist, that signaled through pSTAT5 on T and natural killer (NK) cells. This "cytokine med-chem" approach, rooted in principles of induced proximity, is generalizable for discovery of diversified agonists for many ligand-receptor systems.
Collapse
Affiliation(s)
- Michelle Yen
- Departments of Molecular and Cellular Physiology, and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Junming Ren
- Departments of Molecular and Cellular Physiology, and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Qingxiang Liu
- Departments of Molecular and Cellular Physiology, and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Caleb R Glassman
- Departments of Molecular and Cellular Physiology, and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Timothy P Sheahan
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lora K Picton
- Departments of Molecular and Cellular Physiology, and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Fernando R Moreira
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Arjun Rustagi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kevin M Jude
- Departments of Molecular and Cellular Physiology, and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xiang Zhao
- Departments of Molecular and Cellular Physiology, and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Catherine A Blish
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Ralph S Baric
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Leon L Su
- Departments of Molecular and Cellular Physiology, and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - K Christopher Garcia
- Departments of Molecular and Cellular Physiology, and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
114
|
Zhao X, Kolawole EM, Chan W, Feng Y, Yang X, Gee MH, Jude KM, Sibener LV, Fordyce PM, Germain RN, Evavold BD, Garcia KC. Tuning T cell receptor sensitivity through catch bond engineering. Science 2022; 376:eabl5282. [PMID: 35389803 PMCID: PMC9513562 DOI: 10.1126/science.abl5282] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Adoptive cell therapy using engineered T cell receptors (TCRs) is a promising approach for targeting cancer antigens, but tumor-reactive TCRs are often weakly responsive to their target ligands, peptide-major histocompatibility complexes (pMHCs). Affinity-matured TCRs can enhance the efficacy of TCR-T cell therapy but can also cross-react with off-target antigens, resulting in organ immunopathology. We developed an alternative strategy to isolate TCR mutants that exhibited high activation signals coupled with low-affinity pMHC binding through the acquisition of catch bonds. Engineered analogs of a tumor antigen MAGE-A3-specific TCR maintained physiological affinities while exhibiting enhanced target killing potency and undetectable cross-reactivity, compared with a high-affinity clinically tested TCR that exhibited lethal cross-reactivity with a cardiac antigen. Catch bond engineering is a biophysically based strategy to tune high-sensitivity TCRs for T cell therapy with reduced potential for adverse cross-reactivity.
Collapse
Affiliation(s)
- Xiang Zhao
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Elizabeth M Kolawole
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Waipan Chan
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yinnian Feng
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Xinbo Yang
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Marvin H Gee
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kevin M Jude
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Leah V Sibener
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Polly M Fordyce
- Department of Genetics, Stanford University, Stanford, CA 94305, USA.,Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.,ChEM-H Institute, Stanford University, Stanford, CA 94305, USA.,Chan Zuckerberg BioHub, San Francisco, CA 94158, USA
| | - Ronald N Germain
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brian D Evavold
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - K Christopher Garcia
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
115
|
Lang F, Schrörs B, Löwer M, Türeci Ö, Sahin U. Identification of neoantigens for individualized therapeutic cancer vaccines. Nat Rev Drug Discov 2022; 21:261-282. [PMID: 35105974 PMCID: PMC7612664 DOI: 10.1038/s41573-021-00387-y] [Citation(s) in RCA: 211] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2021] [Indexed: 02/07/2023]
Abstract
Somatic mutations in cancer cells can generate tumour-specific neoepitopes, which are recognized by autologous T cells in the host. As neoepitopes are not subject to central immune tolerance and are not expressed in healthy tissues, they are attractive targets for therapeutic cancer vaccines. Because the vast majority of cancer mutations are unique to the individual patient, harnessing the full potential of this rich source of targets requires individualized treatment approaches. Many computational algorithms and machine-learning tools have been developed to identify mutations in sequence data, to prioritize those that are more likely to be recognized by T cells and to design tailored vaccines for every patient. In this Review, we fill the gaps between the understanding of basic mechanisms of T cell recognition of neoantigens and the computational approaches for discovery of somatic mutations and neoantigen prediction for cancer immunotherapy. We present a new classification of neoantigens, distinguishing between guarding, restrained and ignored neoantigens, based on how they confer proficient antitumour immunity in a given clinical context. Such context-based differentiation will contribute to a framework that connects neoantigen biology to the clinical setting and medical peculiarities of cancer, and will enable future neoantigen-based therapies to provide greater clinical benefit.
Collapse
Affiliation(s)
- Franziska Lang
- TRON Translational Oncology, Mainz, Germany
- Faculty of Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| | | | | | | | - Ugur Sahin
- BioNTech, Mainz, Germany.
- University Medical Center, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
116
|
Engineering the T cell receptor for fun and profit: Uncovering complex biology, interrogating the immune system, and targeting disease. Curr Opin Struct Biol 2022; 74:102358. [PMID: 35344834 DOI: 10.1016/j.sbi.2022.102358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/13/2022] [Accepted: 02/21/2022] [Indexed: 11/21/2022]
Abstract
T cell receptors (TCRs) orchestrate cellular immunity by recognizing peptide antigens bound and presented by major histocompatibility complex (MHC) proteins. Due to the TCR's central role in immunity and tight connection with human health, there has been significant interest in modulating TCR properties through protein engineering methods. Complicating these efforts is the complexity and vast diversity of TCR-peptide/MHC interfaces, the interdependency between TCR affinity, specificity, and cross-reactivity, and the sophisticated relationships between TCR binding properties and T cell function, many aspects of which are not well understood. Here we review TCR engineering, starting with a brief historical overview followed by discussions of more recent developments, including new efforts and opportunities to engineer TCR affinity, modulate specificity, and develop novel TCR-based constructs.
Collapse
|
117
|
Genetic Modification of T Cells for the Immunotherapy of Cancer. Vaccines (Basel) 2022; 10:vaccines10030457. [PMID: 35335089 PMCID: PMC8949949 DOI: 10.3390/vaccines10030457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/05/2022] [Accepted: 03/11/2022] [Indexed: 02/01/2023] Open
Abstract
Immunotherapy is a beneficial treatment approach for multiple cancers, however, current therapies are effective only in a small subset of patients. Adoptive cell transfer (ACT) is a facet of immunotherapy where T cells targeting the tumor cells are transferred to the patient with several primary forms, utilizing unmodified or modified T cells: tumor-infiltrating lymphocytes (TIL), genetically modified T cell receptor transduced T cells, and chimeric antigen receptor (CAR) transduced T cells. Many clinical trials are underway investigating the efficacy and safety of these different subsets of ACT, as well as trials that combine one of these subsets with another type of immunotherapy. The main challenges existing with ACT are improving clinical responses and decreasing adverse events. Current research focuses on identifying novel tumor targeting T cell receptors, improving safety and efficacy, and investigating ACT in combination with other immunotherapies.
Collapse
|
118
|
Shafer P, Kelly LM, Hoyos V. Cancer Therapy With TCR-Engineered T Cells: Current Strategies, Challenges, and Prospects. Front Immunol 2022; 13:835762. [PMID: 35309357 PMCID: PMC8928448 DOI: 10.3389/fimmu.2022.835762] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/10/2022] [Indexed: 12/23/2022] Open
Abstract
To redirect T cells against tumor cells, T cells can be engineered ex vivo to express cancer-antigen specific T cell receptors (TCRs), generating products known as TCR-engineered T cells (TCR T). Unlike chimeric antigen receptors (CARs), TCRs recognize HLA-presented peptides derived from proteins of all cellular compartments. The use of TCR T cells for adoptive cellular therapies (ACT) has gained increased attention, especially as efforts to treat solid cancers with ACTs have intensified. In this review, we describe the differing mechanisms of T cell antigen recognition and signal transduction mediated through CARs and TCRs. We describe the classes of cancer antigens recognized by current TCR T therapies and discuss both classical and emerging pre-clinical strategies for antigen-specific TCR discovery, enhancement, and validation. Finally, we review the current landscape of clinical trials for TCR T therapy and discuss what these current results indicate for the development of future engineered TCR approaches.
Collapse
Affiliation(s)
- Paul Shafer
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, TX, United States
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Program in Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Lauren M. Kelly
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, TX, United States
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Program in Cancer & Cell Biology, Baylor College of Medicine, Houston, TX, United States
| | - Valentina Hoyos
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, TX, United States
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
119
|
Sandberg ML, Wang X, Martin AD, Nampe DP, Gabrelow GB, Li CZ, McElvain ME, Lee WH, Shafaattalab S, Martire S, Fisher FA, Ando Y, Liu E, Ju D, Wong LM, Xu H, Kamb A. A carcinoembryonic antigen-specific cell therapy selectively targets tumor cells with HLA loss of heterozygosity in vitro and in vivo. Sci Transl Med 2022; 14:eabm0306. [PMID: 35235342 DOI: 10.1126/scitranslmed.abm0306] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The CEACAM5 gene product [carcinoembryonic antigen (CEA)] is an attractive target for colorectal cancer because of its high expression in virtually all colorectal tumors and limited expression in most healthy adult tissues. However, highly active CEA-directed investigational therapeutics have been reported to be toxic, causing severe colitis because CEA is expressed on normal gut epithelial cells. Here, we developed a strategy to address this toxicity problem: the Tmod dual-signal integrator. CEA Tmod cells use two receptors: a chimeric antigen receptor (CAR) activated by CEA and a leukocyte Ig-like receptor 1 (LIR-1)-based inhibitory receptor triggered by human leukocyte antigen (HLA)-A*02. CEA Tmod cells exploit instances of HLA heterozygous gene loss in tumors to protect the patient from on-target, off-tumor toxicity. CEA Tmod cells potently killed CEA-expressing tumor cells in vitro and in vivo. But in contrast to a traditional CEA-specific T cell receptor transgenic T cell, Tmod cells were highly selective for tumor cells even when mixed with HLA-A*02-expressing cells. These data support further development of the CEA Tmod construct as a therapeutic candidate for colorectal cancer.
Collapse
Affiliation(s)
- Mark L Sandberg
- Discovery Research, A2 Biotherapeutics, Inc., 30301 Agoura Road, Agoura Hills, CA 91301, USA
| | - Xueyin Wang
- Discovery Research, A2 Biotherapeutics, Inc., 30301 Agoura Road, Agoura Hills, CA 91301, USA
| | - Aaron D Martin
- Discovery Research, A2 Biotherapeutics, Inc., 30301 Agoura Road, Agoura Hills, CA 91301, USA
| | - Daniel P Nampe
- Process Development, A2 Biotherapeutics, Inc., 30301 Agoura Road, Agoura Hills, CA 91301, USA
| | - Grant B Gabrelow
- Discovery Research, A2 Biotherapeutics, Inc., 30301 Agoura Road, Agoura Hills, CA 91301, USA
| | - Chuck Z Li
- Discovery Research, A2 Biotherapeutics, Inc., 30301 Agoura Road, Agoura Hills, CA 91301, USA
| | - Michele E McElvain
- Discovery Research, A2 Biotherapeutics, Inc., 30301 Agoura Road, Agoura Hills, CA 91301, USA
| | - Wen-Hua Lee
- Discovery Research, A2 Biotherapeutics, Inc., 30301 Agoura Road, Agoura Hills, CA 91301, USA
| | - Sanam Shafaattalab
- Discovery Research, A2 Biotherapeutics, Inc., 30301 Agoura Road, Agoura Hills, CA 91301, USA
| | | | - Fernando A Fisher
- Discovery Research, A2 Biotherapeutics, Inc., 30301 Agoura Road, Agoura Hills, CA 91301, USA
| | - Yuta Ando
- Discovery Research, A2 Biotherapeutics, Inc., 30301 Agoura Road, Agoura Hills, CA 91301, USA
| | - Edwin Liu
- Process Development, A2 Biotherapeutics, Inc., 30301 Agoura Road, Agoura Hills, CA 91301, USA
| | - David Ju
- Process Development, A2 Biotherapeutics, Inc., 30301 Agoura Road, Agoura Hills, CA 91301, USA
| | - Lu Min Wong
- Discovery Research, A2 Biotherapeutics, Inc., 30301 Agoura Road, Agoura Hills, CA 91301, USA
| | - Han Xu
- Discovery Research, A2 Biotherapeutics, Inc., 30301 Agoura Road, Agoura Hills, CA 91301, USA
| | - Alexander Kamb
- Discovery Research, A2 Biotherapeutics, Inc., 30301 Agoura Road, Agoura Hills, CA 91301, USA
| |
Collapse
|
120
|
Grady C, Melnick K, Porche K, Dastmalchi F, Hoh DJ, Rahman M, Ghiaseddin A. Glioma Immunotherapy: Advances and Challenges for Spinal Cord Gliomas. Neurospine 2022; 19:13-29. [PMID: 35130421 PMCID: PMC8987559 DOI: 10.14245/ns.2143210.605] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/21/2021] [Indexed: 01/05/2023] Open
Abstract
Spinal cord gliomas are rare entities that often have limited surgical options. Immunotherapy has shown promise in intracranial gliomas with some research suggesting benefit for spinal cord gliomas. A focused review of immunotherapies that have been investigated in spinal cord gliomas was performed. The primary methods of immunotherapy investigated in spinal cord gliomas include immune checkpoint inhibitors, adoptive T-cell therapies, and vaccine strategies. There are innumerable challenges that must be overcome to effectively apply immunotherapeutic strategies to the spinal cord gliomas including low incidence, few antigenic targets, the blood spinal cord barrier, the immunosuppressive tumor microenvironment and neurotoxic treatment effects. Nonetheless, research has suggested ways to overcome these challenges and treatments have been effective in case reports for metastatic non-small cell lung cancer, melanoma, midline glioma and glioblastoma. Current therapies for spinal cord gliomas are markedly limited. Further research is needed to determine if the success of immunotherapy for intracranial gliomas can be effectively applied to these unique tumors.
Collapse
Affiliation(s)
- Clare Grady
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Kaitlyn Melnick
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA,Corresponding Author Kaitlyn Melnick https://orcid.org/0000-0002-2657-2176 Department of Neurosurgery, University of Florida, Box 100265, Gainesville, FL, USA
| | - Ken Porche
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Farhad Dastmalchi
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Daniel J. Hoh
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Maryam Rahman
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Ashley Ghiaseddin
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| |
Collapse
|
121
|
Kerrison WGJ, Lee ATJ, Thway K, Jones RL, Huang PH. Current Status and Future Directions of Immunotherapies in Soft Tissue Sarcomas. Biomedicines 2022; 10:573. [PMID: 35327375 PMCID: PMC8945421 DOI: 10.3390/biomedicines10030573] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/15/2022] Open
Abstract
Immunotherapy in soft tissue sarcoma (STS) has experienced a surge of interest in the past decade, contributing to an expanding number of therapeutic options for this extremely heterogenous group of rare malignancies. Immune checkpoint inhibitors (CPIs) targeting the PD-1 and CTLA-4 axes have demonstrated promising responses in a select number of STS subtypes, including rarer subtypes, such as alveolar soft part sarcoma, SWI/SNF-deficient sarcomas, clear cell sarcoma, and angiosarcoma. Multiple pan-subtype sarcoma trials have facilitated the study of possible predictive biomarkers of the CPI response. It has also become apparent that certain therapies, when combined with CPIs, can enhance response rates, although the specific mechanisms of this possible synergy remain unconfirmed in STS. In addition to CPIs, several other immune targeting agents, including anti-tumour-associated macrophage and antigen-directed therapies, are now under assessment in STS with promising efficacy in some subtypes. In this article, we review the state of the art in immunotherapy in STS, highlighting the pre-clinical and clinical data available for this promising therapeutic strategy.
Collapse
Affiliation(s)
- William G. J. Kerrison
- Division of Molecular Pathology, The Institute of Cancer Research, Sutton SM2 5NG, UK; (W.G.J.K.); (K.T.)
| | | | - Khin Thway
- Division of Molecular Pathology, The Institute of Cancer Research, Sutton SM2 5NG, UK; (W.G.J.K.); (K.T.)
- The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK;
| | - Robin L. Jones
- The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK;
- Division of Clinical Studies, The Institute of Cancer Research, London SW3 6JB, UK
| | - Paul H. Huang
- Division of Molecular Pathology, The Institute of Cancer Research, Sutton SM2 5NG, UK; (W.G.J.K.); (K.T.)
| |
Collapse
|
122
|
Shakiba M, Zumbo P, Espinosa-Carrasco G, Menocal L, Dündar F, Carson SE, Bruno EM, Sanchez-Rivera FJ, Lowe SW, Camara S, Koche RP, Reuter VP, Socci ND, Whitlock B, Tamzalit F, Huse M, Hellmann MD, Wells DK, Defranoux NA, Betel D, Philip M, Schietinger A. TCR signal strength defines distinct mechanisms of T cell dysfunction and cancer evasion. J Exp Med 2022; 219:e20201966. [PMID: 34935874 PMCID: PMC8704919 DOI: 10.1084/jem.20201966] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 07/07/2021] [Accepted: 11/12/2021] [Indexed: 12/26/2022] Open
Abstract
T cell receptor (TCR) signal strength is a key determinant of T cell responses. We developed a cancer mouse model in which tumor-specific CD8 T cells (TST cells) encounter tumor antigens with varying TCR signal strength. High-signal-strength interactions caused TST cells to up-regulate inhibitory receptors (IRs), lose effector function, and establish a dysfunction-associated molecular program. TST cells undergoing low-signal-strength interactions also up-regulated IRs, including PD1, but retained a cell-intrinsic functional state. Surprisingly, neither high- nor low-signal-strength interactions led to tumor control in vivo, revealing two distinct mechanisms by which PD1hi TST cells permit tumor escape; high signal strength drives dysfunction, while low signal strength results in functional inertness, where the signal strength is too low to mediate effective cancer cell killing by functional TST cells. CRISPR-Cas9-mediated fine-tuning of signal strength to an intermediate range improved anti-tumor activity in vivo. Our study defines the role of TCR signal strength in TST cell function, with important implications for T cell-based cancer immunotherapies.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/immunology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Line, Tumor
- Cytokines/metabolism
- Disease Models, Animal
- Epigenesis, Genetic
- Gene Expression Regulation, Neoplastic
- Humans
- Immunotherapy, Adoptive/methods
- Lymphocyte Activation/immunology
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Lymphocytes, Tumor-Infiltrating/pathology
- Mice
- Neoplasms/etiology
- Neoplasms/metabolism
- Neoplasms/pathology
- Neoplasms/therapy
- Receptors, Antigen, T-Cell/metabolism
- Signal Transduction
- T-Cell Antigen Receptor Specificity
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Tumor Escape
Collapse
Affiliation(s)
- Mojdeh Shakiba
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY
| | - Paul Zumbo
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY
- Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY
| | | | - Laura Menocal
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Friederike Dündar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY
- Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY
| | - Sandra E. Carson
- Department of Biochemistry, Cell and Molecular Biology, Weill Cornell Medicine, New York, NY
| | - Emmanuel M. Bruno
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Scott W. Lowe
- Cancer Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Steven Camara
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Richard P. Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Vincent P. Reuter
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Nicholas D. Socci
- Bioinformatics Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Benjamin Whitlock
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Fella Tamzalit
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Morgan Huse
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY
| | - Matthew D. Hellmann
- Parker Institute for Cancer Immunotherapy, San Francisco, CA
- Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, Cornell University, New York, NY
| | - Daniel K. Wells
- Parker Institute for Cancer Immunotherapy, San Francisco, CA
| | | | - Doron Betel
- Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Mary Philip
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN
| | - Andrea Schietinger
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY
| |
Collapse
|
123
|
Tokatlian T, Asuelime GE, Naradikian MS, Mock JY, Daris ME, Martin AD, Toledo Warshaviak D, Kamb A, Hamburger AE. Chimeric Antigen Receptors Directed at Mutant KRAS Exhibit an Inverse Relationship Between Functional Potency and Neoantigen Selectivity. CANCER RESEARCH COMMUNICATIONS 2022; 2:58-65. [PMID: 36860694 PMCID: PMC9973398 DOI: 10.1158/2767-9764.crc-21-0165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/03/2022] [Accepted: 01/13/2022] [Indexed: 11/16/2022]
Abstract
Neoantigens are among the most intriguing potential immuno-oncology targets because, unlike many cancer targets that are expressed on normal tissues, they are by definition restricted to cancer cells. Medicines directed at common neoantigens such as mutant KRAS are especially interesting because they may offer the convenience and cost of an off-the-shelf therapy. However, all common KRAS mutations produce proteins that differ from the wild type at a single amino acid, creating challenges for molecular discrimination. We have undertaken an effort to optimize single-chain variable fragments (scFv) against peptide/major histocompatibility antigen complexes composed of HLA-A*11 and either G12V- or G12D-mutant KRAS peptides. These scFvs could in principle be used in chimeric antigen receptor (CAR) T-cell therapies for selected patients whose tumors bear either of these mutations. Here we show that optimization of such CARs involves a trade-off between potency and selectivity. We further show that targeting this family without high selectivity engenders risks of cross-reactivity against other members of the G-protein family to which KRAS belongs. Significance We report an effort to generate high potency, selective CARs directed at mutant KRAS peptides. Although the heavily optimized CARs maintain high selectivity against wild-type KRAS, they lose selectivity against other KRAS-related peptides derived from human proteins. To our knowledge, this work is the first to examine the trade-off between potency and selectivity with regard to KRAS pMHC-directed CARs, illustrating the challenge to achieve both sufficient potency and high selectivity.
Collapse
Affiliation(s)
| | | | | | | | - Mark E. Daris
- Research, A2 Biotherapeutics, Agoura Hills, California
| | | | | | | | - Agnes E. Hamburger
- Research, A2 Biotherapeutics, Agoura Hills, California.,Corresponding Author: Agnes E. Hamburger, Research, A2 Biotherapeutics, 30301 Agoura Road, Agoura Hills, CA 91301. Phone: 805-491-1988; E-mail:
| |
Collapse
|
124
|
Liu Y, Yan X, Zhang F, Zhang X, Tang F, Han Z, Li Y. TCR-T Immunotherapy: The Challenges and Solutions. Front Oncol 2022; 11:794183. [PMID: 35145905 PMCID: PMC8822241 DOI: 10.3389/fonc.2021.794183] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/28/2021] [Indexed: 12/31/2022] Open
Abstract
T cell receptor-engineered T cell (TCR-T) therapy is free from the limit of surface antigen expression of the target cells, which is a potential cellular immunotherapy for cancer treatment. Significant advances in the treatment of hematologic malignancies with cellular immunotherapy have aroused the interest of researchers in the treatment of solid tumors. Nevertheless, the overall efficacy of TCR-T cell immunotherapy in solid tumors was not significantly high when compared with hematological malignancies. In this article, we pay attention to the barriers of TCR-T cell immunotherapy for solid tumors, as well as the strategies affecting the efficacy of TCR-T cell immunotherapy. To provide some reference for researchers to better overcome the impact of TCR-T cell efficiency in solid tumors.
Collapse
Affiliation(s)
- Yating Liu
- Department of Oncology, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Xin Yan
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Fan Zhang
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Xiaoxia Zhang
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Futian Tang
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Zhijian Han
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yumin Li
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
- *Correspondence: Yumin Li,
| |
Collapse
|
125
|
Heitzeneder S, Bosse KR, Zhu Z, Zhelev D, Majzner RG, Radosevich MT, Dhingra S, Sotillo E, Buongervino S, Pascual-Pasto G, Garrigan E, Xu P, Huang J, Salzer B, Delaidelli A, Raman S, Cui H, Martinez B, Bornheimer SJ, Sahaf B, Alag A, Fetahu IS, Hasselblatt M, Parker KR, Anbunathan H, Hwang J, Huang M, Sakamoto K, Lacayo NJ, Klysz DD, Theruvath J, Vilches-Moure JG, Satpathy AT, Chang HY, Lehner M, Taschner-Mandl S, Julien JP, Sorensen PH, Dimitrov DS, Maris JM, Mackall CL. GPC2-CAR T cells tuned for low antigen density mediate potent activity against neuroblastoma without toxicity. Cancer Cell 2022; 40:53-69.e9. [PMID: 34971569 PMCID: PMC9092726 DOI: 10.1016/j.ccell.2021.12.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 10/13/2021] [Accepted: 12/06/2021] [Indexed: 01/12/2023]
Abstract
Pediatric cancers often mimic fetal tissues and express proteins normally silenced postnatally that could serve as immune targets. We developed T cells expressing chimeric antigen receptors (CARs) targeting glypican-2 (GPC2), a fetal antigen expressed on neuroblastoma (NB) and several other solid tumors. CARs engineered using standard designs control NBs with transgenic GPC2 overexpression, but not those expressing clinically relevant GPC2 site density (∼5,000 molecules/cell, range 1-6 × 103). Iterative engineering of transmembrane (TM) and co-stimulatory domains plus overexpression of c-Jun lowered the GPC2-CAR antigen density threshold, enabling potent and durable eradication of NBs expressing clinically relevant GPC2 antigen density, without toxicity. These studies highlight the critical interplay between CAR design and antigen density threshold, demonstrate potent efficacy and safety of a lead GPC2-CAR candidate suitable for clinical testing, and credential oncofetal antigens as a promising class of targets for CAR T cell therapy of solid tumors.
Collapse
Affiliation(s)
- Sabine Heitzeneder
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Lorry Lokey Building, Suite G3141, MC: 5456, 265 Campus Drive, Stanford, CA 94305, USA
| | - Kristopher R Bosse
- Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhongyu Zhu
- National Cancer Institute, Frederick, MD 21702, USA
| | - Doncho Zhelev
- University of Pittsburgh Department of Medicine, Pittsburgh, PA 15261, USA
| | - Robbie G Majzner
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Lorry Lokey Building, Suite G3141, MC: 5456, 265 Campus Drive, Stanford, CA 94305, USA
| | - Molly T Radosevich
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Lorry Lokey Building, Suite G3141, MC: 5456, 265 Campus Drive, Stanford, CA 94305, USA
| | - Shaurya Dhingra
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Lorry Lokey Building, Suite G3141, MC: 5456, 265 Campus Drive, Stanford, CA 94305, USA
| | - Elena Sotillo
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Lorry Lokey Building, Suite G3141, MC: 5456, 265 Campus Drive, Stanford, CA 94305, USA
| | - Samantha Buongervino
- Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Guillem Pascual-Pasto
- Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Emily Garrigan
- Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Peng Xu
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Lorry Lokey Building, Suite G3141, MC: 5456, 265 Campus Drive, Stanford, CA 94305, USA
| | - Jing Huang
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Lorry Lokey Building, Suite G3141, MC: 5456, 265 Campus Drive, Stanford, CA 94305, USA
| | - Benjamin Salzer
- St. Anna Children's Cancer Research Institute, Vienna, Austria; Christian Doppler Laboratory for Next Generation CAR T Cells, Vienna, Austria
| | - Alberto Delaidelli
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada
| | - Swetha Raman
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Hong Cui
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Benjamin Martinez
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | | | - Bita Sahaf
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Lorry Lokey Building, Suite G3141, MC: 5456, 265 Campus Drive, Stanford, CA 94305, USA
| | - Anya Alag
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Lorry Lokey Building, Suite G3141, MC: 5456, 265 Campus Drive, Stanford, CA 94305, USA
| | - Irfete S Fetahu
- University of Pittsburgh Department of Medicine, Pittsburgh, PA 15261, USA
| | - Martin Hasselblatt
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Kevin R Parker
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA
| | - Hima Anbunathan
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Lorry Lokey Building, Suite G3141, MC: 5456, 265 Campus Drive, Stanford, CA 94305, USA
| | | | - Min Huang
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kathleen Sakamoto
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Norman J Lacayo
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dorota D Klysz
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Lorry Lokey Building, Suite G3141, MC: 5456, 265 Campus Drive, Stanford, CA 94305, USA
| | - Johanna Theruvath
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Lorry Lokey Building, Suite G3141, MC: 5456, 265 Campus Drive, Stanford, CA 94305, USA
| | - José G Vilches-Moure
- Department of Comparative Medicine, Animal Histology Services, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ansuman T Satpathy
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA 941209, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Manfred Lehner
- St. Anna Children's Cancer Research Institute, Vienna, Austria; Christian Doppler Laboratory for Next Generation CAR T Cells, Vienna, Austria
| | | | - Jean-Phillipe Julien
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada; Departments of Biochemistry and Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Poul H Sorensen
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada
| | - Dimiter S Dimitrov
- University of Pittsburgh Department of Medicine, Pittsburgh, PA 15261, USA
| | - John M Maris
- Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Crystal L Mackall
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Lorry Lokey Building, Suite G3141, MC: 5456, 265 Campus Drive, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA 941209, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
126
|
Nakanishi H, Itaka K. Synthetic mRNA for ex vivo therapeutic applications. Drug Metab Pharmacokinet 2022; 44:100447. [DOI: 10.1016/j.dmpk.2022.100447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 01/06/2023]
|
127
|
Chhabra N, Kennedy J. A Review of Cancer Immunotherapy Toxicity II: Adoptive Cellular Therapies, Kinase Inhibitors, Monoclonal Antibodies, and Oncolytic Viruses. J Med Toxicol 2022; 18:43-55. [PMID: 33821435 PMCID: PMC8021214 DOI: 10.1007/s13181-021-00835-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/29/2021] [Accepted: 02/18/2021] [Indexed: 12/14/2022] Open
Abstract
Immunotherapy for cancer has undergone a rapid expansion in classes, agents, and indications. By utilizing aspects of the body's innate immune system, immunotherapy has improved life expectancy and quality of life for patients with several types of cancer. Adoptive cellular therapies, including chimeric antigen receptor T (CAR T) cell therapy, involve the genetic engineering of patient T cells to allow for targeting of neoplastic cells. Monitoring of patients during the lymphodepletion prior to therapy and following CAR T cell infusion is necessary to detect toxicity of therapy. Specific toxicities include cytokine release syndrome and neurologic toxicity, both of which may be life-threatening. Tocilizumab and/or corticosteroids should be considered for moderate to severe toxicity. Kinase inhibitor toxicity can occur as "on target" effects or "off target" effects to multiple organ systems due to shared protein epitopes. Treatments are organ-specific. Infusion reactions are common during treatment with monoclonal antibodies and treatment is largely supportive. Clinical experience with oncolytic viruses is limited, but local reactions including cellulitis as well as systemic influenza-like syndromes have been seen but are typically mild. Although clinical experience with adverse effects due to newer immunotherapy agents is growing, an up-to-date understanding of their mechanisms and potential toxicities is critical.
Collapse
Affiliation(s)
- Neeraj Chhabra
- Department of Emergency Medicine, Division of Medical Toxicology, Cook County Health, 1950 W Polk Street, 7th Floor, Chicago, IL, 60612, USA.
- Toxikon Consortium, Chicago, IL, USA.
| | - Joseph Kennedy
- Department of Emergency Medicine, Division of Medical Toxicology, Cook County Health, 1950 W Polk Street, 7th Floor, Chicago, IL, 60612, USA
- Toxikon Consortium, Chicago, IL, USA
| |
Collapse
|
128
|
Pothast CR, Dijkland RC, Thaler M, Hagedoorn RS, Kester MGD, Wouters AK, Hiemstra PS, van Hemert MJ, Gras S, Falkenburg JHF, Heemskerk MHM. SARS-CoV-2-specific CD4 + and CD8 + T cell responses can originate from cross-reactive CMV-specific T cells. eLife 2022; 11:82050. [PMID: 36408799 PMCID: PMC9822249 DOI: 10.7554/elife.82050] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/13/2022] [Indexed: 11/22/2022] Open
Abstract
Detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) specific CD4+ and CD8+ T cells in SARS-CoV-2-unexposed donors has been explained by the presence of T cells primed by other coronaviruses. However, based on the relatively high frequency and prevalence of cross-reactive T cells, we hypothesized cytomegalovirus (CMV) may induce these cross-reactive T cells. Stimulation of pre-pandemic cryo-preserved peripheral blood mononuclear cells (PBMCs) with SARS-CoV-2 peptides revealed that frequencies of SARS-CoV-2-specific T cells were higher in CMV-seropositive donors. Characterization of these T cells demonstrated that membrane-specific CD4+ and spike-specific CD8+ T cells originate from cross-reactive CMV-specific T cells. Spike-specific CD8+ T cells recognize SARS-CoV-2 spike peptide FVSNGTHWF (FVS) and dissimilar CMV pp65 peptide IPSINVHHY (IPS) presented by HLA-B*35:01. These dual IPS/FVS-reactive CD8+ T cells were found in multiple donors as well as severe COVID-19 patients and shared a common T cell receptor (TCR), illustrating that IPS/FVS-cross-reactivity is caused by a public TCR. In conclusion, CMV-specific T cells cross-react with SARS-CoV-2, despite low sequence homology between the two viruses, and may contribute to the pre-existing immunity against SARS-CoV-2.
Collapse
Affiliation(s)
- Cilia R Pothast
- Department of Hematology, Leiden University Medical CenterLeidenNetherlands
| | - Romy C Dijkland
- Department of Hematology, Leiden University Medical CenterLeidenNetherlands
| | - Melissa Thaler
- Department of Medical Microbiology, Leiden University Medical CenterLeidenNetherlands
| | - Renate S Hagedoorn
- Department of Hematology, Leiden University Medical CenterLeidenNetherlands
| | - Michel GD Kester
- Department of Hematology, Leiden University Medical CenterLeidenNetherlands
| | - Anne K Wouters
- Department of Hematology, Leiden University Medical CenterLeidenNetherlands
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical CenterLeidenNetherlands
| | - Martijn J van Hemert
- Department of Medical Microbiology, Leiden University Medical CenterLeidenNetherlands
| | - Stephanie Gras
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe UniversityVictoriaAustralia,Department of Biochemistry and Molecular Biology, Monash UniversityClaytonAustralia
| | | | | |
Collapse
|
129
|
Silk JD, Abbott RJM, Adams KJ, Bennett AD, Brett S, Cornforth TV, Crossland KL, Figueroa DJ, Jing J, O'Connor C, Pachnio A, Patasic L, Peredo CE, Quattrini A, Quinn LL, Rust AG, Saini M, Sanderson JP, Steiner D, Tavano B, Viswanathan P, Wiedermann GE, Wong R, Jakobsen BK, Britten CM, Gerry AB, Brewer JE. Engineering Cancer Antigen-Specific T Cells to Overcome the Immunosuppressive Effects of TGF-β. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:169-180. [PMID: 34853077 DOI: 10.4049/jimmunol.2001357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 10/20/2021] [Indexed: 02/07/2023]
Abstract
Adoptive T cell therapy with T cells expressing affinity-enhanced TCRs has shown promising results in phase 1/2 clinical trials for solid and hematological tumors. However, depth and durability of responses to adoptive T cell therapy can suffer from an inhibitory tumor microenvironment. A common immune-suppressive agent is TGF-β, which is secreted by tumor cells and cells recruited to the tumor. We investigated whether human T cells could be engineered to be resistant to inhibition by TGF-β. Truncating the intracellular signaling domain from TGF-β receptor (TGFβR) II produces a dominant-negative receptor (dnTGFβRII) that dimerizes with endogenous TGFβRI to form a receptor that can bind TGF-β but cannot signal. We previously generated specific peptide enhanced affinity receptor TCRs recognizing the HLA-A*02-restricted peptides New York esophageal squamous cell carcinoma 1 (NY-ESO-1)157-165/l-Ag family member-1A (TCR: GSK3377794, formerly NY-ESO-1c259) and melanoma Ag gene A10254-262 (TCR: ADP-A2M10, formerly melanoma Ag gene A10c796). In this article, we show that exogenous TGF-β inhibited in vitro proliferation and effector functions of human T cells expressing these first-generation high-affinity TCRs, whereas inhibition was reduced or abolished in the case of second-generation TCRs coexpressed with dnTGFβRII (e.g., GSK3845097). TGF-β isoforms and a panel of TGF-β-associated genes are overexpressed in a range of cancer indications in which NY-ESO-1 is commonly expressed, particularly in synovial sarcoma. As an example, immunohistochemistry/RNAscope identified TGF-β-positive cells close to T cells in tumor nests and stroma, which had low frequencies of cells expressing IFN-γ in a non-small cell lung cancer setting. Coexpression of dnTGFβRII may therefore improve the efficacy of TCR-transduced T cells.
Collapse
Affiliation(s)
| | | | | | | | - Sara Brett
- Oncology Research and Development, GlaxoSmithKline, Stevenage Herts, United Kingdom; and
| | | | | | - David J Figueroa
- Oncology Research and Development, GlaxoSmithKline, Stevenage Herts, United Kingdom; and
| | - Junping Jing
- Oncology Research and Development, GlaxoSmithKline, Stevenage Herts, United Kingdom; and
| | | | | | - Lea Patasic
- Oncology Research and Development, GlaxoSmithKline, Stevenage Herts, United Kingdom; and
| | - Carlos E Peredo
- Cell and Gene Therapy Product Development and Supply, Analytical Development, GlaxoSmithKline, Collegeville, PA
| | | | - Laura L Quinn
- Adaptimmune Ltd., Milton Park, Abingdon, United Kingdom
| | - Alistair G Rust
- Oncology Research and Development, GlaxoSmithKline, Stevenage Herts, United Kingdom; and
| | - Manoj Saini
- Adaptimmune Ltd., Milton Park, Abingdon, United Kingdom
| | | | - Dylan Steiner
- Oncology Research and Development, GlaxoSmithKline, Stevenage Herts, United Kingdom; and
| | | | | | | | - Ryan Wong
- Adaptimmune Ltd., Milton Park, Abingdon, United Kingdom
| | | | - Cedrik M Britten
- Oncology Research and Development, GlaxoSmithKline, Stevenage Herts, United Kingdom; and
| | | | | |
Collapse
|
130
|
Wang X, Wong LM, McElvain ME, Martire S, Lee WH, Li CZ, Fisher FA, Maheshwari RL, Wu ML, Imun MC, Murad R, Warshaviak DT, Yin J, Kamb A, Xu H. A rational approach to assess off-target reactivity of a dual-signal integrator for T cell therapy. Toxicol Appl Pharmacol 2022; 437:115894. [DOI: 10.1016/j.taap.2022.115894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 01/16/2023]
|
131
|
Rafaeva M, Horton ER, Jensen AR, Madsen CD, Reuten R, Willacy O, Brøchner CB, Jensen TH, Zornhagen KW, Crespo M, Grønseth DS, Nielsen SR, Idorn M, Straten PT, Rohrberg K, Spanggaard I, Højgaard M, Lassen U, Erler JT, Mayorca‐Guiliani AE. Modeling Metastatic Colonization in a Decellularized Organ Scaffold-Based Perfusion Bioreactor. Adv Healthc Mater 2022; 11:e2100684. [PMID: 34734500 PMCID: PMC11469127 DOI: 10.1002/adhm.202100684] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 10/25/2021] [Indexed: 12/26/2022]
Abstract
Metastatic cancer spread is responsible for most cancer-related deaths. To colonize a new organ, invading cells adapt to, and remodel, the local extracellular matrix (ECM), a network of proteins and proteoglycans underpinning all tissues, and a critical regulator of homeostasis and disease. However, there is a major lack in tools to study cancer cell behavior within native 3D ECM. Here, an in-house designed bioreactor, where mouse organ ECM scaffolds are perfused and populated with cells that are challenged to colonize it, is presented. Using a specialized bioreactor chamber, it is possible to monitor cell behavior microscopically (e.g., proliferation, migration) within the organ scaffold. Cancer cells in this system recapitulate cell signaling observed in vivo and remodel complex native ECM. Moreover, the bioreactors are compatible with co-culturing cell types of different genetic origin comprising the normal and tumor microenvironment. This degree of experimental flexibility in an organ-specific and 3D context, opens new possibilities to study cell-cell and cell-ECM interplay and to model diseases in a controllable organ-specific system ex vivo.
Collapse
Affiliation(s)
- Maria Rafaeva
- Biotech Research and Innovation Centre (BRIC)University of Copenhagen (UCPH)Ole Maaloes Vej 5Copenhagen2200Denmark
| | - Edward R. Horton
- Biotech Research and Innovation Centre (BRIC)University of Copenhagen (UCPH)Ole Maaloes Vej 5Copenhagen2200Denmark
| | - Adina R.D. Jensen
- Biotech Research and Innovation Centre (BRIC)University of Copenhagen (UCPH)Ole Maaloes Vej 5Copenhagen2200Denmark
| | - Chris D. Madsen
- Division of Translational Cancer ResearchDepartment of Laboratory MedicineLund UniversityLund22242Sweden
| | - Raphael Reuten
- Biotech Research and Innovation Centre (BRIC)University of Copenhagen (UCPH)Ole Maaloes Vej 5Copenhagen2200Denmark
- Present address:
Institute of Experimental and Clinical Pharmacology and ToxicologyMedical FacultyUniversity of Freiburg.FreiburgGermany
| | - Oliver Willacy
- Biotech Research and Innovation Centre (BRIC)University of Copenhagen (UCPH)Ole Maaloes Vej 5Copenhagen2200Denmark
| | - Christian B. Brøchner
- Department of Pathology, RigshospitaletCopenhagen University HospitalBlegdamsvej 9Copenhagen2100Denmark
| | - Thomas H. Jensen
- Department of Pathology, RigshospitaletCopenhagen University HospitalBlegdamsvej 9Copenhagen2100Denmark
| | - Kamilla Westarp Zornhagen
- Biotech Research and Innovation Centre (BRIC)University of Copenhagen (UCPH)Ole Maaloes Vej 5Copenhagen2200Denmark
| | - Marina Crespo
- Biotech Research and Innovation Centre (BRIC)University of Copenhagen (UCPH)Ole Maaloes Vej 5Copenhagen2200Denmark
| | - Dina S. Grønseth
- Biotech Research and Innovation Centre (BRIC)University of Copenhagen (UCPH)Ole Maaloes Vej 5Copenhagen2200Denmark
| | - Sebastian R. Nielsen
- Biotech Research and Innovation Centre (BRIC)University of Copenhagen (UCPH)Ole Maaloes Vej 5Copenhagen2200Denmark
| | - Manja Idorn
- National Center for Cancer Immune Therapy (CCIT)Department of OncologyUniversity Hospital Herlev and Department of Immunology and MicrobiologyUniversity of Copenhagen (UCPH)Herlev Ringvej 75Herlev2730Denmark
| | - Per thor Straten
- National Center for Cancer Immune Therapy (CCIT)Department of OncologyUniversity Hospital Herlev and Department of Immunology and MicrobiologyUniversity of Copenhagen (UCPH)Herlev Ringvej 75Herlev2730Denmark
| | - Kristoffer Rohrberg
- Department of OncologyCentre for Cancer and Organ Diseases, RigshospitaletCopenhagen University HospitalBlegdamsvej 9Copenhagen2100Denmark
| | - Iben Spanggaard
- Department of OncologyCentre for Cancer and Organ Diseases, RigshospitaletCopenhagen University HospitalBlegdamsvej 9Copenhagen2100Denmark
| | - Martin Højgaard
- Department of OncologyCentre for Cancer and Organ Diseases, RigshospitaletCopenhagen University HospitalBlegdamsvej 9Copenhagen2100Denmark
| | - Ulrik Lassen
- Department of OncologyCentre for Cancer and Organ Diseases, RigshospitaletCopenhagen University HospitalBlegdamsvej 9Copenhagen2100Denmark
| | - Janine T. Erler
- Biotech Research and Innovation Centre (BRIC)University of Copenhagen (UCPH)Ole Maaloes Vej 5Copenhagen2200Denmark
| | | |
Collapse
|
132
|
T cells targeted to TdT kill leukemic lymphoblasts while sparing normal lymphocytes. Nat Biotechnol 2022; 40:488-498. [PMID: 34873326 PMCID: PMC9005346 DOI: 10.1038/s41587-021-01089-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/02/2021] [Indexed: 02/07/2023]
Abstract
Unlike chimeric antigen receptors, T-cell receptors (TCRs) can recognize intracellular targets presented on human leukocyte antigen (HLA) molecules. Here we demonstrate that T cells expressing TCRs specific for peptides from the intracellular lymphoid-specific enzyme terminal deoxynucleotidyl transferase (TdT), presented in the context of HLA-A*02:01, specifically eliminate primary acute lymphoblastic leukemia (ALL) cells of T- and B-cell origin in vitro and in three mouse models of disseminated B-ALL. By contrast, the treatment spares normal peripheral T- and B-cell repertoires and normal myeloid cells in vitro, and in vivo in humanized mice. TdT is an attractive cancer target as it is highly and homogeneously expressed in 80-94% of B- and T-ALLs, but only transiently expressed during normal lymphoid differentiation, limiting on-target toxicity of TdT-specific T cells. TCR-modified T cells targeting TdT may be a promising immunotherapy for B-ALL and T-ALL that preserves normal lymphocytes.
Collapse
|
133
|
Baulu E, Dougé A, Chuvin N, Bay JO, Depil S. [T cell-based immunotherapies in solid tumors]. Bull Cancer 2021; 108:S96-S108. [PMID: 34920813 DOI: 10.1016/j.bulcan.2021.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 12/08/2022]
Abstract
In solid tumors, adoptive T cell therapies based on ex vivo amplification of antitumor T cell are represented by three main complementary approaches : (i) tumor infiltrating lymphocytes (TILs) which are amplified in vitro before reinjection to the patient, (ii) chimeric antigen receptor (CAR) engineered T cells and (iii) T cell receptor (TCR) engineered T cells. Despite encouraging results, some obstacles remain, such as optimal target selection and tumor microenvironment. In this Review, we discuss pros and cons of these different therapeutic strategies that may open new perspectives in the treatment of solid tumors.
Collapse
Affiliation(s)
- Estelle Baulu
- Centre de recherche en cancérologie de Lyon, 28, rue Laennec, 69008 Lyon, France; ErVaccine Technologies, 28, rue Laennec, 69008 Lyon, France
| | - Aurore Dougé
- CHU Estaing, service d'hématologie, 1, rue Lucie et Raymond Aubrac, 63100 Clermont-Ferrand, France
| | - Nicolas Chuvin
- ErVaccine Technologies, 28, rue Laennec, 69008 Lyon, France
| | - Jacques-Olivier Bay
- CHU Estaing, service d'hématologie, 1, rue Lucie et Raymond Aubrac, 63100 Clermont-Ferrand, France; Faculté de médecine, 28, place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Stéphane Depil
- Centre de recherche en cancérologie de Lyon, 28, rue Laennec, 69008 Lyon, France; ErVaccine Technologies, 28, rue Laennec, 69008 Lyon, France; Centre Léon Bérard, 28, Prom. Léa et Napoléon Bullukian, 69008 Lyon, France; Université Claude-Bernard Lyon 1, 43, boulevard du 11 novembre 1918, 69100 Villeurbanne, France.
| |
Collapse
|
134
|
Moore MJ, Zhong M, Hansen J, Gartner H, Grant C, Huang M, Harris FM, Tu N, Bowerman NA, Edelmann KH, Barry T, Herbin O, Tay CS, DiLillo DJ, Decker CE, Levenkova N, Shevchuk J, Dhanik A, Meagher KA, Karr A, Roos J, Lee WY, Suh D, Eckersdorff M, Meagher TC, Koss M, Esau L, Sleeman MA, Babb R, Chen G, Kyratsous CA, Poueymirou WT, McWhirter JR, Voronina VA, Guo C, Gurer C, Yancopoulos GD, Murphy AJ, Macdonald LE. Humanization of T cell-mediated immunity in mice. Sci Immunol 2021; 6:eabj4026. [PMID: 34919442 DOI: 10.1126/sciimmunol.abj4026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Michael J Moore
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Maggie Zhong
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Johanna Hansen
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Hans Gartner
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Craig Grant
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Mei Huang
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Faith M Harris
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Naxin Tu
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Natalie A Bowerman
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Kurt H Edelmann
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Thomas Barry
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Olivier Herbin
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Chin-Siean Tay
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - David J DiLillo
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Corinne E Decker
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Natasha Levenkova
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - James Shevchuk
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Ankur Dhanik
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Karoline A Meagher
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Amanda Karr
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Jan Roos
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Wen-Yi Lee
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - David Suh
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Mark Eckersdorff
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - T Craig Meagher
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Matthew Koss
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Lakeisha Esau
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Matthew A Sleeman
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Robert Babb
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Gang Chen
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | | | | | - John R McWhirter
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Vera A Voronina
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Chunguang Guo
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Cagan Gurer
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | | | - Andrew J Murphy
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Lynn E Macdonald
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| |
Collapse
|
135
|
Raskin S, Van Pelt S, Toner K, Balakrishnan PB, Dave H, Bollard CM, Yvon E. Novel TCR-like CAR-T cells targeting an HLA∗0201-restricted SSX2 epitope display strong activity against acute myeloid leukemia. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 23:296-306. [PMID: 34729377 PMCID: PMC8526777 DOI: 10.1016/j.omtm.2021.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 09/24/2021] [Indexed: 12/01/2022]
Abstract
The synovial sarcoma X breakpoint 2 (SSX2) belongs to a multigene family of cancer-testis antigens and can be found overexpressed in multiple malignancies. Its restricted expression in immune-privileged normal tissues suggest that SSX2 may be a relevant target antigen for chimeric antigen receptor (CAR) therapy. We have developed a T cell receptor (TCR)-like antibody (Fab/3) that binds SSX2 peptide 41-49 (KASEKIFYV) in the context of HLA-A∗-0201. The sequence of Fab/3 was utilized to engineer a CAR with the CD3 zeta intra-cellular domain along with either a CD28 or 4-1BB costimulatory endodomain. Human T cells from HLA-A2+ donors were transduced to mediate anti-tumor activity against acute myeloid leukemia (AML) tumor cells. Upon challenge with HLA-A2+/SSX2+ AML tumor cells, CAR-expressing T cells released interferon-γ and eliminated the tumor cells in a long-term co-culture assay. Using the HLA-A2+ T2 cell line, we demonstrated a strong specificity of the single-chain variable fragment (scFv) for SSX2 p41-49 and the closely related SSX3 p41-49, with no response against the others SSX-homologous peptides or unrelated homologous peptides. Since SSX3 has not been observed in tumor cells and expression cannot be induced by pharmacological intervention, SSX241-49 represents an attractive target for CAR-based cellular therapy to treat multiple types of cancer.
Collapse
Affiliation(s)
- Scott Raskin
- Program for Cell Enhancement and Technologies for Immunotherapy, Children's National Health System, Washington, DC 20010, USA
| | - Stacey Van Pelt
- Institute for Biomedical Sciences, The George Washington University, Washington, DC 20052, USA.,The George Washington University Cancer Center, Washington, DC 20052, USA
| | - Keri Toner
- Program for Cell Enhancement and Technologies for Immunotherapy, Children's National Health System, Washington, DC 20010, USA.,The George Washington University Cancer Center, Washington, DC 20052, USA
| | | | - Hema Dave
- Institute for Biomedical Sciences, The George Washington University, Washington, DC 20052, USA.,The George Washington University Cancer Center, Washington, DC 20052, USA
| | - Catherine M Bollard
- Program for Cell Enhancement and Technologies for Immunotherapy, Children's National Health System, Washington, DC 20010, USA.,Institute for Biomedical Sciences, The George Washington University, Washington, DC 20052, USA.,The George Washington University Cancer Center, Washington, DC 20052, USA
| | - Eric Yvon
- The George Washington University Cancer Center, Washington, DC 20052, USA.,Department of Medicine, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
136
|
Taefehshokr S, Parhizkar A, Hayati S, Mousapour M, Mahmoudpour A, Eleid L, Rahmanpour D, Fattahi S, Shabani H, Taefehshokr N. Cancer immunotherapy: Challenges and limitations. Pathol Res Pract 2021; 229:153723. [PMID: 34952426 DOI: 10.1016/j.prp.2021.153723] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 02/06/2023]
Abstract
Although cancer immunotherapy has taken center stage in mainstream oncology inducing complete and long-lasting tumor regression, only a subset of patients receiving treatment respond and others relapse after an initial response. Different tumor types respond differently, and even in cancer types that respond (hot tumors), we still observe tumors that are unresponsive (cold tumors), suggesting the presence of resistance. Hence, the development of intrinsic or acquired resistance is a big challenge for the cancer immunotherapy field. Resistance to immunotherapy, including checkpoint inhibitors, CAR-T cell therapy, oncolytic viruses, and recombinant cytokines arises due to cancer cells employing several mechanisms to evade immunosurveillance.
Collapse
Affiliation(s)
- Sina Taefehshokr
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Aram Parhizkar
- Faculty of Natural Science, Tabriz University, Tabriz, Iran
| | - Shima Hayati
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Morteza Mousapour
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Amin Mahmoudpour
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Liliane Eleid
- Section of Cell Biology and Functional Genomics, Imperial College London, London, United Kingdom
| | - Dara Rahmanpour
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahand Fattahi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Hadi Shabani
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Nima Taefehshokr
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
137
|
van Diest E, Hernández López P, Meringa AD, Vyborova A, Karaiskaki F, Heijhuurs S, Gumathi Bormin J, van Dooremalen S, Nicolasen MJT, Gatti LCDE, Johanna I, Straetemans T, Sebestyén Z, Beringer DX, Kuball J. Gamma delta TCR anti-CD3 bispecific molecules (GABs) as novel immunotherapeutic compounds. J Immunother Cancer 2021; 9:jitc-2021-003850. [PMID: 34815357 PMCID: PMC8611453 DOI: 10.1136/jitc-2021-003850] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2021] [Indexed: 01/13/2023] Open
Abstract
Background γ9δ2 T cells hold great promise as cancer therapeutics because of their unique capability of reacting to metabolic changes with tumor cells. However, it has proven very difficult to translate this promise into clinical success. Methods In order to better utilize the tumor reactivity of γ9δ2T cells and combine this with the great potential of T cell engager molecules, we developed a novel bispecific molecule by linking the extracellular domains of tumor-reactive γ9δ2TCRs to a CD3-binding moiety, creating gamma delta TCR anti-CD3 bispecific molecules (GABs). GABs were tested in vitro and in vivo for ability to redirect T lymphocytes to a variety of tumor cell lines and primary patient material. Results GABs utilizing naturally occurring high affinity γ9δ2TCRs efficiently induced αβT cell mediated phosphoantigen-dependent recognition of tumor cells. Reactivity was substantially modulated by variations in the Vδ2 CDR3-region and the BTN2A1-binding HV4-region between CDR2 and CDR3 of the γ-chain was crucial for functionality. GABs redirected αβT cells against a broad range of hematopoietic and solid tumor cell lines and primary acute myeloid leukemia. Furthermore, they enhanced infiltration of immune cells in a 3D bone marrow niche and left healthy tissues intact, while eradicating primary multiple myeloma cells. Lastly, GABs constructed from natural high affinity γ9δ2TCR sequences significantly reduced tumor growth in vivo in a subcutaneous myeloma xenograft model. Conclusions We conclude that GABs allow for the introduction of metabolic targeting of cancer cells to the field of T cell engagers.
Collapse
Affiliation(s)
- Eline van Diest
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Patricia Hernández López
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Angelo D Meringa
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Anna Vyborova
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Froso Karaiskaki
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Sabine Heijhuurs
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jan Gumathi Bormin
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Sanne van Dooremalen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Mara J T Nicolasen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Lucrezia C D E Gatti
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Inez Johanna
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Trudy Straetemans
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Zsolt Sebestyén
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Dennis X Beringer
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jürgen Kuball
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands .,Department of Hematology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
138
|
Zhu Y, Qian Y, Li Z, Li Y, Li B. Neoantigen-reactive T cell: An emerging role in adoptive cellular immunotherapy. MedComm (Beijing) 2021; 2:207-220. [PMID: 34766142 PMCID: PMC8491202 DOI: 10.1002/mco2.41] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/16/2020] [Accepted: 10/22/2020] [Indexed: 01/06/2023] Open
Abstract
Adoptive cellular immunotherapy harnessing the intrinsic immune system for precise treatment has exhibited preliminary success against malignant tumors. As one of the emerging roles in adoptive cellular immunotherapy, neoantigen-reactive T cell (NRT) focuses on the antigens expressed only by tumor cells. It exclusively obliterates tumor and spares normal tissues, achieving more satisfying effects. However, the development of NRT immunotherapy remains in a relatively primitive stage. Current challenges include identification of NRTs and maintenance of adoptive cell efficacy in vivo. The possible side effects and other limitations of this treatment also hinder its application. Here, we present an overview of NRT immunotherapy and discuss the progress and challenges as well as the prospects in this promising field.
Collapse
Affiliation(s)
- Yicheng Zhu
- Department of Immunology and Microbiology, Shanghai Institute of Immunology Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Youkun Qian
- Department of Immunology and Microbiology, Shanghai Institute of Immunology Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Zhile Li
- Department of Immunology and Microbiology, Shanghai Institute of Immunology Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Yangyang Li
- Department of Immunology and Microbiology, Shanghai Institute of Immunology Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Bin Li
- Department of Immunology and Microbiology, Shanghai Institute of Immunology Shanghai Jiao Tong University School of Medicine Shanghai China
| |
Collapse
|
139
|
Robinson RA, McMurran C, McCully ML, Cole DK. Engineering soluble T-cell receptors for therapy. FEBS J 2021; 288:6159-6173. [PMID: 33624424 PMCID: PMC8596704 DOI: 10.1111/febs.15780] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/11/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022]
Abstract
Immunotherapy approaches that target peptide-human leukocyte antigen (pHLA) complexes are becoming highly attractive because of their potential to access virtually all foreign and cellular proteins. For this reason, there has been considerable interest in the development of the natural ligand for pHLA, the T-cell receptor (TCR), as a soluble drug to target disease-associated pHLA presented at the cell surface. However, native TCR stability is suboptimal for soluble drug development, and natural TCRs generally have weak affinities for pHLAs, limiting their potential to reach efficacious receptor occupancy levels as soluble drugs. To overcome these limitations and make full use of the TCR as a soluble drug platform, several protein engineering solutions have been applied to TCRs to enhance both their stability and affinity, with a focus on retaining target specificity and selectivity. Here, we review these advances and look to the future for the next generation of soluble TCR-based therapies that can target monomorphic HLA-like proteins presenting both peptide and nonpeptide antigens.
Collapse
|
140
|
An HLA-A*11:01-Binding Neoantigen from Mutated NPM1 as Target for TCR Gene Therapy in AML. Cancers (Basel) 2021; 13:cancers13215390. [PMID: 34771556 PMCID: PMC8582585 DOI: 10.3390/cancers13215390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Acute myeloid leukemia (AML) is an aggressive hematological malignancy with poor prognosis. For AML relapses after chemotherapy, new and effective therapies are needed. In 30–35% of AMLs, a frameshift mutation in the nucleophosmin 1 gene (dNPM1) creates potential neoantigens that are attractive targets for immunotherapy. We previously isolated a T-cell receptor (TCR) that targets an HLA-A*02:01-binding dNPM1 neoantigen on primary AML. Here, we investigated whether AVEEVSLRK is another dNPM1 neoantigen that can be targeted by TCR gene transfer. We isolated various T-cells, cloned the HLA-A*11:01-restricted TCR from one T-cell clone and, upon transfer to CD8 cells, demonstrated targeting of dNPM1 primary AMLs in vitro. However, the TCR failed to mediate an anti-tumor effect in immunodeficient mice engrafted with dNPM1 OCI-AML3 cells. Our results demonstrate that AVEEVSLRK is an HLA-A*11:01-binding neoantigen on dNPM1 AML. Whether the isolated TCR is of sufficient affinity to treat patients remains uncertain. Abstract Acute myeloid leukemia (AML) is a hematological malignancy caused by clonal expansion of myeloid progenitor cells. Most patients with AML respond to chemotherapy, but relapses often occur and infer a very poor prognosis. Thirty to thirty-five percent of AMLs carry a four base pair insertion in the nucleophosmin 1 gene (NPM1) with a C-terminal alternative reading frame of 11 amino acids. We previously identified various neopeptides from the alternative reading frame of mutant NPM1 (dNPM1) on primary AML and isolated an HLA-A*02:01-restricted T-cell receptor (TCR) that enables human T-cells to kill AML cells upon retroviral gene transfer. Here, we isolated T-cells recognizing the dNPM1 peptide AVEEVSLRK presented in HLA-A*11:01. The TCR cloned from a T-cell clone recognizing HLA-A*11:01+ primary AML cells conferred in vitro recognition and lysis of AML upon transfer to CD8 cells, but failed to induce an anti-tumor effect in immunodeficient NSG mice engrafted with dNPM1 OCI-AML3 cells. In conclusion, our data show that AVEEVSLRK is a dNPM1 neoantigen on HLA-A*11:01+ primary AMLs. CD8 cells transduced with an HLA-A*11:01-restricted TCR for dNPM1 were reactive against AML in vitro. The absence of reactivity in a preclinical mouse model requires further preclinical testing to predict the potential efficacy of this TCR in clinical development.
Collapse
|
141
|
Liu Z, Liu X, Liang J, Liu Y, Hou X, Zhang M, Li Y, Jiang X. Immunotherapy for Hepatocellular Carcinoma: Current Status and Future Prospects. Front Immunol 2021; 12:765101. [PMID: 34675942 PMCID: PMC8524467 DOI: 10.3389/fimmu.2021.765101] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent primary liver cancer with poor prognosis. Surgery, chemotherapy, and radiofrequency ablation are three conventional therapeutic options that will help only a limited percentage of HCC patients. Cancer immunotherapy has achieved dramatic advances in recent years and provides new opportunities to treat HCC. However, HCC has various etiologies and can evade the immune system through multiple mechanisms. With the rapid development of genetic engineering and synthetic biology, a variety of novel immunotherapies have been employed to treat advanced HCC, including immune checkpoint inhibitors, adoptive cell therapy, engineered cytokines, and therapeutic cancer vaccines. In this review, we summarize the current landscape and research progress of different immunotherapy strategies in the treatment of HCC. The challenges and opportunities of this research field are also discussed.
Collapse
Affiliation(s)
- Zhuoyan Liu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xuan Liu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiaxin Liang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yixin Liu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaorui Hou
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Meichuan Zhang
- R&D Department, Caleb BioMedical Technology Co. Ltd, Guangzhou, China
| | - Yongyin Li
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaotao Jiang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
142
|
Mansouri V, Yazdanpanah N, Rezaei N. The immunologic aspects of cytokine release syndrome and graft versus host disease following CAR T cell therapy. Int Rev Immunol 2021; 41:649-668. [PMID: 34607523 DOI: 10.1080/08830185.2021.1984449] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Chimeric antigen receptor (CAR) T cells are the pioneers of cancer immunotherapy, which to this date have several FDA-approved products. They have been substantially improved since their first introduction in 1993 and have shown promising results regardless of their inevitable side effects. Cytokine release syndrome (CRS), the most common toxicity after CAR T cell treatment, is affiliated to a systemic inflammation through surge of cytokines, mainly IL-6, IL-1, and INF-γ. Furthermore, difference between histocompatibility antigens activates the graft versus host disease (GvHD) effect of the allogenic CAR T cells against the host cells. Immunological reactions induced by CAR T cells in the form of CRS or GvHD is necessary for fostering good responses, while excess reactions can potentially threaten patient life. In this review, we first describe the history, applications, and structure of CAR T cells, followed by a comprehensive review of CRS regarding its definition, management, and immunological aspects. Finally, we discuss about the clinical aspects of CRS and GvHD after CAR T cell therapy and how to harness anti-tumoral effects, while mitigating the adverse effects.
Collapse
Affiliation(s)
- Vahid Mansouri
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Niloufar Yazdanpanah
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
143
|
Wang X, Sandberg ML, Martin AD, Negri KR, Gabrelow GB, Nampe DP, Wu ML, McElvain ME, Toledo Warshaviak D, Lee WH, Oh J, Daris ME, Chai F, Yao C, Furney J, Pigott C, Kamb A, Xu H. Potent, Selective CARs as Potential T-Cell Therapeutics for HPV-positive Cancers. J Immunother 2021; 44:292-306. [PMID: 34432728 PMCID: PMC8415731 DOI: 10.1097/cji.0000000000000386] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 07/08/2021] [Indexed: 11/26/2022]
Abstract
Next-generation T-cell therapies will likely continue to utilize T-cell receptors (TCRs) and chimeric antigen receptors (CARs) because each receptor type has advantages. TCRs often possess exceptional properties even when tested unmodified from patients' T cells. CARs are generally less sensitive, possibly because their ligand-binding domains are grafted from antibodies selected for binding affinity or avidity and not broadly optimized for a functional response. Because of the disconnect between binding and function among these receptor types, the ultimate potential of CARs optimized for sensitivity and selectivity is not clear. Here, we focus on a thoroughly studied immuno-oncology target, the HLA-A*02/HPV-E629-38 complex, and show that CARs can be optimized by a combination of high-throughput binding screens and low-throughput functional assays to have comparable activity to clinical TCRs in acute assays in vitro. These results provide a case study for the challenges and opportunities of optimizing high-performing CARs, especially in the context of targets utilized naturally by TCRs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Julyun Oh
- A2 Biotherapeutics, Agoura Hills, CA
| | | | - Falene Chai
- Innovative Targeting Solutions, Vancouver, BC, Canada
| | - Christine Yao
- Innovative Targeting Solutions, Vancouver, BC, Canada
| | - James Furney
- Innovative Targeting Solutions, Vancouver, BC, Canada
| | - Craig Pigott
- Innovative Targeting Solutions, Vancouver, BC, Canada
| | | | - Han Xu
- A2 Biotherapeutics, Agoura Hills, CA
| |
Collapse
|
144
|
Li Y, Wang X, Wang W. The Impact of COVID-19 on Cancer. Infect Drug Resist 2021; 14:3809-3816. [PMID: 34557004 PMCID: PMC8455900 DOI: 10.2147/idr.s324569] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/18/2021] [Indexed: 12/13/2022] Open
Abstract
Since late December 2019, the 2019 coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its rapid international spread have posed a global health threat. The World Health Organization has declared the outbreak of COVID-19 as "public health emergency of international concern". COVID-19 not only brings tremendous pressure to the medical system but also brings new challenges to the global economy. The occurrence and development of cancer has always been an area of active research, and COVID-19 also has a long-lasting impact on the diagnosis, treatment, and research of cancer. In the context, we review the adverse effects of COVID-19 on the screening, diagnosis, treatment and prognosis of cancer patients and the countermeasures in this situation, and provide solutions for improving the quality of life of cancer patients in the normalized prevention and control of COVID-19.
Collapse
Affiliation(s)
- Yue Li
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xingjian Wang
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Wei Wang
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
145
|
Sun Y, Li F, Sonnemann H, Jackson KR, Talukder AH, Katailiha AS, Lizee G. Evolution of CD8 + T Cell Receptor (TCR) Engineered Therapies for the Treatment of Cancer. Cells 2021; 10:cells10092379. [PMID: 34572028 PMCID: PMC8469972 DOI: 10.3390/cells10092379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/30/2022] Open
Abstract
Engineered T cell receptor T (TCR-T) cell therapy has facilitated the generation of increasingly reliable tumor antigen-specific adaptable cellular products for the treatment of human cancer. TCR-T cell therapies were initially focused on targeting shared tumor-associated peptide targets, including melanoma differentiation and cancer-testis antigens. With recent technological developments, it has become feasible to target neoantigens derived from tumor somatic mutations, which represents a highly personalized therapy, since most neoantigens are patient-specific and are rarely shared between patients. TCR-T therapies have been tested for clinical efficacy in treating solid tumors in many preclinical studies and clinical trials all over the world. However, the efficacy of TCR-T therapy for the treatment of solid tumors has been limited by a number of factors, including low TCR avidity, off-target toxicities, and target antigen loss leading to tumor escape. In this review, we discuss the process of deriving tumor antigen-specific TCRs, including the identification of appropriate tumor antigen targets, expansion of antigen-specific T cells, and TCR cloning and validation, including techniques and tools for TCR-T cell vector construction and expression. We highlight the achievements of recent clinical trials of engineered TCR-T cell therapies and discuss the current challenges and potential solutions for improving their safety and efficacy, insights that may help guide future TCR-T studies in cancer.
Collapse
Affiliation(s)
- Yimo Sun
- Department of Melanoma, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; (Y.S.); (F.L.); (H.S.); (K.R.J.); (A.H.T.); (A.S.K.)
| | - Fenge Li
- Department of Melanoma, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; (Y.S.); (F.L.); (H.S.); (K.R.J.); (A.H.T.); (A.S.K.)
| | - Heather Sonnemann
- Department of Melanoma, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; (Y.S.); (F.L.); (H.S.); (K.R.J.); (A.H.T.); (A.S.K.)
| | - Kyle R. Jackson
- Department of Melanoma, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; (Y.S.); (F.L.); (H.S.); (K.R.J.); (A.H.T.); (A.S.K.)
| | - Amjad H. Talukder
- Department of Melanoma, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; (Y.S.); (F.L.); (H.S.); (K.R.J.); (A.H.T.); (A.S.K.)
| | - Arjun S. Katailiha
- Department of Melanoma, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; (Y.S.); (F.L.); (H.S.); (K.R.J.); (A.H.T.); (A.S.K.)
| | - Gregory Lizee
- Department of Melanoma, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; (Y.S.); (F.L.); (H.S.); (K.R.J.); (A.H.T.); (A.S.K.)
- Department of Immunology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence:
| |
Collapse
|
146
|
Zhang Y, Yu X, Liu Q, Gong H, Chen AA, Zheng H, Zhong S, Li Y. SAGE1: a Potential Target Antigen for Lung Cancer T-Cell Immunotherapy. Mol Cancer Ther 2021; 20:2302-2313. [PMID: 34465596 DOI: 10.1158/1535-7163.mct-21-0203] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/17/2021] [Accepted: 08/25/2021] [Indexed: 12/24/2022]
Abstract
A fundamental understanding of cancer-specific antigens is crucial for successful T-cell immunotherapy. Sarcoma antigen 1 (SAGE1) is a cancer/testis antigen that has not yet been verified for T-cell immunotherapy applications. Here, we examined SAGE1 RNA expression and carried out IHC analyses, revealing that SAGE1 is expressed in 50% of non-small cell lung-cancer samples (n = 40). To verify the immunogenicity of SAGE1, we discovered a novel HLA-A*24:02 (HLA-A24)-restricted SAGE1 epitope (SAGE1597-606, VFSTAPPAFI) using mass spectrometry and identified SAGE1597-606-specific T-cell clones and T-cell receptors (TCR) from peripheral bloods of HLA-A24+ donors. The highest affinity TCR VF3 (KD = 4.3 μM) demonstrated the highest antitumor potency. Moreover, VF3-transduced T cells mediated the efficient killing of HLA-A24+/SAGE1+ tumor cells in vitro and effectively inhibited the growth of lung cancer xenografts in mice. Together, our data suggest that SAGE1 could be a target for T-cell immunotherapies against lung cancer, while its specific TCRs could be candidates for developing reagents to treat SAGE1+ tumors.
Collapse
Affiliation(s)
- Yajing Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaohong Yu
- Xiangxue Pharmaceutical Co., Ltd., Guangzhou, Guangdong, China
| | - Qiuping Liu
- Xiangxue Pharmaceutical Co., Ltd., Guangzhou, Guangdong, China
| | - Haiping Gong
- Xiangxue Pharmaceutical Co., Ltd., Guangzhou, Guangdong, China
| | - An-An Chen
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Hongjun Zheng
- Xiangxue Pharmaceutical Co., Ltd., Guangzhou, Guangdong, China
| | - Shi Zhong
- Xiangxue Pharmaceutical Co., Ltd., Guangzhou, Guangdong, China.
| | - Yi Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.
- University of Chinese Academy of Sciences, Beijing, China
- Xiangxue Pharmaceutical Co., Ltd., Guangzhou, Guangdong, China
| |
Collapse
|
147
|
Su M, Zhao C, Luo S. Therapeutic potential of chimeric antigen receptor based therapies in autoimmune diseases. Autoimmun Rev 2021; 21:102931. [PMID: 34481941 DOI: 10.1016/j.autrev.2021.102931] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 11/02/2022]
Abstract
Chimeric antigen receptor (CAR) based therapies have been adopted as an option for treating autoimmune diseases from the field of blood malignancies by targeting immune cells or rebalancing the pro-inflammatory milieu. Important questions still remained about the efficacy and safety regarding the dynamic and complex autoimmune pathological networks. We here reviewed the emerged developments in basic, translational, and clinical studies of the CAR based therapies in a wide spectrum of autoimmune diseases. The primary goal of the study is to provide some future perspectives on how to optimize the performance of CAR based therapies. The fundamental strategy is to engineer the recognition domains in CAR products for precisely targeting the components in the pro-inflammatory milieu. The second strategy is to incorporate multiple CARs in one carrier, or use fluorescein isothiocyanate (FITC)-CAR T cells for enhancing the therapeutic efficacy. In addition, we reviewed the preclinical evidence in disease-specific context. Overall, we aim to attract more attention in the field of developing future precision CAR based therapies to tailor medial decisions in autoimmune diseases.
Collapse
Affiliation(s)
- Manqiqige Su
- Department of Neurology, Huashan hospital Fudan University, 200040 Shanghai, China
| | - Chongbo Zhao
- Department of Neurology, Huashan hospital Fudan University, 200040 Shanghai, China
| | - Sushan Luo
- Department of Neurology, Huashan hospital Fudan University, 200040 Shanghai, China.
| |
Collapse
|
148
|
Koşaloğlu-Yalçın Z, Blazeska N, Carter H, Nielsen M, Cohen E, Kufe D, Conejo-Garcia J, Robbins P, Schoenberger SP, Peters B, Sette A. The Cancer Epitope Database and Analysis Resource: A Blueprint for the Establishment of a New Bioinformatics Resource for Use by the Cancer Immunology Community. Front Immunol 2021; 12:735609. [PMID: 34504503 PMCID: PMC8421848 DOI: 10.3389/fimmu.2021.735609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/09/2021] [Indexed: 12/17/2022] Open
Abstract
Recent years have witnessed a dramatic rise in interest towards cancer epitopes in general and particularly neoepitopes, antigens that are encoded by somatic mutations that arise as a consequence of tumorigenesis. There is also an interest in the specific T cell and B cell receptors recognizing these epitopes, as they have therapeutic applications. They can also aid in basic studies to infer the specificity of T cells or B cells characterized in bulk and single-cell sequencing data. The resurgence of interest in T cell and B cell epitopes emphasizes the need to catalog all cancer epitope-related data linked to the biological, immunological, and clinical contexts, and most importantly, making this information freely available to the scientific community in a user-friendly format. In parallel, there is also a need to develop resources for epitope prediction and analysis tools that provide researchers access to predictive strategies and provide objective evaluations of their performance. For example, such tools should enable researchers to identify epitopes that can be effectively used for immunotherapy or in defining biomarkers to predict the outcome of checkpoint blockade therapies. We present here a detailed vision, blueprint, and work plan for the development of a new resource, the Cancer Epitope Database and Analysis Resource (CEDAR). CEDAR will provide a freely accessible, comprehensive collection of cancer epitope and receptor data curated from the literature and provide easily accessible epitope and T cell/B cell target prediction and analysis tools. The curated cancer epitope data will provide a transparent benchmark dataset that can be used to assess how well prediction tools perform and to develop new prediction tools relevant to the cancer research community.
Collapse
MESH Headings
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Computational Biology
- Databases, Genetic
- Epitopes, B-Lymphocyte
- Epitopes, T-Lymphocyte
- Humans
- Immunotherapy
- Mutation
- Neoplasms/genetics
- Neoplasms/immunology
- Neoplasms/therapy
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Tumor Microenvironment
Collapse
Affiliation(s)
- Zeynep Koşaloğlu-Yalçın
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Nina Blazeska
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Hannah Carter
- Department of Medicine, University of California San Diego, La Jolla, CA, United States
- Moore’s Cancer Center, University of California San Diego, La Jolla, CA, United States
| | - Morten Nielsen
- Department of Bio and Health Informatics, Technical University of Denmark, Lyngby, Denmark
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, San Martín, Argentina
| | - Ezra Cohen
- Moore’s Cancer Center, University of California San Diego, La Jolla, CA, United States
| | - Donald Kufe
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Jose Conejo-Garcia
- Department of Gynecologic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Paul Robbins
- National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Stephen P. Schoenberger
- Laboratory of Cellular Immunology, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Bjoern Peters
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, United States
- Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, United States
- Department of Medicine, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
149
|
Man S, Redman JE, Cross DL, Cole DK, Can I, Davies B, Hashimdeen SS, Reid R, Llewellyn-Lacey S, Miners KL, Ladell K, Lissina A, Brown PE, Wooldridge L, Price DA, Rizkallah PJ. Synthetic Peptides with Inadvertent Chemical Modifications Can Activate Potentially Autoreactive T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:1009-1017. [PMID: 34321228 PMCID: PMC7615501 DOI: 10.4049/jimmunol.2000756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 05/24/2021] [Indexed: 11/19/2022]
Abstract
The human CD8+ T cell clone 6C5 has previously been shown to recognize the tert-butyl-modified Bax161-170 peptide LLSY(3-tBu)FGTPT presented by HLA-A*02:01. This nonnatural epitope was likely created as a by-product of fluorenylmethoxycarbonyl protecting group peptide synthesis and bound poorly to HLA-A*02:01. In this study, we used a systematic approach to identify and characterize natural ligands for the 6C5 TCR. Functional analyses revealed that 6C5 T cells only recognized the LLSYFGTPT peptide when tBu was added to the tyrosine residue and did not recognize the LLSYFGTPT peptide modified with larger (di-tBu) or smaller chemical groups (Me). Combinatorial peptide library screening further showed that 6C5 T cells recognized a series of self-derived peptides with dissimilar amino acid sequences to LLSY(3-tBu)FGTPT. Structural studies of LLSY(3-tBu)FGTPT and two other activating nonamers (IIGWMWIPV and LLGWVFAQV) in complex with HLA-A*02:01 demonstrated similar overall peptide conformations and highlighted the importance of the position (P) 4 residue for T cell recognition, particularly the capacity of the bulky amino acid tryptophan to substitute for the tBu-modified tyrosine residue in conjunction with other changes at P5 and P6. Collectively, these results indicated that chemical modifications directly altered the immunogenicity of a synthetic peptide via molecular mimicry, leading to the inadvertent activation of a T cell clone with unexpected and potentially autoreactive specificities.
Collapse
Affiliation(s)
- Stephen Man
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom;
| | - James E Redman
- School of Chemistry, Cardiff University, Cardiff, United Kingdom
| | - Deborah L Cross
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - David K Cole
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Ilona Can
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Bethan Davies
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Shaikh Shimaz Hashimdeen
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Reiss Reid
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Sian Llewellyn-Lacey
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Kelly L Miners
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Kristin Ladell
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Anya Lissina
- Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Paul E Brown
- The Zeeman Institute, University of Warwick, Coventry, United Kingdom; and
| | - Linda Wooldridge
- Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - David A Price
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Pierre J Rizkallah
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
150
|
Hoebart C, Rojas‐Galvan NS, Ciotu CI, Aykac I, Reissig LF, Weninger WJ, Kiss A, Podesser BK, Fischer MJM, Heber S. No functional TRPA1 in cardiomyocytes. Acta Physiol (Oxf) 2021; 232:e13659. [PMID: 33819369 PMCID: PMC11478933 DOI: 10.1111/apha.13659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 12/23/2022]
Abstract
AIM There is mounting evidence that TRPA1 has a role in cardiac physiology and pathophysiology. We aim to clarify the site of TRPA1 expression in the heart and in particular whether the channel is expressed in cardiomyocytes. METHODS Due to the high calcium conductance of TRPA1, and marginal calcium changes being detectable, microfluorimetry in primary mouse cardiomyocytes, and in the cardiomyocyte cell lines H9c2 and HL-1, was applied. TRPA1 mRNA in mouse and human hearts, primary cardiomyocytes, and the cardiac cell lines were quantified. Dorsal root ganglia served as control for both methods. RESULTS In addition to AITC, the more potent and specific TRPA1 agonists JT010 and PF-4840154 failed to elicit a TRPA1-mediated response in native and electrically paced primary cardiomyocytes, and the cardiomyocyte cell lines H9c2 and HL-1. There were only marginal levels of TRPA1 mRNA in cardiomyocytes and cardiac cell lines, also in conditions of cell differentiation or inflammation, which might occur in pathophysiological conditions. Similarly, TRPV1 agonist capsaicin did not activate primary mouse cardiomyocytes, did not alter electrically paced activity in these, and did not activate H9c2 cells or alter spontaneous activity of HL-1 cells. Human pluripotent stem cells differentiated to cardiomyocytes had no relevant TRPA1 mRNA levels. Also in human post-mortem heart samples, TRPA1 mRNA levels were substantially lower compared with the respective dorsal root ganglion. CONCLUSION The results do not question a role of TRPA1 in the heart but exclude a direct effect in cardiomyocytes.
Collapse
Affiliation(s)
- Clara Hoebart
- Center for Physiology and PharmacologyMedical University of ViennaViennaAustria
| | | | - Cosmin I. Ciotu
- Center for Physiology and PharmacologyMedical University of ViennaViennaAustria
| | - Ibrahim Aykac
- Center for Biomedical ResearchMedical University of ViennaViennaAustria
| | | | | | - Attila Kiss
- Center for Biomedical ResearchMedical University of ViennaViennaAustria
| | - Bruno K. Podesser
- Center for Biomedical ResearchMedical University of ViennaViennaAustria
| | | | - Stefan Heber
- Center for Physiology and PharmacologyMedical University of ViennaViennaAustria
| |
Collapse
|