101
|
|
102
|
Abstract
Microorganisms can form tightly knit communities such as biofilms. Many others include marine snow, anaerobic digester granules, the ginger beer plant and bacterial colonies. This chapter is devoted to a survey of the main properties of these communities, with an emphasis on biofilms. We start with attachment to surfaces and the nature of adhesion. The growing community then forms within a matrix, generally of organic macromolecules. Inevitably the environment within such a matrix is different from that outside. Organisms respond by forming crowd-detection and response units; these quorum sensing systems act as switches between planktonic life and the dramatically altered conditions found inside microbial aggregates. The community then matures and changes and may even fail and disappear. Antimicrobial resistance is discussed as an example of multicellular behavior. The multicellular lifestyle has been modeled mathematically and responded to powerful molecular biological techniques. Latterly, microbial systems have been used as models for fundamental evolutionary processes, mostly because of their high rates of reproduction and the ease of genetic manipulation. The life of most microbes is a duality between the yin of the community and the yang of planktonic existence. Sadly far less research has been devoted to adaptation to free-living forms than in the opposite direction.
Collapse
Affiliation(s)
- Julian Wimpenny
- Cardiff School of Biosciences, Cardiff University, Cathays Park, Cardiff, Wales
| |
Collapse
|
103
|
Ciornei CD, Novikov A, Beloin C, Fitting C, Caroff M, Ghigo JM, Cavaillon JM, Adib-Conquy M. Biofilm-forming Pseudomonas aeruginosa bacteria undergo lipopolysaccharide structural modifications and induce enhanced inflammatory cytokine response in human monocytes. Innate Immun 2009; 16:288-301. [PMID: 19710099 DOI: 10.1177/1753425909341807] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
To determine whether growth of bacteria in biofilms triggers a specific immune response, we compared cytokine induction in human monocytes and mouse macrophages by planktonic and biofilm bacteria. We compared Pseudomonas aeruginosa and Staphylococcus aureus, two bacteria often colonizing the airways of cystic fibrosis patients. Planktonic and biofilm S. aureus induced equivalent amounts of cytokine in human monocytes. In contrast, biofilm-forming P. aeruginosa induced a higher production of tumor necrosis factor and interleukin-6 than their planktonic counterpart, both for clinical isolates and laboratory strains. This increased cytokine production was partly dependent on phagocytosis. In contrast, no difference in cytokine induction was observed with mouse macrophages. We investigated the structures of the lipopolysaccharides (LPSs) of these Gram-negative bacteria in biofilm and planktonic cultures of P. aeruginosa. Switch between the two life-styles was shown to cause several reversible LPS structure modifications affecting the lipid A and polysaccharide moieties of both clinical isolates and laboratory strains. In addition, LPS isolated from biofilm-grown bacteria induced slightly more inflammatory cytokines than that extracted from its planktonic counterpart. Our results, therefore, show that P. aeruginosa biofilm LPS undergoes structural modifications that only partially contribute to an increased inflammatory response from human monocytes.
Collapse
|
104
|
YANG JIELIN, WEI LIMING, GU MING, FANG XIAOMING, YANG PENYUAN. IDENTIFICATION OF PROTEINS INVOLVED IN INFECTIVITY AND ENTEROTOXIN PRODUCTION INENTEROBACTER SAKAZAKII. ACTA ACUST UNITED AC 2009. [DOI: 10.1111/j.1745-4581.2009.00169.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
105
|
Cummins J, Reen FJ, Baysse C, Mooij MJ, O'Gara F. Subinhibitory concentrations of the cationic antimicrobial peptide colistin induce the pseudomonas quinolone signal in Pseudomonas aeruginosa. MICROBIOLOGY-SGM 2009; 155:2826-2837. [PMID: 19477905 DOI: 10.1099/mic.0.025643-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Colistin is an important cationic antimicrobial peptide (CAMP) in the fight against Pseudomonas aeruginosa infection in cystic fibrosis (CF) lungs. The effects of subinhibitory concentrations of colistin on gene expression in P. aeruginosa were investigated by transcriptome and functional genomic approaches. Analysis revealed altered expression of 30 genes representing a variety of pathways associated with virulence and bacterial colonization in chronic infection. These included response to osmotic stress, motility, and biofilm formation, as well as genes associated with LPS modification and quorum sensing (QS). Most striking was the upregulation of Pseudomonas quinolone signal (PQS) biosynthesis genes, including pqsH, pqsB and pqsE, and the phenazine biosynthesis operon. Induction of this central component of the QS network following exposure to subinhibitory concentrations of colistin may represent a switch to a more robust population, with increased fitness in the competitive environment of the CF lung.
Collapse
Affiliation(s)
- Joanne Cummins
- BIOMERIT Research Centre, Department of Microbiology, University College Cork, Ireland
| | - F Jerry Reen
- BIOMERIT Research Centre, Department of Microbiology, University College Cork, Ireland
| | - Christine Baysse
- BIOMERIT Research Centre, Department of Microbiology, University College Cork, Ireland
| | - Marlies J Mooij
- BIOMERIT Research Centre, Department of Microbiology, University College Cork, Ireland
| | - Fergal O'Gara
- BIOMERIT Research Centre, Department of Microbiology, University College Cork, Ireland
| |
Collapse
|
106
|
Mikkelsen H, Bond NJ, Skindersoe ME, Givskov M, Lilley KS, Welch M. Biofilms and type III secretion are not mutually exclusive in Pseudomonas aeruginosa. MICROBIOLOGY-SGM 2009; 155:687-698. [PMID: 19246740 DOI: 10.1099/mic.0.025551-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen that causes acute and chronic infections in immunocompromised individuals. It is also a model organism for bacterial biofilm formation. Acute infections are often associated with planktonic or free-floating cells, high virulence and fast growth. Conversely, chronic infections are often associated with the biofilm mode of growth, low virulence and slow growth that resembles that of planktonic cells in stationary phase. Biofilm formation and type III secretion have been shown to be reciprocally regulated, and it has been suggested that factors related to acute infection may be incompatible with biofilm formation. In a previous proteomic study of the interrelationships between planktonic cells, colonies and continuously grown biofilms, we showed that biofilms under the growth conditions applied are more similar to planktonic cells in exponential phase than to those in stationary phase. In the current study, we investigated how these conditions influence the production of virulence factors using a transcriptomic approach. Our results show that biofilms express the type III secretion system, whereas planktonic cells do not. This was confirmed by the detection of PcrV in the cellular and secreted fractions of biofilms, but not in those of planktonic cells. We also detected the type III effector proteins ExoS and ExoT in the biofilm effluent, but not in the supernatants of planktonic cells. Biofilm formation and type III secretion are therefore not mutually exclusive in P. aeruginosa, and biofilms could play a more active role in virulence than previously thought.
Collapse
Affiliation(s)
- H Mikkelsen
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - N J Bond
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | | | - M Givskov
- Department of International Health, Immunology and Microbiology, Faculty of Health, Panum Institute, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - K S Lilley
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - M Welch
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| |
Collapse
|
107
|
Manos J, Arthur J, Rose B, Bell S, Tingpej P, Hu H, Webb J, Kjelleberg S, Gorrell MD, Bye P, Harbour C. Gene expression characteristics of a cystic fibrosis epidemic strain of Pseudomonas aeruginosa during biofilm and planktonic growth. FEMS Microbiol Lett 2009; 292:107-14. [PMID: 19222585 DOI: 10.1111/j.1574-6968.2008.01472.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Epidemic Pseudomonas aeruginosa have been identified in cystic fibrosis (CF) patients worldwide. The Australian Epidemic Strain-2 (AES-2) infects up to 40% of patients in three eastern Australian CF clinics. To investigate whether AES-2 isolates from chronically infected CF adults differentially express well-conserved genes potentially associated with transmissibility, we compared the transcriptomes of planktonic and biofilm-grown AES-2, infrequent P. aeruginosa clones and the reference P. aeruginosa PAO1 using the Affymetrix PAO1 array. The most interesting findings emerged from comparisons of planktonic and biofilm AES-2. AES-2 biofilms upregulated Type III secretion system genes, but downregulated quorum-sensing (QS)-regulatory genes, except lasR, QS-regulated, oxidative-stress and iron-storage genes. QS-regulated and iron-storage genes were downregulated to a greater extent in AES-2 biofilms compared with infrequent clone and PAO1 biofilms, suggesting enhanced anaerobic respiration in AES-2. Chitinase and chitin-binding protein maintained high expression in AES-2 biofilms compared with infrequent clone and PAO1 biofilms. Planktonic AES-2 upregulated QS regulators and QS-regulated genes, iron acquisition and aerobic respiration genes, and had high expression of Group III Type IV pilA compared with low expression of Group I Type IV pilA in infrequent clones. Together, these properties may enhance long-term survival of AES-2 in CF lung and contribute to its transmissibility.
Collapse
Affiliation(s)
- Jim Manos
- Department of Infectious Diseases and Immunology, University of Sydney, Sydney, NSW, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Manos J, Arthur J, Rose B, Tingpej P, Fung C, Curtis M, Webb JS, Hu H, Kjelleberg S, Gorrell MD, Bye P, Harbour C. Transcriptome analyses and biofilm-forming characteristics of a clonal Pseudomonas aeruginosa from the cystic fibrosis lung. J Med Microbiol 2009; 57:1454-1465. [PMID: 19018014 DOI: 10.1099/jmm.0.2008/005009-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Transmissible Pseudomonas aeruginosa clones potentially pose a serious threat to cystic fibrosis (CF) patients. The AES-1 clone has been found to infect up to 40 % of patients in five CF centres in eastern Australia. Studies were carried out on clonal and non-clonal (NC) isolates from chronically infected CF patients, and the reference strain PAO1, to gain insight into the properties of AES-1. The transcriptomes of AES-1 and NC isolates, and of PAO1, grown planktonically and as a 72 h biofilm were compared using PAO1 microarrays. Microarray data were validated using real-time PCR. Overall, most differentially expressed genes were downregulated. AES-1 differentially expressed bacteriophage genes, novel motility genes, and virulence and quorum-sensing-related genes, compared with both PAO1 and NC. AES-1 but not NC biofilms significantly downregulated aerobic respiration genes compared with planktonic growth, suggesting enhanced anaerobic/microaerophilic growth by AES-1. Biofilm measurement showed that AES-1 formed significantly larger and thicker biofilms than NC or PAO1 isolates. This may be related to expression of the gene PA0729, encoding a biofilm-enhancing bacteriophage, identified by PCR in all AES-1 but few NC isolates (n=42). Links with the Liverpool epidemic strain included the presence of PA0729 and the absence of the bacteriophage gene cluster PA0632-PA0639. No common markers were found with the Manchester strain. No particular differentially expressed gene in AES-1 could definitively be ascribed a role in its infectivity, thus increasing the likelihood that AES-1 infectivity is multi-factorial and possibly involves novel genes. This study extends our understanding of the transcriptomic and genetic differences between clonal and NC strains of P. aeruginosa from CF lung.
Collapse
Affiliation(s)
- Jim Manos
- Department of Infectious Diseases and Immunology, University of Sydney, Sydney, Australia
| | - Jonathan Arthur
- Sydney Bioinformatics, University of Sydney, Sydney, Australia.,Department of Medicine, University of Sydney, Sydney, Australia
| | - Barbara Rose
- Department of Infectious Diseases and Immunology, University of Sydney, Sydney, Australia
| | - Pholawat Tingpej
- Department of Infectious Diseases and Immunology, University of Sydney, Sydney, Australia
| | - Carina Fung
- Department of Infectious Diseases and Immunology, University of Sydney, Sydney, Australia
| | - Michelle Curtis
- Department of Infectious Diseases and Immunology, University of Sydney, Sydney, Australia
| | - Jeremy S Webb
- School of Biological Sciences, University of Southampton, Southampton, UK.,School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Honghua Hu
- Department of Infectious Diseases and Immunology, University of Sydney, Sydney, Australia
| | - Staffan Kjelleberg
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Mark D Gorrell
- A. W. Morrow Gastroenterology and Liver Centre, Centenary Institute of Cancer Medicine and Cell Biology, Royal Prince Alfred Hospital and Faculty of Medicine, University of Sydney, Sydney, Australia
| | - Peter Bye
- Department of Respiratory Medicine, Royal Prince Alfred Hospital, Sydney, Australia.,Department of Medicine, University of Sydney, Sydney, Australia
| | - Colin Harbour
- Department of Infectious Diseases and Immunology, University of Sydney, Sydney, Australia
| |
Collapse
|
109
|
Monds RD, O'Toole GA. The developmental model of microbial biofilms: ten years of a paradigm up for review. Trends Microbiol 2009; 17:73-87. [PMID: 19162483 DOI: 10.1016/j.tim.2008.11.001] [Citation(s) in RCA: 356] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 11/07/2008] [Accepted: 11/07/2008] [Indexed: 12/28/2022]
Abstract
For the past ten years, the developmental model of microbial biofilm formation has served as the major conceptual framework for biofilm research; however, the paradigmatic value of this model has begun to be challenged by the research community. Here, we critically evaluate recent data to determine whether biofilm formation satisfies the criteria requisite of a developmental system. We contend that the developmental model of biofilm formation must be approached as a model in need of further validation, rather than utilized as a platform on which to base empirical research and scientific inference. With this in mind, we explore the experimental approaches required to further our understanding of the biofilm phenotype, highlighting evolutionary and ecological approaches as a natural complement to rigorous mechanistic studies into the causal basis of biofilm formation. Finally, we discuss a second model of biofilm formation that serves as a counterpoint to our discussion of the developmental model. Our hope is that this article will provide a platform for discussion about the conceptual underpinnings of biofilm formation and the impact of such frameworks on shaping the questions we ask, and the answers we uncover, during our research into these microbial communities.
Collapse
Affiliation(s)
- Russell D Monds
- Bio-X Program, Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
110
|
Pseudomonas aeruginosa PAO1 pyocin production affects population dynamics within mixed-culture biofilms. J Bacteriol 2008; 191:1349-54. [PMID: 19060137 DOI: 10.1128/jb.01458-08] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcriptomic and phenotypic studies showed that pyocins are produced in Pseudomonas aeruginosa PAO1 aerobic and anaerobic biofilms. Pyocin activity was found to be high in slow-growing anaerobic biofilms but transient in aerobic biofilms. Biofilm coculture of strain PAO1 and a pyocin-sensitive isolate showed that pyocin production had a significant impact on bacterial population dynamics, particularly under anaerobic conditions.
Collapse
|
111
|
Serra DO, Lücking G, Weiland F, Schulz S, Görg A, Yantorno OM, Ehling-Schulz M. Proteome approaches combined with Fourier transform infrared spectroscopy revealed a distinctive biofilm physiology in Bordetella pertussis. Proteomics 2008; 8:4995-5010. [DOI: 10.1002/pmic.200800218] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
112
|
Pérez-Osorio AC, Franklin MJ. Isolation of RNA and DNA from biofilm samples obtained by laser capture microdissection microscopy. ACTA ACUST UNITED AC 2008; 2008:pdb.prot5065. [PMID: 21356696 DOI: 10.1101/pdb.prot5065] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
INTRODUCTIONThe metabolic activities of bacteria growing in biofilms result in spatial gradients of oxygen, nutrients, and waste products. Because bacteria respond to local environmental conditions through changes in gene expression, mRNA levels of individual genes may vary spatially among bacteria within the biofilm. This article describes an approach to isolate RNA for quantification from cells at localized sites within biofilms. Biofilm thin sections are generated by embedding biofilms in cryoembedding resin, freezing the embedded biofilms on dry ice, and cutting with a cryomicrotome. The sections are placed on membrane-coated microscope slides and maintained on dry ice. Laser capture microdissection microscopy (LCMM) is used to dissect small subsets of cells at different regions within the biofilms, and RNA is extracted from the samples using either hot phenol or TRI reagent. A TRI reagent-based DNA extraction method is also presented.
Collapse
|
113
|
Collet A, Cosette P, Beloin C, Ghigo JM, Rihouey C, Lerouge P, Junter GA, Jouenne T. Impact of rpoS deletion on the proteome of Escherichia coli grown planktonically and as biofilm. J Proteome Res 2008; 7:4659-69. [PMID: 18826300 DOI: 10.1021/pr8001723] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
To investigate the role of rpoS in gene expression of Escherichia coli cells grown as biofilms, we compared the proteomes of a rpoS mutant and the wild-type strain. Experiments were performed on planktonic cells (in exponential or stationary growth phase) and biofilms developed on glass wool. Spot-by-spot comparison of gels obtained from biofilm and planktonic wild-type organisms showed that the intensity of between 22 and 30% of detected spots was affected by the growth mode, depending of the control used. Principal component analysis, used to interpret the variations in protein spot densities, discriminated exponential-phase cells (wild-type and mutant) from the other incubation conditions and secondarily 72-old cultures. The statistical analysis demonstrated that the rpoS mutation did not significantly modify the proteome of exponential-growth phase cells, the differences involving only 3% of the proteome. However, increasing the incubation time from 8 to 72 h noticeably increased the number of changed proteins. A cluster analysis showed that RpoS plays a role in the special nature of the gene expression of biofilm cells but lower than in stationary-phase bacteria. We identified 35 rpoS-regulated proteins that were already or not described as controlled by this sigma factor. For some of them, the mode of regulation by RpoS was obviously dependent on the culture condition (planktonic vs biofilm).
Collapse
Affiliation(s)
- Anthony Collet
- Polymeres, Biopolymers, Surfaces" Laboratory, University of Rouen, France
| | | | | | | | | | | | | | | |
Collapse
|
114
|
Zhang L, Mah TF. Involvement of a novel efflux system in biofilm-specific resistance to antibiotics. J Bacteriol 2008; 190:4447-52. [PMID: 18469108 PMCID: PMC2446775 DOI: 10.1128/jb.01655-07] [Citation(s) in RCA: 254] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Accepted: 04/28/2008] [Indexed: 12/31/2022] Open
Abstract
Bacteria growing in biofilms are more resistant to antibiotics than their planktonic counterparts. How this transition occurs is unclear, but it is likely there are multiple mechanisms of resistance that act together in order to provide an increased overall level of resistance to the biofilm. We have identified a novel efflux pump in Pseudomonas aeruginosa that is important for biofilm-specific resistance to a subset of antibiotics. Complete deletion of the genes encoding this pump, PA1874 to PA1877 (PA1874-1877) genes, in an P. aeruginosa PA14 background results in an increase in sensitivity to tobramycin, gentamicin, and ciprofloxacin, specifically when this mutant strain is growing in a biofilm. This efflux pump is more highly expressed in biofilm cells than in planktonic cells, providing an explanation for why these genes are important for biofilm but not planktonic resistance to antibiotics. Furthermore, expression of these genes in planktonic cells increases their resistance to antibiotics. We have previously shown that ndvB is important for biofilm-specific resistance (T. F. Mah, B. Pitts, B. Pellock, G. C. Walker, P. S. Stewart, and G. A. O'Toole, Nature 426:306-310, 2003). Our discovery that combining the ndvB mutation with the PA1874-1877 gene deletion results in a mutant strain that is more sensitive to antibiotics than either single mutant strain suggests that ndvB and PA1874-1877 contribute to two different mechanisms of biofilm-specific resistance to antibiotics.
Collapse
Affiliation(s)
- Li Zhang
- Department of Biochemistry, Microbiology and Immunology, 451 Smyth Road, University of Ottawa, Ottawa, ON, Canada K1N 8J2
| | | |
Collapse
|
115
|
Kukavica-Ibrulj I, Sanschagrin F, Peterson A, Whiteley M, Boyle B, MacKay J, Levesque RC. Functional genomics of PycR, a LysR family transcriptional regulator essential for maintenance of Pseudomonas aeruginosa in the rat lung. Microbiology (Reading) 2008; 154:2106-2118. [DOI: 10.1099/mic.0.2007/011239-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Irena Kukavica-Ibrulj
- Centre de Recherche sur la Fonction, Structure et Ingénierie des Protéines, Biologie Médicale, Faculté de Médecine, Université Laval, QC G1K 7P4, Canada
| | - François Sanschagrin
- Centre de Recherche sur la Fonction, Structure et Ingénierie des Protéines, Biologie Médicale, Faculté de Médecine, Université Laval, QC G1K 7P4, Canada
| | - Ashley Peterson
- Department of Microbiology and Immunology, University of Oklahoma, Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Marvin Whiteley
- Department of Microbiology and Immunology, University of Oklahoma, Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Brian Boyle
- Centre d'étude de la forêt, Pavillon Charles-Eugène Marchand, Université Laval, QC G1K 7P4, Canada
| | - John MacKay
- Centre d'étude de la forêt, Pavillon Charles-Eugène Marchand, Université Laval, QC G1K 7P4, Canada
| | - Roger C. Levesque
- Centre de Recherche sur la Fonction, Structure et Ingénierie des Protéines, Biologie Médicale, Faculté de Médecine, Université Laval, QC G1K 7P4, Canada
| |
Collapse
|
116
|
Loh KC, Cao B. Paradigm in biodegradation using Pseudomonas putida—A review of proteomics studies. Enzyme Microb Technol 2008. [DOI: 10.1016/j.enzmictec.2008.03.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
117
|
Abstract
Gene expression in biofilms is dependent on bacterial responses to the local environmental conditions. Most techniques for studying bacterial gene expression in biofilms characterize average values across the entire population. Here, we describe the use of laser capture microdissection microscopy (LCMM) combined with multiplex quantitative real-time reverse transcriptase PCR (qRT-PCR) to isolate and quantify RNA transcripts from small groups of cells at spatially resolved sites within biofilms. The approach was first tested and analytical parameters were determined for Pseudomonas aeruginosa containing an isopropyl-beta-D-thiogalactopyranoside-inducible gene for the green fluorescent protein (gfp). The results show that the amounts of gfp mRNA were greatest in the top zones of the biofilms, and that gfp mRNA levels correlated with the zone of active green fluorescent protein fluorescence. The method then was used to quantify transcripts from wild-type P. aeruginosa biofilms for a housekeeping gene, acpP; the 16S rRNA; and two genes regulated by quorum sensing, phzA1 and aprA. The results demonstrated that the amount of acpP mRNA was greatest in the top 30 microm of the biofilm, with little or no mRNA for this gene at the base of the biofilms. In contrast, 16S rRNA amounts were relatively uniform throughout biofilm strata. Using this strategy, the RNA amounts of individual genes were determined, and therefore the results are dependent on both gene expression and the half-life of the transcripts. Therefore, the uniform amount of rRNA throughout the biofilms likely is due to the stability of the rRNA within ribosomes. The levels of aprA mRNA showed stratification, with the largest amounts in the upper 30-microm zone of these biofilms. The results demonstrate that mRNA levels for individual genes are not uniformly distributed throughout biofilms but may vary by orders of magnitude over small distances. The LCMM/qRT-PCR technique can be used to resolve and quantify this RNA variability at high spatial resolution.
Collapse
|
118
|
The putative hybrid sensor kinase SypF coordinates biofilm formation in Vibrio fischeri by acting upstream of two response regulators, SypG and VpsR. J Bacteriol 2008; 190:4941-50. [PMID: 18469094 DOI: 10.1128/jb.00197-08] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Colonization of the Hawaiian squid Euprymna scolopes by the marine bacterium Vibrio fischeri requires the symbiosis polysaccharide (syp) gene cluster, which contributes to symbiotic initiation by promoting biofilm formation on the surface of the symbiotic organ. We previously described roles for the syp-encoded response regulator SypG and an unlinked gene encoding the sensor kinase RscS in controlling syp transcription and inducing syp-dependent cell-cell aggregation phenotypes. Here, we report the involvement of an additional syp-encoded regulator, the putative sensor kinase SypF, in promoting biofilm formation. Through the isolation of an increased activity allele, sypF1, we determined that SypF can function to induce syp transcription as well as a variety of biofilm phenotypes, including wrinkled colony formation, adherence to glass, and pellicle formation. SypF1-mediated transcription of the syp cluster was entirely dependent on SypG. However, the biofilm phenotypes were reduced, not eliminated, in the sypG mutant. These phenotypes were also reduced in a mutant deleted for sypE, another syp-encoded response regulator. However, SypF1 still induced phenotypes in a sypG sypE double mutant, suggesting that SypF1 might activate another regulator(s). Our subsequent work revealed that the residual SypF1-induced biofilm formation depended on VpsR, a putative response regulator, and cellulose biosynthesis. These data support a model in which a network of regulators and at least two polysaccharide loci contribute to biofilm formation in V. fischeri.
Collapse
|
119
|
McLean JS, Pinchuk GE, Geydebrekht OV, Bilskis CL, Zakrajsek BA, Hill EA, Saffarini DA, Romine MF, Gorby YA, Fredrickson JK, Beliaev AS. Oxygen-dependent autoaggregation in Shewanella oneidensis MR-1. Environ Microbiol 2008; 10:1861-76. [PMID: 18412550 DOI: 10.1111/j.1462-2920.2008.01608.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In aerobic chemostat cultures maintained at 50% dissolved O(2) tension (3.5 mg l(-1) dissolved O(2)), Shewanella oneidensis strain MR-1 rapidly aggregated upon addition of 0.68 mM CaCl(2) and retained this multicellular phenotype at high dilution rates. Confocal microscopy analysis of the extracellular matrix material contributing to the stability of the aggregate structures revealed the presence of extracellular DNA, protein and glycoconjugates. Upon onset of O(2)-limited growth (dissolved O(2) below detection) however, the Ca(2+)-supplemented chemostat cultures of strain MR-1 rapidly disaggregated and grew as motile dispersed cells. Global transcriptome analysis comparing aerobic aggregated to O(2)-limited unaggregated cells identified genes encoding cell-to-cell and cell-to-surface adhesion factors whose transcription increased upon exposure to increased O(2) concentrations. The aerobic aggregated cells also revealed increased expression of putative anaerobic electron transfer and homologues of metal reduction genes, including mtrD (SO1782), mtrE (SO1781) and mtrF (SO1780). Our data indicate that mechanisms involved in autoaggregation of MR-1 are dependent on the function of pilD gene which encodes a putative prepilin peptidase. Mutants of S. oneidensis strain MR-1 deficient in PilD and associated pathways, including type IV and Msh pili biogenesis, displayed a moderate increase in sensitivity to H(2)O(2). Taken together, our evidence indicates that aggregate formation in S. oneidensis MR-1 may serve as an alternative or an addition to biochemical detoxification to reduce the oxidative stress associated with production of reactive oxygen species during aerobic metabolism while facilitating the development of hypoxic conditions within the aggregate interior.
Collapse
Affiliation(s)
- J S McLean
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA99352, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Rudrappa T, Bais HP. Curcumin, a known phenolic from Curcuma longa, attenuates the virulence of Pseudomonas aeruginosa PAO1 in whole plant and animal pathogenicity models. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:1955-62. [PMID: 18284200 DOI: 10.1021/jf072591j] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The effect of curcumin on the virulence of Pseudomonas aeruginosa (PAO1) using whole plant and animal pathogenicity models was investigated. The effect of curcumin on PAO1 virulence was studied by employing in vitro assays for virulence factor production, Arabidopsis thaliana/Caenorhabditis elegans pathogenicity models, and whole genome microarray analysis. It is shown that the curcumin inhibits PAO1 virulence factors such as biofilm formation, pyocyanin biosynthesis, elastase/protease activity, and acyl homoserine lactone (HSL) production. As a consequence of this, curcumin treatment resulted in the reduced pathogenicity of P. aeruginosa-C. elegans and P. aeruginosa-A. thaliana infection models. In addition, transcriptome analysis of curcumin-treated PAO1 revealed down-regulation of 31 quorum sensing (QS) genes, of which many have already been reported for virulence. The supplementation of HSLs along with the curcumin treatment resulted in increased pathogencity and recovery of higher bacterial titers in a plant pathogenecity model. These data reveal the involvement of curcumin in QS interruption to reduce pathogenicity. Curcumin attenuates PAO1 virulence by down-regulation of virulence factors, QS, and biofilm initiation genes. The effect of curcumin on multiple targets such as virulence, QS, and biofilm initiation makes curcumin a potential supplemental molecule for the treatment of P. aeruginosa infections.
Collapse
Affiliation(s)
- Thimmaraju Rudrappa
- Department of Plant and Soil Sciences, University of Delaware, Delaware Biotechnology Institute, Newark, DE 19711, USA
| | | |
Collapse
|
121
|
Hindré T, Brüggemann H, Buchrieser C, Héchard Y. Transcriptional profiling of Legionella pneumophila biofilm cells and the influence of iron on biofilm formation. Microbiology (Reading) 2008; 154:30-41. [DOI: 10.1099/mic.0.2007/008698-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Thomas Hindré
- Laboratoire de Chimie de l'Eau et de l'Environnement, UMR 6008, Université de Poitiers, 40 Avenue du Recteur Pineau, 86022 Poitiers Cedex, France
| | - Holger Brüggemann
- Unité de Génomique des Microorganismes Pathogènes and CNRS URA 2171, Institut Pasteur, 28 Rue du Dr Roux, 75724 Paris, France
| | - Carmen Buchrieser
- Unité de Génomique des Microorganismes Pathogènes and CNRS URA 2171, Institut Pasteur, 28 Rue du Dr Roux, 75724 Paris, France
| | - Yann Héchard
- Laboratoire de Chimie de l'Eau et de l'Environnement, UMR 6008, Université de Poitiers, 40 Avenue du Recteur Pineau, 86022 Poitiers Cedex, France
| |
Collapse
|
122
|
Abstract
Bacterial biofilms are found under diverse environmental conditions, from sheltered and specialized environments found within mammalian hosts to the extremes of biological survival. The process of forming a biofilm and the eventual return of cells to the planktonic state involve the coordination of vast amounts of genetic information. Nevertheless, the prevailing evidence suggests that the overall progression of this cycle within a given species or strain of bacteria responds to environmental conditions via a finite number of key regulatory factors and pathways, which affect enzymatic and structural elements that are needed for biofilm formation and dispersal. Among the conditions that affect biofilm development are temperature, pH, O2 levels, hydrodynamics, osmolarity, the presence of specific ions, nutrients, and factors derived from the biotic environment. The integration of these influences ultimately determines the pattern of behavior of a given bacterium with respect to biofilm development. This chapter will present examples of how environmental conditions affect biofilm development, most of which come from studies of species that have mammalian hosts.
Collapse
Affiliation(s)
- C C Goller
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
123
|
|
124
|
Towards understanding Pseudomonas aeruginosa burn wound infections by profiling gene expression. Biotechnol Lett 2007; 30:777-90. [PMID: 18158583 DOI: 10.1007/s10529-007-9620-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Revised: 11/27/2007] [Accepted: 11/27/2007] [Indexed: 01/22/2023]
Abstract
Pseudomonas aeruginosa is a key opportunistic pathogen causing severe acute and chronic nosocomial infections in immunocompromised or catheterized patients. It is prevalent in burn wound infections and it is generally multi-drug resistant. Understanding the genetic programs underlying infection is essential to develop highly needed new strategies for prevention and therapy. This work reviews expression profiling efforts conducted worldwide towards gaining insights into pathogenesis by P. aeruginosa, in particular in burn wounds. Work on various infection models, including the burned mouse model, has identified several direct virulence factors and elucidated their mode of action. In vivo gene expression experiments using In vivo Expression Technology (IVET) ascertained distinct regulatory circuits and traits that have helped explain P. aeruginosa s success as a general pathogen. The sequencing of the whole genome from a number of P. aeruginosa strains and the construction of genome-wide microarrays have paved the road to the several insightful studies on the (interacting) traits underlying infection. A series of in vitro and initial in vivo gene expression studies revealed specific traits pivotal for infection, such as quorum sensing systems, iron acquisition and oxidative stress responses, and toxin production among others. The data sets obtained from global transcriptional profiling provide insights that will be essential for the development of new targets and options for prevention and intervention.
Collapse
|
125
|
Physiology and genetic traits of reverse osmosis membrane biofilms: a case study with Pseudomonas aeruginosa. ISME JOURNAL 2007; 2:180-94. [PMID: 18049459 DOI: 10.1038/ismej.2007.108] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Biofilm formation of Pseudomonas aeruginosa on the surface of a reverse osmosis (RO) membrane was studied using a synthetic wastewater medium to simulate conditions relevant to reclamation of secondary wastewater effluent. P. aeruginosa biofilm physiology and spatial activity were analyzed following growth on the membrane using a short-life green fluorescent protein derivative expressed in a growth-dependent manner. As a consequence of the limiting carbon source prevailing in the suspended culture of the RO unit, a higher distribution of active cells was observed in the biofilm close to the membrane surface, likely due to the higher nutrient levels induced by concentration polarization effects. The faster growth of the RO-sessile cells compared to the planktonic cells in the RO unit was reflected by the transcriptome of the two cultures analyzed with DNA microarrays. In contrast to the findings recently reported in gene expression studies of P. aeruginosa biofilms, in the RO system, genes related to stress, adaptation, chemotaxis and resistance to antibacterial agents were induced in the planktonic cells. In agreement with the findings of previous P. aeruginosa biofilm studies, motility- and attachment-related genes were repressed in the RO P. aeruginosa biofilm. Supported by the microarray data, an increase in both motility and chemotaxis phenotypes was observed in the suspended cells. The increase in nutrient concentration in close proximity to the membrane is suggested to enhance biofouling by chemotaxis response of the suspended cells and their swimming toward the membrane surface.
Collapse
|
126
|
Strain-specific proteome responses of Pseudomonas aeruginosa to biofilm-associated growth and to calcium. Microbiology (Reading) 2007; 153:3838-3851. [DOI: 10.1099/mic.0.2007/010371-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
127
|
Ojha A, Hatfull GF. The role of iron in Mycobacterium smegmatis biofilm formation: the exochelin siderophore is essential in limiting iron conditions for biofilm formation but not for planktonic growth. Mol Microbiol 2007; 66:468-83. [PMID: 17854402 PMCID: PMC2170428 DOI: 10.1111/j.1365-2958.2007.05935.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Many species of mycobacteria form structured biofilm communities at liquid–air interfaces and on solid surfaces. Full development of Mycobacterium smegmatis biofilms requires addition of supplemental iron above 1 μM ferrous sulphate, although addition of iron is not needed for planktonic growth. Microarray analysis of the M. smegmatis transcriptome shows that iron-responsive genes – especially those involved in siderophore synthesis and iron uptake – are strongly induced during biofilm formation reflecting a response to iron deprivation, even when 2 μM iron is present. The acquisition of iron under these conditions is specifically dependent on the exochelin synthesis and uptake pathways, and the strong defect of an iron–exochelin uptake mutant suggests a regulatory role of iron in the transition to biofilm growth. In contrast, although the expression of mycobactin and iron ABC transport operons is highly upregulated during biofilm formation, mutants in these systems form normal biofilms in low-iron (2 μM) conditions. A close correlation between iron availability and matrix-associated fatty acids implies a possible metabolic role in the late stages of biofilm maturation, in addition to the early regulatory role. M. smegmatis surface motility is similarly dependent on iron availability, requiring both supplemental iron and the exochelin pathway to acquire it.
Collapse
|
128
|
An D, Parsek MR. The promise and peril of transcriptional profiling in biofilm communities. Curr Opin Microbiol 2007; 10:292-6. [PMID: 17573234 DOI: 10.1016/j.mib.2007.05.011] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Accepted: 05/25/2007] [Indexed: 11/23/2022]
Abstract
DNA microarray technology has been successfully used to identify genes that contribute to biofilm formation for a handful of bacterial species. However, as the number of profiling studies increases, it is becoming increasingly apparent that these data might miss important aspects of biofilm development. One reason for this is the inability of current experimental designs to resolve spatial and functional heterogeneity in the biofilm community. Thus, an emerging challenge is to use transcriptional profiling in combination with techniques that can identify and separate relevant subpopulations within a biofilm.
Collapse
Affiliation(s)
- Dingding An
- Department of Microbiology, University of Washington, School of Medicine, 1959 NE Pacific Street, Seattle, WA 98195-7242, USA
| | | |
Collapse
|
129
|
Rice KC, Mann EE, Endres JL, Weiss EC, Cassat JE, Smeltzer MS, Bayles KW. The cidA murein hydrolase regulator contributes to DNA release and biofilm development in Staphylococcus aureus. Proc Natl Acad Sci U S A 2007; 104:8113-8. [PMID: 17452642 PMCID: PMC1876580 DOI: 10.1073/pnas.0610226104] [Citation(s) in RCA: 517] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Staphylococcus aureus cidA and lrgA genes have been shown to affect cell lysis under a variety of conditions during planktonic growth. It is hypothesized that these genes encode holins and antiholins, respectively, and may serve as molecular control elements of bacterial cell lysis. To examine the biological role of cell death and lysis, we studied the impact of the cidA mutation on biofilm development. Interestingly, this mutation had a dramatic impact on biofilm morphology and adherence. The cidA mutant (KB1050) biofilm exhibited a rougher appearance compared with the parental strain (UAMS-1) and was less adherent. Propidium iodide staining revealed that KB1050 accumulated more dead cells within the biofilm population relative to UAMS-1, indicative of reduced cell lysis. In agreement with this finding, quantitative real-time PCR experiments demonstrated the presence of 5-fold less genomic DNA in the KB1050 biofilm relative to UAMS-1. Furthermore, treatment of the UAMS-1 biofilm with DNase I caused extensive cell detachment, whereas similar treatment of the KB1050 biofilm had only a modest effect. These results demonstrate that cidA-controlled cell lysis plays a significant role during biofilm development and that released genomic DNA is an important structural component of S. aureus biofilm.
Collapse
Affiliation(s)
- Kelly C. Rice
- *Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198; and
| | - Ethan E. Mann
- *Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198; and
| | - Jennifer L. Endres
- *Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198; and
| | - Elizabeth C. Weiss
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205
| | - James E. Cassat
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205
| | - Mark S. Smeltzer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205
| | - Kenneth W. Bayles
- *Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
130
|
Reynolds TB. The Opi1p transcription factor affects expression of FLO11, mat formation, and invasive growth in Saccharomyces cerevisiae. EUKARYOTIC CELL 2007; 5:1266-75. [PMID: 16896211 PMCID: PMC1539139 DOI: 10.1128/ec.00022-06] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mat formation in the bakers' yeast Saccharomyces cerevisiae is a surface-associated phenomenon in which yeast cells spread over the surface of a low-density agar petri plate as a complex film. This spreading growth occurs by sliding motility and is dependent on the adhesion protein (adhesin) Flo11p. In order to identify molecular pathways that govern mat formation, whole-genome transcriptional profiling was used to compare cells growing as a mat to cells growing in a suspension culture (planktonic cells). This analysis revealed that S. cerevisiae upregulates a subset of genes in response to growth on a surface. These genes included the INO1 gene, which encodes the myo-inositol-1-phosphate synthase, which carries out the rate-limiting step in inositol biosynthesis. Further inquiry revealed that a transcription factor that controls INO1 expression, called Opi1p, participates in the regulation of mat formation. Opi1p appears to modulate mat formation by influencing the expression of FLO11. The opi1Delta mutant was found to exhibit reduced FLO11 levels. Consequently, the opi1Delta mutant perturbs the FLO11-dependent phenotype of invasive growth. The opi1Delta mutant's defects in mat formation and invasive growth are dependent on the transcriptional activator Ino2p. These results indicate that Opi1p affects mat formation and invasive growth by participating in the regulation of FLO11.
Collapse
Affiliation(s)
- Todd B Reynolds
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
131
|
Abstract
Analysis of the temporal development of Escherichia coli K-12 biofilms in complex medium indicates the greatest differential gene expression between biofilm and suspension cells occurred in young biofilms at 4 and 7 h (versus 15 and 24 h). The main classes of genes differentially expressed (biofilm versus biofilm and biofilm versus suspension cells) include 42 related to stress response (e.g. cspABFGI), 66 related to quorum sensing (e.g. ydgG, gadABC, hdeABD), 20 related to motility (e.g. flgBCEFH, fliLMQR, motB), 13 related to fimbriae (e.g. sfmCHM, fimZ, csgC), 24 related to sulfur and tryptophan metabolism (e.g. trpLBA, tnaLA, cysDNCJH), 80 related to transport (e.g. gatABC, agaBC, ycjJ, ydfJ, phoU, phnCJKM), and six related to extracellular matrix (e.g. wcaBDEC). Of the 93 mutants identified and studied, 76 showed altered biofilm formation. Biofilm architecture changed from thin and dense to globular and dispersed to dense and smooth. The quorum-sensing signal AI-2 controls gene expression most clearly in mature biofilms (24 h) when intracellular AI-2 levels are highest. Sulfate transport and metabolism genes (cysAUWDN) and genes with unknown functions (ymgABCZ) were repressed in young (4, 7 h) biofilms, induced in developed biofilms (15 h), and repressed in mature (24 h) biofilms. Genes related to both motility and fimbriae were induced in biofilms at all sampling time points and colanic acid genes were induced in mature biofilms (24 h). Genes related to dihydroxyacetone phosphate synthesis from galactitol and galactosamine (e.g. gatZABCDR, agaBCY) were highly regulated in biofilms. Genes involved in the biosynthesis of indole and sulfide (tnaLA) are repressed in biofilms after 7 h (corroborated by decreasing intracellular indole concentrations in biofilms). Cold-shock protein transcriptional regulators (cspABFGI) appear to be positive biofilm regulators, and deletions in respiratory genes (e.g. hyaACD, hyfCG, appC, narG) increased biofilm formation sevenfold.
Collapse
Affiliation(s)
- Joanna Domka
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | | | | | | |
Collapse
|
132
|
Mikkelsen H, Duck Z, Lilley KS, Welch M. Interrelationships between colonies, biofilms, and planktonic cells of Pseudomonas aeruginosa. J Bacteriol 2007; 189:2411-6. [PMID: 17220232 PMCID: PMC1899361 DOI: 10.1128/jb.01687-06] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is a gram-negative bacterium and an opportunistic human pathogen that causes chronic infections in immunocompromised individuals. These infections are hard to treat, partly due to the high intrinsic resistance of the bacterium to clinically used antibiotics and partly due to the formation of antibiotic-tolerant biofilms. The three most common ways of growing bacteria in vitro are as planktonic cultures, colonies on agar plates, and biofilms in continuous-flow systems. Biofilms are known to express genes different from those of planktonic cells, and biofilm cells are generally believed to closely resemble planktonic cells in stationary phase. However, few, if any, studies have examined global gene expression in colonies. We used a proteomic approach to investigate the interrelationships between planktonic cells, colonies, and biofilms under comparable conditions. Our results show that protein profiles in colonies resemble those of planktonic cells. Furthermore, contrary to what has been reported previously, the protein profiles of biofilms were found to more closely resemble those of exponentially growing planktonic cells than those of planktonic cells in the stationary phase. These findings raise some intriguing questions about the true nature of biofilms.
Collapse
Affiliation(s)
- H Mikkelsen
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | | | | | | |
Collapse
|
133
|
Romeo T. When the party is over: a signal for dispersal of Pseudomonas aeruginosa biofilms. J Bacteriol 2006; 188:7325-7. [PMID: 17050919 PMCID: PMC1636271 DOI: 10.1128/jb.01317-06] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Tony Romeo
- Department of Microbiology and Immunology, Emory University School of Medicine, 3105 Rollins Research Center, 1510 Clifton Road N.E., Atlanta, GA 30322, USA.
| |
Collapse
|
134
|
Nauman EA, Ott CM, Sander E, Tucker DL, Pierson D, Wilson JW, Nickerson CA. Novel quantitative biosystem for modeling physiological fluid shear stress on cells. Appl Environ Microbiol 2006; 73:699-705. [PMID: 17142365 PMCID: PMC1800738 DOI: 10.1128/aem.02428-06] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The response of microbes to changes in the mechanical force of fluid shear has important implications for pathogens, which experience wide fluctuations in fluid shear in vivo during infection. However, the majority of studies have not cultured microbes under physiological fluid shear conditions within a range commonly encountered by microbes during host-pathogen interactions. Here we describe a convenient batch culture biosystem in which (i) the levels of fluid shear force can be varied within physiologically relevant ranges and quantified via mathematical models and (ii) large numbers of cells can be planktonically grown and harvested to examine the effect of fluid shear levels on microbial genomic and phenotypic responses. A quantitative model based on numerical simulations and in situ imaging analysis was developed to calculate the fluid shear imparted by spherical beads of different sizes on bacterial cell cultures grown in a rotating wall vessel (RWV) bioreactor. To demonstrate the application of this model, we subjected cultures of the bacterial pathogen Salmonella enterica serovar Typhimurium to three physiologically-relevant fluid shear ranges during growth in the RVW and demonstrated a progressive relationship between the applied fluid shear and the bacterial genetic and phenotypic responses. By applying this model to different cell types, including other bacterial pathogens, entire classes of genes and proteins involved in cellular interactions may be discovered that have not previously been identified during growth under conventional culture conditions, leading to new targets for vaccine and therapeutic development.
Collapse
Affiliation(s)
- Eric A Nauman
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907-2088, USA
| | | | | | | | | | | | | |
Collapse
|
135
|
Kim YH, Lee Y, Kim S, Yeom J, Yeom S, Seok Kim B, Oh S, Park S, Jeon CO, Park W. The role of periplasmic antioxidant enzymes (superoxide dismutase and thiol peroxidase) of the Shiga toxin-producingEscherichia coli O157:H7 in the formation of biofilms. Proteomics 2006; 6:6181-93. [PMID: 17133368 DOI: 10.1002/pmic.200600320] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study examined the role of the periplasmic oxidative defense proteins, copper, zinc superoxide dismutase (SodC), and thiol peroxidase (Tpx), from the Shiga toxin-producing Escherichia coli O157:H7 (STEC) in the formation of biofilms. Proteomic analyses have shown significantly higher expression levels of both periplasmic antioxidant systems (SodC and Tpx) in STEC cells grown under biofilm conditions than under planktonic conditions. An analysis of their growth phase-dependent gene expression indicated that a high level of the sodC expression occurred during the stationary phase and that the expression of the tpx gene was strongly induced only during the exponential growth phase. Exogenous hydrogen peroxide reduced the aerobic growth of the STEC sodC and tpx mutants by more than that of their parental strain. The two mutants also displayed significant reductions in their attachment to both biotic (HT-29 epithelial cell) and abiotic surfaces (polystyrene and polyvinyl chloride microplates) during static aerobic growth. However, the growth rates of both wild-type and mutants were similar under aerobic growth conditions. The formation of an STEC biofilm was only observed with the wild-type STEC cells in glass capillary tubes under continuous flow-culture conditions compared with the STEC sodC and tpx mutants. To the best of our knowledge, this is the first mutational study to show the contribution of sodC and tpx gene products to the formation of an E. coli O157:H7 biofilm. These results also suggest that these biofilms are physiologically heterogeneous and that oxidative stress defenses in both the exponential and stationary growth stages play important roles in the formation of STEC biofilms.
Collapse
Affiliation(s)
- Young Hoon Kim
- Division of Food Science, Korea University, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Rinaudi L, Fujishige NA, Hirsch AM, Banchio E, Zorreguieta A, Giordano W. Effects of nutritional and environmental conditions on Sinorhizobium meliloti biofilm formation. Res Microbiol 2006; 157:867-75. [PMID: 16887339 DOI: 10.1016/j.resmic.2006.06.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Revised: 05/24/2006] [Accepted: 06/08/2006] [Indexed: 10/24/2022]
Abstract
Rhizobia are non-spore-forming soil bacteria that fix atmospheric nitrogen into ammonia in a symbiosis with legume roots. However, in the absence of a legume host, rhizobia manage to survive and hence must have evolved strategies to adapt to diverse environmental conditions. The capacity to respond to variations in nutrient availability enables the persistence of rhizobial species in soil, and consequently improves their ability to colonize and to survive in the host plant. Rhizobia, like many other soil bacteria, persist in nature most likely in sessile communities known as biofilms, which are most often composed of multiple microbial species. We have been employing in vitro assays to study environmental parameters that might influence biofilm formation in the Medicago symbiont Sinorhizobium meliloti. These parameters include carbon source, amount of nitrate, phosphate, calcium and magnesium as well as the effects of osmolarity and pH. The microtiter plate assay facilitates the detection of subtle differences in rhizobial biofilms in response to these parameters, thereby providing insight into how environmental stress or nutritional status influences rhizobial survival. Nutrients such as sucrose, phosphate and calcium enhance biofilm formation as their concentrations increase, whereas extreme temperatures and pH negatively affect biofilm formation.
Collapse
Affiliation(s)
- Luciana Rinaudi
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, 5800-Río Cuarto, Córdoba, Argentina
| | | | | | | | | | | |
Collapse
|
137
|
Lynch SV, Mukundakrishnan K, Benoit MR, Ayyaswamy PS, Matin A. Escherichia coli biofilms formed under low-shear modeled microgravity in a ground-based system. Appl Environ Microbiol 2006; 72:7701-10. [PMID: 17028231 PMCID: PMC1694224 DOI: 10.1128/aem.01294-06] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial biofilms cause chronic diseases that are difficult to control. Since biofilm formation in space is well documented and planktonic cells become more resistant and virulent under modeled microgravity, it is important to determine the effect of this gravity condition on biofilms. Inclusion of glass microcarrier beads of appropriate dimensions and density with medium and inoculum, in vessels specially designed to permit ground-based investigations into aspects of low-shear modeled microgravity (LSMMG), facilitated these studies. Mathematical modeling of microcarrier behavior based on experimental conditions demonstrated that they satisfied the criteria for LSMMG conditions. Experimental observations confirmed that the microcarrier trajectory in the LSMMG vessel concurred with the predicted model. At 24 h, the LSMMG Escherichia coli biofilms were thicker than their normal-gravity counterparts and exhibited increased resistance to the general stressors salt and ethanol and to two antibiotics (penicillin and chloramphenicol). Biofilms of a mutant of E. coli, deficient in sigma(s), were impaired in developing LSMMG-conferred resistance to the general stressors but not to the antibiotics, indicating two separate pathways of LSMMG-conferred resistance.
Collapse
Affiliation(s)
- S V Lynch
- Department of Microbiology and Immunology, Sherman Fairchild Science Building, Stanford University School of Medicine, 299 Campus Drive, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
138
|
Shemesh M, Tam A, Feldman M, Steinberg D. Differential expression profiles of Streptococcus mutans ftf, gtf and vicR genes in the presence of dietary carbohydrates at early and late exponential growth phases. Carbohydr Res 2006; 341:2090-7. [PMID: 16764842 DOI: 10.1016/j.carres.2006.05.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Revised: 05/02/2006] [Accepted: 05/16/2006] [Indexed: 11/25/2022]
Abstract
Dental caries is one of the most common infectious diseases that affects humans. Streptococcus mutans, the main pathogenic bacterium associated with dental caries, produces a number of extracellular sucrose-metabolizing enzymes, such as glucosyltransferases (GTFB, GTFC and GTFD) and fructosyltransferase (FTF). The cooperative action of these enzymes is essential for sucrose-dependent cellular adhesion and biofilm formation. A global response regulator (vicR) plays important roles in S. mutans ftf and gtf expression in response to a variety of stimuli. A real-time reverse-transcription polymerase chain-reaction was used to quantify the relative levels of ftf, gtfB, gtfC, gtfD and vicR transcription of S. mutans in the presence of various dietary carbohydrates: sucrose, D-glucose, D-fructose, D-glucitol (D-sorbitol), D-mannitol and xylitol. Ftf was highly expressed at late exponential phase in the presence of sorbitol and mannitol. GtfB was highly expressed in the presence of all the above carbohydrates except for xylitol at early exponential growth phase and glucose and fructose at late exponential growth phase. Similar to gtfB, the expression of gtfC was also induced with the presence of all the tested carbohydrates except for xylitol at early growth and glucose and fructose at late exponential phase. In addition, no effect of mannitol on gtfC expression at early exponential phase was observed. GtfD was less influenced compared to the gtfB and gtfC, demonstrating enhanced expression especially in the presence of sorbitol, glucose, mannitol and xylitol at early exponential phase and mannitol at late exponential phase. VicR expression was induced only at the presence of xylitol at late exponential phase, and a decrease in expression was recorded at early exponential phase. Our findings show that dietary carbohydrates have a major influence on the transcription of ftf, gtfB, gtfC and gtfD, but less on vicR. Sorbitol and mannitol, which are considered as noncariogenic sugar substitutes, may indirectly affect caries by promoting biofilm formation via enhanced expression of gtfs and ftf. These results suggest regulatory circuits for exopolysaccharide gene expression in S. mutans.
Collapse
Affiliation(s)
- Moshe Shemesh
- Institute of Dental Sciences, Faculty of Dentistry, Hebrew University-Hadassah, Jerusalem 91120, Israel
| | | | | | | |
Collapse
|
139
|
Simionato MR, Tucker CM, Kuboniwa M, Lamont G, Demuth DR, Tribble GD, Lamont RJ. Porphyromonas gingivalis genes involved in community development with Streptococcus gordonii. Infect Immun 2006; 74:6419-28. [PMID: 16923784 PMCID: PMC1695522 DOI: 10.1128/iai.00639-06] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Porphyromonas gingivalis, one of the causative agents of adult periodontitis, develops biofilm microcolonies on substrata of Streptococcus gordonii but not on Streptococcus mutans. P. gingivalis genome microarrays were used to identify genes differentially regulated during accretion of P. gingivalis in heterotypic biofilms with S. gordonii. Thirty-three genes showed up- or downregulation by array analysis, and differential expression was confirmed by quantitative reverse transcription-PCR. The functions of the regulated genes were predominantly related to metabolism and energy production. In addition, many of the genes have no current known function. The roles of two upregulated genes, ftsH (PG0047) encoding an ATP-dependent zinc metallopeptidase and ptpA (PG1641) encoding a putative tyrosine phosphatase, were investigated further by mutational analysis. Strains with mutations in these genes developed more abundant biofilms with S. gordonii than the parental strain developed. ftsH and ptpA may thus participate in a regulatory network that constrains P. gingivalis accumulation in heterotypic biofilms. This study provided a global analysis of P. gingivalis transcriptional responses in an oral microbial community and also provided insight into the regulation of heterotypic biofilm development.
Collapse
Affiliation(s)
- M Regina Simionato
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610-0424, USA
| | | | | | | | | | | | | |
Collapse
|
140
|
Waite RD, Paccanaro A, Papakonstantinopoulou A, Hurst JM, Saqi M, Littler E, Curtis MA. Clustering of Pseudomonas aeruginosa transcriptomes from planktonic cultures, developing and mature biofilms reveals distinct expression profiles. BMC Genomics 2006; 7:162. [PMID: 16800888 PMCID: PMC1525188 DOI: 10.1186/1471-2164-7-162] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Accepted: 06/26/2006] [Indexed: 11/17/2022] Open
Abstract
Background Pseudomonas aeruginosa is a genetically complex bacterium which can adopt and switch between a free-living or biofilm lifestyle, a versatility that enables it to thrive in many different environments and contributes to its success as a human pathogen. Results Transcriptomes derived from growth states relevant to the lifestyle of P. aeruginosa were clustered using three different methods (K-means, K-means spectral and hierarchical clustering). The culture conditions used for this study were; biofilms incubated for 8, 14, 24 and 48 hrs, and planktonic culture (logarithmic and stationary phase). This cluster analysis revealed the existence and provided a clear illustration of distinct expression profiles present in the dataset. Moreover, it gave an insight into which genes are up-regulated in planktonic, developing biofilm and confluent biofilm states. In addition, this analysis confirmed the contribution of quorum sensing (QS) and RpoS regulated genes to the biofilm mode of growth, and enabled the identification of a 60.69 Kbp region of the genome associated with stationary phase growth (stationary phase planktonic culture and confluent biofilms). Conclusion This is the first study to use clustering to separate a large P. aeruginosa microarray dataset consisting of transcriptomes obtained from diverse conditions relevant to its growth, into different expression profiles. These distinct expression profiles not only reveal novel aspects of P. aeruginosa gene expression but also provide a growth specific transcriptomic reference dataset for the research community.
Collapse
Affiliation(s)
- Richard D Waite
- MRC Molecular Pathogenesis Research Unit, Centre for Infectious Disease, Institute of Cell and Molecular Science, Barts and the London, Queen Mary School of Medicine and Dentistry, 4 Newark Street, London, E1 2AT, UK
| | - Alberto Paccanaro
- MRC Molecular Pathogenesis Research Unit, Centre for Infectious Disease, Institute of Cell and Molecular Science, Barts and the London, Queen Mary School of Medicine and Dentistry, 4 Newark Street, London, E1 2AT, UK
- Department of Computer Science, Royal Holloway, University of London Egham, TW20 0EX, UK
| | - Anastasia Papakonstantinopoulou
- MRC Molecular Pathogenesis Research Unit, Centre for Infectious Disease, Institute of Cell and Molecular Science, Barts and the London, Queen Mary School of Medicine and Dentistry, 4 Newark Street, London, E1 2AT, UK
| | - Jacob M Hurst
- MRC Molecular Pathogenesis Research Unit, Centre for Infectious Disease, Institute of Cell and Molecular Science, Barts and the London, Queen Mary School of Medicine and Dentistry, 4 Newark Street, London, E1 2AT, UK
| | - Mansoor Saqi
- MRC Molecular Pathogenesis Research Unit, Centre for Infectious Disease, Institute of Cell and Molecular Science, Barts and the London, Queen Mary School of Medicine and Dentistry, 4 Newark Street, London, E1 2AT, UK
| | - Eddie Littler
- Medivir UK Ltd, Peterhouse Technology Park, 100 Fulbourn Road, Cambridge CB1 9PT, UK
| | - Michael A Curtis
- MRC Molecular Pathogenesis Research Unit, Centre for Infectious Disease, Institute of Cell and Molecular Science, Barts and the London, Queen Mary School of Medicine and Dentistry, 4 Newark Street, London, E1 2AT, UK
| |
Collapse
|
141
|
Price-Whelan A, Dietrich LEP, Newman DK. Rethinking 'secondary' metabolism: physiological roles for phenazine antibiotics. Nat Chem Biol 2006; 2:71-8. [PMID: 16421586 DOI: 10.1038/nchembio764] [Citation(s) in RCA: 379] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microorganisms exist in the environment as multicellular communities that face the challenge of surviving under nutrient-limited conditions. Chemical communication is an essential part of the way in which these populations coordinate their behavior, and there has been an explosion of understanding in recent years regarding how this is accomplished. Much less, however, is understood about the way these communities sustain their metabolism. Bacteria of the genus Pseudomonas are ubiquitous, and are distinguished by their production of colorful secondary metabolites called phenazines. In this article, we suggest that phenazines, which are produced under conditions of high cell density and nutrient limitation, may be important for the persistence of pseudomonads in the environment.
Collapse
Affiliation(s)
- Alexa Price-Whelan
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | | | | |
Collapse
|
142
|
Southey-Pillig CJ, Davies DG, Sauer K. Characterization of temporal protein production in Pseudomonas aeruginosa biofilms. J Bacteriol 2005; 187:8114-26. [PMID: 16291684 PMCID: PMC1291272 DOI: 10.1128/jb.187.23.8114-8126.2005] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phenotypic and genetic evidence supporting the notion of biofilm formation as a developmental process is growing. In the present work, we provide additional support for this hypothesis by identifying the onset of accumulation of biofilm-stage specific proteins during Pseudomonas aeruginosa biofilm maturation and by tracking the abundance of these proteins in planktonic and three biofilm developmental stages. The onset of protein production was found to correlate with the progression of biofilms in developmental stages. Protein identification revealed that proteins with similar function grouped within similar protein abundance patterns. Metabolic and housekeeping proteins were found to group within a pattern separate from virulence, antibiotic resistance, and quorum-sensing-related proteins. The latter were produced in a progressive manner, indicating that attendant features that are characteristic of biofilms such as antibiotic resistance and virulence may be part of the biofilm developmental process. Mutations in genes for selected proteins from several protein production patterns were made, and the impact of these mutations on biofilm development was evaluated. The proteins cytochrome c oxidase, a probable chemotaxis transducer, a two-component response regulator, and MexH were produced only in mature and late-stage biofilms. Mutations in the genes encoding these proteins did not confer defects in growth, initial attachment, early biofilm formation, or twitching motility but were observed to arrest biofilm development at the stage of cell cluster formation we call the maturation-1 stage. The results indicated that expression of theses genes was required for the progression of biofilms into three-dimensional structures on abiotic surfaces and the completion of the biofilm developmental cycle. Reverse transcription-PCR analysis confirmed the detectable change in expression of the respective genes ccoO, PA4101, and PA4208. We propose a possible mechanism for the role of these biofilm-specific proteins in biofilm formation.
Collapse
|