101
|
Klee SR, Brzuszkiewicz EB, Nattermann H, Brüggemann H, Dupke S, Wollherr A, Franz T, Pauli G, Appel B, Liebl W, Couacy-Hymann E, Boesch C, Meyer FD, Leendertz FH, Ellerbrok H, Gottschalk G, Grunow R, Liesegang H. The genome of a Bacillus isolate causing anthrax in chimpanzees combines chromosomal properties of B. cereus with B. anthracis virulence plasmids. PLoS One 2010; 5:e10986. [PMID: 20634886 PMCID: PMC2901330 DOI: 10.1371/journal.pone.0010986] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 05/05/2010] [Indexed: 11/18/2022] Open
Abstract
Anthrax is a fatal disease caused by strains of Bacillus anthracis. Members of this monophyletic species are non motile and are all characterized by the presence of four prophages and a nonsense mutation in the plcR regulator gene. Here we report the complete genome sequence of a Bacillus strain isolated from a chimpanzee that had died with clinical symptoms of anthrax. Unlike classic B. anthracis, this strain was motile and lacked the four prohages and the nonsense mutation. Four replicons were identified, a chromosome and three plasmids. Comparative genome analysis revealed that the chromosome resembles those of non-B. anthracis members of the Bacillus cereus group, whereas two plasmids were identical to the anthrax virulence plasmids pXO1 and pXO2. The function of the newly discovered third plasmid with a length of 14 kbp is unknown. A detailed comparison of genomic loci encoding key features confirmed a higher similarity to B. thuringiensis serovar konkukian strain 97-27 and B. cereus E33L than to B. anthracis strains. For the first time we describe the sequence of an anthrax causing bacterium possessing both anthrax plasmids that apparently does not belong to the monophyletic group of all so far known B. anthracis strains and that differs in important diagnostic features. The data suggest that this bacterium has evolved from a B. cereus strain independently from the classic B. anthracis strains and established a B. anthracis lifestyle. Therefore we suggest to designate this isolate as "B. cereus variety (var.) anthracis".
Collapse
Affiliation(s)
- Silke R Klee
- Centre for Biological Security (ZBS), Robert Koch-Institut, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Bahl MI, Rosenberg K. High abundance and diversity of Bacillus anthracis plasmid pXO1-like replicons in municipal wastewater. FEMS Microbiol Ecol 2010; 74:241-7. [PMID: 20597981 DOI: 10.1111/j.1574-6941.2010.00922.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Water from the influent of a municipal wastewater treatment plant as well as soil samples collected from the shoreline of 10 lakes were screened for the presence of the Bacillus anthracis pXO1-like plasmid replicon repX using a PCR assay. Specific PCR products were retrieved from all samples, indicating a widespread presence of pXO1-like plasmid replicons in various environmental settings. Initial screening by restriction enzyme analysis revealed at least two forms of the repX gene in the wastewater sample, which was consequently subjected to further investigation. Nine of 51 Bacillus cereus group strains isolated from the wastewater sample were shown to contain a repX-specific gene sequence. Two of these strains were shown to have repX gene sequences with very high homology to the repX gene of plasmid pXO1. The same two strains also contained replicon-specific sequences with high homology to those of pXO2-like plasmids, but did not contain the pXO1-associated cya and lef virulence genes. Collectively, the sequence information from the isolated strains and PCR products obtained using total genomic DNA as a template suggests the existence of three subgroups of pXO1-like plasmid replicons in the wastewater sample.
Collapse
Affiliation(s)
- Martin Iain Bahl
- Centre for Biosecurity and Biopreparedness, Statens Serum Institut, Copenhagen, Denmark.
| | | |
Collapse
|
103
|
Genome-wide single nucleotide polymorphism typing method for identification of Bacillus anthracis species and strains among B. cereus group species. J Clin Microbiol 2010; 48:2821-9. [PMID: 20554827 DOI: 10.1128/jcm.00137-10] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As an issue of biosecurity, species-specific genetic markers have been well characterized. However, Bacillus anthracis strain-specific information is currently not sufficient for traceability to identify the origin of the strain. By using genome-wide screening using short read mapping, we identified strain-specific single nucleotide polymorphisms (SNPs) among B. anthracis strains including Japanese isolates, and we further developed a simplified 80-tag SNP typing method for the primary investigation of traceability. These 80-tag SNPs were selected from 2,965 SNPs on the chromosome and the pXO1 and pXO2 plasmids from a total of 19 B. anthracis strains, including the available genome sequences of 17 strains in the GenBank database and 2 Japanese isolates that were sequenced in this study. Phylogenetic analysis based on 80-tag SNP typing showed a higher resolution power to discriminate 12 Japanese isolates rather than the 25 loci identified by multiple-locus variable-number tandem-repeat analysis (MLVA). In addition, the 80-tag PCR testing enabled the discrimination of B. anthracis from other B. cereus group species, helping to identify whether a suspected sample originates from the intentional release of a bioterrorism agent or environmental contamination with a virulent agent. In conclusion, 80-tag SNP typing can be a rapid and sufficient test for the primary investigation of strain origin. Subsequent whole-genome sequencing will reveal apparent strain-specific genetic markers for traceability of strains following an anthrax outbreak.
Collapse
|
104
|
Comparative genomics of the family Vibrionaceae reveals the wide distribution of genes encoding virulence-associated proteins. BMC Genomics 2010; 11:369. [PMID: 20537180 PMCID: PMC2890568 DOI: 10.1186/1471-2164-11-369] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 06/10/2010] [Indexed: 11/17/2022] Open
Abstract
Background Species of the family Vibrionaceae are ubiquitous in marine environments. Several of these species are important pathogens of humans and marine species. Evidence indicates that genetic exchange plays an important role in the emergence of new pathogenic strains within this family. Data from the sequenced genomes of strains in this family could show how the genes encoded by all these strains, known as the pangenome, are distributed. Information about the core, accessory and panproteome of this family can show how, for example, genes encoding virulence-associated proteins are distributed and help us understand how virulence emerges. Results We deduced the complete set of orthologs for eleven strains from this family. The core proteome consists of 1,882 orthologous groups, which is 28% of the 6,629 orthologous groups in this family. There were 4,411 accessory orthologous groups (i.e., proteins that occurred in from 2 to 10 proteomes) and 5,584 unique proteins (encoded once on only one of the eleven genomes). Proteins that have been associated with virulence in V. cholerae were widely distributed across the eleven genomes, but the majority was found only on the genomes of the two V. cholerae strains examined. Conclusions The proteomes are reflective of the differing evolutionary trajectories followed by different strains to similar phenotypes. The composition of the proteomes supports the notion that genetic exchange among species of the Vibrionaceae is widespread and that this exchange aids these species in adapting to their environments.
Collapse
|
105
|
Alcaraz LD, Moreno-Hagelsieb G, Eguiarte LE, Souza V, Herrera-Estrella L, Olmedo G. Understanding the evolutionary relationships and major traits of Bacillus through comparative genomics. BMC Genomics 2010; 11:332. [PMID: 20504335 PMCID: PMC2890564 DOI: 10.1186/1471-2164-11-332] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Accepted: 05/26/2010] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The presence of Bacillus in very diverse environments reflects the versatile metabolic capabilities of a widely distributed genus. Traditional phylogenetic analysis based on limited gene sampling is not adequate for resolving the genus evolutionary relationships. By distinguishing between core and pan-genome, we determined the evolutionary and functional relationships of known Bacillus. RESULTS Our analysis is based upon twenty complete and draft Bacillus genomes, including a newly sequenced Bacillus isolate from an aquatic environment that we report for the first time here. Using a core genome, we were able to determine the phylogeny of known Bacilli, including aquatic strains whose position in the phylogenetic tree could not be unambiguously determined in the past. Using the pan-genome from the sequenced Bacillus, we identified functional differences, such as carbohydrate utilization and genes involved in signal transduction, which distinguished the taxonomic groups. We also assessed the genetic architecture of the defining traits of Bacillus, such as sporulation and competence, and showed that less than one third of the B. subtilis genes are conserved across other Bacilli. Most variation was shown to occur in genes that are needed to respond to environmental cues, suggesting that Bacilli have genetically specialized to allow for the occupation of diverse habitats and niches. CONCLUSIONS The aquatic Bacilli are defined here for the first time as a group through the phylogenetic analysis of 814 genes that comprise the core genome. Our data distinguished between genomic components, especially core vs. pan-genome to provide insight into phylogeny and function that would otherwise be difficult to achieve. A phylogeny may mask the diversity of functions, which we tried to uncover in our approach. The diversity of sporulation and competence genes across the Bacilli was unexpected based on previous studies of the B. subtilis model alone. The challenge of uncovering the novelties and variations among genes of the non-subtilis groups still remains. This task will be best accomplished by directing efforts toward understanding phylogenetic groups with similar ecological niches.
Collapse
Affiliation(s)
- Luis David Alcaraz
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN Campus Guanajuato, Guanajuato, México.
| | | | | | | | | | | |
Collapse
|
106
|
Raymond B, Wyres KL, Sheppard SK, Ellis RJ, Bonsall MB. Environmental factors determining the epidemiology and population genetic structure of the Bacillus cereus group in the field. PLoS Pathog 2010; 6:e1000905. [PMID: 20502683 PMCID: PMC2873914 DOI: 10.1371/journal.ppat.1000905] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 04/09/2010] [Indexed: 11/29/2022] Open
Abstract
Bacillus thuringiensis (Bt) and its insecticidal toxins are widely exploited in microbial biopesticides and genetically modified crops. Its population biology is, however, poorly understood. Important issues for the safe, sustainable exploitation of Bt include understanding how selection maintains expression of insecticidal toxins in nature, whether entomopathogenic Bt is ecologically distinct from related human pathogens in the Bacillus cereus group, and how the use of microbial pesticides alters natural bacterial populations. We addressed these questions with a MLST scheme applied to a field experiment in which we excluded/added insect hosts and microbial pesticides in a factorial design. The presence of insects increased the density of Bt/B. cereus in the soil and the proportion of strains expressing insecticidal toxins. We found a near-epidemic population structure dominated by a single entomopathogenic genotype (ST8) in sprayed and unsprayed enclosures. Biopesticidal ST8 proliferated in hosts after spraying but was also found naturally associated with leaves more than any other genotype. In an independent experiment several ST8 isolates proved better than a range of non-pathogenic STs at endophytic and epiphytic colonization of seedlings from soil. This is the first experimental demonstration of Bt behaving as a specialized insect pathogen in the field. These data provide a basis for understanding both Bt ecology and the influence of anthropogenic factors on Bt populations. This natural population of Bt showed habitat associations and a population structure that differed markedly from previous MLST studies of less ecologically coherent B. cereus sample collections. The host-specific adaptations of ST8, its close association with its toxin plasmid and its high prevalence within its clade are analogous to the biology of Bacillus anthracis. This prevalence also suggests that selection for resistance to the insecticidal toxins of ST8 will have been stronger than for other toxin classes.
Collapse
Affiliation(s)
- Ben Raymond
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, UK.
| | | | | | | | | |
Collapse
|
107
|
Raymond B, Johnston PR, Nielsen-LeRoux C, Lereclus D, Crickmore N. Bacillus thuringiensis: an impotent pathogen? Trends Microbiol 2010; 18:189-94. [DOI: 10.1016/j.tim.2010.02.006] [Citation(s) in RCA: 249] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 02/18/2010] [Accepted: 02/24/2010] [Indexed: 11/17/2022]
|
108
|
Clostridial spore germination versus bacilli: genome mining and current insights. Food Microbiol 2010; 28:266-74. [PMID: 21315983 DOI: 10.1016/j.fm.2010.03.016] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 03/24/2010] [Accepted: 03/25/2010] [Indexed: 11/23/2022]
Abstract
Bacilli and clostridia share the characteristic of forming metabolically inactive endospores. Spores are highly resistant to adverse environmental conditions including heat, and their ubiquitous presence in nature makes them inevitable contaminants of foods and food ingredients. Spores can germinate under favourable conditions, and the following outgrowth can lead to food spoilage and foodborne illness. Germination of spores has been best studied in Bacillus species, but the process of spore germination is less well understood in anaerobic clostridia. This paper describes a genome mining approach focusing on the genes related to spore germination of clostridia. To this end, 12 representative sequenced Bacillus genomes and 24 Clostridium genomes were analyzed for the distribution of known and putative germination-related genes and their homologues. Overall, the number of ger operons encoding germinant receptors is lower in clostridia than in bacilli, and some Clostridium species are predicted to produce cortex-lytic enzymes that are different from the ones encountered in bacilli. The in silico germination model constructed for clostridia was linked to recently obtained experimental data for selected germination determinants, mainly in Clostridium perfringens. Similarities and differences between germination mechanisms of bacilli and clostridia will be discussed.
Collapse
|
109
|
Affiliation(s)
- M Begley
- Food for Health Ireland, University College Cork, Cork, Ireland
| | - Colin Hill
- Food for Health Ireland, University College Cork, Cork, Ireland
- Department of Microbiology, University College Cork, Cork, Ireland
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; ,
| |
Collapse
|
110
|
Prevalence of Bacillus anthracis-like organisms and bacteriophages in the intestinal tract of the earthworm Eisenia fetida. Appl Environ Microbiol 2010; 76:2286-94. [PMID: 20118353 DOI: 10.1128/aem.02518-09] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Stable infection of Bacillus anthracis laboratory strains with environmental bacteriophages confers survival phenotypes in soil and earthworm intestinal niches (R. Schuch and V. A. Fischetti, PLoS One 4:e6532, 2009). Here, the natural occurrence of two such B. anthracis-infective bacteriophages, Wip1 and Wip4, was examined in the intestines of Eisenia fetida earthworms as part of a 6-year longitudinal study at a Pennsylvania forest site. The Wip1 tectivirus was initially dominant before being supplanted by the Wip4 siphovirus, which was then dominant for the next 3 years. In a host range analysis of a wide-ranging group of Bacillus species and related organisms, Wip1 and Wip4 were both infective only toward B. anthracis and certain B. cereus strains. The natural host of Wip4 remained constant for 3 years and was a B. cereus strain that expressed a B. anthracis-like surface polysaccharide at septal positions on the cell surface. Next, a novel metagenomic approach was used to determine the extent to which such B. cereus- and B. anthracis-like strains are found in worms from two geographical locations. Three different enrichment strategies were used for metagenomic DNA isolation, based either on the ability of B. cereus sensu lato to form heat-resistant spores, the sensitivity of B. anthracis to the PlyG lysin, or the selective amplification of environmental phages cocultured with B. anthracis. Findings from this work indicate that B. cereus sensu lato and its phages are common inhabitants of earthworm intestines.
Collapse
|
111
|
Structure and regulation of the gab gene cluster, involved in the gamma-aminobutyric acid shunt, are controlled by a sigma54 factor in Bacillus thuringiensis. J Bacteriol 2010; 192:346-55. [PMID: 19854901 DOI: 10.1128/jb.01038-09] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The structure and regulation of the gab gene cluster, involved in gamma-aminobutyric acid (GABA) shunt, were studied by characterizing gabT and gabD genes cloned from Bacillus thuringiensis. Deletions of the gabT and gabD genes in B. thuringiensis strain HD-73 did not affect the growth of mutant strains in rich culture media, but the growth of a gabT deletion mutant strain was reduced in basic media (containing 0.2% GABA). Genome analysis indicates that the structure of the gab gene cluster in B. thuringiensis HD-73 is different from that in Escherichia coli and Bacillus subtilis but is common in strains of the Bacillus cereus group. This suggests that the gene cluster involved in GABA shunt is specific to the B. cereus group. Based on reverse transcription-PCR and transcriptional fusion analysis, we confirmed that the gabT and gabD genes belong to different transcriptional units, while the gabD and gabR genes form an operon. We also demonstrated that the gabR gene plays a positive regulatory role in gabD and gabT expression. The GabR protein may be a sigma(54)-dependent transcriptional activator, according to a conserved domain search in the NCBI database, and it is highly conserved in the B. cereus group. The -24/-12 consensus sequence of a promoter upstream from gabT suggests that the promoter can be recognized by a sigma(54) factor. Further analysis of the genetic complementation studies also suggests that the expression of the gabT gene is controlled by a sigma(54) factor. Thus, the expression of the gab cluster is regulated by a sigma(54) factor by way of the transcription activator GabR.
Collapse
|
112
|
Lysogeny and sporulation in Bacillus isolates from the Gulf of Mexico. Appl Environ Microbiol 2009; 76:829-42. [PMID: 20008174 DOI: 10.1128/aem.01710-09] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Eleven Bacillus isolates from the surface and subsurface waters of the Gulf of Mexico were examined for their capacity to sporulate and harbor prophages. Occurrence of sporulation in each isolate was assessed through decoyinine induction, and putative lysogens were identified by prophage induction by mitomycin C treatment. No obvious correlation between ability to sporulate and prophage induction was found. Four strains that contained inducible virus-like particles (VLPs) were shown to sporulate. Four strains did not produce spores upon induction by decoyinine but contained inducible VLPs. Two of the strains did not produce virus-like particles or sporulate significantly upon induction. Isolate B14905 had a high level of virus-like particle production and a high occurrence of sporulation and was further examined by genomic sequencing in an attempt to shed light on the relationship between sporulation and lysogeny. In silico analysis of the B14905 genome revealed four prophage-like regions, one of which was independently sequenced from a mitomycin C-induced lysate. Based on PCR and transmission electron microscopy (TEM) analysis of an induced phage lysate, one is a noninducible phage remnant, one may be a defective phage-like bacteriocin, and two were inducible prophages. One of the inducible phages contained four putative transcriptional regulators, one of which was a SinR-like regulator that may be involved in the regulation of host sporulation. Isolates that both possess the capacity to sporulate and contain temperate phage may be well adapted for survival in the oligotrophic ocean.
Collapse
|
113
|
León M, Yaryura PM, Montecchia MS, Hernández AI, Correa OS, Pucheu NL, Kerber NL, García AF. Antifungal activity of selected indigenous pseudomonas and bacillus from the soybean rhizosphere. Int J Microbiol 2009; 2009:572049. [PMID: 20016811 PMCID: PMC2789335 DOI: 10.1155/2009/572049] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 10/15/2009] [Accepted: 10/22/2009] [Indexed: 11/17/2022] Open
Abstract
The purpose of this study was to isolate and select indigenous soil Pseudomonas and Bacillus bacteria capable of developing multiple mechanisms of action related to the biocontrol of phytopathogenic fungi affecting soybean crops. The screening procedure consisted of antagonism tests against a panel of phytopathogenic fungi, taxonomic identification, detection by PCR of several genes related to antifungal activity, in vitro detection of the antifungal products, and root colonization assays. Two isolates, identified and designated as Pseudomonas fluorescens BNM296 and Bacillus amyloliquefaciens BNM340, were selected for further studies. These isolates protected plants against the damping-off caused by Pythium ultimum and were able to increase the seedling emergence rate after inoculation of soybean seeds with each bacterium. Also, the shoot nitrogen content was higher in plants when seeds were inoculated with BNM296. The polyphasic approach of this work allowed us to select two indigenous bacterial strains that promoted the early development of soybean plants.
Collapse
Affiliation(s)
- M. León
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA-CONICET), Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
- Cátedra de Microbiología Agrícola, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
| | - P. M. Yaryura
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA-CONICET), Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
- Cátedra de Microbiología Agrícola, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
| | - M. S. Montecchia
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA-CONICET), Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
- Cátedra de Microbiología Agrícola, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
| | - A. I. Hernández
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA-CONICET), Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
| | - O. S. Correa
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA-CONICET), Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
- Cátedra de Microbiología Agrícola, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
| | - N. L. Pucheu
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA-CONICET), Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
| | - N. L. Kerber
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA-CONICET), Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
| | - A. F. García
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA-CONICET), Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
114
|
Kolstø AB, Tourasse NJ, Økstad OA. What sets Bacillus anthracis apart from other Bacillus species? Annu Rev Microbiol 2009; 63:451-76. [PMID: 19514852 DOI: 10.1146/annurev.micro.091208.073255] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacillus anthracis is the cause of anthrax, and two large plasmids are essential for toxicity: pXO1, which contains the toxin genes, and pXO2, which encodes a capsule. B. anthracis forms a highly monomorphic lineage within the B. cereus group, but strains of Bacillus thuringiensis and B. cereus exist that are genetically closely related to the B. anthracis cluster. During the past five years B. cereus strains that contain the pXO1 virulence plasmid were discovered, and strains with both pXO1 and pXO2 have been isolated from great apes in Africa. Therefore, the presence of pXO1 and pXO2 no longer principally separates B. anthracis from other Bacilli. The B. anthracis lineage carries a specific mutation in the global regulator PlcR, which controls the transcription of secreted virulence factors in B. cereus and B. thuringiensis. Coevolution of the B. anthracis chromosome with its plasmids may be the basis for the successful development and uniqueness of the B. anthracis lineage.
Collapse
Affiliation(s)
- Anne-Brit Kolstø
- Laboratory for Microbial Dynamics and Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo 0316, Norway.
| | | | | |
Collapse
|
115
|
Roh JY, Wang Y, Liu Q, Tao X, Choi JY, Shim HJ, Xu HG, Lee S, Woo SD, Jin BR, Je YH. Cloning of circular DNAs from microorganisms using a novel plasmid capture system. Mol Biotechnol 2009; 44:120-6. [PMID: 19838822 DOI: 10.1007/s12033-009-9215-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Plasmid capture system (PCS) facilitates cloning and manipulation of circular double-stranded DNA. We recently developed an improved PCS (PCS-LZ) to clone relatively large DNA molecules of 30-150 kb. The PCS-LZ donor consists of a mini-F replicon and a kanamycin resistance marker between Tn7 left and Tn7 right ends. Both the replicon and marker gene of the PCS-LZ donor are transferred into target plasmid DNAs by in vitro transposition, followed by replication in E. coli. Colonies are tested for lacZ expression by blue/white screening. Circular DNAs were obtained from plasmids of Bacillus thuringiensis, genome segments of Cotesia glomerata bracovirus and polymorphic genomes of Autographa californica nucleopolyhedrovirus. PCS-LZ is a powerful tool for use in genomic analysis and mutagenesis in microorganisms including invertebrate pathogens.
Collapse
Affiliation(s)
- Jong Yul Roh
- Department of Agricultural Biotechnology, Seoul National University, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
An extracytoplasmic function sigma factor controls beta-lactamase gene expression in Bacillus anthracis and other Bacillus cereus group species. J Bacteriol 2009; 191:6683-93. [PMID: 19717606 DOI: 10.1128/jb.00691-09] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The susceptibility of most Bacillus anthracis strains to beta-lactam antibiotics is intriguing considering that the closely related species Bacillus cereus and Bacillus thuringiensis typically produce beta-lactamases and the B. anthracis genome harbors two beta-lactamase genes, bla1 and bla2. We show that beta-lactamase activity associated with B. anthracis is affected by two genes, sigP (BA2502) and rsiP (BA2503), predicted to encode an extracytoplasmic function sigma factor and an anti-sigma factor, respectively. Deletion of the sigP-rsiP locus abolished beta-lactamase activity in a naturally occurring penicillin-resistant strain and had no effect on beta-lactamase activity in a prototypical penicillin-susceptible strain. Complementation with sigP and rsiP from the penicillin-resistant strain, but not with sigP and rsiP from the penicillin-susceptible strain, conferred constitutive beta-lactamase activity in both mutants. These results are attributed to a nucleotide deletion near the 5' end of rsiP in the penicillin-resistant strain that is predicted to result in a nonfunctional protein. B. cereus and B. thuringiensis sigP and rsiP homologues are required for inducible penicillin resistance in these species. Expression of the B. cereus or B. thuringiensis sigP and rsiP genes in a B. anthracis sigP-rsiP-null mutant confers inducible production of beta-lactamase activity, suggesting that while B. anthracis contains the genes necessary for sensing beta-lactam antibiotics, the B. anthracis sigP and rsiP gene products are not sufficient for bla induction.
Collapse
|
117
|
Schuch R, Fischetti VA. The secret life of the anthrax agent Bacillus anthracis: bacteriophage-mediated ecological adaptations. PLoS One 2009; 4:e6532. [PMID: 19672290 PMCID: PMC2716549 DOI: 10.1371/journal.pone.0006532] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Accepted: 07/01/2009] [Indexed: 12/31/2022] Open
Abstract
Ecological and genetic factors that govern the occurrence and persistence of anthrax reservoirs in the environment are obscure. A central tenet, based on limited and often conflicting studies, has long held that growing or vegetative forms of Bacillus anthracis survive poorly outside the mammalian host and must sporulate to survive in the environment. Here, we present evidence of a more dynamic lifecycle, whereby interactions with bacterial viruses, or bacteriophages, elicit phenotypic alterations in B. anthracis and the emergence of infected derivatives, or lysogens, with dramatically altered survival capabilities. Using both laboratory and environmental B. anthracis strains, we show that lysogeny can block or promote sporulation depending on the phage, induce exopolysaccharide expression and biofilm formation, and enable the long-term colonization of both an artificial soil environment and the intestinal tract of the invertebrate redworm, Eisenia fetida. All of the B. anthracis lysogens existed in a pseudolysogenic-like state in both the soil and worm gut, shedding phages that could in turn infect non-lysogenic B. anthracis recipients and confer survival phenotypes in those environments. Finally, the mechanism behind several phenotypic changes was found to require phage-encoded bacterial sigma factors and the expression of at least one host-encoded protein predicted to be involved in the colonization of invertebrate intestines. The results here demonstrate that during its environmental phase, bacteriophages provide B. anthracis with alternatives to sporulation that involve the activation of soil-survival and endosymbiotic capabilities.
Collapse
|
118
|
Amadio AF, Benintende GB, Zandomeni RO. Complete sequence of three plasmids from Bacillus thuringiensis INTA-FR7-4 environmental isolate and comparison with related plasmids from the Bacillus cereus group. Plasmid 2009; 62:172-82. [PMID: 19654019 DOI: 10.1016/j.plasmid.2009.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Revised: 07/28/2009] [Accepted: 07/29/2009] [Indexed: 10/20/2022]
Abstract
Bacillus thuringiensis is an insect pathogen used worldwide as a bioinsecticide. It belongs to the Bacillus cereus sensu lato group as well as Bacillus anthracis and B. cereus. Plasmids from this group of organisms have been implicated in pathogenicity as they carry the genes responsible for different types of diseases that affect mammals and insects. Some plasmids, like pAW63 and pBT9727, encode a functional conjugation machinery allowing them to be transferred to a recipient cell. They also share extensive homology with the non-functional conjugation apparatus of pXO2 from B. anthracis. In this study we report the complete sequence of three plasmids from an environmental B. thuringiensis isolate from Argentina, obtained by a shotgun sequencing method. We obtained the complete nucleotide sequence of plasmids pFR12 (12,095bp), pFR12.5 (12,459bp) and pFR55 (55,712bp) from B. thuringiensis INTA-FR7-4. pFR12 and pFR12.5 were classified as cryptic as they do not code for any obvious functions besides replication and mobilization. Both small plasmids were classified as RCR plasmids due to similarities with the replicases they encode. Plasmid pFR55 showed a structural organization similar to that observed for plasmids pAW63, pBT9727 and pXO2. pFR55 also shares a tra region with these plasmids, containing genes related to T4SS and conjugation. A comparison between pFR55 and conjugative plasmids led to the postulation that pFR55 is a conjugative plasmid. Genes related to replication functions in pFR55 are different to those described for plasmids with known complete sequences. pFR55 is the first completely sequenced plasmid with a replication machinery related to that of ori44. The analysis of the complete sequence of plasmids from an environmental isolate of B. thuringiensis permitted the identification of a near complete conjugation apparatus in pFR55, resembling those of plasmids pAW63, pBT9727 and pXO2. The availability of this sequence is a step forward in the study of the molecular basis of the conjugative process in Gram positive bacteria, particularly due to the similarity with known conjugation systems. It is also a contribution to the expansion of the non-pathogenic B. cereus plasmid gene pool.
Collapse
Affiliation(s)
- Ariel F Amadio
- Instituto de Microbiología y Zoología Agrícola (IMyZA), Instituto Nacional de Tecnología Agropecuaria (INTA), Las Cabañas y de Los Reseros, Buenos Aires, Argentina.
| | | | | |
Collapse
|
119
|
Kovács AT, Smits WK, Mirończuk AM, Kuipers OP. Ubiquitous late competence genes in Bacillus species indicate the presence of functional DNA uptake machineries. Environ Microbiol 2009; 11:1911-22. [PMID: 19453701 DOI: 10.1111/j.1462-2920.2009.01937.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Natural competence for genetic transformation, i.e. the ability to take up DNA and stably integrate it in the genome, has so far only been observed in the bacterial kingdom (both in gram-negative and gram-positive species) and may contribute to survival under adverse growth conditions. Bacillus subtilis, the model organism for the Bacillus genus, possesses a well-characterized competence machinery. Phylogenetic analysis of several genome sequences of different Bacillus species reveals the presence of many, but not all genes potentially involved in competence and its regulation. The recent demonstration of functional DNA uptake by B. cereus supports the significance of our genome analyses and shows that the ability for functional DNA uptake might be widespread among Bacilli.
Collapse
Affiliation(s)
- Akos T Kovács
- Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9751 NN Haren, The Netherlands
| | | | | | | |
Collapse
|
120
|
Woyke T, Xie G, Copeland A, González JM, Han C, Kiss H, Saw JH, Senin P, Yang C, Chatterji S, Cheng JF, Eisen JA, Sieracki ME, Stepanauskas R. Assembling the marine metagenome, one cell at a time. PLoS One 2009; 4:e5299. [PMID: 19390573 PMCID: PMC2668756 DOI: 10.1371/journal.pone.0005299] [Citation(s) in RCA: 282] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 03/25/2009] [Indexed: 11/18/2022] Open
Abstract
The difficulty associated with the cultivation of most microorganisms and the complexity of natural microbial assemblages, such as marine plankton or human microbiome, hinder genome reconstruction of representative taxa using cultivation or metagenomic approaches. Here we used an alternative, single cell sequencing approach to obtain high-quality genome assemblies of two uncultured, numerically significant marine microorganisms. We employed fluorescence-activated cell sorting and multiple displacement amplification to obtain hundreds of micrograms of genomic DNA from individual, uncultured cells of two marine flavobacteria from the Gulf of Maine that were phylogenetically distant from existing cultured strains. Shotgun sequencing and genome finishing yielded 1.9 Mbp in 17 contigs and 1.5 Mbp in 21 contigs for the two flavobacteria, with estimated genome recoveries of about 91% and 78%, respectively. Only 0.24% of the assembling sequences were contaminants and were removed from further analysis using rigorous quality control. In contrast to all cultured strains of marine flavobacteria, the two single cell genomes were excellent Global Ocean Sampling (GOS) metagenome fragment recruiters, demonstrating their numerical significance in the ocean. The geographic distribution of GOS recruits along the Northwest Atlantic coast coincided with ocean surface currents. Metabolic reconstruction indicated diverse potential energy sources, including biopolymer degradation, proteorhodopsin photometabolism, and hydrogen oxidation. Compared to cultured relatives, the two uncultured flavobacteria have small genome sizes, few non-coding nucleotides, and few paralogous genes, suggesting adaptations to narrow ecological niches. These features may have contributed to the abundance of the two taxa in specific regions of the ocean, and may have hindered their cultivation. We demonstrate the power of single cell DNA sequencing to generate reference genomes of uncultured taxa from a complex microbial community of marine bacterioplankton. A combination of single cell genomics and metagenomics enabled us to analyze the genome content, metabolic adaptations, and biogeography of these taxa.
Collapse
Affiliation(s)
- Tanja Woyke
- DOE Joint Genome Institute, Walnut Creek, California, United States of America
| | - Gary Xie
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Alex Copeland
- DOE Joint Genome Institute, Walnut Creek, California, United States of America
| | - José M. González
- Department of Microbiology, University of La Laguna, La Laguna, Tenerife, Spain
| | - Cliff Han
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Hajnalka Kiss
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Jimmy H. Saw
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Department of Microbiology, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Pavel Senin
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Chi Yang
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Institute of Bioinformatics, National Yang-Ming University, Taipei, Taiwan
| | - Sourav Chatterji
- Department of Evolution and Ecology, University of California Davis, Davis, United States of America
| | - Jan-Fang Cheng
- DOE Joint Genome Institute, Walnut Creek, California, United States of America
| | - Jonathan A. Eisen
- DOE Joint Genome Institute, Walnut Creek, California, United States of America
- Department of Evolution and Ecology, University of California Davis, Davis, United States of America
| | - Michael E. Sieracki
- Bigelow Laboratory for Ocean Sciences, West Boothbay Harbor, Maine, United States of America
| | - Ramunas Stepanauskas
- Bigelow Laboratory for Ocean Sciences, West Boothbay Harbor, Maine, United States of America
- * E-mail:
| |
Collapse
|
121
|
Bode HB. Entomopathogenic bacteria as a source of secondary metabolites. Curr Opin Chem Biol 2009; 13:224-30. [PMID: 19345136 DOI: 10.1016/j.cbpa.2009.02.037] [Citation(s) in RCA: 223] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 02/14/2009] [Accepted: 02/20/2009] [Indexed: 12/12/2022]
Abstract
Insects are not only the most diverse group of animals on our planet, but also a huge reservoir for unusual microorganism which are a rich source of pharmaceutically interesting natural products. This review focuses on recent advances in the understanding of secondary metabolism of Bacillus thuringiensis, Pseudomonas entomophila, and Xenorhabdus and Photorhabdus bacteria all of which are entomopathogenic. Genome-sequencing projects revealed the capacity of these bacteria to produce several different secondary metabolites including peptides, polyketides, and hybrids of both. This richness for interesting compounds is reflected by an increasing number of compounds that have been identified from these bacteria as discussed in this review.
Collapse
Affiliation(s)
- Helge B Bode
- Molekulare Biotechnologie, Institut für Molekulare Biowissenschaften, Goethe Universität Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany.
| |
Collapse
|
122
|
Mukhopadhyay S, Akmal A, Stewart AC, Hsia RC, Read TD. Identification of Bacillus anthracis spore component antigens conserved across diverse Bacillus cereus sensu lato strains. Mol Cell Proteomics 2009; 8:1174-91. [PMID: 19208616 DOI: 10.1074/mcp.m800403-mcp200] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We sought to identify proteins in the Bacillus anthracis spore, conserved in other strains of the closely related Bacillus cereus group, that elicit an immune response in mammals. Two high throughput approaches were used. First, an in silico screening identified 200 conserved putative B. anthracis spore components. A total of 192 of those candidate genes were expressed and purified in vitro, 75 of which reacted with the rabbit immune sera generated against B. anthracis spores. The second approach was to screen for cross-reacting antigens in the spore proteome of 10 diverse B. cereus group strains. Two-dimensional electrophoresis resolved more than 200 protein spots in each spore preparation. About 72% of the protein spots were found in all the strains. 18 of these conserved proteins reacted against anti-B. anthracis spore rabbit immune sera, two of which (alanine racemase, Dal-1 and the methionine transporter, MetN) overlapped the set of proteins identified using the in silico screen. A conserved repeat domain protein (Crd) was the most immunoreactive protein found broadly across B. cereus sensu lato strains. We have established an approach for finding conserved targets across a species using population genomics and proteomics. The results of these screens suggest the possibility of a multiepitope antigen for broad host range diagnostics or therapeutics against Bacillus spore infection.
Collapse
Affiliation(s)
- Sanghamitra Mukhopadhyay
- Biological Defense Research Directorate, Naval Medical Research Center, Rockville, Maryland 20852, USA
| | | | | | | | | |
Collapse
|
123
|
Yu GX. Pathogenic Bacillus anthracis in the progressive gene losses and gains in adaptive evolution. BMC Bioinformatics 2009; 10 Suppl 1:S3. [PMID: 19208130 PMCID: PMC2648741 DOI: 10.1186/1471-2105-10-s1-s3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background Sequence mutations represent a driving force of adaptive evolution in bacterial pathogens. It is especially evident in reductive genome evolution where bacteria underwent lifestyles shifting from a free-living to a strictly intracellular or host-depending life. It resulted in loss-of-function mutations and/or the acquisition of virulence gene clusters. Bacillus anthracis shares a common soil bacterial ancestor with its closely related bacillus species but is the only obligate, causative agent of inhalation anthrax within the genus Bacillus. The anthrax-causing Bacillus anthracis experienced the similar lifestyle changes. We thus hypothesized that the bacterial pathogen would follow a compatible evolution path. Results In this study, a cluster-based evolution scheme was devised to analyze genes that are gained by or lost from B. anthracis. The study detected gene losses/gains at two separate evolutionary stages. The stage I is when B. anthracis and its sister species within the Bacillus cereus group diverged from other species in genus Bacillus. The stage II is when B. anthracis differentiated from its two closest relatives: B. cereus and B. thuringiensis. Many genes gained at these stages are homologues of known pathogenic factors such those for internalin, B. anthracis-specific toxins and large groups of surface proteins and lipoproteins. Conclusion The analysis presented here allowed us to portray a progressive evolutionary process during the lifestyle shift of B. anthracis, thus providing new insights into how B. anthracis had evolved and bore a promise of finding drug and vaccine targets for this strategically important pathogen.
Collapse
Affiliation(s)
- G X Yu
- Dept, of Biological Science and Dept, of Computer Science, Boise State University, Boise, Idaho 83725, USA.
| |
Collapse
|
124
|
Complete genome sequence of Macrococcus caseolyticus strain JCSCS5402, [corrected] reflecting the ancestral genome of the human-pathogenic staphylococci. J Bacteriol 2008; 191:1180-90. [PMID: 19074389 DOI: 10.1128/jb.01058-08] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
We isolated the methicillin-resistant Macrococcus caseolyticus strain JCSC5402 from animal meat in a supermarket and determined its whole-genome nucleotide sequence. This is the first report on the genome analysis of a macrococcal species that is evolutionarily closely related to the human pathogens Staphylococcus aureus and Bacillus anthracis. The essential biological pathways of M. caseolyticus are similar to those of staphylococci. However, the species has a small chromosome (2.1 MB) and lacks many sugar and amino acid metabolism pathways and a plethora of virulence genes that are present in S. aureus. On the other hand, M. caseolyticus possesses a series of oxidative phosphorylation machineries that are closely related to those in the family Bacillaceae. We also discovered a probable primordial form of a Macrococcus methicillin resistance gene complex, mecIRAm, on one of the eight plasmids harbored by the M. caseolyticus strain. This is the first finding of a plasmid-encoding methicillin resistance gene. Macrococcus is considered to reflect the genome of ancestral bacteria before the speciation of staphylococcal species and may be closely associated with the origin of the methicillin resistance gene complex of the notorious human pathogen methicillin-resistant S. aureus.
Collapse
|
125
|
Stabell FB, Egge-Jacobsen W, Risøen PA, Kolstø AB, Økstad OA. ORF 2 from the Bacillus cereus linear plasmid pBClin15 encodes a DNA binding protein. Lett Appl Microbiol 2008; 48:51-7. [PMID: 19018965 DOI: 10.1111/j.1472-765x.2008.02483.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AIMS To isolate and identify DNA-binding protein(s) with affinity for the mobile chromosomal repeat element bcr1 in Bacillus cereus group bacteria. METHODS AND RESULTS A biotinylated bcr1 element was immobilized to streptavidin-coated magnetic beads and used to pull out a 20 kDa DNA-binding protein from a whole cell protein extract of B. cereus ATCC 14579. The protein was identified as the product of ORF 2 encoded by the bacteriophage-related autonomously replicating linear genetic element pBClin15 carried by the strain. DNA binding was not bcr1-specific. By Northern blotting ORF 2 was co-transcribed with ORF 1, and also in certain instances with ORF 3 by transcriptional readthrough of the terminator located between ORF 2 and ORF 3. CONCLUSIONS ORF 2 from pBClin15 encodes a DNA-binding protein. ORF 2 is co-transcribed with its upstream gene ORF 1, and in a subset of the transcripts also with the downstream gene ORF 3 through alternative transcription termination. SIGNIFICANCE AND IMPACT OF THE STUDY The B. cereus group contains bacterial species of medical and economic importance. Bacteriophages or phage-encoded proteins from these bacteria have been suggested as potential therapeutic agents. Understanding the biology of bacteriophage-related genetic elements through functional characterization of their genes is of high relevance.
Collapse
Affiliation(s)
- F B Stabell
- Laboratory for Microbial Dynamics, School of Pharmacy, University of Oslo, Blindern, Oslo, Norway
| | | | | | | | | |
Collapse
|
126
|
Bacillus thuringiensis improved isolation methodology from soil samples. J Microbiol Methods 2008; 75:357-8. [DOI: 10.1016/j.mimet.2008.06.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 06/16/2008] [Accepted: 06/16/2008] [Indexed: 11/23/2022]
|
127
|
Van der Auwera G, Mahillon J. Transcriptional analysis of the conjugative plasmid pAW63 from Bacillus thuringiensis. Plasmid 2008; 60:190-9. [PMID: 18761035 DOI: 10.1016/j.plasmid.2008.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2008] [Revised: 07/24/2008] [Accepted: 07/30/2008] [Indexed: 10/21/2022]
Abstract
The broad-host range plasmid pAW63 is a model for the study of molecular mechanisms associated with conjugation in the Gram-positive Bacillus cereus group. Its main features are a conjugative apparatus that includes Type IV Secretion System-like components and two Group II introns, B.th.I1 and B.th.I2, located within conjugation genes, as well as a putative regulatory control circuit. Furthermore, pAW63 shares a common backbone with pXO2, the second virulence plasmid of Bacillus anthracis, and with pBT9727 from the pathogenic Bacillus thuringiensis subsp. konkukian strain 97-27. In this study, the transcriptome of pAW63 was investigated using a custom DNA microarray, providing insight into the genetic clockwork of this conjugative plasmid. Gene expression profiles suggested that in the absence of mating partners, a partial 'standby mode' was in effect, with little production of many of the structural elements thought to be involved in mating pair formation and DNA transfer, while components of a proposed quorum sensing mechanism were actively expressed. Intron splicing was demonstrated for the B.th.I2 intron.
Collapse
Affiliation(s)
- Géraldine Van der Auwera
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, Croix du Sud, 2/12, B-1348 Louvain-la-Neuve, Belgium.
| | | |
Collapse
|
128
|
Stenfors Arnesen LP, Fagerlund A, Granum PE. From soil to gut:Bacillus cereusand its food poisoning toxins. FEMS Microbiol Rev 2008; 32:579-606. [DOI: 10.1111/j.1574-6976.2008.00112.x] [Citation(s) in RCA: 676] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
129
|
Affiliation(s)
- Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|
130
|
Taylor MP, Esteban CD, Leak DJ. Development of a versatile shuttle vector for gene expression in Geobacillus spp. Plasmid 2008; 60:45-52. [PMID: 18501964 DOI: 10.1016/j.plasmid.2008.04.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 04/02/2008] [Accepted: 04/07/2008] [Indexed: 11/25/2022]
Abstract
An improved, versatile shuttle vector has been created for the metabolic engineering of Geobacillus spp. As kanamycin is the most thermo-tolerant of commonly used antibiotics, the gene encoding a thermostable kanamycin nucleotidyltransferase, together with the origin of replication from the G. stearothermophilus plasmid pBST1 were cloned into the Escherichia coli cloning vector pUC18. The resulting vector, named pUCG18, replicated in both organisms and could be transformed with an efficiency of 1 x 10(4) transformants per microg of DNA in G. thermoglucosidasius and was stable up to 68 degrees C with antibiotic selection. It was used to demonstrate expression of the pyruvate decarboxylase (pdc) gene from Zymomonas palmae in G. thermoglucosidasius at 45 degrees C. Sequence analysis of the pBST1 derived origin of replication revealed homology with a family of theta replicons that have previously only been found in strains of Bacillus megaterium.
Collapse
Affiliation(s)
- Mark P Taylor
- Division of Biology, Department of Life Sciences, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, UK
| | | | | |
Collapse
|
131
|
Bouillaut L, Perchat S, Arold S, Zorrilla S, Slamti L, Henry C, Gohar M, Declerck N, Lereclus D. Molecular basis for group-specific activation of the virulence regulator PlcR by PapR heptapeptides. Nucleic Acids Res 2008; 36:3791-801. [PMID: 18492723 PMCID: PMC2441798 DOI: 10.1093/nar/gkn149] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The transcriptional regulator PlcR and its cognate cell–cell signalling peptide PapR form a quorum-sensing system that controls the expression of extra-cellular virulence factors in various species of the Bacillus cereus group. PlcR and PapR alleles are clustered into four groups defining four pherotypes. However, the molecular basis for group specificity remains elusive, largely because the biologically relevant PapR form is not known. Here, we show that the in vivo active form of PapR is the C-terminal heptapeptide of the precursor, and not the pentapeptide, as previously suggested. Combining genetic complementation, anisotropy assays and structural analysis we provide a detailed functional and structural explanation for the group specificity of the PlcR–PapR quorum-sensing system. We further show that the C-terminal helix of the PlcR regulatory domain, specifically the 278 residue, in conjunction with the N-terminal residues of the PapR heptapeptide determines this system specificity. Variability in the specificity-encoding regions of plcR and papR genes suggests that selection and evolution of quorum-sensing systems play a major role in adaptation and ecology of Bacilli.
Collapse
|
132
|
Koppisch AT, Dhungana S, Hill KK, Boukhalfa H, Heine HS, Colip LA, Romero RB, Shou Y, Ticknor LO, Marrone BL, Hersman LE, Iyer S, Ruggiero CE. Petrobactin is produced by both pathogenic and non-pathogenic isolates of the Bacillus cereus group of bacteria. Biometals 2008; 21:581-9. [PMID: 18459058 DOI: 10.1007/s10534-008-9144-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Accepted: 04/23/2008] [Indexed: 11/28/2022]
Abstract
Petrobactin is the primary siderophore synthesized by Bacillus anthracis str Sterne and is required for virulence of this organism in a mouse model. The siderophore's biosynthetic machinery was recently defined and gene homologues of this operon exist in several other Bacillus strains known to be mammalian pathogens, but are absent in several known to be harmless such as B. subtilis and B. lichenformis. Thus, a common hypothesis regarding siderophore production in Bacillus species is that petrobactin production is exclusive to pathogenic isolates. In order to test this hypothesis, siderophores produced by 106 strains of an in-house library of the Bacillus cereus sensu lato group were isolated and identified using a MALDI-TOF-MS assay. Strains were selected from a previously defined phylogenetic tree of this group in order to include both known pathogens and innocuous strains. Petrobactin is produced by pathogenic strains and innocuous isolates alike, and thus is not itself indicative of virulence.
Collapse
Affiliation(s)
- Andrew T Koppisch
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Kim W, Kim JY, Cho SL, Nam SW, Shin JW, Kim YS, Shin HS. Glycosyltransferase: a specific marker for the discrimination of Bacillus anthracis from the Bacillus cereus group. J Med Microbiol 2008; 57:279-286. [PMID: 18287289 DOI: 10.1099/jmm.0.47642-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacillus anthracis, the aetiological agent of anthrax, has been taxonomically classified with the Bacillus cereus group, which comprises B. cereus, Bacillus thuringiensis, Bacillus mycoides, Bacillus pseudomycoides and Bacillus weihenstephanensis. Although the pathogenesis and ecological manifestations may be different, B. anthracis shares a high degree of DNA sequence similarity with its group member species. As a result, the discrimination of B. anthracis from its close relatives in the B. cereus group is still quite difficult. Suppression subtractive hybridization (SSH) was performed to search for genomic differences between a B. anthracis Korean isolate CR and the most closely related B. cereus type strain KCTC 3624(T). Two-hundred and five B. anthracis CR clones obtained by SSH underwent Southern hybridization, and comparative sequences were analysed using the blast program from the National Center for Biotechnology Information (NCBI). Subsequently, primer sets based on the glycosyltransferase group 1 family protein gene specific to B. anthracis were designed from the sequences of subtracted clones, and their specificities were evaluated using eight B. anthracis, 33 B. cereus, 10 B. thuringiensis, six B. mycoides, one B. pseudomycoides, one B. weihenstephanensis and 19 strains from 11 other representative Bacillus species. PCR primers specific for the glycosyltransferase group 1 family protein gene did not amplify the desired products from any of the Bacillus strains under examination, except B. anthracis alone. These findings may be useful in the future development of efficient diagnostic tools for the rapid identification of B. anthracis from other members of the B. cereus group.
Collapse
Affiliation(s)
- Wonyong Kim
- Research Institute for Translational System Biomics, Chung-Ang University College of Medicine, Seoul, Republic of Korea.,Department of Microbiology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Ji-Yeon Kim
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Sung-Lim Cho
- Research Institute for Translational System Biomics, Chung-Ang University College of Medicine, Seoul, Republic of Korea.,Department of Microbiology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Sun-Woo Nam
- Korea Health Industry Development Institute, Seoul, Republic of Korea
| | - Jong-Wook Shin
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Yang-Soo Kim
- Department of Radiology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Hyoung-Shik Shin
- Department of Periodontology, Wonkwang University College of Dentistry, Iksan, Republic of Korea
| |
Collapse
|
134
|
Budzik JM, Marraffini LA, Schneewind O. Assembly of pili on the surface of Bacillus cereus vegetative cells. Mol Microbiol 2008; 66:495-510. [PMID: 17897374 DOI: 10.1111/j.1365-2958.2007.05939.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Vegetative forms of Bacillus cereus are reported to form pili, thin protein filaments that protrude up to 1 mum from the bacterial surface. Pili are assembled from two precursor proteins, BcpA and BcpB, in a manner requiring a pilus-associated sortase enzyme (SrtD). Pili are also formed on the surface of Bacillus anthracis expressing bcpA-srtD-bcpB. BcpA is distributed throughout the entire pilus, whereas BcpB appears positioned at its tip. In agreement with the hypothesis for pilus assembly in Gram-positive bacteria, BcpA encompasses the YPK pilin motif and the LPXTG sorting signal, each of which is absolutely required for the incorporation of BcpA and BcpB into pili. In contrast to BcpB, which relies on the presence of BcpA for incorporation into pili, BcpA fibre assembly occurs even in the absence of BcpB. B. anthracis sortase A (srtA), but not sortase B (srtB) or C (srtC), is required for proper anchoring of pili to the bacterial envelope, suggesting that BcpA/BcpB pili are linked to peptidoglycan cross-bridges.
Collapse
Affiliation(s)
- Jonathan M Budzik
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA
| | | | | |
Collapse
|
135
|
Van der Auwera GA, Timmery S, Mahillon J. Self-transfer and mobilisation capabilities of the pXO2-like plasmid pBT9727 from Bacillus thuringiensis subsp. konkukian 97-27. Plasmid 2008; 59:134-8. [PMID: 18272219 DOI: 10.1016/j.plasmid.2007.11.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 10/15/2007] [Accepted: 11/30/2007] [Indexed: 11/30/2022]
Abstract
Recent characterisations of plasmids related to the anthrax virulence plasmids pXO1 and pXO2 in clinical isolates of Bacillus cereus and Bacillus thuringiensis have contributed to the emerging picture of a virulence-associated plasmid pool in the B. cereus sensu lato group. The family of pXO2-like plasmids includes the conjugative plasmid pAW63 from the biopesticide strain B. thuringiensis subsp. kurstaki HD73 and the heretofore cryptic plasmid pBT9727 from the clinical strain B. thuringiensis subsp. konkukian 97-27. Comparative sequence analysis of these three plasmids suggested that they were derived from an ancestral conjugative plasmid, with pAW63 retaining its self-transfer capabilities, and pXO2 having lost them through genetic drift. Such properties had not been investigated in pBT9727, but sequence homologies led us to predict that it may possess self-transfer capabilities. Here, we report that pBT9727 is indeed conjugative, and is able to promote its own transfer as well as that of small mobilisable plasmids.
Collapse
Affiliation(s)
- Géraldine A Van der Auwera
- Laboratory of Food and Environmental Microbiology, Université Catholique de Louvain, Croix du Sud, 2/12, B-1348 Louvain-la-Neuve, Belgium
| | | | | |
Collapse
|
136
|
Abstract
The exosporium of Bacillus anthracis spores consists of a basal layer and an external hair-like nap. The nap is composed primarily of the glycoprotein BclA, which contains a collagen-like region with multiple copies of a pentasaccharide side chain. This oligosaccharide possesses an unusual terminal sugar called anthrose, followed by three rhamnose residues and a protein-bound N-acetylgalactosamine. Based on the structure of anthrose, we proposed an enzymatic pathway for its biosynthesis. Examination of the B. anthracis genome revealed six contiguous genes that could encode the predicted anthrose biosynthetic enzymes. These genes are transcribed in the same direction and appear to form two operons. We introduced mutations into the B. anthracis chromosome that either delete the promoter of the putative upstream, four-gene operon or delete selected genes in both putative operons. Spores produced by strains carrying mutations in the upstream operon completely lacked or contained much less anthrose, indicating that this operon is required for anthrose biosynthesis. In contrast, inactivation of the downstream, two-gene operon did not alter anthrose content. Additional experiments confirmed the organization of the anthrose operon and indicated that it is transcribed from a sigma(E)-specific promoter. Finally, we demonstrated that anthrose biosynthesis is not restricted to B. anthracis as previously suggested.
Collapse
|
137
|
Bavykin SG, Mikhailovich VM, Zakharyev VM, Lysov YP, Kelly JJ, Alferov OS, Gavin IM, Kukhtin AV, Jackman J, Stahl DA, Chandler D, Mirzabekov AD. Discrimination of Bacillus anthracis and closely related microorganisms by analysis of 16S and 23S rRNA with oligonucleotide microarray. Chem Biol Interact 2008; 171:212-35. [PMID: 17950718 PMCID: PMC3188417 DOI: 10.1016/j.cbi.2007.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 08/23/2007] [Accepted: 09/03/2007] [Indexed: 10/22/2022]
Abstract
Analysis of 16S rRNA sequences is a commonly used method for the identification and discrimination of microorganisms. However, the high similarity of 16S and 23S rRNA sequences of Bacillus cereus group organisms (up to 99-100%) and repeatedly failed attempts to develop molecular typing systems that would use DNA sequences to discriminate between species within this group have resulted in several suggestions to consider B. cereus and B. thuringiensis, or these two species together with B. anthracis, as one species. Recently, we divided the B. cereus group into seven subgroups, Anthracis, Cereus A and B, Thuringiensis A and B, and Mycoides A and B, based on 16S rRNA, 23S rRNA and gyrB gene sequences and identified subgroup-specific makers in each of these three genes. Here we for the first time demonstrated discrimination of these seven subgroups, including subgroup Anthracis, with a 3D gel element microarray of oligonucleotide probes targeting 16S and 23S rRNA markers. This is the first microarray enabled identification of B. anthracis and discrimination of these seven subgroups in pure cell cultures and in environmental samples using rRNA sequences. The microarray bearing perfect match/mismatch (p/mm) probe pairs was specific enough to discriminate single nucleotide polymorphisms (SNPs) and was able to identify targeted organisms in 5min. We also demonstrated the ability of the microarray to determine subgroup affiliations for B. cereus group isolates without rRNA sequencing. Correlation of these seven subgroups with groupings based on multilocus sequence typing (MLST), fluorescent amplified fragment length polymorphism analysis (AFLP) and multilocus enzyme electrophoresis (MME) analysis of a wide spectrum of different genes, and the demonstration of subgroup-specific differences in toxin profiles, psychrotolerance, and the ability to harbor some plasmids, suggest that these seven subgroups are not based solely on neutral genomic polymorphisms, but instead reflect differences in both the genotypes and phenotypes of the B. cereus group organisms.
Collapse
MESH Headings
- Bacillus anthracis/genetics
- Bacillus anthracis/isolation & purification
- Base Sequence
- Molecular Sequence Data
- Oligonucleotide Array Sequence Analysis
- Polymorphism, Single Nucleotide
- RNA, Ribosomal, 16S/analysis
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 23S/analysis
- RNA, Ribosomal, 23S/genetics
- Sequence Homology, Nucleic Acid
- Species Specificity
Collapse
Affiliation(s)
- Sergei G Bavykin
- Center for Environmental and Security Science and Technology, Argonne National Laboratory, Argonne, IL 60439, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Mols M, de Been M, Zwietering MH, Moezelaar R, Abee T. Metabolic capacity of Bacillus cereus strains ATCC 14579 and ATCC 10987 interlinked with comparative genomics. Environ Microbiol 2008; 9:2933-44. [PMID: 17991024 DOI: 10.1111/j.1462-2920.2007.01404.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bacillus cereus is an important food-borne pathogen and spoilage organism. In this study, numerous phenotypes and the genomes of B. cereus strains ATCC 14579 and ATCC 10987 were analysed to compare their metabolic capacity and stress resistance potential. The growth performance of the two strains was assessed for nearly 2000 phenotypes, including use of nutrient sources, performance in acid and basic environments, osmo-tolerance and antibiotic resistance. Several food-relevant phenotypic differences were found between ATCC 14579 and ATCC 10987, such as differences in utilization of carbohydrates, peptides, amino acids and ammonia. Subsequently, the genomes of both strains were analysed with INPARANOID to search for strain-specific open reading frames (ORFs). B. cereus ATCC 14579 and ATCC 10987 were found to harbour 983 and 1360 strain-specific ORFs respectively. The strain-specific phenotypic features were interlinked with corresponding genetic features and for several phenotypic differences a related strain-specific genetic feature could be identified. In conclusion, the combination of phenotypic data with strain-specific genomic differences has led to detailed insight into the performance of the two B. cereus strains, and may supply indicators for the performance of these bacteria in different environments and ecological niches.
Collapse
Affiliation(s)
- Maarten Mols
- Top Institute Food and Nutrition, Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
139
|
Klevan A, Tourasse NJ, Stabell FB, Kolstø AB, Økstad OA. Exploring the evolution of the Bacillus cereus group repeat element bcr1 by comparative genome analysis of closely related strains. MICROBIOLOGY-SGM 2008; 153:3894-3908. [PMID: 17975097 DOI: 10.1099/mic.0.2007/005504-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
bcr1 is a chromosomal approximately 155 bp repeated element found uniquely and ubiquitously in the Bacillus cereus group of Gram-positive bacteria; it exhibits several features characteristic of mobile elements, including a variable distribution pattern between strains. Here, highly similar bcr1 elements in non-conserved genomic loci are identified in a set of closely related B. cereus and Bacillus thuringiensis strains near the Bacillus anthracis phylogenetic cluster. It is also shown that bcr1 may be present on small RNA transcripts in the 100-400 bp size range. In silico folding of bcr1 at the RNA level indicated that transcripts may form a double-hairpin-like structure predicted to have high structural stability. A functional role of bcr1 at the RNA level is supported by multiple cases of G-U base-pairing, and compensatory mutations maintaining structural stability of the RNA fold. In silico folding at the DNA level produced similar predicted structures, with the potential to form a cruciform structure at open DNA complexes. The predicted structural stability was greater for bcr1 elements showing high sequence identities to bcr1 elements in non-conserved chromosomal loci in other strains, relative to other bcr1 copies. bcr1 mobility could thus be dependent on the formation of a stable DNA or RNA intermediate. Furthermore, bcr1 elements potentially encoding structurally stable and less stable transcripts were phylogenetically intermixed, indicating that loss of bcr1 mobility may have occurred multiple times during evolution. Repeated elements with similar features in other bacteria have been shown to provide functions such as mRNA stabilization, transcription termination and/or promoter function. Similarly, bcr1 may constitute a mobile element which occasionally gains a function when it enters an appropriate chromosomal locus.
Collapse
Affiliation(s)
- Are Klevan
- Department of Pharmaceutical Biosciences (Microbiology), University of Oslo, PO Box 1068 Blindern, 0316 Oslo, Norway
| | - Nicolas J Tourasse
- Department of Pharmaceutical Biosciences (Microbiology), University of Oslo, PO Box 1068 Blindern, 0316 Oslo, Norway
| | - Fredrik B Stabell
- Department of Pharmaceutical Biosciences (Microbiology), University of Oslo, PO Box 1068 Blindern, 0316 Oslo, Norway
| | - Anne-Brit Kolstø
- Department of Pharmaceutical Biosciences (Microbiology), University of Oslo, PO Box 1068 Blindern, 0316 Oslo, Norway
| | - Ole Andreas Økstad
- Department of Pharmaceutical Biosciences (Microbiology), University of Oslo, PO Box 1068 Blindern, 0316 Oslo, Norway
| |
Collapse
|
140
|
Multiple-locus sequence typing and analysis of toxin genes in Bacillus cereus food-borne isolates. Appl Environ Microbiol 2007; 74:850-60. [PMID: 18083872 DOI: 10.1128/aem.01495-07] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the present study we characterized 47 food-borne isolates of Bacillus cereus using multilocus sequence typing (MLST). Newly determined sequences were combined with sequences available in public data banks in order to produce the largest data set possible. Phylogenetic analysis was performed on a total of 296 strains for which MLST sequence information is available, and three main lineages--I, II, and III--within the B. cereus complex were identified. With few exceptions, all food-borne isolates were in group I. The occurrence of horizontal gene transfer (HGT) among various strains was analyzed by several statistical methods, providing evidence of widespread lateral gene transfer within B. cereus. We also investigated the occurrence of toxin-encoding genes, focusing on their evolutionary history within B. cereus. Several patterns were identified, indicating a pivotal role of HGT in the evolution of toxin-encoding genes. Our results indicate that HGT is an important element in shaping the population structure of the B. cereus complex. The results presented here also provide strong evidence of reticulate evolution within the B. cereus complex.
Collapse
|
141
|
Abstract
Fast-sequencing throughput methods have increased the number of completely sequenced bacterial genomes to about 400 by December 2006, with the number increasing rapidly. These include several strains. In silico methods of comparative genomics are of use in categorizing and phylogenetically sorting these bacteria. Various word-based tools have been used for quantifying the similarities and differences between entire genomes. The simple di-nucleotide frequency comparison, codon specificity and k-mer repeat detection are among some of the well-known methods. In this paper, we show that the Mutual Information function, which is a measure of correlations and a concept from Information Theory, is very effective in determining the similarities and differences among genome sequences of various strains of bacteria such as the plant pathogen Xylella fastidiosa, marine Cyanobacteria Prochlorococcus marinus or animal and human pathogens such as species of Ehrlichia and Legionella. The short-range three-base periodicity, small sequence repeats and long-range correlations taken together constitute a genome signature that can be used as a technique for identifying new bacterial strains with the help of strains already catalogued in the database. There have been several applications of using the Mutual Information function as a measure of correlations in genomics but this is the first whole genome analysis done to detect strain similarities and differences.
Collapse
Affiliation(s)
- D Swati
- Department of Physics, MMV, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
142
|
Olsen JS, Skogan G, Fykse EM, Rawlinson EL, Tomaso H, Granum PE, Blatny JM. Genetic distribution of 295 Bacillus cereus group members based on adk-screening in combination with MLST (Multilocus Sequence Typing) used for validating a primer targeting a chromosomal locus in B. anthracis. J Microbiol Methods 2007; 71:265-74. [PMID: 17997177 DOI: 10.1016/j.mimet.2007.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Revised: 09/21/2007] [Accepted: 10/01/2007] [Indexed: 10/22/2022]
Abstract
The genetic distribution of 295 Bacillus cereus group members has been investigated by using a modified Multilocus Sequence Typing method (MLST). By comparing the nucleic acid sequence of the adk gene fragment, isolates of B. cereus group members most related to B. anthracis may be easily identified. The genetic distribution, with focus on the B. anthracis close neighbours, was used to evaluate a new primer set for specific identification of B. anthracis. This primer set, BA5510-1/2, targeted the putative B. anthracis specific gene BA5510. Real-time PCR using BA5510-1/2 amplified the target fragment from all B. anthracis strains tested and only two (of 289) non-B. anthracis strains analysed. This is one of the most thoroughly validated chromosomal B. anthracis markers for real-time PCR identification, in which the screened collection contained several very closely related B. anthracis strains.
Collapse
Affiliation(s)
- Jaran S Olsen
- Forsvarets forskningsinstitutt FFI, Norwegian Defence Research Establishment, P. O. Box 25, N-2027 Kjeller, Norway.
| | | | | | | | | | | | | |
Collapse
|
143
|
Swe PM, Heng NCK, Ting YT, Baird HJ, Carne A, Tauch A, Tagg JR, Jack RW. ef1097 and ypkK encode enterococcin V583 and corynicin JK, members of a new family of antimicrobial proteins (bacteriocins) with modular structure from Gram-positive bacteria. Microbiology (Reading) 2007; 153:3218-3227. [PMID: 17906121 DOI: 10.1099/mic.0.2007/010777-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Unlike the colicins, microcins and related peptide antibiotics, little is known about antibiotic proteins (M(r)>10,000) from Gram-positive bacteria, since only few examples have been described to date. In this study we used heterologous expression of recombinant proteins to access the 17 kDa antibiotic protein SA-M57 from Streptococcus pyogenes, along with two proteins of unknown function identified in publicly available databases: EF1097 from Enterococcus faecalis and YpkK from Corynebacterium jeikeium. Here we show that all three are antibiotic proteins with different spectra of antimicrobial activity that kill sensitive bacteria at nanomolar concentrations. In silico structure predictions indicate that although the three proteins share little sequence similarity, they may be composed of conserved secondary structural elements: a relatively unstructured, acidic N-terminal portion and a basic C-terminal portion characterized by two helical elements separated by a loop structure and stabilized by an essential disulphide. Expression of individual segments as well as protein chimaeras revealed that, at least in the case of YpkK, the C-terminal portion is responsible for the killing action of the protein, whereas the role of the N-terminal portion remains unclear. Both scnM57 and ef1097 appear to be widely distributed in Strep. pyogenes and Ent. faecalis (respectively), whereas ypkK is found only rarely amongst clinical isolates of C. jeikeium. Finally, we determined that the proteins kill sensitive bacteria without lysis, a feature that distinguishes them from known murolytic proteins.
Collapse
Affiliation(s)
- Pearl M Swe
- Department of Microbiology and Immunology, Otago School of Medical Sciences, The University of Otago, PO Box 56, Dunedin, New Zealand
| | - Nicholas C K Heng
- Department of Microbiology and Immunology, Otago School of Medical Sciences, The University of Otago, PO Box 56, Dunedin, New Zealand
| | - Yi-Tian Ting
- Department of Microbiology and Immunology, Otago School of Medical Sciences, The University of Otago, PO Box 56, Dunedin, New Zealand
| | - Hayley J Baird
- Department of Microbiology and Immunology, Otago School of Medical Sciences, The University of Otago, PO Box 56, Dunedin, New Zealand
| | - Alan Carne
- Department of Biochemistry, Otago School of Medical Sciences, The University of Otago, PO Box 56, Dunedin, New Zealand
| | - Andreas Tauch
- Institut für Genomforschung und Systembiologie, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - John R Tagg
- Department of Microbiology and Immunology, Otago School of Medical Sciences, The University of Otago, PO Box 56, Dunedin, New Zealand
| | - Ralph W Jack
- Department of Microbiology and Immunology, Otago School of Medical Sciences, The University of Otago, PO Box 56, Dunedin, New Zealand
| |
Collapse
|
144
|
Cherif A, Ettoumi B, Raddadi N, Daffonchio D, Boudabous A. Genomic diversity and relationship of Bacillus thuringiensis and Bacillus cereus by multi-REP-PCR fingerprinting. Can J Microbiol 2007; 53:343-50. [PMID: 17538643 DOI: 10.1139/w06-129] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The genomic diversity and relationship among 56 Bacillus thuringiensis and Bacillus cereus type strains were investigated by multi-REP-PCR fingerprinting consisting of three PCR reactions targeting the enterobacterial ERIC1 and ERIC2 and the streptococcal BOXA1R consensus sequences. A total of 113 polymorphic bands were generated in the REP-PCR profiles that allowed tracing of a single dendrogram with three major groups. Bacillus cereus strains clustered together in the A and B groups. Most of the B. thuringiensis strains clustered in group C, which included groups of serovars with a within-group similarity higher than 40% as follows: darmstadiensis, israelensis, and morrisoni; aizawai, kenyae, pakistani, and thompsoni; canadensis, entomocidus, galleriae, kurstaki, and tolworthi; alesti, dendrolimus, and kurstaki; and finitimus, sotto, and thuringiensis. Multi-REP-PCR fingerprinting clustered B. thuringiensis serovars in agreement with previously developed multilocus sequence typing schemes, indicating that it represents a rapid shortcut for addressing the genetic relationship of unknown strains with the major known serovars.
Collapse
Affiliation(s)
- Ameur Cherif
- Laboratoire miroorganismes et biomolécules actives, Faculté des sciences de Tunis, Campus Universitaire, 2092 Tunis, Tunisia.
| | | | | | | | | |
Collapse
|
145
|
Tinsley E, Khan SA. A Bacillus anthracis-based in vitro system supports replication of plasmid pXO2 as well as rolling-circle-replicating plasmids. Appl Environ Microbiol 2007; 73:5005-10. [PMID: 17575005 PMCID: PMC1951006 DOI: 10.1128/aem.00240-07] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Capsule-encoding virulence plasmid pXO2 of Bacillus anthracis is predicted to replicate by a unidirectional theta-type mechanism. To gain a better understanding of the mechanism of replication of pXO2 and other plasmids in B. anthracis and related organisms, we have developed a cell-free system based on B. anthracis that can faithfully replicate plasmid DNA in vitro. The newly developed system was shown to support the in vitro replication of plasmid pT181, which replicates by the rolling-circle mechanism. We also demonstrate that this system supports the replication of plasmid pXO2 of B. anthracis. Replication of pXO2 required directional transcription through the plasmid origin of replication, and increased transcription through the origin resulted in an increase in plasmid replication.
Collapse
Affiliation(s)
- Eowyn Tinsley
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, East 1240 Biomedical Science Tower, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
146
|
Arnold DL, Jackson RW, Waterfield NR, Mansfield JW. Evolution of microbial virulence: the benefits of stress. Trends Genet 2007; 23:293-300. [PMID: 17434232 DOI: 10.1016/j.tig.2007.03.017] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Accepted: 03/23/2007] [Indexed: 12/13/2022]
Abstract
Although genome sequencing of microbial pathogens has shed light on the evolution of virulence, the drivers of the gain and loss of genes and of pathogenicity islands (gene clusters), which contribute to the emergence of new disease outbreaks, are unclear. Recent experiments with the bean pathogen Pseudomonas syringae pv. phaseolicola illustrate how exposure to resistance mechanisms acts as the driving force for genome reorganization. Here we argue that the antimicrobial conditions generated by host defences can accelerate the generation of genome rearrangements that provide selective advantages to the invading microbe. Similar exposure to environmental stress outside the host could also drive the horizontal gene transfer that has led to the evolution of pathogenicity towards both animals and plants.
Collapse
Affiliation(s)
- Dawn L Arnold
- Centre for Research in Plant Science, Faculty of Applied Sciences, University of the West of England, Coldharbour Lane, Bristol, UK
| | | | | | | |
Collapse
|
147
|
Zhong W, Shou Y, Yoshida TM, Marrone BL. Differentiation of Bacillus anthracis, B. cereus, and B. thuringiensis by using pulsed-field gel electrophoresis. Appl Environ Microbiol 2007; 73:3446-9. [PMID: 17400781 PMCID: PMC1907107 DOI: 10.1128/aem.02478-06] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A pulsed-field gel electrophoresis (PFGE) method was developed for discriminating Bacillus anthracis from B. cereus and B. thuringiensis. A worldwide collection of 25 B. anthracis isolates showed high-profile homology, and these isolates were unambiguously distinguished from B. cereus and B. thuringiensis isolates by cluster analysis of the whole-genome macrorestriction enzyme digestion patterns generated by NotI.
Collapse
Affiliation(s)
- Wenwan Zhong
- Bioscience Division, MS M888, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | | | | | | |
Collapse
|
148
|
Lapidus A, Goltsman E, Auger S, Galleron N, Ségurens B, Dossat C, Land ML, Broussolle V, Brillard J, Guinebretiere MH, Sanchis V, Nguen-The C, Lereclus D, Richardson P, Wincker P, Weissenbach J, Ehrlich SD, Sorokin A. Extending the Bacillus cereus group genomics to putative food-borne pathogens of different toxicity. Chem Biol Interact 2007; 171:236-49. [PMID: 17434157 DOI: 10.1016/j.cbi.2007.03.003] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Revised: 02/20/2007] [Accepted: 03/02/2007] [Indexed: 10/23/2022]
Abstract
The Bacillus cereus group represents sporulating soil bacteria containing pathogenic strains which may cause diarrheic or emetic food poisoning outbreaks. Multiple locus sequence typing revealed a presence in natural samples of these bacteria of about 30 clonal complexes. Application of genomic methods to this group was however biased due to the major interest for representatives closely related to Bacillus anthracis. Albeit the most important food-borne pathogens were not yet defined, existing data indicate that they are scattered all over the phylogenetic tree. The preliminary analysis of the sequences of three genomes discussed in this paper narrows down the gaps in our knowledge of the B. cereus group. The strain NVH391-98 is a rare but particularly severe food-borne pathogen. Sequencing revealed that the strain should be a representative of a novel bacterial species, for which the name Bacillus cytotoxis or Bacillus cytotoxicus is proposed. This strain has a reduced genome size compared to other B. cereus group strains. Genome analysis revealed absence of sigma B factor and the presence of genes encoding diarrheic Nhe toxin, not detected earlier. The strain B. cereus F837/76 represents a clonal complex close to that of B. anthracis. Including F837/76, three such B. cereus strains had been sequenced. Alignment of genomes suggests that B. anthracis is their common ancestor. Since such strains often emerge from clinical cases, they merit a special attention. The third strain, KBAB4, is a typical facultative psychrophile generally found in soil. Phylogenic studies show that in nature it is the most active group in terms of gene exchange. Genomic sequence revealed high presence of extra-chromosomal genetic material (about 530kb) that may account for this phenomenon. Genes coding Nhe-like toxin were found on a big plasmid in this strain. This may indicate a potential mechanism of toxicity spread from the psychrophile strain community. The results of this genomic work and ecological compartments of different strains incite to consider a necessity of creating prophylactic vaccines against bacteria closely related to NVH391-98 and F837/76. Presumably developing of such vaccines can be based on the properties of non-pathogenic strains such as KBAB4 or ATCC14579 reported here or earlier. By comparing the protein coding genes of strains being sequenced in this project to others we estimate the shared proteome, or core genome, in the B. cereus group to be 3000+/-200 genes and the total proteome, or pan-genome, to be 20-25,000 genes.
Collapse
Affiliation(s)
- Alla Lapidus
- DOE Joint Genome Institute, Walnut Creek, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Challacombe JF, Altherr MR, Xie G, Bhotika SS, Brown N, Bruce D, Campbell CS, Campbell ML, Chen J, Chertkov O, Cleland C, Dimitrijevic M, Doggett NA, Fawcett JJ, Glavina T, Goodwin LA, Green LD, Han CS, Hill KK, Hitchcock P, Jackson PJ, Keim P, Kewalramani AR, Longmire J, Lucas S, Malfatti S, Martinez D, McMurry K, Meincke LJ, Misra M, Moseman BL, Mundt M, Munk AC, Okinaka RT, Parson-Quintana B, Reilly LP, Richardson P, Robinson DL, Saunders E, Tapia R, Tesmer JG, Thayer N, Thompson LS, Tice H, Ticknor LO, Wills PL, Gilna P, Brettin TS. The complete genome sequence of Bacillus thuringiensis Al Hakam. J Bacteriol 2007; 189:3680-1. [PMID: 17337577 PMCID: PMC1855882 DOI: 10.1128/jb.00241-07] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus thuringiensis is an insect pathogen that is widely used as a biopesticide (E. Schnepf, N. Crickmore, J. Van Rie, D. Lereclus, J. Baum, J. Feitelson, D. R. Zeigler, and D. H. Dean, Microbiol. Mol. Biol. Rev. 62:775-806, 1998). Here we report the finished, annotated genome sequence of B. thuringiensis Al Hakam, which was collected in Iraq by the United Nations Special Commission (L. Radnedge, P. Agron, K. Hill, P. Jackson, L. Ticknor, P. Keim, and G. Andersen, Appl. Environ. Microbiol. 69:2755-2764, 2003).
Collapse
Affiliation(s)
- Jean F Challacombe
- Department of Energy Joint Genome Institute, Bioscience Division, MS M888, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Esterase electrophoretic polymorphism ofBacillus thuringiensis andBacillus cereus reference strains. ANN MICROBIOL 2007. [DOI: 10.1007/bf03175045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|