101
|
Ádám AL, Nagy ZÁ, Kátay G, Mergenthaler E, Viczián O. Signals of Systemic Immunity in Plants: Progress and Open Questions. Int J Mol Sci 2018; 19:E1146. [PMID: 29642641 PMCID: PMC5979450 DOI: 10.3390/ijms19041146] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/28/2018] [Accepted: 03/31/2018] [Indexed: 12/17/2022] Open
Abstract
Systemic acquired resistance (SAR) is a defence mechanism that induces protection against a wide range of pathogens in distant, pathogen-free parts of plants after a primary inoculation. Multiple mobile compounds were identified as putative SAR signals or important factors for influencing movement of SAR signalling elements in Arabidopsis and tobacco. These include compounds with very different chemical structures like lipid transfer protein DIR1 (DEFECTIVE IN INDUCED RESISTANCE1), methyl salicylate (MeSA), dehydroabietinal (DA), azelaic acid (AzA), glycerol-3-phosphate dependent factor (G3P) and the lysine catabolite pipecolic acid (Pip). Genetic studies with different SAR-deficient mutants and silenced lines support the idea that some of these compounds (MeSA, DIR1 and G3P) are activated only when SAR is induced in darkness. In addition, although AzA doubled in phloem exudate of tobacco mosaic virus (TMV) infected tobacco leaves, external AzA treatment could not induce resistance neither to viral nor bacterial pathogens, independent of light conditions. Besides light intensity and timing of light exposition after primary inoculation, spectral distribution of light could also influence the SAR induction capacity. Recent data indicated that TMV and CMV (cucumber mosaic virus) infection in tobacco, like bacteria in Arabidopsis, caused massive accumulation of Pip. Treatment of tobacco leaves with Pip in the light, caused a drastic and significant local and systemic decrease in lesion size of TMV infection. Moreover, two very recent papers, added in proof, demonstrated the role of FMO1 (FLAVIN-DEPENDENT-MONOOXYGENASE1) in conversion of Pip to N-hydroxypipecolic acid (NHP). NHP systemically accumulates after microbial attack and acts as a potent inducer of plant immunity to bacterial and oomycete pathogens in Arabidopsis. These results argue for the pivotal role of Pip and NHP as an important signal compound of SAR response in different plants against different pathogens.
Collapse
Affiliation(s)
- Attila L Ádám
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 15 Herman Ottó út, H-1022 Budapest, Hungary.
| | - Zoltán Á Nagy
- Phytophthora Research Centre, Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic.
| | - György Kátay
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 15 Herman Ottó út, H-1022 Budapest, Hungary.
| | - Emese Mergenthaler
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 15 Herman Ottó út, H-1022 Budapest, Hungary.
| | - Orsolya Viczián
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 15 Herman Ottó út, H-1022 Budapest, Hungary.
| |
Collapse
|
102
|
de Toledo-Piza AR, de Oliveira MI, Negri G, Mendonça RZ, Figueiredo CA. Polyunsaturated fatty acids from Phyllocaulis boraceiensis mucus block the replication of influenza virus. Arch Microbiol 2018; 200:961-970. [PMID: 29616305 DOI: 10.1007/s00203-018-1507-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 03/24/2018] [Accepted: 03/27/2018] [Indexed: 01/09/2023]
Abstract
Influenza viruses cause worldwide outbreaks and pandemics in humans and animals every year with considerable morbidity and mortality. The molecular diversity of secondary metabolites extracted from mollusks is a good alternative for the discovery of novel bioactive compounds with unique structures and diverse biological activities. Phyllocaulis boraceiensis is a hermaphroditic slug that exudes mucus, in which was detected hydroxy polyunsaturated fatty acids that exhibited potent antiviral activity against measles virus. The objective of this study was to evaluate this property against Influenza viruses. Cell viability and toxicity of the mucus were evaluated on Madin-Darby canine kidney (MDCK) cells by MTT assay. Antiviral activity from mucus against influenza viruses was carried out by determination of the virus infection dose and by immunofluorescence assays. The crude mucus and its fractions exhibited low cytotoxicity on MDCK cells. A significant inhibition of viral replication, reduced by the order of eight times, was observed in influenza-induced cytopathic effect. In immunofluorescence assay was observed a decrease of more than 80% of the viral load on infected MDCK cell treated with mucus and its fractions. The viral glycoproteins hemagglutinin and neuraminidase located on the surface of the virus are crucial for the replications and infectivity of the influenza virus. Some authors demonstrated that lipids, such as, polyunsaturated fatty acids exhibited multiple roles in antiviral innate and adaptive responses, control of inflammation, and in the development of antiviral therapeutics. As corroborated by other studies, hydroxy polyunsaturated fatty acids interfered with the binding of influenza virus on host cell receptor and reduced viral titers. The results obtained indicated that polyunsaturated fatty acids from P. boraceiensis crude mucus and fractions 39 exerted antiviral activity against influenza virus.
Collapse
Affiliation(s)
- Ana Rita de Toledo-Piza
- Laboratory of Parasitology, Butantan Institute, 1500th, Vital Brazil Ave, São Paulo, SP, Brazil.
| | - Maria Isabel de Oliveira
- Respiratory Infectious Diseases, Adolfo Lutz Institute, 355th, Doutor Arnaldo Ave, São Paulo, SP, Brazil
| | - Giuseppina Negri
- Department of Preventive Medicine, Federal University of São Paulo, 740th, Botucatu St., São Paulo, SP, Brazil
| | | | | |
Collapse
|
103
|
Antagonism of the Protein Kinase R Pathway in Human Cells by Rhesus Cytomegalovirus. J Virol 2018; 92:JVI.01793-17. [PMID: 29263260 DOI: 10.1128/jvi.01793-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/12/2017] [Indexed: 01/19/2023] Open
Abstract
While cytomegalovirus (CMV) infections are often limited in host range by lengthy coevolution with a single host species, a few CMVs are known to deviate from this rule. For example, rhesus macaque CMV (RhCMV), a model for human CMV (HCMV) pathogenesis and vaccine development, can replicate in human cells, as well as in rhesus cells. Both HCMV and RhCMV encode species-specific antagonists of the broadly acting host cell restriction factor protein kinase R (PKR). Although the RhCMV antagonist of PKR, rTRS1, has very limited activity against human PKR, here, we show it is essential for RhCMV replication in human cells because it prevents human PKR from phosphorylating the translation initiation factor eIF2α, thereby allowing continued translation and viral replication. Although rTRS1 is necessary for RhCMV replication, it is not sufficient to rescue replication of HCMV lacking its own PKR antagonists in human fibroblasts. However, overexpression of rTRS1 in human fibroblasts enabled HCMV expressing rTRS1 to replicate, indicating that elevated levels or early expression of a weak antagonist can counteract a resistant restriction factor like human PKR. Exploring potential mechanisms that might allow RhCMV to replicate in human cells revealed that RhCMV makes no less double-stranded RNA than HCMV. Rather, in human cells, RhCMV expresses rTRS1 at levels 2 to 3 times higher than those of the HCMV-encoded PKR antagonists during HCMV infection. These data suggest that even a modest increase in expression of this weak PKR antagonist is sufficient to enable RhCMV replication in human cells.IMPORTANCE Rhesus macaque cytomegalovirus (RhCMV) offers a valuable model for studying congenital human cytomegalovirus (HCMV) pathogenesis and vaccine development. Therefore, it is critical to understand variations in how each virus infects and affects its host species to be able to apply insights gained from the RhCMV model to HCMV. While HCMV is capable only of infecting cells from humans and very closely related species, RhCMV displays a wider host range, including human as well as rhesus cells. RhCMV expresses an antagonist of a broadly acting antiviral factor present in all mammalian cells, and its ability to counter both the rhesus and human versions of this host factor is a key component of RhCMV's ability to cross species barriers. Here, we examine the molecular mechanisms that allow this RhCMV antagonist to function against a human restriction factor.
Collapse
|
104
|
Tian B, Zhou M, Yang Y, Yu L, Luo Z, Tian D, Wang K, Cui M, Chen H, Fu ZF, Zhao L. Lab-Attenuated Rabies Virus Causes Abortive Infection and Induces Cytokine Expression in Astrocytes by Activating Mitochondrial Antiviral-Signaling Protein Signaling Pathway. Front Immunol 2018; 8:2011. [PMID: 29403485 PMCID: PMC5785723 DOI: 10.3389/fimmu.2017.02011] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 12/27/2017] [Indexed: 12/25/2022] Open
Abstract
Rabies is an ancient disease but remains endemic in most parts of the world and causes approximately 59,000 deaths annually. The mechanism through which the causative agent, rabies virus (RABV), evades the host immune response and infects the host central nervous system (CNS) has not been completely elucidated thus far. Our previous studies have shown that lab-attenuated, but not wild-type (wt), RABV activates the innate immune response in the mouse and dog models. In this present study, we demonstrate that lab-attenuated RABV causes abortive infection in astrocytes, the most abundant glial cells in the CNS. Furthermore, we found that lab-attenuated RABV produces more double-stranded RNA (dsRNA) than wt RABV, which is recognized by retinoic acid-inducible gene I (RIG-I) or melanoma differentiation-associated protein 5 (MDA5). Activation of mitochondrial antiviral-signaling protein (MAVS), the common adaptor molecule for RIG-I and MDA5, results in the production of type I interferon (IFN) and the expression of hundreds of IFN-stimulated genes, which suppress RABV replication and spread in astrocytes. Notably, lab-attenuated RABV replicates in a manner identical to that of wt RABV in MAVS−/− astrocytes. It was also found that lab-attenuated, but not wt, RABV induces the expression of inflammatory cytokines via the MAVS- p38/NF-κB signaling pathway. These inflammatory cytokines increase the blood–brain barrier permeability and thus enable immune cells and antibodies infiltrate the CNS parenchyma, resulting in RABV control and elimination. In contrast, wt RABV restricts dsRNA production and thus evades innate recognition by RIG-I/MDA5 in astrocytes, which could be one of the mechanisms by which wt RABV evades the host immune response in resident CNS cells. Our findings suggest that astrocytes play a critical role in limiting the replication of lab-attenuated RABV in the CNS.
Collapse
Affiliation(s)
- Bin Tian
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Ming Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Yu Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Lan Yu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Zhaochen Luo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Dayong Tian
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Ke Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Min Cui
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhen F Fu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Department of Pathology, University of Georgia, Athens, GA, United States
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
105
|
Ampomah PB, Moraes LA, Lukman HM, Lim LHK. Formyl peptide receptor 2 is regulated by RNA mimics and viruses through an IFN‐β‐STAT3‐dependent pathway. FASEB J 2018; 32:1468-1478. [DOI: 10.1096/fj.201700584rr] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Patrick B. Ampomah
- Department of PhysiologyYong Loo Lin School of MedicineNational University Health System Singapore
- Immunology ProgramLife Sciences InstituteNational University of Singapore Singapore
| | - Leonardo A. Moraes
- Department of PhysiologyYong Loo Lin School of MedicineNational University Health System Singapore
- Immunology ProgramLife Sciences InstituteNational University of Singapore Singapore
| | - Hakim M. Lukman
- Department of PhysiologyYong Loo Lin School of MedicineNational University Health System Singapore
- Immunology ProgramLife Sciences InstituteNational University of Singapore Singapore
| | - Lina H. K. Lim
- Department of PhysiologyYong Loo Lin School of MedicineNational University Health System Singapore
- Immunology ProgramLife Sciences InstituteNational University of Singapore Singapore
| |
Collapse
|
106
|
Monsion B, Incarbone M, Hleibieh K, Poignavent V, Ghannam A, Dunoyer P, Daeffler L, Tilsner J, Ritzenthaler C. Efficient Detection of Long dsRNA in Vitro and in Vivo Using the dsRNA Binding Domain from FHV B2 Protein. FRONTIERS IN PLANT SCIENCE 2018; 9:70. [PMID: 29449856 PMCID: PMC5799278 DOI: 10.3389/fpls.2018.00070] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/12/2018] [Indexed: 05/17/2023]
Abstract
Double-stranded RNA (dsRNA) plays essential functions in many biological processes, including the activation of innate immune responses and RNA interference. dsRNA also represents the genetic entity of some viruses and is a hallmark of infections by positive-sense single-stranded RNA viruses. Methods for detecting dsRNA rely essentially on immunological approaches and their use is often limited to in vitro applications, although recent developments have allowed the visualization of dsRNA in vivo. Here, we report the sensitive and rapid detection of long dsRNA both in vitro and in vivo using the dsRNA binding domain of the B2 protein from Flock house virus. In vitro, we adapted the system for the detection of dsRNA either enzymatically by northwestern blotting or by direct fluorescence labeling on fixed samples. In vivo, we produced stable transgenic Nicotiana benthamiana lines allowing the visualization of dsRNA by fluorescence microscopy. Using these techniques, we were able to discriminate healthy and positive-sense single-stranded RNA virus-infected material in plants and insect cells. In N. benthamiana, our system proved to be very potent for the spatio-temporal visualization of replicative RNA intermediates of a broad range of positive-sense RNA viruses, including high- vs. low-copy number viruses.
Collapse
Affiliation(s)
- Baptiste Monsion
- Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, Strasbourg, France
| | - Marco Incarbone
- Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, Strasbourg, France
| | - Kamal Hleibieh
- Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, Strasbourg, France
| | - Vianney Poignavent
- Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, Strasbourg, France
| | - Ahmed Ghannam
- Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, Strasbourg, France
| | - Patrice Dunoyer
- Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, Strasbourg, France
| | - Laurent Daeffler
- Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France
| | - Jens Tilsner
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, United Kingdom
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Christophe Ritzenthaler
- Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, Strasbourg, France
- *Correspondence: Christophe Ritzenthaler
| |
Collapse
|
107
|
Rohaim MA, Santhakumar D, Naggar RFE, Iqbal M, Hussein HA, Munir M. Chickens Expressing IFIT5 Ameliorate Clinical Outcome and Pathology of Highly Pathogenic Avian Influenza and Velogenic Newcastle Disease Viruses. Front Immunol 2018; 9:2025. [PMID: 30271403 PMCID: PMC6149294 DOI: 10.3389/fimmu.2018.02025] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/16/2018] [Indexed: 12/18/2022] Open
Abstract
Innate antiviral immunity establishes first line of defense against invading pathogens through sensing their molecular structures such as viral RNA. This antiviral potential of innate immunity is mainly attributed to a myriad of IFN-stimulated genes (ISGs). Amongst well-characterized ISGs, we have previously shown that antiviral potential of chicken IFN-induced proteins with tetratricopeptides repeats 5 (chIFIT5) is determined by its interaction potential with 5'ppp containing viral RNA. Here, we generated transgenic chickens using avian sarcoma-leukosis virus (RCAS)-based gene transfer system that constitutively and stably express chIFIT5. The transgenic chickens infected with clinical dose (EID50 104 for HPAIV and 105 EID50 for vNDV) of high pathogenicity avian influenza virus (HPAIV; H5N1) or velogenic strain of Newcastle disease virus (vNDV; Genotype VII) showed marked resistance against infections. While transgenic chickens failed to sustain a lethal dose of these viruses (EID50 105 for HPAIV and 106 EID50 for vNDV), a delayed and lower level of clinical disease and mortality, reduced virus shedding and tissue damage was observed compared to non-transgenic control chickens. These observations suggest that stable expression of chIFIT5 alone is potentially insufficient in providing sterile protection against these highly virulent viruses; however, it is sufficient to ameliorate the clinical outcome of these RNA viruses. These findings propose the potential of innate immune genes in conferring genetic resistance in chickens against highly pathogenic and zoonotic viral pathogens causing sever disease in both animals and humans.
Collapse
Affiliation(s)
- Mohammed A Rohaim
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.,The Pirbright Institute, Woking, United Kingdom.,Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Diwakar Santhakumar
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Rania F El Naggar
- Department of Virology, Faculty of Veterinary Medicine, University of Sadat City, Sadat, Egypt
| | - Munir Iqbal
- The Pirbright Institute, Woking, United Kingdom
| | - Hussein A Hussein
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Muhammad Munir
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
108
|
Royer PJ, Henrio K, Pain M, Loy J, Roux A, Tissot A, Lacoste P, Pison C, Brouard S, Magnan A. TLR3 promotes MMP-9 production in primary human airway epithelial cells through Wnt/β-catenin signaling. Respir Res 2017; 18:208. [PMID: 29237464 PMCID: PMC5729411 DOI: 10.1186/s12931-017-0690-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/28/2017] [Indexed: 12/27/2022] Open
Abstract
Background Airway epithelial cells (AEC) act as the first line of defence in case of lung infections. They constitute a physical barrier against pathogens and they participate in the initiation of the immune response. Yet, the modalities of pathogen recognition by AEC and the consequences on the epithelial barrier remain poorly documented. Method We investigated the response of primary human AEC to viral (polyinosinic-polycytidylic acid, poly(I:C)) and bacterial (lipopolysaccharide, LPS) stimulations in combination with the lung remodeling factor Transforming Growth Factor-β (TGF-β). Results We showed a strong production of pro-inflammatory cytokines (Interleukin (IL)-6, Tumor Necrosis Factor α, TNFα) or chemokines (CCL2, CCL3, CCL4, CXCL10, CXCL11) by AEC stimulated with poly(I:C). Cytokine and chemokine production, except CXCL10, was Toll Like Receptor (TLR)-3 dependent and although they express TLR4, we found no cytokine production after LPS stimulation. Poly(I:C), but not LPS, synergised with TGF-β for the production of matrix metalloproteinase-9 (MMP-9) and fibronectin. Mechanistic analyses suggest the secretion of Wnt ligands by AEC along with a degradation of the cellular junctions after poly(I:C) exposure, leading to the release of β-catenin from the cell membrane and stimulation of the Wnt/β-catenin pathway. Conclusion Our results highlight the cross talk between TGF-β and TLR signaling in bronchial epithelium and its impact on the remodeling process. Electronic supplementary material The online version of this article (10.1186/s12931-017-0690-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- P-J Royer
- UMR_S 1087 CNRS UMR_6291, l'Institut du Thorax, Université de Nantes, CHU de Nantes, Centre National de Référence Mucoviscidose Nantes-Roscoff, Nantes, France.
| | - K Henrio
- UMR_S 1087 CNRS UMR_6291, l'Institut du Thorax, Université de Nantes, CHU de Nantes, Centre National de Référence Mucoviscidose Nantes-Roscoff, Nantes, France
| | - M Pain
- UMR_S 1087 CNRS UMR_6291, l'Institut du Thorax, Université de Nantes, CHU de Nantes, Centre National de Référence Mucoviscidose Nantes-Roscoff, Nantes, France
| | - J Loy
- UMR_S 1087 CNRS UMR_6291, l'Institut du Thorax, Université de Nantes, CHU de Nantes, Centre National de Référence Mucoviscidose Nantes-Roscoff, Nantes, France
| | - A Roux
- Hopital Foch, Pneumology, Adult Cystic Fibrosis Center and Lung Transplantation Department,Suresnes, France, Université Versailles Saint-Quentin-en-Yvelines, UPRESS EA220, Montigny le Bretonneux, Grenoble, France
| | - A Tissot
- UMR_S 1087 CNRS UMR_6291, l'Institut du Thorax, Université de Nantes, CHU de Nantes, Centre National de Référence Mucoviscidose Nantes-Roscoff, Nantes, France
| | - P Lacoste
- UMR_S 1087 CNRS UMR_6291, l'Institut du Thorax, Université de Nantes, CHU de Nantes, Centre National de Référence Mucoviscidose Nantes-Roscoff, Nantes, France
| | - C Pison
- Clinique Universitaire de Pneumologie, Pôle Thorax et Vaisseaux, CHU Grenoble Alpes, Grenoble, France.,Université Grenoble Alpes, Grenoble, France.,Laboratoire de Bioénergétique Fondamentale et Appliquée, Inserm, 1055, Grenoble, France
| | - S Brouard
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,Faculté de Médecine, Université de Nantes, Nantes, France.,CIC Biotherapy, CHU Nantes, Nantes, France
| | - A Magnan
- UMR_S 1087 CNRS UMR_6291, l'Institut du Thorax, Université de Nantes, CHU de Nantes, Centre National de Référence Mucoviscidose Nantes-Roscoff, Nantes, France
| | | |
Collapse
|
109
|
Rott M, Xiang Y, Boyes I, Belton M, Saeed H, Kesanakurti P, Hayes S, Lawrence T, Birch C, Bhagwat B, Rast H. Application of Next Generation Sequencing for Diagnostic Testing of Tree Fruit Viruses and Viroids. PLANT DISEASE 2017; 101:1489-1499. [PMID: 30678581 DOI: 10.1094/pdis-03-17-0306-re] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Conventional detection of viruses and virus-like diseases of plants is accomplished using a combination of molecular, serological, and biological indexing. These are the primary tools used by plant virologists to monitor and ensure trees are free of known viral pathogens. The biological indexing assay, or bioassay, is considered to be the "gold standard" as it is the only method of the three that can detect new, uncharacterized, or poorly characterized viral disease agents. Unfortunately, this method is also the most labor intensive and can take up to three years to complete. Next generation sequencing (NGS) is a technology with rapidly expanding possibilities including potential applications for the detection of plant viruses. In this study, comparisons are made between tree fruit testing by conventional and NGS methods, to demonstrate the efficacy of NGS. A comparison of 178 infected trees, many infected with several viral pathogens, demonstrated that conventional and NGS were equally capable of detecting known viruses and viroids. Comparable results were obtained for 170 of 178 of the specimens. Of the remaining eight specimens, some discrepancies were observed between viruses detected by the two methods, representing less than 5% of the specimens. NGS was further demonstrated to be equal or superior for the detection of new or poorly characterized viruses when compared with a conventional bioassay. These results validated both the effectiveness of conventional virus testing methods and the use of NGS as an additional or alternative method for plant virus detection.
Collapse
Affiliation(s)
- M Rott
- Centre for Plant Health, Sidney Laboratory, Canadian Food Inspection Agency, North Saanich, BC, V8L 1H3, Canada
| | - Y Xiang
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC, V0H1Z0, Canada
| | - I Boyes
- Centre for Plant Health, Sidney Laboratory, Canadian Food Inspection Agency, North Saanich, BC, V8L 1H3, Canada
| | - M Belton
- Centre for Plant Health, Sidney Laboratory, Canadian Food Inspection Agency, North Saanich, BC, V8L 1H3, Canada
| | - H Saeed
- Centre for Plant Health, Sidney Laboratory, Canadian Food Inspection Agency, North Saanich, BC, V8L 1H3, Canada
| | - P Kesanakurti
- Centre for Plant Health, Sidney Laboratory, Canadian Food Inspection Agency, North Saanich, BC, V8L 1H3, Canada
| | - S Hayes
- Centre for Plant Health, Sidney Laboratory, Canadian Food Inspection Agency, North Saanich, BC, V8L 1H3, Canada
| | - T Lawrence
- Centre for Plant Health, Sidney Laboratory, Canadian Food Inspection Agency, North Saanich, BC, V8L 1H3, Canada
| | - C Birch
- Centre for Plant Health, Sidney Laboratory, Canadian Food Inspection Agency, North Saanich, BC, V8L 1H3, Canada
| | - B Bhagwat
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC, V0H1Z0, Canada
| | - H Rast
- Centre for Plant Health, Sidney Laboratory, Canadian Food Inspection Agency, North Saanich, BC, V8L 1H3, Canada
| |
Collapse
|
110
|
Differential Antagonism of Human Innate Immune Responses by Tick-Borne Phlebovirus Nonstructural Proteins. mSphere 2017; 2:mSphere00234-17. [PMID: 28680969 PMCID: PMC5489658 DOI: 10.1128/msphere.00234-17] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 06/05/2017] [Indexed: 12/24/2022] Open
Abstract
In recent years, several newly discovered tick-borne viruses causing a wide spectrum of diseases in humans have been ascribed to the Phlebovirus genus of the Bunyaviridae family. The nonstructural protein (NSs) of bunyaviruses is the main virulence factor and interferon (IFN) antagonist. We studied the molecular mechanisms of IFN antagonism employed by the NSs proteins of human apathogenic Uukuniemi virus (UUKV) and those of Heartland virus (HRTV) and severe fever with thrombocytopenia syndrome virus (SFTSV), both of which cause severe disease. Using reporter assays, we found that UUKV NSs weakly inhibited the activation of the beta interferon (IFN-β) promoter and response elements. UUKV NSs weakly antagonized human IFN-β promoter activation through a novel interaction with mitochondrial antiviral-signaling protein (MAVS), confirmed by coimmunoprecipitation and confocal microscopy studies. HRTV NSs efficiently antagonized both IFN-β promoter activation and type I IFN signaling pathways through interactions with TBK1, preventing its phosphorylation. HRTV NSs exhibited diffused cytoplasmic localization. This is in comparison to the inclusion bodies formed by SFTSV NSs. HRTV NSs also efficiently interacted with STAT2 and impaired IFN-β-induced phosphorylation but did not affect STAT1 or its translocation to the nucleus. Our results suggest that a weak interaction between STAT1 and HRTV or SFTSV NSs may explain their inability to block type II IFN signaling efficiently, thus enabling the activation of proinflammatory responses that lead to severe disease. Our findings offer insights into how pathogenicity may be linked to the capacity of NSs proteins to block the innate immune system and illustrate the plethora of viral immune evasion strategies utilized by emerging phleboviruses. IMPORTANCE Since 2011, there has been a large expansion in the number of emerging tick-borne viruses that have been assigned to the Phlebovirus genus. Heartland virus (HRTV) and SFTS virus (SFTSV) were found to cause severe disease in humans, unlike other documented tick-borne phleboviruses such as Uukuniemi virus (UUKV). Phleboviruses encode nonstructural proteins (NSs) that enable them to counteract the human innate antiviral defenses. We assessed how these proteins interacted with the innate immune system. We found that UUKV NSs engaged with innate immune factors only weakly, at one early step. However, the viruses that cause more severe disease efficiently disabled the antiviral response by targeting multiple components at several stages across the innate immune induction and signaling pathways. Our results suggest a correlation between the efficiency of the virus protein/host interaction and severity of disease.
Collapse
|
111
|
Mussabekova A, Daeffler L, Imler JL. Innate and intrinsic antiviral immunity in Drosophila. Cell Mol Life Sci 2017; 74:2039-2054. [PMID: 28102430 PMCID: PMC5419870 DOI: 10.1007/s00018-017-2453-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/11/2016] [Accepted: 01/03/2017] [Indexed: 02/07/2023]
Abstract
The fruit fly Drosophila melanogaster has been a valuable model to investigate the genetic mechanisms of innate immunity. Initially focused on the resistance to bacteria and fungi, these studies have been extended to include antiviral immunity over the last decade. Like all living organisms, insects are continually exposed to viruses and have developed efficient defense mechanisms. We review here our current understanding on antiviral host defense in fruit flies. A major antiviral defense in Drosophila is RNA interference, in particular the small interfering (si) RNA pathway. In addition, complex inducible responses and restriction factors contribute to the control of infections. Some of the genes involved in these pathways have been conserved through evolution, highlighting loci that may account for susceptibility to viral infections in humans. Other genes are not conserved and represent species-specific innovations.
Collapse
Affiliation(s)
- Assel Mussabekova
- Institut de Biologie Moléculaire et Cellulaire, CNRS UPR9022, Université de Strasbourg, 15 rue René Descartes, 67000, Strasbourg, France.
| | - Laurent Daeffler
- Institut de Biologie Moléculaire et Cellulaire, CNRS UPR9022, Université de Strasbourg, 15 rue René Descartes, 67000, Strasbourg, France
| | - Jean-Luc Imler
- Institut de Biologie Moléculaire et Cellulaire, CNRS UPR9022, Université de Strasbourg, 15 rue René Descartes, 67000, Strasbourg, France
- Faculté des Sciences de la Vie, Université de Strasbourg, 28 rue Goethe, 67000, Strasbourg, France
| |
Collapse
|
112
|
Sanz Bernardo B, Goodbourn S, Baron MD. Control of the induction of type I interferon by Peste des petits ruminants virus. PLoS One 2017; 12:e0177300. [PMID: 28475628 PMCID: PMC5419582 DOI: 10.1371/journal.pone.0177300] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/25/2017] [Indexed: 12/24/2022] Open
Abstract
Peste des petits ruminants virus (PPRV) is a morbillivirus that produces clinical disease in goats and sheep. We have studied the induction of interferon-β (IFN-β) following infection of cultured cells with wild-type and vaccine strains of PPRV, and the effects of such infection with PPRV on the induction of IFN-β through both MDA-5 and RIG-I mediated pathways. Using both reporter assays and direct measurement of IFN-β mRNA, we have found that PPRV infection induces IFN-β only weakly and transiently, and the virus can actively block the induction of IFN-β. We have also generated mutant PPRV that lack expression of either of the viral accessory proteins (V&C) to characterize the role of these proteins in IFN-β induction during virus infection. Both PPRV_ΔV and PPRV_ΔC were defective in growth in cell culture, although in different ways. While the PPRV V protein bound to MDA-5 and, to a lesser extent, RIG-I, and over-expression of the V protein inhibited both IFN-β induction pathways, PPRV lacking V protein expression can still block IFN-β induction. In contrast, PPRV C bound to neither MDA-5 nor RIG-I, but PPRV lacking C protein expression lost the ability to block both MDA-5 and RIG-I mediated activation of IFN-β. These results shed new light on the inhibition of the induction of IFN-β by PPRV.
Collapse
Affiliation(s)
| | - Stephen Goodbourn
- Institute for Infection and Immunity, St George’s, University of London, London, United Kingdom
| | | |
Collapse
|
113
|
Zhan Q, Song R, Li F, Ao L, Zeng Q, Xu D, Fullerton DA, Meng X. Double-stranded RNA upregulates the expression of inflammatory mediators in human aortic valve cells through the TLR3-TRIF-noncanonical NF-κB pathway. Am J Physiol Cell Physiol 2017; 312:C407-C417. [PMID: 28052863 DOI: 10.1152/ajpcell.00230.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 12/08/2016] [Accepted: 01/03/2017] [Indexed: 11/22/2022]
Abstract
Calcific aortic valve disease is a chronic inflammatory condition, and the inflammatory responses of aortic valve interstitial cells (AVICs) play a critical role in the disease progression. Double-stranded RNA (dsRNA) released from damaged or stressed cells is proinflammatory and may contribute to the mechanism of chronic inflammation observed in diseased aortic valves. The objective of this study is to determine the effect of dsRNA on AVIC inflammatory responses and the underlying mechanism. AVICs from normal human aortic valves were stimulated with polyinosinic-polycytidylic acid [poly(I:C)], a mimic of dsRNA. Poly(I:C) increased the production of IL-6, IL-8, monocyte chemoattractant protein-1, and ICAM-1. Poly(I:C) also induced robust activation of ERK1/2 and NF-κB. Knockdown of Toll-like receptor 3 (TLR3) or Toll-IL-1 receptor domain-containing adapter-inducing IFN-β (TRIF) suppressed ERK1/2 and NF-κB p65 phosphorylation and reduced inflammatory mediator production induced by poly(I:C). Inhibition of NF-κB, not ERK1/2, reduced inflammatory mediator production in AVICs exposed to poly(I:C). Interestingly, inhibition of NF-κB by prevention of p50 migration failed to suppress inflammatory mediator production. NF-κB p65 intranuclear translocation induced by the TLR4 agonist was reduced by inhibition of p50 migration; however, poly(I:C)-induced p65 translocation was not, although the p65/p50 heterodimer is present in AVICs. Poly(I:C) upregulates the production of multiple inflammatory mediators through the TLR3-TRIF-NF-κB pathway in human AVICs. The NF-κB activated by dsRNA appears not to be the canonical p65/p50 heterodimers.
Collapse
Affiliation(s)
- Qiong Zhan
- Department of Surgery, University of Colorado Denver, Aurora, Colorado; and.,Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rui Song
- Department of Surgery, University of Colorado Denver, Aurora, Colorado; and
| | - Fei Li
- Department of Surgery, University of Colorado Denver, Aurora, Colorado; and
| | - Lihua Ao
- Department of Surgery, University of Colorado Denver, Aurora, Colorado; and
| | - Qingchun Zeng
- Department of Surgery, University of Colorado Denver, Aurora, Colorado; and.,Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dingli Xu
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - David A Fullerton
- Department of Surgery, University of Colorado Denver, Aurora, Colorado; and
| | - Xianzhong Meng
- Department of Surgery, University of Colorado Denver, Aurora, Colorado; and
| |
Collapse
|
114
|
Xia YC, Radwan A, Keenan CR, Langenbach SY, Li M, Radojicic D, Londrigan SL, Gualano RC, Stewart AG. Glucocorticoid Insensitivity in Virally Infected Airway Epithelial Cells Is Dependent on Transforming Growth Factor-β Activity. PLoS Pathog 2017; 13:e1006138. [PMID: 28046097 PMCID: PMC5234851 DOI: 10.1371/journal.ppat.1006138] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 01/13/2017] [Accepted: 12/19/2016] [Indexed: 12/15/2022] Open
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) exacerbations are commonly associated with respiratory syncytial virus (RSV), rhinovirus (RV) and influenza A virus (IAV) infection. The ensuing airway inflammation is resistant to the anti-inflammatory actions of glucocorticoids (GCs). Viral infection elicits transforming growth factor-β (TGF-β) activity, a growth factor we have previously shown to impair GC action in human airway epithelial cells through the activation of activin-like kinase 5 (ALK5), the type 1 receptor of TGF-β. In the current study, we examine the contribution of TGF-β activity to the GC-resistance caused by viral infection. We demonstrate that viral infection of human bronchial epithelial cells with RSV, RV or IAV impairs GC anti-inflammatory action. Poly(I:C), a synthetic analog of double-stranded RNA, also impairs GC activity. Both viral infection and poly(I:C) increase TGF-β expression and activity. Importantly, the GC impairment was attenuated by the selective ALK5 (TGFβRI) inhibitor, SB431542 and prevented by the therapeutic agent, tranilast, which reduced TGF-β activity associated with viral infection. This study shows for the first time that viral-induced glucocorticoid-insensitivity is partially mediated by activation of endogenous TGF-β. In this study, we investigate how respiratory viral infection interferes with the anti-inflammatory actions of glucocorticoid (GC) drugs, which are a highly effective group of anti-inflammatory agents widely used in the treatment of chronic inflammatory airway diseases, including asthma and chronic obstructive pulmonary disease (COPD). Exacerbations of both asthma (“asthma attacks”) and COPD are often caused by viral infection, which does not respond well to GC therapy. Patients are often hospitalized placing a large burden on healthcare systems around the world, with the young, elderly, and those with a poor immune system particularly at risk. We show that viral infection of airway epithelial cells causes increased expression and activity of transforming growth factor-beta (TGF-β), which interferes with GC drug action. Importantly, we have shown for the first time that inhibiting TGF-β activity in the airways could serve as a new strategy to prevent and/or treat viral exacerbations of chronic airway diseases.
Collapse
Affiliation(s)
- Yuxiu C. Xia
- Lung Health Research Centre, Department of Pharmacology & Therapeutics, The University of Melbourne, Parkville, Victoria, Australia
| | - Asmaa Radwan
- Lung Health Research Centre, Department of Pharmacology & Therapeutics, The University of Melbourne, Parkville, Victoria, Australia
| | - Christine R. Keenan
- Lung Health Research Centre, Department of Pharmacology & Therapeutics, The University of Melbourne, Parkville, Victoria, Australia
| | - Shenna Y. Langenbach
- Lung Health Research Centre, Department of Pharmacology & Therapeutics, The University of Melbourne, Parkville, Victoria, Australia
| | - Meina Li
- Lung Health Research Centre, Department of Pharmacology & Therapeutics, The University of Melbourne, Parkville, Victoria, Australia
| | - Danica Radojicic
- Lung Health Research Centre, Department of Pharmacology & Therapeutics, The University of Melbourne, Parkville, Victoria, Australia
| | - Sarah L. Londrigan
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Rosa C. Gualano
- Lung Health Research Centre, Department of Pharmacology & Therapeutics, The University of Melbourne, Parkville, Victoria, Australia
| | - Alastair G. Stewart
- Lung Health Research Centre, Department of Pharmacology & Therapeutics, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
115
|
Maillard PV, Van der Veen AG, Deddouche-Grass S, Rogers NC, Merits A, Reis e Sousa C. Inactivation of the type I interferon pathway reveals long double-stranded RNA-mediated RNA interference in mammalian cells. EMBO J 2016; 35:2505-2518. [PMID: 27815315 PMCID: PMC5167344 DOI: 10.15252/embj.201695086] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/02/2016] [Accepted: 09/12/2016] [Indexed: 12/22/2022] Open
Abstract
RNA interference (RNAi) elicited by long double-stranded (ds) or base-paired viral RNA constitutes the major mechanism of antiviral defence in plants and invertebrates. In contrast, it is controversial whether it acts in chordates. Rather, in vertebrates, viral RNAs induce a distinct defence system known as the interferon (IFN) response. Here, we tested the possibility that the IFN response masks or inhibits antiviral RNAi in mammalian cells. Consistent with that notion, we find that sequence-specific gene silencing can be triggered by long dsRNAs in differentiated mouse cells rendered deficient in components of the IFN pathway. This unveiled response is dependent on the canonical RNAi machinery and is lost upon treatment of IFN-responsive cells with type I IFN Notably, transfection with long dsRNA specifically vaccinates IFN-deficient cells against infection with viruses bearing a homologous sequence. Thus, our data reveal that RNAi constitutes an ancient antiviral strategy conserved from plants to mammals that precedes but has not been superseded by vertebrate evolution of the IFN system.
Collapse
Affiliation(s)
| | | | | | - Neil C Rogers
- Immunobiology Laboratory, The Francis Crick Institute, London, UK
| | - Andres Merits
- Institute of Technology, University of Tartu, Tartu, Estonia
| | | |
Collapse
|
116
|
Activation of the RLR/MAVS Signaling Pathway by the L Protein of Mopeia Virus. J Virol 2016; 90:10259-10270. [PMID: 27605671 DOI: 10.1128/jvi.01292-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 08/23/2016] [Indexed: 11/20/2022] Open
Abstract
The family Arenaviridae includes several important human pathogens that can cause severe hemorrhagic fever and greatly threaten public health. As a major component of the innate immune system, the RLR/MAVS signaling pathway is involved in recognizing viral components and initiating antiviral activity. It has been reported that arenavirus infection can suppress the innate immune response, and NP and Z proteins of pathogenic arenaviruses can disrupt RLR/MAVS signaling, thus inhibiting production of type I interferon (IFN-I). However, recent studies have shown elevated IFN-I levels in certain arenavirus-infected cells. The mechanism by which arenavirus infection induces IFN-I responses remains unclear. In this study, we determined that the L polymerase (Lp) of Mopeia virus (MOPV), an Old World (OW) arenavirus, can activate the RLR/MAVS pathway and thus induce the production of IFN-I. This activation is associated with the RNA-dependent RNA polymerase activity of Lp. This study provides a foundation for further studies of interactions between arenaviruses and the innate immune system and for the elucidation of arenavirus pathogenesis. IMPORTANCE Distinct innate immune responses are observed when hosts are infected with different arenaviruses. It has been widely accepted that NP and certain Z proteins of arenaviruses inhibit the RLR/MAVS signaling pathway. The viral components responsible for the activation of the RLR/MAVS signaling pathway remain to be determined. In the current study, we demonstrate for the first time that the Lp of MOPV, an OW arenavirus, can activate the RLR/MAVS signaling pathway and thus induce the production of IFN-I. Based on our results, we proposed that dynamic interactions exist among Lp-produced RNA, NP, and the RLR/MAVS signaling pathway, and the outcome of these interactions may determine the final IFN-I response pattern: elevated or reduced. Our study provides a possible explanation for how IFN-I can become activated during arenavirus infection and may help us gain insights into the interactions that form between different arenavirus components and the innate immune system.
Collapse
|
117
|
Gan H, Hao Q, Idell S, Tang H. Interferon-γ promotes double-stranded RNA-induced TLR3-dependent apoptosis via upregulation of transcription factor Runx3 in airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2016; 311:L1101-L1112. [PMID: 27793801 DOI: 10.1152/ajplung.00278.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/19/2016] [Indexed: 12/11/2022] Open
Abstract
Viral respiratory tract infections are the most common illness in humans. Infection of the respiratory viruses results in accumulation of viral replicative double-stranded RNA (dsRNA), which is one of the important components of infecting viruses for the induction of lung epithelial cell apoptosis and innate immune response, including the production of interferon (IFN). In the present study, we have investigated the regulation of dsRNA-induced airway epithelial cell apoptosis by IFN. We found that transcription factor Runx3 was strongly induced by type-II IFNγ, slightly by type-III IFNλ, but essentially not by type-I IFNα in airway epithelial cells. IFNγ-induced expression of Runx3 was predominantly mediated by JAK-STAT1 pathway and partially by NF-κB pathway. Interestingly, Runx3 can be synergistically induced by IFNγ with a synthetic analog of viral dsRNA polyinosinic-polycytidylic acid [poly(I:C)] or tumor necrosis factor-α (TNFα) through both JAK-STAT1 and NF-κB pathways. We further found that dsRNA poly(I:C)-induced apoptosis of airway epithelial cells was mediated by dsRNA receptor toll-like receptor 3 (TLR3) and was markedly augmented by IFNγ through the enhanced expression of TLR3 and subsequent activation of both extrinsic and intrinsic apoptosis pathways. Last, we demonstrated that upregulation of Runx3 by IFNγ promoted TLR3 expression, thus amplifying the dsRNA-induced apoptosis in airway epithelial cells. These novel findings indicate that IFNγ promotes dsRNA-induced TLR3-dependent apoptosis via upregulation of transcription factor Runx3 in airway epithelial cells. Findings from our study may provide new insights into the regulation of airway epithelial cell apoptosis by IFNγ during viral respiratory tract infection.
Collapse
Affiliation(s)
- Huachen Gan
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas; and
| | - Qin Hao
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas; and
| | - Steven Idell
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas; and.,Texas Lung Injury Institute, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Hua Tang
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas; and
| |
Collapse
|
118
|
Carpentier KS, Esparo NM, Child SJ, Geballe AP. A Single Amino Acid Dictates Protein Kinase R Susceptibility to Unrelated Viral Antagonists. PLoS Pathog 2016; 12:e1005966. [PMID: 27780231 PMCID: PMC5079575 DOI: 10.1371/journal.ppat.1005966] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/30/2016] [Indexed: 02/07/2023] Open
Abstract
During millions of years of coevolution with their hosts, cytomegaloviruses (CMVs) have succeeded in adapting to overcome host-specific immune defenses, including the protein kinase R (PKR) pathway. Consequently, these adaptations may also contribute to the inability of CMVs to cross species barriers. Here, we provide evidence that the evolutionary arms race between the antiviral factor PKR and its CMV antagonist TRS1 has led to extensive differences in the species-specificity of primate CMV TRS1 proteins. Moreover, we identify a single residue in human PKR that when mutated to the amino acid present in African green monkey (Agm) PKR (F489S) is sufficient to confer resistance to HCMVTRS1. Notably, this precise molecular determinant of PKR resistance has evolved under strong positive selection among primate PKR alleles and is positioned within the αG helix, which mediates the direct interaction of PKR with its substrate eIF2α. Remarkably, this same residue also impacts sensitivity to K3L, a poxvirus-encoded pseudosubstrate that structurally mimics eIF2α. Unlike K3L, TRS1 has no homology to eIF2α, suggesting that unrelated viral genes have convergently evolved to target this critical region of PKR. Despite its functional importance, the αG helix exhibits extraordinary plasticity, enabling adaptations that allow PKR to evade diverse viral antagonists while still maintaining its critical interaction with eIF2α.
Collapse
Affiliation(s)
- Kathryn S. Carpentier
- Departments of Microbiology and Medicine, University of Washington, Seattle Washington, and Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Nicolle M. Esparo
- Departments of Microbiology and Medicine, University of Washington, Seattle Washington, and Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Stephanie J. Child
- Departments of Microbiology and Medicine, University of Washington, Seattle Washington, and Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Adam P. Geballe
- Departments of Microbiology and Medicine, University of Washington, Seattle Washington, and Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington
- * E-mail:
| |
Collapse
|
119
|
Stutika C, Mietzsch M, Gogol-Döring A, Weger S, Sohn M, Chen W, Heilbronn R. Comprehensive Small RNA-Seq of Adeno-Associated Virus (AAV)-Infected Human Cells Detects Patterns of Novel, Non-Coding AAV RNAs in the Absence of Cellular miRNA Regulation. PLoS One 2016; 11:e0161454. [PMID: 27611072 PMCID: PMC5017669 DOI: 10.1371/journal.pone.0161454] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 08/05/2016] [Indexed: 01/10/2023] Open
Abstract
Most DNA viruses express small regulatory RNAs, which interfere with viral or cellular gene expression. For adeno-associated virus (AAV), a small ssDNA virus with a complex biphasic life cycle miRNAs or other small regulatory RNAs have not yet been described. This is the first comprehensive Illumina-based RNA-Seq analysis of small RNAs expressed by AAV alone or upon co-infection with helper adenovirus or HSV. Several hotspots of AAV-specific small RNAs were detected mostly close to or within the AAV-ITR and apparently transcribed from the newly identified anti-p5 promoter. An additional small RNA hotspot was located downstream of the p40 promoter, from where transcription of non-coding RNAs associated with the inhibition of adenovirus replication were recently described. Parallel detection of known Ad and HSV miRNAs indirectly validated the newly identified small AAV RNA species. The predominant small RNAs were analyzed on Northern blots and by human argonaute protein-mediated co-immunoprecipitation. None of the small AAV RNAs showed characteristics of bona fide miRNAs, but characteristics of alternative RNA processing indicative of differentially regulated AAV promoter-associated small RNAs. Furthermore, the AAV-induced regulation of cellular miRNA levels was analyzed at different time points post infection. In contrast to other virus groups AAV infection had virtually no effect on the expression of cellular miRNA, which underscores the long-established concept that wild-type AAV infection is apathogenic.
Collapse
Affiliation(s)
- Catrin Stutika
- Charité Medical School, Campus Benjamin Franklin, Institute of Virology, Berlin, Germany
| | - Mario Mietzsch
- Charité Medical School, Campus Benjamin Franklin, Institute of Virology, Berlin, Germany
| | | | - Stefan Weger
- Charité Medical School, Campus Benjamin Franklin, Institute of Virology, Berlin, Germany
| | - Madlen Sohn
- Max-Delbrück-Centrum für Molekulare Medizin, Berlin Institute for Medical Systems Biology, Laboratory for Functional Genomics and Systems Biology, Berlin, Germany
| | - Wei Chen
- Max-Delbrück-Centrum für Molekulare Medizin, Berlin Institute for Medical Systems Biology, Laboratory for Functional Genomics and Systems Biology, Berlin, Germany
| | - Regine Heilbronn
- Charité Medical School, Campus Benjamin Franklin, Institute of Virology, Berlin, Germany
- * E-mail:
| |
Collapse
|
120
|
Niehl A, Wyrsch I, Boller T, Heinlein M. Double-stranded RNAs induce a pattern-triggered immune signaling pathway in plants. THE NEW PHYTOLOGIST 2016; 211:1008-19. [PMID: 27030513 DOI: 10.1111/nph.13944] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/24/2016] [Indexed: 05/20/2023]
Abstract
Pattern-triggered immunity (PTI) is a plant defense response that relies on the perception of conserved microbe- or pathogen-associated molecular patterns (MAMPs or PAMPs, respectively). Recently, it has been recognized that PTI restricts virus infection in plants; however, the nature of the viral or infection-induced PTI elicitors and the underlying signaling pathways are still unknown. As double-stranded RNAs (dsRNAs) are conserved molecular patterns associated with virus replication, we applied dsRNAs or synthetic dsRNA analogs to Arabidopsis thaliana and investigated PTI responses. We show that in vitro-generated dsRNAs, dsRNAs purified from virus-infected plants and the dsRNA analog polyinosinic-polycytidylic acid (poly(I:C)) induce typical PTI responses dependent on the co-receptor SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE 1 (SERK1), but independent of dicer-like (DCL) proteins in Arabidopsis. Moreover, dsRNA treatment of Arabidopsis induces SERK1-dependent antiviral resistance. Screening of Arabidopsis wild accessions demonstrates natural variability in dsRNA sensitivity. Our findings suggest that dsRNAs represent genuine PAMPs in plants, which induce a signaling cascade involving SERK1 and a specific dsRNA receptor. The dependence of dsRNA-mediated PTI on SERK1, but not on DCLs, implies that dsRNA-mediated PTI involves membrane-associated processes and operates independently of RNA silencing. dsRNA sensitivity may represent a useful trait to increase antiviral resistance in cultivated plants.
Collapse
Affiliation(s)
- Annette Niehl
- Botany, Department of Environmental Sciences, University of Basel, Basel, CH-4056, Switzerland
| | - Ines Wyrsch
- Botany, Department of Environmental Sciences, University of Basel, Basel, CH-4056, Switzerland
| | - Thomas Boller
- Botany, Department of Environmental Sciences, University of Basel, Basel, CH-4056, Switzerland
| | - Manfred Heinlein
- Botany, Department of Environmental Sciences, University of Basel, Basel, CH-4056, Switzerland
- Institut de Biologie Moléculaire des Plantes, CNRS UPR 2357, Strasbourg, 67000, France
| |
Collapse
|
121
|
Blouin AG, Ross HA, Hobson-Peters J, O'Brien CA, Warren B, MacDiarmid R. A new virus discovered by immunocapture of double-stranded RNA, a rapid method for virus enrichment in metagenomic studies. Mol Ecol Resour 2016; 16:1255-63. [PMID: 26990372 DOI: 10.1111/1755-0998.12525] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/24/2016] [Accepted: 02/26/2016] [Indexed: 11/30/2022]
Abstract
Next-generation sequencing technologies enable the rapid identification of viral infection of diseased organisms. However, despite a consistent decrease in sequencing costs, it is difficult to justify their use in large-scale surveys without a virus sequence enrichment technique. As the majority of plant viruses have an RNA genome, a common approach is to extract the double-stranded RNA (dsRNA) replicative form, to enrich the replicating virus genetic material over the host background. The traditional dsRNA extraction is time-consuming and labour-intensive. We present an alternative method to enrich dsRNA from plant extracts using anti-dsRNA monoclonal antibodies in a pull-down assay. The extracted dsRNA can be amplified by reverse transcriptase-polymerase chain reaction and sequenced by next-generation sequencing. In our study, we have selected three distinct plant hosts: Māori potato (Solanum tuberosum), rengarenga (Arthropodium cirratum) and broadleaved dock (Rumex obtusifolius) representing a cultivated crop, a New Zealand-native ornamental plant and a weed, respectively. Of the sequence data obtained, 31-74% of the reads were of viral origin, and we identified five viruses including Potato virus Y and Potato virus S in potato; Turnip mosaic virus in rengarenga (a new host record); and in the dock sample Cherry leaf roll virus and a novel virus belonging to the genus Macluravirus. We believe that this new assay represents a significant opportunity to upscale virus ecology studies from environmental, primary industry and/or medical samples.
Collapse
Affiliation(s)
- Arnaud G Blouin
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland, 1142, New Zealand.,School of Biological Sciences, University of Auckland, P.O. Box 92019, Auckland, New Zealand
| | - Howard A Ross
- School of Biological Sciences, University of Auckland, P.O. Box 92019, Auckland, New Zealand
| | - Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Qld, 4072, Australia
| | - Caitlin A O'Brien
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Qld, 4072, Australia
| | - Ben Warren
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland, 1142, New Zealand
| | - Robin MacDiarmid
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland, 1142, New Zealand.,School of Biological Sciences, University of Auckland, P.O. Box 92019, Auckland, New Zealand
| |
Collapse
|
122
|
Miesen P, Ivens A, Buck AH, van Rij RP. Small RNA Profiling in Dengue Virus 2-Infected Aedes Mosquito Cells Reveals Viral piRNAs and Novel Host miRNAs. PLoS Negl Trop Dis 2016; 10:e0004452. [PMID: 26914027 PMCID: PMC4767436 DOI: 10.1371/journal.pntd.0004452] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/21/2016] [Indexed: 11/18/2022] Open
Abstract
In Aedes mosquitoes, infections with arthropod-borne viruses (arboviruses) trigger or modulate the expression of various classes of viral and host-derived small RNAs, including small interfering RNAs (siRNAs), PIWI interacting RNAs (piRNAs), and microRNAs (miRNAs). Viral siRNAs are at the core of the antiviral RNA interference machinery, one of the key pathways that limit virus replication in invertebrates. Besides siRNAs, Aedes mosquitoes and cells derived from these insects produce arbovirus-derived piRNAs, the best studied examples being viruses from the Togaviridae or Bunyaviridae families. Host miRNAs modulate the expression of a large number of genes and their levels may change in response to viral infections. In addition, some viruses, mostly with a DNA genome, express their own miRNAs to regulate host and viral gene expression. Here, we perform a comprehensive analysis of both viral and host-derived small RNAs in Aedes aegypti Aag2 cells infected with dengue virus 2 (DENV), a member of the Flaviviridae family. Aag2 cells are competent in producing all three types of small RNAs and provide a powerful tool to explore the crosstalk between arboviral infection and the distinct RNA silencing pathways. Interestingly, besides the well-characterized DENV-derived siRNAs, a specific population of viral piRNAs was identified in infected Aag2 cells. Knockdown of Piwi5, Ago3 and, to a lesser extent, Piwi6 results in reduction of vpiRNA levels, providing the first genetic evidence that Aedes PIWI proteins produce DENV-derived small RNAs. In contrast, we do not find convincing evidence for the production of virus-derived miRNAs. Neither do we find that host miRNA expression is strongly changed upon DENV2 infection. Finally, our deep-sequencing analyses detect 30 novel Aedes miRNAs, complementing the repertoire of regulatory small RNAs in this important vector species. Mosquitoes of the Aedes family transmit many important viruses, including dengue virus, between their vertebrate hosts. In the mosquito, the growth of these viruses is limited by the antiviral RNA interference pathway. Key to this pathway is a class of small non-coding RNAs known as small interfering RNAs (siRNAs). In addition, two related but distinct small RNA pathways known as the microRNA (miRNA) and the PIWI-interacting RNA (piRNA) pathway are implicated in regulating virus replication in mosquitoes. Thus, since small RNAs may critically influence the transmission of dengue virus, we set out to analyze the populations of viral and mosquito small RNAs that are produced in infected Aedes mosquito cells. We found that besides the well-known viral siRNAs, dengue virus-derived piRNAs were produced in these cells and we identified the PIWI proteins that these small RNAs rely on. In addition, we found that viral miRNAs were not expressed from the dengue virus genome and that the levels of mosquito miRNAs were barely changed upon infection. Finally, our data allowed for the identification of novel Aedes miRNAs, complementing the repertoire of these important regulatory RNAs in vector mosquitoes.
Collapse
Affiliation(s)
- Pascal Miesen
- Department of Medical Microbiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Alasdair Ivens
- Centre for Immunity, Infection & Evolution, University of Edinburgh, Edinburgh, United Kingdom
| | - Amy H. Buck
- Centre for Immunity, Infection & Evolution, University of Edinburgh, Edinburgh, United Kingdom
| | - Ronald P. van Rij
- Department of Medical Microbiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
123
|
An Evolutionary View of the Arms Race between Protein Kinase R and Large DNA Viruses. J Virol 2016; 90:3280-3. [PMID: 26792736 DOI: 10.1128/jvi.01996-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
To establish productive infections, viruses must counteract numerous cellular defenses that are poised to recognize viruses as nonself and to activate antiviral pathways. The opposing goals of host and viral factors lead to evolutionary arms races that can be illuminated by evolutionary and computational methods and tested in experimental models. Here we illustrate how this perspective has been contributing to our understanding of the interactions of the protein kinase R pathway with large DNA viruses.
Collapse
|
124
|
Cheng X, Deng P, Cui H, Wang A. Visualizing double-stranded RNA distribution and dynamics in living cells by dsRNA binding-dependent fluorescence complementation. Virology 2015; 485:439-51. [DOI: 10.1016/j.virol.2015.08.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 08/17/2015] [Accepted: 08/19/2015] [Indexed: 01/24/2023]
|