101
|
Li Y, Lee MY, Loh YR, Kang C. Secondary structure and membrane topology of dengue virus NS4A protein in micelles. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:442-450. [PMID: 29055659 DOI: 10.1016/j.bbamem.2017.10.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 09/28/2017] [Accepted: 10/14/2017] [Indexed: 11/18/2022]
Abstract
Dengue virus (DENV) non-structural (NS) 4A is a membrane protein essential for viral replication. The N-terminal region of NS4A contains several helices interacting with the cell membrane and the C-terminal region consists of three potential transmembrane regions. The secondary structure of the intact NS4A is not known as the previous structural studies were carried out on its fragments. In this study, we purified the full-length NS4A of DENV serotype 4 into dodecylphosphocholine (DPC) micelles. Solution NMR studies reveal that NS4A contains six helices in DPC micelles. The N-terminal three helices are amphipathic and interact with the membrane. The C-terminal three helices are embedded in micelles. Our results suggest that NS4A contains three transmembrane helices. Our studies provide for the first time structural information of the intact NS4A of DENV and will be useful for further understanding its role in viral replication.
Collapse
Affiliation(s)
- Yan Li
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore 138669, Singapore
| | - Michelle Yueqi Lee
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore 138669, Singapore
| | - Ying Ru Loh
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore 138669, Singapore
| | - CongBao Kang
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore 138669, Singapore.
| |
Collapse
|
102
|
Shrivastava G, García-Cordero J, León-Juárez M, Oza G, Tapia-Ramírez J, Villegas-Sepulveda N, Cedillo-Barrón L. NS2A comprises a putative viroporin of Dengue virus 2. Virulence 2017; 8:1450-1456. [PMID: 28723277 PMCID: PMC5711424 DOI: 10.1080/21505594.2017.1356540] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/30/2017] [Accepted: 06/30/2017] [Indexed: 12/31/2022] Open
Affiliation(s)
- Gaurav Shrivastava
- Department of Molecular Biomedicine, Center for Research and Advanced Studies (CINVESTAV-IPN), México City, México
| | - Julio García-Cordero
- Department of Molecular Biomedicine, Center for Research and Advanced Studies (CINVESTAV-IPN), México City, México
| | - Moisés León-Juárez
- Department of Immunobiochemistry, National Institute of Perinatology, México City, México
| | - Goldie Oza
- Department of Genetics and Molecular Biology, Center for Research and Advanced Studies (CINVESTAV-IPN), México City, México
| | - Jose Tapia-Ramírez
- Department of Genetics and Molecular Biology, Center for Research and Advanced Studies (CINVESTAV-IPN), México City, México
| | - Nicolas Villegas-Sepulveda
- Department of Molecular Biomedicine, Center for Research and Advanced Studies (CINVESTAV-IPN), México City, México
| | - Leticia Cedillo-Barrón
- Department of Molecular Biomedicine, Center for Research and Advanced Studies (CINVESTAV-IPN), México City, México
| |
Collapse
|
103
|
Liu B, Tang L, Zhang X, Ma J, Sehgal M, Cheng J, Zhang X, Zhou Y, Du Y, Kulp J, Guo JT, Chang J. A cell-based high throughput screening assay for the discovery of cGAS-STING pathway agonists. Antiviral Res 2017; 147:37-46. [PMID: 28982551 DOI: 10.1016/j.antiviral.2017.10.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/28/2017] [Accepted: 10/01/2017] [Indexed: 02/01/2023]
Abstract
Stimulator of interferon genes (STING) is an endoplasmic reticulum transmembrane protein that serves as a molecular hub for activation of interferon and inflammatory cytokine response by multiple cellular DNA sensors. Not surprisingly, STING has been demonstrated to play an important role in host defense against microorganisms and pharmacologic activation of STING is considered as an attractive strategy to treat viral diseases and boost antitumor immunity. In light of this we established a HepAD38-derived reporter cell line that expresses firefly luciferase in response to the activation of cyclic GMP-AMP synthase (cGAS)-STING pathway for high throughput screening (HTS) of small molecular human STING agonists. This cell-based reporter assay required only 4 h treatment with a reference STING agonist to induce a robust luciferase signal and was demonstrated to have an excellent performance in HTS format. By screening 16,000 compounds, a dispiro diketopiperzine (DSDP) compound was identified to induce cytokine response in a manner dependent on the expression of functional human STING, but not mouse STING. Moreover, we showed that DSDP induced an interferon-dominant cytokine response in human skin fibroblasts and peripheral blood mononuclear cells, which in turn potently suppressed the replication of yellow fever virus, dengue virus and Zika virus. We have thus established a robust cell-based assay system suitable for rapid discovery and mechanistic analyses of cGAS-STING pathway agonists. Identification of DSDP as a human STING agonist enriches the pipelines of STING-targeting drug development for treatment of viral infections and cancers.
Collapse
Affiliation(s)
- Bowei Liu
- Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA, USA; Department of Gastroenterology, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Liudi Tang
- Microbiology and Immunology Graduate Program, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Xiaohui Zhang
- Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA, USA; Artificial Liver Center, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Julia Ma
- Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA, USA
| | - Mohit Sehgal
- Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA, USA
| | - Junjun Cheng
- Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA, USA
| | - Xuexiang Zhang
- Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA, USA
| | - Yan Zhou
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Yanming Du
- Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA, USA
| | - John Kulp
- Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA, USA
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA, USA.
| | - Jinhong Chang
- Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA, USA.
| |
Collapse
|
104
|
Zhang HL, Ye HQ, Liu SQ, Deng CL, Li XD, Shi PY, Zhang B. West Nile Virus NS1 Antagonizes Interferon Beta Production by Targeting RIG-I and MDA5. J Virol 2017; 91:e02396-16. [PMID: 28659477 PMCID: PMC5571242 DOI: 10.1128/jvi.02396-16] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 06/20/2017] [Indexed: 11/20/2022] Open
Abstract
West Nile virus (WNV) is a mosquito-borne flavivirus that causes epidemics of encephalitis and viscerotropic disease worldwide. This virus has spread rapidly and has posed a significant public health threat since the outbreak in New York City in 1999. The interferon (IFN)-mediated antiviral response represents an important component of virus-host interactions and plays an essential role in regulating viral replication. Previous studies have suggested that multifunctional nonstructural proteins encoded by flaviviruses antagonize the host IFN response via various means in order to establish efficient viral replication. In this study, we demonstrated that the nonstructural protein 1 (NS1) of WNV antagonizes IFN-β production, most likely through suppression of retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) activation. In a dual-luciferase reporter assay, WNV NS1 significantly inhibited the activation of the IFN-β promoter after Sendai virus infection or poly(I·C) treatment. NS1 also suppressed the activation of the IFN-β promoter when it was stimulated by interferon regulatory factor 3 (IRF3)/5D or its upstream molecules in the RLR signaling pathway. Furthermore, NS1 blocked the phosphorylation and nuclear translocation of IRF3 upon stimulation by various inducers. Mechanistically, WNV NS1 targets RIG-I and melanoma differentiation-associated gene 5 (MDA5) by interacting with them and subsequently causing their degradation by the proteasome. Furthermore, WNV NS1 inhibits the K63-linked polyubiquitination of RIG-I, thereby inhibiting the activation of downstream sensors in the RLR signaling pathway. Taken together, our results reveal a novel mechanism by which WNV NS1 interferes with the host antiviral response.IMPORTANCE WNV Nile virus (WNV) has received increased attention since its introduction to the United States. However, the pathogenesis of this virus is poorly understood. This study demonstrated that the nonstructural protein 1 (NS1) of WNV antagonizes the induction of interferon beta (IFN-β) by interacting with and degrading retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5), which are crucial viral sensors in the host innate immune system. Further experiments suggested that NS1-mediated inhibition of the RIG-I-like receptor (RLR) signaling pathway involves inhibition of RIG-I K63-linked polyubiquitination and that the proteasome plays a role in RIG-I degradation. This study provides new insights into the regulation of WNV NS1 in the RLR signaling pathway and reveals a novel mechanism by which WNV evades the host innate immune response. The novel findings may guide us to discover new therapeutic targets and develop effective vaccines for WNV infections.
Collapse
Affiliation(s)
- Hong-Lei Zhang
- Chinese Academy of Sciences Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Han-Qing Ye
- Chinese Academy of Sciences Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Si-Qing Liu
- Chinese Academy of Sciences Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Cheng-Lin Deng
- Chinese Academy of Sciences Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xiao-Dan Li
- Chinese Academy of Sciences Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pei-Yong Shi
- University of Texas Medical Branch, Galveston, Texas, USA
| | - Bo Zhang
- Chinese Academy of Sciences Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
105
|
Brand C, Bisaillon M, Geiss BJ. Organization of the Flavivirus RNA replicase complex. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 8. [PMID: 28815931 DOI: 10.1002/wrna.1437] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/09/2017] [Accepted: 07/13/2017] [Indexed: 12/20/2022]
Abstract
Flaviviruses, such as dengue, Japanese encephalitis, West Nile, yellow fever, and Zika viruses, are serious human pathogens that cause significant morbidity and mortality globally each year. Flaviviruses are single-stranded, positive-sense RNA viruses, and encode two multidomain proteins, NS3 and NS5, that possess all enzymatic activities required for genome replication and capping. NS3 and NS5 interact within virus-induced replication compartments to form the RNA genome replicase complex. Although the individual enzymatic activities of both proteins have been extensively studied and are well characterized, there are still gaps in our understanding of how they interact to efficiently coordinate their respective activities during positive-strand RNA synthesis and capping. Here, we discuss what is known about the structures and functions of the NS3 and NS5 proteins and propose a preliminary NS3:NS5:RNA interaction model based on a large body of literature about how the viral enzymes function, physical restraints between NS3 and NS5, as well as critical steps in the replication process. WIREs RNA 2017, 8:e1437. doi: 10.1002/wrna.1437 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Carolin Brand
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Martin Bisaillon
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Brian J Geiss
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA.,School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
106
|
Osman H, Idris NH, Kamarulzaman EE, Wahab HA, Hassan MZ. 3,5-Bis(arylidene)-4-piperidones as potential dengue protease inhibitors. Acta Pharm Sin B 2017; 7:479-484. [PMID: 28752033 PMCID: PMC5518655 DOI: 10.1016/j.apsb.2017.04.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/28/2017] [Accepted: 03/15/2017] [Indexed: 11/25/2022] Open
Abstract
Dengue is a severe mosquito-borne viral infection causing half a million deaths annually. Dengue virus NS2B/NS3 protease is a validated target for anti-dengue drug design. A series of hitherto unreported 3,5-bis(arylidene)-4-piperidones analogues 4a-4j were synthesized and screened in silico against DENV2 NS2B/NS3 protease to elucidate their binding mechanism and orientation around the active sites. Results were validated through an in vitro DENV2 NS2B/NS3 protease assay using a fluorogenic Boc-Gly-Arg-Arg-AMC substrate. Nitro derivatives of 3,5-bis(arylidene)-4-piperidones (4e and 4j) emerged as promising lead molecules for novel protease inhibitors with an IC50 of 15.22 and 16.23 µmol/L, respectively, compared to the standard, panduratin A, having IC50 of 57.28 µmol/L.
Collapse
|
107
|
Spontaneous membrane insertion of a dengue virus NS2A peptide. Arch Biochem Biophys 2017; 627:56-66. [PMID: 28666739 DOI: 10.1016/j.abb.2017.06.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/16/2017] [Accepted: 06/25/2017] [Indexed: 12/27/2022]
Abstract
Non-structural NS2A protein of Dengue virus is essential for viral replication but poorly characterized because of its high hydrophobicity. We have previously shown experimentally that NS2A possess a segment, peptide dens25, known to insert into membranes and interact specifically with negatively-charged phospholipids. To characterize its membrane interaction we have used two types of molecular dynamics membrane model systems, a highly mobile membrane mimetic (HMMM) and an endoplasmic reticulum (ER) membrane-like model. Using the HMMM system, we have been able of demonstrating the spontaneous binding of dens25 to the negatively-charged phospholipid 1,2-divaleryl-sn-glycero-3-phosphate containing membrane whereas no binding was observed for the membrane containing the zwitterionic one 1,2-divaleryl-sn-glycero-3-phosphocholine. Using the ER-like membrane model system, we demonstrate the spontaneous insertion of dens25 into the middle of the membrane, it maintained its three-dimensional structure and presented a nearly parallel orientation with respect to the membrane surface. Both charged and hydrophobic amino acids, presenting an interfacial/hydrophobic pattern characteristic of a membrane-proximal segment, are responsible for membrane binding and insertion. Dens25 might control protein/membrane interaction and be involved in membrane rearrangements critical for the viral cycle. These data should help us in the development of inhibitor molecules that target NS2A segments involved in membrane reorganisation.
Collapse
|
108
|
Mutagenesis of Dengue Virus Protein NS2A Revealed a Novel Domain Responsible for Virus-Induced Cytopathic Effect and Interactions between NS2A and NS2B Transmembrane Segments. J Virol 2017; 91:JVI.01836-16. [PMID: 28381578 DOI: 10.1128/jvi.01836-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 03/21/2017] [Indexed: 01/08/2023] Open
Abstract
The NS2A protein of dengue virus (DENV) has eight predicted transmembrane segments (pTMS1 to -8) and participates in RNA replication, virion assembly, and host antiviral response. However, the roles of specific amino acid residues within the pTMS regions of NS2A during the viral life cycle are not clear. Here, we explore the function of DENV NS2A by introducing a series of alanine substitutions into the N-terminal half (pTMS1 to -4) of the protein in the context of a DENV infectious clone or subgenomic replicon. Six NS2A mutants (NM5, -7, -9, and -17 to -19) around pTMS1 and -2 displayed a novel phenotype showing a >1,000-fold reduction in virus yield, an absence of plaque formation despite wild-type-like replicon activity, and infectious-virus-like particle yields. HEK-293 cells infected with the six NS2A mutant viruses failed to cause a virus-induced cytopathic effect (CPE) by MitoCapture staining, cell proliferation, and lactate dehydrogenase release assays. Sequencing analyses of pseudorevertant viruses derived from lethal-mutant viruses revealed two consensus reversion mutations, leucine to phenylalanine at codon 181 (L181F) within pTMS7 of NS2A and isoleucine to threonine at codon 114 (I114T) within NS2B. The introduction of an NS2A-L181F mutation into the lethal (NM15, -16, -25, and -33) and CPE-defective (NM7, -9, and -19) mutants substantially rescued virus infectivity and virus-induced CPE, respectively, whereas the NS2B-L114T mutation rescued the NM16, -25, and -33 mutants. In conclusion, the results revealed the essential roles of the N-terminal half of NS2A in RNA replication and virus-induced CPE. Intramolecular interactions between pTMSs of NS2A and intermolecular interactions between the NS2A and NS2B proteins were also implicated.IMPORTANCE The characterization of the N-terminal (current study) and C-terminal halves of DENV NS2A is the most comprehensive mutagenesis study to date to investigate the function of NS2A during the flaviviral life cycle. A novel region responsible for virus-induced cytopathic effect (CPE) within pTMS1 and -2 of DENV NS2A was identified. Revertant genetics studies implied unexpected relationships between various pTMSs of DENV NS2A and NS2B. These results provide comprehensive information regarding the functions of DENV NS2A and the specific amino acids and transmembrane segments responsible for these functions. The positions and properties of the rescuing mutations were also revealed, providing important clues regarding the manner in which intramolecular or intermolecular interactions between the pTMSs of NS2A and NS2B regulate virus replication, assembly/secretion, and virus-induced CPE. These results expand the understanding of flavivirus replication. The knowledge may also facilitate studies of pathogenesis and novel vaccine and antiflaviviral drug development.
Collapse
|
109
|
Lu CY, Hour MJ, Wang CY, Huang SH, Mu WX, Chang YC, Lin CW. Single-Round Infectious Particle Antiviral Screening Assays for the Japanese Encephalitis Virus. Viruses 2017; 9:v9040076. [PMID: 28394283 PMCID: PMC5408682 DOI: 10.3390/v9040076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 12/13/2022] Open
Abstract
Japanese Encephalitis virus (JEV) is a mosquito-borne flavivirus with a positive-sense single-stranded RNA genome that contains a big open reading frame (ORF) flanked by 5′- and 3′- untranslated regions (UTRs). Nearly 30,000 JE cases with 10,000 deaths are still annually reported in East Asia. Although the JEV genotype III vaccine has been licensed, it elicits a lower protection against other genotypes. Moreover, no effective treatment for a JE case is developed. This study constructed a pBR322-based and cytomegaloviruses (CMV) promoter-driven JEV replicon for the production of JEV single-round infectious particles (SRIPs) in a packaging cell line expressing viral structural proteins. Genetic instability of JEV genome cDNA in the pBR322 plasmid was associated with the prokaryotic promoter at 5′ end of the JEV genome that triggers the expression of the structural proteins in E. coli. JEV structural proteins were toxic E. coli, thus the encoding region for structural proteins was replaced by a reporter gene (enhanced green fluorescent protein, EGFP) that was in-frame fused with the first eight amino acids of the C protein at N-terminus and the foot-and-mouth disease virus (FMDV) 2A peptide at C-terminus in a pBR322-based JEV-EGFP replicon. JEV-EGFP SRIPs generated from JEV-EGFP replicon-transfected packaging cells displayed the infectivity with cytopathic effect induction, self-replication of viral genomes, and the expression of EGFP and viral proteins. Moreover, the combination of JEV-EGFP SRIP plus flow cytometry was used to determine the half maximal inhibitory concentration (IC50) values of antiviral agents according to fluorescent intensity and positivity of SRIP-infected packaging cells post treatment. MJ-47, a quinazolinone derivative, significantly inhibited JEV-induced cytopathic effect, reducing the replication and expression of JEV-EGFP replicon in vitro. The IC50 value of 6.28 µM for MJ-47 against JEV was determined by the assay of JEV-EGFP SRIP infection in packaging cells plus flow cytometry that was more sensitive, effective, and efficient compared to the traditional plaque assay. Therefore, the system of JEV-EGFP SRIPs plus flow cytometry was a rapid and reliable platform for screening antiviral agents and evaluating antiviral potency.
Collapse
Affiliation(s)
- Chien-Yi Lu
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 40402, Taiwan.
| | - Mann-Jen Hour
- School of Pharmacy, China Medical University, Taichung 40402, Taiwan.
| | - Ching-Ying Wang
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 40402, Taiwan.
| | - Su-Hua Huang
- Department of Biotechnology, Asia University, Taichung 41354, Taiwan.
| | - Wen-Xiang Mu
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 40402, Taiwan.
| | - Yu-Chun Chang
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 40402, Taiwan.
| | - Cheng-Wen Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 40402, Taiwan.
- Department of Biotechnology, Asia University, Taichung 41354, Taiwan.
| |
Collapse
|
110
|
Routhu NK, Byrareddy SN. Host-Virus Interaction of ZIKA Virus in Modulating Disease Pathogenesis. J Neuroimmune Pharmacol 2017; 12:219-232. [PMID: 28349242 DOI: 10.1007/s11481-017-9736-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/03/2017] [Indexed: 01/08/2023]
Abstract
The Zika virus (ZIKV) is a newly emerging pathogen that has resulted in a worldwide epidemic. It primarily spreads either through infected Aedes aegypti or Aedes albopictus mosquitos leading to severe neurological disorders such as microcephaly and Guillain-Barré syndrome in susceptible individuals. The mode of ZIKV entry into specific cell types such as: epidermal keratinocytes, fibroblasts, immature dendritic cells (iDCs), and stem-cell-derived human neural progenitors has been determined through its major surface envelope glycoprotein. It has been known that oligosaccharides that are covalently linked to viral envelope proteins are crucial in defining host-virus interactions. However, the role of sugars/glycans in exploiting host-immune mechanisms and aiding receptor-mediated virus entry is not well defined. Therefore, this review focuses on host-pathogen interactions to better understand ZIKV pathogenesis.
Collapse
Affiliation(s)
- Nanda Kishore Routhu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA. .,Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
111
|
Yang Y, Shan C, Zou J, Muruato AE, Bruno DN, de Almeida Medeiros Daniele B, Vasconcelos PFC, Rossi SL, Weaver SC, Xie X, Shi PY. A cDNA Clone-Launched Platform for High-Yield Production of Inactivated Zika Vaccine. EBioMedicine 2017; 17:145-156. [PMID: 28196656 PMCID: PMC5360567 DOI: 10.1016/j.ebiom.2017.02.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/03/2017] [Accepted: 02/03/2017] [Indexed: 12/14/2022] Open
Abstract
A purified inactivated vaccine (PIV) using the Zika virus (ZIKV) Puerto Rico strain PRVABC59 showed efficacy in monkeys, and is currently in a phase I clinical trial. High-yield manufacture of this PIV is essential for its development and vaccine access. Here we report an infectious cDNA clone-launched platform to maximize its yield. A single NS1 protein substitution (K265E) was identified to increase ZIKV replication on Vero cells (a cell line approved for vaccine production) for both Cambodian FSS13025 and Puerto Rico PRVABC59 strains. The NS1 mutation did not affect viral RNA synthesis, but significantly increased virion assembly through an increased interaction between NS1 and NS2A (a known regulator of flavivirus assembly). The NS1 mutant virus retained wild-type virulence in the A129 mouse model, but decreased its competence to infect Aedes aegypti mosquitoes. To further increase virus yield, we constructed an infectious cDNA clone of the clinical trial PIV strain PRVABC59 containing three viral replication-enhancing mutations (NS1 K265E, prM H83R, and NS3 S356F). The mutant cDNA clone produced > 25-fold more ZIKV than the wild-type parent on Vero cells. This cDNA clone-launched manufacture platform has the advantages of higher virus yield, shortened manufacture time, and minimized chance of contamination. A cDNA clone platform was developed to produce high-yield inactivated Zika vaccine. The platform is superior to the traditional method to produce inactivated vaccine. A single NS1 mutation enhanced ZIKV assembly through increased NS1/NS2A interaction.
An inactivated Zika virus (ZIKV) vaccine is currently in a phase I clinical trial. A platform of high-yield manufacture of this inactivated vaccine will greatly facilitate its development. Here we report a cDNA clone-launched platform for high-yield production of inactivated Zika vaccine. An NS1 K265E mutation was identified to significantly increase the yield of ZIKV production on Vero cells. This mutation increased ZIKV production through enhanced virion assembly and NS1/NS2A interaction. An infectious cDNA clone of the clinical trial PRVABC59 vaccine strain containing three viral replication-enhancing mutations was constructed to launch high-yield manufacture of ZIKV vaccine on Vero cells.
Collapse
Affiliation(s)
- Yujiao Yang
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA; College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Chao Shan
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jing Zou
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Antonio E Muruato
- Institute for Human Infections & Immunity, Galveston, TX, USA; Institute for Translational Science, Galveston, TX, USA
| | - Diniz Nunes Bruno
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA; Seção de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Ministério da Saúde, Ananindeua, Pará, Brazil
| | - Barbosa de Almeida Medeiros Daniele
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA; Seção de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Ministério da Saúde, Ananindeua, Pará, Brazil
| | - Pedro F C Vasconcelos
- Seção de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Ministério da Saúde, Ananindeua, Pará, Brazil; Department of Pathology, Pará State University, Belém, Brazil
| | - Shannan L Rossi
- Institute for Human Infections & Immunity, Galveston, TX, USA; Department of Pathology, Center for Biodefense & Emerging Infectious Diseases, Galveston, TX, USA
| | - Scott C Weaver
- Institute for Human Infections & Immunity, Galveston, TX, USA; Institute for Translational Science, Galveston, TX, USA; Department of Microbiology & Immunology, Galveston, TX, USA; Sealy Center for Vaccine Development, Galveston, TX, USA; Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA
| | - Xuping Xie
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA.
| | - Pei-Yong Shi
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA; Institute for Translational Science, Galveston, TX, USA; Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA; Department of Pathology, Pará State University, Belém, Brazil; Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
112
|
da Fonseca NJ, Lima Afonso MQ, Pedersolli NG, de Oliveira LC, Andrade DS, Bleicher L. Sequence, structure and function relationships in flaviviruses as assessed by evolutive aspects of its conserved non-structural protein domains. Biochem Biophys Res Commun 2017; 492:565-571. [PMID: 28087275 DOI: 10.1016/j.bbrc.2017.01.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/09/2017] [Indexed: 10/20/2022]
Abstract
Flaviviruses are responsible for serious diseases such as dengue, yellow fever, and zika fever. Their genomes encode a polyprotein which, after cleavage, results in three structural and seven non-structural proteins. Homologous proteins can be studied by conservation and coevolution analysis as detected in multiple sequence alignments, usually reporting positions which are strictly necessary for the structure and/or function of all members in a protein family or which are involved in a specific sub-class feature requiring the coevolution of residue sets. This study provides a complete conservation and coevolution analysis on all flaviviruses non-structural proteins, with results mapped on all well-annotated available sequences. A literature review on the residues found in the analysis enabled us to compile available information on their roles and distribution among different flaviviruses. Also, we provide the mapping of conserved and coevolved residues for all sequences currently in SwissProt as a supplementary material, so that particularities in different viruses can be easily analyzed.
Collapse
Affiliation(s)
- Néli José da Fonseca
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Belo Horizonte, 31270-901, Brazil.
| | - Marcelo Querino Lima Afonso
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Belo Horizonte, 31270-901, Brazil.
| | - Natan Gonçalves Pedersolli
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Belo Horizonte, 31270-901, Brazil.
| | - Lucas Carrijo de Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Belo Horizonte, 31270-901, Brazil.
| | - Dhiego Souto Andrade
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Belo Horizonte, 31270-901, Brazil.
| | - Lucas Bleicher
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Belo Horizonte, 31270-901, Brazil.
| |
Collapse
|
113
|
Abstract
Replication of positive-strand RNA viruses occurs in tight association with reorganized host cell membranes. In a concerted fashion, viral and cellular factors generate distinct organelle-like structures, designated viral replication factories. These virus-induced compartments promote highly efficient genome replication, allow spatiotemporal coordination of the different steps of the viral replication cycle, and protect viral RNA from the hostile cytoplasmic environment. The combined use of ultrastructural and functional studies has greatly increased our understanding of the architecture and biogenesis of viral replication factories. Here, we review common concepts and distinct differences in replication organelle morphology and biogenesis within the Flaviviridae family, exemplified by dengue virus and hepatitis C virus. We discuss recent progress made in our understanding of the complex interplay between viral determinants and subverted cellular membrane homeostasis in biogenesis and maintenance of replication factories of this virus family.
Collapse
Affiliation(s)
- David Paul
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, 69120 Heidelberg, Germany; ,
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, 69120 Heidelberg, Germany; , .,Division of Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
114
|
Li Y, Wong YL, Lee MY, Li Q, Wang QY, Lescar J, Shi PY, Kang C. Secondary Structure and Membrane Topology of the Full-Length Dengue Virus NS4B in Micelles. Angew Chem Int Ed Engl 2016; 55:12068-72. [DOI: 10.1002/anie.201606609] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Indexed: 01/15/2023]
Affiliation(s)
- Yan Li
- Experimental Therapeutics Centre; Agency for Science, Technology and Research (A*STAR); 31 Biopolis Way, Nanos, #03-01 Singapore 138669 Singapore
| | - Ying Lei Wong
- Experimental Therapeutics Centre; Agency for Science, Technology and Research (A*STAR); 31 Biopolis Way, Nanos, #03-01 Singapore 138669 Singapore
| | - Michelle Yueqi Lee
- Experimental Therapeutics Centre; Agency for Science, Technology and Research (A*STAR); 31 Biopolis Way, Nanos, #03-01 Singapore 138669 Singapore
| | - Qingxin Li
- Institute of Chemical & Engineering Sciences; Agency for Science, Technology, and Research; 1 Pesek Road, Jurong Island Singapore 627833 Singapore
| | - Qing-Yin Wang
- Novartis Institute for Tropical Diseases; Singapore Singapore
| | - Julien Lescar
- School of Biological Sciences; Nanyang Technological University; Singapore Singapore
| | - Pei-Yong Shi
- Department of Biochemistry & Molecular Biology, Department of Pharmacology & Toxicology; Sealy Center for Structural Biology & Molecular Biophysics; University of Texas Medical Branch; Galveston TX USA
| | - CongBao Kang
- Experimental Therapeutics Centre; Agency for Science, Technology and Research (A*STAR); 31 Biopolis Way, Nanos, #03-01 Singapore 138669 Singapore
| |
Collapse
|
115
|
Secondary Structure and Membrane Topology of the Full-Length Dengue Virus NS4B in Micelles. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201606609] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
116
|
Dietrich EA, Langevin SA, Huang CYH, Maharaj PD, Delorey MJ, Bowen RA, Kinney RM, Brault AC. West Nile Virus Temperature Sensitivity and Avian Virulence Are Modulated by NS1-2B Polymorphisms. PLoS Negl Trop Dis 2016; 10:e0004938. [PMID: 27548738 PMCID: PMC4993437 DOI: 10.1371/journal.pntd.0004938] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 08/01/2016] [Indexed: 01/29/2023] Open
Abstract
West Nile virus (WNV) replicates in a wide variety of avian species, which serve as reservoir and amplification hosts. WNV strains isolated in North America, such as the prototype strain NY99, elicit a highly pathogenic response in certain avian species, notably American crows (AMCRs; Corvus brachyrhynchos). In contrast, a closely related strain, KN3829, isolated in Kenya, exhibits a low viremic response with limited mortality in AMCRs. Previous work has associated the difference in pathogenicity primarily with a single amino acid mutation at position 249 in the helicase domain of the NS3 protein. The NY99 strain encodes a proline residue at this position, while KN3829 encodes a threonine. Introduction of an NS3-T249P mutation in the KN3829 genetic background significantly increased virulence and mortality; however, peak viremia and mortality were lower than those of NY99. In order to elucidate the viral genetic basis for phenotype variations exclusive of the NS3-249 polymorphism, chimeric NY99/KN3829 viruses were created. We show herein that differences in the NS1-2B region contribute to avian pathogenicity in a manner that is independent of and additive with the NS3-249 mutation. Additionally, NS1-2B residues were found to alter temperature sensitivity when grown in avian cells. West Nile virus (WNV) is a mosquito-borne virus that has caused outbreaks in humans in many regions of the world. Birds are the natural hosts for WNV. However, different strains of WNV cause different disease outcomes in birds. Here, we compared two WNV strains, one of which causes higher mortality and generates more virus in American crows than the other. Previous research has shown that this difference is due in large part to a difference between the two strains at a single amino acid in the NS3 gene; however, this difference does not completely explain the observed effect. Here we show that another region of the viral genome also affects disease outcomes in American crows, and changes the sensitivity of the virus to temperature when grown in bird cells. These findings help us to understand the genetic features that affect WNV infection and disease outcomes in its natural host. Detection of such features in new strains of WNV and related viruses could help to understand and predict future outbreaks.
Collapse
Affiliation(s)
- Elizabeth A. Dietrich
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Stanley A. Langevin
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, United States of America
| | - Claire Y.-H. Huang
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Payal D. Maharaj
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, United States of America
| | - Mark J. Delorey
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Richard A. Bowen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Richard M. Kinney
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Aaron C. Brault
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
117
|
Barzon L, Trevisan M, Sinigaglia A, Lavezzo E, Palù G. Zika virus: from pathogenesis to disease control. FEMS Microbiol Lett 2016; 363:fnw202. [PMID: 27549304 DOI: 10.1093/femsle/fnw202] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2016] [Indexed: 12/21/2022] Open
Abstract
Zika virus is a mosquito-borne flavivirus discovered in Uganda in 1947. The virus has emerged in recent years and spread in the Pacific Area and the Americas, where it has caused large human outbreaks. The factors involved in the virus's emergence are still unknown, but probably include its introduction in naïve environments characterised by the presence of high densities of competent Aedes spp. mosquitoes and susceptible human hosts in urban areas. Unique features of Zika virus infection are sexual and transplacental transmission and associated neurological morbidities, i.e. Guillain-Barré syndrome and fetal microcephaly. Diagnosis relies on the detection of viral nucleic acids in biological samples, while detection of a specific antibody response may be inconclusive because of the broad cross-reactivity of antibodies among flaviviruses. Experimental studies have clarified some mechanisms of Zika virus pathogenesis and have identified potential targets for antiviral drugs. In animal models, the virus can infect and efficiently replicate in the placenta and in the brain, and induce fetal demise or neural damage, recapitulating human diseases. These animal models have been used to evaluate candidate vaccines and promising results have been obtained.
Collapse
Affiliation(s)
- Luisa Barzon
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Marta Trevisan
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | - Enrico Lavezzo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padova, Padova, Italy
| |
Collapse
|
118
|
Abstract
Dengue virus affects hundreds of millions of people each year around the world, causing a tremendous social and economic impact on affected countries. The aim of this review is to summarize our current knowledge of the functions, structure, and interactions of the viral capsid protein. The primary role of capsid is to package the viral genome. There are two processes linked to this function: the recruitment of the viral RNA during assembly and the release of the genome during infection. Although particle assembly takes place on endoplasmic reticulum membranes, capsid localizes in nucleoli and lipid droplets. Why capsid accumulates in these locations during infection remains unknown. In this review, we describe available data and discuss new ideas on dengue virus capsid functions and interactions. We believe that a deeper understanding of how the capsid protein works during infection will create opportunities for novel antiviral strategies, which are urgently needed to control dengue virus infections.
Collapse
Affiliation(s)
- Laura A Byk
- Fundación Instituto Leloir-National Research Council for Science and Technology (CONICET), Buenos Aires 1405, Argentina;
| | - Andrea V Gamarnik
- Fundación Instituto Leloir-National Research Council for Science and Technology (CONICET), Buenos Aires 1405, Argentina;
| |
Collapse
|
119
|
Waman VP, Kasibhatla SM, Kale MM, Kulkarni-Kale U. Population genomics of dengue virus serotype 4: insights into genetic structure and evolution. Arch Virol 2016; 161:2133-48. [DOI: 10.1007/s00705-016-2886-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 05/02/2016] [Indexed: 12/30/2022]
|
120
|
A Proline-Rich N-Terminal Region of the Dengue Virus NS3 Is Crucial for Infectious Particle Production. J Virol 2016; 90:5451-61. [PMID: 27009958 DOI: 10.1128/jvi.00206-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/17/2016] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED Dengue virus is currently the most important insect-borne viral human pathogen. Viral nonstructural protein 3 (NS3) is a key component of the viral replication machinery that performs multiple functions during viral replication and participates in antiviral evasion. Using dengue virus infectious clones and reporter systems to dissect each step of the viral life cycle, we examined the requirements of different domains of NS3 on viral particle assembly. A thorough site-directed mutagenesis study based on solvent-accessible surface areas of NS3 revealed that, in addition to being essential for RNA replication, different domains of dengue virus NS3 are critically required for production of infectious viral particles. Unexpectedly, point mutations in the protease, interdomain linker, or helicase domain were sufficient to abolish infectious particle formation without affecting translation, polyprotein processing, or RNA replication. In particular, we identified a novel proline-rich N-terminal unstructured region of NS3 that contains several amino acid residues involved in infectious particle formation. We also showed a new role for the interdomain linker of NS3 in virion assembly. In conclusion, we present a comprehensive genetic map of novel NS3 determinants for viral particle assembly. Importantly, our results provide evidence of a central role of NS3 in the coordination of both dengue virus RNA replication and particle formation. IMPORTANCE Dengue virus is an important human pathogen, and its prominence is expanding globally; however, basic aspects of its biology are still unclear, hindering the development of effective therapeutic and prophylactic treatments. Little is known about the initial steps of dengue and other flavivirus particle assembly. This process involves a complex interplay between viral and cellular components, making it an attractive antiviral target. Unpredictably, we identified spatially separated regions of the large NS3 viral protein as determinants for dengue virus particle assembly. NS3 is a multifunctional enzyme that participates in different steps of the viral life cycle. Using reporter systems to dissect different viral processes, we identified a novel N-terminal unstructured region of the NS3 protein as crucial for production of viral particles. Based on our findings, we propose new ideas that include NS3 as a possible scaffold for the viral assembly process.
Collapse
|
121
|
Glycosylation of dengue virus glycoproteins and their interactions with carbohydrate receptors: possible targets for antiviral therapy. Arch Virol 2016; 161:1751-60. [PMID: 27068162 PMCID: PMC7087181 DOI: 10.1007/s00705-016-2855-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/29/2016] [Indexed: 12/21/2022]
Abstract
Dengue virus, an RNA virus belonging to the genus Flavivirus, affects 50 million individuals annually, and approximately 500,000-1,000,000 of these infections lead to dengue hemorrhagic fever or dengue shock syndrome. With no licensed vaccine or specific antiviral treatments available to prevent dengue infection, dengue is considered a major public health problem in subtropical and tropical regions. The virus, like other enveloped viruses, uses the host's cellular enzymes to synthesize its structural (C, E, and prM/M) and nonstructural proteins (NS1-5) and, subsequently, to glycosylate these proteins to produce complete and functional glycoproteins. The structural glycoproteins, specifically the E protein, are known to interact with the host's carbohydrate receptors through the viral proteins' N-glycosylation sites and thus mediate the viral invasion of cells. This review focuses on the involvement of dengue glycoproteins in the course of infection and the virus' exploitation of the host's glycans, especially the interactions between host receptors and carbohydrate moieties. We also discuss the recent developments in antiviral therapies that target these processes and interactions, focusing specifically on the use of carbohydrate-binding agents derived from plants, commonly known as lectins, to inhibit the progression of infection.
Collapse
|
122
|
Abstract
INTRODUCTION Flaviviruses are major causes of infectious disease. The vast global, social and economic impact due to morbidity and mortality associated with diseases caused by these viruses urgently demands effective therapeutic interventions. There is currently no specific antiviral therapy available for the effective clinical treatment of infections by any of the flaviviridae. Development of more effective vaccines and antiviral agents for the prevention and treatment of most flavivirus infections remains a clear public health priority in the 21st century. AREAS COVERED This review describes some of the recent discoveries in the field of flavivirus inhibitor development, with a particular focus on targeting viral proteins. Emphasis is placed on the advances published during the 2012-2015 period. EXPERT OPINION The field of drug discovery targeting viral proteins has progressed slowly in recent years. New information, particularly on structures, location and mechanisms of action of established protein targets have been reported. There have also been studies on repurposing known drugs as templates for targeting flavivirus proteins and these hits could be promising templates for developing new more potent inhibitors. Further research should be conducted to improve in vitro assays that better reflect the conditions found in cellular environments.
Collapse
Affiliation(s)
- W Mei Kok
- a Division of Chemistry and Structural Biology, Institute for Molecular Bioscience , The University of Queensland , Brisbane , Australia
| |
Collapse
|
123
|
Hapuarachchi HC, Koo C, Kek R, Xu H, Lai YL, Liu L, Kok SY, Shi Y, Chuen RLT, Lee KS, Maurer-Stroh S, Ng LC. Intra-epidemic evolutionary dynamics of a Dengue virus type 1 population reveal mutant spectra that correlate with disease transmission. Sci Rep 2016; 6:22592. [PMID: 26940650 PMCID: PMC4778070 DOI: 10.1038/srep22592] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/17/2016] [Indexed: 12/26/2022] Open
Abstract
Dengue virus (DENV) is currently the most prevalent mosquito-borne viral pathogen. DENVs naturally exist as highly heterogeneous populations. Even though the descriptions on DENV diversity are plentiful, only a few studies have narrated the dynamics of intra-epidemic virus diversity at a fine scale. Such accounts are important to decipher the reciprocal relationship between viral evolutionary dynamics and disease transmission that shape dengue epidemiology. In the current study, we present a micro-scale genetic analysis of a monophyletic lineage of DENV-1 genotype III (epidemic lineage) detected from November 2012 to May 2014. The lineage was involved in an unprecedented dengue epidemic in Singapore during 2013–2014. Our findings showed that the epidemic lineage was an ensemble of mutants (variants) originated from an initial mixed viral population. The composition of mutant spectrum was dynamic and positively correlated with case load. The close interaction between viral evolution and transmission intensity indicated that tracking genetic diversity through time is potentially a useful tool to infer DENV transmission dynamics and thereby, to assess the epidemic risk in a disease control perspective. Moreover, such information is salient to understand the viral basis of clinical outcome and immune response variations that is imperative to effective vaccine design.
Collapse
Affiliation(s)
| | - Carmen Koo
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667
| | - Relus Kek
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667
| | - Helen Xu
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667
| | - Yee Ling Lai
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667
| | - Lilac Liu
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667
| | - Suet Yheng Kok
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667
| | - Yuan Shi
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667
| | - Raphael Lee Tze Chuen
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street #07-01, Matrix Building, Singapore 138671
| | - Kim-Sung Lee
- School of Life Sciences and Chemical Technology, Ngee Ann Polytechnic, Block 83, #04-00, 535 Clementi Road, Singapore 599489
| | - Sebastian Maurer-Stroh
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street #07-01, Matrix Building, Singapore 138671.,School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore 637551.,National Public Health Laboratory (NPHL), Ministry of Health (MOH), 3 Biopolis Drive, #05-14 to 16, Synapse, Singapore 138623
| | - Lee Ching Ng
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667.,School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore 637551
| |
Collapse
|
124
|
Molecular basis for specific viral RNA recognition and 2'-O-ribose methylation by the dengue virus nonstructural protein 5 (NS5). Proc Natl Acad Sci U S A 2015; 112:14834-9. [PMID: 26578813 DOI: 10.1073/pnas.1514978112] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Dengue virus (DENV) causes several hundred million human infections and more than 20,000 deaths annually. Neither an efficacious vaccine conferring immunity against all four circulating serotypes nor specific drugs are currently available to treat this emerging global disease. Capping of the DENV RNA genome is an essential structural modification that protects the RNA from degradation by 5' exoribonucleases, ensures efficient expression of viral proteins, and allows escape from the host innate immune response. The large flavivirus nonstructural protein 5 (NS5) (105 kDa) has RNA methyltransferase activities at its N-terminal region, which is responsible for capping the virus RNA genome. The methyl transfer reactions are thought to occur sequentially using the strictly conserved flavivirus 5' RNA sequence as substrate (GpppAG-RNA), leading to the formation of the 5' RNA cap: G0pppAG-RNA → (m7)G0pppAG-RNA ("cap-0")→(m7)G0pppAm2'-O-G-RNA ("cap-1"). To elucidate how viral RNA is specifically recognized and methylated, we determined the crystal structure of a ternary complex between the full-length NS5 protein from dengue virus, an octameric cap-0 viral RNA substrate bearing the authentic DENV genomic sequence (5'-(m7)G0pppA1G2U3U4G5U6U7-3'), and S-adenosyl-l-homocysteine (SAH), the by-product of the methylation reaction. The structure provides for the first time, to our knowledge, a molecular basis for specific adenosine 2'-O-methylation, rationalizes mutagenesis studies targeting the K61-D146-K180-E216 enzymatic tetrad as well as residues lining the RNA binding groove, and offers previously unidentified mechanistic and evolutionary insights into cap-1 formation by NS5, which underlies innate immunity evasion by flaviviruses.
Collapse
|
125
|
Silveira GF, Strottmann DM, de Borba L, Mansur DS, Zanchin NIT, Bordignon J, dos Santos CND. Single point mutations in the helicase domain of the NS3 protein enhance dengue virus replicative capacity in human monocyte-derived dendritic cells and circumvent the type I interferon response. Clin Exp Immunol 2015; 183:114-28. [PMID: 26340409 DOI: 10.1111/cei.12701] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2015] [Indexed: 12/30/2022] Open
Abstract
Dengue is the most prevalent arboviral disease worldwide. The outcome of the infection is determined by the interplay of viral and host factors. In the present study, we evaluated the cellular response of human monocyte-derived DCs (mdDCs) infected with recombinant dengue virus type 1 (DV1) strains carrying a single point mutation in the NS3hel protein (L435S or L480S). Both mutated viruses infect and replicate more efficiently and produce more viral progeny in infected mdDCs compared with the parental, non-mutated virus (vBACDV1). Additionally, global gene expression analysis using cDNA microarrays revealed that the mutated DVs induce the up-regulation of the interferon (IFN) signalling and pattern recognition receptor (PRR) canonical pathways in mdDCs. Pronounced production of type I IFN were detected specifically in mdDCs infected with DV1-NS3hel-mutated virus compared with mdDCs infected with the parental virus. In addition, we showed that the type I IFN produced by mdDCs is able to reduce DV1 infection rates, suggesting that cytokine function is effective but not sufficient to mediate viral clearance of DV1-NS3hel-mutated strains. Our results demonstrate that single point mutations in subdomain 2 have important implications for adenosine triphosphatase (ATPase) activity of DV1-NS3hel. Although a direct functional connection between the increased ATPase activity and viral replication still requires further studies, these mutations speed up viral RNA replication and are sufficient to enhance viral replicative capacity in human primary cell infection and circumvent type I IFN activity. This information may have particular relevance for attenuated vaccine protocols designed for DV.
Collapse
Affiliation(s)
- G F Silveira
- Laboratório De Virologia Molecular, Instituto Carlos Chagas, Curitiba, Brasil
| | - D M Strottmann
- Laboratório De Virologia Molecular, Instituto Carlos Chagas, Curitiba, Brasil
| | - L de Borba
- Laboratório De Virologia Molecular, Instituto Carlos Chagas, Curitiba, Brasil
| | - D S Mansur
- Laboratório De Imunobiologia, Universidade Federal De Santa Catarina, Trindade, Florianópolis, Brasil
| | - N I T Zanchin
- Laboratório De Proteômica E Engenharia De Proteínas, Instituto Carlos Chagas, Curitiba, Brasil
| | - J Bordignon
- Laboratório De Virologia Molecular, Instituto Carlos Chagas, Curitiba, Brasil
| | | |
Collapse
|
126
|
Li Y, Li Q, Wong YL, Liew LSY, Kang C. Membrane topology of NS2B of dengue virus revealed by NMR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2244-52. [DOI: 10.1016/j.bbamem.2015.06.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/20/2015] [Accepted: 06/09/2015] [Indexed: 12/27/2022]
|
127
|
Islam R, Salahuddin M, Ayubi MS, Hossain T, Majumder A, Taylor-Robinson AW, Mahmud-Al-Rafat A. Dengue epidemiology and pathogenesis: images of the future viewed through a mirror of the past. Virol Sin 2015; 30:326-43. [PMID: 26494479 PMCID: PMC8200867 DOI: 10.1007/s12250-015-3624-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 10/07/2015] [Indexed: 12/18/2022] Open
Abstract
Every year, millions of individuals throughout the world are seriously affected by dengue virus. The unavailability of a vaccine and of anti-viral drugs has made this mosquito-borne disease a serious health concern. Not only does dengue cause fatalities but it also has a profoundly negative economic impact. In recent decades, extensive research has been performed on epidemiology, vector biology, life cycle, pathogenesis, vaccine development and prevention. Although dengue research is still not at a stage to suggest definite hopes of a cure, encouraging significant advances have provided remarkable progress in the fight against infection. Recent developments indicate that both anti-viral drug and vaccine research should be pursued, in parallel with vector control programs.
Collapse
Affiliation(s)
- Rashedul Islam
- Bio-Resources Technology and Industrial Biotechnology Laboratory, Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Mohammed Salahuddin
- Bio-Resources Technology and Industrial Biotechnology Laboratory, Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Md Salahuddin Ayubi
- Bio-Resources Technology and Industrial Biotechnology Laboratory, Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Tahmina Hossain
- Bio-Resources Technology and Industrial Biotechnology Laboratory, Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Apurba Majumder
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, 9100, Bangladesh
| | - Andrew W Taylor-Robinson
- School of Medical & Applied Sciences, Central Queensland University, Rockhampton, 4701, Australia
| | - Abdullah Mahmud-Al-Rafat
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, 9100, Bangladesh.
- Research and Development (R&D) Department, Incepta Vaccine Limited, Zirabo, Savar, Dhaka, 1341, Bangladesh.
| |
Collapse
|
128
|
Takamatsu Y, Raekiansyah M, Morita K, Hayasaka D. NS1' Protein Expression in the JaOArS982 Strain of Japanese Encephalitis Virus Does Not Enhance Virulence in Mice. Trop Med Health 2015; 43:233-7. [PMID: 26865825 PMCID: PMC4689610 DOI: 10.2149/tmh.2015-27] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/03/2015] [Indexed: 01/22/2023] Open
Abstract
Using a mouse model, we previously demonstrated that subcutaneous infection with the JaTH160 strain of Japanese encephalitis virus (JEV) causes significantly higher virulence and stronger virus propagation in the brain compared with that of the JaOArS982 strain. We also showed that the JaTH160 strain, but not JaOArS982, expresses the NS1’ protein and that NS1’ enhances JEV production in avian cells and embryonated chicken eggs. In this study, we examined whether NS1’ expression affects virulence in mice infected with the JaOArS982 and JaTH160 strains using the corresponding recombinant viruses S982-IC and JaTH-IC. Expression of the NS1’ protein in S982-IC diminished the mortality in mice, whereas S982-IC viruses without NS1’ caused 40–60% mortality. However, the viral loads in the brains of these mice were not significantly different despite the dvariation in NS1’ expression. JaTH-IC viruses depleted of the NS1’ protein exhibited high mortality levels, similar to those of the virus expressing NS1’. Previous studies showed that the NS1’ protein plays a role in the enhanced virulence of the JEV SA14 strain in mice. However, our current data suggest that NS1’ protein expression in S982-IC reduces, rather than enhances, the mortality in mice. Thus, the effect of NS1’ on pathogenicity in vivo may vary among virus strains. Our data also suggest that the reduced mortality resulting from NS1’ expression in S982-IC is not simply due to viral replication in the brains. Further investigation is needed to uncover the mechanism by which NS1’ affects pathogenicity in JEV-infected animals.
Collapse
Affiliation(s)
- Yuki Takamatsu
- Department of Virology, Institute of Tropical Medicine, Nagasaki University , 1-12-4 Sakamoto, Nagasaki, Nagasaki 852-8523, Japan
| | - Muhareva Raekiansyah
- Department of Virology, Institute of Tropical Medicine, Nagasaki University , 1-12-4 Sakamoto, Nagasaki, Nagasaki 852-8523, Japan
| | - Kouichi Morita
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, Nagasaki 852-8523, Japan; Leading Graduate School Program, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, Nagasaki 852-8523, Japan; J-GRID, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, Nagasaki 852-8523, Japan
| | - Daisuke Hayasaka
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, Nagasaki 852-8523, Japan; Leading Graduate School Program, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, Nagasaki 852-8523, Japan
| |
Collapse
|
129
|
Barzon L, Papa A, Lavezzo E, Franchin E, Pacenti M, Sinigaglia A, Masi G, Trevisan M, Squarzon L, Toppo S, Papadopoulou E, Nowotny N, Ulbert S, Piralla A, Rovida F, Baldanti F, Percivalle E, Palù G. Phylogenetic characterization of Central/Southern European lineage 2 West Nile virus: analysis of human outbreaks in Italy and Greece, 2013-2014. Clin Microbiol Infect 2015; 21:1122.e1-10. [PMID: 26235197 DOI: 10.1016/j.cmi.2015.07.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/29/2015] [Accepted: 07/23/2015] [Indexed: 01/10/2023]
Abstract
In recent years, West Nile virus (WNV) lineage 2 has been spreading and causing disease outbreaks in humans and animals in Europe. In order to characterize viral diversity, we performed full-length genome sequencing of WNV lineage 2 from human samples collected during outbreaks in Italy and Greece in 2013 and 2014. Phylogenetic analysis showed that these WNV lineage 2 genomes belonged to a monophyletic clade derived from a single introduction into Europe of the prototype Hungarian strain. Correlation of phylogenetic data with geospatial information showed geographical clustering of WNV genome sequences both in Italy and in Greece, indicating that the virus had evolved and diverged during its dispersal in Europe, leading to the emergence of novel genotypes, as it adapted to local ecological niches. These genotypes carried divergent conserved amino acid substitutions, which might have been relevant for viral adaptation, as suggested by selection pressure analysis and in silico and experimental modelling of sequence changes. In conclusion, the results of this study provide further information on WNV lineage 2 transmission dynamics in Europe, and emphasize the need for WNV surveillance activities to monitor viral evolution and diversity.
Collapse
Affiliation(s)
- L Barzon
- Department of Molecular Medicine, University of Padova, Padova, Italy; Microbiology and Virology Unit, Padova University Hospital, Padova, Italy.
| | - A Papa
- National Reference Centre for Arboviruses, Department of Microbiology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - E Lavezzo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - E Franchin
- Department of Molecular Medicine, University of Padova, Padova, Italy; Microbiology and Virology Unit, Padova University Hospital, Padova, Italy
| | - M Pacenti
- Microbiology and Virology Unit, Padova University Hospital, Padova, Italy
| | - A Sinigaglia
- IRCCS-IOV Istituto Oncologico Veneto, Padova, Italy
| | - G Masi
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - M Trevisan
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - L Squarzon
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - S Toppo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - E Papadopoulou
- National Reference Centre for Arboviruses, Department of Microbiology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - N Nowotny
- Institute of Virology, University of Veterinary Medicine, Vienna, Austria; Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - S Ulbert
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - A Piralla
- Molecular Virology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - F Rovida
- Molecular Virology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - F Baldanti
- Molecular Virology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Department of Clinical Sciences, Surgery, Diagnostics and Paediatrics, University of Pavia, Pavia, Italy
| | - E Percivalle
- Molecular Virology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - G Palù
- Department of Molecular Medicine, University of Padova, Padova, Italy; Microbiology and Virology Unit, Padova University Hospital, Padova, Italy
| |
Collapse
|
130
|
Meng F, Badierah RA, Almehdar HA, Redwan EM, Kurgan L, Uversky VN. Unstructural biology of the dengue virus proteins. FEBS J 2015; 282:3368-94. [DOI: 10.1111/febs.13349] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 06/01/2015] [Accepted: 06/15/2015] [Indexed: 01/02/2023]
Affiliation(s)
- Fanchi Meng
- Department of Electrical and Computer Engineering; University of Alberta; Edmonton Alberta Canada
| | - Reaid A. Badierah
- Biological Department; Faculty of Science; King Abdulaziz University; Jeddah Saudi Arabia
| | - Hussein A. Almehdar
- Biological Department; Faculty of Science; King Abdulaziz University; Jeddah Saudi Arabia
| | - Elrashdy M. Redwan
- Biological Department; Faculty of Science; King Abdulaziz University; Jeddah Saudi Arabia
- Therapeutic and Protective Proteins Laboratory; Protein Research Department; Genetic Engineering and Biotechnology Research Institute; City for Scientific Research and Technology Applications; New Borg El-Arab Alexandria Egypt
| | - Lukasz Kurgan
- Department of Electrical and Computer Engineering; University of Alberta; Edmonton Alberta Canada
| | - Vladimir N. Uversky
- Biological Department; Faculty of Science; King Abdulaziz University; Jeddah Saudi Arabia
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute; Morsani College of Medicine; University of South Florida; Tampa FL USA
- Laboratory of Structural Dynamics, Stability and Folding of Proteins; Institute of Cytology; Russian Academy of Sciences; St Petersburg Russia
| |
Collapse
|
131
|
Ishikawa T, Konishi E. Potential chemotherapeutic targets for Japanese encephalitis: current status of antiviral drug development and future challenges. Expert Opin Ther Targets 2015; 19:1379-95. [PMID: 26156208 DOI: 10.1517/14728222.2015.1065817] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Japanese encephalitis (JE) remains a public health threat in Asia. Although several vaccines have been licensed, ∼ 67,900 cases of the disease are estimated to occur annually, probably because the vaccine coverage is low. Therefore, effective antiviral drugs are required to control JE. However, no licensed anti-JE drugs are available, despite extensive efforts to develop them. AREAS COVERED We provide a general overview of JE and JE virus, including its transmission cycle, distribution, structure, replication machinery, immune evasion mechanisms and vaccines. The current situation in antiviral drug development is then reviewed and future perspectives are discussed. EXPERT OPINION Although the development of effective anti-JE drugs is an urgent issue, only supportive care is currently available. Recent progress in our understanding of the viral replication machinery and immune evasion strategies has identified new targets for anti-JE drug development. To date, most candidate drugs have only been evaluated in single-drug formulations, and efficient drug delivery to the CNS has virtually not been considered. However, an effective anti-JE treatment is expected to be achieved with multiple-drug formulations and a targeted drug delivery system in the near future.
Collapse
Affiliation(s)
- Tomohiro Ishikawa
- a 1 Dokkyo Medical University, School of Medicine, Department of Microbiology , 880 Kitakobayashi, Mibu-machi, Shimotsuga-gun, Tochigi 321-0293, Japan
| | - Eiji Konishi
- b 2 Mahidol University, BIKEN Endowed Department of Dengue Vaccine Development, Faculty of Tropical Medicine , 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand.,c 3 Osaka University, Research Institute for Microbial Diseases, BIKEN Endowed Department of Dengue Vaccine Development , 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan +66 2 354 5981 ;
| |
Collapse
|
132
|
Dengue Virus NS Proteins Inhibit RIG-I/MAVS Signaling by Blocking TBK1/IRF3 Phosphorylation: Dengue Virus Serotype 1 NS4A Is a Unique Interferon-Regulating Virulence Determinant. mBio 2015; 6:e00553-15. [PMID: 25968648 PMCID: PMC4436066 DOI: 10.1128/mbio.00553-15] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Dengue virus (DENV) replication is inhibited by the prior addition of type I interferon or by RIG-I agonists that elicit RIG-I/MAVS/TBK1/IRF3-dependent protective responses. DENV infection of primary human endothelial cells (ECs) results in a rapid increase in viral titer, which suggests that DENV inhibits replication-restrictive RIG-I/interferon beta (IFN-β) induction pathways within ECs. Our findings demonstrate that DENV serotype 4 (DENV4) nonstructural (NS) proteins NS2A and NS4B inhibited RIG-I-, MDA5-, MAVS-, and TBK1/IKKε-directed IFN-β transcription (>80%) but failed to inhibit IFN-β induction directed by STING or constitutively active IRF3-5D. Expression of NS2A and NS4B dose dependently inhibited the phosphorylation of TBK1 and IRF3, which suggests that they function at the level of TBK1 complex activation. NS2A and NS4B from DENV1/2/4, as well as the West Nile virus NS4B protein, commonly inhibited TBK1 phosphorylation and IFN-β induction. A comparative analysis of NS4A proteins across DENVs demonstrated that DENV1, but not DENV2 or DENV4, NS4A proteins uniquely inhibited TBK1. These findings indicate that DENVs contain conserved (NS2A/NS4B) and DENV1-specific (NS4A) mechanisms for inhibiting RIG-I/TBK1-directed IFN responses. Collectively, our results define DENV NS proteins that restrict IRF3 and IFN responses and thereby facilitate DENV replication and virulence. Unique DENV1-specific NS4A regulation of IFN induction has the potential to be a virulence determinant that contributes to the increased severity of DENV1 infections and the immunodominance of DENV1 responses during tetravalent DENV1-4 vaccination. Our findings demonstrate that NS2A and NS4B proteins from dengue virus serotypes 1, 2, and 4 are inhibitors of RIG-I/MDA5-directed interferon beta (IFN-β) induction and that they accomplish this by blocking TBK1 activation. We determined that IFN inhibition is functionally conserved across NS4B proteins from West Nile virus and DENV1, -2, and -4 viruses. In contrast, DENV1 uniquely encodes an extra IFN regulating protein, NS4A, that inhibits TBK1-directed IFN induction. DENV1 is associated with an increase in severe patient disease, and added IFN regulation by the DENV1 NS4A protein may contribute to increased DENV1 replication, immunodominance, and virulence. The regulation of IFN induction by nonstructural (NS) proteins suggests their potential roles in enhancing viral replication and spread and as potential protein targets for viral attenuation. DENV1-specific IFN regulation needs to be considered in vaccine strategies where enhanced DENV1 replication may interfere with DENV2-4 seroconversion within coadministered tetravalent DENV1-4 vaccines.
Collapse
|
133
|
Kim JK, Kim JM, Song BH, Yun SI, Yun GN, Byun SJ, Lee YM. Profiling of viral proteins expressed from the genomic RNA of Japanese encephalitis virus using a panel of 15 region-specific polyclonal rabbit antisera: implications for viral gene expression. PLoS One 2015; 10:e0124318. [PMID: 25915765 PMCID: PMC4410938 DOI: 10.1371/journal.pone.0124318] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 02/27/2015] [Indexed: 12/16/2022] Open
Abstract
Japanese encephalitis virus (JEV), a mosquito-borne flavivirus, is closely related to West Nile (WN), yellow fever (YF), and dengue (DEN) viruses. Its plus-strand genomic RNA carries a single open reading frame encoding a polyprotein that is cleaved into three structural (C, prM/M, and E) and at least seven nonstructural (NS1/NS1', NS2A, NS2B, NS3, NS4A, NS4B, and NS5) proteins, based on previous work with WNV, YFV, and DENV. Here, we aimed to profile experimentally all the viral proteins found in JEV-infected cells. We generated a collection of 15 JEV-specific polyclonal antisera covering all parts of the viral protein-coding regions, by immunizing rabbits with 14 bacterially expressed glutathione-S-transferase fusion proteins (for all nine viral proteins except NS2B) or with a chemically synthesized oligopeptide (for NS2B). In total lysates of JEV-infected BHK-21 cells, immunoblotting with these antisera revealed: (i) three mature structural proteins (~12-kDa C, ~8-kDa M, and ~53-kDa E), a precursor of M (~24-kDa prM) and three other M-related proteins (~10-14 kDa); (ii) the predicted ~45-kDa NS1 and its frameshift product, ~58-kDa NS1', with no evidence of the predicted ~25-kDa NS2A; (iii) the predicted but hardly detectable ~14-kDa NS2B and an unexpected but predominant ~12-kDa NS2B-related protein; (iv) the predicted ~69-kDa NS3 plus two major cleavage products (~34-kDa NS3N-term and ~35-kDa NS3C-term), together with at least nine minor proteins of ~16-52 kDa; (v) the predicted ~14-kDa NS4A; (vi) two NS4B-related proteins (~27-kDa NS4B and ~25-kDa NS4B'); and (vii) the predicted ~103-kDa NS5 plus at least three other NS5-related proteins (~15 kDa, ~27 kDa, and ~90 kDa). Combining these data with confocal microscopic imaging of the proteins' intracellular localization, our study is the first to provide a solid foundation for the study of JEV gene expression, which is crucial for elucidating the regulatory mechanisms of JEV genome replication and pathobiology.
Collapse
Affiliation(s)
- Jin-Kyoung Kim
- Department of Animal, Dairy, and Veterinary Sciences; Utah Science Technology and Research, College of Agriculture and Applied Sciences, Utah State University, Logan, Utah, United States of America
| | - Jeong-Min Kim
- Department of Microbiology, College of Medicine, Chungbuk National University, Cheongju, South Korea
| | - Byung-Hak Song
- Department of Animal, Dairy, and Veterinary Sciences; Utah Science Technology and Research, College of Agriculture and Applied Sciences, Utah State University, Logan, Utah, United States of America
| | - Sang-Im Yun
- Department of Animal, Dairy, and Veterinary Sciences; Utah Science Technology and Research, College of Agriculture and Applied Sciences, Utah State University, Logan, Utah, United States of America
| | - Gil-Nam Yun
- Department of Microbiology, College of Medicine, Chungbuk National University, Cheongju, South Korea
| | - Sung-June Byun
- Animal Biotechnology Division, Korea National Institute of Animal Science, Suwon, South Korea
| | - Young-Min Lee
- Department of Animal, Dairy, and Veterinary Sciences; Utah Science Technology and Research, College of Agriculture and Applied Sciences, Utah State University, Logan, Utah, United States of America
- * E-mail:
| |
Collapse
|
134
|
Determinants of Dengue Virus NS4A Protein Oligomerization. J Virol 2015; 89:6171-83. [PMID: 25833044 DOI: 10.1128/jvi.00546-15] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 03/23/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Flavivirus NS4A protein induces host membrane rearrangement and functions as a replication complex component. The molecular details of how flavivirus NS4A exerts these functions remain elusive. Here, we used dengue virus (DENV) as a model to characterize and demonstrate the biological relevance of flavivirus NS4A oligomerization. DENV type 2 (DENV-2) NS4A protein forms oligomers in infected cells or when expressed alone. Deletion mutagenesis mapped amino acids 50 to 76 (spanning the first transmembrane domain [TMD1]) of NS4A as the major determinant for oligomerization, while the N-terminal 50 residues contribute only slightly to the oligomerization. Nuclear magnetic resonance (NMR) analysis of NS4A amino acids 17 to 80 suggests that residues L31, L52, E53, G66, and G67 could participate in oligomerization. Ala substitution for 15 flavivirus conserved NS4A residues revealed that these amino acids are important for viral replication. Among the 15 mutated NS4A residues, 2 amino acids (E50A and G67A) are located within TMD1. Both E50A and G67A attenuated viral replication, decreased NS4A oligomerization, and reduced NS4A protein stability. In contrast, NS4A oligomerization was not affected by the replication-defective mutations (R12A, P49A, and K80A) located outside TMD1. trans complementation experiments showed that expression of wild-type NS4A alone was not sufficient to rescue the replication-lethal NS4A mutants. However, the presence of DENV-2 replicons could partially restore the replication defect of some lethal NS4A mutants (L26A and K80A), but not others (L60A and E122A), suggesting an unidentified mechanism governing the outcome of complementation in a mutant-dependent manner. Collectively, the results have demonstrated the importance of TMD1-mediated NS4A oligomerization in flavivirus replication. IMPORTANCE We report that DENV NS4A forms oligomers. Such NS4A oligomerization is mediated mainly through amino acids 50 to 76 (spanning the first transmembrane domain [TMD1]). The biological importance of NS4A oligomerization is demonstrated by results showing that mutations of flavivirus conserved residues (E50A and G67A located within TMD1) reduced the oligomerization and stability of the NS4A protein, leading to attenuated viral replication. A systematic mutagenesis analysis demonstrated that flavivirus conserved NS4A residues are important for DENV replication. A successful trans complementation of replication-lethal NS4A mutant virus requires wild-type NS4A in the context of the viral replication complex. The wild-type NS4A protein alone is not sufficient to rescue the replication defect of NS4A mutants. Intriguingly, distinct NS4A mutants yielded different complementation outcomes in the replicon-containing cells. Overall, the study has enhanced our understanding of flavivirus NS4A at the molecular level. The results also suggest that inhibitor blocking of NS4A oligomerization could be explored for antiviral drug discovery.
Collapse
|
135
|
Hapuarachchi HC, Chua RCR, Shi Y, Thein TL, Lee LK, Lee KS, Lye DC, Ng LC, Leo YS. Clinical outcome and genetic differences within a monophyletic Dengue virus type 2 population. PLoS One 2015; 10:e0121696. [PMID: 25811657 PMCID: PMC4374945 DOI: 10.1371/journal.pone.0121696] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 02/03/2015] [Indexed: 12/28/2022] Open
Abstract
The exact mechanisms of interplay between host and viral factors leading to severe dengue are yet to be fully understood. Even though previous studies have implicated specific genetic differences of Dengue virus (DENV) in clinical severity and virus attenuation, similar studies with large-scale, whole genome screening of monophyletic virus populations are limited. Therefore, in the present study, we compared 89 whole genomes of DENV-2 cosmopolitan clade III isolates obtained from patients diagnosed with dengue fever (DF, n = 58), dengue hemorrhagic fever (DHF, n = 30) and dengue shock syndrome (DSS, n = 1) in Singapore between July 2010 and January 2013, in order to determine the correlation of observed viral genetic differences with clinical outcomes. Our findings showed no significant difference between the number of primary and secondary infections that progressed to DHF and DSS (p>0.05) in our study cohort. Despite being highly homogenous, study isolates possessed 39 amino acid substitutions of which 10 substitutions were fixed in three main groups of virus isolates. None of those substitutions were specifically associated with DHF and DSS. Notably, two evolutionarily unique virus groups possessing C-P43T+NS1-S103T+NS2A-V83I+NS3-R337K+ NS3-I600T+ NS5-P136S and NS2A-T119N mutations were exclusively found in patients with DF, the benign form of DENV infections. Those mutants were significantly associated with mild disease outcome. These observations indicated that disease progression into DHF and DSS within our patient population was more likely to be due to host than virus factors. We hypothesize that selection for potentially less virulent groups of DENV-2 in our study cohort may be an evolutionary adaptation of viral strains to extend their survival in the human-mosquito transmission cycle.
Collapse
Affiliation(s)
| | - Rachel Choon Rong Chua
- Environmental Health Institute, National Environment Agency, 11 Biopolis Way, #06-05-08, Singapore 138667
| | - Yuan Shi
- Environmental Health Institute, National Environment Agency, 11 Biopolis Way, #06-05-08, Singapore 138667
| | - Tun Lin Thein
- Institute of Infectious Diseases and Epidemiology, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore 308433
| | - Linda Kay Lee
- Institute of Infectious Diseases and Epidemiology, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore 308433
| | - Kim Sung Lee
- School of Life Sciences and Chemical Technology, Ngee Ann Polytechnic, 535 Clementi Road, Singapore 599489
| | - David Chien Lye
- Institute of Infectious Diseases and Epidemiology, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore 308433
| | - Lee Ching Ng
- Environmental Health Institute, National Environment Agency, 11 Biopolis Way, #06-05-08, Singapore 138667
- * E-mail:
| | - Yee Sin Leo
- Institute of Infectious Diseases and Epidemiology, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore 308433
| |
Collapse
|
136
|
A Single Amino Acid Substitution in the NS2A Protein of Japanese Encephalitis Virus Affects Virus Propagation In Vitro but Not In Vivo. J Virol 2015; 89:6126-30. [PMID: 25787282 DOI: 10.1128/jvi.00370-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 03/12/2015] [Indexed: 11/20/2022] Open
Abstract
We identified a unique amino acid of NS2A113, phenylalanine, that affects the efficient propagation of two Japanese encephalitis virus strains, JaTH160 and JaOArS982, in neuroblastoma Neuro-2a cells but not in cell lines of extraneural origin. This amino acid did not affect viral loads in the brain or survival curves in mice. These findings suggest that virus propagation in vitro may not reflect the level of virus neuroinvasiveness in vivo.
Collapse
|
137
|
A basic cluster in the N terminus of yellow fever virus NS2A contributes to infectious particle production. J Virol 2015; 89:4951-65. [PMID: 25694595 DOI: 10.1128/jvi.03351-14] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 02/11/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The flavivirus NS2A protein is involved in the assembly of infectious particles. To further understand its role in this process, a charged-to-alanine scanning analysis was performed on NS2A encoded by an infectious cDNA clone of yellow fever virus (YFV). Fifteen mutants containing single, double, or triple charged-to-alanine changes were tested. Five of them did not produce infectious particles, whereas efficient RNA replication was detectable for two of the five NS2A mutants (R22A-K23A-R24A and R99A-E100A-R101A mutants). Prolonged cultivation of transfected cells resulted in the recovery of pseudorevertants. Besides suppressor mutants in NS2A, a compensating second-site mutation in NS3 (D343G) arose for the NS2A R22A-K23A-R24A mutant. We found this NS3 mutation previously to be suppressive for the NS2Aα cleavage site Q189S mutant, also deficient in virion assembly. In this study, the subsequently suggested interaction between NS2A and NS3 was proven by coimmunoprecipitation analyses. Using selectively permeabilized cells, we could demonstrate that the regions encompassing R22A-K23A-R24A and Q189S in NS2A are localized to the cytoplasm, where NS3 is also known to reside. However, the defect in particle production observed for the NS2A R22A-K23A-R24A and Q189S mutants was not due to a defect in physical interaction between NS2A and NS3, as the NS2A mutations did not interrupt NS3 interaction. In fact, a region just upstream of R22-K23-R24 was mapped to be critical for NS2A-NS3 interaction. Taken together, these data support a complex interplay between YFV NS2A and NS3 in virion assembly and identify a basic cluster in the NS2A N terminus to be critical in this process. IMPORTANCE Despite an available vaccine, yellow fever remains endemic in tropical areas of South America and Africa. To control the disease, antiviral drugs are required, and an understanding of the determinants of virion assembly is central to their development. In this study, we identified a basic cluster of amino acids in the N terminus of YFV NS2A which inhibited virion assembly upon mutation. The defect was rescued by a spontaneously occurring mutation in NS3. Our study proves an interaction between NS2A and NS3, which, remarkably, was maintained for the NS2A mutant in the presence and absence of the NS3 mutation. This suggests a role for other viral and/or cellular proteins in virion assembly. Residues important for YFV virion production reported here only partially coincided with those reported for other flaviviruses, suggesting that the determinants for particle production are virus specific. Reconstruction of a YFV encoding tagged NS2A paves the way to identify further NS2A interaction partners.
Collapse
|
138
|
Scanning mutagenesis studies reveal a potential intramolecular interaction within the C-terminal half of dengue virus NS2A involved in viral RNA replication and virus assembly and secretion. J Virol 2015; 89:4281-95. [PMID: 25653435 DOI: 10.1128/jvi.03011-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED The NS2A protein of dengue virus (DENV) has eight predicted transmembrane segments (pTMSs; pTMS1 to pTMS8). NS2A has been shown to participate in RNA replication, virion assembly, and the host antiviral response. However, the role of the amino acid residues within the pTMS regions of NS2A during the virus life cycle is poorly understood. In the study described here, we explored the function of DENV NS2A by introducing a series of double or triple alanine substitutions into the C-terminal half (pTMS4 to pTMS8) of NS2A in the context of a DENV infectious clone or subgenomic replicon. Fourteen (8 within pTMS8) of 35 NS2A mutants displayed a lethal phenotype due to impairment of RNA replication by a replicon assay. Three NS2A mutants with mutations within pTMS7, the CM20, CM25, and CM27 mutants, displayed similar phenotypes, low virus yields (>100-fold reduction), wild-type-like replicon activity, and low infectious virus-like particle yields by transient trans-packaging experiments, suggesting a defect in virus assembly and secretion. The sequencing of revertant viruses derived from CM20, CM25, and CM27 mutant viruses revealed a consensus reversion mutation, leucine (L) to phenylalanine (F), at codon 181 within pTMS7. The introduction of an L181F mutation into a full-length NS2A mutant, i.e., the CM20, CM25, and CM27 constructs, completely restored wild-type infectivity. Notably, L181F also substantially rescued the other severely RNA replication-defective mutants with mutations within pTMS4, pTMS6, and pTMS8, i.e., the CM2, CM3, CM13, CM31, and CM32 mutants. In conclusion, the results revealed the essential roles of pTMS4 to pTMS8 of NS2A in RNA replication and/or virus assembly and secretion. The intramolecular interaction between pTMS7 and pTMS4, pTMS6, or pTMS8 of the NS2A protein was also implicated. IMPORTANCE The reported characterization of the C-terminal half of dengue virus NS2A is the first comprehensive mutagenesis study to investigate the function of flavivirus NS2A involved in the steps of the virus life cycle. In particular, detailed mapping of the amino acid residues within the predicted transmembrane segments (pTMSs) of NS2A involved in RNA replication and/or virus assembly and secretion was performed. A revertant genetics study also revealed that L181F within pTMS7 is a consensus reversion mutation that rescues both RNA replication-defective and virus assembly- and secretion-defective mutants with mutations within the other three pTMSs of NS2A. Collectively, these findings elucidate the role played by NS2A during the virus life cycle, possibly through the intricate intramolecular interaction between pTMS7 and other pTMSs within the NS2A protein.
Collapse
|
139
|
Abstract
UNLABELLED Flavivirus RNA synthesis is mediated by a multiprotein complex associated with the endoplasmic reticulum membrane, named the replication complex (RC). Within the flavivirus RC, NS4B, an integral membrane protein with a role in virulence and regulation of the innate immune response, binds to the NS3 protease-helicase. NS4B modulates the RNA helicase activity of NS3, but the molecular details of their interaction remain elusive. Here, we used dengue virus (DENV) to map the determinants for the NS3-NS4B interaction. Coimmunoprecipitation and an in situ proximity ligation assay confirmed that NS3 colocalizes with NS4B in both DENV-infected cells and cells coexpressing both proteins. Surface plasmon resonance demonstrated that subdomains 2 and 3 of the NS3 helicase region and the cytoplasmic loop of NS4B are required for binding. Using nuclear magnetic resonance (NMR), we found that the isolated cytoplasmic loop of NS4B is flexible, with a tendency to form a three-turn α-helix and two short β-strands. Upon binding to the NS3 helicase, 12 amino acids within the cytoplasmic loop of NS4B exhibited line broadening, suggesting a participation in the interaction. Sequence alignment showed that 4 of these 12 residues are strictly conserved across different flaviviruses. Mutagenesis analysis showed that three (Q134, G140, and N144) of the four evolutionarily conserved NS4B residues are essential for DENV replication. The mapping of the NS3/NS4B-interacting regions described here can assist the design of inhibitors that disrupt their interface for antiviral therapy. IMPORTANCE NS3 and NS4B are essential components of the flavivirus RC. Using DENV as a model, we mapped the interaction between the viral NS3 and NS4B proteins. The subdomains 2 and 3 of NS3 helicase as well as the cytoplasmic loop of NS4B are critical for the interaction. Functional analysis delineated residues within the NS4B cytoplasmic loop that are crucial for DENV replication. Our findings reveal molecular details of how flavivirus NS3 protein cooperates with NS4B within the RC. In addition, this study has established the rationale and assays to search for inhibitors disrupting the NS3-NS4B interaction for antiviral drug discovery.
Collapse
|
140
|
Abstract
UNLABELLED Flavivirus replication is mediated by a membrane-associated replication complex where viral membrane proteins NS2A, NS2B, NS4A, and NS4B serve as the scaffold for the replication complex formation. Here, we used dengue virus serotype 2 (DENV-2) as a model to characterize viral NS4A-NS4B interaction. NS4A interacts with NS4B in virus-infected cells and in cells transiently expressing NS4A and NS4B in the absence of other viral proteins. Recombinant NS4A and NS4B proteins directly bind to each other with an estimated Kd (dissociation constant) of 50 nM. Amino acids 40 to 76 (spanning the first transmembrane domain, consisting of amino acids 50 to 73) of NS4A and amino acids 84 to 146 (also spanning the first transmembrane domain, consisting of amino acids 101 to 129) of NS4B are the determinants for NS4A-NS4B interaction. Nuclear magnetic resonance (NMR) analysis suggests that NS4A residues 17 to 80 form two amphipathic helices (helix α1, comprised of residues 17 to 32, and helix α2, comprised of residues 40 to 47) that associate with the cytosolic side of endoplasmic reticulum (ER) membrane and helix α3 (residues 52 to 75) that transverses the ER membrane. In addition, NMR analysis identified NS4A residues that may participate in the NS4A-NS4B interaction. Amino acid substitution of these NS4A residues exhibited distinct effects on viral replication. Three of the four NS4A mutations (L48A, T54A, and L60A) that affected the NS4A-NS4B interaction abolished or severely reduced viral replication; in contrast, two NS4A mutations (F71A and G75A) that did not affect NS4A-NS4B interaction had marginal effects on viral replication, demonstrating the biological relevance of the NS4A-NS4B interaction to DENV-2 replication. Taken together, the study has provided experimental evidence to argue that blocking the NS4A-NS4B interaction could be a potential antiviral approach. IMPORTANCE Flavivirus NS4A and NS4B proteins are essential components of the ER membrane-associated replication complex. The current study systematically characterizes the interaction between flavivirus NS4A and NS4B. Using DENV-2 as a model, we show that NS4A interacts with NS4B in virus-infected cells, in cells transiently expressing NS4A and NS4B proteins, or in vitro with recombinant NS4A and NS4B proteins. We mapped the minimal regions required for the NS4A-NS4B interaction to be amino acids 40 to 76 of NS4A and amino acids 84 to 146 of NS4B. NMR analysis revealed the secondary structure of amino acids 17 to 80 of NS4A and the NS4A amino acids that may participate in the NS4A-NS4B interaction. Functional analysis showed a correlation between viral replication and NS4A-NS4B interaction, demonstrating the biological importance of the NS4A-NS4B interaction. The study has advanced our knowledge of the molecular function of flavivirus NS4A and NS4B proteins. The results also suggest that inhibitors of the NS4A-NS4B interaction could be pursued for flavivirus antiviral development.
Collapse
|
141
|
Gullberg RC, Jordan Steel J, Moon SL, Soltani E, Geiss BJ. Oxidative stress influences positive strand RNA virus genome synthesis and capping. Virology 2014; 475:219-29. [PMID: 25514423 PMCID: PMC4332586 DOI: 10.1016/j.virol.2014.10.037] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 10/21/2014] [Indexed: 12/24/2022]
Abstract
Flaviviruses are 5′ capped positive-stranded RNA viruses that replicate their genomes within endoplasmic reticulum-derived vesicles. Flaviviruses are well known to induce oxidative stress late in infection but it is unknown if oxidative stress plays a positive role in the viral RNA replication cycle. We therefore examined how oxidation affects flavivirus RNA replication. We found that antioxidant treatment reduced virus production, reduced the viral positive-to-negative strand RNA ratio, and resulted in the accumulation of uncapped positive-sense viral RNAs. Treatment of the NS5 RNA capping enzyme in vitro with oxidizing agents enhanced guanylyltransferase activity, indicating that the guanylyltransferase function of the flavivirus NS5 RNA capping enzyme is activated by oxidative conditions. Antioxidant treatment also reduced alphavirus RNA replication and protein expression while enhancing nsP1 capping activity. These findings suggest that RNA viruses may utilize oxidative stress induced during infection to help temporally control genome RNA capping and genome replication.
Collapse
Affiliation(s)
- Rebekah C Gullberg
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - J Jordan Steel
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Stephanie L Moon
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Elnaz Soltani
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Brian J Geiss
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA; Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
142
|
Two distinct sets of NS2A molecules are responsible for dengue virus RNA synthesis and virion assembly. J Virol 2014; 89:1298-313. [PMID: 25392211 DOI: 10.1128/jvi.02882-14] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED Flavivirus nonstructural protein 2A (NS2A) plays important roles in both viral RNA synthesis and virion assembly. The molecular details of how the NS2A protein modulates the two distinct events have not been defined. To address this question, we have performed a systematic mutagenesis of NS2A using dengue virus (DENV) serotype 2 (DENV-2) as a model. We identified two sets of NS2A mutations with distinct defects during a viral infection cycle. One set of NS2A mutations (D125A and G200A) selectively abolished viral RNA synthesis. Mechanistically, the D125A mutation abolished viral RNA synthesis through blocking the N-terminal cleavage of the NS2A protein, leading to an unprocessed NS1-NS2A protein; this result suggests that amino acid D125 (far downstream of the N terminus of NS2A) may contribute to the recognition of host protease at the NS1-NS2A junction. The other set of NS2A mutations (G11A, E20A, E100A, Q187A, and K188A) specifically impaired virion assembly without significantly affecting viral RNA synthesis. Remarkably, mutants defective in virion assembly could be rescued by supplying in trans wild-type NS2A molecules expressed from a replicative replicon, by wild-type NS2A protein expressed alone, by a mutant NS2A (G200A) that is lethal for viral RNA synthesis, or by a different mutant NS2A that is defective in virion assembly. In contrast, none of the mutants defective in viral RNA synthesis could be rescued by trans-complementation. Collectively, the results indicate that two distinct sets of NS2A molecules are responsible for DENV RNA synthesis and virion assembly. IMPORTANCE Dengue virus (DENV) represents the most prevalent mosquito-borne human pathogen. Understanding the replication of DENV is essential for development of vaccines and therapeutics. Here we characterized the function of DENV-2 NS2A using a systematic mutagenesis approach. The mutagenesis results revealed two distinct sets of NS2A mutations: one set of mutations that result in defects in viral RNA synthesis and another set of mutations that result in defects in virion assembly. trans-Complementation analysis showed that mutants defective in viral RNA synthesis could not be rescued by wild-type NS2A; in contrast, mutants defective in virion assembly could be successfully rescued by wild-type NS2A or even by a mutant NS2A that is incompetent to support viral RNA synthesis. These results support a model in which two distinct sets of NS2A molecules are responsible for DENV RNA synthesis (located in the viral replication complex) and virion assembly (located in the virion assembly/budding site). The study confirms and extends our understanding of the two critical roles of flavivirus NS2A in viral RNA synthesis and virion assembly.
Collapse
|
143
|
Apte-Sengupta S, Sirohi D, Kuhn RJ. Coupling of replication and assembly in flaviviruses. Curr Opin Virol 2014; 9:134-42. [PMID: 25462445 DOI: 10.1016/j.coviro.2014.09.020] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 09/09/2014] [Indexed: 02/06/2023]
Abstract
Flaviviruses affect hundreds of millions of people each year causing tremendous morbidity and mortality worldwide. This genus includes significant human pathogens such as dengue, West Nile, yellow fever, tick-borne encephalitis and Japanese encephalitis virus among many others. The disease caused by these viruses can range from febrile illness to hemorrhagic fever and encephalitis. A deeper understanding of the virus life cycle is required to foster development of antivirals and vaccines, which are an urgent need for many flaviviruses, especially dengue. The focus of this review is to summarize our current knowledge of flaviviral replication and assembly, the proteins and lipids involved therein, and how these processes are coordinated for efficient virus production.
Collapse
Affiliation(s)
- Swapna Apte-Sengupta
- Markey Center for Structural Biology, Department of Biological Sciences and Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA
| | - Devika Sirohi
- Markey Center for Structural Biology, Department of Biological Sciences and Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA
| | - Richard J Kuhn
- Markey Center for Structural Biology, Department of Biological Sciences and Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
144
|
Selisko B, Wang C, Harris E, Canard B. Regulation of Flavivirus RNA synthesis and replication. Curr Opin Virol 2014; 9:74-83. [PMID: 25462437 DOI: 10.1016/j.coviro.2014.09.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 09/18/2014] [Accepted: 09/26/2014] [Indexed: 01/21/2023]
Abstract
RNA synthesis and replication of the members of the Flavivirus genus (including dengue, West Nile and Japanese encephalitis viruses) is regulated by a wide variety of mechanisms and actors. These include the sequestration of the RNA-dependent RNA polymerase (RdRp) for functions other than RNA synthesis, regulatory interactions with other viral and host proteins within the replication complex (RC), and regulatory elements within the RNA genome itself. In this review, we discuss our current knowledge of the multiple levels at which Flavivirus RNA synthesis is controlled. We aim to bring together two active research fields: the structural and functional biology of individual proteins of the RC and the impressive wealth of knowledge acquired regarding the viral genomic RNA.
Collapse
Affiliation(s)
- Barbara Selisko
- Aix-Marseille Université, AFMB UMR 7257, 13288 Marseille, France; CNRS, AFMB UMR 7257, 13288 Marseille, France
| | - Chunling Wang
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, 185 Li Ka Shing Center, Berkeley, CA 94720-3370, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, 185 Li Ka Shing Center, Berkeley, CA 94720-3370, USA
| | - Bruno Canard
- Aix-Marseille Université, AFMB UMR 7257, 13288 Marseille, France; CNRS, AFMB UMR 7257, 13288 Marseille, France.
| |
Collapse
|
145
|
Jheng JR, Ho JY, Horng JT. ER stress, autophagy, and RNA viruses. Front Microbiol 2014; 5:388. [PMID: 25140166 PMCID: PMC4122171 DOI: 10.3389/fmicb.2014.00388] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 07/11/2014] [Indexed: 12/19/2022] Open
Abstract
Endoplasmic reticulum (ER) stress is a general term for representing the pathway by which various stimuli affect ER functions. ER stress induces the evolutionarily conserved signaling pathways, called the unfolded protein response (UPR), which compromises the stimulus and then determines whether the cell survives or dies. In recent years, ongoing research has suggested that these pathways may be linked to the autophagic response, which plays a key role in the cell's response to various stressors. Autophagy performs a self-digestion function, and its activation protects cells against certain pathogens. However, the link between the UPR and autophagy may be more complicated. These two systems may act dependently, or the induction of one system may interfere with the other. Experimental studies have found that different viruses modulate these mechanisms to allow them to escape the host immune response or, worse, to exploit the host's defense to their advantage; thus, this topic is a critical area in antiviral research. In this review, we summarize the current knowledge about how RNA viruses, including influenza virus, poliovirus, coxsackievirus, enterovirus 71, Japanese encephalitis virus, hepatitis C virus, and dengue virus, regulate these processes. We also discuss recent discoveries and how these will produce novel strategies for antiviral treatment.
Collapse
Affiliation(s)
- Jia-Rong Jheng
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University Kweishan, Taiwan
| | - Jin-Yuan Ho
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University Kweishan, Taiwan
| | - Jim-Tong Horng
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University Kweishan, Taiwan ; Research Center for Emerging Viral Infections, Chang Gung University Kweishan, Taiwan ; Department of Medical Research, Chang Gung Memorial Hospital Kweishan, Taiwan
| |
Collapse
|
146
|
Abstract
Dengue virus (DENV) is an emerging mosquito-borne human pathogen that affects millions of individuals each year by causing severe and potentially fatal syndromes. Despite intense research efforts, no approved vaccine or antiviral therapy is yet available. Overcoming this limitation requires detailed understanding of the intimate relationship between the virus and its host cell, providing the basis to devise optimal prophylactic and therapeutic treatment options. With the advent of novel high-throughput technologies including functional genomics, transcriptomics, proteomics, and lipidomics, new important insights into the DENV replication cycle and the interaction of this virus with its host cell have been obtained. In this chapter, we provide a comprehensive overview on the current status of the DENV research field, covering every step of the viral replication cycle with a particular focus on virus-host cell interaction. We will also review specific chemical inhibitors targeting cellular factors and processes of relevance for the DENV replication cycle and their possible exploitation for the development of next generation antivirals.
Collapse
|
147
|
Li XD, Shan C, Deng CL, Ye HQ, Shi PY, Yuan ZM, Gong P, Zhang B. The interface between methyltransferase and polymerase of NS5 is essential for flavivirus replication. PLoS Negl Trop Dis 2014; 8:e2891. [PMID: 24852307 PMCID: PMC4031075 DOI: 10.1371/journal.pntd.0002891] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 04/10/2014] [Indexed: 12/15/2022] Open
Abstract
The flavivirus NS5 harbors both a methyltransferase (MTase) and an RNA-dependent RNA polymerase (RdRP). Both enzyme activities of NS5 are critical for viral replication. Recently, the full-length NS5 crystal structure of Japanese encephalitis virus reveals a conserved MTase-RdRP interface that features two conserved components: a six-residue hydrophobic network and a GTR sequence. Here we showed for the first time that these key interface components are essential for flavivirus replication by various reverse genetics approaches. Interestingly, some replication-impaired variants generated a common compensatory NS5 mutation outside the interface (L322F), providing novel routes to further explore the crosstalk between MTase and RdRP.
Collapse
Affiliation(s)
- Xiao-Dan Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chao Shan
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cheng-Lin Deng
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Han-Qing Ye
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Pei-Yong Shi
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Zhi-Ming Yuan
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Peng Gong
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- * E-mail: (PG); (BZ)
| | - Bo Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- * E-mail: (PG); (BZ)
| |
Collapse
|
148
|
Xie X, Zou J, Wang QY, Noble CG, Lescar J, Shi PY. Generation and characterization of mouse monoclonal antibodies against NS4B protein of dengue virus. Virology 2014; 450-451:250-7. [DOI: 10.1016/j.virol.2013.12.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 10/13/2013] [Accepted: 12/17/2013] [Indexed: 11/16/2022]
|
149
|
Abstract
UNLABELLED Flavivirus replication is mediated by a complex machinery that consists of viral enzymes, nonenzymatic viral proteins, and host factors. Many of the nonenzymatic viral proteins, such as NS4B, are associated with the endoplasmic reticulum membrane. How these membrane proteins function in viral replication is poorly understood. Here we report a robust method to express and purify dengue virus (DENV) and West Nile virus NS4B proteins. The NS4B proteins were expressed in Escherichia coli, reconstituted in dodecyl maltoside (DDM) detergent micelles, and purified to >95% homogeneity. The recombinant NS4B proteins dimerized in vitro, as evidenced by gel filtration, chemical cross-linking, and multiangle light scattering experiments. The dimeric form of NS4B was also detected when the protein was expressed alone in cells as well as in cells infected with DENV type 2 (DENV-2). Mutagenesis analysis showed that the cytosolic loop (amino acids 129 to 165) and the C-terminal region (amino acids 166 to 248) are responsible for NS4B dimerization. trans-Complementation experiments showed that (i) two genome-length RNAs containing distinct NS4B lethal mutations could not trans-complement each other, (ii) the replication defect of NS4B mutant RNA could be restored in cells containing DENV-2 replicons, and (iii) expression of wild-type NS4B protein alone was not sufficient to restore the replication of the NS4B mutant RNA. Collectively, the results indicate that trans-complementation of a lethal NS4B mutant RNA requires wild-type NS4B presented from a replication complex. IMPORTANCE The reported expression and purification system has made it possible to study the biochemistry and structure of flavivirus NS4B proteins. The finding of flavivirus NS4B dimerization and the mapping of regions important for NS4B dimerization provide the possibility to inhibit viral replication through blocking NS4B dimerization. The requirement of NS4B in the context of the replication complex for successful trans-complementation enhances our understanding of NS4B in flavivirus replication.
Collapse
|
150
|
Replication cycle and molecular biology of the West Nile virus. Viruses 2013; 6:13-53. [PMID: 24378320 PMCID: PMC3917430 DOI: 10.3390/v6010013] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 12/12/2013] [Accepted: 12/12/2013] [Indexed: 12/27/2022] Open
Abstract
West Nile virus (WNV) is a member of the genus Flavivirus in the family Flaviviridae. Flaviviruses replicate in the cytoplasm of infected cells and modify the host cell environment. Although much has been learned about virion structure and virion-endosomal membrane fusion, the cell receptor(s) used have not been definitively identified and little is known about the early stages of the virus replication cycle. Members of the genus Flavivirus differ from members of the two other genera of the family by the lack of a genomic internal ribosomal entry sequence and the creation of invaginations in the ER membrane rather than double-membrane vesicles that are used as the sites of exponential genome synthesis. The WNV genome 3' and 5' sequences that form the long distance RNA-RNA interaction required for minus strand initiation have been identified and contact sites on the 5' RNA stem loop for NS5 have been mapped. Structures obtained for many of the viral proteins have provided information relevant to their functions. Viral nonstructural protein interactions are complex and some may occur only in infected cells. Although interactions between many cellular proteins and virus components have been identified, the functions of most of these interactions have not been delineated.
Collapse
|