101
|
Molloy DP, Barral PM, Bremner KH, Gallimore PH, Grand RJ. Structural determinants in adenovirus 12 E1A involved in the interaction with C-terminal binding protein 1. Virology 2000; 277:156-66. [PMID: 11062046 DOI: 10.1006/viro.2000.0580] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The interaction between the C-terminal binding protein 1 (CtBP-1) and purified Ad12 E1A protein has been examined through the use of a combination of biophysical techniques. A fragment equivalent to the 77 C-terminal amino acids of Ad12 E1A (Ad12 77-a.a. E1A) was generated by limited proteolysis of Ad12 266-a.a. E1A at Phe(187) and/or Tyr(189) using chymotrypsin. The impact of deletion of the 189 N-terminal amino acids from E1A on the equilibrium dissociation constant K(d) for binding to CtBP was assessed using ELISA in vitro binding assays and intrinsic fluorescence spectroscopy. Values of K(d) of 4.0 and 38 nM were determined for full-length and truncated forms of E1A, respectively. Circular dichroism spectroscopic studies revealed that the conformation adopted by these polypeptides is dependent on the surrounding environment, which is predominately randomly folded when free in solution, but adopting a more ordered alpha-helical secondary structure in the presence of trifluoroethanol. Using nuclear magnetic resonance (NMR) spectroscopy to examine the interaction between Ad E1A and CtBP it was observed that the chemical shift positions of individual backbone amide nitrogen atoms were well resolved in (15)N-(1)H-HSQC NMR spectra performed on samples of isotopically (15)N-labeled Ad12 77-a.a. E1A. In the presence of CtBP, signals of backbone amide nitrogen atoms displayed increased linewidth consistent with an increase in molecular mass upon binding CtBP. In addition, some signals that have been attributed to Val(254/256) and Leu(259), and reside within the binding site for CtBP on E1A, are shifted in the (15)N- and/or (1)H-dimensions, defining specific contacts between E1A and CtBP. These data suggest that structural determinants in the C-terminal PXDLS binding motif in the rest of exon 2 and in exon 1 all contribute to optimizing the conformation of the binding site on Ad12 E1A for CtBP. However, no interaction was observed between CtBP and truncated Ad12 E1A, which no longer contained the C-terminal binding motif.
Collapse
Affiliation(s)
- D P Molloy
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | | | | | | | | |
Collapse
|
102
|
Howe JA, Demers GW, Johnson DE, Neugebauer SE, Perry ST, Vaillancourt MT, Faha B. Evaluation of E1-mutant adenoviruses as conditionally replicating agents for cancer therapy. Mol Ther 2000; 2:485-95. [PMID: 11082322 DOI: 10.1006/mthe.2000.0206] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The oncolytic effect of adenoviruses may provide an efficient means to destroy tumor tissue if viruses could be developed with sufficient selectivity and efficacy. In this report we have characterized several adenoviruses, each with different mutations in the E1 region, for selective cytopathic effect in tumor cells in vitro and for their ability to inhibit tumor growth in vivo. Of the E1 mutants tested, we have identified one, E1Adl01/07, which preferentially induces cytopathic effects in a range of tumor cells versus primary cells. In addition, E1Adl01/07 significantly inhibited tumor growth and increased survival of mice in several models of human cancer. These results suggest that E1Adl01/07 might serve as an effective cancer therapeutic, combining both selectivity and efficacy.
Collapse
Affiliation(s)
- J A Howe
- Canji Incorporated, 3525 John Hopkins Court, San Diego, California 92121, USA.
| | | | | | | | | | | | | |
Collapse
|
103
|
Tohkin M, Fukuhara M, Elizondo G, Tomita S, Gonzalez FJ. Aryl hydrocarbon receptor is required for p300-mediated induction of DNA synthesis by adenovirus E1A. Mol Pharmacol 2000; 58:845-51. [PMID: 10999956 DOI: 10.1124/mol.58.4.845] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that mediates the biological responses to environmental contaminants such as 2,3,7, 8-tetrachlorodibenzo-p-dioxin. Embryonic fibroblast (EF) isolated from AHR-null mice exhibited slow cell growth compared with wild-type EF. Reintroduction of AHR into AHR-null EF increased cell growth, suggesting that AHR is involved in cell cycle control. The role of the AHR in cell cycle control was examined using the adenovirus oncoprotein E1A. EF, derived from wild-type and AHR-null mice, were transfected with two mutant E1A expression plasmids that inactivate either p300/CBP or retinoblastoma protein (pRb). Although DNA synthesis of wild-type EF was induced by both E1A mutants, DNA synthesis in the AHR-null EF was induced only by the mutant that binds pRb, not by the mutant to p300/CBP. These data show that both pRb and p300/CBP were the target of E1A-induced DNA synthesis in wild-type EF. In AHR-null mice, however, only pRb was the target of E1A-induced DNA synthesis and p300/CBP cannot be inactivated by E1A in the absence of AHR. Immunoprecipitation revealed that AHR directly bound to p300, thus suggesting the intriguing possibility that AHR is involved in control of the cell cycle via interaction with p300.
Collapse
Affiliation(s)
- M Tohkin
- Laboratory of Metabolism, National Cancer Institute, National Institute of Health, Bethesda, Maryland 20892-0001, USA
| | | | | | | | | |
Collapse
|
104
|
Turnell AS, Grand RJ, Gorbea C, Zhang X, Wang W, Mymryk JS, Gallimore PH. Regulation of the 26S proteasome by adenovirus E1A. EMBO J 2000; 19:4759-73. [PMID: 10970867 PMCID: PMC302057 DOI: 10.1093/emboj/19.17.4759] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have identified the N-terminus of adenovirus early region 1A (AdE1A) as a region that can regulate the 26S proteasome. Specifically, in vitro and in vivo co-precipitation studies have revealed that the 19S regulatory components of the proteasome, Sug1 (S8) and S4, bind through amino acids (aa) 4-25 of Ad5 E1A. In vivo expression of wild-type (wt) AdE1A, in contrast to the N-terminal AdE1A mutant that does not bind the proteasome, reduces ATPase activity associated with anti-S4 immunoprecipitates relative to mock-infected cells. This reduction in ATPase activity correlates positively with the ability of wt AdE1A, but not the N-terminal deletion mutant, to significantly reduce the ability of HPV16 E6 to target p53 for ubiquitin-mediated proteasomal degradation. AdE1A/proteasomal complexes are present in both the cytoplasm and the nucleus, suggesting that AdE1A interferes with both nuclear and cytoplasmic proteasomal degradation. We have also demonstrated that wt AdE1A and the N-terminal AdE1A deletion mutant are substrates for proteasomal-mediated degradation. AdE1A degradation is not, however, mediated through ubiquitylation, but is regulated through phosphorylation of residues within a C-terminal PEST region (aa 224-238).
Collapse
Affiliation(s)
- A S Turnell
- CRC Institute for Cancer Studies, The Medical School, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | | | | | | | | | | | | |
Collapse
|
105
|
Grooteclaes ML, Frisch SM. Evidence for a function of CtBP in epithelial gene regulation and anoikis. Oncogene 2000; 19:3823-8. [PMID: 10949939 DOI: 10.1038/sj.onc.1203721] [Citation(s) in RCA: 249] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Previously, we reported that adenovirus E1a protein behaves as a tumor suppressor in human cells. It apparently functions by transcriptionally inducing an array of epithelial cell adhesion genes, while repressing other cell-type specific genes, thus producing an epithelial phenotype. Concomitantly, the cells become sensitive to anoikis (apoptosis of epithelial cells detached from extracellular matrix), potentially causing tumor suppression. E1a protein interacts with the nuclear acetylases p300, CBP and P/CAF, and also with the co-repressor protein CtBP. In this study, we have determined the role of these interactions in E1a's phenotypic effects on human tumor cells. The results indicate that E1a's interaction with CtBP activates at least three epithelial cell adhesion gene promoters. The E-cadherin repressor appeared to be the CtBP-interacting protein delta EF1/ZEB, which bound the ras-repressible E-boxes of the E-cadherin promoter. The E1a-CtBP interaction also contributed to anoikis-sensitization. E1a's interactions with the nuclear acetylases conferred epithelial morphologies but did not activate epithelial genes. These latter interactions did not sensitize tumor cells to anoikis but nevertheless conferred tumor suppression. These results implicate CtBP as an antagonist of the epithelial phenotype and anoikis. They also indicate a new but undefined role for nuclear acetylases in maintaining the transformed phenotype.
Collapse
|
106
|
Liu SL, Rand A, Kelm RJ, Getz MJ. The retinoblastoma gene family members pRB and p107 coactivate the AP-1-dependent mouse tissue factor promoter in fibroblasts. Oncogene 2000; 19:3352-62. [PMID: 10918592 DOI: 10.1038/sj.onc.1203675] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Serum-stimulation of quiescent mouse fibroblasts results in transcriptional activation of tissue factor (TF), the cellular initiator of blood coagulation. This requires the rapid entry of c-Fos into specific AP-1 DNA-binding complexes and can be strongly inhibited by the adenovirus EIA 12S gene product. In this study, we utilized a panel of E1A mutants deficient in cellular protein binding to analyse the molecular basis for EIA inhibition of a minimal, c-Fos-dependent TF promoter/ reporter construct in mouse AKR-2B fibroblasts. Mutations which impaired binding of the retinoblastoma tumor suppressor protein family members pRB, p107, and p130 relieved E1A-mediated inhibition of transcription in response to serum-stimulation or c-Fos overexpression. Inhibition was restricted to the G0 to G1 transition, consistent with the specificity of E1A for hypophosphorylated forms of RB proteins. Although E1A mutants deficient in CBP/p300 binding retained the ability to inhibit TF transcription, deletion of the amino-terminal portion of the CBP/p300 interaction domain was required to permit rescue of TF promoter activity by coexpression of pRB. Moreover, ectopic p107 could effectively substitute for pRB in relieving E1A-mediated repression. In primary mouse embryo fibroblasts, activity of the minimal AP-1-dependent TF promoter was suppressed in Rb(-/-) cells compared to parallel Rb(+/-) and Rb(+/+) transfectants. Ectopic expression of either pRB or p107 markedly enhanced TF promoter activity in Rb(-/-) fibroblasts. Collectively, these data imply that pRB and p107 can cooperate with c-Fos to activate TF gene transcription in fibroblasts and suggest a requirement for another, as yet unidentified, E1A-binding protein.
Collapse
Affiliation(s)
- S L Liu
- Department of Biochemistry and Molecular Biology, Mayo Clinic/Foundation, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
107
|
Chatterjee-Kishore M, van Den Akker F, Stark GR. Adenovirus E1A down-regulates LMP2 transcription by interfering with the binding of stat1 to IRF1. J Biol Chem 2000; 275:20406-11. [PMID: 10764778 DOI: 10.1074/jbc.m001861200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The LMP2 gene, which encodes a protein required for efficient presentation of viral antigens, requires both unphosphorylated Stat1 and IRF1 for basal expression. LMP2 expression is down-regulated by the adenovirus protein E1A, which binds to Stat1 and CBP/p300, and by the mutant E1A protein RG2, which binds to Stat1 but not to CBP/p300, but not by the mutant protein Delta2-36, which does not bind to either Stat1 or CBP/p300. Stat1 and IRF1 associate in untreated cells and bind as a complex to the overlapping ICS-2/GAS element of the LMP2 promoter. E1A interferes with the formation of this complex by occupying domains of Stat1 that bind to IRF1. These results reveal how adenovirus infection attenuates LMP2 expression, thereby interfering with the presentation of viral antigens.
Collapse
Affiliation(s)
- M Chatterjee-Kishore
- Department of Molecular Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44145, USA
| | | | | |
Collapse
|
108
|
Lin YC, Peng JM, Wang WB. The N-terminal common domain of simian virus 40 large T and small t antigens acts as a transformation suppressor of the HER-2/neu oncogene. Oncogene 2000; 19:2704-13. [PMID: 10851070 DOI: 10.1038/sj.onc.1203582] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Overexpression of HER-2/neu (also known as c-erbB-2) proto-oncogene frequently occurs in many different types of human cancers, including ovarian carcinoma, and is known to enhance tumor metastasis and chemoresistance. Previous studies showed that inhibition of HER-2/neu expression by various agents, such as adenovirus E1A and simian virus 40 large T, can lead to suppression of tumorigenicity of HER-2/neu-overexpressing cancer cells. Here we report that T/t-common, which contains the N-terminal common domain of simian virus 40 large T and small t antigens, could specifically repress the HER-2/neu promoter. When the coding sequence of T/t-common was stably transfected into the HER-2/neu-overexpressing human ovarian carcinoma SK-OV-3 cells, the expression of HER-2/neu was dramatically reduced by the expression of T/t-common. Accordingly the tumorigenic potential of these T/t-common-expressing clones, including the ability to grow anchorage-independently and the ability to induce tumor in nu/nu mice, was also drastically suppressed. Furthermore, when T/t-common was transiently cotransfected with the activated genomic neu into NIH3T3 cells, the transforming activity of the latter was suppressed by T/t-common in soft-agarose microcolony formation assays. Taken together, these data suggest that T/t-common may act as a transformation suppressor of the HER-2/neu oncogene. Oncogene (2000).
Collapse
Affiliation(s)
- Y C Lin
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | | | | |
Collapse
|
109
|
Mal A, Chattopadhyay D, Ghosh MK, Poon RY, Hunter T, Harter ML. p21 and retinoblastoma protein control the absence of DNA replication in terminally differentiated muscle cells. J Cell Biol 2000; 149:281-92. [PMID: 10769022 PMCID: PMC2175169 DOI: 10.1083/jcb.149.2.281] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/1999] [Accepted: 03/10/2000] [Indexed: 01/10/2023] Open
Abstract
During differentiation, skeletal muscle cells withdraw from the cell cycle and fuse into multinucleated myotubes. Unlike quiescent cells, however, these cells cannot be induced to reenter S phase by means of growth factor stimulation. The studies reported here document that both the retinoblastoma protein (Rb) and the cyclin-dependent kinase (cdk) inhibitor p21 contribute to this unresponsiveness. We show that the inactivation of Rb and p21 through the binding of the adenovirus E1A protein leads to the induction of DNA replication in differentiated muscle cells. Moreover, inactivation of p21 by E1A results in the restoration of cyclin E-cdk2 activity, a kinase made nonfunctional by the binding of p21 and whose protein levels in differentiated muscle cells is relatively low in amount. We also show that restoration of kinase activity leads to the phosphorylation of Rb but that this in itself is not sufficient for allowing differentiated muscle cells to reenter the cell cycle. All the results obtained are consistent with the fact that Rb is functioning downstream of p21 and that the activities of these two proteins may be linked in sustaining the postmitotic state.
Collapse
Affiliation(s)
- Asoke Mal
- Department of Molecular Biology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195
| | - Debasis Chattopadhyay
- Department of Molecular Biology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195
| | - Mrinal K. Ghosh
- Department of Molecular Biology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195
| | - Randy Y.C. Poon
- Department of Biochemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Tony Hunter
- The Salk Institute, La Jolla, California 92037
| | - Marian L. Harter
- Department of Molecular Biology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195
| |
Collapse
|
110
|
Garrison PM, Rogers JM, Brackney WR, Denison MS. Effects of histone deacetylase inhibitors on the Ah receptor gene promoter. Arch Biochem Biophys 2000; 374:161-71. [PMID: 10666294 DOI: 10.1006/abbi.1999.1620] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aromatic hydrocarbon receptor (AhR) is a ligand-dependent basic helix-loop-helix-PAS-containing transcription factor which is activated by chemicals such as 2,3,7,8-tetrachlorodibenzo-p-dioxin. Constitutive expression of the AhR gene occurs in a tissue- and developmentally specific manner and appears to be altered by chemicals which affect histone deacetylase (HDAC) activity in cells in culture. Here we have directly characterized the effects of two HDAC inhibitors, n-butyrate and trichostatin A, on the promoter activity of the murine AhR gene. HDAC inhibitors increased the constitutive activity of the AhR gene promoter in a luciferase reporter construct by five- to sevenfold in a dose- and time-dependent manner in several cell lines and was correlated with an increase in endogenous AhR activity in an AhR-deficient cell line. Deletion analysis of the upstream region of the AhR gene localized the HDAC inhibitor effect to a 167-bp region encompassing -77 to +90 of the AhR gene promoter. Cotransfection of an AhR promoter-luciferase reporter plasmid with a vector expressing the E1A(12s) oncoprotein, a negative regulator of p300, a protein with histone acetylase activity, decreased AhR promoter activity fivefold. Overall, our results support a role for histone acetylation in the transcriptional activity of the AhR gene promoter.
Collapse
Affiliation(s)
- P M Garrison
- Department of Environmental Toxicology, Meyer Hall, One Shields Avenue, Davis, California 95616, USA
| | | | | | | |
Collapse
|
111
|
Pützer BM, Stiewe T, Parssanedjad K, Rega S, Esche H. E1A is sufficient by itself to induce apoptosis independent of p53 and other adenoviral gene products. Cell Death Differ 2000; 7:177-88. [PMID: 10713732 DOI: 10.1038/sj.cdd.4400618] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Induction of apoptosis seems to be a key function in maintaining normal cell growth by exerting negative controls on cell proliferation and suppressing tumorigenesis. The adenovirus E1A oncogene shows both cell cycle progression and apoptotic functions. To understand the mechanism of E1A-induced apoptosis, the apoptotic function of E1A 13S was investigated in p53-null cells. We show here that E1A is sufficient by itself to induce substantial apoptosis independent of p53 and other adenoviral genes. The apoptotic function of E1A is accompanied by processing of caspase-3 and cleavage of poly(ADP-ribose)-polymerase. Cell death is significantly blocked by the caspase inhibitor zVAD-fmk and when coexpressed with E1B19K, Bcl-2 or the retinoblastoma protein (RB). Analyses of E1A mutants indicated that the apoptotic activity of E1A correlates closely with the ability to bind the key regulators of E2F1-induced apoptosis, p300 and RB. Finally, in vivo relevance of down-modulation of p53-independent apoptosis for efficient transformation is demonstrated.
Collapse
Affiliation(s)
- B M Pützer
- Institute of Molecular Biology (Cancer Research), University of Essen, Medical School, Hufelandstr. 55, 45122 Essen, Germany.
| | | | | | | | | |
Collapse
|
112
|
Albanese C, D'Amico M, Reutens AT, Fu M, Watanabe G, Lee RJ, Kitsis RN, Henglein B, Avantaggiati M, Somasundaram K, Thimmapaya B, Pestell RG. Activation of the cyclin D1 gene by the E1A-associated protein p300 through AP-1 inhibits cellular apoptosis. J Biol Chem 1999; 274:34186-95. [PMID: 10567390 DOI: 10.1074/jbc.274.48.34186] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The adenovirus E1A protein interferes with regulators of apoptosis and growth by physically interacting with cell cycle regulatory proteins including the retinoblastoma tumor suppressor protein and the coactivator proteins p300/CBP (where CBP is the CREB-binding protein). The p300/CBP proteins occupy a pivotal role in regulating mitogenic signaling and apoptosis. The mechanisms by which cell cycle control genes are directly regulated by p300 remain to be determined. The cyclin D1 gene, which is overexpressed in many different tumor types, encodes a regulatory subunit of a holoenzyme that phosphorylates and inactivates PRB. In the present study E1A12S inhibited the cyclin D1 promoter via the amino-terminal p300/CBP binding domain in human choriocarcinoma JEG-3 cells. p300 induced cyclin D1 protein abundance, and p300, but not CBP, induced the cyclin D1 promoter. cyclin D1 or p300 overexpression inhibited apoptosis in JEG-3 cells. The CH3 region of p300, which was required for induction of cyclin D1, was also required for the inhibition of apoptosis. p300 activated the cyclin D1 promoter through an activator protein-1 (AP-1) site at -954 and was identified within a DNA-bound complex with c-Jun at the AP-1 site. Apoptosis rates of embryonic fibroblasts derived from mice homozygously deleted of the cyclin D1 gene (cyclin D1(-/-)) were increased compared with wild type control on several distinct matrices. p300 inhibited apoptosis in cyclin D1(+/+) fibroblasts but increased apoptosis in cyclin D1(-/-) cells. The anti-apoptotic function of cyclin D1, demonstrated by sub-G(1) analysis and annexin V staining, may contribute to its cellular transforming and cooperative oncogenic properties.
Collapse
Affiliation(s)
- C Albanese
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Abstract
p300/ CREB-binding protein (CBP) is a transcriptional coactivator for a plethora of transcription factors and plays critical roles in signal transduction pathways. We report that the inhibition of p300/CBP function in the Xenopus embryo abolishes non-neural tissue formation and, strikingly, initiates neural induction and primary neurogenesis in the entire embryo. The observed neuralization is achieved in the absence of anterior or posterior gene expression, suggesting that neural fate activation and anterior patterning may represent distinct molecular events. We further demonstrate that the neuralizing and anteriorizing activities of chordin and noggin are separable properties of these neural inducers. This study reveals that all embryonic cells possess intrinsic neuralizing capability and that p300/CBP function is essential for embryonic germ layer formation and neural fate suppression during vertebrate embryogenesis.
Collapse
|
114
|
Kato Y, Shi Y, He X. Neuralization of the Xenopus embryo by inhibition of p300/ CREB-binding protein function. J Neurosci 1999; 19:9364-73. [PMID: 10531441 PMCID: PMC6782909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
p300/ CREB-binding protein (CBP) is a transcriptional coactivator for a plethora of transcription factors and plays critical roles in signal transduction pathways. We report that the inhibition of p300/CBP function in the Xenopus embryo abolishes non-neural tissue formation and, strikingly, initiates neural induction and primary neurogenesis in the entire embryo. The observed neuralization is achieved in the absence of anterior or posterior gene expression, suggesting that neural fate activation and anterior patterning may represent distinct molecular events. We further demonstrate that the neuralizing and anteriorizing activities of chordin and noggin are separable properties of these neural inducers. This study reveals that all embryonic cells possess intrinsic neuralizing capability and that p300/CBP function is essential for embryonic germ layer formation and neural fate suppression during vertebrate embryogenesis.
Collapse
Affiliation(s)
- Y Kato
- Division of Neuroscience, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
115
|
Cook JL, Routes BA, Walker TA, Colvin KL, Routes JM. E1A oncogene induction of cellular susceptibility to killing by cytolytic lymphocytes through target cell sensitization to apoptotic injury. Exp Cell Res 1999; 251:414-23. [PMID: 10471326 DOI: 10.1006/excr.1999.4597] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
E1A oncogene expression increases mammalian cell susceptibility to lysis by cytolytic lymphocytes (CLs) at a stage in this intercellular interaction that is independent of cell surface recognition events. Since CLs can induce either apoptotic or necrotic cell death, we asked whether E1A sensitization to injury-induced apoptosis is sufficient to explain E1A-induced cytolytic susceptibility. Mouse, rat, hamster, and human cells that were rendered cytolytic susceptible by E1A were also sensitized to CL-induced and chemically induced apoptosis. In contrast, E1A-positive cells were no more susceptible to injury-induced necrosis than E1A-negative cells. Similar to induction of cytolytic susceptibility and in contrast to other E1A activities, cellular sensitization to chemically induced apoptosis depended on high-level E1A oncoprotein expression. Loss of both cytolytic susceptibility and sensitization to chemically induced apoptosis was coselected during in vivo selection of E1A-positive sarcoma cells for increased tumorigenicity. Furthermore, E1A mutant proteins that cannot bind the cellular transcriptional coactivator, p300, and that fail to induce cytolytic susceptibility also failed to sensitize cells to injury-induced apoptosis. These data indicate that E1A induces susceptibility to killer cell-induced lysis through sensitization of cells to injury-induced apoptosis.
Collapse
Affiliation(s)
- J L Cook
- College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | | | | | | | |
Collapse
|
116
|
Pajalunga D, Tognozzi D, Tiainen M, D'Angelo M, Ferrantelli F, Helin K, Sacchi A, Crescenzi M. E2F activates late-G1 events but cannot replace E1A in inducing S phase in terminally differentiated skeletal muscle cells. Oncogene 1999; 18:5054-62. [PMID: 10490842 DOI: 10.1038/sj.onc.1202897] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have previously shown that the adenovirus E1A oncogene can reactivate the cell cycle in terminally differentiated cells. Current models imply that much or all of this E1A activity is mediated by the release of the E2F transcription factors from pocket-protein control. In contrast, we show here that overexpression of E2F-1, E2F-2 and E2F-4, or a chimeric E2F-4 tethered to a nuclear localization signal cannot reactivate postmitotic skeletal muscle cells (myotubes). This is not due to lack of transcriptional activity, as demonstrated on both a reporter construct and a number of endogenous target genes. Although cyclin E was strongly overexpressed in E2F-transduced myotubes, it lacked associated kinase activity, possibly explaining the inability of the myotubes to enter S phase and accumulate cyclin A. Although E2F is not sufficient to trigger DNA synthesis in myotubes, its activity is necessary even in the presence of E1A, as dominant-negative DP-1 mutants inhibit E1A-mediated cell cycle reentry. Our data show that, to reactivate myotubes, E1A must exert other functions, in addition to releasing E2F. They also establish mouse myotubes as an experimental system uniquely suited to study the most direct E2F functions in the absence of downstream cell cycle effects.
Collapse
Affiliation(s)
- D Pajalunga
- Molecular Oncogenesis Laboratory, Regina Elena Cancer Institute, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
117
|
Akli S, Zhan S, Abdellatif M, Schneider MD. E1A can provoke G1 exit that is refractory to p21 and independent of activating cdk2. Circ Res 1999; 85:319-28. [PMID: 10455060 DOI: 10.1161/01.res.85.4.319] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
E1A can evoke G1 exit in cardiac myocytes and other cell types by displacing E2F transcription factors from tumor suppressor "pocket" proteins and by a less well-characterized p300-dependent pathway. Bypassing pocket proteins (through overexpression of E2F-1) reproduces the effect of inactivating pocket proteins (through E1A binding); however, pocket proteins associate with a number of molecular targets apart from E2F. Hence, pocket protein binding by E1A might engage mechanisms for cell cycle reentry beyond those induced by E2F-1. To test this hypothesis, we used adenoviral gene transfer to express various E2F-1 and E1A proteins in neonatal rat cardiac myocytes that are already refractory to mitogenic serum, in the absence or presence of several complementary cell cycle inhibitors-p16, p21, or dominant-negative cyclin-dependent kinase-2 (Cdk2). Rb binding by E2F-1 was neither necessary nor sufficient for G1 exit, whereas DNA binding was required; thus, exogenous E2F-1 did not merely function by competing for the Rb "pocket." E2F-1-induced G1 exit was blocked by the "universal" Cdk inhibitor p21 but not by p16, a specific inhibitor of Cdk4/6; p21 was permissive for E2F-1 induction of cyclins E and A, but prevented their stimulation of Cdk2 kinase activity. In addition, E2F-1-induced G1 exit was blocked by dominant-negative Cdk2. Forced expression of cyclin E induced endogenous Cdk2 activity but not G1 exit. Thus, E2F-1-induced Cdk2 function was necessary, although not sufficient, to trigger DNA synthesis in cardiac muscle cells. In contrast, pocket protein-binding forms of E1A induced G1 exit that was resistant to inhibition by p21, whereas G1 exit via the E1A p300 pathway was sensitive to inhibition by p21. Both E1A pathways-via pocket proteins and via p300-upregulated cyclins E and A and Cdk2 activity, consistent with a role for Cdk2 in G1 exit induced by E1A. However, p21 blocked Cdk2 kinase activity induced by both E1A pathways equally. Thus, E1A can cause G1 exit without an increase in Cdk2 activity, if the pocket protein-binding domain is intact. E1A also overrides p21 in U2OS cells, provided the pocket protein-binding domain is intact; thus, this novel function of E1A is not exclusive to cardiac muscle cells. In summary, E1A binding to pocket proteins has effects beyond those produced by E2F-1 alone and can drive S-phase entry that is resistant to p21 and independent of an increase in Cdk2 function. This suggests the potential involvement of other endogenous Rb-binding proteins or of alternative E1A targets.
Collapse
Affiliation(s)
- S Akli
- Molecular Cardiology Unit, Departments of Medicine, Cell Biology, and Molecular Physiology & Biophysics, and the Graduate Program in Cardiovascular Sciences Baylor College of Medicine, Houston, Tex, USA
| | | | | | | |
Collapse
|
118
|
Kao CY, Tanimoto A, Arima N, Sasaguri Y, Padmanabhan R. Transactivation of the human cdc2 promoter by adenovirus E1A. E1A induces the expression and assembly of a heteromeric complex consisting of the CCAAT box binding factor, CBF/NF-Y, and a 110-kDa DNA-binding protein. J Biol Chem 1999; 274:23043-51. [PMID: 10438472 DOI: 10.1074/jbc.274.33.23043] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Cyclin-dependent kinases (CDKs) play an important role in the eukaryotic cell cycle progression. Cdc2 (CDK1) is expressed in late G(1)/S phase and required for G(2) to M phase transition in higher eukaryotes. The oncoproteins, SV40 large T antigen and adenovirus E1A, induce a 110-kDa protein which specifically recognizes the two inverted CCAAT motifs of the cdc2 promoter in cycling cells and plays an essential role in transactivation of the human cdc2 promoter. Since these CCAAT motifs also conform to the consensus binding sites for the ubiquitous heterotrimeric transcription factor, CBF/NF-Y, the role of CBF/NF-Y in the transactivation of the cdc2 promoter was examined in this study. Our results indicate that CBF/NF-Y and the 110-kDa protein interact with the CCAAT box motif to form a heteromeric complex. However, mutagenesis of the pentanucleotide CCAAT motif or in the presence of urea greater than 2.5 M, no heteromeric complex was formed. In contrast, the 110-kDa protein could still bind the mutant CCAAT motif or with the wild type motif in the presence of 2.5 M urea. Furthermore, E1A.12S induced the gene expression of all three subunits of CBF/NF-Y. Coexpression of E1A and a dominant negative mutant NF-YA subunit significantly reduced the E1A-mediated transactivation of the cdc2 promoter in a dose-dependent manner. These results support the conclusion that E1A protein mediates optimal transactivation of the human cdc2 promoter by inducing the expression and assembly of a heteromeric complex consisting of the 110-kDa protein and the CBF/NF-Y which interacts with the two CCAAT motifs of the cdc2 promoter.
Collapse
Affiliation(s)
- C Y Kao
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160-7421, USA
| | | | | | | | | |
Collapse
|
119
|
Breen GA, Jordan EM. Transcriptional activation of the F(1)F(0) ATP synthase alpha-subunit initiator element by USF2 is mediated by p300. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1428:169-76. [PMID: 10434034 DOI: 10.1016/s0304-4165(99)00061-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We have been studying the transcriptional regulation of the mammalian F(1)F(0) ATP synthase alpha-subunit gene (ATPA), a TATA-less initiator-containing gene. We have previously determined that the transcription factor, upstream stimulatory factor 2 (USF2), can activate the ATPA gene through an initiator element in the core promoter. Here, we demonstrate that the coactivator p300 interacts functionally with USF2 proteins to potentiate the activation of the ATPA initiator element by USF2. The physiological relevance of this interaction was shown in vivo by expression of the adenovirus E1A oncoprotein. Wild-type E1A, but not E1A mutants that lacked p300-binding sites, inhibited the USF2-dependent transactivation of the ATPA initiator element. Furthermore, overexpression of p300 could reverse the inhibitory effect of E1A. Collectively, our results indicate that the USF2-dependent transcriptional activation of the ATPA initiator element is mediated by p300.
Collapse
Affiliation(s)
- G A Breen
- Department of Molecular and Cell Biology, University of Texas at Dallas, PO Box 830688, Richardson, TX 75083-0688, USA.
| | | |
Collapse
|
120
|
Chen X, Prywes R. Serum-induced expression of the cdc25A gene by relief of E2F-mediated repression. Mol Cell Biol 1999; 19:4695-702. [PMID: 10373518 PMCID: PMC84267 DOI: 10.1128/mcb.19.7.4695] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/1998] [Accepted: 04/21/1999] [Indexed: 11/20/2022] Open
Abstract
The cdc25A gene encodes a tyrosine phosphatase which activates cyclin-dependent kinase activity in the G1 phase of the cell cycle. cdc25A RNA levels are induced from 3 to 6 h after serum induction of serum-starved NIH 3T3 cells, suggesting that the cdc25A gene is a delayed-early gene. Analysis of cdc25A promoter constructs showed that the cdc25A promoter is sufficient for serum induction. Surprisingly for a gene expressed in early to mid-G1, serum induction of the promoter requires an E2F site at position -62 in the promoter. Deletion or point mutation of the E2F site resulted in activation of expression in serum-starved cells and no further induction by serum treatment. E2F factors were found to bind to the cdc25A E2F site along with the retinoblastoma protein (Rb) family members p130 and p107. A shift in mobility of the E2F-p107 complex in extracts of cells induced for 6 h correlated with induction of cdc25A expression. These results suggest that serum induction of cdc25A expression is mediated by inactivation of p107 or p130, both of which repress transcription when bound to the promoter through E2F.
Collapse
Affiliation(s)
- X Chen
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
121
|
Suñé C, Garcia-Blanco MA. Transcriptional cofactor CA150 regulates RNA polymerase II elongation in a TATA-box-dependent manner. Mol Cell Biol 1999; 19:4719-28. [PMID: 10373521 PMCID: PMC84270 DOI: 10.1128/mcb.19.7.4719] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tat protein strongly activates transcription from the human immunodeficiency virus type 1 (HIV-1) long terminal repeat (LTR) by enhancing the elongation efficiency of RNA polymerase II complexes. Tat-mediated transcriptional activation requires cellular cofactors and specific cis-acting elements within the HIV-1 promoter, among them a functional TATA box. Here, we have investigated the mechanism by which one of these cofactors, termed CA150, regulates HIV-1 transcription in vivo. We present a series of functional assays that demonstrate that the regulation of the HIV-1 LTR by CA150 has the same functional requirements as the activation by Tat. We found that CA150 affects elongation of transcription complexes assembled on the HIV-1 promoter in a TATA-box-dependent manner. We discuss the data in terms of the involvement of CA150 in the regulation of Tat-activated HIV-1 gene expression. In addition, we also provide evidence suggesting a role for CA150 in the regulation of cellular transcriptional processes.
Collapse
Affiliation(s)
- C Suñé
- Departments of Pharmacology and Cancer Biology, Levine Science Research Center, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
122
|
Cenciarelli C, De Santa F, Puri PL, Mattei E, Ricci L, Bucci F, Felsani A, Caruso M. Critical role played by cyclin D3 in the MyoD-mediated arrest of cell cycle during myoblast differentiation. Mol Cell Biol 1999; 19:5203-17. [PMID: 10373569 PMCID: PMC84363 DOI: 10.1128/mcb.19.7.5203] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/1998] [Accepted: 03/09/1999] [Indexed: 11/20/2022] Open
Abstract
During the terminal differentiation of skeletal myoblasts, the activities of myogenic factors regulate not only tissue-specific gene expressions but also the exit from the cell cycle. The induction of cell cycle inhibitors such as p21 and pRb has been shown to play a prominent role in the growth arrest of differentiating myoblasts. Here we report that, at the onset of differentiation, activation by MyoD of the Rb, p21, and cyclin D3 genes occurs in the absence of new protein synthesis and with the requirement of the p300 transcriptional coactivator. In differentiated myocytes, cyclin D3 also becomes stabilized and is found nearly totally complexed with unphosphorylated pRb. The detection of complexes containing cyclin D3, cdk4, p21, and PCNA suggests that cdk4, along with PCNA, may get sequestered into high-order structures held together by pRb and cyclin D3. Cyclin D3 up-regulation and stabilization is inhibited by adenovirus E1A, and this correlates with the ability of E1A to promote pRb phosphorylation; conversely, the overexpression of cyclin D3 in differentiated myotubes counteracts the E1A-mediated reactivation of DNA synthesis. These results indicate that cyclin D3 critically contributes to the irreversible exit of differentiating myoblasts from the cell cycle.
Collapse
Affiliation(s)
- C Cenciarelli
- Istituto di Tecnologie Biomediche, CNR, 00137 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
123
|
O'Connor MJ, Zimmermann H, Nielsen S, Bernard HU, Kouzarides T. Characterization of an E1A-CBP interaction defines a novel transcriptional adapter motif (TRAM) in CBP/p300. J Virol 1999; 73:3574-81. [PMID: 10196247 PMCID: PMC104130 DOI: 10.1128/jvi.73.5.3574-3581.1999] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The adenovirus E1A protein subverts cellular processes to induce mitotic activity in quiescent cells. Important targets of E1A include members of the transcriptional adapter family containing CBP/p300. Competition for CBP/p300 binding by various cellular transcription factors has been suggested as a means of integrating different signalling pathways and may also represent a potential mechanism by which E1A manipulates cell fate. Here we describe the characterization of the interaction between E1A and the C/H3 region of CBP. We define a novel conserved 12-residue transcriptional adapter motif (TRAM) within CBP/p300 that represents the binding site for both E1A and numerous cellular transcription factors. We also identify a sequence (FPESLIL) within adenovirus E1A that is required to bind the CBP TRAM. Furthermore, an E1A peptide containing the FPESLIL sequence is capable of preventing the interaction between CBP and TRAM-binding transcription factors, such as p53, E2F, and TFIIB, thus providing a molecular model for E1A action. As an in vivo demonstration of this model, we used a small region of CBP containing a functional TRAM that can bind to the p53 protein. The CBP TRAM binds p53 sequences targeted by the cellular regulator MDM2, and we demonstrate that an MDM2-p53 interaction can be disrupted by the CBP TRAM, leading to stabilization of cellular p53 levels and the activation of p53-dependent transcription. Transcriptional activation of p53 by the CBP TRAM is abolished by wild-type E1A but not by a CBP-binding-deficient E1A mutant.
Collapse
Affiliation(s)
- M J O'Connor
- Institute of Molecular and Cell Biology, Singapore 117 609, Singapore.
| | | | | | | | | |
Collapse
|
124
|
Rumpf H, Esche H, Kirch HC. Two domains within the adenovirus type 12 E1A unique spacer have disparate effects on the interaction of E1A with P105-Rb and the transformation of primary mouse cells. Virology 1999; 257:45-53. [PMID: 10208919 DOI: 10.1006/viro.1999.9651] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transformation of primary rodent cells by functions of the adenovirus type 12 (Ad12) early region 1 (E1) is reduced severalfold compared with transformation by E1 of Ad2. We analyzed whether the unique spacer region of Ad12 E1A that borders the conserved region (CR) 2 and represents an oncogenic determinant of Ad12 E1A is involved in this impaired transformation property, putatively by modulating transformation-relevant biological E1A functions. We show that a mutant (E1ASpm1) that lacks 12 amino-terminal residues of the spacer binds p105-Rb and p130 as Ad12 E1A wild type (E1Awt), whereas a second spacer mutant (E1ASpm2) that lacks an adjacent stretch of six alanines exhibits highly reduced binding to p105-Rb. The binding of this mutant to the p130 pocket protein is, however, little impaired. E1ASpm1 diminishes the formation of the p105-Rb-E2F complex more efficiently than E1Awt or, least efficient, E1ASpm2. These properties of the spacer mutants to target and to disintegrate the p105-Rb-E2F complex correspond with their ability to transform primary mouse cells in combination with E1B: E1ASpm1 (plus Ad12 E1B)-transfected cells could be easily established as cell lines, comparable to Ad12 E1Awt- or Ad2 E1Awt-transfected cells. In contrast, cells transfected with E1ASpm2 or Ad12 E1AdelCR2 (lacking the entire CR2) died within 6-10 weeks after replating, although foci were formed in all cases. Of note, the E1ASpm1-transformed cells grow as fast as the Ad2 E1Awt-transformed cells, with a doubling rate of 15 h, whereas the doubling of the Ad12 E1Awt-transformed cells takes approximately 120 h. Moreover, in the established cell lines, the affinity of E1ASpm1 to p105-Rb was higher than with that of E1Awt. Our data suggest the presence of a transformation-suppressing domain within the carboxyl-terminal 12 residues of the Ad12 E1A-unique spacer, whereas the hydrophobic stretch of six alanines in the spacer is required for stable transformation.
Collapse
Affiliation(s)
- H Rumpf
- Institute of Molecular Biology (Cancer Research), University of Essen Medical School, Hufelandstrasse 55, Essen, 45122, Germany
| | | | | |
Collapse
|
125
|
Tsuji Y, Moran E, Torti SV, Torti FM. Transcriptional regulation of the mouse ferritin H gene. Involvement of p300/CBP adaptor proteins in FER-1 enhancer activity. J Biol Chem 1999; 274:7501-7. [PMID: 10066817 DOI: 10.1074/jbc.274.11.7501] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously identified a major enhancer of the mouse ferritin H gene (FER-1) that is central to repression of the ferritin H gene by the adenovirus E1A oncogene (Tsuji, Y., Akebi, N., Lam, T. K., Nakabeppu, Y., Torti, S. V., and Torti, F. M. (1995) Mol. Cell. Biol. 15, 5152-5164). To dissect the molecular mechanism of transcriptional regulation of ferritin H, E1A mutants were tested for their ability to repress FER-1 enhancer activity using cotransfection with ferritin H-chloramphenicol acetyltransferase (CAT) reporter constructs. Here we report that p300/CBP transcriptional adaptor proteins are involved in the regulation of ferritin H transcription through the FER-1 enhancer element. Thus, E1A mutants that failed to bind p300/CBP lost the ability to repress FER-1, whereas mutants of E1A that abrogated its interaction with Rb, p107, or p130 were fully functional in transcriptional repression. Transfection with E1A did not affect endogenous p300/CBP levels, suggesting that repression of FER-1 by E1A is not due to repression of p300/CBP synthesis, but to E1A and p300/CBP interaction. In addition, we have demonstrated that transfection of a p300 expression plasmid significantly activated ferritin H-CAT containing the FER-1 enhancer, but had a marginal effect on ferritin H-CAT with FER-1 deleted. Furthermore, both wild-type p300 and a p300 mutant that failed to bind E1A but retained an adaptor function restored FER-1 enhancer activity repressed by E1A. Sodium butyrate, an inhibitor of histone deacetylase, mimicked p300/CBP function in activation of ferritin H-CAT and elevation of endogenous ferritin H mRNA, suggesting that the histone acetyltransferase activity of p300/CBP or its associated proteins may contribute to the activation of ferritin H transcription. Recruitment of these broadly active transcriptional adaptor proteins for ferritin H synthesis may represent an important mechanism by which changes in iron metabolism are coordinated with other cellular responses mediated by p300/CBP.
Collapse
Affiliation(s)
- Y Tsuji
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA.
| | | | | | | |
Collapse
|
126
|
Lipinski KS, Fax P, Wilker B, Hennemann H, Brockmann D, Esche H. Differences in the interactions of oncogenic adenovirus 12 early region 1A and nononcogenic adenovirus 2 early region 1A with the cellular coactivators p300 and CBP. Virology 1999; 255:94-105. [PMID: 10049825 DOI: 10.1006/viro.1998.9583] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Association with the cellular coactivators p300 and CBP is required for the growth-regulatory function of adenoviral (Ad) early region 1A (E1A) proteins. E1A regions necessary for these interactions overlap with domains involved in the induction of tumours in immunocompetent rodents through highly oncogenic Ad12. Differences in the association of cellular factors with the respective E1A domains of Ad12 and nononcogenic Ad2 might therefore be involved in serotype-specific oncogenicity. We analyzed the interaction of the Ad12 E1A 235R protein with p300 and CBP. Here we demonstrate that in the case of Ad12, but not Ad2/5, amino acids (aa) 1-29 of E1A proteins are sufficient to bind the p300-C/H3 domain in vivo and wild-type p300 in vitro. The conserved arginine-2, which is essential for the interaction between Ad2 E1A and p300, was dispensable for the Ad12 E1A 235R-p300 interaction in vitro. In addition to the p300-C/H3 region, we identified a second domain within p300 (aa 1999-2200) binding to the 235R protein. Contrary to p300, the amino-terminus and CR1 are necessary to associate with CBP. The aa 1-29 of the 235R protein but not CR1 are essential for the repression of colTRE-driven gene expression. This repression function is strictly dependent on p300 but not on CBP.
Collapse
Affiliation(s)
- K S Lipinski
- Institute of Molecular Biology (Cancer Research), University of Essen Medical School, Hefelandstrasse 55, 45122 Essen, Germany
| | | | | | | | | | | |
Collapse
|
127
|
Molloy DP, Smith KJ, Milner AE, Gallimore PH, Grand RJ. The structure of the site on adenovirus early region 1A responsible for binding to TATA-binding protein determined by NMR spectroscopy. J Biol Chem 1999; 274:3503-12. [PMID: 9920896 DOI: 10.1074/jbc.274.6.3503] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous detailed mutational analysis has shown that the binding site on adenovirus (Ad) early region 1A (E1A) for TATA-binding protein (TBP) is located toward the N terminus of conserved region 3 (CR3). Here we demonstrate that synthetic peptides of between 15 and 22 amino acids, identical to amino acid sequences of CR3 present in the larger Ad5 E1A (13 S product) and in both the Ad12 E1A (13 and 12 S products) proteins that lie N-terminal to the zinc finger motif, can disrupt binding of E1A to TBP. These findings suggest that the peptides are biologically active in terms of interacting with TBP and must therefore comprise some, if not all, of the TBP binding site on E1A. The interaction between Ad12 E1A and TBP was confirmed by direct co-precipitation experiments. In 1H NMR studies of CR3 peptides, regular patterns of NOEs were observed from which their conformational preferences in aqueous solution were determined. Both Ad5 and Ad12 peptides were shown to contain regions of helical backbone structure in 50% trifluoroethanol. In each case, the type and intensities of NOE cross-peaks observed correlated best to alpha-helical turns. These helices are more extensive in larger peptides and extend from Glu141 to Val147 and from Arg144 to Pro152 in the full-length Ad5 and Ad12 13S E1A proteins, respectively. The structure of a 19-residue Ad5 CR3 peptide carrying the V147L mutation in the full-length protein that abolishes TBP binding was examined. No significant differences between the substituted and wild type peptides were observed, suggesting that this substitution in the intact protein may cause disruption of global rather than local structures.
Collapse
Affiliation(s)
- D P Molloy
- CRC Institute for Cancer Studies, University of Birmingham, Edgbaston, Birmingham B15 2TA, United Kingdom
| | | | | | | | | |
Collapse
|
128
|
Chakravarti D, Ogryzko V, Kao HY, Nash A, Chen H, Nakatani Y, Evans RM. A viral mechanism for inhibition of p300 and PCAF acetyltransferase activity. Cell 1999; 96:393-403. [PMID: 10025405 DOI: 10.1016/s0092-8674(00)80552-8] [Citation(s) in RCA: 283] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Nucleosomal histone modification is believed to be a critical step in the activation of RNA polymerase II-dependent transcription. p300/CBP and PCAF histone acetyltransferases (HATs) are coactivators for several transcription factors, including nuclear hormone receptors, p53, and Stat1alpha, and participate in transcription by forming an activation complex and by promoting histone acetylation. The adenoviral E1A oncoprotein represses transcriptional signaling by binding to p300/CBP and displacing PCAF and p/CIP proteins from the complex. Here, we show that E1A directly represses the HAT activity of both p300/CBP and PCAF in vitro and p300-dependent transcription in vivo. Additionally, E1A inhibits nucleosomal histone modifications by the PCAF complex and blocks p53 acetylation. These results demonstrate the modulation of HAT activity as a novel mechanism of transcriptional regulation.
Collapse
Affiliation(s)
- D Chakravarti
- Gene Expression Laboratory, The Salk Institute for Biological Sciences, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
129
|
Nemethova M, Wintersberger E. Polyomavirus large T antigen binds the transcriptional coactivator protein p300. J Virol 1999; 73:1734-9. [PMID: 9882390 PMCID: PMC104009 DOI: 10.1128/jvi.73.2.1734-1739.1999] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Using coimmunoprecipitation and glutathione S-transferase pulldown experiments, we found that polyomavirus large T antigen binds to p300 in vivo and in vitro. The N-terminal region of the viral protein, including the pRB binding motif, was dispensable for this interaction, which involved several regions within the C-terminal half of the large T antigen. Interestingly, anti-T antibody coimmunoprecipitated a subspecies of p300 which has high histone acetyltransferase activity.
Collapse
Affiliation(s)
- M Nemethova
- Institut für Molekularbiologie der Universität Wien, Wiener Biozentrum, A-1030 Vienna, Austria
| | | |
Collapse
|
130
|
Wisdom R, Johnson RS, Moore C. c-Jun regulates cell cycle progression and apoptosis by distinct mechanisms. EMBO J 1999; 18:188-97. [PMID: 9878062 PMCID: PMC1171114 DOI: 10.1093/emboj/18.1.188] [Citation(s) in RCA: 502] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
c-Jun is a component of the transcription factor AP-1, which is activated by a wide variety of extracellular stimuli. The regulation of c-Jun is complex and involves both increases in the levels of c-Jun protein as well as phosphorylation of specific serines (63 and 73) by Jun N-terminal kinase (JNK). We have used fibroblasts derived from c-Jun null embryos to define the role of c-Jun in two separate processes: cell growth and apoptosis. We show that in fibroblasts, c-Jun is required for progression through the G1 phase of the cell cycle; c-Jun-mediated G1 progression occurs by a mechanism that involves direct transcriptional control of the cyclin D1 gene, establishing a molecular link between growth factor signaling and cell cycle regulators. In addition, c-Jun protects cells from UV-induced cell death and cooperates with NF-kappaB to prevent apoptosis induced by tumor necrosis factor alpha (TNFalpha). c-Jun mediated G1 progression is independent of phosphorylation of serines 63/73; however, protection from apoptosis in response to UV, a potent inducer of JNK/SAP kinase activity, requires serines 63/73. The results reveal critical roles for c-Jun in two different cellular processes and show that different extracellular stimuli can target c-Jun by distinct biochemical mechanisms.
Collapse
Affiliation(s)
- R Wisdom
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | |
Collapse
|
131
|
Shen X, Hu PP, Liberati NT, Datto MB, Frederick JP, Wang XF. TGF-beta-induced phosphorylation of Smad3 regulates its interaction with coactivator p300/CREB-binding protein. Mol Biol Cell 1998; 9:3309-19. [PMID: 9843571 PMCID: PMC25628 DOI: 10.1091/mbc.9.12.3309] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Smads are intermediate effector proteins that transduce the TGF-beta signal from the plasma membrane to the nucleus, where they participate in transactivation of downstream target genes. We have shown previously that coactivators p300/CREB-binding protein are involved in TGF-beta-mediated transactivation of two Cdk inhibitor genes, p21 and p15. Here we examined the possibility that Smads function to regulate transcription by directly interacting with p300/CREB-binding protein. We show that Smad3 can interact with a C-terminal fragment of p300 in a temporal and phosphorylation-dependent manner. TGF-beta-mediated phosphorylation of Smad3 potentiates the association between Smad3 and p300, likely because of an induced conformational change that removes the autoinhibitory interaction between the N- and C-terminal domains of Smad3. Consistent with a role for p300 in the transcription regulation of multiple genes, overexpression of a Smad3 C-terminal fragment causes a general squelching effect on multiple TGF-beta-responsive reporter constructs. The adenoviral oncoprotein E1A can partially block Smad-dependent transcriptional activation by directly competing for binding to p300. Taken together, these findings define a new role for phosphorylation of Smad3: in addition to facilitating complex formation with Smad4 and promoting nuclear translocation, the phosphorylation-induced conformational change of Smad3 modulates its interaction with coactivators, leading to transcriptional regulation.
Collapse
Affiliation(s)
- X Shen
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | |
Collapse
|
132
|
Look DC, Roswit WT, Frick AG, Gris-Alevy Y, Dickhaus DM, Walter MJ, Holtzman MJ. Direct suppression of Stat1 function during adenoviral infection. Immunity 1998; 9:871-80. [PMID: 9881977 DOI: 10.1016/s1074-7613(00)80652-4] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The action of adenoviral E1A oncoprotein on host immune-response genes has been attributed to interaction with p300/CBP-type transcriptional coactivators in competition with endogenous transcription factors such as signal transducer and activator of transcription (STAT) proteins. However, we show that mutant forms of E1A that no longer bind p300/CBP can still interact directly with Stat1 (via E1A N-terminal and Stat1 C-terminal residues) and block IFNgamma-driven, Stat1-dependent gene activation and consequent function during early-phase infection in the natural host cell. The results provide a distinct and more specific mechanism for E1A-mediated immune suppression and an alternative model of IFNgamma-driven enhanceosome formation that may allow for other adaptors (in addition to p300/CBP) to link Stat1 to the basal transcription complex.
Collapse
Affiliation(s)
- D C Look
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
133
|
Ait-Si-Ali S, Ramirez S, Barre FX, Dkhissi F, Magnaghi-Jaulin L, Girault JA, Robin P, Knibiehler M, Pritchard LL, Ducommun B, Trouche D, Harel-Bellan A. Histone acetyltransferase activity of CBP is controlled by cycle-dependent kinases and oncoprotein E1A. Nature 1998; 396:184-6. [PMID: 9823900 DOI: 10.1038/24190] [Citation(s) in RCA: 239] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Transforming viral proteins such as E1A force cells through the restriction point of the cell cycle into S phase by forming complexes with two cellular proteins: the retinoblastoma protein (Rb), a transcriptional co-repressor, and CBP/p300, a transcriptional co-activator. These two proteins locally influence chromatin structure: Rb recruits a histone deacetylase, whereas CBP is a histone acetyltransferase. Progression through the restriction point is triggered by phosphorylation of Rb, leading to disruption of Rb-associated repressive complexes and allowing the activation of S-phase genes. Here we show that CBP, like Rb, is controlled by phosphorylation at the G1/S boundary, increasing its histone acetyltransferase activity. This enzymatic activation is mimicked by E1A.
Collapse
Affiliation(s)
- S Ait-Si-Ali
- Laboratoire Oncogénèse, Différenciation et Transduction du Signal, CNRS UPR 9079, Villejuif, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Li Q, Herrler M, Landsberger N, Kaludov N, Ogryzko VV, Nakatani Y, Wolffe AP. Xenopus NF-Y pre-sets chromatin to potentiate p300 and acetylation-responsive transcription from the Xenopus hsp70 promoter in vivo. EMBO J 1998; 17:6300-15. [PMID: 9799238 PMCID: PMC1170955 DOI: 10.1093/emboj/17.21.6300] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We identify Xenopus NF-Y as a key regulator of acetylation responsiveness for the Xenopus hsp70 promoter within chromatin assembled in Xenopus oocyte nuclei. Y-box sequences are required for the assembly of DNase I-hypersensitive sites in the hsp70 promoter, and for transcriptional activation both by inhibitors of histone deacetylase and by the p300 acetyltransferase. The viral oncoprotein E1A interferes with both of these activation steps. We clone Xenopus NF-YA, NF-YB and NF-YC and establish that NF-Y is the predominant Y-box-binding protein in Xenopus oocyte nuclei. NF-Y interacts with p300 in vivo and is itself a target for acetylation by p300. Transcription from the hsp70 promoter in chromatin can be enhanced further by heat shock factor. We suggest two steps in chromatin modification at the Xenopus hsp70 promoter: first the binding of NF-Y to the Y-boxes to pre-set chromatin and second the recruitment of p300 to modulate transcriptional activity.
Collapse
Affiliation(s)
- Q Li
- Laboratory of Molecular Embryology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-5431, USA
| | | | | | | | | | | | | |
Collapse
|
135
|
Hottiger MO, Nabel GJ. Interaction of human immunodeficiency virus type 1 Tat with the transcriptional coactivators p300 and CREB binding protein. J Virol 1998; 72:8252-6. [PMID: 9733868 PMCID: PMC110181 DOI: 10.1128/jvi.72.10.8252-8256.1998] [Citation(s) in RCA: 169] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/1998] [Accepted: 07/08/1998] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) encodes the transactivator protein Tat, which is essential for viral replication and progression to disease. Here we demonstrate that transcriptional activation by HIV-1 Tat involves p300 or the related cellular transcriptional coactivator CREB binding protein (CBP). Tat transactivation was inhibited by the 12S form of the adenovirus E1A gene product, which inhibits p300 function, and this inhibition was independent of its effect on NF-kappaB transcription. A biochemical interaction of p300 with Tat was demonstrated in vitro and in vivo by coimmunoprecipitation. The carboxy-terminal region of p300, which binds to E1A, was shown to bind specifically to the highly conserved basic domain of Tat, which also mediates binding to the Tat-responsive region RNA stem-loop structure. The ability of Tat to interact physically and functionally with this coactivator provides a mechanism to assemble a basal transcription complex which may subsequently respond to the effect of Tat on transcriptional elongation and represents a novel interaction between an RNA binding protein and a transcriptional coactivator.
Collapse
Affiliation(s)
- M O Hottiger
- Departments of Internal Medicine and Biological Chemistry, Howard Hughes Medical Institute, University of Michigan Medical Center, Ann Arbor, Michigan 48109-0650, USA
| | | |
Collapse
|
136
|
Veal E, Eisenstein M, Tseng ZH, Gill G. A cellular repressor of E1A-stimulated genes that inhibits activation by E2F. Mol Cell Biol 1998; 18:5032-41. [PMID: 9710587 PMCID: PMC109088 DOI: 10.1128/mcb.18.9.5032] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The adenovirus E1A protein both activates and represses gene expression to promote cellular proliferation and inhibit differentiation. Here we report the identification and characterization of a cellular protein that antagonizes transcriptional activation and cellular transformation by E1A. This protein, termed CREG for cellular repressor of E1A-stimulated genes, shares limited sequence similarity with E1A and binds both the general transcription factor TBP and the tumor suppressor pRb in vitro. In transfection assays, CREG represses transcription and antagonizes 12SE1A-mediated activation of both the adenovirus E2 and cellular hsp70 promoters. CREG also antagonizes E1A-mediated transformation, as expression of CREG reduces the efficiency with which E1A and the oncogene ras cooperate to transform primary cells. Binding sites for E2F, a key transcriptional regulator of cell cycle progression, were found to be required for repression of the adenovirus E2 promoter by CREG, and CREG was shown to inhibit activation by E2F. Since both the adenovirus E1A protein and transcriptional activation by E2F function to promote cellular proliferation, the results presented here suggest that CREG activity may contribute to the transcriptional control of cell growth and differentiation.
Collapse
Affiliation(s)
- E Veal
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
137
|
Nakajima T, Morita K, Tsunoda H, Imajoh-Ohmi S, Tanaka H, Yasuda H, Oda K. Stabilization of p53 by adenovirus E1A occurs through its amino-terminal region by modification of the ubiquitin-proteasome pathway. J Biol Chem 1998; 273:20036-45. [PMID: 9685342 DOI: 10.1074/jbc.273.32.20036] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human epidermoid carcinoma-derived cell line MA1, established by introduction of the adenovirus E1A 12 S cDNA linked to the hormone-inducible promoter, elicits apoptosis after induction of E1A12 S in response to dexamethasone. E1A expression caused accumulation of wild type p53 more than 10-fold within 24 h after dexamethasone treatment. The cell lines that express E1A mutants containing a deletion either in the amino terminus or the conserved region 1 were unable to accumulate p53. p53 accumulated was degraded efficiently in vitro in the S10-0 extract (S10-0) prepared from MA1 cells in an ATP and ubiquitin-dependent manner, but not in S10-24 prepared after treatment with dexamethasone for 24 h. The p53 polyubiquitination activity in S100-0 was calcium-dependent and reduced greatly in S100-24. Ubiquitin affinity chromatography revealed that p53 ubiquitination activity in eluates thought to contain ubiquitin-conjugating enzymes decreased greatly in S100-24 as compared with S100-0. The accumulation of p53 was accompanied by the increase in the level of Mdm2, which has been shown to degrade p53 through binding to it. The high p53 level, however, was maintained until the late stage of the apoptotic process. These results indicate that the stabilization of p53 by E1A occurs through modification of a ubiquitin-specific enzyme(s) in the ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- T Nakajima
- Department of Biological Science and Technology, Science University of Tokyo, Noda 278, Japan.
| | | | | | | | | | | | | |
Collapse
|
138
|
Ying B, Smith K, Spindler KR. Mouse adenovirus type 1 early region 1A is dispensable for growth in cultured fibroblasts. J Virol 1998; 72:6325-31. [PMID: 9658071 PMCID: PMC109774 DOI: 10.1128/jvi.72.8.6325-6331.1998] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/1998] [Accepted: 04/21/1998] [Indexed: 02/08/2023] Open
Abstract
Mouse adenovirus type 1 (MAV-1) mutants with deletions of conserved regions of early region 1A (E1A) or with point mutations that eliminate translation of E1A were used to determine the role of E1A in MAV-1 replication. MAV-1 E1A mutants expressing no E1A protein grew to titers comparable to wild-type MAV-1 titers on mouse fibroblasts (3T6 fibroblasts and fibroblasts derived from Rb+/+, Rb+/-, and Rb-/- transgenic embryos). To test the hypothesis that E1A could induce a quiescent cell to reenter the cell cycle, fibroblasts were serum starved to stop DNA replication and cellular replication and then infected with the E1A mutant and wild-type viruses. All grew to equivalent titers. Steady-state levels of MAV-1 early mRNAs (E1A, E1B, E2, E3, and E4) from 3T6 cells infected with wild-type or E1A mutant virus were examined by Northern analysis. Steady-state levels of mRNAs from the mutant-infected cells were comparable to or greater than the levels found in wild-type virus infections for most of the early regions and for two late genes. The E2 mRNA levels were slightly reduced in all mutant infections relative to wild-type infections. E1A mRNA was not detected from infections with the MAV-1 E1A null mutant, pmE109, or from infections with similar MAV-1 E1A null mutants, pmE112 and pmE113. The implications for the lack of a requirement of E1A in cell culture are discussed.
Collapse
Affiliation(s)
- B Ying
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
| | | | | |
Collapse
|
139
|
Karuppayil SM, Moran E, Das GM. Differential regulation of p53-dependent and -independent proliferating cell nuclear antigen gene transcription by 12 S E1A oncoprotein requires CBP. J Biol Chem 1998; 273:17303-6. [PMID: 9651310 DOI: 10.1074/jbc.273.28.17303] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The tumor suppressor protein p53 and the adenoviral 12 S E1A oncoprotein are both known to elicit their biological effects mainly by regulating the transcription of important cellular genes. The human proliferating cell nuclear antigen (PCNA) gene is a transcriptional target of both p53 and E1A. We have analyzed the effects of p53 and 12 S E1A, separately as well as together, on PCNA gene transcription. Our results showed that whereas both p53 and 12 S E1A separately activated PCNA transcription, 12 S E1A repressed p53-mediated transcriptional activation. Thus, 12 S E1A uses a dual strategy of transcriptional activation and repression to take control of the cellular PCNA gene regulation. The cyclic AMP-response element in the PCNA core promoter, besides being crucial for basal transcription, synergizes with p53 to activate transcription. The cyclic AMP response element-binding protein (CREB)-binding protein (CBP) is an essential component of both the transcriptional activation and repression by E1A. Our data demonstrate for the first time that E1A can modulate CBP function to activate PCNA transcription, while at the same time repressing p53-mediated activation by disrupting CBP interaction with p53, thereby uncoupling PCNA transcription from the regulatory effects of p53.
Collapse
Affiliation(s)
- S M Karuppayil
- Cancer Therapy and Research Center, The University of Texas Health Science Center, San Antonio, Texas 78229, USA
| | | | | |
Collapse
|
140
|
Thomas A, White E. Suppression of the p300-dependent mdm2 negative-feedback loop induces the p53 apoptotic function. Genes Dev 1998; 12:1975-85. [PMID: 9649502 PMCID: PMC316960 DOI: 10.1101/gad.12.13.1975] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The p53 tumor suppressor gene product interacts with the p300 transcriptional coactivator that regulates the transactivation of p53-inducible genes. The adenovirus E1A protein has been shown to bind to p300 and inhibit its function. E1A inhibits p53 transactivation and also promotes p53 accumulation by a p300-dependent mechanism. Murine double minute 2 (Mdm2) is a transcriptional target of p53 that binds to p53 and inhibits its transcriptional activity. E1A inhibited mdm2 transactivation without affecting the expression of p21(WAF1) or Bax, which resulted in high levels of p53 accumulation and apoptosis. Ectopic expression of p300 restored Mdm2 levels and inhibited p53-dependent apoptosis, as did ectopic expression of Mdm2. Thus, p300 is required for mdm2 induction by p53 and the subsequent inhibition of p53 stabilization. Inhibition of p300 by E1A results in stabilization of p53 and causes apoptosis. Moreover, E1B 19K or Bcl-2 expression in E1A-transformed cells abrogated p53-dependent apoptosis by restoring mdm2 transactivation by p53. Hence, p300 regulation of mdm2 expression controls apoptotic activity of p53, and 19K or Bcl-2 bypass E1A inhibition of p300 transactivation of Mdm2.
Collapse
Affiliation(s)
- A Thomas
- Center for Advanced Biotechnology and Medicine, Cancer Institute of New Jersey, Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854 USA
| | | |
Collapse
|
141
|
Affiliation(s)
- P P Hu
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
142
|
Abstract
CBP and its homolog p300 are large nuclear molecules that coordinate a variety of transcriptional pathways with chromatin remodeling. They interact with transcriptional activators as well as repressors, direct chromatin-mediated transcription, function in TP53-mediated apoptosis, and participate in terminal differentiation of certain tissue types. Recent evidence suggests that the demand for CBP/p300 is greater than the supply, and that competition for CBP/p300 might play an important role in cell growth regulation. Alterations of the human CBP gene have been implicated in hematological malignancies as well as in congenital malformation and mental retardation. Likewise, the p300 gene has been recently implicated in leukemia and mutations in both alleles have been observed in gastric and colorectal carcinomas. The role of these proteins in human disease coupled with biochemical evidence suggests that CBP and p300 are tumor suppressor proteins essential in cell-cycle control, cellular differentiation and human development.
Collapse
Affiliation(s)
- R H Giles
- Department of Human Genetics, Leiden University Medical Center, The Netherlands
| | | | | |
Collapse
|
143
|
Abstract
Viruses depend on the host's machineries to replicate and express their genome. Actively replicating cells have large pools of deoxynucleotides and high levels of key enzyme activities that viruses exploit to their own needs. Some viruses have developed strategies for driving quiescent cells into the S phase of the cell cycle, e.g. adenovirus, others, such as parvovirus, wait until the host itself begins to replicate. Viruses may also force the host cell to stay in a favourable phase, e.g. Epstein-Barr virus, or, if necessary, they may inhibit apoptotic cell death, e.g. human cytomegalovirus. In this review, we focus on the different strategies that viruses use to create in infected cells an environment favourable to the accomplishment of the viral life cycle through acting on cell cycle regulators.
Collapse
Affiliation(s)
- A Op De Beeck
- Département de Biologie Moléculaire, Université Libre de Bruxelles, Belgium
| | | |
Collapse
|
144
|
Felzien LK, Woffendin C, Hottiger MO, Subbramanian RA, Cohen EA, Nabel GJ. HIV transcriptional activation by the accessory protein, VPR, is mediated by the p300 co-activator. Proc Natl Acad Sci U S A 1998; 95:5281-6. [PMID: 9560267 PMCID: PMC20252 DOI: 10.1073/pnas.95.9.5281] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The accessory protein, Vpr, is a virion-associated protein that is required for HIV-1 replication in macrophages and regulates viral gene expression in T cells. Vpr causes arrest of cell cycle progression at G2/M, presumably through its effect on cyclin B1.Cdc2 activity. Here, we show that the ability of Vpr to activate HIV transcription correlates with its ability to induce G2/M growth arrest, and this effect is mediated by the p300 transcriptional co-activator, which promotes cooperative interactions between the Rel A subunit of NF-kappaB and cyclin B1.Cdc2. Vpr cooperates with p300, which regulates NF-kappaB and the basal transcriptional machinery, to increase HIV gene expression. Similar effects are seen in the absence of Vpr with a kinase-deficient Cdc2, and overexpression of p300 increases levels of HIV Vpr+ replication. Taken together, these data suggest that p300, through its interactions with NF-kappaB, basal transcriptional components, and Cdks, is modulated by Vpr and regulates HIV replication. The regulation of p300 by Vpr provides a mechanism to enhance viral replication in proliferating cells after growth arrest by increasing viral transcription.
Collapse
Affiliation(s)
- L K Felzien
- Departments of Internal Medicine and Biological Chemistry, Howard Hughes Medical Institute, University of Michigan Medical Center, Ann Arbor, MI 48109-0650, USA
| | | | | | | | | | | |
Collapse
|
145
|
Grand RJ, Gash L, Milner AE, Molloy DP, Szestak T, Turnell AS, Gallimore PH. Regeneration of the binding properties of adenovirus 12 early region 1A proteins after preparation under denaturing conditions. Virology 1998; 244:230-42. [PMID: 9581794 DOI: 10.1006/viro.1998.9081] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adenovirus 12 early region 1A (Ad12 E1A) was expressed in Escherichia coli. Protein was purified in good yield in the presence of 8 M urea and then renatured by dialysis against dilute NH4HCO3 buffer. The affinity of this protein for pRb, C-terminal binding protein (CtBP), TATA binding protein (TBP), and SUG1 was similar to, or greater than, that of Ad12 E1A prepared by immunoaffinity chromatography under nondenaturing conditions. While the binding of the 266- and 235-amino-acid (aa) E1A components to TBP showed similar characteristics the larger E1A protein had a higher affinity for CtBP, pRb, and SUG1. Using nuclear magnetic resonance (NMR) spectroscopy it was shown that structural perturbations occurred in the 266-aa protein in the presence of Zn2+ consistent with binding--no such changes were seen for the 235-aa protein. Limited proteolysis of the 266- and 235-aa E1A proteins gave rise to comparable polypeptide products, suggesting overall similarities in structure. However, the different affinities of the 266- and 235-aa proteins for the partner proteins and the differences seen in the NMR spectra from the two proteins suggested structural differences.
Collapse
Affiliation(s)
- R J Grand
- CRC Institute for Cancer Studies, University of Birmingham, Edgbaston, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
146
|
Ordentlich P, Lin A, Shen CP, Blaumueller C, Matsuno K, Artavanis-Tsakonas S, Kadesch T. Notch inhibition of E47 supports the existence of a novel signaling pathway. Mol Cell Biol 1998; 18:2230-9. [PMID: 9528794 PMCID: PMC121468 DOI: 10.1128/mcb.18.4.2230] [Citation(s) in RCA: 208] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/1997] [Accepted: 01/03/1998] [Indexed: 02/07/2023] Open
Abstract
E47 is a widely expressed transcription factor that activates B-cell-specific immunoglobulin gene transcription and is required for early B-cell development. In an effort to identify processes that regulate E47, and potentially B-cell development, we found that activated Notch1 and Notch2 effectively inhibit E47 activity. Only the intact E47 protein was inhibited by Notch-fusion proteins containing isolated DNA binding and activation domains were unaffected-suggesting that Notch targets an atypical E47 cofactor. Although overexpression of the coactivator p300 partially reversed E47 inhibition, results of several assays indicated that p300/CBP is not a general target of Notch. Notch inhibition of E47 did not correlate with its ability to activate CBF1/RBP-Jkappa, the mammalian homolog of Suppressor of Hairless, a protein that associates physically with Notch and defines the only known Notch signaling pathway in drosophila. Importantly, E47 was inhibited independently of CBF1/RPB-Jkappa by Deltex, a second Notch-interacting protein. We provide evidence that Notch and Deltex may act on E47 by inhibiting signaling through Ras because (i) full E47 activity was found to be dependent on Ras and (ii) both Notch and Deltex inhibited GAL4-Jun, a hybrid transcription factor whose activity is dependent on signaling from Ras to SAPK/JNK.
Collapse
Affiliation(s)
- P Ordentlich
- Howard Hughes Medical Institute and Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia 19104-6145, USA
| | | | | | | | | | | | | |
Collapse
|
147
|
Kilbourne EJ, Evans MJ, Karathanasis SK. E1A represses apolipoprotein AI enhancer activity in liver cells through a pRb- and CBP-independent pathway. Nucleic Acids Res 1998; 26:1761-8. [PMID: 9512550 PMCID: PMC147459 DOI: 10.1093/nar/26.7.1761] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The apolipoprotein AI (apoAI) promoter/enhancer contains multiple cis -acting elements on which a variety of hepatocyte-enriched and ubiquitous transcription factors function synergistically to regulate liver-specific transcription. Adenovirus E1A proteins repress tissue-specific gene expression and disrupt the differentiated state in a variety of cell types. In this study expression of E1A 12Sor 13S in hepatoblastoma HepG2 cells repressed apoAI enhancer activity 8-fold. Deletion mapping analysis showed that inhibition by E1A was mediated by the apoAI promoter site B. E1A selectively inhibited the ability of HNF3beta and HNF3alpha to transactivate reporter genes controlled by the apoAI site B and the HNF3 binding site from the transthyretin promoter. The E1A-mediated repression of HNF3 activity was not reversed by overexpression of HNF3beta nor did E1A alter nuclear HNF3beta protein levels or inhibit HNF3 binding to DNA in mobility shift assays. Overexpression of two cofactors known to interact with E1A, pRb and CBP failed to overcome inhibition of HNF3 activity. Similarly, mutations in E1A that disrupt its interaction with pRb or CBP did not compromise its ability to repress HNF3beta transcriptional activity. These data suggest that E1A inhibits HNF3 activity by inactivating a limiting cofactor(s) distinct from pRb or CBP.
Collapse
Affiliation(s)
- E J Kilbourne
- Department of Nuclear Receptors, Wyeth-Ayerst Research, 145 King of Prussia Road, Radnor, PA 19087, USA
| | | | | |
Collapse
|
148
|
Blobel GA, Nakajima T, Eckner R, Montminy M, Orkin SH. CREB-binding protein cooperates with transcription factor GATA-1 and is required for erythroid differentiation. Proc Natl Acad Sci U S A 1998; 95:2061-6. [PMID: 9482838 PMCID: PMC19248 DOI: 10.1073/pnas.95.5.2061] [Citation(s) in RCA: 288] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The transcription factor GATA-1 coordinates multiple events during terminal erythroid cell maturation. GATA-1 participates in the transcription of virtually all erythroid-specific genes, blocks apoptosis of precursor cells, and controls the balance between proliferation and cell cycle arrest. Prior studies suggest that the function of GATA-1 is mediated in part through association with transcriptional cofactors. CREB-binding protein (CBP) and its close relative p300 serve as coactivators for a variety of transcription factors involved in growth control and differentiation. We report here that CBP markedly stimulates GATA-1's transcriptional activity in transient transfection experiments in nonhematopoietic cells. GATA-1 and CBP also coimmunoprecipitate from nuclear extracts of erythroid cells. Interaction mapping pinpoints contact sites to the zinc finger region of GATA-1 and to the E1A-binding region of CBP. Expression of a conditional form of adenovirus E1A in murine erythroleukemia cells blocks differentiation and expression of endogenous GATA-1 target genes, whereas mutant forms of E1A unable to bind CBP/p300 have no effect. Our findings add GATA-1, and very likely other members of the GATA family, to the growing list of molecules implicated in the complex regulatory network surrounding CBP/p300.
Collapse
Affiliation(s)
- G A Blobel
- Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
149
|
Lipinski KS, Esche H, Brockmann D. Amino acids 1-29 of the adenovirus serotypes 12 and 2 E1A proteins interact with rap30 (TF(II)F) and TBP in vitro. Virus Res 1998; 54:99-106. [PMID: 9660075 DOI: 10.1016/s0168-1702(98)00003-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Early region 1A (E1A) gene products of adenoviruses (Ad) play an essential role in both productive infection and cellular transformation. Besides their function to induce the expression of all other adenoviral genes they modulate the expression of specific cellular genes to ensure an efficient viral reproduction. Gene regulatory functions of E1A proteins are mainly located in the conserved regions 1-3 (CRs) and in the non-conserved amino terminal end and are mediated via protein/protein interactions with cellular factors. We could show recently, that the E1A N-terminus (amino acids [aa] 1-29) of oncogenic Ad12 contains a unique 'trans'-activation domain. Here we demonstrate that this region binds to rap30/TF(II)F and to the TATA-box binding protein TBP in vitro. Mutation analyses suggest that binding to rap30 and 'trans'-activation are two independent functions as a mutant which failed to interact with rap30 was still able to induce gene expression with wildtype efficiency. Moreover loss of transcriptional activity does not correlate with a loss of TBP binding suggesting that this association is not necessary for the N-terminal 'trans'-activating activity. Interestingly, aa 1-29 of Ad2 E1A binds also to rap30 indicating that this interaction might be a common feature of E1A proteins from different serotypes.
Collapse
Affiliation(s)
- K S Lipinski
- Institute of Molecular Biology (Cancer Research), University of Essen Medical School, Germany
| | | | | |
Collapse
|
150
|
Monté D, DeWitte F, Hum DW. Regulation of the human P450scc gene by steroidogenic factor 1 is mediated by CBP/p300. J Biol Chem 1998; 273:4585-91. [PMID: 9468515 DOI: 10.1074/jbc.273.8.4585] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Regulation of the human CYP11A gene encoding cytochrome P450scc, which catalyzes the first step of steroid synthesis, is regulated by many trans-acting transcription factors including steroidogenic factor 1 (SF-1). Transfection experiments in human adrenal NCI-H295 cells demonstrate regulation of the P450scc gene promoter region that contains several putative SF-1 binding sites. Cotransfection of SF-1 with a luciferase reporter construct containing the P450scc gene 5'-flanking region from nucleotides -1676 to +49 increased promoter activity, and deletion of the nucleotide sequence from position -1676 to -1620, which removes a putative cAMP response element (CRE), did not affect the stimulatory response to SF-1. As well, further deletion of the promoter region to nucleotide -110, which contains only one SF-1 binding site, still retained the ability to respond to exogenous SF-1. However, mutation of the remaining site which abolished SF-1 protein/DNA interaction also abrogated any functional response to the factor. All the P450scc reporter constructs which responded to SF-1 were further stimulated by exogenous p300 and CREB-binding protein (CBP), suggesting interaction between SF-1 and p300/CBP. As well, mutation of the binding site that abrogated the response to SF-1 also abolished the response to p300 and CBP. Cotransfection of the adenovirus E1A oncoprotein, which has been shown to interact with p300/CBP and interfere with its function, decreased the stimulatory effect of SF-1 and p300/CBP. Cotransfection of a mutated E1A protein, RG2, which does not interact with p300/CBP, did not alter the stimulatory effect of SF-1 and p300/CBP on the P450scc promoter. Deletion of the region from amino acid residues 2-67 in E1A, which has been postulated to interact with p300/CBP, also abolished the inhibitory effect of E1A, whereas deletion of the region from residues 120 to 140 had no effect. Two regions of CBP from amino acids 1 to 451 and from 1460 to 1891 were demonstrated to interact with SF-1 in vitro. Coexpression of fragments of the p300 protein fused to the VP16 protein in the presence of SF-1 and the -110 P450scc reporter construct indicated in vivo the interaction of two regions of p300 with SF-1, thus confirming the in vitro results. Taken together these results indicate that regulation of the human P450scc gene by SF-1 is mediated by p300/CBP. Due to the many putative roles of SF-1 to regulate many genes, its interaction with p300/CBP is potentially a key component effecting important physiological processes.
Collapse
Affiliation(s)
- D Monté
- Laboratory of Molecular Endocrinology, CHUL Research Centre and Laval University, Sainte-Foy, Québec, G1V 4G2, Canada
| | | | | |
Collapse
|