101
|
Tjomsland V, Ellegård R, Kjölhede P, Wodlin NB, Hinkula J, Lifson JD, Larsson M. Blocking of integrins inhibits HIV-1 infection of human cervical mucosa immune cells with free and complement-opsonized virions. Eur J Immunol 2013; 43:2361-72. [PMID: 23686382 PMCID: PMC4231223 DOI: 10.1002/eji.201243257] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 03/31/2013] [Accepted: 05/14/2013] [Indexed: 12/18/2022]
Abstract
The initial interaction between HIV-1 and the host occurs at the mucosa during sexual intercourse. In cervical mucosa, HIV-1 exists both as free and opsonized virions and this might influence initial infection. We used cervical explants to study HIV-1 transmission, the effects of opsonization on infectivity, and how infection can be prevented. Complement opsonization enhanced HIV-1 infection of dendritic cells (DCs) compared with that by free HIV-1, but this increased infection was not observed with CD4(+) T cells. Blockage of the α4-, β7-, and β1-integrins significantly inhibited HIV-1 infection of both DCs and CD4(+) T cells. We found a greater impairment of HIV-1 infection in DCs for complement-opsonized virions compared with that of free virions when αM/β2- and α4-integrins were blocked. Blocking the C-type lectin receptor macrophage mannose receptor (MMR) inhibited infection of emigrating DCs but had no effect on CD4(+) T-cell infection. We show that blocking of integrins decreases the HIV-1 infection of both mucosal DCs and CD4(+) T cells emigrating from the cervical tissues. These findings may provide the basis of novel microbicidal strategies that may help limit or prevent initial infection of the cervical mucosa, thereby reducing or averting systemic HIV-1 infection.
Collapse
Affiliation(s)
- Veronica Tjomsland
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping UniversityLinköping, Sweden
| | - Rada Ellegård
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping UniversityLinköping, Sweden
| | - Preben Kjölhede
- Division of Gynecology, Department of Clinical and Experimental Medicine, Linköping UniversityLinköping, Sweden
| | - Ninni Borendal Wodlin
- Division of Gynecology, Department of Clinical and Experimental Medicine, Linköping UniversityLinköping, Sweden
| | - Jorma Hinkula
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping UniversityLinköping, Sweden
| | - Jeffrey D Lifson
- SAIC/Fredrick, National Cancer Institute at FredrickFrederick, Maryland, USA
| | - Marie Larsson
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping UniversityLinköping, Sweden
| |
Collapse
|
102
|
Defining the interaction of HIV-1 with the mucosal barriers of the female reproductive tract. J Virol 2013; 87:11388-400. [PMID: 23966398 DOI: 10.1128/jvi.01377-13] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Worldwide, HIV-1 infects millions of people annually, the majority of whom are women. To establish infection in the female reproductive tract (FRT), HIV-1 in male ejaculate must overcome numerous innate and adaptive immune factors, traverse the genital epithelium, and establish infection in underlying CD4(+) target cells. How the virus achieves this remains poorly defined. By utilizing a new technique, we define how HIV-1 interacts with different tissues of the FRT using human cervical explants and in vivo exposure in the rhesus macaque vaginal transmission model. Despite previous claims of the squamous epithelium being an efficient barrier to virus entry, we reveal that HIV-1 can penetrate both intact columnar and squamous epithelial barriers to depths where the virus can encounter potential target cells. In the squamous epithelium, we identify virus entry occurring through diffusive percolation, penetrating areas where cell junctions are absent. In the columnar epithelium, we illustrate that virus does not transverse barriers as well as previously thought due to mucus impediment. We also show a statistically significant correlation between the viral load of inocula and the ability of HIV-1 to pervade the squamous barrier. Overall, our results suggest a diffusive percolation mechanism for the initial events of HIV-1 entry. With these data, we also mathematically extrapolate the number of HIV-1 particles that penetrate the mucosa per coital act, providing a biological description of the mechanism for HIV-1 transmission during the acute and chronic stages of infection.
Collapse
|
103
|
Abstract
The impressive advances in antiretroviral (ARV) therapy of chronic human immunodeficiency virus (HIV) infections during the last decade and the availability of potent ARV drugs have fueled interest in using chemoprophylaxis as a novel HIV prevention strategy. Preexposure prophylaxis (PrEP) refers to the use of ARV drugs in HIV-negative persons to prevent HIV infection. The rationale for PrEP builds on the success of ARV prophylaxis in preventing mother-to-child transmission of HIV and on a large body of animal studies that show the efficacy of PrEP against mucosal and parenteral infection. We focus on oral administration of ARV drugs for prevention of HIV infection. Identifying an effective prophylactic pill that individuals can take outside the setting of sexual intercourse precludes the necessity to disclose such use to their partners, thereby empowering those who might not be in a position to negotiate with their partners. Several human clinical trials evaluating the efficacy of daily regimens of the HIV reverse-transcriptase (RT) inhibitors tenofovir disoproxil fumarate (TDF) or Truvada (TDF and emtricitabine [FTC]) are under way among high-risk populations. The results of one trial among men who have sex with men showed that daily Truvada was safe and effective, providing the first support for oral PrEP as a prevention strategy. Here we outline the preclinical and clinical research on oral PrEP, pharmacologic considerations, and future directions and challenges.
Collapse
Affiliation(s)
- Walid Heneine
- Laboratory Branch, Division of HIV/AIDS Prevention, National Center for HIV, Hepatitis, STD, and Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA.
| | | |
Collapse
|
104
|
Harman AN, Kim M, Nasr N, Sandgren KJ, Cameron PU. Tissue dendritic cells as portals for HIV entry. Rev Med Virol 2013; 23:319-33. [PMID: 23908074 DOI: 10.1002/rmv.1753] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/26/2013] [Accepted: 06/27/2013] [Indexed: 12/24/2022]
Abstract
Dendritic cells (DCs) are found at the portals of pathogen entry such as the mucosal surfaces of the respiratory, gastrointestinal and genital tracts where they represent the first line of contact between the immune system and the foreign invaders. They are found throughout the body in multiple subsets where they express unique combinations of C-type lectin receptors to best aid them in detection of pathogens associated with their anatomical location. DCs are important in the establishment in HIV infection for two reasons. Firstly, they are one of the first cells to encounter the virus, and the specific interaction that occurs between these cells and HIV is critical to HIV establishing a foothold infection. Secondly and most importantly, HIV is able to efficiently transfer the virus to its primary target cell, the CD4(+) T lymphocyte, in which it replicates explosively. Infection of CD4(+) T lymphocytes via DCs is far more efficient than direct infection. This review surveys the various DCs subsets found within the human sexual mucosa and their interactions with HIV. Mechanisms of HIV uptake are discussed as well as how the virus then traffics through the DC and is transferred to T cells. Until recently, most research has focussed on vaginal transmission despite the increased transmission rate associated with anal intercourse. Here, we also discuss recent advances in our understanding of HIV transmission in the colon.
Collapse
|
105
|
Abstract
Strategies to prevent HIV infection using preexposure prophylaxis are required to curtail the HIV pandemic. The mucosal tissues of the genital and rectal tracts play a critical role in HIV acquisition, but antiretroviral (ARV) disposition and correlates of efficacy within these tissues are not well understood. Preclinical and clinical strategies to describe ARV pharmacokinetic-pharmacodynamic relationships within mucosal tissues are currently being investigated. In this review, we summarize the physicochemical and biologic factors influencing ARV tissue exposure. Furthermore, we discuss the necessary steps to generate relevant pharmacokinetic-pharmacodynamic data and the challenges associated with this process. Finally, we suggest how preclinical and clinical data might be practically translated into optimal preexposure prophylaxis dosing strategies for clinical trials testing using mathematical modeling and simulation.
Collapse
Affiliation(s)
- Corbin G. Thompson
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina Eshelman School of Pharmacy, Chapel Hill, NC
| | - Myron S. Cohen
- University of North Carolina School of Medicine, Center for Infectious Diseases, Chapel Hill, NC
| | - Angela D.M. Kashuba
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina Eshelman School of Pharmacy, Chapel Hill, NC
- University of North Carolina School of Medicine, Center for Infectious Diseases, Chapel Hill, NC
| |
Collapse
|
106
|
Kenworthy NJ, Bulled N. From modeling to morals: Imagining the future of HIV PREP in Lesotho. Dev World Bioeth 2013; 13:70-8. [DOI: 10.1111/dewb.12029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
107
|
Lack of prophylactic efficacy of oral maraviroc in macaques despite high drug concentrations in rectal tissues. J Virol 2013; 87:8952-61. [PMID: 23740994 DOI: 10.1128/jvi.01204-13] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Maraviroc (MVC) is a potent CCR5 coreceptor antagonist that is in clinical testing for daily oral pre-exposure prophylaxis (PrEP) for HIV prevention. We used a macaque model consisting of weekly SHIV162p3 exposures to evaluate the efficacy of oral MVC in preventing rectal SHIV transmission. MVC dosing was informed by the pharmacokinetic profile seen in blood and rectal tissues and consisted of a human-equivalent dose given 24 h before virus exposure, followed by a booster postexposure dose. In rectal secretions, MVC peaked at 24 h (10,242 ng/ml) with concentrations at 48 h that were about 40 times those required to block SHIV infection of peripheral blood mononuclear cells (PBMCs) in vitro. Median MVC concentrations in rectal tissues at 24 h (1,404 ng/g) were 30 and 10 times those achieved in vaginal or lymphoid tissues, respectively. MVC significantly reduced macrophage inflammatory protein 1β-induced CCR5 internalization in rectal mononuclear cells, an indication of efficient binding to CCR5 in rectal lymphocytes. The half-life of CCR5-bound MVC in PBMCs was 2.6 days. Despite this favorable profile, 5/6 treated macaques were infected during five rectal SHIV exposures as were 3/4 controls. MVC treatment was associated with a significant increase in the percentage of CD3(+)/CCR5(+) cells in blood. We show that high and durable MVC concentrations in rectal tissues are not sufficient to prevent SHIV infection in macaques. The increases in CD3(+)/CCR5(+) cells seen during MVC treatment point to unique immunological effects of CCR5 inhibition by MVC. The implications of these immunological effects on PrEP with MVC require further evaluation.
Collapse
|
108
|
Aldunate M, Tyssen D, Johnson A, Zakir T, Sonza S, Moench T, Cone R, Tachedjian G. Vaginal concentrations of lactic acid potently inactivate HIV. J Antimicrob Chemother 2013; 68:2015-25. [PMID: 23657804 PMCID: PMC3743514 DOI: 10.1093/jac/dkt156] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES When Lactobacillus spp. dominate the vaginal microbiota of women of reproductive age they acidify the vagina to pH <4.0 by producing ∼1% lactic acid in a nearly racemic mixture of d- and l-isomers. We determined the HIV virucidal activity of racemic lactic acid, and its d- and l-isomers, compared with acetic acid and acidity alone (by the addition of HCl). METHODS HIV-1 and HIV-2 were transiently treated with acids in the absence or presence of human genital secretions at 37°C for different time intervals, then immediately neutralized and residual infectivity determined in the TZM-bl reporter cell line. RESULTS l-lactic acid at 0.3% (w/w) was 17-fold more potent than d-lactic acid in inactivating HIVBa-L. Complete inactivation of different HIV-1 subtypes and HIV-2 was achieved with ≥0.4% (w/w) l-lactic acid. At a typical vaginal pH of 3.8, l-lactic acid at 1% (w/w) more potently and rapidly inactivated HIVBa-L and HIV-1 transmitter/founder strains compared with 1% (w/w) acetic acid and with acidity alone, all adjusted to pH 3.8. A final concentration of 1% (w/w) l-lactic acid maximally inactivated HIVBa-L in the presence of cervicovaginal secretions and seminal plasma. The anti-HIV activity of l-lactic acid was pH dependent, being abrogated at neutral pH, indicating that its virucidal activity is mediated by protonated lactic acid and not the lactate anion. CONCLUSIONS l-lactic acid at physiological concentrations demonstrates potent HIV virucidal activity distinct from acidity alone and greater than acetic acid, suggesting a protective role in the sexual transmission of HIV.
Collapse
Affiliation(s)
- Muriel Aldunate
- Centre for Virology, Burnet Institute, Melbourne, Victoria 3004, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Oral administration of the CCR5 inhibitor, maraviroc, blocks HIV ex vivo infection of Langerhans cells within the epithelium. J Invest Dermatol 2013; 133:2803-2805. [PMID: 23648547 DOI: 10.1038/jid.2013.215] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
110
|
Cavarelli M, Foglieni C, Rescigno M, Scarlatti G. R5 HIV-1 envelope attracts dendritic cells to cross the human intestinal epithelium and sample luminal virions via engagement of the CCR5. EMBO Mol Med 2013; 5:776-94. [PMID: 23606583 PMCID: PMC3662319 DOI: 10.1002/emmm.201202232] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 02/21/2013] [Accepted: 03/10/2013] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal tract is a principal route of entry and site of persistence of human immunodeficiency virus type 1 (HIV-1). The intestinal mucosa, being rich of cells that are the main target of the virus, represents a primary site of viral replication and CD4+ T-cell depletion. Here, we show both in vitro and ex vivo that HIV-1 of R5 but not X4 phenotype is capable of selectively triggering dendritic cells (DCs) to migrate within 30 min between intestinal epithelial cells to sample virions and transfer infection to target cells. The engagement of the chemokine receptor 5 on DCs and the viral envelope, regardless of the genetic subtype, drive DC migration. Viruses penetrating through transient opening of the tight junctions likely create a paracellular gradient to attract DCs. The formation of junctions with epithelial cells may initiate a haptotactic process of DCs and at the same time favour cell-to-cell viral transmission. Our findings indicate that HIV-1 translocation across the intestinal mucosa occurs through the selective engagement of DCs by R5 viruses, and may guide the design of new prevention strategies.
Collapse
Affiliation(s)
- Mariangela Cavarelli
- Unit of Viral Evolution and Transmission, DITID, San Raffaele Scientific Institute, Milan, Italy.
| | | | | | | |
Collapse
|
111
|
Rodriguez-Plata MT, Puigdomènech I, Izquierdo-Useros N, Puertas MC, Carrillo J, Erkizia I, Clotet B, Blanco J, Martinez-Picado J. The infectious synapse formed between mature dendritic cells and CD4(+) T cells is independent of the presence of the HIV-1 envelope glycoprotein. Retrovirology 2013; 10:42. [PMID: 23590845 PMCID: PMC3640963 DOI: 10.1186/1742-4690-10-42] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 04/05/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Since cell-mediated infection of human immunodeficiency virus type 1 (HIV-1) is more efficient than cell-free infection, cell-to-cell propagation plays a crucial role in the pathogenesis of HIV-1 infection. Transmission of HIV-1 is enabled by two types of cellular contacts, namely, virological synapses between productively infected cells and uninfected target cells and infectious synapses between uninfected dendritic cells (DC) harboring HIV-1 and uninfected target cells. While virological synapses are driven by expression of the viral envelope glycoprotein on the cell surface, little is known about the role of envelope glycoprotein during contact between DC and T cells. We explored the contribution of HIV-1 envelope glycoprotein, adhesion molecules, and antigen recognition in the formation of conjugates comprising mature DC (mDC) and CD4(+) T cells in order to further evaluate their role in mDC-mediated HIV-1 transmission at the immunological synapse. RESULTS Unlike virological synapse, HIV-1 did not modulate the formation of cell conjugates comprising mDC harboring HIV-1 and non-activated primary CD4(+) T cells. Disruption of interactions between ICAM-1 and LFA-1, however, resulted in a 60% decrease in mDC-CD4(+) T-cell conjugate formation and, consequently, in a significant reduction of mDC-mediated HIV-1 transmission to non-activated primary CD4(+) T cells (p < 0.05). Antigen recognition or sustained MHC-TcR interaction did not enhance conjugate formation, but significantly boosted productive mDC-mediated transmission of HIV-1 (p < 0.05) by increasing T-cell activation and proliferation. CONCLUSIONS Formation of the infectious synapse is independent of the presence of the HIV-1 envelope glycoprotein, although it does require an interaction between ICAM-1 and LFA-1. This interaction is the main driving force behind the formation of mDC-CD4(+) T-cell conjugates and enables transmission of HIV-1 to CD4(+) T cells. Moreover, antigen recognition boosts HIV-1 replication without affecting the frequency of cellular conjugates. Our results suggest a determinant role for immune activation driven by mDC-CD4(+) T-cell contacts in viral dissemination and that this activation likely contributes to the pathogenesis of HIV-1 infection.
Collapse
Affiliation(s)
- Maria T Rodriguez-Plata
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, 08916, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Abstract
PURPOSE OF REVIEW Oral and topical pre-exposure prophylaxis (PrEP) with antiretroviral drugs are novel biomedical interventions recently found to prevent HIV transmission among high-risk populations. In this review, we outline lessons learned from animal studies and discuss next steps in preclinical PrEP research including the study of new PrEP modalities, pharmacologic correlates of protection, and biological factors that may modulate PrEP efficacy. RECENT FINDINGS Studies using macaque or humanized mice models of mucosal simian immunodeficiency virus (SIV), HIV, or simian/human immunodeficiency virus (SHIV) transmission have provided efficacy data against rectal and vaginal infection. A multitude of oral and topical PrEP regimens including drugs such as tenofovir (TFV), tenofovir disoproxil fumarate (TDF) and emtricitabine (FTC) were tested against either wild-type or drug-resistant viruses. These models have also helped define prophylactic windows of protection of nondaily dosing and are being used increasingly to study pharmacokinetic and pharmacodynamic relationships. SUMMARY As human data from PrEP trials validate animal models or help fine tune them, it is expected that these models will play increasingly important roles in PrEP development as the field extends into new drug classes and combinations, episodic dosing, and novel long-acting drug formulations. By providing both efficacy and pharmacologic information these models can define correlates and mechanisms of protection, inform dose selection, and advance the most promising PrEP candidates and dosing modalities.
Collapse
|
113
|
Chandra N, Thurman AR, Anderson S, Cunningham TD, Yousefieh N, Mauck C, Doncel GF. Depot medroxyprogesterone acetate increases immune cell numbers and activation markers in human vaginal mucosal tissues. AIDS Res Hum Retroviruses 2013. [PMID: 23189932 DOI: 10.1089/aid.2012.0271] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The relationship between exogenous contraceptive hormones and permissiveness of the female genital tract to human immunodeficiency virus type 1 (HIV-1) is the subject of renewed debate. To better characterize the effect of depot medroxyprogesterone acetate (DMPA) on HIV-1 cellular targets and epithelial integrity in the vagina, we compared leukocyte populations, markers of activation and proliferation, and the density of intercellular junctional proteins in the vaginal epithelium of women during the follicular and luteal phases of the menstrual cycle and approximately 12 weeks after receiving a DMPA injection. This prospective cohort study involved 15 healthy women. Vaginal biopsies were obtained in the follicular and luteal phases of the menstrual cycle, and approximately 12 weeks following a 150-mg intramuscular injection of DMPA. Leukocyte populations, activation phenotype, and epithelial tight junction and adherens proteins were evaluated by immunohistochemistry. After receiving DMPA, the numbers of CD45, CD3, CD8, CD68, HLA-DR, and CCR5 bearing immune cells were significantly (p<0.05) increased in vaginal tissues, compared to the follicular and/or luteal phases of untreated cycles. There were no significant differences in immune cell populations between the follicular and luteal phases of the control cycle. There were also no statistically significant differences in epithelial thickness and density of epithelial tight junction and adherens proteins among the follicular, luteal, and post-DMPA treatment sampling points. In this pilot study, vaginal immune cell populations were significantly altered by exogenous progesterone, resulting in increased numbers of T cells, macrophages, and HLA-DR- and CCR5-positive cells.
Collapse
Affiliation(s)
- Neelima Chandra
- CONRAD, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, Virginia
| | - Andrea Ries Thurman
- CONRAD, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, Virginia
| | - Sharon Anderson
- CONRAD, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, Virginia
| | - Tina Duong Cunningham
- Department of Epidemiology and Biostatistics, Graduate Program in Public Health, Eastern Virginia Medical School, Norfolk, Virginia
| | - Nazita Yousefieh
- CONRAD, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, Virginia
| | - Christine Mauck
- CONRAD, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, Virginia
| | - Gustavo F. Doncel
- CONRAD, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, Virginia
| |
Collapse
|
114
|
Harbison CE, Ellis ME, Westmoreland SV. Spontaneous cervicovaginal lesions and immune cell infiltrates in nonhuman primates. Toxicol Pathol 2013; 41:1016-27. [PMID: 23427274 DOI: 10.1177/0192623313477754] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nonhuman primates, particularly rhesus macaques (Macaca mulatta), provide important model systems for studying human reproductive infectious diseases such as human immunodeficiency virus, human papillomavirus, and Chlamydia spp. An understanding of the spectrum of spontaneous cervical disease provides essential context for interpreting experimental disease outcomes in the female reproductive tract. This retrospective study characterizes the incidence of inflammatory and/or proliferative cervicovaginal lesions seen over a 14-year period in a multispecies nonhuman primate colony, focusing on rhesus macaques. The most common observations included a spectrum of lymphocytic accumulation from within normal limits to lymphoplasmacytic cervicitis, and suppurative inflammation with occasional squamous metaplasia or polyp formation. These inflammatory spectra frequently occurred in the context of immunosuppression following experimental simian immunodeficiency virus (SIV) infection. Cervical neoplasias were uncommon and included leiomyomas and carcinomas. Cervical sections from 13 representative cases, with an emphasis on proliferative and dysplastic lesions, were surveyed for leukocyte infiltration, abnormal epithelial proliferation, and the presence of papillomavirus antigens. Proliferative lesions showed sporadic evidence of spontaneous papillomavirus infection and variable immune cell responses. These results underscore the importance of pre screening potential experimental animals for the presence of preexisting reproductive tract disease, and the consideration of normal variability within cycling reproductive tracts in interpretation of cervical lesions.
Collapse
Affiliation(s)
- Carole E Harbison
- 1New England Primate Research Center-Division of Comparative Pathology, Southborough, Massachusetts, USA
| | | | | |
Collapse
|
115
|
Ogawa Y, Kawamura T, Matsuzawa T, Aoki R, Gee P, Yamashita A, Moriishi K, Yamasaki K, Koyanagi Y, Blauvelt A, Shimada S. Antimicrobial peptide LL-37 produced by HSV-2-infected keratinocytes enhances HIV infection of Langerhans cells. Cell Host Microbe 2013; 13:77-86. [PMID: 23332157 DOI: 10.1016/j.chom.2012.12.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 09/18/2012] [Accepted: 12/12/2012] [Indexed: 11/17/2022]
Abstract
Herpes simplex virus (HSV)-2 shedding is associated with increased risk for sexually acquiring HIV. Because Langerhans cells (LCs), the mucosal epithelium resident dendritic cells, are suspected to be one of the initial target cell types infected by HIV following sexual exposure, we examined whether and how HSV-2 affects HIV infection of LCs. Although relatively few HSV-2/HIV-coinfected LCs were detected, HSV-2 dramatically enhanced the HIV susceptibility of LCs within skin explants. HSV-2 stimulated epithelial cell production of antimicrobial peptides (AMPs), including human β defensins and LL-37. LL-37 strongly upregulated the expression of HIV receptors in monocyte-derived LCs (mLCs), thereby enhancing their HIV susceptibility. Culture supernatants of epithelial cells infected with HSV-2 enhanced HIV susceptibility in mLCs, and this effect was abrogated by blocking LL-37 production. These data suggest that HSV-2 enhances sexual transmission of HIV by increasing HIV susceptibility of LCs via epithelial cell production of LL-37.
Collapse
Affiliation(s)
- Youichi Ogawa
- Department of Dermatology, Faculty of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Sigal A, Baltimore D. As good as it gets? The problem of HIV persistence despite antiretroviral drugs. Cell Host Microbe 2013; 12:132-8. [PMID: 22901535 DOI: 10.1016/j.chom.2012.07.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human immunodeficienty virus (HIV) infection is suppressed but not eliminated by antiretroviral drugs. Viral persistence in the face of therapy has been explained by viral latency, lowered effectiveness of drugs in some anatomical sites and cell types, and cell-to-cell spread. These mechanisms allow for drug-sensitive virus to persist despite treatment. Understanding the persistence mechanism at work at different times after infection, including the time of initial infection immediately following transmission when reservoirs are first formed, will reveal if we are at the limit of what can be achieved with the current therapy paradigm of suppressing ongoing virus replication with drugs. We discuss some of the possible reasons why HIV persists at different points on the infection timeline, focusing on the role ongoing replication may have in maintaining the infection despite drugs at early times postexposure.
Collapse
Affiliation(s)
- Alex Sigal
- Division of Biology, California Institute of Technology, Pasadena, 91125, USA.
| | | |
Collapse
|
117
|
Spear G, Rothaeulser K, Fritts L, Gillevet PM, Miller CJ. In captive rhesus macaques, cervicovaginal inflammation is common but not associated with the stable polymicrobial microbiome. PLoS One 2012; 7:e52992. [PMID: 23285244 PMCID: PMC3532444 DOI: 10.1371/journal.pone.0052992] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 11/27/2012] [Indexed: 11/18/2022] Open
Abstract
Vaginal inoculation of rhesus macaques (RM) with simian immunodeficiency virus (SIV) has been used to study the biology of HIV transmission. Although the results of vaginal SIV transmission experiments could be affected by vaginal inflammation, studies to date have been conducted without regard to levels of pre-existing genital inflammation present in RM. We collected cevicovaginal secretions (CVS) from 33–36 RM during the mid menstrual cycle (day 10–20) at 2 time points approximately 8 months apart and characterized the mRNA and protein levels of inflammatory cytokines, chemokines and interferon-stimulated genes. There was extreme variability in the levels of inflammatory mediators (IFN-α, IFN-γ, IL-6, TNF, IL-1b, IP-10, MIG, IL-12 and IL-17). In most animals, the mRNA levels of the inflammatory mediators were similar in the 2 CVS samples collected 8 months apart, suggesting that genital inflammation is stable in a subset of captive female RM. At both time points the cervicovaginal microbiota had low levels of Lactobacillus and was relatively diverse with an average of 13 genera in the samples from the first time point (median 13, range 7–21) and an average of 11.5 genera in the samples from the second time point (median 11, range 5–20). Many of the macaques had similar microbiota in the samples collected 8 months apart. However, we found no correlation between specific bacterial genera and the mRNA or protein levels of the inflammatory mediators in the genital tract of RM in this study. It seems likely that results of published vaginal SIV transmission experiments in RM have been influenced by pre-existing inflammation in the animals used for the experiments.
Collapse
Affiliation(s)
- Gregory Spear
- Department Immunology/Microbiology, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Kristina Rothaeulser
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
- California National Primate Research Center, University of California Davis, Davis, California, United States of America
| | - Linda Fritts
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
- California National Primate Research Center, University of California Davis, Davis, California, United States of America
| | - Patrick M. Gillevet
- Microbiome Analysis Center, George Mason University, Manassas, Virginia, United States of America
- Department of Environmental Science and Policy, George Mason University, Manassas, Virginia, United States of America
| | - Christopher J. Miller
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
- California National Primate Research Center, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
118
|
Molecular mechanisms of HIV immune evasion of the innate immune response in myeloid cells. Viruses 2012; 5:1-14. [PMID: 23344558 PMCID: PMC3564108 DOI: 10.3390/v5010001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 12/19/2012] [Accepted: 12/19/2012] [Indexed: 12/13/2022] Open
Abstract
The expression of intrinsic antiviral factors by myeloid cells is a recently recognized mechanism of restricting lentiviral replication. Viruses that enter these cells must develop strategies to evade cellular antiviral factors to establish a productive infection. By studying the cellular targets of virally encoded proteins that are necessary to infect myeloid cells, a better understanding of cellular intrinsic antiviral strategies has now been achieved. Recent findings have provided insight into how the lentiviral accessory proteins, Vpx, Vpr and Vif counteract antiviral factors found in myeloid cells including SAMHD1, APOBEC3G, APOBEC3A, UNG2 and uracil. Here we review our current understanding of the molecular basis of how cellular antiviral factors function and the viral countermeasures that antagonize them to promote viral transmission and spread.
Collapse
|
119
|
Radzio J, Aung W, Holder A, Martin A, Sweeney E, Mitchell J, Bachman S, Pau CP, Heneine W, García-Lerma JG. Prevention of vaginal SHIV transmission in macaques by a coitally-dependent Truvada regimen. PLoS One 2012; 7:e50632. [PMID: 23226529 PMCID: PMC3514231 DOI: 10.1371/journal.pone.0050632] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 10/22/2012] [Indexed: 02/07/2023] Open
Abstract
Background Daily pre-exposure prophylaxis (PrEP) with Truvada (a combination of emtricitabine (FTC) and tenofovir (TFV) disoproxil fumarate (TDF)) is a novel HIV prevention strategy recently found to prevent HIV transmission in men who have sex with men and heterosexual couples. We previously showed that a coitally-dependent Truvada regimen protected macaques against rectal SHIV transmission. Here we examined FTC and tenofovir TFV exposure in vaginal tissues after oral dosing and assessed if peri-coital Truvada also protects macaques against vaginal SHIV infection. Methods The pharmacokinetic profile of emtricitabine (FTC) and tenofovir (TFV) was evaluated at first dose. FTC and TFV levels were measured in blood plasma, rectal, and vaginal secretions. Intracellular concentrations of FTC-triphosphate (FTC-TP) and TFV-diphosphate (TFV-DP) were measured in PBMCs, rectal tissues, and vaginal tissues. Efficacy of Truvada in preventing vaginal SHIV infection was assessed using a repeat-exposure vaginal SHIV transmission model consisting of weekly exposures to low doses of SHIV162p3. Six pigtail macaques with normal menstrual cycles received Truvada 24 h before and 2 h after each weekly virus exposure and six received placebo. Infection was monitored by serology and PCR amplification of SHIV RNA and DNA. Results As in humans, the concentration of FTC was higher than the concentration of TFV in vaginal secretions. Also as in humans, TFV levels in vaginal secretions were lower than in rectal secretions. Intracellular TFV-DP concentrations were also lower in vaginal tissues than in rectal tissues. Despite the low vaginal TFV exposure, all six treated macaques were protected from infection after 18 exposures or 4 full menstrual cycles. In contrast, all 6 control animals were infected. Conclusions We modeled a peri-coital regimen with two doses of Truvada and showed that it fully protected macaques from repeated SHIV exposures. Our results open the possibility for simplified PrEP regimens to prevent vaginal HIV transmission in women.
Collapse
Affiliation(s)
- Jessica Radzio
- Laboratory Branch, Division of HIV/AIDS Prevention, National Center for HIV, Hepatitis, STD, and Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Wutyi Aung
- Laboratory Branch, Division of HIV/AIDS Prevention, National Center for HIV, Hepatitis, STD, and Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Angela Holder
- Laboratory Branch, Division of HIV/AIDS Prevention, National Center for HIV, Hepatitis, STD, and Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Amy Martin
- Laboratory Branch, Division of HIV/AIDS Prevention, National Center for HIV, Hepatitis, STD, and Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Elizabeth Sweeney
- Laboratory Branch, Division of HIV/AIDS Prevention, National Center for HIV, Hepatitis, STD, and Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - James Mitchell
- Laboratory Branch, Division of HIV/AIDS Prevention, National Center for HIV, Hepatitis, STD, and Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Shanon Bachman
- Laboratory Branch, Division of HIV/AIDS Prevention, National Center for HIV, Hepatitis, STD, and Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Chou-Pong Pau
- Laboratory Branch, Division of HIV/AIDS Prevention, National Center for HIV, Hepatitis, STD, and Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Walid Heneine
- Laboratory Branch, Division of HIV/AIDS Prevention, National Center for HIV, Hepatitis, STD, and Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - J. Gerardo García-Lerma
- Laboratory Branch, Division of HIV/AIDS Prevention, National Center for HIV, Hepatitis, STD, and Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
120
|
Abstract
PURPOSE OF REVIEW Pre-exposure prophylaxis (PrEP) clinical trial results using antiretrovirals can seem confusing, if not conflicting. We review recent antiretroviral pharmacokinetic studies to help explain PrEP trial results. RECENT FINDINGS Pharmacokinetic studies indicate that topical dosing, compared with oral dosing, achieves far higher colon and vaginal tissue drug concentrations, and far lower drug concentrations in blood. After oral dosing, higher tenofovir diphosphate concentrations are found in colon tissue than cervico-vaginal tissue, but the reverse is the case for emtricitabine triphosphate, although it does not persist as long. Vaginal dosing achieves measurable tenofovir concentrations in the rectum and vice versa. Within and among oral PrEP trials, increased drug concentration is associated with increased HIV protection, with drug concentration differences best explained by adherence, rather than pharmacokinetics. The poor level of protection in topical studies is not consistent with concentration-response in oral studies indicating unknown variables in need of further investigation. SUMMARY Sparse pharmacokinetic sampling in large trials combined with more intensive sampling in smaller pharmacokinetic-focused studies help explain trial outcome differences due largely to differences in adherence, tissue pharmacokinetics, and type of HIV exposure. Pharmacokinetic analysis can identify protective drug concentration targets, guide dose optimization, and inform future trials.
Collapse
Affiliation(s)
- Craig W Hendrix
- Division of Clinical Pharmacology, Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
121
|
Neutralizing antibodies inhibit HIV-1 transfer from primary dendritic cells to autologous CD4 T lymphocytes. Blood 2012; 120:3708-17. [DOI: 10.1182/blood-2012-03-418913] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractDendritic cells (DCs) support only low levels of HIV-1 replication, but have been shown to transfer infectious viral particles highly efficiently to neighboring permissive CD4 T lymphocytes. This mode of cell-to-cell HIV-1 spread may be a predominant mode of infection and dissemination. In the present study, we analyzed the kinetics of fusion, replication, and the ability of HIV-1–specific Abs to inhibit HIV-1 transfer from immature DCs to autologous CD4 T lymphocytes. We found that neutralizing mAbs prevented HIV-1 transfer to CD4 T lymphocytes in trans and in cis, whereas nonneutralizing Abs did not. Neutralizing Abs also significantly decreased HIV-1 replication in DCs, even when added 2 hours after HIV-1 infection. Interestingly, a similar inhibition of HIV-1 replication in DCs was detected with some nonneutralizing Abs and was correlated with DC maturation. We suggest that the binding of HIV-1-specific Abs to FcγRs leads to HIV-1 inhibition in DCs by triggering DC maturation. This efficient inhibition of HIV-1 transfer by Abs highlights the importance of inducing HIV-specific Abs by vaccination directly at the mucosal portal of HIV-1 entry to prevent early dissemination after sexual transmission.
Collapse
|
122
|
Abstract
HIV-1 is transmitted by sexual contact across mucosal surfaces, by maternal-infant exposure, and by percutaneous inoculation. For reasons that are still incompletely understood, CCR5-tropic viruses (R5 viruses) are preferentially transmitted by all routes. Transmission is followed by an orderly appearance of viral and host markers of infection in the blood plasma. In the acute phase of infection, HIV-1 replicates exponentially and diversifies randomly, allowing for an unambiguous molecular identification of transmitted/founder virus genomes and a precise characterization of the population bottleneck to virus transmission. Sexual transmission of HIV-1 most often results in productive clinical infection arising from a single virus, highlighting the extreme bottleneck and inherent inefficiency in virus transmission. It remains to be determined if HIV-1 transmission is largely a stochastic process whereby any reasonably fit R5 virus can be transmitted or if there are features of transmitted/founder viruses that facilitate their transmission in a biologically meaningful way. Human tissue explant models of HIV-1 infection and animal models of SIV/SHIV/HIV-1 transmission, coupled with new challenge virus strains that more closely reflect transmitted/founder viruses, have the potential to elucidate fundamental mechanisms in HIV-1 transmission relevant to vaccine design and other prevention strategies.
Collapse
Affiliation(s)
- George M Shaw
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | | |
Collapse
|
123
|
Saidi H, Jenabian MA, Belec L. Understanding factors that modulate HIV infection at the female genital tract mucosae for the rationale design of microbicides. AIDS Res Hum Retroviruses 2012; 28:1485-97. [PMID: 22867060 DOI: 10.1089/aid.2012.0049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Women are now becoming the pivot of the epidemiological spread of HIV infection worldwide, especially in developing countries. Therefore, research to develop an efficient microbicide is now a priority for the prevention of HIV-1 acquisition in exposed women. However, recent disappointing failures in microbicide clinical trials revealed major gaps in basic and applied knowledge that hinder the development of effective microbicide formulations. Indeed, the inhibitory power of microbicide molecules may be affected by several physiological and immunological factors present in male and female genital tracts. Furthermore, mucosal crossing of HIV-1 to increase the ability to reach the submucosal target cells (macrophages, lymphocytes, and dendritic cells) may be modulated by supraepithelial factors such as seminal complement components (opsonized HIV-1), by epithelial factors released in the submucosal microenvironment such as antimicrobial soluble factors, cytokines, and chemokines, and by potent intraepithelial and submucosal innate immunity. The design of vaginal microbicide formulations should take into account an understanding of the intimate mechanisms involved in the crossing of HIV through the female genital mucosae, in the context of a mixture of both male and female genital fluids.
Collapse
Affiliation(s)
- Hela Saidi
- Division of Immuno-Virology, Institute of Emerging Diseases and Innovative Therapies, Commissariat à l'Energie Atomique, Fontenay-aux-Roses, France
| | - Mohammad-Ali Jenabian
- Chronic Viral Illnesses Service of the McGill University Health Centre, and Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Laurent Belec
- Assistance Publique–Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Laboratoire de Virologie, and Faculté de Médecine Paris Descartes, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
124
|
Venkatesh KK, Cu-Uvin S. Assessing the relationship between cervical ectopy and HIV susceptibility: implications for HIV prevention in women. Am J Reprod Immunol 2012; 69 Suppl 1:68-73. [PMID: 23057756 DOI: 10.1111/aji.12029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 09/13/2012] [Indexed: 11/28/2022] Open
Abstract
Cervical ectopy, which occurs when the columnar epithelium of the endocervical canal extends outwards into the ectocervix, has been suggested to increase the susceptibility to HIV infection in at-risk women. This study summarizes observational studies, primarily conducted in sub-Saharan Africa, that have assessed a possible causative association between cervical ectopy and HIV acquisition and also examines the biological plausibility as well as other cofactors that may mediate this association. Only about half of the studies reviewed found cervical ectopy to be a significant risk factor for HIV acquisition. The reasons for these divergent results still remain to be fully elucidated. Understanding biological factors that affect HIV susceptibility provide opportunities to identify prevention strategies to reduce the risk of HIV acquisition.
Collapse
Affiliation(s)
- Kartik K Venkatesh
- Department of Obstetrics and Gynecology, Alpert Medical School, Brown University, Providence, RI 02912, USA.
| | | |
Collapse
|
125
|
Turville SG, Peretti S, Pope M. Lymphocyte-dendritic cell interactions and mucosal acquisition of SIV/HIV infection. Curr Opin HIV AIDS 2012; 1:3-9. [PMID: 19372776 DOI: 10.1097/01.coh.0000194109.14601.20] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
PURPOSE OF REVIEW Several previous models of HIV dissemination implicated dendritic cells as viral conduits to the lymphatics. However, recent macaque transmission and microbicide studies have highlighted a more complex situation. RECENT FINDINGS Resting CD4 lymphocytes are observed to be the major infected population in mucosal tissue after vaginal challenge with SIV. Resting lymphocytes appear to bridge infection over short distances, whereas activated lymphocytes provide long-distance virus dissemination as a result of greater virus amplification. In addition, dendritic cells might be early carriers of virus, transmitting virus to T cells locally and to the lymph nodes, and thus support parallel mechanisms in transmission. Microbicide studies using agents against CCR5 corroborate a model that infection at the mucosa must occur for transmission to be successful. The fast-rate dendritic cell trafficking of virus to the lymphatics may not result in immediate and efficient viral replication in lymphatic tissue. As dendritic cells might also be infected at the mucosa before lymphatic trafficking, this would enable them to transfer virus in this region at a later timepoint. SUMMARY There are now several models that can be attributed to the mucosal acquisition of SIV/HIV. One feature that unites these models is that infection in the mucosa must occur for dissemination to take place. Whether this is a feature of CD4 lymphocytes, dendritic cells or macrophage infection is still unclear. A model that intertwines one or more of the above cell types would be more prudent than addressing each in isolation.
Collapse
Affiliation(s)
- Stuart G Turville
- Center for Biomedical Research, Population Council, New York, New York, USA
| | | | | |
Collapse
|
126
|
Schust DJ, Ibana JA, Buckner LR, Ficarra M, Sugimoto J, Amedee AM, Quayle AJ. Potential mechanisms for increased HIV-1 transmission across the endocervical epithelium during C. trachomatis infection. Curr HIV Res 2012; 10:218-27. [PMID: 22384841 DOI: 10.2174/157016212800618093] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 12/18/2011] [Accepted: 12/28/2011] [Indexed: 11/22/2022]
Abstract
Among the now pandemic sexually transmitted infections (STIs), Chlamydia trachomatis (C. trachomatis) is the predominant bacterial pathogen and human immunodeficiency virus type 1 (HIV-1) is the most lethal of the viral pathogens. The female genital tract is the primary site for heterosexual transmission of both C. trachomatis and HIV-1. Infection with C. trachomatis, and with a variety of other STIs, increases the risk for transmission of HIV-1, although the mechanisms for this finding remain unclear. We have used in vitro modeling to assess the mechanisms by which infection with genital C. trachomatis serovars might increase the transmission of HIV-1 across the female genital tract. C. trachomatis infection of an immortalized endocervical epithelial cell line (A2EN) increases the cell surface expression of the HIV-1 alternative primary receptor, galactosyl ceramide (GalCer), and of the HIV-1 co-receptors, CXCR4 and CCR5. C. trachomatis infection also increases the binding of HIV-1 to A2EN cells, and, subsequently, increases levels of virus in co-cultures of HIV-exposed A2EN and susceptible MT4-R5 T cells. Finally, in vivo endocervical cell sampling reveals a dramatic increase in the number of CD4+, CXCR4 and/or CCR5 positive T cell targets in the endocervix of C. trachomatis positive women when compared to those who are C. trachomatis negative. This combination of in vitro and in vivo results suggests several mechanisms for increased transmission of HIV-1 across the endocervices of C. trachomatis-infected women.
Collapse
Affiliation(s)
- Danny J Schust
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, Columbia, MO, USA.
| | | | | | | | | | | | | |
Collapse
|
127
|
Abstract
Human immunodeficiency virus (HIV) pathogenesis has proven to be quite complex and dynamic with most of the critical events (e.g., transmission, CD4(+) T-cell destruction) occurring in mucosal tissues. In addition, although the resulting disease can progress over years, it is clear that many critical events happen within the first few weeks of infection when most patients are unaware that they are infected. These events occur predominantly in tissues other than the peripheral blood, particularly the gastrointestinal tract, where massive depletion of CD4(+) T cells occurs long before adverse consequences of HIV infection are otherwise apparent. Profound insights into these early events have been gained through the use of nonhuman primate models, which offer the opportunity to examine the early stages of infection with the simian immunodeficiency virus (SIV), a close relative of HIV that induces an indistinguishable clinical picture from AIDS in Asian primate species, but importantly, fails to cause disease in its natural African hosts, such as sooty mangabeys and African green monkeys. This article draws from data derived from both human and nonhuman primate studies.
Collapse
Affiliation(s)
- A A Lackner
- Tulane National Primate Research Center, Tulane University Health Science Center, Covington, LA 70443, USA.
| | | | | |
Collapse
|
128
|
The acute HIV infection: implications for intervention, prevention and development of an effective AIDS vaccine. Curr Opin Virol 2012; 1:204-10. [PMID: 21909345 DOI: 10.1016/j.coviro.2011.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Effective preventive measures against HIV must function near the time of virus transmission to prevent the establishment of a chronic infection. Low-dose SIV/SHIV infections by multiple routes lead to remarkably rapid systemic dissemination of virus and large numbers of infected cells during the initial weeks of the acute infection. Here we describe the narrow time-frame during which potent post-exposure interventions such as anti-retroviral therapy or the administration of high-titered neutralizing antibodies can block the establishment of the in vivo infection. This short window of opportunity is applicable to HIV infections and represents a formidable challenge for developing effective chemoprophylaxis and vaccine approaches.
Collapse
|
129
|
Dehuyser L, Schaeffer E, Chaloin O, Mueller CG, Baati R, Wagner A. Synthesis of Novel Mannoside Glycolipid Conjugates for Inhibition of HIV-1 Trans-Infection. Bioconjug Chem 2012; 23:1731-9. [DOI: 10.1021/bc200644d] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Laure Dehuyser
- Laboratory of Functional Chemo
Systems, CNRS-UdS UMR 7199, Faculté de Pharmacie, Université de Strasbourg, 74 route du Rhin,
67400 Illkirch, France
| | - Evelyne Schaeffer
- Laboratory of Immunology and
Therapeutic Chemistry, CNRS UPR 9021, Institut de Biologie Moléculaire et Cellulaire, 15 rue René
Descartes, 67000 Strasbourg, France
| | - Olivier Chaloin
- Laboratory of Immunology and
Therapeutic Chemistry, CNRS UPR 9021, Institut de Biologie Moléculaire et Cellulaire, 15 rue René
Descartes, 67000 Strasbourg, France
| | - Christopher G. Mueller
- Laboratory of Immunology and
Therapeutic Chemistry, CNRS UPR 9021, Institut de Biologie Moléculaire et Cellulaire, 15 rue René
Descartes, 67000 Strasbourg, France
| | - Rachid Baati
- Laboratory of Functional Chemo
Systems, CNRS-UdS UMR 7199, Faculté de Pharmacie, Université de Strasbourg, 74 route du Rhin,
67400 Illkirch, France
| | - Alain Wagner
- Laboratory of Functional Chemo
Systems, CNRS-UdS UMR 7199, Faculté de Pharmacie, Université de Strasbourg, 74 route du Rhin,
67400 Illkirch, France
| |
Collapse
|
130
|
Rancez M, Couëdel-Courteille A, Cheynier R. Chemokines at mucosal barriers and their impact on HIV infection. Cytokine Growth Factor Rev 2012; 23:233-43. [PMID: 22728258 DOI: 10.1016/j.cytogfr.2012.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Aside from representing a physical barrier and providing an unfavorable chemical milieu to viral and bacterial infections, mucosae of gut and female genital tract also contain organized lymphoid structures that support the initiation of anti-microbial immune responses, and more diffuse lymphoid tissues that represent immune effector mucosal sites. Local expression of specific chemokines orchestrates lymphoid cell trafficking and positioning in the mucosa-associated lymphoid tissues, leading to their efficient priming during antigenic stimulations as well as their specific homing back where they were primed. This review examines productions and roles of mucosae-specific chemokines in healthy and pathological conditions, as well as their possible positive and deleterious effects during mucosal HIV infection.
Collapse
|
131
|
Arnáiz B, Martínez-Ávila O, Falcon-Perez JM, Penadés S. Cellular Uptake of Gold Nanoparticles Bearing HIV gp120 Oligomannosides. Bioconjug Chem 2012; 23:814-25. [DOI: 10.1021/bc200663r] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Blanca Arnáiz
- Laboratory
of Glyconanotechnology, Biofunctional Nanomaterials Unit, CIC biomaGUNE, ‡Biomedical Research Networking Center in Bioengineering,
Biomaterials, and Nanomedicine (CIBER-BBN), P° de
Miramón 182, 20009 San Sebastian, Spain
- IKERBASQUE,
Basque Foundation for Science; ∥Metabolomics Unit, CIC bioGUNE, CIBERehd, Bizkaia Technology Park Bldg
801-A, Derio, 48160, Bizkaia, Spain
| | - Olga Martínez-Ávila
- Laboratory
of Glyconanotechnology, Biofunctional Nanomaterials Unit, CIC biomaGUNE, ‡Biomedical Research Networking Center in Bioengineering,
Biomaterials, and Nanomedicine (CIBER-BBN), P° de
Miramón 182, 20009 San Sebastian, Spain
- IKERBASQUE,
Basque Foundation for Science; ∥Metabolomics Unit, CIC bioGUNE, CIBERehd, Bizkaia Technology Park Bldg
801-A, Derio, 48160, Bizkaia, Spain
| | - Juan M. Falcon-Perez
- Laboratory
of Glyconanotechnology, Biofunctional Nanomaterials Unit, CIC biomaGUNE, ‡Biomedical Research Networking Center in Bioengineering,
Biomaterials, and Nanomedicine (CIBER-BBN), P° de
Miramón 182, 20009 San Sebastian, Spain
- IKERBASQUE,
Basque Foundation for Science; ∥Metabolomics Unit, CIC bioGUNE, CIBERehd, Bizkaia Technology Park Bldg
801-A, Derio, 48160, Bizkaia, Spain
| | - Soledad Penadés
- Laboratory
of Glyconanotechnology, Biofunctional Nanomaterials Unit, CIC biomaGUNE, ‡Biomedical Research Networking Center in Bioengineering,
Biomaterials, and Nanomedicine (CIBER-BBN), P° de
Miramón 182, 20009 San Sebastian, Spain
- IKERBASQUE,
Basque Foundation for Science; ∥Metabolomics Unit, CIC bioGUNE, CIBERehd, Bizkaia Technology Park Bldg
801-A, Derio, 48160, Bizkaia, Spain
| |
Collapse
|
132
|
Mesman AW, Geijtenbeek TB. Pattern Recognition Receptors in HIV Transmission. Front Immunol 2012; 3:59. [PMID: 22566940 PMCID: PMC3341947 DOI: 10.3389/fimmu.2012.00059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 03/07/2012] [Indexed: 11/13/2022] Open
Abstract
Dendritic cells (DCs), Langerhans cells (LCs), and macrophages are innate immune cells that reside in genital and intestinal mucosal tissues susceptible to HIV-1 infection. These innate cells play distinct roles in initiation of HIV-1 infection and induction of anti-viral immunity. DCs are potent migratory cells that capture HIV-1 and transfer virus to CD4+ T cells in the lymph nodes, whereas LCs have a protective anti-viral function, and macrophages function as viral reservoirs since they produce viruses over prolonged times. These differences are due to the different immune functions of these cells partly dependent on the expression of specific pattern recognition receptors. Expression of Toll-like receptors, C-type lectin receptors, and cell-specific machinery for antigen uptake and processing strongly influence the outcome of virus interactions.
Collapse
Affiliation(s)
- Annelies W Mesman
- Department for Experimental Immunology, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands
| | | |
Collapse
|
133
|
Abstract
There is an urgent need control the spread of the global HIV pandemic. A microbicide, or topical drug applied to the mucosal environment to block transmission, is a promising HIV prevention strategy. The development of a safe and efficacious microbicide requires a thorough understanding of the mucosal environment and its role in HIV transmission. Knowledge of the key events in viral infection identifies points at which the virus might be most effectively targeted by a microbicide. The cervicovaginal and rectal mucosa play an important role in the innate defense against HIV, and microbicides must not interfere with these functions. In this review, we discuss the current research on HIV microbicide development.
Collapse
|
134
|
Dinh MH, Okocha EA, Koons A, Veazey RS, Hope TJ. Expression of structural proteins in human female and male genital epithelia and implications for sexually transmitted infections. Biol Reprod 2012; 86:32. [PMID: 21976595 DOI: 10.1095/biolreprod.111.094789] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Men and women differ in their susceptibility to sexually transmittable infections (STIs) such as human immunodeficiency virus (HIV). However, a paucity of published information regarding the tissue structure of the human genital tract has limited our understanding of these gender differences. We collected cervical, vaginal, and penile tissues from human adult donors. Tissues were prepared with hematoxylin and eosin stains or immunofluorescence labeling of epithelial cell proteins and were analyzed for structural characteristics. Rhesus macaque genital tissues were evaluated to assess the use of this model for HIV/simian immunodeficiency virus transmission events. We found the stratified squamous epithelia of the male and female genital tract shared many similarities and important distinctions. Expression of E-cadherins, desmogleins 1/2, and involucrin was seen in all squamous epithelia, though expression patterns were heterogeneous. Filaggrin and a true cornified layer were markedly absent in female tissues but were clearly seen in all male epithelia. Desmogleins 1/2 were more consistent in the outermost strata of female squamous genital epithelia. Macaque tissues were similar to their respective human tissues. These initial observations highlight how male and female genital epithelia resemble and differ from one another. Further information regarding tissue structural characteristics will help to understand how STIs traverse these barriers to cause infection. This knowledge will be essential in future HIV pathogenesis, transmission, and prevention studies.
Collapse
Affiliation(s)
- Minh H Dinh
- Departments of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.
| | | | | | | | | |
Collapse
|
135
|
Teleshova N, Derby N, Martinelli E, Pugach P, Calenda G, Robbiani M. Simian immunodeficiency virus interactions with macaque dendritic cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 762:155-81. [PMID: 22975875 DOI: 10.1007/978-1-4614-4433-6_6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This chapter summarizes advances in the following areas: (1) dendritic cell (DC)-mediated simian immunodeficiency virus (SIV) transmission, (2) role of DCs in innate and adaptive immunity against SIV, and (3) approaches to harness DC function to induce anti-SIV responses. The nonhuman primate (NHP) model of human immunodeficiency virus (HIV) infection in rhesus macaques and other Asian NHP species is highly relevant to advance the understanding of virus-host interactions critical for transmission and disease pathogenesis. HIV infection is associated with changes in frequency, phenotype, and function of the two principal subsets of DCs, myeloid DCs and plasmacytoid DCs. DC biology during pathogenic SIV infection is strikingly similar to that observed in HIV-infected patients. The NHP models provide an opportunity to dissect the requirements for DC-driven SIV infection and to understand how SIV distorts the DC system to its advantage. Furthermore, the SIV model of mucosal transmission enables the study of the earliest events of infection at the portal of entry that cannot be studied in humans, and, importantly, the involvement of DCs. Nonpathogenic infection in African NHP hosts allows investigations into the role of DCs in disease control. Understanding how DCs are altered during SIV infection is critical to the design of therapeutic and preventative strategies against HIV.
Collapse
Affiliation(s)
- Natalia Teleshova
- HIV and AIDS Program, Center for Biomedical Research, Population Council, New York, NY 10065, USA.
| | | | | | | | | | | |
Collapse
|
136
|
Ahmed Z, Czubala M, Blanchet F, Piguet V. HIV impairment of immune responses in dendritic cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 762:201-38. [PMID: 22975877 DOI: 10.1007/978-1-4614-4433-6_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Dendritic cells and their subsets are diverse populations of immune cells in the skin and mucous membranes that possess the ability to sense the presence of microbes and orchestrate an efficient and adapted immune response. Dendritic cells (DC) have the unique ability to act as a bridge between the innate and adaptive immune responses. These cells are composed of a number of subsets behaving with preferential and specific features depending on their location and surrounding environment. Langerhans cells (LC) or dermal DC (dDC) are readily present in mucosal areas. Other DC subsets such as plasmacytoid DC (pDC), myeloid DC (myDC), or monocyte-derived DC (MDDC) are thought to be recruited or differentiated in sites of pathogenic challenge. Upon HIV infection, DC and their subsets are likely among the very first immune cells to encounter incoming pathogens and initiate innate and adaptive immune responses. However, as evidenced during HIV infection, some pathogens have evolved subtle strategies to hijack key cellular machineries essential to generate efficient antiviral responses and subvert immune responses for spread and survival.In this chapter, we review recent research aimed at investigating the involvement of DC subtypes in HIV transmission at mucosal sites, concentrating on HIV impact on cellular signalling and trafficking pathways in DC leading to DC-mediated immune response alterations and viral immune evasion. We also address some aspects of DC functions during the chronic immune pathogenesis and conclude with an overview of the current and novel therapeutic and prophylactic strategies aimed at improving DC-mediated immune responses, thus to potentially tackle the early events of mucosal HIV infection and spread.
Collapse
Affiliation(s)
- Zahra Ahmed
- Department of Dermatology and Wound Healing, Cardiff University School of Medicine, Cardiff, Wales, UK
| | | | | | | |
Collapse
|
137
|
Antiviral immune responses by human langerhans cells and dendritic cells in HIV-1 infection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 762:45-70. [PMID: 22975871 DOI: 10.1007/978-1-4614-4433-6_2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The main route of human immunodeficiency virus-1 (HIV-1) infection is via unprotected sexual intercourse, and therefore, vaginal tissues and male foreskin are viral entry sites. Langerhans cells (LCs) and dendritic cells (DCs) are amongst the first immune cells encountering HIV-1 since these cells line these mucosal tissues. Both LCs and DCs are equipped with specific pattern recognition receptors that not only sense pathogens, but induce specific immune responses against these pathogens. LCs express the C-type lectin receptor langerin, which provides protection against HIV-1 infection. In contrast, DCs express the C-type lectin receptor DC-SIGN, which facilitates capture as well as infection of DCs and subsequent transmission to CD4(+) T cells. This chapter gives an update on immune responses elicited against viruses and sheds a light on different immune mechanisms that are hijacked by HIV-1 to infect the host. HIV-1 infection ultimately leads to the worldwide pandemic acquired immunodeficiency syndrome (AIDS).
Collapse
|
138
|
Gougeon ML, Melki MT, Saïdi H. HMGB1, an alarmin promoting HIV dissemination and latency in dendritic cells. Cell Death Differ 2012; 19:96-106. [PMID: 22033335 PMCID: PMC3252828 DOI: 10.1038/cdd.2011.134] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 08/03/2011] [Accepted: 08/12/2011] [Indexed: 12/23/2022] Open
Abstract
Dendritic cells (DCs) initiate immune responses by transporting antigens and migrating to lymphoid tissues to initiate T-cell responses. DCs are located in the mucosal surfaces that are involved in human immunodeficiency virus (HIV) transmission and they are probably among the earliest targets of HIV-1 infection. DCs have an important role in viral transmission and dissemination, and HIV-1 has evolved different strategies to evade DC antiviral activity. High mobility group box 1 (HMGB1) is a DNA-binding nuclear protein that can act as an alarmin, a danger signal to alert the innate immune system for the initiation of host defense. It is the prototypic damage-associated molecular pattern molecule, and it can be secreted by innate cells, including DCs and natural killer (NK) cells. The fate of DCs is dependent on a cognate interaction with NK cells, which involves HMGB1 expressed at NK-DC synapse. HMGB1 is essential for DC maturation, migration to lymphoid tissues and functional type-1 polarization of naïve T cells. This review highlights the latest advances in our understanding of the impact of HIV on the interactions between HMGB1 and DCs, focusing on the mechanisms of HMGB1-dependent viral dissemination and persistence in DCs, and discussing the consequences on antiviral innate immunity, immune activation and HIV pathogenesis.
Collapse
Affiliation(s)
- M-L Gougeon
- Antiviral Immunity, Biotherapy and Vaccine Unit, Infection and Epidemiology Department, Institut Pasteur, Paris, France.
| | | | | |
Collapse
|
139
|
Gijsbers EF, Schuitemaker H, Kootstra NA. HIV-1 transmission and viral adaptation to the host. Future Virol 2012. [DOI: 10.2217/fvl.11.134] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
HIV-1 transmission predominantly occurs via mucosal transmission and blood–blood contact. In most newly infected individuals, outgrowth of a single virus variant has been described. This indicates that HIV-1 transmission is a very inefficient process and is restricted by an extensive transmission bottleneck. The transmission rate is directly correlated to the viral load in the donor and the susceptibility of the recipient, which is influenced by factors such as the integrity of mucosal barriers, target cell availability and genetic host factors. After establishment of infection in the new host, the viral population remains very homogenous until the host immune response drives evolution of the viral quasispecies. This review describes our current knowledge on HIV-1 transmission and recent insights in viral adaption to its host.
Collapse
Affiliation(s)
- Esther F Gijsbers
- Department of Experimental Immunology, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Hanneke Schuitemaker
- Department of Experimental Immunology, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | | |
Collapse
|
140
|
Abstract
PURPOSE OF REVIEW The early stage of HIV-1 infection is when the virus is most vulnerable, and should therefore offer the best opportunity for therapeutic interventions. This review addresses the recent progress in the understanding of innate immune responses against HIV-1 with focus on the potential targets for prevention of viral acquisition, replication and dissemination. RECENT FINDINGS Research indicates that the host-derived factor trappin-2/elafin is protective against HIV, whereas semen-derived enhancer of viral infection and defensins 5 and 6 enhance viral transmission. Further, studies suggest that stimulation of TLR4 and inhibition of TLR7-9 pathways may be HIV suppressive. The regulation and function of viral restriction factors tetherin and APOBEC3G have been investigated and a molecule mimicking the premature uncoating achieved by TRIM5α, PF74, has been identified. Chloroquine has been shown to inhibit plasmacytoid dendritic cell activation and suppress negative modulators of T-cell responses. Blockade of HMBG1 has been found to restore natural-killer-cell-mediated killing of infected dendritic cells, normally suppressed by HIV-1. Interestingly, when used as adjuvants, EAT-2 and heat shock protein gp96 reportedly enhance innate immune responses. SUMMARY Several targets for innate immunity-mediated therapeutics have been identified. Nonetheless, more research is required to unveil their underlying mechanisms and interactions before testing these molecules in clinical trials.
Collapse
|
141
|
Abstract
PURPOSE OF REVIEW Relatively little is known with regards to the mechanisms of HIV-1 transmission across a mucosal surface and more specifically what effects host factors have on influencing infection and early viral dissemination. The purpose of this review is to summarize which factors of the innate immune response can influence mucosal transmission of HIV-1. RECENT FINDINGS A large array of cell types reside at the mucosal surface ranging from Langerhans cells, dendritic cells, macrophages as well as CD4⁺ lymphocytes, all of which interact with the virus in a unique and different way and which can contribute to risk of HIV-1 transmission. Numerous factors present in bodily secretions as well as the carrier fluids of HIV-1 (breast milk, vaginal secretions, semen and intestinal mucus) can influence transmission and early virus replication. These range from cytokines, chemokines, small peptides, glycoproteins as well as an array of host intracellular molecules which can influence viral uncoating, reverse transcription as well as egress from the infected cell. SUMMARY Better understanding the cellular mechanisms of HIV-1 transmission and how different host factor can influence infection will aide in the future development of vaccines, microbicides, and therapies.
Collapse
|
142
|
Ma ZM, Keele BF, Qureshi H, Stone M, Desilva V, Fritts L, Lifson JD, Miller CJ. SIVmac251 is inefficiently transmitted to rhesus macaques by penile inoculation with a single SIVenv variant found in ramp-up phase plasma. AIDS Res Hum Retroviruses 2011; 27:1259-69. [PMID: 21732792 DOI: 10.1089/aid.2011.0090] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Abstract Despite the fact that approximately half of all HIV patients acquire infection through penile exposure, there have been no recent studies of penile SIV transmission in rhesus macaques and the nature of the virus variants transmitted, target cells, and pathways of virus dissemination to systemic lymphoid tissues are not known. Single genome amplification (SGA) and sequencing of HIV-1 RNA in plasma of acutely infected humans allows the identification and enumeration of transmitted/founder viruses responsible for productive systemic infection. Studies using the SGA strategy have shown that intrarectal and intravaginal SIV transmission to macaques recapitulates key features of human HIV transmission. To date, no studies have used the SGA assay to identify transmitted/founder virus(es) in macaques infected after penile SIV exposure. Here we report that SIV can be transmitted by penile SIV exposure. However, similar exposure to a high-dose inoculum infects only about half the animals, which is about 50% less efficient transmission than occurs after vaginal SIV challenge. In addition, only a single SIV env variant established the systemic infection in all five animals that became infected after penile exposure, a result that is consistent with low incidence and few transmitted HIV variants in heterosexually infected men. Our results suggest that the penile transmission of SIVmac251 in rhesus macaques recapitulates the key features of penile HIV-1 transmission and may provide insight into host or viral factors that permit penile transmission and dissemination. Furthermore, this SIV challenge exposure route will be useful in testing vaccines and other prophylactic approaches.
Collapse
Affiliation(s)
- Zhong-Min Ma
- Center for Comparative Medicine, University of California, Davis, USA
| | | | | | | | | | | | | | | |
Collapse
|
143
|
[Mechanism for HIV invasion via skin or mucosa]. Uirusu 2011; 61:59-65. [PMID: 21972556 DOI: 10.2222/jsv.61.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Sexual transmission of HIV is the most common mode of infection in the global HIV epidemic. In the absence of an effective vaccine, there is an urgent need for additional strategies to prevent new HIV infections. An emerging body of evidence now indicates that Langerhans cells (LC) are initial cellular targets in the sexual transmission of HIV, and CD4- and CCR5-mediated infection of LC plays a crucial role in virus dissemination. I focus on the recent advances regarding the cellular events that may occur during heterosexual transmission of HIV.
Collapse
|
144
|
Hirbod T, Kaldensjö T, Broliden K. In situ distribution of HIV-binding CCR5 and C-type lectin receptors in the human endocervical mucosa. PLoS One 2011; 6:e25551. [PMID: 21984929 PMCID: PMC3184149 DOI: 10.1371/journal.pone.0025551] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 09/07/2011] [Indexed: 12/19/2022] Open
Abstract
The endocervical mucosa is believed to be a primary site of HIV transmission. However, to date there is little known about the distribution of the HIV co-receptor CCR5 and the HIV-binding C-type lectin receptors, including Langerin, dendritic cell (DC)-specific intercellular adhesion molecule-grabbing non-integrin (DC-SIGN) and mannose receptor (MR) at this site. We therefore characterized the expression of these molecules in the endocervix of HIV seronegative women by computerized image analysis. Endocervical tissue biopsies were collected from women (n = 6) undergoing hysterectomy. All study individuals were diagnosed with benign and non-inflammatory diseases. CCR5+ CD4+ CD3+ T cells were found within or adjacent to the endocervical epithelium. The C-type lectin Langerin was expressed by intraepithelial CD1a+ CD4+ and CD11c+ CD4+ Langerhans cells, whereas DC-SIGN+ MR+ CD11c myeloid dendritic cells and MR+ CD68+ macrophages were localized in the submucosa of the endocervix. The previously defined immune effector cells including CD8+, CD56+, CD19+ and IgD+ cells were also found in the submucosa as well as occasional CD123+ BDCA-2+ plasmacytoid dendritic cells. Understanding the spatial distribution of potential HIV target cells and immune effector cells in relation to the endocervical canal forms a basis for deciphering the routes of HIV transmission events in humans as well as designing HIV-inhibiting compounds.
Collapse
Affiliation(s)
- Taha Hirbod
- Department of Medicine, Division of Infectious Diseases, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Tove Kaldensjö
- Department of Medicine, Division of Infectious Diseases, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- * E-mail:
| | - Kristina Broliden
- Department of Medicine, Division of Infectious Diseases, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
145
|
van Montfort T, Eggink D, Boot M, Tuen M, Hioe CE, Berkhout B, Sanders RW. HIV-1 N-glycan composition governs a balance between dendritic cell-mediated viral transmission and antigen presentation. THE JOURNAL OF IMMUNOLOGY 2011; 187:4676-85. [PMID: 21957147 DOI: 10.4049/jimmunol.1101876] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The natural function of dendritic cells (DCs) is to capture and degrade pathogens for Ag presentation. However, HIV-1 can evade viral degradation by DCs and hijack DCs for migration to susceptible CD4(+) T lymphocytes. It is unknown what factors decide whether a virus is degraded or transmitted to T cells. The interaction of DCs with HIV-1 involves C-type lectin receptors, such as DC-specific ICAM-3-grabbing nonintegrin, which bind to the envelope glycoprotein complex (Env), which is decorated heavily with N-linked glycans. We hypothesized that the saccharide composition of the Env N-glycans is involved in avoiding viral degradation and Ag presentation, as well as preserving infectious virus for the transmission to target cells. Therefore, we studied the fate of normally glycosylated virus versus oligomannose-enriched virus in DCs. Changing the heterogeneous N-linked glycan composition of Env to uniform oligomannose N-glycans increased the affinity of HIV-1 for DC-specific ICAM-3-grabbing nonintegrin and enhanced the capture of HIV-1 by immature DCs; however, it decreased the subsequent transmission to target cells. Oligomannose-enriched HIV-1 was directed more efficiently into the endocytic pathway, resulting in enhanced viral degradation and reduced virus transfer to target cells. Furthermore, Env containing exclusively oligomannose N-glycans was presented to Env-specific CD4(+) T cells more efficiently. Taken together, our results showed that the HIV-1 N-glycan composition plays a crucial role in the balance between DC-mediated Ag degradation and presentation and DC-mediated virus transmission to target cells. This finding may have implications for the early events in HIV-1 transmission and the induction of antiviral immune responses.
Collapse
Affiliation(s)
- Thijs van Montfort
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Center of the University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
146
|
Natural killer cells, dendritic cells, and the alarmin high-mobility group box 1 protein. Curr Opin HIV AIDS 2011; 6:364-72. [DOI: 10.1097/coh.0b013e328349b089] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
147
|
|
148
|
Sassi AB, Bunge KE, Hood BL, Conrads TP, Cole AM, Gupta P, Rohan LC. Preformulation and stability in biological fluids of the retrocyclin RC-101, a potential anti-HIV topical microbicide. AIDS Res Ther 2011; 8:27. [PMID: 21801426 PMCID: PMC3199744 DOI: 10.1186/1742-6405-8-27] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 07/29/2011] [Indexed: 11/30/2022] Open
Abstract
Background RC-101, a cationic peptide retrocyclin analog, has in vitro activity against HIV-1. Peptide drugs are commonly prone to conformational changes, oxidation and hydrolysis when exposed to excipients in a formulation or biological fluids in the body, this can affect product efficacy. We aimed to investigate RC-101 stability under several conditions including the presence of human vaginal fluids (HVF), enabling the efficient design of a safe and effective microbicide product. Stability studies (temperature, pH, and oxidation) were performed by HPLC, Circular Dichroism, and Mass Spectrometry (LC-MS/MS). Additionally, the effect of HVF on formulated RC-101 was evaluated with fluids collected from healthy volunteers, or from subjects with bacterial vaginosis (BV). RC-101 was monitored by LC-MS/MS for up to 72 h. Results RC-101 was stable at pH 3, 4, and 7, at 25 and 37°C. High concentrations of hydrogen peroxide resulted in less than 10% RC-101 reduction over 24 h. RC-101 was detected 48 h after incubation with normal HVF; however, not following incubation with HVF from BV subjects. Conclusions Our results emphasize the importance of preformulation evaluations and highlight the impact of HVF on microbicide product stability and efficacy. RC-101 was stable in normal HVF for at least 48 h, indicating that it is a promising candidate for microbicide product development. However, RC-101 stability appears compromised in individuals with BV, requiring more advanced formulation strategies for stabilization in this environment.
Collapse
|
149
|
Abstract
Microbicides are products that can be applied to vaginal or rectal mucosa with the intent of preventing, or at least significantly reducing, the transmission of sexually transmitted infections, including HIV-1. The past 2 or 3 years of microbicide research have generated several disappointments. Large, phase 2B/3 studies failed to demonstrate product efficacy, were stopped prematurely for futility, and in the worst-case scenario possibly demonstrated microbicide-induced harm. The most recently completed efficacy study (HPTN-035) did not reach statistical significance, but did show that use of PRO-2000 was associated with a 30% reduction in HIV acquisition. Current research focuses on much more potent targeted therapy, including reverse transcriptase inhibitors and CCR5 antagonists. Ongoing challenges include optimizing the identification of safety signals in phase 1/2 studies, defining a rationale for advancing products into efficacy studies, and identifying populations with adequate HIV seroincidence rates for these studies.
Collapse
|
150
|
Abstract
The quest for an effective and safe HIV-1 vaccine has been and still is the aspiration of many scientists and clinicians worldwide. Until recently, the hopes for an effective vaccine were thwarted by the disappointing results and early termination in September 2007 of the STEP study, which saw a subgroup of male vaccine recipients at an increased risk of HIV-1 infection, and the failure of earlier trials of vaccines based on recombinant envelope proteins to provide any level of protection. The results of the STEP study raised important questions in the field of HIV vaccines, including the use of recombinant adenovirus vectors as immunogens, the rationale for the development of T-cell-based vaccines and the development pathway for these vaccines, in terms of assessment of immunogenicity and the challenge models used. The study of neutralizing antibodies has demonstrated that the induction of high-titre, broadly neutralizing antibodies in the majority of recipients is likely to be highly problematic. However, the results of the RV144 Thai trial released in September 2009 have brought new optimism to the field. This study employed envelope-based immunogens delivered as a priming vaccination with a recombinant poxvirus vector and boosting with recombinant proteins. This regimen provided modest protection to HIV-1 infection in a low-risk population. Although the correlates of protection are currently unknown, extensive studies are underway to try to determine these. Neutralizing antibodies were not induced in the RV144 study; however, considerable titres of binding antibodies to HIV-1 viral envelope (Env) were. It is speculated that these antibodies may have provided a means of protection by a mechanism such as antibody-dependent cell-mediated cytotoxicity. In addition, no CD8+ T-cell responses were induced, but robust CD4+ T-cell responses were, and correlates of protection are being sought by analysing the quality of this aspect of the vaccine-induced immune response. The current paradigm for an optimal HIV-1 vaccine is to design immunogens and vaccination protocols that allow the induction of both broadly neutralizing humoral and broadly reactive and effective cell-mediated immunity, to act at sites of possible infection and post-infection, respectively. However, this is challenged by the results of the RV144 trial as neither of these responses were induced but modest protection was observed. Understanding the biology and immunopathology of HIV-1 early following infection, its modes of transmission and the human immune system's response to the virus should aid in the rational design of vaccines of increased efficacy.
Collapse
Affiliation(s)
- C Mee Ling Munier
- HIV Immunovirology Laboratory, St Vincent's Centre for Applied Medical Research, Sydney, New South Wales, Australia.
| | | | | |
Collapse
|