101
|
Gilch S, Chitoor N, Taguchi Y, Stuart M, Jewell JE, Schätzl HM. Chronic wasting disease. Top Curr Chem (Cham) 2011; 305:51-77. [PMID: 21598099 DOI: 10.1007/128_2011_159] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chronic wasting disease (CWD) is a prion disease of free-ranging and farmed ungulates (deer, elk, and moose) in North America and South Korea. First described by the late E.S. Williams and colleagues in northern Colorado and southern Wyoming in the 1970s, CWD has increased tremendously both in numerical and geographical distribution, reaching prevalence rates as high as 50% in free-ranging and >90% in captive deer herds in certain areas of USA and Canada. CWD is certainly the most contagious prion infection, with significant horizontal transmission of infectious prions by, e.g., urine, feces, and saliva. Dissemination and persistence of infectivity in the environment combined with the appearance in wild-living and migrating animals make CWD presently uncontrollable, and pose extreme challenges to wild-life disease management. Whereas CWD is extremely transmissible among cervids, its trans-species transmission seems to be restricted, although the possible involvement of rodent and carnivore species in environmental transmission has not been fully evaluated. Whether or not CWD has zoonotic potential as had Bovine spongiform encephalopathy (BSE) has yet to be answered. Of note, variant Creutzfeldt-Jakob disease (vCJD) was only detected because clinical presentation and age of patients were significantly different from classical CJD. Along with further understanding of the molecular biology and pathology of CWD, its transmissibility and species restrictions and development of methods for preclinical diagnosis and intervention will be crucial for effective containment of this highly contagious prion disease.
Collapse
Affiliation(s)
- Sabine Gilch
- Department of Veterinary Sciences, University of Wyoming, Laramie, WY 82070, USA
| | | | | | | | | | | |
Collapse
|
102
|
Abstract
While prions share the ability to propagate strain information with nucleic acid-based pathogens, it is unclear how they mutate and acquire fitness in the absence of this informational component. Because prion diseases occur as epidemics, understanding this mechanism is of paramount importance for implementing control strategies to limit their spread and for evaluating their zoonotic potential. Here we review emerging evidence indicating how prion protein primary structures, in concert with PrP(Sc) conformational compatibility, determine prion strain mutation.
Collapse
Affiliation(s)
- Glenn C Telling
- Department of Microbiology, Immunology and Molecular Genetics, Sanders Brown Center on Aging, Department of Neurology, University of Kentucky Medical Center, Lexington, KY, USA.
| |
Collapse
|
103
|
Gough KC, Maddison BC. Prion transmission: prion excretion and occurrence in the environment. Prion 2010; 4:275-82. [PMID: 20948292 DOI: 10.4161/pri.4.4.13678] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Prion diseases range from being highly infectious, for example scrapie and CWD, which show facile transmission between susceptible individuals, to showing negligible horizontal transmission, such as BSE and CJD, which are spread via food or iatrogenically, respectively. Scrapie and CWD display considerable in vivo dissemination, with PrP(Sc) and infectivity being found in a range of peripheral tissues. This in vivo dissemination appears to facilitate the recently reported excretion of prion through multiple routes such as from skin, feces, urine, milk, nasal secretions, saliva and placenta. Furthermore, excreted scrapie and CWD agent is detected within environmental samples such as water and on the surfaces of inanimate objects. The cycle of "uptake of prion from the environment--widespread in vivo prion dissemination--prion excretion--prion persistence in the environment" is likely to explain the facile transmission and maintenance of these diseases within wild and farmed populations over many years.
Collapse
Affiliation(s)
- Kevin C Gough
- School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington Campus, Sutton Bonington, UK.
| | | |
Collapse
|
104
|
Sandberg MK, Al-Doujaily H, Sigurdson CJ, Glatzel M, O'Malley C, Powell C, Asante EA, Linehan JM, Brandner S, Wadsworth JDF, Collinge J. Chronic wasting disease prions are not transmissible to transgenic mice overexpressing human prion protein. J Gen Virol 2010; 91:2651-7. [PMID: 20610667 PMCID: PMC3052602 DOI: 10.1099/vir.0.024380-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Chronic wasting disease (CWD) is a prion disease that affects free-ranging and captive cervids, including mule deer, white-tailed deer, Rocky Mountain elk and moose. CWD-infected cervids have been reported in 14 USA states, two Canadian provinces and in South Korea. The possibility of a zoonotic transmission of CWD prions via diet is of particular concern in North America where hunting of cervids is a popular sport. To investigate the potential public health risks posed by CWD prions, we have investigated whether intracerebral inoculation of brain and spinal cord from CWD-infected mule deer transmits prion infection to transgenic mice overexpressing human prion protein with methionine or valine at polymorphic residue 129. These transgenic mice have been utilized in extensive transmission studies of human and animal prion disease and are susceptible to BSE and vCJD prions, allowing comparison with CWD. Here, we show that these mice proved entirely resistant to infection with mule deer CWD prions arguing that the transmission barrier associated with this prion strain/host combination is greater than that observed with classical BSE prions. However, it is possible that CWD may be caused by multiple prion strains. Further studies will be required to evaluate the transmission properties of distinct cervid prion strains as they are characterized.
Collapse
Affiliation(s)
- Malin K Sandberg
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Sigurdson CJ, Nilsson KPR, Hornemann S, Manco G, Fernández-Borges N, Schwarz P, Castilla J, Wüthrich K, Aguzzi A. A molecular switch controls interspecies prion disease transmission in mice. J Clin Invest 2010; 120:2590-9. [PMID: 20551516 DOI: 10.1172/jci42051] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 04/28/2010] [Indexed: 11/17/2022] Open
Abstract
Transmissible spongiform encephalopathies are lethal neurodegenerative disorders that present with aggregated forms of the cellular prion protein (PrPC), which are known as PrPSc. Prions from different species vary considerably in their transmissibility to xenogeneic hosts. The variable transmission barriers depend on sequence differences between incoming PrPSc and host PrPC and additionally, on strain-dependent conformational properties of PrPSc. The beta2-alpha2 loop region within PrPC varies substantially between species, with its structure being influenced by the residue types in the 2 amino acid sequence positions 170 (most commonly S or N) and 174 (N or T). In this study, we inoculated prions from 5 different species into transgenic mice expressing either disordered-loop or rigid-loop PrPC variants. Similar beta2-alpha2 loop structures correlated with efficient transmission, whereas dissimilar loops correlated with strong transmission barriers. We then classified literature data on cross-species transmission according to the 170S/N polymorphism. Transmission barriers were generally low between species with the same amino acid residue in position 170 and high between those with different residues. These findings point to a triggering role of the local beta2-alpha2 loop structure for prion transmissibility between different species.
Collapse
Affiliation(s)
- Christina J Sigurdson
- Department of Pathology and Department of Medicine, University of California, San Diego, La Jolla, California 92093, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Abstract
Cell-based measurement of prion infectivity is currently restricted to experimental strains of mouse-adapted scrapie. Having isolated cell cultures with susceptibility to prions from diseased elk, we describe a modification of the scrapie cell assay allowing evaluation of prions causing chronic wasting disease, a naturally occurring transmissible spongiform encephalopathy. We compare this cervid prion cell assay to bioassays in transgenic mice, the only other existing method for quantification, and show this assay to be a relatively economical and expedient alternative that will likely facilitate studies of this important prion disease.
Collapse
|
107
|
Angers RC, Kang HE, Napier D, Browning S, Seward T, Mathiason C, Balachandran A, McKenzie D, Castilla J, Soto C, Jewell J, Graham C, Hoover EA, Telling GC. Prion strain mutation determined by prion protein conformational compatibility and primary structure. Science 2010; 328:1154-8. [PMID: 20466881 DOI: 10.1126/science.1187107] [Citation(s) in RCA: 174] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Prions are infectious proteins composed of the abnormal disease-causing isoform PrPSc, which induces conformational conversion of the host-encoded normal cellular prion protein PrPC to additional PrPSc. The mechanism underlying prion strain mutation in the absence of nucleic acids remains unresolved. Additionally, the frequency of strains causing chronic wasting disease (CWD), a burgeoning prion epidemic of cervids, is unknown. Using susceptible transgenic mice, we identified two prevalent CWD strains with divergent biological properties but composed of PrPSc with indistinguishable biochemical characteristics. Although CWD transmissions indicated stable, independent strain propagation by elk PrPC, strain coexistence in the brains of deer and transgenic mice demonstrated unstable strain propagation by deer PrPC. The primary structures of deer and elk prion proteins differ at residue 226, which, in concert with PrPSc conformational compatibility, determines prion strain mutation in these cervids.
Collapse
Affiliation(s)
- Rachel C Angers
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky Medical Center, Lexington, KY 40536, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Seelig DM, Mason GL, Telling GC, Hoover EA. Pathogenesis of chronic wasting disease in cervidized transgenic mice. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:2785-97. [PMID: 20395435 DOI: 10.2353/ajpath.2010.090710] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chronic wasting disease (CWD) is a fatal, endemic prion disease of wild and captive cervids, including deer, elk, and moose. Typical of prion diseases, CWD is characterized by the conversion of the native, protease-sensitive protein PrP(C) to a protease-resistant isoform, denoted as PrP(RES). Here we have studied the expression of cervid PrP(C) and the pathogenesis of CWD infection in transgenic mice expressing the normal cervid prion protein (Tg[CerPrP] mice). Using tissue-based in situ immunohistochemistry protocols, we first identified cervid PrP(C) expression in the lymphoid, nervous, hemopoietic, endocrine, and certain epithelial tissues of Tg[CerPrP] mice. Tg[CerPrP] mice were then inoculated with CWD via one of four routes (intracerebral, intravenous, intraperitoneal, or oral); all groups developed spongiform encephalopathy, although the oral route required a larger infecting dose. Incubation periods were 184 +/- 13, 218 +/- 15, 200 +/- 7, and 350 +/- 27 days after inoculation, respectively. In longitudinal studies, we tracked the appearance of PrP(RES) in the brain, spleen, Peyer's patches, lymph nodes, pancreatic islets of Langerhans, bone marrow, and salivary glands of preclinical and terminal mice. In addition, we documented horizontal transmission of CWD from inoculated mice and to un-inoculated cohabitant cage-mates. This work documents the multiroute susceptibility, pathogenesis, and lateral transmission of CWD infection in Tg[CerPrP] mice, affirming this model as a robust system to study this cervid transmissible spongiform encephalopathy.
Collapse
Affiliation(s)
- Davis M Seelig
- Colorado State University, Department of Microbiology, Immunology, and Pathology, 1619 Campus Delivery, Fort Collins, CO 80523, USA
| | | | | | | |
Collapse
|
109
|
Denkers ND, Seelig DM, Telling GC, Hoover EA. Aerosol and nasal transmission of chronic wasting disease in cervidized mice. J Gen Virol 2010; 91:1651-8. [PMID: 20164261 PMCID: PMC2888164 DOI: 10.1099/vir.0.017335-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Little is known regarding the potential risk posed by aerosolized prions. Chronic wasting disease (CWD) is transmitted horizontally, almost surely by mucosal exposure, and CWD prions are present in saliva and urine of infected animals. However, whether CWD may be transmissible by the aerosol or nasal route is not known. To address this question, FVB mice transgenetically expressing the normal cervid PrPC protein [Tg(cerPrP) mice] were exposed to CWD prions by either nose-only aerosol exposure or by drop-wise instillation into the nostrils. Mice were monitored for signs of disease for up to 755 days post-inoculation (p.i.) and by examination of tissues for lesions and PrPCWD after necropsy. In particular, nasal mucosa, vomeronasal organ, lungs, lymphoid tissue and the brain were assessed for PrPCWD by Western blotting and immunohistochemistry. Six of seven aerosol-exposed Tg(cerPrP) mice developed clinical signs of neurological dysfunction mandating euthanasia between 411 and 749 days p.i. In all these mice, CWD infection was confirmed by detection of spongiform lesions and PrPCWD in the brain. Two of nine intranasally inoculated Tg(cerPrP) mice also developed transmissible spongiform encephalopathy associated with PrPCWD between 417 and 755 days p.i. No evidence of PrPCWD was detected in CWD-inoculated Tg(cerPrP) mice examined at pre-terminal time points. These results demonstrate that CWD can be transmitted by aerosol (as well as nasal) exposure and suggest that exposure via the respiratory system merits consideration for prion disease transmission and biosafety.
Collapse
Affiliation(s)
- Nathaniel D Denkers
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1619, USA
| | | | | | | |
Collapse
|
110
|
Enhancement of protein misfolding cyclic amplification by using concentrated cellular prion protein source. Biochem Biophys Res Commun 2009; 388:306-10. [PMID: 19664595 DOI: 10.1016/j.bbrc.2009.07.163] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 07/31/2009] [Indexed: 11/22/2022]
Abstract
Protein misfolding cyclic amplification (PMCA) is a cell-free assay mimicking the prion replication process. However, constraints affecting PMCA have not been well-defined. Although cellular prion protein (PrP(C)) is required for prion replication, the influence of PrP(C) abundance on PMCA has not been assessed. Here, we show that PMCA was enhanced by using mouse brain material in which PrP(C) was overexpressed. Tg(MoPrP)4112 mice overexpressing PrP(C) supported more sensitive and efficient PMCA than wild type mice. As brain homogenate of Tg(MoPrP)4112 mice was diluted with PrP(C)-deficient brain material, PMCA became less robust. Our studies suggest that abundance of PrP(C) is a determinant that directs enhancement of PMCA. PMCA established here will contribute to optimizing conditions to enhance PrP(Sc) amplification by using concentrated PrP(C) source and expands the use of this methodology.
Collapse
|
111
|
Nichols TA, Pulford B, Wyckoff AC, Meyerett C, Michel B, Gertig K, Hoover EA, Jewell JE, Telling GC, Zabel MD. Detection of protease-resistant cervid prion protein in water from a CWD-endemic area. Prion 2009; 3:171-83. [PMID: 19823039 DOI: 10.4161/pri.3.3.9819] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Chronic wasting disease (CWD) is the only known transmissible spongiform encephalopathy affecting free-ranging wildlife. Although the exact mode of natural transmission remains unknown, substantial evidence suggests that prions can persist in the environment, implicating components thereof as potential prion reservoirs and transmission vehicles.(1-4) CWD-positive animals may contribute to environmental prion load via decomposing carcasses and biological materials including saliva, blood, urine and feces.(5-7) Sensitivity limitations of conventional assays hamper evaluation of environmental prion loads in soil and water. Here we show the ability of serial protein misfolding cyclic amplification (sPMCA) to amplify a 1.3 x 10(-7) dilution of CWD-infected brain homogenate spiked into water samples, equivalent to approximately 5 x 10(7) protease resistant cervid prion protein (PrP(CWD)) monomers. We also detected PrP(CWD) in one of two environmental water samples from a CWD endemic area collected at a time of increased water runoff from melting winter snow pack, as well as in water samples obtained concurrently from the flocculation stage of water processing by the municipal water treatment facility. Bioassays indicated that the PrP(CWD) detected was below infectious levels. These data demonstrate detection of very low levels of PrP(CWD) in the environment by sPMCA and suggest persistence and accumulation of prions in the environment that may promote CWD transmission.
Collapse
Affiliation(s)
- T A Nichols
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Angers RC, Seward TS, Napier D, Green M, Hoover E, Spraker T, O'Rourke K, Balachandran A, Telling GC. Chronic wasting disease prions in elk antler velvet. Emerg Infect Dis 2009; 15:696-703. [PMID: 19402954 PMCID: PMC2687044 DOI: 10.3201/eid1505.081458] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Residue 226 of cervid prion proteins may be a determinant of CWD pathogenesis. Chronic wasting disease (CWD) is a contagious, fatal prion disease of deer and elk that continues to emerge in new locations. To explore the means by which prions are transmitted with high efficiency among cervids, we examined prion infectivity in the apical skin layer covering the growing antler (antler velvet) by using CWD-susceptible transgenic mice and protein misfolding cyclic amplification. Our finding of prions in antler velvet of CWD-affected elk suggests that this tissue may play a role in disease transmission among cervids. Humans who consume antler velvet as a nutritional supplement are at risk for exposure to prions. The fact that CWD prion incubation times in transgenic mice expressing elk prion protein are consistently more rapid raises the possibility that residue 226, the sole primary structural difference between deer and elk prion protein, may be a major determinant of CWD pathogenesis.
Collapse
Affiliation(s)
- Rachel C Angers
- University of Kentucky Medical Center, Lexington, 40536, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Haley NJ, Seelig DM, Zabel MD, Telling GC, Hoover EA. Detection of CWD prions in urine and saliva of deer by transgenic mouse bioassay. PLoS One 2009; 4:e4848. [PMID: 19293928 PMCID: PMC2654070 DOI: 10.1371/journal.pone.0004848] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2008] [Accepted: 02/03/2009] [Indexed: 11/20/2022] Open
Abstract
Chronic wasting disease (CWD) is a prion disease affecting captive and free-ranging cervids (e.g. deer, elk, and moose). The mechanisms of CWD transmission are poorly understood, though bodily fluids are thought to play an important role. Here we report the presence of infectious prions in the urine and saliva of deer with chronic wasting disease (CWD). Prion infectivity was detected by bioassay of concentrated, dialyzed urine and saliva in transgenic mice expressing the cervid PrP gene (Tg[CerPrP] mice). In addition, PrPCWD was detected in pooled and concentrated urine by protein misfolding cyclic amplification (PMCA). The concentration of abnormal prion protein in bodily fluids was very low, as indicated by: undetectable PrPCWD levels by traditional assays (western blot, ELISA) and prolonged incubation periods and incomplete TSE attack rates in inoculated Tg(CerPrP) mice (373±3days in 2 of 9 urine-inoculated mice and 342±109 days in 8 of 9 saliva-inoculated mice). These findings help extend our understanding of CWD prion shedding and transmission and portend the detection of infectious prions in body fluids in other prion infections.
Collapse
Affiliation(s)
- Nicholas J. Haley
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Davis M. Seelig
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Mark D. Zabel
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Glenn C. Telling
- Department of Molecular Biology and Genetics, University of Kentucky, Lexington, Kentucky, United States of America
| | - Edward A. Hoover
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
114
|
Kurt TD, Telling GC, Zabel MD, Hoover EA. Trans-species amplification of PrP(CWD) and correlation with rigid loop 170N. Virology 2009; 387:235-43. [PMID: 19269662 DOI: 10.1016/j.virol.2009.02.025] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2009] [Revised: 02/11/2009] [Accepted: 02/18/2009] [Indexed: 11/16/2022]
Abstract
Chronic wasting disease (CWD) is an efficiently transmitted spongiform encephalopathy of cervids. Whether CWD could represent a threat to non-cervid species remains speculative. Here we show that brain homogenates from several CWD-susceptible non-cervid species, such as ferrets and hamsters, support amplification of PrP(CWD) by sPMCA, whereas brain homogenates from CWD-resistant species, such as laboratory mice and transgenic mice expressing human PrP(C) [Tg(HuPrP) mice], do not. We also investigated whether several North American species that share the environment with cervids would support amplification of PrP(CWD) by sPMCA. Three native rodent species, including voles and field mice, supported PrP(CWD) amplification, whereas other species (e.g. prairie dog, coyote) did not. Analysis of PrP sequences suggests that an ability to support amplification of PrP(CWD) in trans-species sPMCA is correlated with the presence of asparagine at position 170 of the substrate species PrP. Serial PMCA may offer insights into species barriers to transmission of CWD.
Collapse
Affiliation(s)
- Timothy D Kurt
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 1619 Campus Delivery, Fort Collins, CO 80523, USA
| | | | | | | |
Collapse
|
115
|
Validation of use of rectoanal mucosa-associated lymphoid tissue for immunohistochemical diagnosis of chronic wasting disease in white-tailed deer (Odocoileus virginianus). J Clin Microbiol 2009; 47:1412-7. [PMID: 19261781 DOI: 10.1128/jcm.02209-08] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The examination of rectoanal mucosa-associated lymphoid tissue (RAMALT) biopsy specimens for the diagnosis of transmissible spongiform encephalopathies has been described in sheep, elk, and small numbers of mule and white-tailed deer. Previous sample numbers have been too small to validate examination of this type of tissue as a viable antemortem diagnostic test. In this study, we examined RAMALT collected postmortem from 76 white-tailed deer removed from a farm in Wisconsin known to be affected by chronic wasting disease (CWD) and from 210 free-ranging white-tailed deer harvested from an area in Wisconsin where the overall prevalence of CWD among the deer was approximately 4 to 6%. The results of immunohistochemical (IHC) staining of the RAMALT sections were compared to the results of IHC staining of sections from the brain stem at the convergence of the dorsal motor nucleus of the vagus nerve, sections of the medial retropharyngeal lymph nodes (RLNs), and sections of tonsil (sections of tonsil only from captive animals were tested). The sensitivities of the IHC staining test with RAMALT sections were 81% for the captive animals and 91% for the free-ranging animals. False-negative results were usually associated with early infection, indicated by a low intensity of immunostaining in the obex and/or a polymorphism at PRNP codon 96. While the RLN remains the tissue of choice for use for the diagnosis of CWD in white-tailed deer, the results of the present study further support the use of RAMALTs collected antemortem as an adjunct to testing of tonsil biopsy specimens and surveillance by necropsy for the screening of farmed deer which have been put at risk through environmental exposure or exposure to deer with CWD.
Collapse
|
116
|
|
117
|
De novo generation of a transmissible spongiform encephalopathy by mouse transgenesis. Proc Natl Acad Sci U S A 2008; 106:304-9. [PMID: 19073920 DOI: 10.1073/pnas.0810680105] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Most transmissible spongiform encephalopathies arise either spontaneously or by infection. Mutations of PRNP, which encodes the prion protein, PrP, segregate with phenotypically similar diseases. Here we report that moderate overexpression in transgenic mice of mPrP(170N,174T), a mouse PrP with two point mutations that subtly affect the structure of its globular domain, causes a fully penetrant lethal spongiform encephalopathy with cerebral PrP plaques. This genetic disease was reproduced with 100% attack rate by intracerebral inoculation of brain homogenate to tga20 mice overexpressing WT PrP, and from the latter to WT mice, but not to PrP-deficient mice. Upon successive transmissions, the incubation periods decreased and PrP became more protease-resistant, indicating the presence of a strain barrier that was gradually overcome by repeated passaging. This shows that expression of a subtly altered prion protein, with known 3D structure, efficiently generates a prion disease.
Collapse
|
118
|
Meyerett C, Michel B, Pulford B, Spraker TR, Nichols TA, Johnson T, Kurt T, Hoover EA, Telling GC, Zabel MD. In vitro strain adaptation of CWD prions by serial protein misfolding cyclic amplification. Virology 2008; 382:267-76. [PMID: 18952250 DOI: 10.1016/j.virol.2008.09.023] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 09/08/2008] [Accepted: 09/12/2008] [Indexed: 11/18/2022]
Abstract
We used serial protein misfolding cyclic amplification (sPMCA) to amplify the D10 strain of CWD prions in a linear relationship over two logs of D10 dilutions. The resultant PMCA-amplified D10 induced terminal TSE disease in CWD-susceptible Tg(cerPrP)1536 mice with a survival time approximately 80 days shorter than the original D10 inoculum, similar to that produced by in vivo sub-passage of D10 in Tg(cerPrP)1536 mice. Both in vitro-amplified and mouse-passaged D10 produced brain lesion profiles, glycoform ratios and conformational stabilities significantly different than those produced by the original D10 inoculum in Tg(cerPrP)1536 mice. These findings demonstrate that sPMCA can amplify and adapt prion strains in vitro as effectively and much more quickly than in vivo strain adaptation by mouse passage. Thus sPMCA may represent a powerful tool to assess prion strain adaptation and species barriers in vitro.
Collapse
Affiliation(s)
- Crystal Meyerett
- Department of Microbiology, Immunology, and Pathology, Colorado State University, College of Veterinary Medicine and Biomedical Sciences, Fort Collins, CO 80523, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Saunders SE, Bartelt-Hunt SL, Bartz JC. Prions in the environment: occurrence, fate and mitigation. Prion 2008; 2:162-9. [PMID: 19242120 PMCID: PMC2658766 DOI: 10.4161/pri.2.4.7951] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Accepted: 01/26/2009] [Indexed: 11/19/2022] Open
Abstract
Scrapie and CWD are horizontally transmissible, and the environment likely serves as a stable reservoir of infectious prions, facilitating a sustained incidence of CWD in free-ranging cervid populations and complicating efforts to eliminate disease in captive herds. Prions will enter the environment through mortalities and/or shedding from live hosts. Unfortunately, a sensitive detection method to identify prion contamination in environmental samples has not yet been developed. An environmentally-relevant prion model must be used in experimental studies. Changes in PrP(Sc) structure upon environmental exposure may be as significant as changes in PrP(Sc) quantity, since the structure can directly affect infectivity and disease pathology. Prions strongly bind to soil and remain infectious. Conformational changes upon adsorption, competitive sorption and potential for desorption and transport all warrant further investigation. Mitigation of contaminated carcasses or soil might be accomplished with enzyme treatments or composting in lieu of incineration.
Collapse
Affiliation(s)
- Samuel E Saunders
- Department of Civil Engineering, University of Nebraska-Lincoln, Peter Kiewit Institute, Omaha, Nebraska 68182-0178, USA
| | | | | |
Collapse
|
120
|
Molecular and transmission characteristics of primary-passaged ovine scrapie isolates in conventional and ovine PrP transgenic mice. J Virol 2008; 82:11197-207. [PMID: 18768980 DOI: 10.1128/jvi.01454-08] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A more complete assessment of ovine prion strain diversity will be achieved by complementing biological strain typing in conventional and ovine PrP transgenic mice with a biochemical analysis of the resultant PrPSc. This will provide a correlation between ovine prion strain phenotype and the molecular nature of different PrP conformers associated with particular prion strains. Here, we have compared the molecular and transmission characteristics of ovine ARQ/ARQ and VRQ/VRQ scrapie isolates following primary passage in tg338 (VRQ) and tg59 (ARQ) ovine PrP transgenic mice and the conventional mouse lines C57BL/6 (Prnp(a)), RIII (Prnp(a)), and VM (Prnp(b)). Our data show that these different genotypes of scrapie isolates display similar incubation periods of >350 days in conventional and tg59 mice. Facilitated transmission of sheep scrapie isolates occurred in tg338 mice, with incubation times reduced to 64 days for VRQ/VRQ inocula and to </=210 days for ARQ/ARQ samples. Distinct genotype-specific lesion profiles were seen in the brains of conventional and tg59 mice with prion disease, which was accompanied by the accumulation of more conformationally stable PrPSc, following inoculation with ARQ/ARQ compared to VRQ/VRQ scrapie isolates. In contrast, the lesion profiles, quantities, and stability of PrPSc induced by the same inocula in tg338 mice were more similar than in the other mouse lines. Our data show that primary transmission of different genotypes of ovine prions is associated with the formation of different conformers of PrPSc with distinct molecular properties and provide the basis of a molecular approach to identify the true diversity of ovine prion strains.
Collapse
|
121
|
Saunders SE, Bartz JC, Telling GC, Bartelt-Hunt SL. Environmentally-relevant forms of the prion protein. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008; 42:6573-9. [PMID: 18800532 PMCID: PMC4480922 DOI: 10.1021/es800590k] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Scrapie and chronic wasting disease (CWD) are prion diseases of particular environmental concern as they are horizontally transmissible and can remain infectious after years in the environment. Recent evidence suggests that the N-terminus of PrPSC, the infectious conformation of the prion protein, plays an important role in the mechanism of sorption to soil particles. We hypothesize that, in a prion-infected animal carcass, a portion of the N-terminus of PrPSc could be cleaved by proteinases in the brain at ordinary temperatures. Hamster (HY transmissible mink encephalopathy-infected), transgenic mice (CWD-infected), and elk (CWD-infected) brain homogenates were incubated at 22 and 37 degrees C for up to 1 month and then analyzed by Western blot using N-terminal and middle region monoclonal anti-PrP antibodies. For all three systems, there was a very faint or undetectable N-terminal PrP signal after 35 days at both temperatures, which indicates that full-length PrPSc might be rare in the brain matter of animal carcasses. Future studies on prion-soil interactions should therefore consider N-terminal-degraded PrPSc in addition to the full-length form. Both mouse and elk CWD PrPSc demonstrated greater resistance to degradation than HY TME PrPSc. This indicates that the transgenic mouse-CWD model is a good surrogate for natural CWD prions, but that other rodent prion models might not accurately represent CWD prion fate in the environment.
Collapse
Affiliation(s)
- Samuel E. Saunders
- Department of Civil Engineering, University of Nebraska-Lincoln, Peter Kiewit Institute, Omaha, Nebraska, United States of America
| | - Jason C. Bartz
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, Nebraska, United States of America
| | - Glenn C. Telling
- Department of Microbiology, Immunology and Molecular Genetics, Department of Neurology, Sanders Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
| | - Shannon L. Bartelt-Hunt
- Department of Civil Engineering, University of Nebraska-Lincoln, Peter Kiewit Institute, Omaha, Nebraska, United States of America
| |
Collapse
|
122
|
Green KM, Castilla J, Seward TS, Napier DL, Jewell JE, Soto C, Telling GC. Accelerated high fidelity prion amplification within and across prion species barriers. PLoS Pathog 2008; 4:e1000139. [PMID: 18769716 PMCID: PMC2516356 DOI: 10.1371/journal.ppat.1000139] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Accepted: 08/01/2008] [Indexed: 11/28/2022] Open
Abstract
Experimental obstacles have impeded our ability to study prion transmission within and, more particularly, between species. Here, we used cervid prion protein expressed in brain extracts of transgenic mice, referred to as Tg(CerPrP), as a substrate for in vitro generation of chronic wasting disease (CWD) prions by protein misfolding cyclic amplification (PMCA). Characterization of this infectivity in Tg(CerPrP) mice demonstrated that serial PMCA resulted in the high fidelity amplification of CWD prions with apparently unaltered properties. Using similar methods to amplify mouse RML prions and characterize the resulting novel cervid prions, we show that serial PMCA abrogated a transmission barrier that required several hundred days of adaptation and subsequent stabilization in Tg(CerPrP) mice. While both approaches produced cervid prions with characteristics distinct from CWD, the subtly different properties of the resulting individual prion isolates indicated that adaptation of mouse RML prions generated multiple strains following inter-species transmission. Our studies demonstrate that combined transgenic mouse and PMCA approaches not only expedite intra- and inter-species prion transmission, but also provide a facile means of generating and characterizing novel prion strains.
Collapse
Affiliation(s)
- Kristi M. Green
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky, United States of America
| | - Joaquín Castilla
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Tanya S. Seward
- Sanders Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
| | - Dana L. Napier
- Sanders Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
| | - Jean E. Jewell
- Department of Veterinary Sciences, University of Wyoming, Laramie, Wyoming, United States of America
| | - Claudio Soto
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Glenn C. Telling
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky, United States of America
- Sanders Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Neurology, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
123
|
Schmalzbauer R, Eigenbrod S, Winoto-Morbach S, Xiang W, Schtze S, Bertsch U, Kretzschmar HA. Evidence for an association of prion protein and sphingolipid-mediated signaling. J Neurochem 2008; 106:1459-70. [DOI: 10.1111/j.1471-4159.2008.05498.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
124
|
Perucchini M, Griffin K, Miller MW, Goldmann W. PrP genotypes of free-ranging wapiti (Cervus elaphus nelsoni) with chronic wasting disease. J Gen Virol 2008; 89:1324-1328. [PMID: 18420812 DOI: 10.1099/vir.0.83424-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Variation in PrP prion gene sequence appears to modulate susceptibility to chronic wasting disease (CWD), a naturally occurring prion disease affecting four North American species of the family Cervidae. Wapiti (Cervus elaphus nelsoni) PrP is polymorphic at codon 132 [methionine (M) or leucine (L)]. We genotyped 171 samples, collected between 2002 and 2005 from CWD-infected and uninfected wapiti from three free-ranging populations in Colorado, USA, to study influences of PrP polymorphisms on CWD susceptibility further. Overall genotype frequencies for 124 apparently uninfected animals were 65.3 % MM132, 32.3 % ML132 and 2.4 % LL132; for 47 CWD-infected animals, these frequencies were 70.2 % MM132, 27.7 % ML132 and 2.1 % LL132. Surprisingly, our data revealed that, among recent (approx. 2002--2005) CWD cases detected in free-ranging Colorado wapiti, the three PrP codon 132 genotypes were represented in proportion to their abundance in sampled populations (P> or =0.24) and all three genotypes showed equivalent susceptibility to infection.
Collapse
Affiliation(s)
| | - Karen Griffin
- Wildlife Research Center, Colorado Division of Wildlife, Fort Collins, CO, USA
| | - Michael W Miller
- Wildlife Research Center, Colorado Division of Wildlife, Fort Collins, CO, USA
| | | |
Collapse
|
125
|
Béringue V, Vilotte JL, Laude H. Prion agent diversity and species barrier. Vet Res 2008; 39:47. [PMID: 18519020 DOI: 10.1051/vetres:2008024] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Accepted: 05/30/2008] [Indexed: 11/14/2022] Open
Abstract
Mammalian prions are the infectious agents responsible for transmissible spongiform encephalopathies (TSE), a group of fatal, neurodegenerative diseases, affecting both domestic animals and humans. The most widely accepted view to date is that these agents lack a nucleic acid genome and consist primarily of PrP(Sc), a misfolded, aggregated form of the host-encoded cellular prion protein (PrP(C)) that propagates by autocatalytic conversion and accumulates mainly in the brain. The BSE epizooty, allied with the emergence of its human counterpart, variant CJD, has focused much attention on two characteristics that prions share with conventional infectious agents. First, the existence of multiple prion strains that impose, after inoculation in the same host, specific and stable phenotypic traits such as incubation period, molecular pattern of PrP(Sc) and neuropathology. Prion strains are thought to be enciphered within distinct PrP(Sc) conformers. Second, a transmission barrier exists that restricts the propagation of prions between different species. Here we discuss the possible situations resulting from the confrontation between species barrier and prion strain diversity, the molecular mechanisms involved and the potential of interspecies transmission of animal prions, including recently discovered forms of TSE in ruminants.
Collapse
Affiliation(s)
- Vincent Béringue
- Institut National de la Recherche Agronomique, UR892, Virologie et Immunologie Moléculaires, F-78350 Jouy-en-Josas, France.
| | | | | |
Collapse
|
126
|
Green KM, Browning SR, Seward TS, Jewell JE, Ross DL, Green MA, Williams ES, Hoover EA, Telling GC. The elk PRNP codon 132 polymorphism controls cervid and scrapie prion propagation. J Gen Virol 2008; 89:598-608. [PMID: 18198392 DOI: 10.1099/vir.0.83168-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The elk prion protein gene (PRNP) encodes either methionine (M) or leucine (L) at codon 132, the L132 allele apparently affording protection against chronic wasting disease (CWD). The corresponding human codon 129 polymorphism influences the host range of bovine spongiform encephalopathy (BSE) prions. To fully address the influence of this cervid polymorphism on CWD pathogenesis, we created transgenic (Tg) mice expressing cervid PrPC with L at residue 132, referred to as CerPrPC-L132, and compared the transmissibility of CWD prions from elk of defined PRNP genotypes, namely homozygous M/M or L/L or heterozygous M/L, in these Tg mice with previously described Tg mice expressing CerPrPC-M132, referred to as Tg(CerPrP) mice. While Tg(CerPrP) mice were consistently susceptible to CWD prions from elk of all three genotypes, Tg(CerPrP-L132) mice uniformly failed to develop disease following challenge with CWD prions. In contrast, SSBP/1 sheep scrapie prions transmitted efficiently to both Tg(CerPrP) and Tg(CerPrP-L132) mice. Our findings suggest that the elk 132 polymorphism controls prion susceptibility at the level of prion strain selection and that cervid PrP L132 severely restricts propagation of CWD prions. We speculate that the L132 polymorphism results in less efficient conversion of CerPrPC-L132 by CWD prions, an effect that is overcome by the SSBP/1 strain. Our studies show the accumulation of subclinical levels of CerPrPSc in aged asymptomatic CWD-inoculated Tg(CerPrP-L132) mice and also suggests the establishment of a latent infection state in apparently healthy elk expressing this seemingly protective allele.
Collapse
Affiliation(s)
- Kristi M Green
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, USA
| | - Shawn R Browning
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, USA
| | - Tanya S Seward
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Jean E Jewell
- Department of Veterinary Sciences, University of Wyoming, Laramie, WY, USA
| | - Dana L Ross
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, USA
| | - Michael A Green
- Transgenic Facility, University of Kentucky, Lexington, KY, USA
| | | | - Edward A Hoover
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Glenn C Telling
- Department of Neurology, University of Kentucky, Lexington, KY, USA.,Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, USA.,Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
127
|
Sigurdson CJ. A prion disease of cervids: chronic wasting disease. Vet Res 2008; 39:41. [PMID: 18381058 DOI: 10.1051/vetres:2008018] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Accepted: 03/31/2008] [Indexed: 11/15/2022] Open
Abstract
Chronic wasting disease (CWD) is a prion disease of deer, elk, and moose, initially recognized in Colorado mule deer. The discovery of CWD beyond the borders of Colorado and Wyoming, in Canada and as far east as New York, has led to its emergence as a prion disease of international importance. Epidemiological studies indicate that CWD is horizontally transmitted among free-ranging animals, potentially indirectly by prion-containing secreta or excreta contaminating the environment. Experimental CWD transmission attempts to other wild and domestic mammals and to transgenic mice expressing the prion protein of cattle, sheep, and humans have shed light on CWD species barriers. Transgenic mice expressing the cervid prion protein have proven useful for assessing the genetic influences of Prnp polymorphisms on CWD susceptibility. Accumulating evidence of CWD pathogenesis indicates that the misfolded prion protein or prion infectivity seems to be widely disseminated in many nonneural organs and in blood. This review highlights contemporary research findings in this prion disease of free-ranging wildlife.
Collapse
Affiliation(s)
- Christina J Sigurdson
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093-0612, USA.
| |
Collapse
|
128
|
Experimental chronic wasting disease (CWD) in the ferret. J Comp Pathol 2008; 138:189-96. [PMID: 18387626 DOI: 10.1016/j.jcpa.2008.01.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Accepted: 01/16/2008] [Indexed: 11/23/2022]
Abstract
Chronic wasting disease (CWD), a prion disease of North American deer, elk and moose, affects both free-ranging and captive cervids. The potential host range for CWD remains uncertain. The susceptibility of the ferret to CWD was examined experimentally by administering infectious brain material by the intracerebral (IC) or oral (PO) route. Between 15 and 20 months after IC inoculation, ferrets developed neurological signs consistent with prion disease, including polyphagia, somnolence, piloerection, lordosis and ataxia. Upon first sub-passage of ferret-adapted CWD, the incubation period decreased to 5 months. Spongiform change in the neuropil was most marked in the basal ganglia, thalamus, midbrain and pons. The deposition of PrP(CWD) was granular and was occasionally closely associated with, or localized within, neurons. There were no plaque-like or perivascular PrP aggregates as seen in CWD-infected cervids. In western blots, the PrP(CWD) glycoform profile resembled that of CWD in deer, typified by a dominant diglycosylated glycoform. CWD disease in ferrets followed IC but not PO inoculation, even after 31 months of observation. These findings indicate that CWD-infected ferrets share microscopical and biochemical features of CWD in cervids, but appear to be relatively resistant to oral infection by primary CWD inoculum of deer origin.
Collapse
|
129
|
Groschup MH, Buschmann A. Rodent models for prion diseases. Vet Res 2008; 39:32. [PMID: 18284909 DOI: 10.1051/vetres:2008008] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2007] [Accepted: 01/15/2008] [Indexed: 11/14/2022] Open
Abstract
Until today most prion strains can only be propagated and the infectivity content assayed by experimentally challenging conventional or transgenic animals. Robust cell culture systems are not available for any of the natural and only for a few of the experimental prion strains. Moreover, the pathogenesis of different transmissible spongiform encephalopathies (TSE) can be analysed systematically by using experimentally infected animals. While, in the beginning, animals belonging to the natural host species were used, more and more rodent model species have been established, mostly due to practical reasons. Nowadays, most of these experiments are performed using highly susceptible transgenic mouse lines expressing cellular prion proteins, PrP, from a variety of species like cattle, sheep, goat, cervidae, elk, hamster, mouse, mink, pig, and man. In addition, transgenic mice carrying specific mutations or polymorphisms have helped to understand the molecular pathomechanisms of prion diseases. Transgenic mouse models have been utilised to investigate the physiological role of PrP(C), molecular aspects of species barrier effects, the cell specificity of the prion propagation, the role of the PrP glycosylation, the mechanisms of the prion spread, the neuropathological roles of PrP(C) and of its abnormal isoform PrP(D) (D for disease) as well as the function of PrP Doppel. Transgenic mouse models have also been used for mapping of PrP regions involved in or required for the PrP conversion and prion replication as well as for modelling of familial forms of human prion diseases.
Collapse
Affiliation(s)
- Martin H Groschup
- Friedrich-Loeffler-Institut , Institute for Novel and Emerging Infectious Diseases, Südufer 10, 17493 Greifswald - Insel Riems, Germany.
| | | |
Collapse
|
130
|
Abstract
Prions represent a new biological paradigm of protein-mediated information transfer. In mammals, prions are the cause of fatal, transmissible neurodegenerative diseases, often referred to as transmissible spongiform encephalopathies. Many unresolved issues remain, including the exact molecular nature of the prion, the detailed mechanism of prion propagation, and the mechanism by which prion diseases can be both genetic and infectious. In addition, we know little about the mechanism by which neurons degenerate during prion diseases. Tied to this, the physiological function of the normal form of the prion protein remains unclear, and it is uncertain whether loss of this function contributes to prion pathogenesis. The factors governing the transmission of prions between species remain unclear, in particular the means by which prion strains and PrP primary structure interact to affect interspecies prion transmission. Despite all these unknowns, dramatic advances in our understanding of prions have occurred because of their transmissibility to experimental animals and the development of transgenic mouse models has done much to further our understanding about various aspects of prion biology. In this chapter, I review recent advances in our understanding of prion biology that derive from this powerful and informative approach.
Collapse
Affiliation(s)
- Glenn C Telling
- Department of Microbiology, Immunology and Molecular Genetics, Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
131
|
Abstract
A short review of the results of molecular modeling of prion disease is presented in this chapter. According to the "one-protein theory" proposed by Prusiner, prion proteins are misfolded naturally occurring proteins, which, on interaction with correctly folded proteins may induce misfolding and propagate the disease, resulting in insoluble amyloid aggregates in cells of affected specimens. Because of experimental difficulties in measurements of origin and growth of insoluble amyloid aggregations in cells, theoretical modeling is often the only one source of information regarding the molecular mechanism of the disease. Replica exchange Monte Carlo simulations presented in this chapter indicate that proteins in the native state, N, on interaction with an energetically higher structure, R, can change their conformation into R and form a dimer, R(2). The addition of another protein in the N state to R(2) may lead to spontaneous formation of a trimer, R(3). These results reveal the molecular basis for a model of prion disease propagation or conformational diseases in general.
Collapse
|
132
|
Kurt TD, Perrott MR, Wilusz CJ, Wilusz J, Supattapone S, Telling GC, Zabel MD, Hoover EA. Efficient in vitro amplification of chronic wasting disease PrPRES. J Virol 2007; 81:9605-8. [PMID: 17553879 PMCID: PMC1951436 DOI: 10.1128/jvi.00635-07] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2007] [Accepted: 05/30/2007] [Indexed: 11/20/2022] Open
Abstract
Chronic wasting disease (CWD) of cervids is associated with conversion of the normal cervid prion protein, PrP(C), to a protease-resistant conformer, PrP(CWD). Here we report the use of both nondenaturing amplification and protein-misfolding cyclic amplification (PMCA) to amplify PrP(CWD) in vitro. Normal brains from deer, transgenic mice expressing cervid PrP(C) [Tg(cerPrP)1536 mice], and ferrets supported amplification. PMCA using normal Tg(cerPrP)1536 brains as the PrP(C) substrate produced >6.5 x 10(9)-fold amplification after six rounds. Highly efficient in vitro amplification of PrP(CWD) is a significant step toward detection of PrP(CWD) in the body fluids or excreta of CWD-susceptible species.
Collapse
Affiliation(s)
- Timothy D Kurt
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | | | | | | | | | | |
Collapse
|
133
|
Trifilo MJ, Ying G, Teng C, Oldstone MB. Chronic wasting disease of deer and elk in transgenic mice: oral transmission and pathobiology. Virology 2007; 365:136-43. [PMID: 17451773 PMCID: PMC1950321 DOI: 10.1016/j.virol.2007.03.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Revised: 02/21/2007] [Accepted: 03/15/2007] [Indexed: 01/05/2023]
Abstract
To study the pathogenesis of chronic wasting disease (CWD) in deer and elk, transgenic (tg) mice were generated that expressed the prion protein (PrP) of deer containing a glycine at amino acid (aa) 96 and a serine at aa 225 under transcriptional control of the murine PrP promoter. This construct was introduced into murine PrP-deficient mice. As anticipated, neither non-tg mice nor PrP ko mice were susceptible when inoculated intracerebrally (i.c.) or orally with CWD brain material (scrapie pool from six mule deer) and followed for 600+ days (dpi). Deer PrP tg mice were not susceptible to i.c. inoculation with murine scrapie. In contrast, a fatal neurologic disease occurred accompanied by conversion of deer PrPsen to PrPres by western blot and immunohistochemistry after either i.c. inoculation with CWD brain into two lines of tg mice studied (312+32 dpi [mean+2 standard errors] for the heterozygous tg line 33, 275+46 dpi for the heterozygous tg line 39 and 210 dpi for the homozygous tg line 33) or after oral inoculation (381+55 dpi for the homozygous tg line 33 and 370+26 dpi for the homozygous tg line 39). Kinetically, following oral inoculation of CWD brain, PrPres was observed by day 200 when mice were clinically healthy in the posterior surface of the dorsum of the tongue primarily in serous and mucous glands, in the intestines, in large cells at the splenic marginal zone that anatomically resembled follicular dendritic cells and macrophages and in the olfactory bulb and brain stem but did not occur in the cerebellum, cerebral cortex or hippocampus or in hearts, lungs and livers of infected mice. After 350 days when mice become clinically ill the cerebellum, cerebral cortex and hippocampus became positive for PrPres and displayed massive spongiosis, neuronal drop out, gliosis and florid plaques.
Collapse
Affiliation(s)
- Matthew J. Trifilo
- Viral-Immunobiology Laboratory, Molecular and Integrative Neurosciences Department, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ge Ying
- Viral-Immunobiology Laboratory, Molecular and Integrative Neurosciences Department, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Chao Teng
- Viral-Immunobiology Laboratory, Molecular and Integrative Neurosciences Department, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Michael B.A. Oldstone
- Viral-Immunobiology Laboratory, Molecular and Integrative Neurosciences Department, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
- Department of Infectology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
- *Corresponding author. Fax: 858-784-9981. E-mail address: (M.B.A. Oldstone)
| |
Collapse
|
134
|
Abstract
The resemblance between the discoveries that DNA is the basis of heredity and that prions are infectious proteins is remarkable. Though four decades separated these two discoveries, the biochemical methodologies and scientific philosophies that were employed are surprisingly similar. In both cases, bioassays available at the time that the projects were initiated proved to be inadequate to support purification studies. Improved bioassays allowed the transforming principle (TP) to be purified from pneumococci and prions from scrapie-infected hamster brains. Publications describing TP as composed of DNA prompted some scientists to contend that undetected proteins must contaminate TP enriched fractions. The simplicity of DNA was thought to prevent it from encoding genetic information. By the time prions were discovered, the genomes of all infectious pathogens including viruses, bacteria, fungi and parasites had been shown to be comprised of nucleic acids and so an antithetical refrain became widely echoed: DNA or RNA molecules must be hiding among the proteins of prions. Finding the unexpected and being asked to demonstrate unequivocally the absence of a possible contaminant represent uncanny parallels between the discoveries that DNA encodes the genotype and that prions are infectious proteins.
Collapse
Affiliation(s)
- Stanley B Prusiner
- Institute for Neurodegenerative Diseases, Department of Neurology, University of California, San Francisco, California 94143, USA
| | | |
Collapse
|
135
|
Meade-White K, Race B, Trifilo M, Bossers A, Favara C, Lacasse R, Miller M, Williams E, Oldstone M, Race R, Chesebro B. Resistance to chronic wasting disease in transgenic mice expressing a naturally occurring allelic variant of deer prion protein. J Virol 2007; 81:4533-9. [PMID: 17314157 PMCID: PMC1900179 DOI: 10.1128/jvi.02762-06] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prion protein (PrP) is a required factor for susceptibility to transmissible spongiform encephalopathy or prion diseases. In transgenic mice, expression of prion protein (PrP) from another species often confers susceptibility to prion disease from that donor species. For example, expression of deer or elk PrP in transgenic mice has induced susceptibility to chronic wasting disease (CWD), the prion disease of cervids. In the current experiments, transgenic mice expressing two naturally occurring allelic variants of deer PrP with either glycine (G) or serine (S) at residue 96 were found to differ in susceptibility to CWD infection. G96 mice were highly susceptible to infection, and disease appeared starting as early as 160 days postinfection. In contrast, S96 mice showed no evidence of disease or generation of disease-associated protease-resistant PrP (PrPres) over a 600-day period. At the time of clinical disease, G96 mice showed typical vacuolar pathology and deposition of PrPres in many brain regions, and in some individuals, extensive neuronal loss and apoptosis were noted in the hippocampus and cerebellum. Extraneural accumulation of PrPres was also noted in spleen and intestinal tissue of clinically ill G96 mice. These results demonstrate the importance of deer PrP polymorphisms in susceptibility to CWD infection. Furthermore, this deer PrP transgenic model is the first to demonstrate extraneural accumulation of PrPres in spleen and intestinal tissue and thus may prove useful in studies of CWD pathogenesis and transmission by oral or other natural routes of infection.
Collapse
Affiliation(s)
- Kimberly Meade-White
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases/NIH, 903 South Fourth Street, Hamilton, MT 59840, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Manson JC, Cancellotti E, Hart P, Bishop MT, Barron RM. The transmissible spongiform encephalopathies: emerging and declining epidemics. Biochem Soc Trans 2007; 34:1155-8. [PMID: 17073774 DOI: 10.1042/bst0341155] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
TSEs (transmissible spongiform encephalopathies) are neurodegenerative diseases of various mammalian species, the best known of which include BSE (bovine spongiform encephalopathies) in cattle, CJD (Creutzfeldt-Jakob disease) in humans, scrapie in sheep and CWD (chronic wasting disease) in deer. This review examines the emergence of various TSE strains and their transmission, and discusses disease surveillance and control.
Collapse
Affiliation(s)
- J C Manson
- Institute for Animal Health, Neuropathogenesis Unit, Ogston Building, West Mains Road, Edinburgh EH9 3JF, Scotland, UK.
| | | | | | | | | |
Collapse
|
137
|
Raymond GJ, Raymond LD, Meade-White KD, Hughson AG, Favara C, Gardner D, Williams ES, Miller MW, Race RE, Caughey B. Transmission and adaptation of chronic wasting disease to hamsters and transgenic mice: evidence for strains. J Virol 2007; 81:4305-14. [PMID: 17287284 PMCID: PMC1866158 DOI: 10.1128/jvi.02474-06] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In vitro screening using the cell-free prion protein conversion system indicated that certain rodents may be susceptible to chronic wasting disease (CWD). Therefore, CWD isolates from mule deer, white-tailed deer, and elk were inoculated intracerebrally into various rodent species to assess the rodents' susceptibility and to develop new rodent models of CWD. The species inoculated were Syrian golden, Djungarian, Chinese, Siberian, and Armenian hamsters, transgenic mice expressing the Syrian golden hamster prion protein, and RML Swiss and C57BL10 wild-type mice. The transgenic mice and the Syrian golden, Chinese, Siberian, and Armenian hamsters had limited susceptibility to certain of the CWD inocula, as evidenced by incomplete attack rates and long incubation periods. For serial passages of CWD isolates in Syrian golden hamsters, incubation periods rapidly stabilized, with isolates having either short (85 to 89 days) or long (408 to 544 days) mean incubation periods and distinct neuropathological patterns. In contrast, wild-type mouse strains and Djungarian hamsters were not susceptible to CWD. These results show that CWD can be transmitted and adapted to some species of rodents and suggest that the cervid-derived CWD inocula may have contained or diverged into at least two distinct transmissible spongiform encephalopathy strains.
Collapse
Affiliation(s)
- Gregory J Raymond
- Laboratory of Persistent Viral Diseases, Rocky Mountain Veterinary Branch, NIAID, NIH, Rocky Mountain Labs, 903 S. 4th St., Hamilton, MT 59840, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
LaFauci G, Carp RI, Meeker HC, Ye X, Kim JI, Natelli M, Cedeno M, Petersen RB, Kascsak R, Rubenstein R. Passage of chronic wasting disease prion into transgenic mice expressing Rocky Mountain elk (Cervus elaphus nelsoni) PrPC. J Gen Virol 2006; 87:3773-3780. [PMID: 17098997 DOI: 10.1099/vir.0.82137-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Chronic wasting disease (CWD) of elk (Cervus elaphus nelsoni) and mule deer (Odocoileus hemionus) is one of three naturally occurring forms of prion disease, the others being Creutzfeldt–Jakob disease in humans and scrapie in sheep. In the last few decades, CWD has spread among captive and free-ranging cervids in 13 US states, two Canadian provinces and recently in Korea. The origin of the CWD agent(s) in cervids is not known. This study describes the development of a transgenic mouse line (TgElk) homozygous for a transgene array encoding the elk prion protein (PrPC) and its use in propagating and simulating CWD in mice. Intracerebral injection of one mule deer and three elk CWD isolates into TgElk mice led to disease with incubation periods of 127 and 95 days, respectively. Upon secondary passage, the incubation time was reduced to 108 and 90 days, respectively. Upon passage into TgElk mice, CWD prions (PrPSc) maintained the characteristic Western blot profiles seen in CWD-affected mule deer and elk and produced histopathological modifications consistent with those observed in the natural disease. The short incubation time observed on passage from cervid to mouse with both mule deer and elk CWD brain homogenates and the demonstrated capacity of the animals to propagate (mouse to mouse) CWD agents make the TgElk line a valuable model to study CWD agents in cervid populations. In addition, these results with this new transgenic line suggest the intriguing hypothesis that there could be more than one strain of CWD agent in cervids.
Collapse
Affiliation(s)
- Giuseppe LaFauci
- New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA
| | - Richard I Carp
- New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA
| | - Harry C Meeker
- New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA
| | - Xuemin Ye
- New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA
| | - Jae I Kim
- New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA
| | - Michael Natelli
- New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA
| | - Marisol Cedeno
- New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA
| | - Robert B Petersen
- Case Western Reserve University - Institute of Pathology, 2085 Adelbert Road, Cleveland, OH 44120, USA
| | - Richard Kascsak
- New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA
| | - Richard Rubenstein
- New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA
| |
Collapse
|
139
|
Abstract
Prions cause fatal and transmissible neurodegenerative disease. These etiological infectious agents are formed in greater part from a misfolded cell-surface protein called PrP(C). Several mammalian species are affected by the diseases, and in the case of "mad cow disease" (BSE) the agent has a tropism for humans, with negative consequences for agribusiness and public health. Unfortunately, the known universe of prion diseases is expanding. At least four novel prion diseases--including human diseases variant Creutzfeldt-Jakob disease (vCJD) and sporadic fatal insomnia (sFI), bovine amyloidotic spongiform encephalopathy (BASE), and Nor98 of sheep--have been identified in the last ten years, and chronic wasting disease (CWD) of North American deer (Odocoileus Specis) and Rocky Mountain elk (Cervus elaphus nelsoni) is undergoing a dramatic spread across North America. While amplification (BSE) and dissemination (CWD, commercial sourcing of cervids from the wild and movement of farmed elk) can be attributed to human activity, the origins of emergent prion diseases cannot always be laid at the door of humankind. Instead, the continued appearance of new outbreaks in the form of "sporadic" disease may be an inevitable outcome in a situation where the replicating pathogen is host-encoded.
Collapse
Affiliation(s)
- Joel C Watts
- Centre for Research in Neurodegenerative Diseases and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
140
|
Tamgüney G, Giles K, Bouzamondo-Bernstein E, Bosque PJ, Miller MW, Safar J, DeArmond SJ, Prusiner SB. Transmission of elk and deer prions to transgenic mice. J Virol 2006; 80:9104-14. [PMID: 16940522 PMCID: PMC1563923 DOI: 10.1128/jvi.00098-06] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chronic wasting disease (CWD) is a fatal prion disease in deer and elk. Unique among the prion diseases, it is transmitted among captive and free-ranging animals. To facilitate studies of the biology of CWD prions, we generated five lines of transgenic (Tg) mice expressing prion protein (PrP) from Rocky Mountain elk (Cervus elaphus nelsoni), denoted Tg(ElkPrP), and two lines of Tg mice expressing PrP common to white-tailed deer (Odocoileus virginianus) and mule deer (Odocoileus hemionus), denoted Tg(DePrP). None of the Tg(ElkPrP) or Tg(DePrP) mice exhibited spontaneous neurologic dysfunction at more than 600 days of age. Brain samples from CWD-positive elk, white-tailed deer, and mule deer produced disease in Tg(ElkPrP) mice between 180 and 200 days after inoculation and in Tg(DePrP) mice between 300 and 400 days. One of eight cervid brain inocula transmitted disease to Tg(MoPrP)4053 mice overexpressing wild-type mouse PrP-A in approximately 540 days. Neuropathologic analysis revealed abundant PrP amyloid plaques in the brains of ill mice. Brain homogenates from symptomatic Tg(ElkPrP) mice produced disease in 120 to 190 days in Tg(ElkPrP) mice. In contrast to the Tg(ElkPrP) and Tg(DePrP) mice, Tg mice overexpressing human, bovine, or ovine PrP did not develop prion disease after inoculation with CWD prions from among nine different isolates after >500 days. These findings suggest that CWD prions from elk, mule deer, and white-tailed deer can be readily transmitted among these three cervid species.
Collapse
Affiliation(s)
- Gültekin Tamgüney
- Institute for Neurodegenerative Diseases, University of California-San Francisco, 513 Parnassus Ave., San Francisco, CA 94143-0518, USA
| | | | | | | | | | | | | | | |
Collapse
|
141
|
Sigurdson CJ, Aguzzi A. Chronic wasting disease. Biochim Biophys Acta Mol Basis Dis 2006; 1772:610-8. [PMID: 17223321 PMCID: PMC2680674 DOI: 10.1016/j.bbadis.2006.10.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 09/06/2006] [Accepted: 10/12/2006] [Indexed: 11/28/2022]
Abstract
Until recently, chronic wasting disease of cervids, the only prion disease affecting wildlife, was believed to be geographically concentrated to Colorado and Wyoming within the United States. However, increased surveillance has unveiled several additional pockets of CWD-infected deer and elk in 12 additional states and 2 Canadian provinces. Deer and elk with CWD have extensive aggregates of PrP(Sc) not only in the central nervous system, but also in peripheral lymphoid tissues, skeletal muscle, and other organs, perhaps influencing prion shedding. Indeed, CWD is transmitted efficiently among animals by horizontal routes, although the mechanism of spread is unknown. Genetic polymorphisms in the Prnp gene may affect CWD susceptibility, particularly at codon 225 (S/F) in deer and codon 132 (M/L) in elk. Since CWD infects free-ranging animals and is efficiently spread, disease management will be a challenge.
Collapse
Affiliation(s)
- Christina J Sigurdson
- Universitäts Spital Zürich, Institute of Neuropathology, Department of Pathology, Schmelzbergstrasse 12, Zürich, Switzerland.
| | | |
Collapse
|
142
|
Mathiason CK, Powers JG, Dahmes SJ, Osborn DA, Miller KV, Warren RJ, Mason GL, Hays SA, Hayes-Klug J, Seelig DM, Wild MA, Wolfe LL, Spraker TR, Miller MW, Sigurdson CJ, Telling GC, Hoover EA. Infectious prions in the saliva and blood of deer with chronic wasting disease. Science 2006; 314:133-6. [PMID: 17023660 DOI: 10.1126/science.1132661] [Citation(s) in RCA: 350] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
A critical concern in the transmission of prion diseases, including chronic wasting disease (CWD) of cervids, is the potential presence of prions in body fluids. To address this issue directly, we exposed cohorts of CWD-naïve deer to saliva, blood, or urine and feces from CWD-positive deer. We found infectious prions capable of transmitting CWD in saliva (by the oral route) and in blood (by transfusion). The results help to explain the facile transmission of CWD among cervids and prompt caution concerning contact with body fluids in prion infections.
Collapse
Affiliation(s)
- Candace K Mathiason
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biological Sciences (CVMBS), Colorado State University (CSU), Fort Collins, CO 80523, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Sigurdson CJ, Manco G, Schwarz P, Liberski P, Hoover EA, Hornemann S, Polymenidou M, Miller MW, Glatzel M, Aguzzi A. Strain fidelity of chronic wasting disease upon murine adaptation. J Virol 2006; 80:12303-11. [PMID: 17020952 PMCID: PMC1676299 DOI: 10.1128/jvi.01120-06] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chronic wasting disease (CWD), a prion disease of deer and elk, is highly prevalent in some regions of North America. The establishment of mouse-adapted CWD prions has proven difficult due to the strong species barrier between mice and deer. Here we report the efficient transmission of CWD to transgenic mice overexpressing murine PrP. All mice developed disease 500 +/- 62 days after intracerebral CWD challenge. The incubation period decreased to 228 +/- 103 days on secondary passage and to 162 +/- 6 days on tertiary passage. Mice developed very large, radially structured cerebral amyloid plaques similar to those of CWD-infected deer and elk. PrP(Sc) was detected in spleen, indicating that murine CWD was lymphotropic. PrP(Sc) glycoform profiles maintained a predominantly diglycosylated PrP pattern, as seen with CWD in deer and elk, across all passages. Therefore, all pathological, biochemical, and histological strain characteristics of CWD appear to persist upon repetitive serial passage through mice. These findings indicate that the salient strain-specific properties of CWD are encoded by agent-intrinsic components rather than by host factors.
Collapse
Affiliation(s)
- Christina J Sigurdson
- UniversitätsSpital Zürich, Institute of Neuropathology, Department of Pathology, Schmelzbergstrasse 12, CH-8091 Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Gavier-Widén D, Stack MJ, Baron T, Balachandran A, Simmons M. Diagnosis of transmissible spongiform encephalopathies in animals: a review. J Vet Diagn Invest 2006; 17:509-27. [PMID: 16475509 DOI: 10.1177/104063870501700601] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Transmissible spongiform encephalopathies (TSEs) in animals include, among others, bovine spongiform encephalopathy (BSE), scrapie, chronic wasting disease, and atypical forms of prion diseases. Diagnosis of TSEs is based on identification of characteristic lesions or on detection of the abnormal prion proteins in tissues, often by use of their partial proteinase K resistance property. Correctly sampling of target tissues is of utmost importance as this has a considerable effect on test sensitivity. Most of the rapid or screening tests are based on ELISA or Western immunoblot (WB) analysis, and many are officially approved. Confirmatory testing is normally performed by use of histologic examination, immunohistochemical analysis, certain WB protocols, or detection of prion fibrils by use of electron microscopy (scrapie-associated fibril). The discriminatory methods for diagnostic use are mostly based on WB technology and provide initial identification of the prion strain, particularly for differentiation of BSE from scrapie in small ruminants. Definitive prion strain characterization is performed by use of bioassays, usually in mice. A burgeoning number of transgenic mice have been developed for TSE studies. Development of new tests with higher sensitivity and of more reliable diagnostic applications for live animals tested for food safety reasons is a rapidly developing field. Ultimately, the choice of a test for TSE diagnosis depends on the rationale for the testing.
Collapse
|
145
|
Kong Q, Huang S, Zou W, Vanegas D, Wang M, Wu D, Yuan J, Zheng M, Bai H, Deng H, Chen K, Jenny AL, O'Rourke K, Belay ED, Schonberger LB, Petersen RB, Sy MS, Chen SG, Gambetti P. Chronic wasting disease of elk: transmissibility to humans examined by transgenic mouse models. J Neurosci 2006; 25:7944-9. [PMID: 16135751 PMCID: PMC6725448 DOI: 10.1523/jneurosci.2467-05.2005] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chronic wasting disease (CWD), a prion disease affecting free-ranging and captive cervids (deer and elk), is widespread in the United States and parts of Canada. The large cervid population, the popularity of venison consumption, and the apparent spread of the CWD epidemic are likely resulting in increased human exposure to CWD in the United States. Whether CWD is transmissible to humans, as has been shown for bovine spongiform encephalopathy (the prion disease of cattle), is unknown. We generated transgenic mice expressing the elk or human prion protein (PrP) in a PrP-null background. After intracerebral inoculation with elk CWD prion, two lines of "humanized" transgenic mice that are susceptible to human prions failed to develop the hallmarks of prion diseases after >657 and >756 d, respectively, whereas the "cervidized" transgenic mice became infected after 118-142 d. These data indicate that there is a substantial species barrier for transmission of elk CWD to humans.
Collapse
Affiliation(s)
- Qingzhong Kong
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Raymond GJ, Olsen EA, Lee KS, Raymond LD, Bryant PK, Baron GS, Caughey WS, Kocisko DA, McHolland LE, Favara C, Langeveld JPM, van Zijderveld FG, Mayer RT, Miller MW, Williams ES, Caughey B. Inhibition of protease-resistant prion protein formation in a transformed deer cell line infected with chronic wasting disease. J Virol 2006; 80:596-604. [PMID: 16378962 PMCID: PMC1346862 DOI: 10.1128/jvi.80.2.596-604.2006] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chronic wasting disease (CWD) is an emerging transmissible spongiform encephalopathy (prion disease) of North American cervids, i.e., mule deer, white-tailed deer, and elk (wapiti). To facilitate in vitro studies of CWD, we have developed a transformed deer cell line that is persistently infected with CWD. Primary cultures derived from uninfected mule deer brain tissue were transformed by transfection with a plasmid containing the simian virus 40 genome. A transformed cell line (MDB) was exposed to microsomes prepared from the brainstem of a CWD-affected mule deer. CWD-associated, protease-resistant prion protein (PrP(CWD)) was used as an indicator of CWD infection. Although no PrP(CWD) was detected in any of these cultures after two passes, dilution cloning of cells yielded one PrP(CWD)-positive clone out of 51. This clone, designated MDB(CWD), has maintained stable PrP(CWD) production through 32 serial passes thus far. A second round of dilution cloning yielded 20 PrP(CWD)-positive subclones out of 30, one of which was designated MDB(CWD2). The MDB(CWD2) cell line was positive for fibronectin and negative for microtubule-associated protein 2 (a neuronal marker) and glial fibrillary acidic protein (an activated astrocyte marker), consistent with derivation from brain fibroblasts (e.g., meningeal fibroblasts). Two inhibitors of rodent scrapie protease-resistant PrP accumulation, pentosan polysulfate and a porphyrin compound, indium (III) meso-tetra(4-sulfonatophenyl)porphine chloride, potently blocked PrP(CWD) accumulation in MDB(CWD) cells. This demonstrates the utility of these cells in a rapid in vitro screening assay for PrP(CWD) inhibitors and suggests that these compounds have potential to be active against CWD in vivo.
Collapse
Affiliation(s)
- Gregory J Raymond
- Laboratory of Persistent Viral Diseases, NIAID, NIH, Rocky Mountain Labs, 903 S. 4th St., Hamilton, MT 59840, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Angers RC, Browning SR, Seward TS, Sigurdson CJ, Miller MW, Hoover EA, Telling GC. Prions in skeletal muscles of deer with chronic wasting disease. Science 2006; 311:1117. [PMID: 16439622 DOI: 10.1126/science.1122864] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The emergence of chronic wasting disease (CWD) in deer and elk in an increasingly wide geographic area, as well as the interspecies transmission of bovine spongiform encephalopathy to humans in the form of variant Creutzfeldt Jakob disease, have raised concerns about the zoonotic potential of CWD. Because meat consumption is the most likely means of exposure, it is important to determine whether skeletal muscle of diseased cervids contains prion infectivity. Here bioassays in transgenic mice expressing cervid prion protein revealed the presence of infectious prions in skeletal muscles of CWD-infected deer, demonstrating that humans consuming or handling meat from CWD-infected deer are at risk to prion exposure.
Collapse
Affiliation(s)
- Rachel C Angers
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | | | | | | | |
Collapse
|
148
|
Abstract
Chronic wasting disease (CWD) is a unique transmissible spongiform encephalopathy (TSE) of mule deer (Odocoileus hemionus), white-tailed deer (O. virginianus), and Rocky Mountain elk (Cervus elaphus nelsoni). The natural history of CWD is incompletely understood, but it differs from scrapie and bovine spongiform encephalopathy (BSE) by virtue of its occurrence in nondomestic and free-ranging species. CWD has many features in common with scrapie, including early widespread distribution of disease-associated prion protein (PrP(d)) in lymphoid tissues, with later involvement of central nervous system (CNS) and peripheral tissues. This distribution likely contributes to apparent efficiency of horizontal transmission and, in this, is similar to scrapie and differs from BSE. Clinical features and lesions of CWD are qualitatively similar to the other animal TSEs. Microscopically, marked spongiform lesions occur in the central nervous system (CNS) after a prolonged incubation period and variable course of clinical disease. During incubation, PrP(d) can be identified in tissues by antibody-based detection systems. Although CWD can be transmitted by intracerebral inoculation to cattle, sheep, and goats, ongoing studies have not demonstrated that domestic livestock are susceptible via oral exposure, the presumed natural route of exposure to TSEs. Surveillance efforts for CWD in captive and free-ranging cervids will continue in concert with similar activities for scrapie and BSE. Eradication of CWD in farmed cervids is the goal of state, federal, and industry programs, but eradication of CWD from free-ranging populations of cervids is unlikely with currently available management techniques.
Collapse
Affiliation(s)
- E S Williams
- Department of Veterinary Sciences, University of Wtoming, Laramie, USA
| |
Collapse
|