101
|
Chen X, Liu S, Goraya MU, Maarouf M, Huang S, Chen JL. Host Immune Response to Influenza A Virus Infection. Front Immunol 2018; 9:320. [PMID: 29556226 PMCID: PMC5845129 DOI: 10.3389/fimmu.2018.00320] [Citation(s) in RCA: 294] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 02/05/2018] [Indexed: 12/25/2022] Open
Abstract
Influenza A viruses (IAVs) are contagious pathogens responsible for severe respiratory infection in humans and animals worldwide. Upon detection of IAV infection, host immune system aims to defend against and clear the viral infection. Innate immune system is comprised of physical barriers (mucus and collectins), various phagocytic cells, group of cytokines, interferons (IFNs), and IFN-stimulated genes, which provide first line of defense against IAV infection. The adaptive immunity is mediated by B cells and T cells, characterized with antigen-specific memory cells, capturing and neutralizing the pathogen. The humoral immune response functions through hemagglutinin-specific circulating antibodies to neutralize IAV. In addition, antibodies can bind to the surface of infected cells and induce antibody-dependent cell-mediated cytotoxicity or complement activation. Although there are neutralizing antibodies against the virus, cellular immunity also plays a crucial role in the fight against IAVs. On the other hand, IAVs have developed multiple strategies to escape from host immune surveillance for successful replication. In this review, we discuss how immune system, especially innate immune system and critical molecules are involved in the antiviral defense against IAVs. In addition, we highlight how IAVs antagonize different immune responses to achieve a successful infection.
Collapse
Affiliation(s)
- Xiaoyong Chen
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shasha Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Mohsan Ullah Goraya
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mohamed Maarouf
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Ji-Long Chen
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| |
Collapse
|
102
|
Egarnes B, Gosselin J. Contribution of Regulatory T Cells in Nucleotide-Binding Oligomerization Domain 2 Response to Influenza Virus Infection. Front Immunol 2018; 9:132. [PMID: 29445379 PMCID: PMC5797787 DOI: 10.3389/fimmu.2018.00132] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/16/2018] [Indexed: 01/26/2023] Open
Abstract
Influenza A virus (IAV) is recognized to cause severe pulmonary illnesses in humans, particularly in elderly and children. One of the features associated with IAV infection is an excessive lung inflammation due to an uncontrolled immune response. The nucleotide-binding oligomerization domain 2 (NOD2) receptor is known to recognize ssRNA viruses such as IAV, but its role in the inflammatory process during viral infections remains to be clarified. In a previous report, we have shown that activation of NOD2 with muramyl dipeptide (MDP) significantly reduces both viral loads and lung inflammation and also improves pulmonary function during IAV infection. These findings prompted us to further investigate whether NOD2 receptor may contribute to regulate inflammation during viral infection. In the present study, we show that administration of MDP to mice infected with IAV stimulates the migration of regulatory T (Treg) cells to the lungs. Such a presence of Treg cells was also accompanied with a reduction of neutrophils in the lungs during IAV infection, which correlated, with a significant decrease of Th17 cells. In our model, Treg cell recruitment is dependent of CXCL12 and CCL5 chemokines. Moreover, we show that the presence of Ly6Clow patrolling monocytes is required for Treg cells mobilization to the lung of mice treated with MDP. In fact, following monocyte depletion by administration of clodronate liposome, mobilization of Treg cells to the lungs of treated mice was found to occur when circulating Ly6Clow monocytes begin to reemerge. In addition, we also detected an increased production of TGF-β, a cytokine contributing to Treg activity when blood Ly6Clow monocytes are restored. Together, our results demonstrate that MDP treatment can promote an anti-inflammatory environment through the mobilization of Treg cells to the lung, a mechanism that requires the presence of Ly6Clow monocytes during IAV infection. Overall, our results suggest that activation of NOD2 receptor could be an appealing approach to control pulmonary inflammation in patients infected with IAV.
Collapse
Affiliation(s)
- Benoit Egarnes
- Laboratory of Innate Immunology, Centre de recherche du CHU de Québec-Université Laval, Université Laval, Quebec City, QC, Canada
| | - Jean Gosselin
- Laboratory of Innate Immunology, Centre de recherche du CHU de Québec-Université Laval, Université Laval, Quebec City, QC, Canada.,Department of Molecular Medicine, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
103
|
Chen YJ, Wang SF, Weng IC, Hong MH, Lo TH, Jan JT, Hsu LC, Chen HY, Liu FT. Galectin-3 Enhances Avian H5N1 Influenza A Virus-Induced Pulmonary Inflammation by Promoting NLRP3 Inflammasome Activation. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1031-1042. [PMID: 29366678 DOI: 10.1016/j.ajpath.2017.12.014] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/18/2017] [Accepted: 12/28/2017] [Indexed: 12/21/2022]
Abstract
Highly pathogenic avian influenza A H5N1 virus causes pneumonia and acute respiratory distress syndrome in humans. Virus-induced excessive inflammatory response contributes to severe disease and high mortality rates. Galectin-3, a β-galactoside-binding protein widely distributed in immune and epithelial cells, regulates various immune functions and modulates microbial infections. Here, we describe galectin-3 up-regulation in mouse lung tissue after challenges with the H5N1 influenza virus. We investigated the effects of endogenous galectin-3 on H5N1 infection and found that survival of galectin-3 knockout (Gal-3KO) mice was comparable with wild-type (WT) mice after infections. Compared with infected WT mice, infected Gal-3KO mice exhibited less inflammation in the lungs and reduced IL-1β levels in bronchoalveolar lavage fluid. In addition, the bone marrow-derived macrophages (BMMs) from Gal-3KO mice exhibited reduced oligomerization of apoptosis-associated speck-like proteins containing caspase-associated recruitment domains and secreted less IL-1β compared with BMMs from WT mice. However, similar levels of the inflammasome component of nucleotide oligomerization domain-like receptor protein 3 (NLRP3) were observed in two genotypes of BMMs. Co-immunoprecipitation data indicated galectin-3 and NLRP3 interaction in BMMs infected with H5N1. An association was also observed between galectin-3 and NLRP3/apoptosis-associated speck-like proteins containing caspase-associated recruitment domain complex. Combined, our results suggest that endogenous galectin-3 enhances the effects of H5N1 infection by promoting host inflammatory responses and regulating IL-1β production by macrophages via interaction with NLRP3.
Collapse
Affiliation(s)
- Yu-Jung Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Sheng-Fan Wang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - I-Chun Weng
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ming-Hsiang Hong
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Tzu-Han Lo
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jia-Tsrong Jan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Li-Chung Hsu
- Institute of Molecular Medicine, National Taiwan University, Taipei, Taiwan
| | - Huan-Yuan Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| | - Fu-Tong Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
104
|
Naumenko V, Turk M, Jenne CN, Kim SJ. Neutrophils in viral infection. Cell Tissue Res 2018; 371:505-516. [PMID: 29327081 DOI: 10.1007/s00441-017-2763-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 11/28/2017] [Indexed: 12/20/2022]
Abstract
Neutrophils are the first wave of recruited immune cells to sites of injury or infection and are crucial players in controlling bacterial and fungal infections. Although the role of neutrophils during bacterial or fungal infections is well understood, their impact on antiviral immunity is much less studied. Furthermore, neutrophil function in tumor pathogenesis and cancer treatment has recently received much attention, particularly within the context of oncolytic virus infection where neutrophils produce antitumor cytokines and enhance oncolysis. In this review, multiple functions of neutrophils in viral infections and immunity are discussed. Understanding the role of neutrophils during viral infection may provide insight into the pathogenesis of virus infections and the outcome of virus-based therapies.
Collapse
Affiliation(s)
- Victor Naumenko
- Department of Microbiology, Immunology and Infectious Diseases, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, HRIC 3330 Hospital Drive N.W, Calgary, Alberta, T2N 4N1, Canada.,National University of Science and Technology "MISIS", Leninskiy prospect 4, 119991, Moscow, Russia
| | - Madison Turk
- Department of Microbiology, Immunology and Infectious Diseases, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, HRIC 3330 Hospital Drive N.W, Calgary, Alberta, T2N 4N1, Canada
| | - Craig N Jenne
- Department of Microbiology, Immunology and Infectious Diseases, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, HRIC 3330 Hospital Drive N.W, Calgary, Alberta, T2N 4N1, Canada. .,Calvin, Phoebe & Joan Snyder Institute for Chronic Diseases, Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, HRIC 2C26, 3280 Hospital Drive N.W., Calgary, Alberta, T2N 4N1, Canada.
| | - Seok-Joo Kim
- Department of Microbiology, Immunology and Infectious Diseases, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, HRIC 3330 Hospital Drive N.W, Calgary, Alberta, T2N 4N1, Canada. .,Calvin, Phoebe & Joan Snyder Institute for Chronic Diseases, Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, HRIC 4C49, 3280 Hospital Drive N.W., Calgary, Alberta, T2N 4N1, Canada.
| |
Collapse
|
105
|
Abstract
PURPOSE OF REVIEW The pathogenesis and impact of coinfection, in particular bacterial coinfection, in influenza are incompletely understood. This review summarizes results from studies on bacterial coinfection in the recent pandemic influenza outbreak. RECENT FINDINGS Systemic immune mechanisms play a key role in the development of coinfection based on the complexity of the interaction of the host and the viral and bacterial pathogens. Several studies were performed to determine the point prevalence of bacterial coinfection in influenza. Coinfection in influenza is frequent in critically ill patients with Streptococcus pneumoniae being the most frequent bacterial pathogen and higher rates of potentially resistant pathogens over the years. SUMMARY Bacterial pneumonia is certainly an influenza complication. The recent epidemiology findings have helped to partially resolve the contribution of different pathogens. Immunosuppression is a risk factor for bacterial coinfection in influenza, and the epidemiology of coinfection has changed over the years during the last influenza pandemic, and these recent findings should be taken into account during present outbreaks.
Collapse
|
106
|
Neutrophils and PMN-MDSC: Their biological role and interaction with stromal cells. Semin Immunol 2017; 35:19-28. [PMID: 29254756 DOI: 10.1016/j.smim.2017.12.004] [Citation(s) in RCA: 233] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 12/08/2017] [Indexed: 02/06/2023]
Abstract
Neutrophils and polymorphonucler myeloid-derived suppressor cells (PMN-MDSC) share origin and many morphological and phenotypic features. However, they have different biological role. Neutrophils are one of the major mechanisms of protection against invading pathogens, whereas PMN-MDSC have immune suppressive activity and restrict immune responses in cancer, chronic infectious disease, trauma, sepsis, and many other pathological conditions. Although in healthy adult individuals, PMN-MDSC are not or barely detectable, in patients with cancer and many other diseases they accumulate at various degree and co-exist with neutrophils. Recent advances allow for better distinction of these cells and better understanding of their biological role. Accumulating evidence indicates PMN-MDSC as pathologically activated neutrophils, with important role in regulation of immune responses. In this review, we provide an overview on the definition and characterization of PMN-MDSC and neutrophils, their pathological significance in a variety of diseases, and their interaction with other stromal components.
Collapse
|
107
|
Jung YJ, Lee YT, Ngo VL, Cho YH, Ko EJ, Hong SM, Kim KH, Jang JH, Oh JS, Park MK, Kim CH, Sun J, Kang SM. Heat-killed Lactobacillus casei confers broad protection against influenza A virus primary infection and develops heterosubtypic immunity against future secondary infection. Sci Rep 2017; 7:17360. [PMID: 29234060 PMCID: PMC5727132 DOI: 10.1038/s41598-017-17487-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 11/23/2017] [Indexed: 02/08/2023] Open
Abstract
Lactic acid bacteria (LAB) are the common probiotics. Here, we investigated the antiviral protective effects of heat-killed LAB strain Lactobacillus casei DK128 (DK128) on influenza viruses. Intranasal treatment of mice with DK128 conferred protection against different subtypes of influenza viruses by lessening weight loss and lowering viral loads. Protection via heat-killed DK128 was correlated with an increase in alveolar macrophage cells in the lungs and airways, early induction of virus specific antibodies, reduced levels of pro-inflammatory cytokines and innate immune cells. Importantly, the mice that were protected against primary viral infection as a result of heat-killed DK128 pretreatment developed subsequent heterosubtypic immunity against secondary virus infection. For protection against influenza virus via heat-killed DK128 pretreatment, B cells and partially CD4 T cells but not CD8 T cells were required as inferred from studies using knockout mouse models. Our study provides insight into how hosts can be equipped with innate and adaptive immunity via heat-killed DK128 treatment to protect against influenza virus, supporting that heat-killed LAB may be developed as anti-virus probiotics.
Collapse
Affiliation(s)
- Yu-Jin Jung
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, 30303, USA
| | - Young-Tae Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, 30303, USA
| | - Vu Le Ngo
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, 30303, USA
| | - Young-Hee Cho
- Department of Animal Resource Science, Dankook University, 119, Dandae-ro, Dongnam-gu, Cheonan-si, Chungnam, 330-714, Korea
| | - Eun-Ju Ko
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, 30303, USA
| | - Sung-Moon Hong
- Department of Animal Resource Science, Dankook University, 119, Dandae-ro, Dongnam-gu, Cheonan-si, Chungnam, 330-714, Korea
| | - Ki-Hye Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, 30303, USA
| | - Ji-Hun Jang
- Tobico Inc. Chungnam Techno Park, Jiksan-Eup, Seobuk-Gu, Cheonan-Si, Chungnam, 331-858, Korea
| | - Joon-Suk Oh
- Tobico Inc. Chungnam Techno Park, Jiksan-Eup, Seobuk-Gu, Cheonan-Si, Chungnam, 331-858, Korea
| | - Min-Kyung Park
- Department of Human Nutrition and Food Science, Chungwoon University, Namjang-Ri, Hongsung-Eup, Hongsung-Kun, Chungnam, 350-701, Korea
| | - Cheol-Hyun Kim
- Department of Animal Resource Science, Dankook University, 119, Dandae-ro, Dongnam-gu, Cheonan-si, Chungnam, 330-714, Korea
| | - Jun Sun
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, USA
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, 30303, USA.
| |
Collapse
|
108
|
Egarnes B, Blanchet MR, Gosselin J. Treatment with the NR4A1 agonist cytosporone B controls influenza virus infection and improves pulmonary function in infected mice. PLoS One 2017; 12:e0186639. [PMID: 29053748 PMCID: PMC5650162 DOI: 10.1371/journal.pone.0186639] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/04/2017] [Indexed: 02/04/2023] Open
Abstract
The transcription factor NR4A1 has emerged as a pivotal regulator of the inflammatory response and immune homeostasis. Although contribution of NR4A1 in the innate immune response has been demonstrated, its role in host defense against viral infection remains to be investigated. In the present study, we show that administration of cytosporone B (Csn-B), a specific agonist of NR4A1, to mice infected with influenza virus (IAV) reduces lung viral loads and improves pulmonary function. Our results demonstrate that administration of Csn-B to naive mice leads to a modest production of type 1 IFN. However, in IAV-infected mice, such production of IFNs is markedly increased following treatment with Csn-B. Our study also reveals that alveolar macrophages (AMs) appear to have a significant role in Csn-B effects, since selective depletion of AMs with clodronate liposome correlates with a marked reduction of IFN production, viral clearance and morbidity in IAV-infected mice. Furthermore, when reemergence of AMs is observed following clodronate liposome administration, an increased production of IFNs was detected in bronchoalveolar fluids of IAV-infected mice treated with Csn-B, supporting the contribution of AMs in Csn-B effects. While treatment of mice with Csn-B induces phosphorylation of transcriptional factors IRF3 and IRF7, the latter appears to be less indispensable since effects of Csn-B treatment on the synthesis of IFNs were slightly affected in IAV-infected mice lacking functional IRF7. Together, our results highlight the capacity of Csn-B and consequently of NR4A1 transcription factor in controlling IAV infection.
Collapse
Affiliation(s)
- Benoit Egarnes
- Laboratory of Innate Immunology, Centre de recherche du CHU de Québec-Université Laval (CHUL) and Department of Molecular Medicine, Université Laval, Quebec, QC, Canada
| | - Marie-Renée Blanchet
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada
| | - Jean Gosselin
- Laboratory of Innate Immunology, Centre de recherche du CHU de Québec-Université Laval (CHUL) and Department of Molecular Medicine, Université Laval, Quebec, QC, Canada
- * E-mail:
| |
Collapse
|
109
|
Reduced accumulation of defective viral genomes contributes to severe outcome in influenza virus infected patients. PLoS Pathog 2017; 13:e1006650. [PMID: 29023600 PMCID: PMC5638565 DOI: 10.1371/journal.ppat.1006650] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 09/15/2017] [Indexed: 12/13/2022] Open
Abstract
Influenza A virus (IAV) infection can be severe or even lethal in toddlers, the elderly and patients with certain medical conditions. Infection of apparently healthy individuals nonetheless accounts for many severe disease cases and deaths, suggesting that viruses with increased pathogenicity co-circulate with pandemic or epidemic viruses. Looking for potential virulence factors, we have identified a polymerase PA D529N mutation detected in a fatal IAV case, whose introduction into two different recombinant virus backbones, led to reduced defective viral genomes (DVGs) production. This mutation conferred low induction of antiviral response in infected cells and increased pathogenesis in mice. To analyze the association between low DVGs production and pathogenesis in humans, we performed a genomic analysis of viruses isolated from a cohort of previously healthy individuals who suffered highly severe IAV infection requiring admission to Intensive Care Unit and patients with fatal outcome who additionally showed underlying medical conditions. These viruses were compared with those isolated from a cohort of mild IAV patients. Viruses with fewer DVGs accumulation were observed in patients with highly severe/fatal outcome than in those with mild disease, suggesting that low DVGs abundance constitutes a new virulence pathogenic marker in humans. Influenza A viruses are the causative agents of annual epidemics, sporadic zoonotic outbreaks and occasionally pandemics. Worldwide, acute respiratory infections caused by influenza A viruses continue to be one of the main causes of acute illness and death. The appearance in 2009 of a new H1N1 pandemic influenza strain reinforced the search to identify viral pathogenicity determinants for evaluation of the consequences of virus epidemics and potential pandemics for human health. Here we identify a new general virulence determinant found in a cohort of severe/fatal influenza virus-infected patients, a reduced accumulation of viral defective genomes. These molecules are incomplete viral genome segments that activate the innate immune response. This data will contribute to the prediction of influenza disease severity, to improved guidance of patient treatment and will enable the development of risk-based prevention strategies and policies.
Collapse
|
110
|
He W, Chen CJ, Mullarkey CE, Hamilton JR, Wong CK, Leon PE, Uccellini MB, Chromikova V, Henry C, Hoffman KW, Lim JK, Wilson PC, Miller MS, Krammer F, Palese P, Tan GS. Alveolar macrophages are critical for broadly-reactive antibody-mediated protection against influenza A virus in mice. Nat Commun 2017; 8:846. [PMID: 29018261 PMCID: PMC5635038 DOI: 10.1038/s41467-017-00928-3] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 08/07/2017] [Indexed: 12/23/2022] Open
Abstract
The aim of candidate universal influenza vaccines is to provide broad protection against influenza A and B viruses. Studies have demonstrated that broadly reactive antibodies require Fc-Fc gamma receptor interactions for optimal protection; however, the innate effector cells responsible for mediating this protection remain largely unknown. Here, we examine the roles of alveolar macrophages, natural killer cells, and neutrophils in antibody-mediated protection. We demonstrate that alveolar macrophages play a dominant role in conferring protection provided by both broadly neutralizing and non-neutralizing antibodies in mice. Our data also reveal the potential mechanisms by which alveolar macrophages mediate protection in vivo, namely antibody-induced inflammation and antibody-dependent cellular phagocytosis. This study highlights the importance of innate effector cells in establishing a broad-spectrum antiviral state, as well as providing a better understanding of how multiple arms of the immune system cooperate to achieve an optimal antiviral response following influenza virus infection or immunization.Broadly reactive antibodies that recognize influenza A virus HA can be protective, but the mechanism is not completely understood. Here, He et al. show that the inflammatory response and phagocytosis mediated by the interaction between protective antibodies and macrophages are essential for protection.
Collapse
Affiliation(s)
- Wenqian He
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Chi-Jene Chen
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Caitlin E Mullarkey
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jennifer R Hamilton
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Christine K Wong
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Paul E Leon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Melissa B Uccellini
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Veronika Chromikova
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Carole Henry
- Department of Medicine, Section of Rheumatology, The Knapp Center for Lupus and Immunology Research, The Committee on Immunology, The University of Chicago, Chicago, IL, 60637, USA
| | - Kevin W Hoffman
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jean K Lim
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Patrick C Wilson
- Department of Medicine, Section of Rheumatology, The Knapp Center for Lupus and Immunology Research, The Committee on Immunology, The University of Chicago, Chicago, IL, 60637, USA
| | - Matthew S Miller
- Department of Biochemistry and Biomedical Sciences, Institute of Infectious Diseases Research, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada, L8S 4K1
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Gene S Tan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA.
| |
Collapse
|
111
|
Vemula SV, Sayedahmed EE, Sambhara S, Mittal SK. Vaccine approaches conferring cross-protection against influenza viruses. Expert Rev Vaccines 2017; 16:1141-1154. [PMID: 28925296 DOI: 10.1080/14760584.2017.1379396] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Annual vaccination is one of the most efficient and cost-effective strategies to prevent and control influenza epidemics. Most of the currently available influenza vaccines are strong inducers of antibody responses against viral surface proteins, hemagglutinin (HA) and neuraminidase (NA), but are poor inducers of cell-mediated immune responses against conserved internal proteins. Moreover, due to the high variability of viral surface proteins because of antigenic drift or antigenic shift, many of the currently licensed vaccines confer little or no protection against drift or shift variants. Areas covered: Next generation influenza vaccines that can induce humoral immune responses to receptor-binding epitopes as well as broadly neutralizing conserved epitopes, and cell-mediated immune responses against highly conserved internal proteins would be effective against variant viruses as well as a novel pandemic influenza until circulating strain-specific vaccines become available. Here we discuss vaccine approaches that have the potential to provide broad spectrum protection against influenza viruses. Expert commentary: Based on current progress in defining cross-protective influenza immunity, it seems that the development of a universal influenza vaccine is feasible. It would revolutionize the strategy for influenza pandemic preparedness, and significantly impact the shelf-life and protection efficacy of seasonal influenza vaccines.
Collapse
Affiliation(s)
- Sai V Vemula
- a Department of Comparative Pathobiology and Purdue Institute for Immunology , Inflammation and Infectious Disease, Purdue University , West Lafayette , IN , USA
| | - Ekramy E Sayedahmed
- a Department of Comparative Pathobiology and Purdue Institute for Immunology , Inflammation and Infectious Disease, Purdue University , West Lafayette , IN , USA
| | - Suryaprakash Sambhara
- b Influenza Division , Centers for Disease Control and Prevention , Atlanta , GA , USA
| | - Suresh K Mittal
- a Department of Comparative Pathobiology and Purdue Institute for Immunology , Inflammation and Infectious Disease, Purdue University , West Lafayette , IN , USA
| |
Collapse
|
112
|
Cline TD, Beck D, Bianchini E. Influenza virus replication in macrophages: balancing protection and pathogenesis. J Gen Virol 2017; 98:2401-2412. [PMID: 28884667 DOI: 10.1099/jgv.0.000922] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Macrophages are essential for protection against influenza A virus infection, but are also implicated in the morbidity and mortality associated with severe influenza disease, particularly during infection with highly pathogenic avian influenza (HPAI) H5N1 virus. While influenza virus infection of macrophages was once thought to be abortive, it is now clear that certain virus strains can replicate productively in macrophages. This may have important consequences for the antiviral functions of macrophages, the course of disease and the outcome of infection for the host. In this article, we review findings related to influenza virus replication in macrophages and the impact of productive replication on macrophage antiviral functions. A clear understanding of the interactions between influenza viruses and macrophages may lead to new antiviral therapies to relieve the burden of severe disease associated with influenza viruses.
Collapse
Affiliation(s)
- Troy D Cline
- Department of Biological Sciences, California State University, Chico, California, USA
| | - Donald Beck
- Department of Biological Sciences, California State University, Chico, California, USA
| | - Elizabeth Bianchini
- Department of Biological Sciences, California State University, Chico, California, USA
| |
Collapse
|
113
|
Kasumba DM, Hajake T, Oh SW, Kotenko SV, Kato H, Fujita T. A Plant-Derived Nucleic Acid Reconciles Type I IFN and a Pyroptotic-like Event in Immunity against Respiratory Viruses. THE JOURNAL OF IMMUNOLOGY 2017; 199:2460-2474. [DOI: 10.4049/jimmunol.1700523] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/23/2017] [Indexed: 12/14/2022]
|
114
|
Pathogenicity and peramivir efficacy in immunocompromised murine models of influenza B virus infection. Sci Rep 2017; 7:7345. [PMID: 28779075 PMCID: PMC5544712 DOI: 10.1038/s41598-017-07433-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/28/2017] [Indexed: 02/06/2023] Open
Abstract
Influenza B viruses are important human pathogens that remain inadequately studied, largely because available animal models are poorly defined. Here, we developed an immunocompromised murine models for influenza B virus infection, which we subsequently used to study pathogenicity and to examine antiviral efficacy of the neuraminidase inhibitor peramivir. We studied three influenza B viruses that represent both the Yamagata (B/Massachusetts/2/2012 and B/Phuket/3073/2013) and Victoria (B/Brisbane/60/2008, BR/08) lineages. BR/08 was the most pathogenic in genetically modified immunocompromised mice [BALB scid and non-obese diabetic (NOD) scid strains] causing lethal infection without prior adaptation. The immunocompromised mice demonstrated prolonged virus shedding with modest induction of immune responses compared to BALB/c. Rather than severe virus burden, BR/08 virus-associated disease severity correlated with extensive virus spread and severe pulmonary pathology, stronger and persistent natural killer cell responses, and the extended induction of pro-inflammatory cytokines and chemokines. In contrast to a single-dose treatment (75 mg/kg/day), repeated doses of peramivir rescued BALB scid mice from lethal challenge with BR/08, but did not result in complete virus clearance. In summary, we have established immunocompromised murine models for influenza B virus infection that will facilitate evaluations of the efficacy of currently available and investigational anti-influenza drugs.
Collapse
|
115
|
Innate Immune Basis for Rift Valley Fever Susceptibility in Mouse Models. Sci Rep 2017; 7:7096. [PMID: 28769107 PMCID: PMC5541133 DOI: 10.1038/s41598-017-07543-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/29/2017] [Indexed: 12/20/2022] Open
Abstract
Rift Valley fever virus (RVFV) leads to varied clinical manifestations in animals and in humans that range from moderate fever to fatal illness, suggesting that host immune responses are important determinants of the disease severity. We investigated the immune basis for the extreme susceptibility of MBT/Pas mice that die with mild to acute hepatitis by day 3 post-infection compared to more resistant BALB/cByJ mice that survive up to a week longer. Lower levels of neutrophils observed in the bone marrow and blood of infected MBT/Pas mice are unlikely to be causative of increased RVFV susceptibility as constitutive neutropenia in specific mutant mice did not change survival outcome. However, whereas MBT/Pas mice mounted an earlier inflammatory response accompanied by higher amounts of interferon (IFN)-α in the serum compared to BALB/cByJ mice, they failed to prevent high viral antigen load. Several immunological alterations were uncovered in infected MBT/Pas mice compared to BALB/cByJ mice, including low levels of leukocytes that expressed type I IFN receptor subunit 1 (IFNAR1) in the blood, spleen and liver, delayed leukocyte activation and decreased percentage of IFN-γ-producing leukocytes in the blood. These observations are consistent with the complex mode of inheritance of RVFV susceptibility in genetic studies.
Collapse
|
116
|
Xu Y, Liu L. Curcumin alleviates macrophage activation and lung inflammation induced by influenza virus infection through inhibiting the NF-κB signaling pathway. Influenza Other Respir Viruses 2017. [PMID: 28646616 PMCID: PMC5596526 DOI: 10.1111/irv.12459] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Influenza A viruses (IAV) result in severe public health problems with worldwide each year. Overresponse of immune system to IAV infection leads to complications, and ultimately causing morbidity and mortality. OBJECTIVE Curcumin has been reported to have anti-inflammatory ability. However, its molecular mechanism in immune responses remains unclear. METHODS We detected the pro-inflammatory cytokine secretion and nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB)-related protein expression in human macrophages or mice infected by IAV with or without curcumin treatment. RESULTS We found that the IAV infection caused a dramatic enhancement of pro-inflammatory cytokine productions of human macrophages and mice immune cells. However, curcumin treatment after IAV infection downregulated these cytokines production in a dose-dependent manner. Moreover, the NF-κB has been activated in human macrophages after IAV infection, while administration of curcumin inhibited NF-κB signaling pathway via promoting the expression of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα), and inhibiting the translocation of p65 from cytoplasm to nucleus. CONCLUSIONS In summary, IAV infection could result in the inflammatory responses of immune cells, especially macrophages. Curcumin has the therapeutic potentials to relieve these inflammatory responses through inhibiting the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yiming Xu
- Department of Respiration Medicine, The Affiliated Wuxi Second People's Hospital of Nanjing Medical University, Wuxi, China
| | - Ling Liu
- Department of Respiration Medicine, The Affiliated Wuxi Second People's Hospital of Nanjing Medical University, Wuxi, China
| |
Collapse
|
117
|
Contribution of innate immune cells to pathogenesis of severe influenza virus infection. Clin Sci (Lond) 2017; 131:269-283. [PMID: 28108632 DOI: 10.1042/cs20160484] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/19/2016] [Accepted: 11/25/2016] [Indexed: 12/12/2022]
Abstract
Influenza A viruses (IAVs) cause respiratory illness of varying severity based on the virus strains, host predisposition and pre-existing immunity. Ultimately, outcome and recovery from infection rely on an effective immune response comprising both innate and adaptive components. The innate immune response provides the first line of defence and is crucial to the outcome of infection. Airway epithelial cells are the first cell type to encounter the virus in the lungs, providing antiviral and chemotactic molecules that shape the ensuing immune response by rapidly recruiting innate effector cells such as NK cells, monocytes and neutrophils. Each cell type has unique mechanisms to combat virus-infected cells and limit viral replication, however their actions may also lead to pathology. This review focuses how innate cells contribute to protection and pathology, and provides evidence for their involvement in immune pathology in IAV infections.
Collapse
|
118
|
Pulmonary immunity to viruses. Clin Sci (Lond) 2017; 131:1737-1762. [PMID: 28667071 DOI: 10.1042/cs20160259] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/31/2017] [Accepted: 04/06/2017] [Indexed: 12/28/2022]
Abstract
Mucosal surfaces, such as the respiratory epithelium, are directly exposed to the external environment and therefore, are highly susceptible to viral infection. As a result, the respiratory tract has evolved a variety of innate and adaptive immune defenses in order to prevent viral infection or promote the rapid destruction of infected cells and facilitate the clearance of the infecting virus. Successful adaptive immune responses often lead to a functional state of immune memory, in which memory lymphocytes and circulating antibodies entirely prevent or lessen the severity of subsequent infections with the same virus. This is also the goal of vaccination, although it is difficult to vaccinate in a way that mimics respiratory infection. Consequently, some vaccines lead to robust systemic immune responses, but relatively poor mucosal immune responses that protect the respiratory tract. In addition, adaptive immunity is not without its drawbacks, as overly robust inflammatory responses may lead to lung damage and impair gas exchange or exacerbate other conditions, such as asthma or chronic obstructive pulmonary disease (COPD). Thus, immune responses to respiratory viral infections must be strong enough to eliminate infection, but also have mechanisms to limit damage and promote tissue repair in order to maintain pulmonary homeostasis. Here, we will discuss the components of the adaptive immune system that defend the host against respiratory viral infections.
Collapse
|
119
|
Lee ACY, To KKW, Zhu H, Chu H, Li C, Mak WWN, Zhang AJX, Yuen KY. Avian influenza virus A H7N9 infects multiple mononuclear cell types in peripheral blood and induces dysregulated cytokine responses and apoptosis in infected monocytes. J Gen Virol 2017; 98:922-934. [PMID: 28555541 DOI: 10.1099/jgv.0.000751] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Most patients with avian influenza A H7N9 virus (H7N9) infection suffer from severe illness, accompanied by dysregulated cytokine/chemokine response, delayed viral clearance and impaired neutralizing antibody response. Here, we evaluated the role of peripheral blood mononuclear cells (PBMCs) in the pathogenesis of H7N9 infection using an ex vivo infection model. H7N9 infected a significantly higher percentage of PBMCs (23.9 %) than those of avian influenza A H5N1 virus (H5N1) (12.3 %) and pandemic H1N1 virus (pH1N1) (5.5 %) (P<0.01). H7N9 infected significantly more B and T lymphocytes than H5N1. When compared with pH1N1, H7N9-infected PBMCs had significantly higher mRNA levels of proinflammatory cytokines and type I interferons (IFNs) at 6 h post-infection (p.i.), but significantly lower levels of IFN-γ and IP-10 at 12 h p.i. Among the PBMCs, CD14+ monocytes were most permissive to H7N9 infection. The percentage of infected CD14+ monocytes was significantly higher for H7N9 than that of pH1N1, but not significantly different from that of H5N1. H7N9-infected monocytes showed higher expression of MIP-1α, MIP-1β and RANTES than that of pH1N1 at 6 h p.i. H7N9- but not pH1N1-infected monocytes died rapidly via apoptosis. Furthermore, pH1N1- but not H7N9-infected monocytes showed increased expression of the monocyte activation and differentiation markers. Unlike pH1N1, H7N9 showed similar PBMC/monocyte cytokine/chemokine expression profile, monocyte cell death and expression of activation/differentiation markers to H5N1. Besides proinflammatory cytokine activation leading to a cytokine storm, impaired IFN-γ production, rapid monocytic death and lack of monocyte differentiation may affect the ability of H7N9-infected innate immune cells to recruit protective adaptive immunity.
Collapse
Affiliation(s)
- Andrew C Y Lee
- Department of Microbiology, The University of Hong Kong, Hong Kong, PR China
| | - Kelvin K W To
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, PR China.,Department of Microbiology, The University of Hong Kong, Hong Kong, PR China.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, PR China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, PR China
| | - Houshun Zhu
- Department of Medicine, The University of Hong Kong, Hong Kong, PR China
| | - Hin Chu
- Department of Microbiology, The University of Hong Kong, Hong Kong, PR China
| | - Can Li
- Department of Microbiology, The University of Hong Kong, Hong Kong, PR China
| | - Winger W N Mak
- Department of Microbiology, The University of Hong Kong, Hong Kong, PR China
| | - Anna J X Zhang
- Department of Microbiology, The University of Hong Kong, Hong Kong, PR China.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, PR China.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, PR China
| | - Kwok-Yung Yuen
- Department of Microbiology, The University of Hong Kong, Hong Kong, PR China.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, PR China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, PR China.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, PR China
| |
Collapse
|
120
|
Gansukh E, Muthu M, Paul D, Ethiraj G, Chun S, Gopal J. Nature nominee quercetin's anti-influenza combat strategy-Demonstrations and remonstrations. Rev Med Virol 2017; 27:e1930. [PMID: 31211498 DOI: 10.1002/rmv.1930] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 02/21/2017] [Accepted: 03/13/2017] [Indexed: 12/14/2022]
Abstract
Nature's providences are rather the choicest remedies for human health and welfare. One such is quercetin, which is nature's nominee for cancer cure and recently demonstrated against influenza attack. Quercetin is highly recognized for its anticancer applications. This review emphasizes on yet another gift that this compound has to offer for mankind, which is none other than combating the deadly evasive influenza virus. The chemistry of this natural bioflavonoid and its derivatives and its modus operandi against influenza virus is consolidated into this review. The advancements and achievements made in the anti-influenza clinical history are also documented. Further, the challenges facing the progress of this compound to emerge as a predominant anti-influenza drug are discussed, and the future perspective for breaking its limitations through integration with nanoplatforms is envisioned.
Collapse
Affiliation(s)
- Enkhtaivan Gansukh
- Department of Bioresource and Food Science, Konkuk University, Seoul, South Korea
| | - Manikandan Muthu
- Department of Bioresource and Food Science, Konkuk University, Seoul, South Korea
| | - Diby Paul
- Environmental Microbiology, Department of Environmental Engineering, Konkuk University, Seoul, South Korea
| | - Gopal Ethiraj
- Department of Bioresource and Food Science, Konkuk University, Seoul, South Korea
| | - Sechul Chun
- Department of Bioresource and Food Science, Konkuk University, Seoul, South Korea
| | - Judy Gopal
- Department of Bioresource and Food Science, Konkuk University, Seoul, South Korea
| |
Collapse
|
121
|
Leyva-Grado VH, Ermler ME, Schotsaert M, Gonzalez MG, Gillespie V, Lim JK, García-Sastre A. Contribution of the Purinergic Receptor P2X7 to Development of Lung Immunopathology during Influenza Virus Infection. mBio 2017; 8:e00229-17. [PMID: 28351919 PMCID: PMC5371412 DOI: 10.1128/mbio.00229-17] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/09/2017] [Indexed: 12/28/2022] Open
Abstract
An exacerbated immune response is one of the main causes of influenza-induced lung damage during infection. The molecular mechanisms regulating the fate of the initial immune response to infection, either as a protective response or as detrimental immunopathology, are not well understood. The purinergic receptor P2X7 is an ionotropic nucleotide-gated ion channel receptor expressed on immune cells that has been implicated in induction and maintenance of excessive inflammation. Here, we analyze the role of this receptor in a mouse model of influenza virus infection using a receptor knockout (KO) mouse strain. Our results demonstrate that the absence of the P2X7 receptor results in a better outcome to influenza virus infection characterized by reduced weight loss and increased survival upon experimental influenza challenge compared to wild-type mice. This effect was not virus strain specific. Overall lung pathology and apoptosis were reduced in virus-infected KO mice. Production of proinflammatory cytokines and chemokines such as interleukin-10 (IL-10), gamma interferon (IFN-γ), and CC chemokine ligand 2 (CCL2) was also reduced in the lungs of the infected KO mice. Infiltration of neutrophils and depletion of CD11b+ macrophages, characteristic of severe influenza virus infection in mice, were lower in the KO animals. Together, these results demonstrate that activation of the P2X7 receptor is involved in the exacerbated immune response observed during influenza virus infection.IMPORTANCE A hallmark of influenza virus infection is the development of lung pathology induced by an exacerbated immune response. The mechanisms shared by the antiviral host defense required for viral clearance and those required for development of immunopathology are not clearly understood. Purinergic receptors, and in particular the purinergic receptor P2X7 (P2X7r), are involved in activation of the immune response. We used mice lacking the P2X7r (P2X7r KO mice) to better understand the mechanisms that lead to development of lung pathology during influenza virus infection. In our studies, we observed that P2X7r KO mice developed less lung immunopathology and had better survival than the wild-type mice. These results implicate P2X7r in the induction of an exacerbated local immune response to influenza virus and help us to better understand the mechanisms leading to the lung immunopathology observed during severe viral infections.
Collapse
Affiliation(s)
- Victor H Leyva-Grado
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Megan E Ermler
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ma G Gonzalez
- Center for Comparative Medicine and Surgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Virginia Gillespie
- Center for Comparative Medicine and Surgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jean K Lim
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
122
|
Cronk JC, Herz J, Kim TS, Louveau A, Moser EK, Sharma AK, Smirnov I, Tung KS, Braciale TJ, Kipnis J. Influenza A induces dysfunctional immunity and death in MeCP2-overexpressing mice. JCI Insight 2017; 2:e88257. [PMID: 28138553 PMCID: PMC5256138 DOI: 10.1172/jci.insight.88257] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 12/06/2016] [Indexed: 01/10/2023] Open
Abstract
Loss of function or overexpression of methyl-CpG-binding protein 2 (MeCP2) results in the severe neurodevelopmental disorders Rett syndrome and MeCP2 duplication syndrome, respectively. MeCP2 plays a critical role in neuronal function and the function of cells throughout the body. It has been previously demonstrated that MeCP2 regulates T cell function and macrophage response to multiple stimuli, and that immune-mediated rescue imparts significant benefit in Mecp2-null mice. Unlike Rett syndrome, MeCP2 duplication syndrome results in chronic, severe respiratory infections, which represent a significant cause of patient morbidity and mortality. Here, we demonstrate that MeCP2Tg3 mice, which overexpress MeCP2 at levels 3- to 5-fold higher than normal, are hypersensitive to influenza A/PR/8/34 infection. Prior to death, MeCP2Tg3 mice experienced a host of complications during infection, including neutrophilia, increased cytokine production, excessive corticosterone levels, defective adaptive immunity, and vascular pathology characterized by impaired perfusion and pulmonary hemorrhage. Importantly, we found that radioresistant cells are essential to infection-related death after bone marrow transplantation. In all, these results demonstrate that influenza A infection in MeCP2Tg3 mice results in pathology affecting both immune and nonhematopoietic cells, suggesting that failure to effectively respond and clear viral respiratory infection has a complex, multicompartment etiology in the context of MeCP2 overexpression.
Collapse
Affiliation(s)
- James C. Cronk
- Center for Brain Immunology and Glia
- Department of Neuroscience
- Graduate Program in Neuroscience
- Medical Scientist Training Program
| | - Jasmin Herz
- Center for Brain Immunology and Glia
- Department of Neuroscience
| | - Taeg S. Kim
- Beirne B. Carter Center for Immunology Research
- Department of Pathology
| | - Antoine Louveau
- Center for Brain Immunology and Glia
- Department of Neuroscience
| | - Emily K. Moser
- Beirne B. Carter Center for Immunology Research
- Department of Pharmacology
| | | | - Igor Smirnov
- Center for Brain Immunology and Glia
- Department of Neuroscience
| | - Kenneth S. Tung
- Department of Pathology
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Thomas J. Braciale
- Medical Scientist Training Program
- Beirne B. Carter Center for Immunology Research
- Department of Pathology
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Jonathan Kipnis
- Center for Brain Immunology and Glia
- Department of Neuroscience
- Graduate Program in Neuroscience
- Medical Scientist Training Program
| |
Collapse
|
123
|
Sullivan C, Jurcyzszak D, Goody MF, Gabor KA, Longfellow JR, Millard PJ, Kim CH. Using Zebrafish Models of Human Influenza A Virus Infections to Screen Antiviral Drugs and Characterize Host Immune Cell Responses. J Vis Exp 2017:55235. [PMID: 28190053 PMCID: PMC5352282 DOI: 10.3791/55235] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Each year, seasonal influenza outbreaks profoundly affect societies worldwide. In spite of global efforts, influenza remains an intractable healthcare burden. The principle strategy to curtail infections is yearly vaccination. In individuals who have contracted influenza, antiviral drugs can mitigate symptoms. There is a clear and unmet need to develop alternative strategies to combat influenza. Several animal models have been created to model host-influenza interactions. Here, protocols for generating zebrafish models for systemic and localized human influenza A virus (IAV) infection are described. Using a systemic IAV infection model, small molecules with potential antiviral activity can be screened. As a proof-of-principle, a protocol that demonstrates the efficacy of the antiviral drug Zanamivir in IAV-infected zebrafish is described. It shows how disease phenotypes can be quantified to score the relative efficacy of potential antivirals in IAV-infected zebrafish. In recent years, there has been increased appreciation for the critical role neutrophils play in the human host response to influenza infection. The zebrafish has proven to be an indispensable model for the study of neutrophil biology, with direct impacts on human medicine. A protocol to generate a localized IAV infection in the Tg(mpx:mCherry) zebrafish line to study neutrophil biology in the context of a localized viral infection is described. Neutrophil recruitment to localized infection sites provides an additional quantifiable phenotype for assessing experimental manipulations that may have therapeutic applications. Both zebrafish protocols described faithfully recapitulate aspects of human IAV infection. The zebrafish model possesses numerous inherent advantages, including high fecundity, optical clarity, amenability to drug screening, and availability of transgenic lines, including those in which immune cells such as neutrophils are labeled with fluorescent proteins. The protocols detailed here exploit these advantages and have the potential to reveal critical insights into host-IAV interactions that may ultimately translate into the clinic.
Collapse
Affiliation(s)
- Con Sullivan
- Department of Molecular and Biomedical Sciences, University of Maine; Graduate School of Biomedical Sciences and Engineering, University of Maine
| | - Denise Jurcyzszak
- Department of Molecular and Biomedical Sciences, University of Maine
| | | | - Kristin A Gabor
- Division of Intramural Research, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH
| | | | - Paul J Millard
- Graduate School of Biomedical Sciences and Engineering, University of Maine; Department of Chemical and Biological Engineering, University of Maine
| | - Carol H Kim
- Department of Molecular and Biomedical Sciences, University of Maine; Graduate School of Biomedical Sciences and Engineering, University of Maine;
| |
Collapse
|
124
|
Bahadoran A, Lee SH, Wang SM, Manikam R, Rajarajeswaran J, Raju CS, Sekaran SD. Immune Responses to Influenza Virus and Its Correlation to Age and Inherited Factors. Front Microbiol 2016; 7:1841. [PMID: 27920759 PMCID: PMC5118461 DOI: 10.3389/fmicb.2016.01841] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/01/2016] [Indexed: 12/28/2022] Open
Abstract
Influenza viruses belong to the family Orthomyxoviridae of enveloped viruses and are an important cause of respiratory infections worldwide. The influenza virus is able to infect a wide variety species as diverse as poultry, marine, pigs, horses, and humans. Upon infection with influenza virus the innate immunity plays a critical role in efficient and rapid control of viral infections as well as in adaptive immunity initiation. The humoral immune system produces antibodies against different influenza antigens, of which the HA-specific antibody is the most important for neutralization of the virus and thus prevention of illness. Cell mediated immunity including CD4+ helper T cells and CD8+ cytotoxic T cells are the other arms of adaptive immunity induced upon influenza virus infection. The complex inherited factors and age related changes are associated with the host immune responses. Here, we review the different components of immune responses against influenza virus. Additionally, the correlation of the immune response to age and inherited factors has been discussed. These determinations lead to a better understanding of the limitations of immune responses for developing improved vaccines to control influenza virus infection.
Collapse
Affiliation(s)
- Azadeh Bahadoran
- Department of Medical Microbiology, Faculty of Medicine, University of MalayaKuala Lumpur, Malaysia
| | - Sau H. Lee
- Department of Medical Microbiology, Faculty of Medicine, University of MalayaKuala Lumpur, Malaysia
| | - Seok M. Wang
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, MARA University of TechnologySelangor, Malaysia
| | - Rishya Manikam
- Department of Trauma and Emergency Medicine, University Malaya Medical CentreKuala Lumpur, Malaysia
| | - Jayakumar Rajarajeswaran
- Department of Molecular Medicine, Faculty of Medicine, University of MalayaKuala Lumpur, Malaysia
| | - Chandramathi S. Raju
- Department of Medical Microbiology, Faculty of Medicine, University of MalayaKuala Lumpur, Malaysia
| | - Shamala D. Sekaran
- Department of Medical Microbiology, Faculty of Medicine, University of MalayaKuala Lumpur, Malaysia
| |
Collapse
|
125
|
White MR, Tripathi S, Verma A, Kingma P, Takahashi K, Jensenius J, Thiel S, Wang G, Crouch EC, Hartshorn KL. Collectins, H-ficolin and LL-37 reduce influence viral replication in human monocytes and modulate virus-induced cytokine production. Innate Immun 2016; 23:77-88. [PMID: 27856789 DOI: 10.1177/1753425916678470] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Infiltrating activated monocytes are important mediators of damaging inflammation during influenza A virus (IAV) infection. We show that soluble respiratory proteins [collectins, surfactant proteins D (SP-D) and mannose binding lectin (MBL), H-ficolin and LL-37] inhibit replication of seasonal IAV in human monocytes. The collectins and H-ficolin also increased viral uptake by the cells, while LL-37 did not. H-ficolin was able to inhibit replication of the 2009 pandemic H1N1 strain (Cal09) in monocytes, but SP-D and LL-37 had significantly fewer inhibitory effects on this strain than on seasonal IAV. All of these proteins reduced IAV-induced TNF-α production, even in instances when viral replication was not reduced. We used modified recombinant versions of SP-D, MBL and ficolin to elucidate mechanisms through which these proteins alter monocyte interactions with IAV. We demonstrate the importance of the multimeric structure, and of binding properties of the lectin domain, in mediating antiviral and opsonic activity of the proteins. Hence, soluble inhibitors present in airway lining fluid may aid clearance of IAV by promoting monocyte uptake of the virus, while reducing viral replication and virus-induced TNF-α responses in these cells. However, SP-D and LL-37 have reduced ability to inhibit replication of pandemic IAV in monocytes.
Collapse
Affiliation(s)
- Mitchell R White
- 1 Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Shweta Tripathi
- 1 Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Anamika Verma
- 1 Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Paul Kingma
- 2 University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Kazue Takahashi
- 3 Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jens Jensenius
- 4 Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Steffen Thiel
- 4 Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Guangshun Wang
- 5 Department of Pathology and Microbiology, Nebraska Medical Center, Omaha, NE, USA
| | - Erika C Crouch
- 6 Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kevan L Hartshorn
- 1 Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
126
|
Martinez EC, Garg R, Shrivastava P, Gomis S, van Drunen Littel-van den Hurk S. Intranasal treatment with a novel immunomodulator mediates innate immune protection against lethal pneumonia virus of mice. Antiviral Res 2016; 135:108-119. [PMID: 27771388 PMCID: PMC7126411 DOI: 10.1016/j.antiviral.2016.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/07/2016] [Accepted: 10/18/2016] [Indexed: 12/26/2022]
Abstract
Respiratory syncytial virus (RSV) is the leading cause of acute lower respiratory tract infections in infants and young children. There are no licensed RSV vaccines available, and the few treatment options for high-risk individuals are either extremely costly or cause severe side effects and toxicity. Immunomodulation mediated by a novel formulation consisting of the toll-like receptor 3 agonist poly(I:C), an innate defense regulator peptide and a polyphosphazene (P-I-P) was evaluated in the context of lethal infection with pneumonia virus of mice (PVM). Intranasal delivery of a single dose of P-I-P protected adult mice against PVM when given 24 h prior to challenge. These animals experienced minimal weight loss, no clinical disease, 100% survival, and reduced lung pathology. Similar clinical outcomes were observed in mice treated up to 3 days prior to infection. P-I-P pre-treatment induced early mRNA and protein expression of key chemokine and cytokine genes, reduced the recruitment of neutrophils and eosinophils, decreased virus titers in the lungs, and modulated the delayed exacerbated nature of PVM disease without any short-term side effects. On day 14 post-infection, P-I-P-treated mice were confirmed to be PVM-free. These results demonstrate the capacity of this formulation to prevent PVM and possibly other viral respiratory infections. P-I-P pre-treatment, consisting of poly(I:C), IDR peptide and PCEP, was tested in the context of PVM infection in mice. P-I-P confers complete protection against lethal PVM infection by reducing clinical signs and immunopathology. P-I-P minimizes viral titers in the lungs reduces the influx of neutrophils and eosinophils into the tissue. P-I-P induces early upregulation of genes involved in host defense without any observable adverse effects. Survivor mice were PVM negative, suggesting that P-I-P mediates the successfully clearance of the virus in vivo.
Collapse
Affiliation(s)
- Elisa C Martinez
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, 107 Wiggins Road, S7N 5E5, Canada; Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, Saskatchewan, 120 Veterinary Road, S7N 5E3, Canada
| | - Ravendra Garg
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, Saskatchewan, 120 Veterinary Road, S7N 5E3, Canada
| | - Pratima Shrivastava
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, Saskatchewan, 120 Veterinary Road, S7N 5E3, Canada
| | - Susantha Gomis
- Department of Veterinary Pathology, Western College of Veterinary Medicine (WCVM), University of Saskatchewan, Saskatoon, Saskatchewan, 52 Campus Drive, S7N 5B4, Canada
| | - Sylvia van Drunen Littel-van den Hurk
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, 107 Wiggins Road, S7N 5E5, Canada; Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, Saskatchewan, 120 Veterinary Road, S7N 5E3, Canada.
| |
Collapse
|
127
|
Tavares LP, Teixeira MM, Garcia CC. The inflammatory response triggered by Influenza virus: a two edged sword. Inflamm Res 2016; 66:283-302. [PMID: 27744631 DOI: 10.1007/s00011-016-0996-0] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 10/03/2016] [Accepted: 10/06/2016] [Indexed: 02/06/2023] Open
Abstract
Influenza A virus (IAV) is a relevant respiratory tract pathogen leading to a great number of deaths and hospitalizations worldwide. Secondary bacterial infections are a very common cause of IAV associated morbidity and mortality. The robust inflammatory response that follows infection is important for the control of virus proliferation but is also associated with lung damage, morbidity and death. The role of the different components of immune response underlying protection or disease during IAV infection is not completely elucidated. Overall, in the context of IAV infection, inflammation is a 'double edge sword' necessary to control infection but causing disease. Therefore, a growing number of studies suggest that immunomodulatory strategies may improve disease outcome without affecting the ability of the host to deal with infection. This review summarizes recent aspects of the inflammatory responses triggered by IAV that are preferentially involved in causing severe pulmonary disease and the anti-inflammatory strategies that have been suggested to treat influenza induced immunopathology.
Collapse
Affiliation(s)
- Luciana P Tavares
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro M Teixeira
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Cristiana C Garcia
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB Universidade Federal de Minas Gerais, Belo Horizonte, Brazil. .,Laboratório de Vírus Respiratórios e do Sarampo, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil, 4365, 21040360, Rio de Janeiro, Brazil.
| |
Collapse
|
128
|
Influenza and Memory T Cells: How to Awake the Force. Vaccines (Basel) 2016; 4:vaccines4040033. [PMID: 27754364 PMCID: PMC5192353 DOI: 10.3390/vaccines4040033] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/27/2016] [Indexed: 12/24/2022] Open
Abstract
Annual influenza vaccination is an effective way to prevent human influenza. Current vaccines are mainly focused on eliciting a strain-matched humoral immune response, requiring yearly updates, and do not provide protection for all vaccinated individuals. The past few years, the importance of cellular immunity, and especially memory T cells, in long-lived protection against influenza virus has become clear. To overcome the shortcomings of current influenza vaccines, eliciting both humoral and cellular immunity is imperative. Today, several new vaccines such as infection-permissive and recombinant T cell inducing vaccines, are being developed and show promising results. These vaccines will allow us to stay several steps ahead of the constantly evolving influenza virus.
Collapse
|
129
|
Talmi-Frank D, Altboum Z, Solomonov I, Udi Y, Jaitin D, Klepfish M, David E, Zhuravlev A, Keren-Shaul H, Winter D, Gat-Viks I, Mandelboim M, Ziv T, Amit I, Sagi I. Extracellular Matrix Proteolysis by MT1-MMP Contributes to Influenza-Related Tissue Damage and Mortality. Cell Host Microbe 2016; 20:458-470. [DOI: 10.1016/j.chom.2016.09.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 06/19/2016] [Accepted: 08/31/2016] [Indexed: 12/22/2022]
|
130
|
Antibody-Mediated Internalization of Infectious HIV-1 Virions Differs among Antibody Isotypes and Subclasses. PLoS Pathog 2016; 12:e1005817. [PMID: 27579713 PMCID: PMC5007037 DOI: 10.1371/journal.ppat.1005817] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 07/19/2016] [Indexed: 12/28/2022] Open
Abstract
Emerging data support a role for antibody Fc-mediated antiviral activity in vaccine efficacy and in the control of HIV-1 replication by broadly neutralizing antibodies. Antibody-mediated virus internalization is an Fc-mediated function that may act at the portal of entry whereby effector cells may be triggered by pre-existing antibodies to prevent HIV-1 acquisition. Understanding the capacity of HIV-1 antibodies in mediating internalization of HIV-1 virions by primary monocytes is critical to understanding their full antiviral potency. Antibody isotypes/subclasses differ in functional profile, with consequences for their antiviral activity. For instance, in the RV144 vaccine trial that achieved partial efficacy, Env IgA correlated with increased risk of HIV-1 infection (i.e. decreased vaccine efficacy), whereas V1-V2 IgG3 correlated with decreased risk of HIV-1 infection (i.e. increased vaccine efficacy). Thus, understanding the different functional attributes of HIV-1 specific IgG1, IgG3 and IgA antibodies will help define the mechanisms of immune protection. Here, we utilized an in vitro flow cytometric method utilizing primary monocytes as phagocytes and infectious HIV-1 virions as targets to determine the capacity of Env IgA (IgA1, IgA2), IgG1 and IgG3 antibodies to mediate HIV-1 infectious virion internalization. Importantly, both broadly neutralizing antibodies (i.e. PG9, 2G12, CH31, VRC01 IgG) and non-broadly neutralizing antibodies (i.e. 7B2 mAb, mucosal HIV-1+ IgG) mediated internalization of HIV-1 virions. Furthermore, we found that Env IgG3 of multiple specificities (i.e. CD4bs, V1-V2 and gp41) mediated increased infectious virion internalization over Env IgG1 of the same specificity, while Env IgA mediated decreased infectious virion internalization compared to IgG1. These data demonstrate that antibody-mediated internalization of HIV-1 virions depends on antibody specificity and isotype. Evaluation of the phagocytic potency of vaccine-induced antibodies and therapeutic antibodies will enable a better understanding of their capacity to prevent and/or control HIV-1 infection in vivo.
Collapse
|
131
|
Furuse Y, Oshitani H. Mechanisms of replacement of circulating viruses by seasonal and pandemic influenza A viruses. Int J Infect Dis 2016; 51:6-14. [PMID: 27569827 DOI: 10.1016/j.ijid.2016.08.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 08/10/2016] [Accepted: 08/21/2016] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND Seasonal influenza causes annual epidemics by the accumulation of antigenic changes. Pandemic influenza occurs through a major antigenic change of the influenza A virus, which can originate from other hosts. Although new antigenic variants of the influenza A virus replace formerly circulating seasonal and pandemic viruses, replacement mechanisms remain poorly understood. METHODS A stochastic individual-based SEIR (susceptible-exposed-infectious-recovered) model with two viral strains (formerly circulating old strain and newly emerged strain) was developed for simulations to elucidate the replacement mechanisms. RESULTS Factors and conditions of virus and host populations affecting the replacement were identified. Replacement is more likely to occur in tropical regions than temperate regions. The magnitude of the ongoing epidemic by the old strain, herd immunity against the old strain, and timing of appearance of the new strain are not that important for replacement. It is probable that the frequency of replacement by a pandemic virus is higher than a seasonal virus because of the high initial susceptibility and high basic reproductive number of the pandemic virus. CONCLUSIONS The findings of this study on replacement mechanisms could lead to a better understanding of virus transmission dynamics and may possibly be helpful in establishing an effective strategy to mitigate the impact of seasonal and pandemic influenza.
Collapse
Affiliation(s)
- Yuki Furuse
- Department of Virology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Japan.
| | - Hitoshi Oshitani
- Department of Virology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Japan
| |
Collapse
|
132
|
Manchanda H, Seidel N, Blaess MF, Claus RA, Linde J, Slevogt H, Sauerbrei A, Guthke R, Schmidtke M. Differential Biphasic Transcriptional Host Response Associated with Coevolution of Hemagglutinin Quasispecies of Influenza A Virus. Front Microbiol 2016; 7:1167. [PMID: 27536272 PMCID: PMC4971777 DOI: 10.3389/fmicb.2016.01167] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 07/13/2016] [Indexed: 01/20/2023] Open
Abstract
Severe influenza associated with strong symptoms and lung inflammation can be caused by intra-host evolution of quasispecies with aspartic acid or glycine in hemagglutinin position 222 (HA-222D/G; H1 numbering). To gain insights into the dynamics of host response to this coevolution and to identify key mechanisms contributing to copathogenesis, the lung transcriptional response of BALB/c mice infected with an A(H1N1)pdm09 isolate consisting HA-222D/G quasispecies was analyzed from days 1 to 12 post infection (p.i). At day 2 p.i. 968 differentially expressed genes (DEGs) were detected. The DEG number declined to 359 at day 4 and reached 1001 at day 7 p.i. prior to recovery. Interestingly, a biphasic expression profile was shown for the majority of these genes. Cytokine assays confirmed these results on protein level exemplarily for two key inflammatory cytokines, interferon gamma and interleukin 6. Using a reverse engineering strategy, a regulatory network was inferred to hypothetically explain the biphasic pattern for selected DEGs. Known regulatory interactions were extracted by Pathway Studio 9.0 and integrated during network inference. The hypothetic gene regulatory network revealed a positive feedback loop of Ifng, Stat1, and Tlr3 gene signaling that was triggered by the HA-G222 variant and correlated with a clinical symptom score indicating disease severity.
Collapse
Affiliation(s)
- Himanshu Manchanda
- Research Group Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell InstituteJena, Germany; Department of Virology and Antiviral Therapy, Jena University HospitalJena, Germany
| | - Nora Seidel
- Department of Virology and Antiviral Therapy, Jena University Hospital Jena, Germany
| | - Markus F Blaess
- Integrated Research and Treatment Center - Center for Sepsis Control and Care, Jena University HospitalJena, Germany; Department of Anaesthesiology and Intensive Care Medicine, Research Unit Experimental Anesthesiology, Jena University HospitalJena, Germany
| | - Ralf A Claus
- Integrated Research and Treatment Center - Center for Sepsis Control and Care, Jena University HospitalJena, Germany; Department of Anaesthesiology and Intensive Care Medicine, Research Unit Experimental Anesthesiology, Jena University HospitalJena, Germany
| | - Joerg Linde
- Research Group Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute Jena, Germany
| | - Hortense Slevogt
- Centre of Innovation Competence (ZIK) Septomics, Jena University Hospital Jena, Germany
| | - Andreas Sauerbrei
- Department of Virology and Antiviral Therapy, Jena University Hospital Jena, Germany
| | - Reinhard Guthke
- Research Group Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute Jena, Germany
| | - Michaela Schmidtke
- Department of Virology and Antiviral Therapy, Jena University Hospital Jena, Germany
| |
Collapse
|
133
|
Abstract
Seasonal and pandemic influenza are the two faces of respiratory infections caused by influenza viruses in humans. As seasonal influenza occurs on an annual basis, the circulating virus strains are closely monitored and a yearly updated vaccination is provided, especially to identified risk populations. Nonetheless, influenza virus infection may result in pneumonia and acute respiratory failure, frequently complicated by bacterial coinfection. Pandemics are, in contrary, unexpected rare events related to the emergence of a reassorted human-pathogenic influenza A virus (IAV) strains that often causes increased morbidity and spreads extremely rapidly in the immunologically naive human population, with huge clinical and economic impact. Accordingly, particular efforts are made to advance our knowledge on the disease biology and pathology and recent studies have brought new insights into IAV adaptation mechanisms to the human host, as well as into the key players in disease pathogenesis on the host side. Current antiviral strategies are only efficient at the early stages of the disease and are challenged by the genomic instability of the virus, highlighting the need for novel antiviral therapies targeting the pulmonary host response to improve viral clearance, reduce the risk of bacterial coinfection, and prevent or attenuate acute lung injury. This review article summarizes our current knowledge on the molecular basis of influenza infection and disease progression, the key players in pathogenesis driving severe disease and progression to lung failure, as well as available and envisioned prevention and treatment strategies against influenza virus infection.
Collapse
Affiliation(s)
- Christin Peteranderl
- Department of Internal Medicine II, University of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
| | - Susanne Herold
- Department of Internal Medicine II, University of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
| | - Carole Schmoldt
- Department of Internal Medicine II, University of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
| |
Collapse
|
134
|
Abstract
Seasonal and pandemic influenza are the two faces of respiratory infections caused by influenza viruses in humans. As seasonal influenza occurs on an annual basis, the circulating virus strains are closely monitored and a yearly updated vaccination is provided, especially to identified risk populations. Nonetheless, influenza virus infection may result in pneumonia and acute respiratory failure, frequently complicated by bacterial coinfection. Pandemics are, in contrary, unexpected rare events related to the emergence of a reassorted human-pathogenic influenza A virus (IAV) strains that often causes increased morbidity and spreads extremely rapidly in the immunologically naive human population, with huge clinical and economic impact. Accordingly, particular efforts are made to advance our knowledge on the disease biology and pathology and recent studies have brought new insights into IAV adaptation mechanisms to the human host, as well as into the key players in disease pathogenesis on the host side. Current antiviral strategies are only efficient at the early stages of the disease and are challenged by the genomic instability of the virus, highlighting the need for novel antiviral therapies targeting the pulmonary host response to improve viral clearance, reduce the risk of bacterial coinfection, and prevent or attenuate acute lung injury. This review article summarizes our current knowledge on the molecular basis of influenza infection and disease progression, the key players in pathogenesis driving severe disease and progression to lung failure, as well as available and envisioned prevention and treatment strategies against influenza virus infection.
Collapse
Affiliation(s)
- Christin Peteranderl
- Department of Internal Medicine II, University of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
| | - Susanne Herold
- Department of Internal Medicine II, University of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
| | - Carole Schmoldt
- Department of Internal Medicine II, University of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
| |
Collapse
|
135
|
Pavlova EL, Zografov NN, Simeonova LS. Comparative study on the antioxidant capacities of synthetic influenza inhibitors and ellagic acid in model systems. Biomed Pharmacother 2016; 83:755-762. [PMID: 27479194 DOI: 10.1016/j.biopha.2016.07.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/09/2016] [Accepted: 07/21/2016] [Indexed: 11/17/2022] Open
Abstract
This study compares the antioxidant capacities in vitro of several synthetic and natural compounds applied and researched for influenza treatment - oseltamivir, isoprinosine, ellagic acid, vitamin E and vitamin C. Three chemical systems are utilized for the generation of reactive oxygen species (ROS) at pH 7.4 and pH 8.5: (1) Fenton's (Fe2++H2O2) for OH and -OH species (2) H2O2 (3) NADH-phenazinemethosulfat, for superoxide radicals (O2-). The kinetics was evaluated by lucigenin-enhanced chemiluminescence. The calculated constants of inhibition k7 describe the antioxidant capacity at the moment of oxidative burst. Their values do not necessarily correspond to the calculated total antioxidant activity. The obtained results revealed that the synthetic anti-influenza drugs (oseltamivir and isoprinosine) as well as ellagic acid possess pronounced scavenging properties mostly against superoxide radicals, comparable and higher than that of traditional natural antioxidants. Quantitative analysis of the antioxidant effects of the examined synthetic substances was performed. The results compared the corresponding effect of the average physiological concentrations and the applied therapeutic antioxidant dose. With these experiments we registered new aspects of their therapeutic activities, due to antioxidant properties against hydroxyl, superoxide radicals and H2O2 oxidation.
Collapse
Affiliation(s)
- Elitsa L Pavlova
- Biophysics & Medical Physics, Sofia University "St. Kliment Ohridski", 5 James Boucher Blvd., 1164 Sofia, Bulgaria.
| | - Nikolay N Zografov
- Biophysics & Medical Physics, Sofia University "St. Kliment Ohridski", 5 James Boucher Blvd., 1164 Sofia, Bulgaria
| | - Lora S Simeonova
- Department of Virology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Georgi Bonchev Str., 1113 Sofia, Bulgaria
| |
Collapse
|
136
|
Depletion of Alveolar Macrophages Does Not Prevent Hantavirus Disease Pathogenesis in Golden Syrian Hamsters. J Virol 2016; 90:6200-6215. [PMID: 27099308 PMCID: PMC4936146 DOI: 10.1128/jvi.00304-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/11/2016] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Andes virus (ANDV) is associated with a lethal vascular leak syndrome in humans termed hantavirus pulmonary syndrome (HPS). The mechanism for the massive vascular leakage associated with HPS is poorly understood; however, dysregulation of components of the immune response is often suggested as a possible cause. Alveolar macrophages are found in the alveoli of the lung and represent the first line of defense to many airborne pathogens. To determine whether alveolar macrophages play a role in HPS pathogenesis, alveolar macrophages were depleted in an adult rodent model of HPS that closely resembles human HPS. Syrian hamsters were treated, intratracheally, with clodronate-encapsulated liposomes or control liposomes and were then challenged with ANDV. Treatment with clodronate-encapsulated liposomes resulted in significant reduction in alveolar macrophages, but depletion did not prevent pathogenesis or prolong disease. Depletion also did not significantly reduce the amount of virus in the lung of ANDV-infected hamsters but altered neutrophil recruitment, MIP-1α and MIP-2 chemokine expression, and vascular endothelial growth factor (VEGF) levels in hamster bronchoalveolar lavage (BAL) fluid early after intranasal challenge. These data demonstrate that alveolar macrophages may play a limited protective role early after exposure to aerosolized ANDV but do not directly contribute to hantavirus disease pathogenesis in the hamster model of HPS. IMPORTANCE Hantaviruses continue to cause disease worldwide for which there are no FDA-licensed vaccines, effective postexposure prophylactics, or therapeutics. Much of this can be attributed to a poor understanding of the mechanism of hantavirus disease pathogenesis. Hantavirus disease has long been considered an immune-mediated disease; however, by directly manipulating the Syrian hamster model, we continue to eliminate individual immune cell types. As the most numerous immune cells present in the respiratory tract, alveolar macrophages are poised to defend against hantavirus infection, but those antiviral responses may also contribute to hantavirus disease. Here, we demonstrate that, like in our prior T and B cell studies, alveolar macrophages neither prevent hantavirus infection nor cause hantavirus disease. While these studies reflect pathogenesis in the hamster model, they should help us rule out specific cell types and prompt us to consider other potential mechanisms of disease in an effort to improve the outcome of human HPS.
Collapse
|
137
|
Marriott AC, Dennis M, Kane JA, Gooch KE, Hatch G, Sharpe S, Prevosto C, Leeming G, Zekeng EG, Staples KJ, Hall G, Ryan KA, Bate S, Moyo N, Whittaker CJ, Hallis B, Silman NJ, Lalvani A, Wilkinson TM, Hiscox JA, Stewart JP, Carroll MW. Influenza A Virus Challenge Models in Cynomolgus Macaques Using the Authentic Inhaled Aerosol and Intra-Nasal Routes of Infection. PLoS One 2016; 11:e0157887. [PMID: 27311020 PMCID: PMC4911124 DOI: 10.1371/journal.pone.0157887] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/06/2016] [Indexed: 01/01/2023] Open
Abstract
Non-human primates are the animals closest to humans for use in influenza A virus challenge studies, in terms of their phylogenetic relatedness, physiology and immune systems. Previous studies have shown that cynomolgus macaques (Macaca fascicularis) are permissive for infection with H1N1pdm influenza virus. These studies have typically used combined challenge routes, with the majority being intra-tracheal delivery, and high doses of virus (> 107 infectious units). This paper describes the outcome of novel challenge routes (inhaled aerosol, intra-nasal instillation) and low to moderate doses (103 to 106 plaque forming units) of H1N1pdm virus in cynomolgus macaques. Evidence of virus replication and sero-conversion were detected in all four challenge groups, although the disease was sub-clinical. Intra-nasal challenge led to an infection confined to the nasal cavity. A low dose (103 plaque forming units) did not lead to detectable infectious virus shedding, but a 1000-fold higher dose led to virus shedding in all intra-nasal challenged animals. In contrast, aerosol and intra-tracheal challenge routes led to infections throughout the respiratory tract, although shedding from the nasal cavity was less reproducible between animals compared to the high-dose intra-nasal challenge group. Intra-tracheal and aerosol challenges induced a transient lymphopaenia, similar to that observed in influenza-infected humans, and greater virus-specific cellular immune responses in the blood were observed in these groups in comparison to the intra-nasal challenge groups. Activation of lung macrophages and innate immune response genes was detected at days 5 to 7 post-challenge. The kinetics of infection, both virological and immunological, were broadly in line with human influenza A virus infections. These more authentic infection models will be valuable in the determination of anti-influenza efficacy of novel entities against less severe (and thus more common) influenza infections.
Collapse
Affiliation(s)
- Anthony C. Marriott
- National Infection Service, Public Health England, Porton Down, Wiltshire, United Kingdom
- * E-mail:
| | - Mike Dennis
- National Infection Service, Public Health England, Porton Down, Wiltshire, United Kingdom
| | - Jennifer A. Kane
- National Infection Service, Public Health England, Porton Down, Wiltshire, United Kingdom
| | - Karen E. Gooch
- National Infection Service, Public Health England, Porton Down, Wiltshire, United Kingdom
| | - Graham Hatch
- National Infection Service, Public Health England, Porton Down, Wiltshire, United Kingdom
| | - Sally Sharpe
- National Infection Service, Public Health England, Porton Down, Wiltshire, United Kingdom
| | - Claudia Prevosto
- National Infection Service, Public Health England, Porton Down, Wiltshire, United Kingdom
| | - Gail Leeming
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Elsa-Gayle Zekeng
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Karl J. Staples
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Graham Hall
- National Infection Service, Public Health England, Porton Down, Wiltshire, United Kingdom
| | - Kathryn A. Ryan
- National Infection Service, Public Health England, Porton Down, Wiltshire, United Kingdom
| | - Simon Bate
- National Infection Service, Public Health England, Porton Down, Wiltshire, United Kingdom
| | - Nathifa Moyo
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Catherine J. Whittaker
- National Infection Service, Public Health England, Porton Down, Wiltshire, United Kingdom
| | - Bassam Hallis
- National Infection Service, Public Health England, Porton Down, Wiltshire, United Kingdom
| | - Nigel J. Silman
- National Infection Service, Public Health England, Porton Down, Wiltshire, United Kingdom
| | - Ajit Lalvani
- Department of Respiratory Infections, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Tom M. Wilkinson
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Julian A. Hiscox
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - James P. Stewart
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Miles W. Carroll
- National Infection Service, Public Health England, Porton Down, Wiltshire, United Kingdom
| |
Collapse
|
138
|
Leist SR, Pilzner C, van den Brand JMA, Dengler L, Geffers R, Kuiken T, Balling R, Kollmus H, Schughart K. Influenza H3N2 infection of the collaborative cross founder strains reveals highly divergent host responses and identifies a unique phenotype in CAST/EiJ mice. BMC Genomics 2016; 17:143. [PMID: 26921172 PMCID: PMC4769537 DOI: 10.1186/s12864-016-2483-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/17/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Influenza A virus is a zoonotic pathogen that poses a major threat to human and animal health. The severe course of influenza infection is not only influenced by viral virulence factors but also by individual differences in the host response. To determine the extent to which the genetic background can modulate severity of an infection, we studied the host responses to influenza infections in the eight genetically highly diverse Collaborative Cross (CC) founder mouse strains. RESULTS We observed highly divergent host responses between the CC founder strains with respect to survival, body weight loss, hematological parameters in the blood, relative lung weight and viral load. Mouse strain was the main factor with highest effect size on body weight loss after infection, demonstrating that this phenotype was highly heritable. Sex represented another significant main effect, although it was less strong. Analysis of survival rates and mean time to death suggested three groups of susceptibility phenotypes: highly susceptible (A/J, CAST/EiJ, WSB/EiJ), intermediate susceptible (C57BL/6J, 129S1/SvImJ, NOD/ShiLtJ) and highly resistant strains (NZO/HlLtJ, PWK/PhJ). These three susceptibility groups were significantly different with respect to death/survival counts. Viral load was significantly different between susceptible and resistant strains but not between intermediate and highly susceptible strains. CAST/EiJ mice showed a unique phenotype. Despite high viral loads in their lungs, CAST/EiJ mice exhibited low counts of infiltrating granulocytes and showed increased numbers of macrophages in the lung. Histological studies of infected lungs and transcriptome analyses of peripheral blood cells and lungs confirmed an abnormal response in the leukocyte recruitment in CAST/EiJ mice. CONCLUSIONS The eight CC founder strains exhibited a large diversity in their response to influenza infections. Therefore, the CC will represent an ideal mouse genetic reference population to study the influence of genetic variation on the susceptibility and resistance to influenza infections which will be important to understand individual variations of disease severity in humans. The unique phenotype combination in the CAST/EiJ strain resembles human leukocyte adhesion deficiency and may thus represent a new mouse model to understand this and related abnormal immune responses to infections in humans.
Collapse
Affiliation(s)
- Sarah R Leist
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig and University of Veterinary Medicine Hannover, Inhoffenstr.7, D-38124, Braunschweig, Hannover, Germany
| | - Carolin Pilzner
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig and University of Veterinary Medicine Hannover, Inhoffenstr.7, D-38124, Braunschweig, Hannover, Germany
| | | | - Leonie Dengler
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig and University of Veterinary Medicine Hannover, Inhoffenstr.7, D-38124, Braunschweig, Hannover, Germany
| | - Robert Geffers
- Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Thijs Kuiken
- Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Rudi Balling
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Heike Kollmus
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig and University of Veterinary Medicine Hannover, Inhoffenstr.7, D-38124, Braunschweig, Hannover, Germany
| | - Klaus Schughart
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig and University of Veterinary Medicine Hannover, Inhoffenstr.7, D-38124, Braunschweig, Hannover, Germany. .,University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
139
|
Kroetz DN, Allen RM, Schaller MA, Cavallaro C, Ito T, Kunkel SL. Type I Interferon Induced Epigenetic Regulation of Macrophages Suppresses Innate and Adaptive Immunity in Acute Respiratory Viral Infection. PLoS Pathog 2015; 11:e1005338. [PMID: 26709698 PMCID: PMC4692439 DOI: 10.1371/journal.ppat.1005338] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 11/21/2015] [Indexed: 01/13/2023] Open
Abstract
Influenza A virus (IAV) is an airborne pathogen that causes significant morbidity and mortality each year. Macrophages (Mϕ) are the first immune population to encounter IAV virions in the lungs and are required to control infection. In the present study, we explored the mechanism by which cytokine signaling regulates the phenotype and function of Mϕ via epigenetic modification of chromatin. We have found that type I interferon (IFN-I) potently upregulates the lysine methyltransferase Setdb2 in murine and human Mϕ, and in turn Setdb2 regulates Mϕ-mediated immunity in response to IAV. The induction of Setdb2 by IFN-I was significantly impaired upon inhibition of the JAK-STAT signaling cascade, and chromatin immunoprecipitation revealed that both STAT1 and interferon regulatory factor 7 bind upstream of the transcription start site to induce expression. The generation of Setdb2LacZ reporter mice revealed that IAV infection results in systemic upregulation of Setdb2 in myeloid cells. In the lungs, alveolar Mϕ expressed the highest level of Setdb2, with greater than 70% lacZ positive on day 4 post-infection. Silencing Setdb2 activity in Mϕ in vivo enhanced survival in lethal IAV infection. Enhanced host protection correlated with an amplified antiviral response and less obstruction to the airways. By tri-methylating H3K9, Setdb2 silenced the transcription of Mx1 and Isg15, antiviral effectors that inhibit IAV replication. Accordingly, a reduced viral load in knockout mice on day 8 post-infection was linked to elevated Isg15 and Mx1 transcript in the lungs. In addition, Setdb2 suppressed the expression of a large number of other genes with proinflammatory or immunomodulatory function. This included Ccl2, a chemokine that signals through CCR2 to regulate monocyte recruitment to infectious sites. Consistently, knockout mice produced more CCL2 upon IAV infection and this correlated with a 2-fold increase in the number of inflammatory monocytes and alveolar Mϕ in the lungs. Finally, Setdb2 expression by Mϕ suppressed IL-2, IL-10, and IFN-γ production by CD4+ T cells in vitro, as well as proliferation in IAV-infected lungs. Collectively, these findings identify Setdb2 as a novel regulator of the immune system in acute respiratory viral infection. IAV causes seasonal epidemics that result in significant morbidity and mortality annually. Less frequently, novel viral strains emerge and are responsible for much larger outbreaks around the globe. In the last pandemic in 2009, an estimated 300,000 people died from IAV infection or secondary complications. Since the virus rapidly evolves, a new vaccine must be developed each year. Since vaccine effectiveness can be highly variable, identifying other therapeutic targets is appealing for the treatment of severe disease in high-risk individuals such as young children, the elderly, and immunocompromised individuals. In this study, we found that the protein Setdb2 regulates the immune response to IAV via an epigenetic mechanism in Mϕ. Inhibition of Setdb2 activity was beneficial for host protection due to an amplified antiviral response, which correlated with accelerated viral clearance and less damage to the lungs. Therefore, targeting Setdb2 may be a powerful therapeutic strategy for treating severe pulmonary disease caused by IAV and potentially other viral pathogens that trigger robust IFN-I production.
Collapse
Affiliation(s)
- Danielle N. Kroetz
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| | - Ronald M. Allen
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Matthew A. Schaller
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Cleyton Cavallaro
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Toshihiro Ito
- Department of Immunology, Nara Medical University, Nara, Japan
| | - Steven L. Kunkel
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
140
|
The 1918 Influenza Virus PB2 Protein Enhances Virulence through the Disruption of Inflammatory and Wnt-Mediated Signaling in Mice. J Virol 2015; 90:2240-53. [PMID: 26656717 DOI: 10.1128/jvi.02974-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 12/01/2015] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED The 1918-1919 influenza pandemic remains the single greatest infectious disease outbreak in the past century. Mouse and nonhuman primate infection models have shown that the 1918 virus induces overly aggressive innate and proinflammatory responses. To understand the response to viral infection and the role of individual 1918 genes on the host response to the 1918 virus, we examined reassortant avian viruses nearly identical to the pandemic 1918 virus (1918-like avian virus) carrying either the 1918 hemagglutinin (HA) or PB2 gene. In mice, both genes enhanced 1918-like avian virus replication, but only the mammalian host adaptation of the 1918-like avian virus through reassortment of the 1918 PB2 led to increased lethality. Through the combination of viral genetics and host transcriptional profiling, we provide a multidimensional view of the molecular mechanisms by which the 1918 PB2 gene drives viral pathogenicity. We demonstrate that 1918 PB2 enhances immune and inflammatory responses concomitant with increased cellular infiltration in the lung. We also show for the first time, that 1918 PB2 expression results in the repression of both canonical and noncanonical Wnt signaling pathways, which are crucial for inflammation-mediated lung regeneration and repair. Finally, we utilize regulatory enrichment and network analysis to define the molecular regulators of inflammation, epithelial regeneration, and lung immunopathology that are dysregulated during influenza virus infection. Taken together, our data suggest that while both HA and PB2 are important for viral replication, only 1918 PB2 exacerbates lung damage in mice infected with a reassortant 1918-like avian virus. IMPORTANCE As viral pathogenesis is determined in part by the host response, understanding the key host molecular driver(s) of virus-mediated disease, in relation to individual viral genes, is a promising approach to host-oriented drug efforts in preventing disease. Previous studies have demonstrated the importance of host adaptive genes, HA and PB2, in mediating disease although the mechanisms by which they do so are still poorly understood. Here, we combine viral genetics and host transcriptional profiling to show that although both 1918 HA and 1918 PB2 are important mediators of efficient viral replication, only 1918 PB2 impacts the pathogenicity of an avian influenza virus sharing high homology to the 1918 pandemic influenza virus. We demonstrate that 1918 PB2 enhances deleterious inflammatory responses and the inhibition of regeneration and repair functions coordinated by Wnt signaling in the lungs of infected mice, thereby promoting virus-associated disease.
Collapse
|
141
|
Zhao C, Qi X, Ding M, Sun X, Zhou Z, Zhang S, Zen K, Li X. Pro-inflammatory cytokine dysregulation is associated with novel avian influenza A (H7N9) virus in primary human macrophages. J Gen Virol 2015; 97:299-305. [PMID: 26644088 DOI: 10.1099/jgv.0.000357] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Since March 2013, more than 500 laboratory-confirmed human H7N9 influenza A virus infection cases have been recorded, with a case fatality rate of more than 30%. Clinical research has shown that cytokine and chemokine dysregulation contributes to the pathogenicity of the H7N9 virus. Here, we investigated cytokine profiles in primary human macrophages infected with the novel H7N9 virus, using cytokine antibody arrays. The levels of several pro-inflammatory cytokines, particularly TNF-α, were increased in H7N9-infected macrophages. Induction of the transcriptional and translational levels of the pro-inflammatory cytokines by H7N9 virus seemed to be intermediate between those induced by highly pathogenic avian H5N1 and pandemic human H1N1 viruses, which were detected by ELISA and real-time quantitative PCR, respectively. Additionally, compared with H5N1, the upregulation of pro-inflammatory cytokines caused by H7N9 infection occurred rapidly but mildly. Our results identified the overall profiles of cytokine and chemokine induction by the H7N9 influenza virus in an in vitro cell-culture model, and could provide potential therapeutic targets for the control of severe human H7N9 disease.
Collapse
Affiliation(s)
- Chihao Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences (NAILS), Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, PR China
| | - Xian Qi
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu 210009, PR China
| | - Meng Ding
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences (NAILS), Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, PR China
| | - Xinlei Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences (NAILS), Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, PR China
| | - Zhen Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences (NAILS), Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, PR China
| | - Shuo Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences (NAILS), Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, PR China
| | - Ke Zen
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences (NAILS), Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, PR China
| | - Xihan Li
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences (NAILS), Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, PR China
| |
Collapse
|
142
|
Tang FSM, Van Ly D, Spann K, Reading PC, Burgess JK, Hartl D, Baines KJ, Oliver BG. Differential neutrophil activation in viral infections: Enhanced TLR-7/8-mediated CXCL8 release in asthma. Respirology 2015; 21:172-9. [PMID: 26477783 PMCID: PMC5324549 DOI: 10.1111/resp.12657] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 07/14/2015] [Accepted: 07/24/2015] [Indexed: 02/06/2023]
Abstract
Background and objective Respiratory viral infections are a major cause of asthma exacerbations. Neutrophils accumulate in the airways and the mechanisms that link neutrophilic inflammation, viral infections and exacerbations are unclear. This study aims to investigate anti‐viral responses in neutrophils from patients with and without asthma and to investigate if neutrophils can be directly activated by respiratory viruses. Methods Neutrophils from peripheral blood from asthmatic and non‐asthmatic individuals were isolated and stimulated with lipopolysaccharide (LPS) (1 μg/mL), f‐met‐leu‐phe (fMLP) (100 nM), imiquimod (3 μg/mL), R848 (1.5 μg/mL), poly I:C (10 μg/mL), RV16 (multiplicity of infection (MOI)1), respiratory syncytial virus (RSV) (MOI1) or influenza virus (MOI1). Cell‐free supernatants were collected after 1 h of neutrophil elastase (NE) and matrix metalloproteinase (MMP)‐9 release, or after 24 h for CXCL8 release. Results LPS, fMLP, imiquimod and R848 stimulated the release of CXCL8, NE and MMP‐9 whereas poly I:C selectively induced CXCL8 release only. R848‐induced CXCL8 release was enhanced in neutrophils from asthmatics compared with non‐asthmatic cells (P < 0.01). RSV triggered the release of CXCL8 and NE from neutrophils, whereas RV16 or influenza had no effect. Conclusion Neutrophils release CXCL8, NE and MMP‐9 in response to viral surrogates with R848‐induced CXCL8 release being specifically enhanced in asthmatic neutrophils. Toll‐like receptor (TLR7/8) dysregulation may play a role in neutrophilic inflammation in viral‐induced exacerbations. We aimed to investigate and compare neutrophil responses to bacterial compounds and viral mimetics as well as compare responses between people with and without asthma. We also investigated neutrophil responses to live respiratory viruses. Here we provide a novel comprehensive comparison showing differential and specific activation in innate immune cells. See Editorial, page 10
Collapse
Affiliation(s)
- Francesca S M Tang
- Woolcock Institute of Medical Research, The University of Sydney, Sydney, New South Wales, Australia.,Discipline of Pharmacology, School of Medical Sciences, Faculty of Medicine, The University of Sydney, Sydney, New South Wales, Australia
| | - David Van Ly
- Woolcock Institute of Medical Research, The University of Sydney, Sydney, New South Wales, Australia.,Genome Integrity Group, The Children's Medical Research Institute, Sydney, New South Wales, Australia
| | - Kirsten Spann
- School of Biomedical Science, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Patrick C Reading
- WHO Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Janette K Burgess
- Woolcock Institute of Medical Research, The University of Sydney, Sydney, New South Wales, Australia.,Discipline of Pharmacology, School of Medical Sciences, Faculty of Medicine, The University of Sydney, Sydney, New South Wales, Australia
| | - Dominik Hartl
- Department of Pediatrics I, University of Tübingen, Tübingen, Germany
| | - Katherine J Baines
- Priority Research Centre for Asthma and Respiratory Disease, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Brian G Oliver
- Woolcock Institute of Medical Research, The University of Sydney, Sydney, New South Wales, Australia.,School of Medical and Molecular Biosciences, University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
143
|
Yu Z, Cheng K, Sun W, Zhang X, Li Y, Wang T, Wang H, Zhang Q, Xin Y, Xue L, Zhang K, Huang J, Yang S, Qin C, Wilker PR, Yue D, Chen H, Gao Y, Xia X. A PB1 T296R substitution enhance polymerase activity and confer a virulent phenotype to a 2009 pandemic H1N1 influenza virus in mice. Virology 2015; 486:180-6. [PMID: 26453960 DOI: 10.1016/j.virol.2015.09.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 09/18/2015] [Accepted: 09/23/2015] [Indexed: 11/27/2022]
Abstract
While the 2009 pandemic H1N1 virus has become established in the human population as a seasonal influenza virus, continued adaptation may alter viral virulence. Here, we passaged a 2009 pandemic H1N1 virus (A/Changchun/01/2009) in mice. Serial passage in mice generated viral variants with increased virulence. Adapted variants displayed enhanced replication kinetics in vitro and vivo. Analysis of the variants genomes revealed 6 amino acid changes in the PB1 (T296R), PA (I94V), HA (H3 numbering; N159D, D225G, and R226Q), and NP (D375N). Using reverse genetics, we found that a PB1-T296R substitution found in all adapted viral variants enhanced viral replication kinetics in vitro and vivo, increased viral polymerase activity in human cells, and was sufficient for enhanced virulence of the 2009 pandemic H1N1 virus in mice. Therefore, we defined a novel influenza pathogenic determinant, providing further insights into the pathogenesis of influenza viruses in mammals.
Collapse
Affiliation(s)
- Zhijun Yu
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute of Academy of Military Medical Sciences, Changchun 130122, China
| | - Kaihui Cheng
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan 250132, China
| | - Weiyang Sun
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute of Academy of Military Medical Sciences, Changchun 130122, China
| | - Xinghai Zhang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute of Academy of Military Medical Sciences, Changchun 130122, China
| | - Yuanguo Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute of Academy of Military Medical Sciences, Changchun 130122, China
| | - Tiecheng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute of Academy of Military Medical Sciences, Changchun 130122, China
| | - Hualei Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute of Academy of Military Medical Sciences, Changchun 130122, China
| | - Qianyi Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Yue Xin
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute of Academy of Military Medical Sciences, Changchun 130122, China
| | - Li Xue
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute of Academy of Military Medical Sciences, Changchun 130122, China
| | - Kun Zhang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute of Academy of Military Medical Sciences, Changchun 130122, China
| | - Jing Huang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute of Academy of Military Medical Sciences, Changchun 130122, China
| | - Songtao Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute of Academy of Military Medical Sciences, Changchun 130122, China
| | - Chuan Qin
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Peter R Wilker
- Department of Microbiology, University of Wisconsin-La Crosse, La Crosse, Wisconsin, 54601, USA
| | - Donghui Yue
- Basic Medical College,Changchun University of Traditional Chinese Medicine, Changchun, 130117, China
| | - Hualan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Yuwei Gao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute of Academy of Military Medical Sciences, Changchun 130122, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Xianzhu Xia
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute of Academy of Military Medical Sciences, Changchun 130122, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China.
| |
Collapse
|
144
|
Meunier I, Morisseau O, Garneau É, Marois I, Cloutier A, Richter MV. Infection with a Mouse-Adapted Strain of the 2009 Pandemic Virus Causes a Highly Severe Disease Associated with an Impaired T Cell Response. PLoS One 2015; 10:e0138055. [PMID: 26381265 PMCID: PMC4575127 DOI: 10.1371/journal.pone.0138055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 08/24/2015] [Indexed: 12/31/2022] Open
Abstract
Despite a relatively low fatality rate, the 2009 H1N1 pandemic virus differed from other seasonal viruses in that it caused mortality and severe pneumonia in the young and middle-aged population (18–59 years old). The mechanisms underlying this increased disease severity are still poorly understood. In this study, a human isolate of the 2009 H1N1 pandemic virus was adapted to the mouse (MAp2009). The pathogenicity of the MAp2009 virus and the host immune responses were evaluated in the mouse model and compared to the laboratory H1N1 strain A/Puerto Rico/8/1934 (PR8). The MAp2009 virus reached consistently higher titers in the lungs over 14 days compared to the PR8 virus, and caused severe disease associated with high morbidity and 85% mortality rate, contrasting with the 0% death rate in the PR8 group. During the early phase of infection, both viruses induced similar pathology in the lungs. However, MAp2009-induced lung inflammation was sustained until the end of the study (day 14), while there was no sign of inflammation in the PR8-infected group by day 10. Furthermore, at day 3 post-infection, MAp2009 induced up to 10- to 40-fold more cytokine and chemokine gene expression, respectively. More importantly, the numbers of CD4+ T cells and virus-specific CD8+ T cells were significantly lower in the lungs of MAp2009-infected mice compared to PR8-infected mice. Interestingly, there was no difference in the number of dendritic cells in the lung and in the draining lymph node. Moreover, mice infected with PR8 or MAp2009 had similar numbers of CCR5 and CXCR3-expressing T cells, suggesting that the impaired T cell response was not due to a lack of chemokine responsiveness or priming of T cells. This study demonstrates that a mouse-adapted virus from an isolate of the 2009 pandemic virus interferes with the adaptive immune response leading to a more severe disease.
Collapse
Affiliation(s)
- Isabelle Meunier
- Pulmonary Division, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke and Centre de Recherche du CHUS, Sherbrooke, Québec, Canada
| | - Olivier Morisseau
- Pulmonary Division, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke and Centre de Recherche du CHUS, Sherbrooke, Québec, Canada
| | - Émilie Garneau
- Pulmonary Division, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke and Centre de Recherche du CHUS, Sherbrooke, Québec, Canada
| | - Isabelle Marois
- Pulmonary Division, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke and Centre de Recherche du CHUS, Sherbrooke, Québec, Canada
| | - Alexandre Cloutier
- Pulmonary Division, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke and Centre de Recherche du CHUS, Sherbrooke, Québec, Canada
| | - Martin V. Richter
- Pulmonary Division, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke and Centre de Recherche du CHUS, Sherbrooke, Québec, Canada
- * E-mail:
| |
Collapse
|
145
|
Differential Susceptibilities of Human Lung Primary Cells to H1N1 Influenza Viruses. J Virol 2015; 89:11935-44. [PMID: 26378172 DOI: 10.1128/jvi.01792-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/09/2015] [Indexed: 01/10/2023] Open
Abstract
UNLABELLED Human alveolar epithelial cells (AECs) and alveolar macrophages (AMs) are the first lines of lung defense. Here, we report that AECs are the direct targets for H1N1 viruses that have circulated since the 2009 pandemic (H1N1pdm09). AMs are less susceptible to H1N1pdm09 virus, but they produce significantly more inflammatory cytokines than AECs from the same donor. AECs form an intact epithelial barrier that is destroyed by H1N1pdm09 infection. However, there is significant variation in the cellular permissiveness to H1N1pdm09 infection among different donors. AECs from obese donors appear to be more susceptible to H1N1pdm09 infection, whereas gender, smoking history, and age do not appear to affect AEC susceptibility. There is also a difference in response to different strains of H1N1pdm09 viruses. Compared to A/California04/09 (CA04), A/New York/1682/09 (NY1682) is more infectious and causes more epithelial barrier injury, although it stimulates less cytokine production. We further determined that a single amino acid residue substitution in NY1682 hemagglutinin is responsible for the difference in infectivity. In conclusion, this is the first study of host susceptibility of human lung primary cells and the integrity of the alveolar epithelial barrier to influenza. Further elucidation of the mechanism of increased susceptibility of AECs from obese subjects may facilitate the development of novel protection strategies against influenza virus infection. IMPORTANCE Disease susceptibility of influenza is determined by host and viral factors. Human alveolar epithelial cells (AECs) form the key line of lung defenses against pathogens. Using primary AECs from different donors, we provided cellular level evidence that obesity might be a risk factor for increased susceptibility to influenza. We also compared the infections of two closely related 2009 pandemic H1N1 strains in AECs from the same donor and identified a key viral factor that affected host susceptibility, the dominance of which may be correlated with disease epidemiology. In addition, primary human AECs can serve as a convenient and powerful model to investigate the mechanism of influenza-induced lung injury and determine the effect of genetic and epigenetic factors on host susceptibility to pandemic influenza virus infection.
Collapse
|
146
|
Aeffner F, Bolon B, Davis IC. Mouse Models of Acute Respiratory Distress Syndrome: A Review of Analytical Approaches, Pathologic Features, and Common Measurements. Toxicol Pathol 2015; 43:1074-92. [PMID: 26296628 DOI: 10.1177/0192623315598399] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is a severe pulmonary reaction requiring hospitalization, which is incited by many causes, including bacterial and viral pneumonia as well as near drowning, aspiration of gastric contents, pancreatitis, intravenous drug use, and abdominal trauma. In humans, ARDS is very well defined by a list of clinical parameters. However, until recently no consensus was available regarding the criteria of ARDS that should be evident in an experimental animal model. This lack was rectified by a 2011 workshop report by the American Thoracic Society, which defined the main features proposed to delineate the presence of ARDS in laboratory animals. These should include histological changes in parenchymal tissue, altered integrity of the alveolar capillary barrier, inflammation, and abnormal pulmonary function. Murine ARDS models typically are defined by such features as pulmonary edema and leukocyte infiltration in cytological preparations of bronchoalveolar lavage fluid and/or lung sections. Common pathophysiological indicators of ARDS in mice include impaired pulmonary gas exchange and histological evidence of inflammatory infiltrates into the lung. Thus, morphological endpoints remain a vital component of data sets assembled from animal ARDS models.
Collapse
Affiliation(s)
- Famke Aeffner
- Flagship Biosciences Inc., Westminster, Colorado, USA
| | - Brad Bolon
- The Ohio State University, College of Veterinary Medicine, Department of Veterinary Biosciences, Columbus, Ohio, USA GEMpath Inc., Longmont, Colorado, USA
| | | |
Collapse
|
147
|
Mapping the pulmonary environment of animals protected from virulent H1N1 influenza infection using the TLR-2 agonist Pam₂Cys. Immunol Cell Biol 2015; 94:169-76. [PMID: 26272554 DOI: 10.1038/icb.2015.81] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/22/2015] [Accepted: 07/22/2015] [Indexed: 01/30/2023]
Abstract
We have previously shown that intranasal administration of the Toll-like receptor-2 agonist, S-(2,3-bis(palmitoyloxy)propyl) cysteine (Pam2Cys), provides immediate and antigen independent protection against challenge with influenza virus. Here we characterize the cellular pulmonary environments of mice which had either been treated with Pam2Cys or placebo and then challenged with influenza virus. We show that Pam2Cys treatment results in the influx of innate immune cells into the lungs and that depletion of phagocytic cells from this influx using clodronate-loaded liposomes caused a reduction in the number of interstitial macrophages and monocytes. This resulted in abolition of the protective effect indicating the importance of this cellular subset in Pam2Cys-mediated protection.
Collapse
|
148
|
Influenza and Bacterial Superinfection: Illuminating the Immunologic Mechanisms of Disease. Infect Immun 2015. [PMID: 26216421 DOI: 10.1128/iai.00298-15] [Citation(s) in RCA: 210] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Seasonal influenza virus infection presents a major strain on the health care system. Influenza virus infection has pandemic potential, which was repeatedly observed during the last century. Severe disease may occur in the young, in the elderly, in those with preexisting lung disease, and in previously healthy individuals. A common cause of severe influenza pathogenesis is superinfection with bacterial pathogens, namely, Staphylococcus aureus and Streptococcus pneumoniae. A great deal of recent research has focused on the immune pathways involved in influenza-induced susceptibility to secondary bacterial pneumonia. Both innate and adaptive antibacterial host defenses are impaired in the context of preceding influenza virus infection. The goal of this minireview is to highlight these findings and synthesize these data into a shared central theme of pathogenesis.
Collapse
|
149
|
Abstract
Influenza A viruses (IAV) are highly contagious pathogens causing dreadful losses to human and animal, around the globe. IAVs first interact with the host through epithelial cells, and the viral RNA containing a 5′-triphosphate group is thought to be the critical trigger for activation of effective innate immunity via pattern recognition receptors-dependent signaling pathways. These induced immune responses establish the antiviral state of the host for effective suppression of viral replication and enhancing viral clearance. However, IAVs have evolved a variety of mechanisms by which they can invade host cells, circumvent the host immune responses, and use the machineries of host cells to synthesize and transport their own components, which help them to establish a successful infection and replication. In this review, we will highlight the molecular mechanisms of how IAV infection stimulates the host innate immune system and strategies by which IAV evades host responses.
Collapse
Affiliation(s)
- Mohsan Ullah Goraya
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Song Wang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Muhammad Munir
- The Pirbright Institute, Ash Road, Pirbright, Woking, GU24 0NF, UK
| | - Ji-Long Chen
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
150
|
Lee YT, Kim KH, Hwang HS, Lee Y, Kwon YM, Ko EJ, Jung YJ, Lee YN, Kim MC, Kang SM. Innate and adaptive cellular phenotypes contributing to pulmonary disease in mice after respiratory syncytial virus immunization and infection. Virology 2015. [PMID: 26196232 DOI: 10.1016/j.virol.2015.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Respiratory syncytial virus (RSV) is the major leading cause of infantile viral bronchiolitis. However, cellular phenotypes contributing to the RSV protection and vaccine-enhanced disease remain largely unknown. Upon RSV challenge, we analyzed phenotypes and cellularity in the lung of mice that were naïve, immunized with formalin inactivated RSV (FI-RSV), or re-infected with RSV. In comparison with naïve and live RSV re-infected mice, the high levels of eosinophils, neutrophils, plasmacytoid and CD11b(+) dendritic cells, and IL-4(+) CD4(+) T cells were found to be contributing to pulmonary inflammation in FI-RSV immune mice despite lung viral clearance. Alveolar macrophages appeared to play differential roles in protection and inflammation upon RSV infection of different RSV immune mice. These results suggest that multiple innate and adaptive immune components differentially contribute to RSV disease and inflammation.
Collapse
Affiliation(s)
- Young-Tae Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Ki-Hye Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Hye Suk Hwang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Youri Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Young-Man Kwon
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Eun-Ju Ko
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Yu-Jin Jung
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Yu-Na Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Min-Chul Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; Animal and Plant Quarantine Agency, 175 Anyangro, Anyangsi, Gyeonggido 430-757, Korea
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; Department of Biology, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|