101
|
Gingras AC, Raught B, Sonenberg N. eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem 2000; 68:913-63. [PMID: 10872469 DOI: 10.1146/annurev.biochem.68.1.913] [Citation(s) in RCA: 1642] [Impact Index Per Article: 65.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Eukaryotic translation initiation factor 4F (eIF4F) is a protein complex that mediates recruitment of ribosomes to mRNA. This event is the rate-limiting step for translation under most circumstances and a primary target for translational control. Functions of the constituent proteins of eIF4F include recognition of the mRNA 5' cap structure (eIF4E), delivery of an RNA helicase to the 5' region (eIF4A), bridging of the mRNA and the ribosome (eIF4G), and circularization of the mRNA via interaction with poly(A)-binding protein (eIF4G). eIF4 activity is regulated by transcription, phosphorylation, inhibitory proteins, and proteolytic cleavage. Extracellular stimuli evoke changes in phosphorylation that influence eIF4F activity, especially through the phosphoinositide 3-kinase (PI3K) and Ras signaling pathways. Viral infection and cellular stresses also affect eIF4F function. The recent determination of the structure of eIF4E at atomic resolution has provided insight about how translation is initiated and regulated. Evidence suggests that eIF4F is also implicated in malignancy and apoptosis.
Collapse
Affiliation(s)
- A C Gingras
- Department of Biochemistry McGill University, Montréal, Québec, Canada.
| | | | | |
Collapse
|
102
|
Abstract
The cocrystal structure of human poly(A)-binding protein (PABP) has been determined at 2.6 A resolution. PABP recognizes the 3' mRNA poly(A) tail and plays critical roles in eukaryotic translation initiation and mRNA stabilization/degradation. The minimal PABP used in this study consists of the N-terminal two RRM-type RNA-binding domains connected by a short linker (RRM1/2). These two RRMs form a continuous RNA-binding trough, lined by an antiparallel beta sheet backed by four alpha helices. The polyadenylate RNA adopts an extended conformation running the length of the molecular trough. Adenine recognition is primarily mediated by contacts with conserved residues found in the RNP motifs of the two RRMs. The convex dorsum of RRM1/2 displays a phylogenetically conserved hydrophobic/acidic portion, which may interact with translation initiation factors and regulatory proteins.
Collapse
Affiliation(s)
- R C Deo
- Laboratories of Molecular Biophysics, The Rockefeller University, New York, New York 10021, USA
| | | | | | | |
Collapse
|
103
|
Jarzembowski JA, Rajagopalan LE, Shin HC, Malter JS. The 5'-untranslated region of GM-CSF mRNA suppresses translational repression mediated by the 3' adenosine-uridine-rich element and the poly(A) tail. Nucleic Acids Res 1999; 27:3660-6. [PMID: 10471734 PMCID: PMC148620 DOI: 10.1093/nar/27.18.3660] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Granulocyte-macrophage colony stimulating factor (GM-CSF) mRNA levels are controlled post-transcriptionally by the 3'-untranslated region (UTR) adenosine-uridine-rich element (ARE). In untransformed, resting cells, the ARE targets GM-CSF mRNA for rapid degradation, thereby significantly suppressing protein expression. We used a rabbit reticulocyte lysate (RRL) cell-free system to examine translational regulation of GM-CSF expression. We uncoupled decay rates from rates of translation by programming the RRL with an excess of mRNAs. Capped, full-length, polyadenyl-ated human GM-CSF mRNA (full-length 5'-UTR AUUUA+A90) and an ARE-modified version (full-length 5'-UTR AUGUA+A90) produced identical amounts of protein. When the 5'-UTR was replaced with an irrelevant synthetic leader sequence (syn 5'-UTR), translation of syn 5'-UTR AUUUA+A90 mRNA was suppressed by >20-fold. Mutation of the ARE or removal of the poly(A) tail relieved this inhibition. Thus, in the absence of a native 5'-UTR, the ARE and poly(A) tail act in concert to block GM-CSF mRNA translation. Substitutions of different regions of the native 5'-UTR revealed that the entire sequence was essential in maintaining the highest rates of translation. However, shorter 10-12 nt contiguous 5'-UTR regions supported 50-60% of maximum translation. The 5'-UTR is highly conserved, suggesting similar regulation in multiple species and in these studies was the dominant element regulating GM-CSF mRNA translation, overriding the inhibitory effects of the ARE and the poly(A) tail.
Collapse
Affiliation(s)
- J A Jarzembowski
- Department of Pathology and Laboratory Medicine, University of Wisconsin Medical School, Madison, WI 53792, USA
| | | | | | | |
Collapse
|
104
|
Abstract
Interaction of the poly(A) binding protein, Pab1p, with mRNA plays an important role in gene expression. This work describes an analysis of pab1 mutants in Saccharomyces cerevisiae. Yeast pab1 mutants were found to be sensitive to elevated concentrations of copper (Cu) and 3-aminotriazole (3-AT) in the growth medium. This phenotype arises because these pab1 mutants underaccumulate mRNA, including the CUP1 and HIS3 mRNAs, the products of which are required for Cu and 3-AT resistance, respectively. To determine the cause of the mRNA underaccumulation, mRNA turnover and production were examined in the pab1-53 mutant. It was found that although the pattern of mRNA decay was altered, and substantial decapping of polyadenylated mRNA could be detected, mRNA was not destabilized in this strain. It was also found that the pab1 mutant was impaired in the production of mRNA. These data show that the decreased level of mRNA in the pab1-53 mutant arises from poor production, and they suggest that yeast Pab1p is involved in an aspect of nuclear mRNA metabolism. They also indicate that deadenylation can be uncoupled from decapping without significant changes in an mRNA's stability, and that this uncoupling can be tolerated by yeast.
Collapse
Affiliation(s)
- J P Morrissey
- Department of Molecular and Cell Biology, University of California at Berkeley 94720, USA
| | | | | | | |
Collapse
|
105
|
Keiper BD, Rhoads RE. Translational recruitment of Xenopus maternal mRNAs in response to poly(A) elongation requires initiation factor eIF4G-1. Dev Biol 1999; 206:1-14. [PMID: 9918691 DOI: 10.1006/dbio.1998.9131] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Xenopus oocytes accumulate maternal mRNAs which are then recruited to ribosomes during meiotic cell cycle progression in response to progesterone and coincident with poly(A) elongation. Prior to stimulation, most protein synthesis ( approximately 70%) does not require intact translation factor eIF4G (B. D. Keiper and R. E. Rhoads, 1997, Nucleic Acids Res. 25, 395-402). In the present study we have addressed the requirement of eIF4G in the recruitment of mRNAs during meiosis. Cleavage of eIF4G by coxsackievirus protease 2A inhibited progesterone-induced meiotic progression in 88% of the oocytes; prevented the recruitment of maternal mRNAs encoding cyclin B1, c-Mos, D7, and B9; and disrupted the association of eIF4G with poly(A)-binding protein. Poly(A) elongation, however, was not inhibited by eIF4G cleavage. Injection of MPF restored meiotic cell cycle progression to >60% of the oocytes but not the recruitment of cyclin B1 or B9 mRNA. Previously recruited maternal mRNAs were removed from polyribosomes following subsequent cleavage of eIF4G, indicating that eIF4G is required both to recruit and also to maintain maternal mRNAs on polyribosomes. The expression of a cleavage-resistant variant of human eIF4G-1 (G486E) significantly restored the ability to synthesize c-Mos in response to progesterone and to translate exogenous beta-globin mRNA, indicating that the inhibition by protease 2A is due to cleavage of eIF4G alone. These results indicate that intact eIF4G is required for the poly(A)-dependent recruitment of several maternal mRNAs (cyclin B1, c-Mos, D7, and B9) during meiotic cell cycle progression but not for the synthesis of most proteins.
Collapse
Affiliation(s)
- B D Keiper
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, 1501 Kings Highway, Shreveport, Louisiana, 71130-3932, USA
| | | |
Collapse
|
106
|
Abstract
Regulation of translation initiation is a central control point in animal cells. We review our current understanding of the mechanisms of regulation, drawing particularly on examples in which the biological consequences of the regulation are clear. Specific mRNAs can be controlled via sequences in their 5' and 3' untranslated regions (UTRs) and by alterations in the translation machinery. The 5'UTR sequence can determine which initiation pathway is used to bring the ribosome to the initiation codon, how efficiently initiation occurs, and which initiation site is selected. 5'UTR-mediated control can also be accomplished via sequence-specific mRNA-binding proteins. Sequences in the 3' untranslated region and the poly(A) tail can have dramatic effects on initiation frequency, with particularly profound effects in oogenesis and early development. The mechanism by which 3'UTRs and poly(A) regulate initiation may involve contacts between proteins bound to these regions and the basal translation apparatus. mRNA localization signals in the 3'UTR can also dramatically influence translational activation and repression. Modulations of the initiation machinery, including phosphorylation of initiation factors and their regulated association with other proteins, can regulate both specific mRNAs and overall translation rates and thereby affect cell growth and phenotype.
Collapse
Affiliation(s)
- N K Gray
- Department of Biochemistry, University of Wisconsin, Madison 53706, USA
| | | |
Collapse
|
107
|
Ioannidis P, Courtis N, Havredaki M, Michailakis E, Tsiapalis CM, Trangas T. The polyadenylation inhibitor cordycepin (3'dA) causes a decline in c-MYC mRNA levels without affecting c-MYC protein levels. Oncogene 1999; 18:117-25. [PMID: 9926926 DOI: 10.1038/sj.onc.1202255] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Study of the distribution of the poly(A) tail length of c-myc mRNA in several cell lines revealed a distinct, prevailing population with short poly(A) tails, derived through sequential deadenylation. To elucidate the possible in vivo function of this distinct short tailed c-myc mRNA population, the polyadenylation inhibitor cordycepin was used. This resulted in a decline in steady state c-myc mRNA levels with the remaining messenger mostly oligoadenylated. However, c-MYC proteins did not follow the reduction of the c-myc mRNA. On the other hand, in cells exposed to physiological agents known to downregulate c-myc expression, the reduction of mRNA steady state levels, was reflected upon c-MYC protein levels. The dissociation between c-myc mRNA and protein levels caused by cordycepin was not due to the stabilization of the c-MYC proteins and was not an indiscriminate effect since in the presence of cordycepin, c-fos mRNA and protein levels concomitantly declined. Our data indicate that under these conditions, a long poly(A) tail is not instrumental for c-myc mRNA translation and furthermore, the discrepancy in the steady state of c-myc mRNA level: c-MYC protein ratio between control cells and cells treated with cordycepin indicates that c-myc mRNA is subjected to translational control.
Collapse
Affiliation(s)
- P Ioannidis
- Papanikolaou Research Center of Oncology, St Savvas Hospital, Athens, Greece
| | | | | | | | | | | |
Collapse
|
108
|
Hotchkiss TL, Nerantzakis GE, Dills SC, Shang L, Read LK. Trypanosoma brucei poly(A) binding protein I cDNA cloning, expression, and binding to 5 untranslated region sequence elements. Mol Biochem Parasitol 1999; 98:117-29. [PMID: 10029314 DOI: 10.1016/s0166-6851(98)00156-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Poly(A) binding protein I (PABPI) is a highly conserved eukaryotic protein that binds mRNA poly(A) tails and functions in the regulation of translational efficiency and mRNA stability. As a first step in our investigation of the role(s) of mRNA poly(A) tails in posttranscriptional gene regulation in Trypanosoma brucei, we have cloned the cDNA encoding PABPI from this organism. The cDNA predicts a protein homologous to PABPI from other organisms and displaying conserved features of these proteins, including four RNA binding domains that span the N-terminal two-thirds of the protein. Comparison of northern blot data with the cDNA sequence indicates an unusually long 3' untranslated region (UTR) of approximately three kilobases. The 5 UTR contains both A-rich and AU repeat regions, the former being a ubiquitous property of PABPI 5' UTRs. T. brucei PABPI, expressed as a glutathione-S-transferase fusion protein, bound to RNA comprised of its full length 5' UTR in UV cross-linking experiments. This suggests that PABPI may play an autoregulatory role in its own expression. Competition experiments indicate that the A-rich region, but not the AU repeats, are involved in this binding.
Collapse
Affiliation(s)
- T L Hotchkiss
- Department of Microbiology and Center for Microbial Pathogenesis, SUNY Buffalo School of Medicine, NY 14214, USA
| | | | | | | | | |
Collapse
|
109
|
Evdokimova VM, Ovchinnikov LP. Translational regulation by Y-box transcription factor: involvement of the major mRNA-associated protein, p50. Int J Biochem Cell Biol 1999; 31:139-49. [PMID: 10216949 DOI: 10.1016/s1357-2725(98)00137-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
p50, the major core protein of messenger ribonucleoprotein particles (mRNPs), is a universal protein found exclusively in association with different mRNA species in the cytoplasm of somatic mammalian cells. Furthermore, p50 is the most abundant and tightly bound protein within both inactive mRNPs and active mRNPs derived from polysomes, although the latter contain a lower level of p50. Recent experiments have revealed that, depending on the p50 to mRNA ratio, p50 may either act as a repressor or an activator of protein synthesis. On the other hand, p50 exhibits about 98% amino acid sequence identity to mammalian transcription factors that bind specifically to Y-box containing DNA. Thus, it is a counterpart of the Y-box binding proteins which are found in bacteria, plants and animals, exhibiting multiple biological activities ranging from transcriptional regulation of a wide variety of genes to 'masking' mRNA activity in germinal cells. This review summarizes our current knowledge of p50 structure and function. It also discusses the biological roles of p50 and related proteins in gene expression and describes the likely mechanisms of their action.
Collapse
Affiliation(s)
- V M Evdokimova
- Institute of Protein Research, Russian Academy of Sciences, Moscow Region, Russia
| | | |
Collapse
|
110
|
Ito T, Tahara SM, Lai MM. The 3'-untranslated region of hepatitis C virus RNA enhances translation from an internal ribosomal entry site. J Virol 1998; 72:8789-96. [PMID: 9765423 PMCID: PMC110295 DOI: 10.1128/jvi.72.11.8789-8796.1998] [Citation(s) in RCA: 154] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Translation of most eukaryotic mRNAs and many viral RNAs is enhanced by their poly(A) tails. Hepatitis C virus (HCV) contains a positive-stranded RNA genome which does not have a poly(A) tail but has a stretch of 98 nucleotides (X region) at the 3'-untranslated region (UTR), which assumes a highly conserved stem-loop structure. This X region binds a polypyrimidine tract-binding protein (PTB), which also binds to the internal ribosome entry site (IRES) in HCV 5'-UTR. These RNA-protein interactions may regulate its translation. We generated a set of HCV RNAs differing only in their 3'-UTRs and compared their translation efficiencies. HCV RNA containing the X region was translated three- to fivefold more than the corresponding RNAs without this region. Mutations that abolished PTB binding in the X region reduced, but did not completely abolish, enhancement in translation. The X region also enhanced translation from another unrelated IRES (from encephalomyocarditis virus RNA), but did not affect the 5'-end-dependent translation of globin mRNA in either monocistronic or bicistronic RNAs. It did not appear to affect RNA stability. The free X region added in trans, however, did not enhance translation, indicating that the translational enhancement by the X region occurs only in cis. These results demonstrate that the highly conserved 3' end of HCV RNA provides a novel mechanism for enhancement of HCV translation and may offer a target for antiviral agents.
Collapse
Affiliation(s)
- T Ito
- Howard Hughes Medical Institute, University of Southern California School of Medicine, Los Angeles, California 90033-1054, USA
| | | | | |
Collapse
|
111
|
Preiss T, Muckenthaler M, Hentze MW. Poly(A)-tail-promoted translation in yeast: implications for translational control. RNA (NEW YORK, N.Y.) 1998; 4:1321-31. [PMID: 9814754 PMCID: PMC1369706 DOI: 10.1017/s1355838298980669] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The cap structure and the poly(A) tail synergistically activate mRNA translation in vivo. Recent work using Saccharomyces cerevisiae spheroplasts and a yeast cell-free translation system revealed that the poly(A) tail can function as an independent promotor for ribosome recruitment, to internal initiation sites within an mRNA. This raises the question of how regulatory upstream open reading frames and translational repressor proteins binding to the 5'UTR can function, as well as how regulated polyadenylation can support faithful activation of protein synthesis. We investigated the function of the regulatory upstream open reading frame 4 from the yeast GCN 4 gene and the effect of IRP-1 binding to an iron-responsive element introduced into the 5' UTR of reporter mRNAs. Both manipulations effectively block cap-dependent translation, whereas ribosome recruitment promoted by the poly(A) tail under non-competitive conditions can efficiently bypass both blocks. We show that the synergistic use of both, the cap structure and the poly-A tail enforced by mRNA competition reinstates the full extent of translational control by both types of 5' UTR regulatory elements. With a view towards regulated polyadenylation, we studied the function of poly(A) tails of defined length on the translation of capped mRNAs. We find that poly(A) tail elongation increases translational efficiency, particularly under competitive conditions. Our results integrate recent findings on the function of the poly(A) tail into an understanding of translational control.
Collapse
MESH Headings
- 5' Untranslated Regions/genetics
- Base Sequence
- Binding, Competitive
- Chloramphenicol O-Acetyltransferase/immunology
- DNA-Binding Proteins
- Fungal Proteins/genetics
- Gene Expression Regulation, Fungal
- Genes, Fungal/genetics
- Iron Regulatory Protein 1
- Iron-Regulatory Proteins
- Iron-Sulfur Proteins/metabolism
- Molecular Sequence Data
- Molecular Weight
- Mutagenesis, Site-Directed
- Open Reading Frames/genetics
- Precipitin Tests
- Protein Biosynthesis/genetics
- Protein Kinases/genetics
- RNA Caps/genetics
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA-Binding Proteins/metabolism
- Regulatory Sequences, Nucleic Acid/genetics
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae Proteins
- Terminator Regions, Genetic/genetics
- Transcription, Genetic
- Uridine
Collapse
Affiliation(s)
- T Preiss
- Gene Expression Programme, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | |
Collapse
|
112
|
Gallie DR. A tale of two termini: a functional interaction between the termini of an mRNA is a prerequisite for efficient translation initiation. Gene 1998; 216:1-11. [PMID: 9714706 DOI: 10.1016/s0378-1119(98)00318-7] [Citation(s) in RCA: 221] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A quarter of century following the prediction that mRNAs are translated in a circular form, recent biochemical and genetic evidence has accumulated to support the idea that communication between the termini of an mRNA is necessary to promote translation initiation. The poly(A)-binding protein (PABP) interacts with the cap-associated eukaryotic initiation factor (eIF) 4G (in yeast and plants) and eIF4B (in plants), a functional consequence of which is to increase the affinity of PABP for poly(A) and to increase the affinity of the cap-binding complex, eIF4F (of which eIF4G is a subunit) for the 5' cap structure. In mammals, PABP interacts with a novel PABP-interacting protein that also binds eIF4A. The interaction between PABP and those initiation factors associated with the 5' terminus of an mRNA may also explain the role of PABP during mRNA turnover, as it protects the 5' cap from attack by Dcp1p, the decapping enzyme. Several of those mRNAs that have evolved functional equivalents to a cap or a poly(A) tail nevertheless require a functional interaction between terminal regulatory elements similar to that observed between the 5' cap and poly(A) tail, suggesting that efficient translation is predicated on communication between largely-separated regulatory elements within an mRNA.
Collapse
Affiliation(s)
- D R Gallie
- Department of Biochemistry, University of California, Riverside, CA 92521-0129, USA.
| |
Collapse
|
113
|
Wells SE, Hillner PE, Vale RD, Sachs AB. Circularization of mRNA by eukaryotic translation initiation factors. Mol Cell 1998; 2:135-40. [PMID: 9702200 DOI: 10.1016/s1097-2765(00)80122-7] [Citation(s) in RCA: 692] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Communication between the 5' cap structure and 3' poly(A) tail of eukaryotic mRNA results in the synergistic enhancement of translation. The cap and poly(A) tail binding proteins, eIF4E and Pab1p, mediate this effect in the yeast S. cerevisiae through their interactions with different parts of the translation factor eIF4G. Here, we demonstrate the reconstitution of an eIF4E/eIF4G/Pab1p complex with recombinant proteins, and show by atomic force microscopy that the complex can circularize capped, polyadenylated RNA. Our results suggest that formation of circular mRNA by translation factors could contribute to the control of mRNA expression in the eukaryotic cell.
Collapse
Affiliation(s)
- S E Wells
- Department of Molecular and Cell Biology, University of California, Berkeley 94720, USA
| | | | | | | |
Collapse
|
114
|
Craig AW, Haghighat A, Yu AT, Sonenberg N. Interaction of polyadenylate-binding protein with the eIF4G homologue PAIP enhances translation. Nature 1998; 392:520-3. [PMID: 9548260 DOI: 10.1038/33198] [Citation(s) in RCA: 291] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the initiation of translation in eukaryotes, binding of the small ribosomal subunit to the messenger RNA results from recognition of the 5' cap structure (m7GpppX) of the mRNA by the cap-binding complex eIF4F. eIF4F is itself a three-subunit complex comprising the cap-binding protein eIF4E, eIF4A, an ATP-dependent RNA helicase, and eIF4G, which interacts with both eIF4A and eIF4E and enhances cap binding by eIF4E. The mRNA 3' polyadenylate tail and the associated poly(A)-binding protein (PABP) also regulate translational initiation, probably by interacting with the 5' end of the mRNA. In yeast and plants, PABP interacts with eIF4G but no such interaction has been reported in mammalian cells. Here, we describe a new human PABP-interacting protein, PAIP-I, whose sequence is similar to the central portion of eIF4G and which interacts with eIF4A. Overexpression of PAIP-1 in COS-7 cells stimulates translation, perhaps by providing a physical link between the mRNA termini.
Collapse
Affiliation(s)
- A W Craig
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
115
|
Preiss T, Hentze MW. Dual function of the messenger RNA cap structure in poly(A)-tail-promoted translation in yeast. Nature 1998; 392:516-20. [PMID: 9548259 DOI: 10.1038/33192] [Citation(s) in RCA: 202] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The messenger RNA 3' poly(A) tail critically affects the initiation and control of translation in eukaryotes. By analogy to elements involved in transcription initiation, the poly(A) tail has been described as a 'translational enhancer' that enhances the 'translational promoter' activity of the mRNA 5'-cap structure. Elongation or shortening of the poly(A) tail regulates translation during development. Here we show, using cell-free and in vivo translation analyses in Saccharomyces cerevisiae, that the poly(A) tail can act as an independent 'translational promoter', delivering ribosomes to uncapped mRNAs even if their 5' end is blocked. When mRNAs compete for ribosome binding, neither the cap structure nor the poly(A) tail alone is enough to drive efficient translation, but together they synergize and direct ribosome entry to the 5' end. The cap structure both promotes ribosome recruitment, together with the poly(A) tail, and tethers recruited ribosomes to the 5' end. Correct choice of translation initiation codons and the function of translational regulators acting on the 5' untranslated region are thus ensured by the functional interaction of the poly(A) tail with the cap structure.
Collapse
Affiliation(s)
- T Preiss
- Gene Expression Programme, European Molecular Biology Laboratory, Heidelberg, Germany
| | | |
Collapse
|
116
|
Abstract
Poly(A) tail has been known to enhance mRNA translation in eukaryotic cells. However, the effect of poly(A) tail in in vitro is rather small. Rabbit reticulocyte lysate (RRL) is widely used for studying translation in vitro. Translation in RRL is typically performed in nuclease-treated lysate in which most of the endogenous mRNA have been removed. In this condition, the difference in the translational efficiency between poly(A)+ and poly(A)- mRNAs is about two-fold. We studied the effect of poly(A) tail on luciferase mRNA translation in nuclease untreated rabbit reticulocyte lysate, in which endogenous globin mRNAs were actively translated. In the case of capped mRNAs, stimulation of translation by poly(A) addition was about 1.5- to 1.6-fold and the effect of the poly(A) length was small. However, in the case of uncapped mRNAs, the addition of poly(A) tail increased luciferase expression over 10-fold. The effect of the poly(A) tail was dependent on its length. The difference in the translational efficiency was not due to the change of mRNA stability. These data indicate that RRL has the potential to translate mRNA in a poly(A) dependent manner.
Collapse
Affiliation(s)
- M Wakiyama
- Institute for Biomolecular Science, Faculty of Science, Gakushuin University, Tokyo, Japan
| | | | | |
Collapse
|
117
|
Fraser SD, Browder LW. Stimulation of translation and cytoplasmic polyadenylation by the Xenopus c-mycI 3'-untranslated region. Differentiation 1997; 62:51-62. [PMID: 9404000 DOI: 10.1046/j.1432-0436.1997.6220051.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Expression of messenger RNA (mRNA) in both embryonic and adult cells may be profoundly influenced by untranslated sequences in the 3'-end. Elements in the 3'-untranslated regions (UTRs) of messengers are known to influence messenger stability, polyadenylation, and translation. We have examined the effects of the 3'-UTR of Xenopus laevis c-mycI (either alone or in combination with the 5'-first exon) on the expression of a chloramphenicol acetyltransferase (CAT) reporter in Xenopus embryos. The Xenopus c-mycI 3'-UTR enhanced messenger translation independent of the 5'-UTR. RNase H analysis indicated that the Xenopus c-mycI 3'-UTR can promote the cytoplasmic polyadenylation of CAT mRNA in embryos. The result suggests that the post-fertilization enhancement of translation caused by the c-mycI 3'-UTR may be a consequence of cytoplasmic polyadenylation. A uridine (U)-rich sequence in the Xenopus c-mycI 3'-UTR that may be responsible for polyadenylation is similar to an element that destabilizes mammalian c-myc transcripts. We discuss the possibility that U-rich sequences may play a dual role by destabilizing growth-related transcripts in adult cells and stimulating their polyadenylation during development, and we propose that a switch in the role of such sequences in adult cells could lead to stabilization of these messengers, increased translation, and abnormal growth control.
Collapse
Affiliation(s)
- S D Fraser
- Department of Biological Sciences, University of Calgary, Alberta, Canada
| | | |
Collapse
|
118
|
Kalapos MP, Paulus H, Sarkar N. Identification of ribosomal protein S1 as a poly(A) binding protein in Escherichia coli. Biochimie 1997; 79:493-502. [PMID: 9451450 DOI: 10.1016/s0300-9084(97)82741-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To elucidate the metabolic function of mRNA polyadenylation in Escherichia coli. we searched for a polyadenylate-binding protein as a potential mediator of the function of the poly(A) moiety. Using a nitrocellulose filter-binding assay and a Northwestern blot technique, a protein in the ribosomal supernatant fraction of E coli was identified and purified to homogeneity. N-terminal sequence analysis yielded a 25-residue sequence which corresponded to the 25 N-terminal amino acids of protein S1, one of the proteins of the E coli 30S ribosomal subunit. Poly(A) binding to S1 protein was inhibited by Mg2+ and Mn2+ and by ATP and stimulated 8-fold by 100 mM KCl. The binding of S1 to poly(A) occurred with an association constant of 3 x 10(6) M-1 and seemed to be only mildly cooperative. Competition studies of the binding of poly(A) and poly(C) to purified S1 protein were consistent with the presence of two polynucleotide binding sites, of which one binds poly(A) five times more strongly than poly(C), whereas the other binds poly(C) 50 times more strongly than poly(A). Poly(A) bound to 30S ribosomal subunits but not to 50S ribosomes. To study possible association of S1 with the poly(A) tracts of E coli mRNA in the process of translation, poly(A) RNA was isolated from polysomes by oligo(dT) cellulose chromatography and the poly(A) RNA with bound protein was eluted either directly or after digestion with RNase T1 and A. When subjected to Western blot analysis with antibody to S1, both poly(A) RNA and isolated poly(A) tracts revealed bound S1 protein. The implications of these results for the possible interaction of poly(A) tracts of mRNA and the translational machinery of E coli are discussed.
Collapse
Affiliation(s)
- M P Kalapos
- Boston Biomedical Research Institute, MA 02114, USA
| | | | | |
Collapse
|
119
|
Crawford EK, Ensor JE, Kalvakolanu I, Hasday JD. The role of 3' poly(A) tail metabolism in tumor necrosis factor-alpha regulation. J Biol Chem 1997; 272:21120-7. [PMID: 9261116 DOI: 10.1074/jbc.272.34.21120] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In unstimulated RAW 264.7 macrophage-like cells, tumor necrosis factor-alpha (TNF-alpha) mRNA was transcribed and accumulated in the cytoplasm, but the TNF-alpha transcripts failed to associate with polysomes, and TNF-alpha protein was not detected. Stimulation with lipopolysaccharide (LPS) induced an increase in TNF-alpha transcription, cytoplasmic TNF-alpha mRNA accumulation, polysome association, and secretion of TNF-alpha protein. This process was associated with a 200-nucleotide increase in the apparent length of the TNF-alpha mRNA. The difference in TNF-alpha mRNA size was caused by marked truncation of the 3' poly(A) tail in unstimulated cells. Fully adenylated TNF-alpha mRNA appeared within 15 min of LPS stimulation. We speculate that removal of the poly(A) tail blocks initiation of TNF-alpha translation in unstimulated macrophages. LPS inactivates this process, allowing synthesis of translatable polyadenylated TNF-alpha mRNA.
Collapse
Affiliation(s)
- E K Crawford
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | |
Collapse
|
120
|
Triana L, Ferreras AC, Cayama E, Correia H, Fraile G, Chakraburtty K, Herrera F. Involvement of a 50-kDa mRNP protein from Saccharomyces cerevisiae in mRNA binding to ribosomes. Arch Biochem Biophys 1997; 344:1-10. [PMID: 9244375 DOI: 10.1006/abbi.1997.0173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A yeast 50-kDa mRNA-binding protein (50mRNP) is found selectively associated with the 48S and 80S initiation complexes. This protein is structurally related to the translational elongation factor EF-1alpha. The protein reacts with antibodies directed against EF-1alpha and, similarly, EF-1alpha recognizes antibodies against the 50mRNP protein. This is evidence that they share at least one epitope which allows a similar antigenic behavior. In addition, both proteins show similar cleavage patterns upon treatment with the endoproteinase Lys-C. A murine antibody raised against 50mRNP inhibits both 48S and 80S initiation complex formation. The inhibitory effect is relieved by preincubating anti-50mRNP with EF-1alpha. Antibody to EF-1alpha manifests a similar inhibitory pattern for the formation of 48S and 80S complexes. These data strongly suggest that 50mRNP is an EF-1alpha-like polypeptide essential for the formation of the above complexes.
Collapse
Affiliation(s)
- L Triana
- Centro de Investigaciones Biomédicas (BIOMED), Facultad de Ciencias dela Salud, Universidad de Carabobo, Maracay, Venezuela
| | | | | | | | | | | | | |
Collapse
|
121
|
Smith BL, Gallie DR, Le H, Hansma PK. Visualization of poly(A)-binding protein complex formation with poly(A) RNA using atomic force microscopy. J Struct Biol 1997; 119:109-17. [PMID: 9245750 DOI: 10.1006/jsbi.1997.3864] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Poly(A)-binding protein (PABP) is an RNA-binding protein that binds specifically to the poly(A) tail of messenger RNAs in eukaryotes. The PABP/poly(A) tail complex has been implicated as being important in promoting the efficient initiation of translation as well as in maintaining the integrity of the mRNA. PABP binds poly(A) cooperatively with a packing density of one PABP molecule per 25 adenosine residues. We have investigated the complexes formed between purified PABP and poly(A) RNA using atomic force microscopy (AFM). PABP alone was observed to be primarily in a monomer form with a height of 1.0 +/- 0.2 nm. Following binding to poly(A), PABP appeared to be present in variable size complexes that bound lengthwise along the RNA. This size of the PABP/poly(A) complex appeared to be maximal, suggesting that PABP binding to poly(A) may be self-limiting. Poly(A) RNA alone appeared to contain a knob-like structure that largely disappeared once PABP was bound. The use of AFM has therefore provided potential new insights into the complexes formed by this RNA-binding protein.
Collapse
Affiliation(s)
- B L Smith
- Department of Physics, University of California, Santa Barbara 93106, USA.
| | | | | | | |
Collapse
|
122
|
Le H, Tanguay RL, Balasta ML, Wei CC, Browning KS, Metz AM, Goss DJ, Gallie DR. Translation initiation factors eIF-iso4G and eIF-4B interact with the poly(A)-binding protein and increase its RNA binding activity. J Biol Chem 1997; 272:16247-55. [PMID: 9195926 DOI: 10.1074/jbc.272.26.16247] [Citation(s) in RCA: 212] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The 5'-cap and the poly(A) tail act synergistically to increase the translational efficiency of eukaryotic mRNAs, which suggests that these two mRNA elements communicate during translation. We report here that the cap-associated eukaryotic initiation factors (eIFs), i. e. the two isoforms of the cap-binding complex (eIF-4F and eIF-iso4F) and eIF-4B, bind to the poly(A)-binding protein (PABP) both in the presence and absence of poly(A) RNA. The interactions between PABP and eIF-4F, eIF-iso4F, and eIF-4B were measured in the absence of poly(A) RNA using far Western analysis and confirmed by direct fluorescence titration studies. The functional consequence of the interaction between these initiation factors and PABP was examined using RNA binding assays and RNA mobility shift analysis. eIF-4F, eIF-iso4F, and eIF-4B promoted PABP activity through a shift in its equilibrium affinity for poly(A). eIF-iso4G, the large subunit of eIF-iso4F, was the subunit responsible for the interaction between eIF-iso4F and PABP and was the subunit that promoted PABP RNA binding activity. Truncation analysis of eIF-iso4G indicated that a domain close to its N-terminal end appeared to be involved in binding PABP. These results suggest that the interaction between PABP and eIF-4B and eIF-iso4G may be involved in mediating the functional co-dependence observed between the cap and the poly(A) tail during translation.
Collapse
Affiliation(s)
- H Le
- Department of Biochemistry, University of California, Riverside, California 92521-0129, USA
| | | | | | | | | | | | | | | |
Collapse
|
123
|
Sachs AB, Sarnow P, Hentze MW. Starting at the beginning, middle, and end: translation initiation in eukaryotes. Cell 1997; 89:831-8. [PMID: 9200601 DOI: 10.1016/s0092-8674(00)80268-8] [Citation(s) in RCA: 553] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- A B Sachs
- Department of Molecular and Cell Biology, University of California at Berkeley, 94720, USA
| | | | | |
Collapse
|
124
|
LaForge KS, Ho A, Kreek MJ. Distribution and polysome association of full-length and 3' truncated preproenkephalin mRNA in the guinea-pig brain. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 46:169-76. [PMID: 9191091 DOI: 10.1016/s0169-328x(96)00299-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The preproenkephalin gene is expressed in the mammalian central and peripheral nervous system as well as in other tissues, including the pituitary, adrenal medulla, lymphocytes, and reproductive and digestive systems. In the guinea-pig brain, preproenkephalin mRNA transcripts are cleaved at a specific site located in the 3' untranslated region. We used a solution hybridization RNAse protection assay to measure total levels of preproenkephalin mRNA and to determine the ratio of full-length to truncated forms in the pituitary and 12 brain regions of the guinea-pig. The overall distribution of preproenkephalin mRNA was found to be similar to that observed in other species in which it has been measured, with the highest levels of expression located in the caudate putamen and nucleus accumbens. The 3' truncated form was found throughout the brain in varying levels depending on the region. In nine regions examined, levels of the shorter form varied between 35 and 59% of total preproenkephalin mRNA content. The cerebellum and pons/medulla contained 17% each. In the pituitary, the only non-brain tissue studied, the truncated form constituted only 4% of total preproenkephalin mRNA. No correlation between absolute mRNA levels and the distribution between the two forms was observed. Both the full-length and 3' truncated mRNA forms were associated with polysomes isolated from the guinea-pig caudate putamen by sucrose density gradient centrifugation, suggesting that both mRNA forms may be actively translated. The distribution between the two forms, however, was different on the polysomal and dissociated monosomal gradients: the polysomal preproenkephalin mRNA contained a higher proportion of the full-length form whereas the monosomal fractions contained slightly more of the truncated form. This discontinuity in the amount of the two forms between polysomal and non-polysomal mRNA may suggest that the full-length form is more readily incorporated into polysomes.
Collapse
Affiliation(s)
- K S LaForge
- Rockefeller University, New York, NY 10021, USA.
| | | | | |
Collapse
|
125
|
Yano T, Kobayashi A, Kurata S, Natori S. Purification and characterisation of cathepsin B mRNA 3'-untranslated-region-binding protein (CBBP), a protein that represses cathepsin B mRNA translation. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 245:260-5. [PMID: 9151951 DOI: 10.1111/j.1432-1033.1997.00260.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We reported that the 3'-untranslated region (3'-UTR) of cathepsin B mRNA of Sarcophaga peregrina (flesh fly) is necessary for the repression of its translation, and detected the 3'-UTR-binding protein in lysates of larval hemocytes in which cathepsin B mRNA translation was repressed [Yano, T., Kurata, S. & Natori, S. (1995) Eur. J. Biochem. 234, 39-43]. In this study, we purified the 3'-UTR-binding protein from an embryonic cell line of Sarcophaga. The purified protein (CBBP) was found to repress cathepsin B mRNA translation in a rabbit reticulocyte lysate. We found that the CBBP contents of the hemocytes did not change during metamorphosis, although the cathepsin B mRNA became translatable only at the pupal stage. Moreover, we found that pupal, but not larval hemocytes, contained a factor that inhibited the binding of CBBP to the 3'-UTR. A regulatory mechanism of cathepsin B expression in Sarcophaga hemocytes is discussed.
Collapse
Affiliation(s)
- T Yano
- Faculty of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Japan
| | | | | | | |
Collapse
|
126
|
Abstract
The cytoplasmic life of an mRNA revolves around the regulation of its localization, translation and stability. Interactions between the two ends of the mRNA may integrate translation and mRNA turnover. Regulatory elements in the region between the termination codon and poly(A) tail - the 3' untranslated region - have been identified in a wide variety of systems, as have been some of the key players with which these elements interact.
Collapse
Affiliation(s)
- M Wickens
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, 53706, USA.
| | | | | |
Collapse
|
127
|
Proweller A, Butler JS. Ribosome concentration contributes to discrimination against poly(A)- mRNA during translation initiation in Saccharomyces cerevisiae. J Biol Chem 1997; 272:6004-10. [PMID: 9038222 DOI: 10.1074/jbc.272.9.6004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Inactivation of Saccharomyces cerevisiae poly(A) polymerase in a strain bearing the temperature-sensitive lethal pap1-1 mutation results in the synthesis of poly(A)- mRNAs that initiate translation with surprising efficiency. Translation of poly(A)- mRNAs after polyadenylation shut-off might result from an increase in the ratio of ribosomes and associated translation factors to mRNA, caused by the inability of poly(A)- mRNAs to accumulate to normal levels. To test this hypothesis, we used ribosomal subunit protein gene mutations to decrease either 40 or 60 S ribosomal subunit concentrations in strains carrying the pap1-1 mutation. Polyadenylation shut-off in such cells results in a nearly normal ratio of ribosomes to mRNA as revealed by polyribosome sedimentation analysis. Ribonuclease protection and Northern blot analyses showed that a significant percentage of poly(A)-deficient and poly(A)- mRNA associate with smaller polyribosomes compared with cells with normal ribosome levels. Analysis of the ratio of poly(A)-deficient and poly(A)- forms of a specific mRNA showed relatively more poly(A)- mRNA sedimenting with 20-60 S complexes than do poly(A)+ forms, suggesting a block in an early step of the translation initiation of the poly(A)- transcripts. These findings support models featuring the poly(A) tail as an enhancer of translation and suggest that the full effect of a poly(A) tail on the initiation strength of a mRNA may require competition for a limited number of free ribosomes or translation factors.
Collapse
Affiliation(s)
- A Proweller
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | |
Collapse
|
128
|
Abstract
The 3'-ends of both prokaryotic and eukaryotic mRNA are polyadenylated, but the poly(A) tracts of prokaryotic mRNA are generally shorter, ranging from 15 to 60 adenylate residues and associated with only 2-60% of the molecules of a given mRNA species. The sites of polyadenylation of bacterial mRNA are diverse and include the 3'-ends of primary transcripts, the sites of endonucleolytic processing in the 3' untranslated and intercistronic regions, and sites within the coding regions of mRNA degradation products. The diversity of polyadenylation sites suggests that mRNA polyadenylation in prokaryotes is a relatively indiscriminate process that can occur at all mRNA's 3'-ends and does not require specific consensus sequences as in eukaryotes. Two poly(A) polymerases have been identified in Escherichia coli. They are encoded by unlinked genes, neither of which is essential for growth, suggesting significant functional overlap. Polyadenylation promotes the degradation of a regulatory RNA that inhibits the replication of bacterial plasmids and may play a similar role in the degradation of mRNA. However, under certain conditions, poly(A) tracts may lead to mRNA stabilization. Their ability to bind S1 ribosomal protein suggests that poly(A) tracts may also play a role in mRNA translation.
Collapse
Affiliation(s)
- N Sarkar
- Boston Biomedical Research Institute, Massachusetts 02114, USA.
| |
Collapse
|
129
|
Osborne HB, Richter JD. Translational control by polyadenylation during early development. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 1997; 18:173-98. [PMID: 8994265 DOI: 10.1007/978-3-642-60471-3_8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
130
|
Virtanen A, Aström J. Function and characterization of poly(A)-specific 3' exoribonucleases. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 1997; 18:199-220. [PMID: 8994266 DOI: 10.1007/978-3-642-60471-3_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- A Virtanen
- Department of Medical Genetics, Uppsala University, Sweden
| | | |
Collapse
|
131
|
Abstract
The effect of increasing the length of the 3'-untranslated region (UTR) on expression of luciferase mRNA was examined in transiently transfected carrot protoplasts. The effect of the 3'-UTR on both poly(A)- and poly(A)+ mRNA was examined. A nested set of constructs in which the 3'-UTR increased from 4 to 104 bases was generated by the introduction and reiteration of a 20 base sequence downstream of the luc stop codon. For poly(A)- mRNA, there was a consistent increase in expression when the length of the 3'-UTR was increased from 4 to 104 bases. For poly(A)+ mRNA, expression increased 18-fold when the length of the 3'-UTR was increased from 7 to 27 bases. Further increases in the length of the 3'-UTR did not affect expression. The increase in expression was largely due to an increase in translational efficiency. These data suggest that the length of the 3'-UTR plays an important role in determining the extent to which a poly(A) tail can stimulate the translation of an mRNA.
Collapse
Affiliation(s)
- R L Tanguay
- Department of Biochemistry, University of California, Riverside 92521-0129, USA
| | | |
Collapse
|
132
|
Abstract
Translation processes in plants are very similar to those in other eukaryotic organisms and can in general be explained with the scanning model. Particularly among plant viruses, unconventional mRNAs are frequent, which use modulated translation processes for their expression: leaky scanning, translational stop codon readthrough or frameshifting, and transactivation by virus-encoded proteins are used to translate polycistronic mRNAs; leader and trailer sequences confer (cap-independent) efficient ribosome binding, usually in an end-dependent mechanism, but true internal ribosome entry may occur as well; in a ribosome shunt, sequences within an RNA can be bypassed by scanning ribosomes. Translation in plant cells is regulated under conditions of stress and during development, but the underlying molecular mechanisms have not yet been determined. Only a small number of plant mRNAs, whose structure suggests that they might require some unusual translation mechanisms, have been described.
Collapse
Affiliation(s)
- J Fütterer
- Institute of Plant Sciences, ETHZ, Zürich, Switzerland
| | | |
Collapse
|
133
|
Hensold JO, Barth-Baus D, Stratton CA. Inducers of erythroleukemic differentiation cause messenger RNAs that lack poly(A)-binding protein to accumulate in translationally inactive, salt-labile 80 S ribosomal complexes. J Biol Chem 1996; 271:23246-54. [PMID: 8798522 DOI: 10.1074/jbc.271.38.23246] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Translation has an established role in the regulation of cell growth. Posttranslational modification of translation initiation and elongation factors or regulation of mRNA polyadenylation represent common means of regulating translation in response to mitogenic or developmental signals. Induced differentiation of Friend virus-transformed erythroleukemia cells is accompanied by a rapid decrease in the translation rate of these cells. Although inducers do not alter initiation factor modifications, characterization of their effect on mRNA translation provides evidence that this is mediated by the poly(A)-binding protein (PABP). Inducer exposure results in an increase in the amount of mRNA that sediments at 80 S and a decrease in the amount in polysomes. Although these 80 S ribosomes have characteristics previously attributed to "vacant ribosomal couples," including lability in 500 mM KCl and an inability to incorporate amino acids into protein, we provide evidence that these 80 S complexes are not vacant but contain mRNA that is stably bound to the 40 S subunit, whereas the 60 S subunit is dissociated from the complex by high salt. The absence of eukaryotic initiation factor 2 from these complexes suggests that translation has proceeded through subunit joining. Immunoblotting demonstrates that the mRNAs in these 80 S ribosomal complexes do not contain bound PABP and that this protein is found to be almost exclusively associated with translating polysomes. These data suggest that the PABP plays a role in the accumulation of these 80 S ribosomal.mRNA complexes and may facilitate the formation of translationally active salt-stable ribosomes.
Collapse
Affiliation(s)
- J O Hensold
- The University/Ireland Cancer Center, Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | |
Collapse
|
134
|
Belostotsky DA, Meagher RB. A pollen-, ovule-, and early embryo-specific poly(A) binding protein from Arabidopsis complements essential functions in yeast. THE PLANT CELL 1996; 8:1261-1275. [PMID: 8776896 PMCID: PMC161239 DOI: 10.1105/tpc.8.8.1261] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Poly(A) tails of eukaryotic mRNAs serve as targets for regulatory proteins affecting mRNA stability and translation. Differential mRNA polyadenylation and deadenylation during gametogenesis and early development are now widely recognized as mechanisms of translational regulation in animals, but they have not been observed in plants. Here, we report that the expression of the PAB5 gene encoding one of the poly(A) binding proteins (PABPs) in Arabidopsis is restricted to pollen and ovule development and early embryogenesis. Furthermore, PAB5 is capable of rescuing a PABP-deficient yeast strain by partially restoring both poly(A) shortening and translational initiation functions of PABP. However, PAB5 did not restore the linkage of deadenylation and decapping, thus demonstrating that this function of PABP is not essential for viability. Also, like endogenous PABP, PAB5 expressed in yeast demonstrated genetic interaction with a recently characterized yeast protein SIS1, which is also involved in translational initiation. We propose that PAB5 encodes a post-transcriptional regulatory factor acting through molecular mechanisms similar to those reported for yeast PABP. This factor may have evolved further to post-transcriptionally regulate plant sexual reproduction and early development.
Collapse
Affiliation(s)
- D A Belostotsky
- Department of Genetics, University of Georgia, Athens 30602-7223, USA
| | | |
Collapse
|
135
|
Milland J, Christiansen D, Thorley BR, McKenzie IF, Loveland BE. Translation is enhanced after silent nucleotide substitutions in A+T- rich sequences of the coding region of CD46 cDNA. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 238:221-30. [PMID: 8665941 DOI: 10.1111/j.1432-1033.1996.0221q.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Specific sequences in the coding region of CD46 (membrane cofactor protein) transcripts have been shown to have a marked effect on translation. Two A+T-rich regions of CD46 cDNA were altered by mutation without changing the CD46 amino acid sequence (silent nucleotide substitution). In one region, the A+T content was reduced from 78% to 55% and in the other a putative polyadenylation addition sequence was disrupted. In each example, mutated sequences transfected into COS-7 cells produced significantly more soluble or cell surface protein (up to a 20-fold increase) than wild-type sequences. The amount of cellular plasmid DNA and CD46 mRNA was not increased, suggesting that the effect was not due to increased transfection efficiency, or transcript synthesis or stability. Biosynthetically labelled transfected cells showed an increase in translation rate but cell-free in vitro translation studies demonstrated that wild-type and mutated transcripts were translated with similar efficiency. The data show that translation of CD46 is affected by specific mRNA coding sequences, 400-540 bases from the initiation codon, and suggest that these sequences require the structural integrity of the cell to exert their effect.
Collapse
Affiliation(s)
- J Milland
- Austin Research Institute, Heidelberg, Australia
| | | | | | | | | |
Collapse
|
136
|
Proweller A, Butler JS. Ribosomal association of poly(A)-binding protein in poly(A)-deficient Saccharomyces cerevisiae. J Biol Chem 1996; 271:10859-65. [PMID: 8631901 DOI: 10.1074/jbc.271.18.10859] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Poly(A)-binding protein, the most abundant eukaryotic mRNP protein, is known primarily for its association with polyadenylate tails of mRNA. In the yeast, Saccharomyces cerevisiae, this protein (Pabp) was found to be essential for viability and has been implicated in models featuring roles in mRNA stability and as an enhancer of translation initiation. Although the mechanism of action is unknown, it is thought to require an activity to bind poly(A) tails and an additional capacity for an interaction with 60 S ribosomal subunits, perhaps via ribosomal protein L46 (Rpl46). We have found that a significant amount of Pabp in wild-type cells is not associated with polyribosome complexes. The remaining majority, which is found in these complexes, maintains its association even in yeast cells deficient in polyadenylated mRNA and/or Rpl46. These observations suggest that Pabp may not require interaction with poly(A) tails during translation. Further treatment of polyribosome lysates with agents known to differentially disrupt components of polyribosomes indicated that Pabp may require contact with some RNA component of the polyribosome, which could be either non-poly(A)-rich sequences of the translated mRNA or possibly a component of the ribosome. These findings suggest that Pabp may possess the ability to bind to ribosomes independently of its interaction with poly(A). We discuss these conclusions with respect to current models suggesting a multifunctional binding capacity of Pabp.
Collapse
Affiliation(s)
- A Proweller
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, New York 14642, USA
| | | |
Collapse
|
137
|
Nakata PA, Okita TW. Cis-elements important for the expression of the ADP-glucose pyrophosphorylase small-subunit are located both upstream and downstream from its structural gene. MOLECULAR & GENERAL GENETICS : MGG 1996; 250:581-92. [PMID: 8676861 DOI: 10.1007/bf02174446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
ADP-glucose pyrophosphorylase (AGP) is a key regulatory enzyme in the biosynthesis of starch in higher plants. Previous studies have suggested that, unlike other plants that display tissue-specific AGP genes, potato expresses the same AGP small-subunit gene (sAGP) in multiple tissues. This view was confirmed by the spatial patterns of expression of the sAGP gene in transgenic potato plants observed when a promoter-dependent-beta-glucuronidase (beta-GUS) system was used. sAGP-beta-GUS chimeric gene fusions were expressed at high levels in tubers and in many other starch-containing cells throughout the plant. Deletional analysis of the 5'-upstream region of sAGP revealed that the observed spatial patterns of expression were due to different regions of the promoter of sAGP functioning in combination to confer cell- and organ-specific patterns of expression. Depending on the tissue examined, the patterns of reporter-gene expression were enhanced, suppressed, or altered when the 3'-nopaline-synthase terminator was replaced by the 3'-flanking sequence of sAGP. The observed cellular expression patterns of sAGP only partially overlap with the reported expression patterns of the major large-subunit gene (lAGP) in leaves. Since AGP is a heterotetrameric enzyme, composed of two sAGP and two lAGP subunits, this difference in the cellular expression patterns as well as quantitative differences in expression of the two AGP genes may account for the observed post-transcriptional regulation, i.e., relatively high levels of transcript but low levels of sAGP subunit in leaves.
Collapse
Affiliation(s)
- P A Nakata
- Department of Biochemistry/Biophysics, Washington State University, Pullman, Washington 99164-6340, USA
| | | |
Collapse
|
138
|
Abstract
It is becoming increasingly apparent that translational control plays an important role in the regulation of gene expression in eukaryotic cells. Most of the known physiological effects on translation are exerted at the level of polypeptide chain initiation. Research on initiation of translation over the past five years has yielded much new information, which can be divided into three main areas: (a) structure and function of initiation factors (including identification by sequencing studies of consensus domains and motifs) and investigation of protein-protein and protein-RNA interactions during initiation; (b) physiological regulation of initiation factor activities and (c) identification of features in the 5' and 3' untranslated regions of messenger RNA molecules that regulate the selection of these mRNAs for translation. This review aims to assess recent progress in these three areas and to explore their interrelationships.
Collapse
Affiliation(s)
- V M Pain
- School of Biological Sciences, University of Sussex, Brighton, UK
| |
Collapse
|
139
|
Abstract
In Drosophila, the primary determinant of anterior pattern is the gradient morphogen bicoid (bcd), a homeodomain protein that binds DNA and transcriptionally activates target genes at different threshold concentrations. Here we present evidence that bcd also binds RNA and acts as a translational repressor to generate an opposing gradient of the homeodomain protein caudal (cad). RNA binding by bcd seems to involve direct interactions between the bcd homeodomain and discrete target sequences within the 3' untranslated region of the cad messenger RNA and to block the initiation of cad translation.
Collapse
Affiliation(s)
- J Dubnau
- Howard Hughes Medical Research Institute, Department of Genetics and Development, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | |
Collapse
|
140
|
Wormington M, Searfoss AM, Hurney CA. Overexpression of poly(A) binding protein prevents maturation-specific deadenylation and translational inactivation in Xenopus oocytes. EMBO J 1996; 15:900-9. [PMID: 8631310 PMCID: PMC450287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The translational regulation of maternal mRNAs is the primary mechanism by which stage-specific programs of protein synthesis are executed during early development. Translation of a variety of maternal mRNAs requires either the maintenance or cytoplasmic elongation of a 3' poly(A) tail. Conversely, deadenylation results in translational inactivation. Although its precise function remains to be elucidated, the highly conserved poly(A) binding protein I (PABP) mediates poly(A)-dependent events in translation initiation and mRNA stability. Xenopus oocytes contain less than one PABP per poly(A) binding site suggesting that the translation of maternal mRNAs could be either limited by or independent of PABP. In this report, we have analyzed the effects of overexpressing PABP on the regulation of mRNAs during Xenopus oocyte maturation. Increased levels of PABP prevent the maturation-specific deadenylation and translational inactivation of maternal mRNAS that lack cytoplasmic polyadenylation elements. Overexpression of PABP does not interfere with maturation-specific polyadenylation, but reduces the recruitment of some mRNAs onto polysomes. Deletion of the C-terminal basic region and a single RNP motif from PABP significantly reduces both its binding to polyadenylated RNA in vivo and its ability to prevent deadenylation. In contrast to a yeast PABP-dependent poly(A) nuclease, PABP inhibits Xenopus oocyte deadenylase in vitro. These results indicate that maturation-specific deadenylation in Xenopus oocytes is facilitated by a low level of PABP consistent with a primary function for PABP to confer poly(A) stability.
Collapse
Affiliation(s)
- M Wormington
- Department of Biology, University of Virginia, Charlottesville 22903, USA
| | | | | |
Collapse
|
141
|
Hann LE, Gehrke L. mRNAs containing the unstructured 5' leader sequence of alfalfa mosaic virus RNA 4 translate inefficiently in lysates from poliovirus-infected HeLa cells. J Virol 1995; 69:4986-93. [PMID: 7609069 PMCID: PMC189315 DOI: 10.1128/jvi.69.8.4986-4993.1995] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Poliovirus infection is accompanied by translational control that precludes translation of 5'-capped mRNAs and facilitates translation of the uncapped poliovirus RNA by an internal initiation mechanism. Previous reports have suggested that the capped alfalfa mosaic virus coat protein mRNA (AIMV CP RNA), which contains an unstructured 5' leader sequence, is unusual in being functionally active in extracts prepared from poliovirus-infected HeLa cells (PI-extracts). To identify the cis-acting nucleotide elements permitting selective AIMV CP expression, we tested capped mRNAs containing structured or unstructured 5' leader sequences in addition to an mRNA containing the poliovirus internal ribosome entry site (IRES). Translations were performed with PI-extracts and extracts prepared from mock-infected HeLa cells (MI-extracts). A number of control criteria demonstrated that the HeLa cells were infected by poliovirus and that the extracts were translationally active. The data strongly indicate that translation of RNAs lacking an internal ribosome entry site, including AIMV CP RNA, was severely compromised in PI-extracts, and we find no evidence that the unstructured AIMV CP RNA 5' leader sequence acts in cis to bypass the poliovirus translational control. Nevertheless, cotranslation assays in the MI-extracts demonstrate that mRNAs containing the unstructured AIMV CP RNA 5' untranslated region have a competitive advantage over those containing the rabbit alpha-globin 5' leader. Previous reports of AIMV CP RNA translation in PI-extracts likely describe inefficient expression that can be explained by residual cap-dependent initiation events, where AIMV CP RNA translation is competitive because of a diminished quantitative requirement for initiation factors.
Collapse
Affiliation(s)
- L E Hann
- Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | |
Collapse
|
142
|
Abstract
These days, genome research mainly concerns the accumulation of sequence data and their theoretical interpretation based on analogies to known genes, proteins and structures. However, a final identification of gene function can only be verified by experimental data. One step in this process is the expression of the isolated gene in pro- and eukaryotes. In this article we will review some of the basic features of expression in Escherichia coli and mammalian cells that are relevant to the design of expression experiments. Emphasis is put on the first instance of attaining a high enough level of expression in order to be able to detect the cellular effects or to isolate the product of the transferred gene.
Collapse
Affiliation(s)
- G Gross
- Gesellschaft für Biotechnologische Forschung (GBF), Department of Gene Regulation and Differentiation, Braunschweig, Germany
| | | |
Collapse
|
143
|
Wang S, Miller WA. A sequence located 4.5 to 5 kilobases from the 5' end of the barley yellow dwarf virus (PAV) genome strongly stimulates translation of uncapped mRNA. J Biol Chem 1995; 270:13446-52. [PMID: 7768947 DOI: 10.1074/jbc.270.22.13446] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
An infectious, in vitro transcript from a full-length cDNA clone of the barley yellow dwarf virus (PAV serotype) genome translated efficiently in a wheat germ translation extract. Deletions in a region that we call the 3' translational enhancer, located between bases 4,513 and 5,009 in the 5,677-base genome, reduced translation of the 5'-proximal open reading frames from uncapped RNA by at least 30-fold. Deletions elsewhere in all but the 5' end of the genome had no effect on translation. Presence of a m7G(5')pp(5')G cap on the 5' end fully restored translational efficiency of transcripts lacking the 3' translational enhancer. The translation enhancer reduced inhibition of translation by free cap analog, did not affect RNA stability, and did not function in reticulocyte lysates. When placed in the 3'-untranslated region of uncapped mRNA encoding the beta-glucuronidase gene, the translation enhancer stimulated translation more than 80-fold, in the presence of the viral, but not a plasmid-derived, 5' leader. A polyadenylate tail could not substitute for the 3' translation enhancer. These observations provide an extreme example, in terms of distance from the 5' end and level of stimulation, of an mRNA in which a sequence near the 3' end stimulates translation.
Collapse
Affiliation(s)
- S Wang
- Plant Pathology Department, Iowa State University, Ames 50011-1020, USA
| | | |
Collapse
|
144
|
Decker CJ, Parker R. Diversity of cytoplasmic functions for the 3' untranslated region of eukaryotic transcripts. Curr Opin Cell Biol 1995; 7:386-92. [PMID: 7662369 DOI: 10.1016/0955-0674(95)80094-8] [Citation(s) in RCA: 204] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The 3' untranslated region (3' UTR) can control gene expression by affecting the localization, stability and translation of mRNAs. The recent finding that 3' UTRs can control the decapping rate of mRNAs, in combination with their ability to influence the initiation of translation, suggests that 3' UTRs act through a direct or indirect interaction between the 3' and 5' ends of mRNAs.
Collapse
Affiliation(s)
- C J Decker
- Department of Molecular and Cellular Biology, University of Arizona, Tucson 85721, USA
| | | |
Collapse
|
145
|
McGowan KM, Long SD, Pekala PH. Glucose transporter gene expression: regulation of transcription and mRNA stability. Pharmacol Ther 1995; 66:465-505. [PMID: 7494856 DOI: 10.1016/0163-7258(95)00007-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The facilitated diffusion of D-glucose across the plasma membrane is carried out by a set of stereospecific transport proteins known as the glucose transporters. These integral membrane proteins are members of a gene family where tissue-specific expression of one or more members will determine in part the net rate of glucose entry into the cell. The regulation of glucose transporter gene expression is a critical feature of cellular homeostasis, as defects in specific transporter expression can lead to profound alterations in cellular physiology. In this review, we provide a brief descriptive background on the family of glucose transporters and examine in depth the regulation of the two transporters expressed in adipose tissue, GLUTI, a basal growth-related transporter and GLUT4, the insulin-responsive glucose transporter.
Collapse
Affiliation(s)
- K M McGowan
- Department of Biochemistry, School of Medicine, East Carolina University, Greenville 27858, USA
| | | | | |
Collapse
|
146
|
Abstract
Post-transcriptional mechanisms contribute in many important ways to the overall control and regulation of gene expression, and in doing so employ a veritable army of proteins that bind a wide range of targets in messenger RNA (mRNA). The full range of these RNA-protein interactions is only just beginning to emerge, and much remains to be learned about the mechanisms underlying the rapidly increasing number of regulatory systems now being described.
Collapse
Affiliation(s)
- J E McCarthy
- Department of Gene Expression, National Biotechnology Research Centre (GBF), Braunschweig, Germany
| | | |
Collapse
|
147
|
Abstract
Based on the above mechanisms of mRNA degradation, an integrated model of mRNA turnover can be proposed (Figure 1). In this model, all polyadenylated mRNAs would be degraded by the deadenylation-dependent pathway at some rate. In addition to this default pathway, another layer of complexity would come from degradation mechanisms specific to individual mRNAs or to classes of mRNAs. Such mRNA-specific mechanisms would include sequence-specific endonuclease cleavage and deadenylation-independent decapping. Thus, the overall decay rate of an individual transcript will be a function of its susceptibility to these turnover pathways. In addition, cis-acting sequences that specify mRNA decay rate, as well as regulatory inputs that control mRNA turnover, are likely to affect all the steps of these decay pathways. One important goal in future work will be to identify the gene products that are responsible for the nucleolytic events in these pathways and to delineate how specific mRNA features act to affect the function of these degradative activities. The identification of distinct mRNA decay pathways should allow, genetic and biochemical approaches that can be designed to identify these gene products. A second important goal is to understand the nature of the interaction between the 5' and 3' termini, which may also be critical for efficient translation.
Collapse
Affiliation(s)
- C A Beelman
- Department of Molecular and Cellular Biology, University of Arizona, Tucson 85721, USA
| | | |
Collapse
|
148
|
Gu W, Kwon Y, Oko R, Hermo L, Hecht NB. Poly (A) binding protein is bound to both stored and polysomal mRNAs in the mammalian testis. Mol Reprod Dev 1995; 40:273-85. [PMID: 7772337 DOI: 10.1002/mrd.1080400303] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
RNA-binding proteins that bind to the 3' untranslated region of mRNAs play important roles in regulating gene expression. Here we examine the association between the 70 kDa poly (A) binding protein (PABP) and stored (RNP) and polysomal mRNAs during mammalian male germ cell development. PABP mRNA levels increase as germ cells enter meiosis, reaching a maximum in the early postmeiotic stages, and decreasing to a nearly nondetectable level towards the end of spermatogenesis. Most of the PABP mRNA is found in the nonpolysomal fractions of postmitochondrial extracts, suggesting that PABP mRNA is either inefficiently translated or stored as RNPs during spermatogenesis. Virtually all of the testicular PABP is bound to either polysomal or nonpolysomal mRNAs, with little, if any, free PABP detectable. Analysis of several specific mRNAs reveals PABP is bound to both stored (RNP) and translated forms of the mRNAs. Western blot analysis and immunocytochemistry indicate PABP is widespread in the mammalian testis, with maximal amounts detected in postmeiotic round spermatids. The presence of PABP in elongating spermatids, a cell type in which PABP mRNA is nearly absent, suggests that PABP is a stable protein in the later stages of male germ cell development. The high level of testicular PABP in round spermatids and in mRNPs suggests a role for PABP in the storage as well as in the subsequent translation of developmentally regulated mRNAs in the mammalian testis.
Collapse
Affiliation(s)
- W Gu
- Department of Biology, Tufts University, Medford, Massachusetts 02155, USA
| | | | | | | | | |
Collapse
|
149
|
Abstract
Poly(A) polymerase synthesizes poly(A) tails rapidly and processively only when the substrate RNA is bound simultaneously by two stimulatory proteins, the cleavage and polyadenylation specificity factor (CPSF) and poly(A)-binding protein II (PAB II). A burst of synthesis terminates after the addition of about 250 nucleotides, a length corresponding to that of newly synthesized poly(A) tails in vivo. Further elongation is slow. Length control can be reproduced with premade poly(A) tails of different lengths and is insensitive to large changes in the elongation rate. Thus, the control mechanism truly measures the length of the poly(A) tail. The stimulatory action of PAB II is similar on long and short tails. Coating of poly(A) with one PAB II molecule for approximately 30 nucleotides is required, such that the number of PAB II molecules in the polyadenylation complex is a direct measure of poly(A) tail length. CPSF also stimulates poly(A) polymerase on long and short tails. Long tails differ from short ones only in that they do not permit the simultaneous stimulation of poly(A) polymerase by CPSF and PAB II. Consequently, elongation of long tails is distributive. Thus, length control is brought about by an interruption of the interactions responsible for rapid and processive elongation of short tails. The 3'-end of the poly(A) tail is not sequestered in the protein-RNA complex when the correct length has been reached. Neither ATP hydrolysis nor turnover of the polymerized AMP is involved in length control.
Collapse
Affiliation(s)
- E Wahle
- Department of Cell Biology, Biozentrum, University of Basel, Switzerland
| |
Collapse
|
150
|
|