101
|
Yoder MD, Thomas LM, Tremblay JM, Oliver RL, Yarbrough LR, Helmkamp GM. Structure of a multifunctional protein. Mammalian phosphatidylinositol transfer protein complexed with phosphatidylcholine. J Biol Chem 2001; 276:9246-52. [PMID: 11104777 DOI: 10.1074/jbc.m010131200] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic phosphatidylinositol transfer protein is a ubiquitous multifunctional protein that transports phospholipids between membrane surfaces and participates in cellular phospholipid metabolism during signal transduction and vesicular trafficking. The three-dimensional structure of the alpha-isoform of rat phosphatidylinositol transfer protein complexed with one molecule of phosphatidylcholine, one of its physiological ligands, has been determined to 2.2 A resolution by x-ray diffraction techniques. A single beta-sheet and several long alpha-helices define an enclosed internal cavity in which a single molecule of the phospholipid is accommodated with its polar head group in the center of the protein and fatty acyl chains projected toward the surface. Other structural features suggest mechanisms by which cytosolic phosphatidylinositol transfer protein interacts with membranes for lipid exchange and associates with a variety of lipid and protein kinases.
Collapse
Affiliation(s)
- M D Yoder
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110-2499 , USA.
| | | | | | | | | | | |
Collapse
|
102
|
Ren XR, Du QS, Huang YZ, Ao SZ, Mei L, Xiong WC. Regulation of CDC42 GTPase by proline-rich tyrosine kinase 2 interacting with PSGAP, a novel pleckstrin homology and Src homology 3 domain containing rhoGAP protein. J Cell Biol 2001; 152:971-84. [PMID: 11238453 PMCID: PMC2198805 DOI: 10.1083/jcb.152.5.971] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2000] [Accepted: 01/17/2001] [Indexed: 11/22/2022] Open
Abstract
Proline-rich tyrosine kinase 2 (PYK2), a tyrosine kinase structurally related to focal adhesion kinase (FAK), is implicated in regulating cytoskeletal organization. However, mechanisms by which PYK2 participates in and regulates cytoskeletal organization remain largely unknown. Here we report identification of PSGAP, a novel protein that interacts with PYK2 and FAK and contains multiple domains including a pleckstrin homology domain, a rhoGTPase-activating protein domain, and a Src homology 3 domain. PYK2 interacts with PSGAP Src homology 3 domain via the carboxyl-terminal proline-rich sequence. PSGAP is able to increase GTPase activity of CDC42 and RhoA in vitro and in vivo. Remarkably, PYK2, but not FAK, can activate CDC42 via inhibition of PSGAP-mediated GTP hydrolysis of CDC42. Moreover, PSGAP is localized at cell periphery in fibroblasts in a pleckstrin homology domain-dependent manner. Over expression of PSGAP in fibroblasts results in reorganization of cytoskeletal structures and changes of cellular morphology, which requires rhoGTPase-activating activity. Taken together, our results suggest that PSGAP is a signaling protein essential for PYK2 regulation of cytoskeletal organization via Rho family GTPases.
Collapse
Affiliation(s)
- Xiu-Rong Ren
- Department of Pathology and Cell Adhesion and Matrix Center, Pathology, and Physical Medicine and Rehabilitation, University of Alabama at Birmingham, Birmingham, Alabama 35294
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Quan-Sheng Du
- Department of Pathology and Cell Adhesion and Matrix Center, Pathology, and Physical Medicine and Rehabilitation, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Yang-Zhong Huang
- Departments of Neurobiology, Pathology, and Physical Medicine and Rehabilitation, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Shi-Zhou Ao
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lin Mei
- Departments of Neurobiology, Pathology, and Physical Medicine and Rehabilitation, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Wen-Cheng Xiong
- Department of Pathology and Cell Adhesion and Matrix Center, Pathology, and Physical Medicine and Rehabilitation, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
103
|
Affiliation(s)
- J Hsuan
- Department of Physiology, Royal Free and University College Medical School, University College London, University Street, London WC1E 6JJ, UK.
| | | |
Collapse
|
104
|
Litvak V, Tian D, Shaul YD, Lev S. Targeting of PYK2 to focal adhesions as a cellular mechanism for convergence between integrins and G protein-coupled receptor signaling cascades. J Biol Chem 2000; 275:32736-46. [PMID: 10915788 DOI: 10.1074/jbc.m004200200] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The non-receptor tyrosine kinase PYK2 appears to function at a point of convergence of integrins and certain G protein-coupled receptor (GPCR) signaling cascades. In this study, we provide evidence that translocation of PYK2 to focal adhesions is triggered both by cell adhesion to extracellular matrix proteins and by activation of the histamine GPCR. By using different mutants of PYK2 as green fluorescent fusion proteins, we show that the translocation of PYK2 to focal adhesions is not dependent on its catalytic activity but rather is mediated by its carboxyl-terminal domain. Translocation of PYK2 to focal adhesions was attributed to enhanced tyrosine phosphorylation of PYK2 and its association with the focal adhesion proteins paxillin and p130(Cas). Translocation of PYK2 to focal adhesions, as well as its tyrosine phosphorylation in response to histamine treatment, was abolished in the presence of protein kinase C inhibitors or cytochalasin D treatment, whereas activation of protein kinase C by phorbol ester resulted in focal adhesion targeting of PYK2 and its tyrosine phosphorylation in an integrin-clustering dependent manner. Overexpression of a wild-type PYK2 enhanced ERK activation in response to histamine, whereas a kinase-deficient mutant substantially inhibited this response. Furthermore, inhibition of PYK2 translocation to focal adhesions abolished ERK activation in response to histamine treatment. These results suggest that PYK2 apparently links between GPCRs and focal adhesion-dependent ERK activation and can provide the molecular basis underlying PYK2 function at a point of convergence between signaling pathways triggered by extracellular matrix proteins and certain GPCR agonists.
Collapse
Affiliation(s)
- V Litvak
- Department of Neurobiology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | | | | | | |
Collapse
|
105
|
Zhao J, Zheng C, Guan J. Pyk2 and FAK differentially regulate progression of the cell cycle. J Cell Sci 2000; 113 ( Pt 17):3063-72. [PMID: 10934044 DOI: 10.1242/jcs.113.17.3063] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously identified FAK and its associated signaling pathways as a mediator of cell cycle progression by integrins. In this report, we have analyzed the potential role and mechanism of Pyk2, a tyrosine kinase closely related to FAK, in cell cycle regulation by using tetracycline-regulated expression system as well as chimeric molecules. We have found that induction of Pyk2 inhibited G(1) to S phase transition whereas comparable induction of FAK expression accelerated it. Furthermore, expression of a chimeric protein containing Pyk2 N-terminal and kinase domain and FAK C-terminal domain (PFhy1) increased cell cycle progression as FAK. Conversely, the complementary chimeric molecule containing FAK N-terminal and kinase domain and Pyk2 C-terminal domain (FPhy2) inhibited cell cycle progression to an even greater extent than Pyk2. Biochemical analyses indicated that Pyk2 and FPhy2 stimulated JNK activation whereas FAK or PFhy1 had little effect on it, suggesting that differential activation of JNK by Pyk2 may contribute to its inhibition of cell cycle progression. In addition, Pyk2 and FPhy2 to a greater extent also inhibited Erk activation in cell adhesion whereas FAK and PFhy1 stimulated it, suggesting a role for Erk activation in mediating differential regulation of cell cycle by Pyk2 and FAK. A role for Erk and JNK pathways in mediating the cell cycle regulation by FAK and Pyk2 was also confirmed by using chemical inhibitors for these pathways. Finally, we showed that while FAK and PFhy1 were present in focal contacts, Pyk2 and FPhy2 were localized in the cytoplasm. Interestingly, both Pyk2 and FPhy2 (to a greater extent) were tyrosine phosphorylated and associated with Src and Fyn. This suggested that they may inhibit Erk activation in an analogous manner as the mislocalized FAK mutant (Δ)C14 described previously by competing with endogenous FAK for binding signaling molecules such as Src and Fyn. This model is further supported by an inhibition of endogenous FAK association with active Src by Pyk2 and FPhy2 and a partial rescue by FAK of Pyk2-mediated cell cycle inhibition.
Collapse
Affiliation(s)
- J Zhao
- Cancer Biology Laboratories, Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
106
|
Thomas GM, Pinxteren JA. Phosphatidylinositol transfer proteins: one big happy family or strangers with the same name? MOLECULAR CELL BIOLOGY RESEARCH COMMUNICATIONS : MCBRC 2000; 4:1-9. [PMID: 11152620 DOI: 10.1006/mcbr.2000.0253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- G M Thomas
- Department of Physiology, University College London, Rockefeller Building, 21, University Street, London, WC1E 6JJ, United Kingdom
| | | |
Collapse
|
107
|
Guinamard R, Okigaki M, Schlessinger J, Ravetch JV. Absence of marginal zone B cells in Pyk-2-deficient mice defines their role in the humoral response. Nat Immunol 2000; 1:31-6. [PMID: 10881171 DOI: 10.1038/76882] [Citation(s) in RCA: 402] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The lymphoid organs contain specialized microanatomic structures composed of lymphoid, myeloid and stromal cells that are vital to the generation of an effective adaptive immune response. Although the existence of these specialized structures has been known for over a century, the developmental signals that generate them and the specific roles of these structures in the immune response have remained largely elusive. Because of their position adjacent to the marginal sinuses, marginal zone B (MZB) cells are amongst the first population of cells seen by blood born antigens and are presumed to have a critical role in host defense against bacterial pathogens. Here we demonstrate that a deficiency of the tyrosine kinase (Pyk-2) results in a cell autonomous defect of MZB cell production. In response to repetitive polysaccharide antigens (T-independent type II (TI-II)) Pyk-2-deficient mice displayed marked suppression of IgM, IgG3 and IgG2a production. Furthermore, complement receptor engagement proved necessary for the specific targeting of polysaccharide antigens to MZB cells. These results suggest how innate immune responses mediated through complement coupling are translated into an adaptive response by MZB cells, and provide a potential mechanism for the T cell independence of humoral responses to polysaccharide antigens.
Collapse
Affiliation(s)
- R Guinamard
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, 1230 York Ave, New York, NY 10021, USA
| | | | | | | |
Collapse
|
108
|
Katagiri T, Takahashi T, Sasaki T, Nakamura S, Hattori S. Protein-tyrosine kinase Pyk2 is involved in interleukin-2 production by Jurkat T cells via its tyrosine 402. J Biol Chem 2000; 275:19645-52. [PMID: 10867021 DOI: 10.1074/jbc.m909828199] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We established Jurkat transfectants that overexpress Pyk2 or its mutants, K457A (lysine 457 was mutated to alanine), Pyk2-Y402F (tyrosine 402 to phenylalanine), and Pyk2-Y881F to investigate the role of Pyk2 in T cell activation. Pyk2 as well as kinase-inactive Pyk2-K457A, was phosphorylated at tyrosine residues 402, 580, and 881 upon T cell antigen receptor cross-linking, indicating that these residues are phosphorylated by other tyrosine kinase(s). However, no tyrosine phosphorylation of Pyk2-Y402F was detected while more than 60% of the tyrosine phosphorylation was observed in Pyk2-Y881F. Pyk2-Y402F inhibited the activation of endogenous Pyk2. The degree of activation of both c-Jun NH(2)-terminal kinase and p38 mitogen-activated protein kinase but not extracellular signal-regulated protein kinase after concurrent ligation of T cell antigen receptor and CD28 was reduced by more than 50% in the clones expressing Pyk2-Y402F. Consistent with this inhibition, IL-2 production was significantly diminished in the Pyk2-Y402F-expressing clones. Furthermore, we found that Pyk2, when overexpressed, associates with Zap70 and Vav. Taken together, these findings suggest that Pyk2 is involved in the activation of T cells through its tyrosine 402.
Collapse
Affiliation(s)
- T Katagiri
- Division of Biochemistry and Cellular Biology, National Institute of Neuroscience, Kodaira, Tokyo 187-8502, Japan.
| | | | | | | | | |
Collapse
|
109
|
Sancho D, Nieto M, Llano M, Rodríguez-Fernández JL, Tejedor R, Avraham S, Cabañas C, López-Botet M, Sánchez-Madrid F. The tyrosine kinase PYK-2/RAFTK regulates natural killer (NK) cell cytotoxic response, and is translocated and activated upon specific target cell recognition and killing. J Cell Biol 2000; 149:1249-62. [PMID: 10851022 PMCID: PMC2175114 DOI: 10.1083/jcb.149.6.1249] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The compartmentalization of plasma membrane proteins has a key role in regulation of lymphocyte activation and development of immunity. We found that the proline-rich tyrosine kinase-2 (PYK-2/RAFTK) colocalized with the microtubule-organizing center (MTOC) at the trailing edge of migrating natural killer (NK) cells. When polyclonal NK cells bound to K562 targets, PYK-2 translocated to the area of NK-target cell interaction. The specificity of this process was assessed with NK cell clones bearing activatory or inhibitory forms of CD94/NKG2. The translocation of PYK-2, MTOC, and paxillin to the area of NK-target cell contact was regulated upon specific recognition of target cells through NK cell receptors, controlling target cell killing. Furthermore, parallel in vitro kinase assays showed that PYK-2 was activated in response to signals that specifically triggered its translocation and NK cell mediated cytotoxicity. The overexpression of both the wt and a dominant-negative mutant of PYK-2, but not ZAP-70 wt, prevented the specific translocation of the MTOC and paxillin, and blocked the cytotoxic response of NK cells. Our data indicate that subcellular compartmentalization of PYK-2 correlates with effective signal transduction. Furthermore, they also suggest an important role for PYK-2 on the assembly of the signaling complexes that regulate the cytotoxic response.
Collapse
Affiliation(s)
- David Sancho
- Servicio de Inmunología, Hospital de la Princesa, Universidad Autónoma de Madrid, E-28006, Madrid, Spain
| | - Marta Nieto
- Servicio de Inmunología, Hospital de la Princesa, Universidad Autónoma de Madrid, E-28006, Madrid, Spain
| | - Manuel Llano
- Servicio de Inmunología, Hospital de la Princesa, Universidad Autónoma de Madrid, E-28006, Madrid, Spain
| | - José L. Rodríguez-Fernández
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain
| | - Reyes Tejedor
- Servicio de Inmunología, Hospital de la Princesa, Universidad Autónoma de Madrid, E-28006, Madrid, Spain
| | - Shalom Avraham
- Division of Experimental Medicine and Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215
| | - Carlos Cabañas
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain
| | - Miguel López-Botet
- Servicio de Inmunología, Hospital de la Princesa, Universidad Autónoma de Madrid, E-28006, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Servicio de Inmunología, Hospital de la Princesa, Universidad Autónoma de Madrid, E-28006, Madrid, Spain
| |
Collapse
|
110
|
Sieg DJ, Hauck CR, Ilic D, Klingbeil CK, Schaefer E, Damsky CH, Schlaepfer DD. FAK integrates growth-factor and integrin signals to promote cell migration. Nat Cell Biol 2000; 2:249-56. [PMID: 10806474 DOI: 10.1038/35010517] [Citation(s) in RCA: 982] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Here we show that cells lacking focal adhesion kinase (FAK) are refractory to motility signals from platelet-derived and epidermal growth factors (PDGF and EGF respectively), and that stable re-expression of FAK rescues these defects. FAK associates with activated PDGF- and EGF-receptor (PDGFR and EGFR) signalling complexes, and expression of the band-4.1-like domain at the FAK amino terminus is sufficient to mediate an interaction with activated EGFR. However, efficient EGF-stimulated cell migration also requires FAK to be targeted, by its carboxy-terminal domain, to sites of integrin-receptor clustering. Although the kinase activity of FAK is not needed to promote PDGF- or EGF-stimulated cell motility, kinase-inactive FAK is transphosphorylated at the indispensable Src-kinase-binding site, FAK Y397, after EGF stimulation of cells. Our results establish that FAK is an important receptor-proximal link between growth-factor-receptor and integrin signalling pathways.
Collapse
Affiliation(s)
- D J Sieg
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
111
|
Swigart P, Insall R, Wilkins A, Cockcroft S. Purification and cloning of phosphatidylinositol transfer proteins from Dictyostelium discoideum: homologues of both mammalian PITPs and Saccharomyces cerevisiae sec14p are found in the same cell. Biochem J 2000; 347 Pt 3:837-43. [PMID: 10769190 PMCID: PMC1221023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Soluble phosphatidylinositol transfer proteins (PITPs) have important roles in lipid-mediated signalling as well as in membrane traffic. Two PITPs (alpha and beta) have been cloned from mammalian cells, which are unrelated in sequence to yeast PITP (the product of the SEC14 gene). However, all three PITPs can perform interchangeably to reconstitute function in mammalian cells. We have now purified the major PITP from the cytoplasm of Dictyostelium discoideum and cloned the gene. This protein, DdPITP1, is homologous with mammalian PITPalpha and PITPbeta. We have also cloned a second gene (DdPITP2) related in sequence to DdPITP1. In addition, an independently cloned cDNA encodes a relative of the SEC14 family of yeast PITPs. DdPITP1, DdPITP2 and DdSec14 proteins were all able to mediate the transfer of PtdIns from one membrane compartment to another; they thus exhibited the hallmark of PITPs. Secondly, all three PITPs were able to rescue phospholipase C-mediated phosphoinositide hydrolysis in PITP-depleted HL60 cells, indicating that all three PITPs were capable of stimulating phosphoinositide synthesis. The identification of PITPs related to both mammalian PITPs and yeast Sec14p in a single organism will provide a unique opportunity to examine the functions of this class of protein with genetic approaches.
Collapse
Affiliation(s)
- P Swigart
- Department of Physiology, Rockefeller Building, 21 University Street, University College London, London WC1E 6JJ, U.K
| | | | | | | |
Collapse
|
112
|
Keely SJ, Calandrella SO, Barrett KE. Carbachol-stimulated transactivation of epidermal growth factor receptor and mitogen-activated protein kinase in T(84) cells is mediated by intracellular Ca2+, PYK-2, and p60(src). J Biol Chem 2000; 275:12619-25. [PMID: 10777553 DOI: 10.1074/jbc.275.17.12619] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ca(2+)-dependent agonists, such as carbachol (CCh), stimulate epidermal growth factor receptor (EGFR) transactivation and mitogen-activated protein kinase activation in T(84) intestinal epithelial cells. This pathway constitutes an antisecretory mechanism by which CCh-stimulated chloride secretion is limited. Here, we investigated mechanisms underlying CCh-stimulated epidermal growth factor receptor (EGFR) transactivation. Thapsigargin (TG, 2 microM) stimulated EGFR and extracellular signal-regulated kinase (ERK) phosphorylation in T(84) cells. Inhibition of either EGFR or ERK activation, with tyrphostin AG1478 (1 microM) and PD 98059 (20 microM), respectively, potentiated chloride secretory responses to TG, as measured by changes in short-circuit current (I(sc)) across T(84) cells. CCh (100 microM) stimulated tyrosine phosphorylation and association of the Ca(2+)-dependent tyrosine kinase, PYK-2, with the EGFR, which was inhibited by the Ca(2+) chelator, BAPTA (20 microM). The calmodulin inhibitor, fluphenazine (50 microM) inhibited CCh-stimulated PYK-2 association with the EGFR and phosphorylation of EGFR and ERK. CCh also induced tyrosine phosphorylation of p60(src) and association of p60(src) with both PYK-2 and the EGFR. The Src family kinase inhibitor, PP2 (20 nM-20 microM) attenuated CCh-stimulated EGFR and ERK phosphorylation and potentiated chloride secretory responses to CCh. We conclude that CCh-stimulated transactivation of the EGFR is mediated by a pathway involving elevations in intracellular Ca(2+), calmodulin, PYK-2, and p60(src). This pathway represents a mechanism that limits CCh-stimulated chloride secretion across intestinal epithelia.
Collapse
Affiliation(s)
- S J Keely
- Department of Medicine, University of California, San Diego, School of Medicine, San Diego, California 92103, USA.
| | | | | |
Collapse
|
113
|
Ueda H, Abbi S, Zheng C, Guan JL. Suppression of Pyk2 kinase and cellular activities by FIP200. J Cell Biol 2000; 149:423-30. [PMID: 10769033 PMCID: PMC2175150 DOI: 10.1083/jcb.149.2.423] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/1999] [Accepted: 03/02/2000] [Indexed: 02/08/2023] Open
Abstract
Proline-rich tyrosine kinase 2 (Pyk2) is a cytoplasmic tyrosine kinase implicated to play a role in several intracellular signaling pathways. We report the identification of a novel Pyk2-interacting protein designated FIP200 (FAK family kinase-interacting protein of 200 kD) by using a yeast two-hybrid screen. In vitro binding assays and coimmunoprecipitation confirmed association of FIP200 with Pyk2, and similar assays also showed FIP200 binding to FAK. However, immunofluorescent staining indicated that FIP200 was predominantly localized in the cytoplasm. FIP200 bound to the kinase domain of Pyk2 and inhibited its kinase activity in in vitro kinase assays. FIP200 also inhibited the kinase activity of the Pyk2 isolated from SYF cells (deficient in Src, Yes, and Fyn expression) and the Pyk2 mutant lacking binding site for Src, suggesting that it regulated Pyk2 kinase directly rather than affecting the associated Src family kinases. Consistent with its inhibitory effect in vitro, FIP200 inhibited activation of Pyk2 and Pyk2-induced apoptosis in intact cells, which correlated with its binding to Pyk2. Finally, activation of Pyk2 by several biological stimuli correlated with the dissociation of endogenous FIP200-Pyk2 complex, which provided further support for inhibition of Pyk2 by FIP200 in intact cells. Together, these results suggest that FIP200 functions as an inhibitor of Pyk2 via binding to its kinase domain.
Collapse
Affiliation(s)
- Hiroki Ueda
- Cancer Biology Laboratories, Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853
| | - Smita Abbi
- Cancer Biology Laboratories, Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853
| | - Chuanhai Zheng
- Cancer Biology Laboratories, Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853
| | - Jun-Lin Guan
- Cancer Biology Laboratories, Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853
| |
Collapse
|
114
|
Tang H, Zhao ZJ, Landon EJ, Inagami T. Regulation of calcium-sensitive tyrosine kinase Pyk2 by angiotensin II in endothelial cells. Roles of Yes tyrosine kinase and tyrosine phosphatase SHP-2. J Biol Chem 2000; 275:8389-96. [PMID: 10722671 DOI: 10.1074/jbc.275.12.8389] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calcium-sensitive tyrosine kinase Pyk2 has been implicated in the regulation of ion channels, cellular adhesion, and mitogenic and hypertrophic reactions. In this study, we have investigated the regulation of Pyk2 by angiotensin II (Ang II) in pulmonary vein endothelial cells. We found that the Ang II-induced tyrosine phosphorylation of Pyk2, which requires the activity of Src family kinase, was specifically regulated by the Src family kinase member, Yes kinase. Moreover, we identified for the first time the constitutive association of Pyk2 with an Src homology 2 (SH2) domain-containing tyrosine phosphatase SHP-2. SHP-2 interacts with Pyk2 through a region other than its SH2 domains. Pyk2 can be dephosphorylated in vitro in SHP-2 immunoprecipitates and in intact cells expressing an NH(2) terminus-truncated form of SHP-2, which lacks the two SH2 domains but has an enhanced phosphatase activity. Ang II activates the endogenous SHP-2. Finally, the SHP-2-mediated dephosphorylation of Pyk2 correlates with the negative effect of SHP-2 on the Ang II-induced activation of extracellular signal-regulated kinase and c-Jun NH(2)-terminal kinase. Thus, the balance of Pyk2 tyrosine phosphorylation in response to Ang II is controlled by Yes kinase and by a tyrosine phosphatase SHP-2 in endothelial cells.
Collapse
MESH Headings
- Angiotensin II/metabolism
- Animals
- Endothelium, Vascular/cytology
- Endothelium, Vascular/physiology
- Focal Adhesion Kinase 2
- Intracellular Signaling Peptides and Proteins
- JNK Mitogen-Activated Protein Kinases
- Mitogen-Activated Protein Kinases/metabolism
- Phosphorylation
- Protein Binding
- Protein Tyrosine Phosphatase, Non-Receptor Type 1
- Protein Tyrosine Phosphatase, Non-Receptor Type 11
- Protein Tyrosine Phosphatase, Non-Receptor Type 6
- Protein Tyrosine Phosphatases/metabolism
- Protein-Tyrosine Kinases/metabolism
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-fyn
- Proto-Oncogene Proteins c-yes
- Pulmonary Veins/cytology
- Rats
- Receptor, Angiotensin, Type 1
- Receptor, Angiotensin, Type 2
- Receptors, Angiotensin/metabolism
- SH2 Domain-Containing Protein Tyrosine Phosphatases
- Signal Transduction
- Tyrosine/metabolism
- src-Family Kinases/metabolism
Collapse
Affiliation(s)
- H Tang
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA.
| | | | | | | |
Collapse
|
115
|
Benbernou N, Muegge K, Durum SK. Interleukin (IL)-7 induces rapid activation of Pyk2, which is bound to Janus kinase 1 and IL-7Ralpha. J Biol Chem 2000; 275:7060-5. [PMID: 10702271 DOI: 10.1074/jbc.275.10.7060] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interleukin-7 (IL-7) receptor signaling begins with activation of the Janus tyrosine kinases Jak1 and Jak3, which are associated with the receptor complex. To identify potential targets of these kinases, we examined Pyk2 (a member of the focal adhesion kinase family) using an IL-7-dependent murine thymocyte line, D1. We demonstrate that stimulation of D1 (or normal pro-T) cells by IL-7 rapidly increased tyrosine phosphorylation and enzymatic activity of Pyk2, with kinetics slightly lagging that of Jak1 and Jak3 phosphorylation. Conversely, IL-7 withdrawal resulted in a marked decrease of Pyk2 phosphorylation. Pyk2 was found to be physically associated with Jak1 prior to IL-7 stimulation and to increase its association with IL-7Ralpha chain following IL-7 stimulation. Pyk2 appeared to be involved in cell survival, because antisense Pyk2 accelerated the cell death process. Activation of Pyk2 via the muscarinic and nicotinic receptors using carbachol or via intracellular Ca(2+) rise using ionomycin/phorbol myristate acetate promoted survival in the absence of IL-7. These data support a role for Pyk2 in coupling Jak signaling to the trophic response.
Collapse
Affiliation(s)
- N Benbernou
- Intramural Research Support Program, SAIC Frederick, NCI-Frederick Cancer Research and Development Center, Frederick, Maryland 21702, USA
| | | | | |
Collapse
|
116
|
Minke B, Hardie R. Chapter 9 Genetic dissection of Drosophila phototransduction. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s1383-8121(00)80012-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
117
|
Fullwood Y, dos Santos M, Hsuan JJ. Cloning and characterization of a novel human phosphatidylinositol transfer protein, rdgBbeta. J Biol Chem 1999; 274:31553-8. [PMID: 10531358 DOI: 10.1074/jbc.274.44.31553] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The various PITP, retinal degeneration B (rdgB), and amino-terminal domain interacting receptor (Nir) phosphatidylinositol transfer proteins can be divided into two structural families. The small, soluble PITP isoforms contain only a phosphatidylinositol transfer domain and have been implicated in phosphoinositide signaling and vesicle trafficking. In contrast, the rdgB proteins, which include Nir2 and Nir3, contain an amino-terminal PITP-like domain, an acidic, Ca(2+)-binding domain, six putative transmembrane domains, and a conserved carboxyl-terminal domain. However, the biological function of rdgB proteins is unclear. Here, we report the isolation of a cDNA encoding a novel rdgB protein, mammalian rdgBbeta (MrdgBbeta). The 38-kDa MrdgBbeta protein contains an amino-terminal PITP-like domain and a short carboxyl-terminal domain. In contrast to other rdgB-like proteins, MrdgBbeta contains no transmembrane motifs or the conserved carboxyl-terminal domain. Using Northern and reverse transcription-polymerase chain reaction analysis, we demonstrate that MrdgBbeta mRNA is ubiquitously expressed. Immunofluorescence analysis of ectopic MrdgBbeta showed cytoplasmic staining, and the ability of recombinant MrdgBbeta to transfer phosphatidylinositol in vitro was similar to other PITP-like domains. Although early reports found functional degeneracy in vitro, the identification of a fifth mammalian PITP-like protein with a unique domain organization and widespread expression supports more recent results that suggest that different PITP-like domains have distinct functions in vivo.
Collapse
Affiliation(s)
- Y Fullwood
- Ludwig Institute for Cancer Research, Courtauld Building, 91 Riding House St., London W1P 8BT, United Kingdom
| | | | | |
Collapse
|
118
|
A neuronal-specific mammalian homolog of the Drosophila retinal degeneration B gene with expression restricted to the retina and dentate gyrus. J Neurosci 1999. [PMID: 10460238 DOI: 10.1523/jneurosci.19-17-07317.1999] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mutations in the Drosophila retinal degeneration B (rdgB) gene cause a rapid loss of the electrophysiological light response and subsequent light-enhanced photoreceptor degeneration. The rdgB gene encodes a protein with an N-terminal phosphatidylinositol transfer protein domain, a large C-terminal segment, and several hydrophobic regions thought to multiply span the subrhabdomeric cisternal membrane. A mammalian rdgB homolog (m-rdgB1) was previously identified and shown to exhibit widespread tissue distribution and functionally rescue the Drosophila rdgB mutant phenotypes. We describe a second mammalian rdgB homolog (m-rdgB2) that possesses 46% amino acid identity to Drosophila RdgB and 56% identity to M-RdgB1. M-RdgB2 possesses a neuronal-specific expression pattern, with high levels in the retina and the dentate gyrus mossy fibers and dendritic field. Using M-RdgB2-specific antibodies and subcellular fractionation, we demonstrate that M-RdgB2 is not an integral membrane protein but is stably associated with a particulate fraction through protein-protein interactions. Although transgenic expression of M-RdgB2 in rdgB2 null mutant flies suppressed the retinal degeneration, it failed to fully restore the electrophysiological light response. Because transgenic expression of M-RdgB2 does not restore the wild-type phenotype to rdgB2 mutant flies to the same extent as M-RdgB1, functional differences likely exist between the two M-RdgB homologs.
Collapse
|
119
|
Lu C, Vihtelic TS, Hyde DR, Li T. A neuronal-specific mammalian homolog of the Drosophila retinal degeneration B gene with expression restricted to the retina and dentate gyrus. J Neurosci 1999; 19:7317-25. [PMID: 10460238 PMCID: PMC6782490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/1999] [Revised: 06/11/1999] [Accepted: 06/17/1999] [Indexed: 02/13/2023] Open
Abstract
Mutations in the Drosophila retinal degeneration B (rdgB) gene cause a rapid loss of the electrophysiological light response and subsequent light-enhanced photoreceptor degeneration. The rdgB gene encodes a protein with an N-terminal phosphatidylinositol transfer protein domain, a large C-terminal segment, and several hydrophobic regions thought to multiply span the subrhabdomeric cisternal membrane. A mammalian rdgB homolog (m-rdgB1) was previously identified and shown to exhibit widespread tissue distribution and functionally rescue the Drosophila rdgB mutant phenotypes. We describe a second mammalian rdgB homolog (m-rdgB2) that possesses 46% amino acid identity to Drosophila RdgB and 56% identity to M-RdgB1. M-RdgB2 possesses a neuronal-specific expression pattern, with high levels in the retina and the dentate gyrus mossy fibers and dendritic field. Using M-RdgB2-specific antibodies and subcellular fractionation, we demonstrate that M-RdgB2 is not an integral membrane protein but is stably associated with a particulate fraction through protein-protein interactions. Although transgenic expression of M-RdgB2 in rdgB2 null mutant flies suppressed the retinal degeneration, it failed to fully restore the electrophysiological light response. Because transgenic expression of M-RdgB2 does not restore the wild-type phenotype to rdgB2 mutant flies to the same extent as M-RdgB1, functional differences likely exist between the two M-RdgB homologs.
Collapse
Affiliation(s)
- C Lu
- Berman-Gund Laboratory for the Study of Retinal Degenerations, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114, USA
| | | | | | | |
Collapse
|
120
|
Blaukat A, Ivankovic-Dikic I, Grönroos E, Dolfi F, Tokiwa G, Vuori K, Dikic I. Adaptor proteins Grb2 and Crk couple Pyk2 with activation of specific mitogen-activated protein kinase cascades. J Biol Chem 1999; 274:14893-901. [PMID: 10329689 DOI: 10.1074/jbc.274.21.14893] [Citation(s) in RCA: 172] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The protein tyrosine kinase Pyk2 acts as an upstream regulator of mitogen-activated protein (MAP) kinase cascades in response to numerous extracellular signals. The precise molecular mechanisms by which Pyk2 activates distinct MAP kinase pathways are not yet fully understood. In this report, we provide evidence that the protein tyrosine kinase Src and adaptor proteins Grb2, Crk, and p130Cas act as downstream mediators of Pyk2 leading to the activation of extracellular signal-regulated kinase (ERK) and c-Jun amino-terminal kinase (JNK). Pyk2-induced activation of Src is necessary for phosphorylation of Shc and p130Cas and their association with Grb2 and Crk, respectively, and for the activation of ERK and JNK cascades. Expression of a Grb2 mutant with a deletion of the amino-terminal Src homology 3 domain or the carboxyl-terminal tail of Sos strongly reduced Pyk2-induced ERK activation, with no apparent effect on JNK activity. Grb2 with a deleted carboxyl-terminal Src homology 3 domain partially blocked Pyk2-induced ERK and JNK pathways, whereas expression of dominant interfering mutants of p130Cas or Crk specifically inhibited JNK but not ERK activation by Pyk2. Taken together, our data reveal specific pathways that couple Pyk2 with MAP kinases: the Grb2/Sos complex connects Pyk2 to the activation of ERK, whereas adaptor proteins p130Cas and Crk link Pyk2 with the JNK pathway.
Collapse
Affiliation(s)
- A Blaukat
- Ludwig Institute for Cancer Research, Box 595, Husargatan 3, Uppsala S-75124, Sweden
| | | | | | | | | | | | | |
Collapse
|