101
|
Fukuyo Y, Nakamura T, Bubenshchikova E, Powell R, Tsuji T, Janknecht R, Obara T. Nephrin and Podocin functions are highly conserved between the zebrafish pronephros and mammalian metanephros. Mol Med Rep 2013; 9:457-65. [PMID: 24337247 PMCID: PMC3896505 DOI: 10.3892/mmr.2013.1844] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 11/22/2013] [Indexed: 01/28/2023] Open
Abstract
The slit diaphragm (SD) is a highly specialized intercellular junction between podocyte foot processes and is crucial in the formation of the filtration barrier in the renal glomeruli. Zebrafish Nephrin and Podocin are important in the formation of the podocyte SD and mutations in NEPHRIN and PODOCIN genes cause human nephrotic syndrome. In the present study, the zebrafish Podocin protein was observed to be predominantly localized in the pronephric glomerular podocytes, as previously reported for Nephrin. To understand the function of Podocin and Nephrin in zebrafish, splice-blocking morpholino antisense oligonucleotides were used. Knockdown of Podocin or Nephrin by this method induced pronephric glomerular hypoplasia with pericardial edema. Human NEPHRIN and PODOCIN mRNA rescued this glomerular phenotype, however, the efficacy of the rescues was greatly reduced when mRNA-encoding human disease-causing NEPHRIN-R1109X and PODOCIN-R138Q were used. Furthermore, an association between zebrafish Nephrin and Podocin proteins was observed. Notably, Podocin-R150Q, corresponding to human PODOCIN-R138Q, markedly interacted with NEPHRIN compared with wild-type PODOCIN, suggesting that this strong binding capacity of mutated PODOCIN impairs the transport of NEPHRIN and PODOCIN out of the endoplasmic reticulum. The results suggest that the functions of Nephrin and Podocin are highly conserved between the zebrafish pronephros and mammalian metanephros. Accordingly, the zebrafish pronephros may provide a useful tool for analyzing disease-causing gene mutations in human kidney disorders.
Collapse
Affiliation(s)
- Yayoi Fukuyo
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Tomomi Nakamura
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Ekaterina Bubenshchikova
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Rebecca Powell
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Takashi Tsuji
- Department of Biological Science and Technology, Graduate School of Industrial Science and Technology, Tokyo University of Science, Noda, Chiba 278‑8510, Japan
| | - Ralf Janknecht
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Tomoko Obara
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
102
|
Functions of the podocyte proteins nephrin and Neph3 and the transcriptional regulation of their genes. Clin Sci (Lond) 2013; 126:315-28. [DOI: 10.1042/cs20130258] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nephrin and Neph-family proteins [Neph1–3 (nephrin-like 1–3)] belong to the immunoglobulin superfamily of cell-adhesion receptors and are expressed in the glomerular podocytes. Both nephrin and Neph-family members function in cell adhesion and signalling, and thus regulate the structure and function of podocytes and maintain normal glomerular ultrafiltration. The expression of nephrin and Neph3 is altered in human proteinuric diseases emphasizing the importance of studying the transcriptional regulation of the nephrin and Neph3 genes NPHS1 (nephrosis 1, congenital, Finnish type) and KIRREL2 (kin of IRRE-like 2) respectively. The nephrin and Neph3 genes form a bidirectional gene pair, and they share transcriptional regulatory mechanisms. In the present review, we summarize the current knowledge of the functions of nephrin and Neph-family proteins and transcription factors and agents that control nephrin and Neph3 gene expression.
Collapse
|
103
|
Grahammer F, Schell C, Huber TB. Molecular understanding of the slit diaphragm. Pediatr Nephrol 2013; 28:1957-62. [PMID: 23233041 DOI: 10.1007/s00467-012-2375-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 10/16/2012] [Accepted: 10/17/2012] [Indexed: 11/30/2022]
Abstract
Glomerular filtration has always attracted the interest of nephrologists and renal researchers alike. Although several key questions on the structure and function of the kidney filter may have been answered within the last 40 years of intense research, there still remain crucial questions to be solved. The following article attempts to give a brief overview of recent developments in glomerular research highlighting particular advances in our understanding of the slit diaphragm.
Collapse
Affiliation(s)
- Florian Grahammer
- Renal Division, University Hospital Freiburg, Hugstetter Strasse 55, Freiburg 79106, Germany
| | | | | |
Collapse
|
104
|
Grahammer F, Schell C, Huber TB. The podocyte slit diaphragm--from a thin grey line to a complex signalling hub. Nat Rev Nephrol 2013; 9:587-98. [PMID: 23999399 DOI: 10.1038/nrneph.2013.169] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The architectural design of our kidneys is amazingly complex, and culminates in the 3D structure of the glomerular filter. During filtration, plasma passes through a sieve consisting of a fenestrated endothelium and a broad basement membrane before it reaches the most unique part, the slit diaphragm, a specialized type of intercellular junction that connects neighbouring podocyte foot processes. When podocytes become stressed, irrespective of the causative stimulus, they undergo foot process effacement and loss of slit diaphragms--two key steps leading to proteinuria. Thus, proteinuria is the unifying denominator of a broad spectrum of podocytopathies. With the rising prevalence of chronic kidney disease and the fact that glomerular diseases account for the majority of patients with end-stage renal disease, further investigation and elucidation of this unique structure is of paramount importance. This Review recounts how perception of the slit diaphragm has changed over time as a result of intense research, from its first anatomical description as a thin intercellular connection, to an appreciation of its role as a dynamic signalling hub. These observations led to the introduction of novel concepts in podocyte biology, which could pave the way to development of highly desired, specific therapeutic strategies for glomerular diseases.
Collapse
Affiliation(s)
- Florian Grahammer
- Renal Division, University Hospital Freiburg, Hugstetter Strasse 55, Freiburg 79106, Germany
| | | | | |
Collapse
|
105
|
Xing W, Liu J, Cheng S, Vogel P, Mohan S, Brommage R. Targeted disruption of leucine-rich repeat kinase 1 but not leucine-rich repeat kinase 2 in mice causes severe osteopetrosis. J Bone Miner Res 2013; 28:1962-74. [PMID: 23526378 PMCID: PMC9528686 DOI: 10.1002/jbmr.1935] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/22/2013] [Accepted: 03/11/2013] [Indexed: 01/01/2023]
Abstract
To assess the roles of Lrrk1 and Lrrk2, we examined skeletal phenotypes in Lrrk1 and Lrrk2 knockout (KO) mice. Lrrk1 KO mice exhibit severe osteopetrosis caused by dysfunction of multinucleated osteoclasts, reduced bone resorption in endocortical and trabecular regions, and increased bone mineralization. Lrrk1 KO mice have lifelong accumulation of bone and respond normally to the anabolic actions of teriparatide treatment, but are resistant to ovariectomy-induced bone boss. Precursors derived from Lrrk1 KO mice differentiate into multinucleated cells in response to macrophage colony-stimulating factor (M-CSF)/receptor activator of NF-κB ligand (RANKL) treatment, but these cells fail to form peripheral sealing zones and ruffled borders, and fail to resorb bone. The phosphorylation of cellular Rous sarcoma oncogene (c-Src) at Tyr-527 is significantly elevated whereas at Tyr-416 is decreased in Lrrk1-deficient osteoclasts. The defective osteoclast function is partially rescued by overexpression of the constitutively active form of Y527F c-Src. Immunoprecipitation assays in osteoclasts detected a physical interaction of Lrrk1 with C-terminal Src kinase (Csk). Lrrk2 KO mice do not show obvious bone phenotypes. Precursors derived from Lrrk2 KO mice differentiate into functional multinucleated osteoclasts. Our finding of osteopetrosis in Lrrk1 KO mice provides convincing evidence that Lrrk1 plays a critical role in negative regulation of bone mass in part through modulating the c-Src signaling pathway in mice.
Collapse
Affiliation(s)
- Weirong Xing
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, CA, USA
| | | | | | | | | | | |
Collapse
|
106
|
Durcan PJ, Al-Shanti N, Stewart CE. Identification and characterization of novel Kirrel isoform during myogenesis. Physiol Rep 2013; 1:e00044. [PMID: 24303129 PMCID: PMC3835000 DOI: 10.1002/phy2.44] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 07/03/2013] [Indexed: 12/31/2022] Open
Abstract
Somatic cell fusion is an essential component of skeletal muscle development and growth and repair from injury. Additional cell types such as trophoblasts and osteoclasts also require somatic cell fusion events to perform their physiological functions. Currently we have rudimentary knowledge on molecular mechanisms regulating somatic cell fusion events in mammals. We therefore investigated during in vitro murine myogenesis a mammalian homolog, Kirrel, of the Drosophila Melanogaster genes Roughest (Rst) and Kin of Irre (Kirre) which regulate somatic muscle cell fusion during embryonic development. Our results demonstrate the presence of a novel murine Kirrel isoform containing a truncated cytoplasmic domain which we term Kirrel B. Protein expression levels of Kirrel B are inverse to the occurrence of cell fusion events during in vitro myogenesis which is in stark contrast to the expression profile of Rst and Kirre during myogenesis in Drosophila. Furthermore, chemical inhibition of cell fusion confirmed the inverse expression pattern of Kirrel B protein levels in relation to cell fusion events. The discovery of a novel Kirrel B protein isoform during myogenesis highlights the need for more thorough investigation of the similarities and potential differences between fly and mammals with regards to the muscle cell fusion process.
Collapse
Affiliation(s)
- Peter J Durcan
- Department of Physiological Sciences, Stellenbosch University Merriman avenue, Stellenbosch, 7600, Western Cape, South Africa ; Institute for Biomedical Research into Human movement, School of Healthcare Science, Manchester Metropolitan University Oxford road, M1 5GD, Manchester, U.K
| | | | | |
Collapse
|
107
|
Arif E, Kumari B, Wagner MC, Zhou W, Holzman LB, Nihalani D. Myo1c is an unconventional myosin required for zebrafish glomerular development. Kidney Int 2013; 84:1154-65. [PMID: 23715127 PMCID: PMC3844053 DOI: 10.1038/ki.2013.201] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 03/14/2013] [Accepted: 03/21/2013] [Indexed: 12/17/2022]
Abstract
The targeting and organization of podocyte slit diaphragm proteins nephrin and neph1 is critical for development and maintenance of a functional glomerular filtration barrier. Myo1c is a non-muscle myosin motor protein that interacts directly with nephrin and neph1 and mediates their intracellular transport to the podocyte intercellular junction. Here we investigated the necessity of Myo1c in podocyte development using zebrafish as a model system. Immunofluorescence microscopy and in situ RNA hybridization analysis of zebrafish embryos showed that Myo1c is widely expressed in various tissues including the zebrafish glomerulus. Knockdown of the Myo1c gene in zebrafish using antisense morpholino derivatives resulted in an abnormal developmental phenotype that included pericardial edema and dilated renal tubules. Ultra-structural analysis of the glomerulus in Myo1c depleted zebrafish showed abnormal podocyte morphology and absence of the slit diaphragm. Consistent with these observations, the glomerular filter permeability appeared altered in zebrafish in which Myo1c expression was attenuated. The specificity of Myo1c knockdown was confirmed by a rescue experiment in which co-injection of Myo1c morpholino derivatives with orthologous Myo1c mRNA prepared from mouse cDNA lessened phenotypic abnormalities including edema in Myo1c morphants. Thus, our results demonstrate that Myo1c is necessary for podocyte morphogenesis.
Collapse
Affiliation(s)
- Ehtesham Arif
- Renal Electrolyte and Hypertension Division, Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
108
|
Abstract
Observations of hereditary glomerular disease support the contention that podocyte intercellular junction proteins are essential for junction formation and maintenance. Genetic deletion of most of these podocyte intercellular junction proteins results in foot process effacement and proteinuria. This review focuses on the current understanding of molecular mechanisms by which podocyte intercellular junction proteins such as the nephrin-neph1-podocin-receptor complex coordinate cytoskeletal dynamics and thus intercellular junction formation, maintenance, and injury-dependent remodeling.
Collapse
|
109
|
Arif E, Nihalani D. Glomerular Filtration Barrier Assembly: An insight. POSTDOC JOURNAL : A JOURNAL OF POSTDOCTORAL RESEARCH AND POSTDOCTORAL AFFAIRS 2013; 1:33-45. [PMID: 27583259 PMCID: PMC5003421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A glomerulus is the network of capillaries that resides in the Bowman's capsule that functions as a filtration unit of kidney. The glomerular function ensures that essential plasma proteins are retained in blood and the filtrate is passed on as urine. The glomerular filtration assembly is composed of three main cellular barriers that are critical for the ultrafiltration process, the fenestrated endothelium, glomerular basement membrane and highly specialized podocytes. The podocytes along with their specialized junctions "slit diaphragm" form the basic backbone of this filtration assembly. The presence of high amounts of protein in urine a condition commonly referred as proteinuria indicates a defective glomerular filtration barrier. Various glomerular disorders including Nephrotic syndrome are characterized by significant alteration in the structure of podocytes that is associated with prolonged increase in the glomerular permeability leading to heavy proteinuria. Recent identification of proteins that are specifically localized at the slit diaphragm whose mutations and knockouts are known to result in loss of renal function has significantly advanced our understanding of the molecular makeup of this filtration assembly. The present review is an effort to summarize the recent developments in this field and highlight our understanding of the glomerular filtration barrier assembly.
Collapse
Affiliation(s)
- Ehtesham Arif
- Renal Electrolytes and Hypertension Division, University of Pennsylvania, Philadelphia, PA 19104
| | - Deepak Nihalani
- Renal Electrolytes and Hypertension Division, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
110
|
Powell DR, Smith M, Greer J, Harris A, Zhao S, DaCosta C, Mseeh F, Shadoan MK, Sands A, Zambrowicz B, Ding ZM. LX4211 increases serum glucagon-like peptide 1 and peptide YY levels by reducing sodium/glucose cotransporter 1 (SGLT1)-mediated absorption of intestinal glucose. J Pharmacol Exp Ther 2013; 345:250-9. [PMID: 23487174 DOI: 10.1124/jpet.113.203364] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
LX4211 [(2S,3R,4R,5S,6R)-2-(4-chloro-3-(4-ethoxybenzyl)phenyl)-6-(methylthio)tetrahydro-2H-pyran-3,4,5-triol], a dual sodium/glucose cotransporter 1 (SGLT1) and SGLT2 inhibitor, is thought to decrease both renal glucose reabsorption by inhibiting SGLT2 and intestinal glucose absorption by inhibiting SGLT1. In clinical trials in patients with type 2 diabetes mellitus (T2DM), LX4211 treatment improved glycemic control while increasing circulating levels of glucagon-like peptide 1 (GLP-1) and peptide YY (PYY). To better understand how LX4211 increases GLP-1 and PYY levels, we challenged SGLT1 knockout (-/-) mice, SGLT2-/- mice, and LX4211-treated mice with oral glucose. LX4211-treated mice and SGLT1-/- mice had increased levels of plasma GLP-1, plasma PYY, and intestinal glucose during the 6 hours after a glucose-containing meal, as reflected by area under the curve (AUC) values, whereas SGLT2-/- mice showed no response. LX4211-treated mice and SGLT1-/- mice also had increased GLP-1 AUC values, decreased glucose-dependent insulinotropic polypeptide (GIP) AUC values, and decreased blood glucose excursions during the 6 hours after a challenge with oral glucose alone. However, GLP-1 and GIP levels were not increased in LX4211-treated mice and were decreased in SGLT1-/- mice, 5 minutes after oral glucose, consistent with studies linking decreased intestinal SGLT1 activity with reduced GLP-1 and GIP levels 5 minutes after oral glucose. These data suggest that LX4211 reduces intestinal glucose absorption by inhibiting SGLT1, resulting in net increases in GLP-1 and PYY release and decreases in GIP release and blood glucose excursions. The ability to inhibit both intestinal SGLT1 and renal SGLT2 provides LX4211 with a novel dual mechanism of action for improving glycemic control in patients with T2DM.
Collapse
Affiliation(s)
- David R Powell
- Lexicon Pharmaceuticals, Inc., 8800 Technology Forest Place, The Woodlands, TX 77381, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Ha TS. Roles of adaptor proteins in podocyte biology. World J Nephrol 2013; 2:1-10. [PMID: 24175259 PMCID: PMC3782205 DOI: 10.5527/wjn.v2.i1.1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 10/26/2012] [Accepted: 01/06/2013] [Indexed: 02/06/2023] Open
Abstract
Podocytes covering the glomerular basement membrane over the glomerular capillary consist of three morphologically and functionally different segments, the cell body, major processes and extending finger-like foot processes (FPs). The FPs of neighboring podocytes are connected by a continuous adherent junction structure named the slit diaphragm (SD). The extracellular SD is linked to the intracellular, a highly dynamic, cytoskeleton through adaptor proteins. These adaptor proteins, such as CD2-associated protein, zonula occludens 1, β-catenin, Nck and p130Cas, located at the intracellular SD insertion area near lipid rafts, have important structural and functional roles. Adaptor proteins in podocytes play important roles as a structural component of the podocyte structure, linking the SD to the cytoskeletal structure and as a signaling platform sending signals from the SD to the actin cytoskeleton. This review discusses the roles of adaptor proteins in the podocyte cytoskeletal structure and signaling from the SD to the actin cytoskeleton.
Collapse
|
112
|
Boerries M, Grahammer F, Eiselein S, Buck M, Meyer C, Goedel M, Bechtel W, Zschiedrich S, Pfeifer D, Laloë D, Arrondel C, Gonçalves S, Krüger M, Harvey SJ, Busch H, Dengjel J, Huber TB. Molecular fingerprinting of the podocyte reveals novel gene and protein regulatory networks. Kidney Int 2013; 83:1052-64. [PMID: 23364521 DOI: 10.1038/ki.2012.487] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A thorough characterization of the transcriptome and proteome of endogenous podocytes has been hampered by low cell yields during isolation. Here we describe a double fluorescent reporter mouse model combined with an optimized bead perfusion protocol and efficient single cell dissociation to yield more than 500,000 podocytes per mouse allowing for global, unbiased downstream applications. Combining mRNA and miRNA transcriptional profiling with quantitative proteomic analyses revealed programs of highly specific gene regulation tightly controlling cytoskeleton, cell differentiation, endosomal transport, and peroxisome function in podocytes. Strikingly, the analyses further predict that these podocyte-specific gene regulatory networks are accompanied by alternative splicing of respective genes. Thus, our 'omics' approach will facilitate the discovery and integration of novel gene, protein, and organelle regulatory networks that deepen our systematic understanding of podocyte biology.
Collapse
Affiliation(s)
- Melanie Boerries
- Freiburg Institute for Advanced Studies-LifeNet, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Abstract
Ninety-one years ago insulin was discovered, which was one of the most important medical discoveries in the past century, transforming the lives of millions of diabetic patients. Initially insulin was considered only important for rapid control of blood glucose by its action on a restricted number of tissues; however, it has now become clear that this hormone controls an array of cellular processes in many different tissues. The present review will focus on the role of insulin in the kidney in health and disease.
Collapse
|
114
|
Hartleben B, Widmeier E, Suhm M, Worthmann K, Schell C, Helmstädter M, Wiech T, Walz G, Leitges M, Schiffer M, Huber TB. aPKCλ/ι and aPKCζ contribute to podocyte differentiation and glomerular maturation. J Am Soc Nephrol 2013; 24:253-67. [PMID: 23334392 DOI: 10.1681/asn.2012060582] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Precise positioning of the highly complex interdigitating podocyte foot processes is critical to form the normal glomerular filtration barrier, but the molecular programs driving this process are unknown. The protein atypical protein kinase C (aPKC)--a component of the Par complex, which localizes to tight junctions and interacts with slit diaphragm proteins--may play a role. Here, we found that the combined deletion of the aPKCλ/ι and aPKCζ isoforms in podocytes associated with incorrectly positioned centrosomes and Golgi apparatus and mislocalized molecules of the slit diaphragm. Furthermore, aPKC-deficient podocytes failed to form the normal network of foot processes, leading to defective glomerular maturation with incomplete capillary formation and mesangiolysis. Our results suggest that aPKC isoforms orchestrate the formation of the podocyte processes essential for normal glomerular development and kidney function. Defective aPKC signaling results in a dramatically simplified glomerular architecture, causing severe proteinuria and perinatal death.
Collapse
Affiliation(s)
- Björn Hartleben
- Renal Division, University Hospital Freiburg, Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Powell DR, DaCosta CM, Gay J, Ding ZM, Smith M, Greer J, Doree D, Jeter-Jones S, Mseeh F, Rodriguez LA, Harris A, Buhring L, Platt KA, Vogel P, Brommage R, Shadoan MK, Sands AT, Zambrowicz B. Improved glycemic control in mice lacking Sglt1 and Sglt2. Am J Physiol Endocrinol Metab 2013; 304:E117-30. [PMID: 23149623 DOI: 10.1152/ajpendo.00439.2012] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Sodium-glucose cotransporter 2 (SGLT2) is the major, and SGLT1 the minor, transporter responsible for renal glucose reabsorption. Increasing urinary glucose excretion (UGE) by selectively inhibiting SGLT2 improves glycemic control in diabetic patients. We generated Sglt1 and Sglt2 knockout (KO) mice, Sglt1/Sglt2 double-KO (DKO) mice, and wild-type (WT) littermates to study their relative glycemic control and to determine contributions of SGLT1 and SGLT2 to UGE. Relative to WTs, Sglt2 KOs had improved oral glucose tolerance and were resistant to streptozotocin-induced diabetes. Sglt1 KOs fed glucose-free high-fat diet (G-free HFD) had improved oral glucose tolerance accompanied by delayed intestinal glucose absorption and increased circulating glucagon-like peptide-1 (GLP-1), but had normal intraperitoneal glucose tolerance. On G-free HFD, Sglt2 KOs had 30%, Sglt1 KOs 2%, and WTs <1% of the UGE of DKOs. Consistent with their increased UGE, DKOs had lower fasting blood glucose and improved intraperitoneal glucose tolerance than Sglt2 KOs. In conclusion, 1) Sglt2 is the major renal glucose transporter, but Sglt1 reabsorbs 70% of filtered glucose if Sglt2 is absent; 2) mice lacking Sglt2 display improved glucose tolerance despite UGE that is 30% of maximum; 3) Sglt1 KO mice respond to oral glucose with increased circulating GLP-1; and 4) DKO mice have improved glycemic control over mice lacking Sglt2 alone. These data suggest that, in patients with type 2 diabetes, combining pharmacological SGLT2 inhibition with complete renal and/or partial intestinal SGLT1 inhibition may improve glycemic control over that achieved by SGLT2 inhibition alone.
Collapse
Affiliation(s)
- David R Powell
- Lexicon Pharmaceuticals, Inc., 8800 Technology Forest Pl., The Woodlands, TX 77381, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Bisson N, Ruston J, Jeansson M, Vanderlaan R, Hardy WR, Du J, Hussein SM, Coward RJ, Quaggin SE, Pawson T. The adaptor protein Grb2 is not essential for the establishment of the glomerular filtration barrier. PLoS One 2012; 7:e50996. [PMID: 23226445 PMCID: PMC3511449 DOI: 10.1371/journal.pone.0050996] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 10/30/2012] [Indexed: 11/19/2022] Open
Abstract
The kidney filtration barrier is formed by the combination of endothelial cells, basement membrane and epithelial cells called podocytes. These specialized actin-rich cells form long and dynamic protrusions, the foot processes, which surround glomerular capillaries and are connected by specialized intercellular junctions, the slit diaphragms. Failure to maintain the filtration barrier leads to massive proteinuria and nephrosis. A number of proteins reside in the slit diaphragm, notably the transmembrane proteins Nephrin and Neph1, which are both able to act as tyrosine phosphorylated scaffolds that recruit cytoplasmic effectors to initiate downstream signaling. While association between tyrosine-phosphorylated Neph1 and the SH2/SH3 adaptor Grb2 was shown in vitro to be sufficient to induce actin polymerization, in vivo evidence supporting this finding is still lacking. To test this hypothesis, we generated two independent mouse lines bearing a podocyte-specific constitutive inactivation of the Grb2 locus. Surprisingly, we show that mice lacking Grb2 in podocytes display normal renal ultra-structure and function, thus demonstrating that Grb2 is not required for the establishment of the glomerular filtration barrier in vivo. Moreover, our data indicate that Grb2 is not required to restore podocyte function following kidney injury. Therefore, although in vitro experiments suggested that Grb2 is important for the regulation of actin dynamics, our data clearly shows that its function is not essential in podocytes in vivo, thus suggesting that Grb2 rather plays a secondary role in this process.
Collapse
Affiliation(s)
- Nicolas Bisson
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Joseph and Wolf Lebovic Health Complex, Toronto, Ontario, Canada
| | - Julie Ruston
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Joseph and Wolf Lebovic Health Complex, Toronto, Ontario, Canada
| | - Marie Jeansson
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Joseph and Wolf Lebovic Health Complex, Toronto, Ontario, Canada
| | - Rachel Vanderlaan
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Joseph and Wolf Lebovic Health Complex, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - W. Rod Hardy
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Joseph and Wolf Lebovic Health Complex, Toronto, Ontario, Canada
| | - Jianmei Du
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Joseph and Wolf Lebovic Health Complex, Toronto, Ontario, Canada
| | - Samer M. Hussein
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Joseph and Wolf Lebovic Health Complex, Toronto, Ontario, Canada
| | - Richard J. Coward
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Joseph and Wolf Lebovic Health Complex, Toronto, Ontario, Canada
| | - Susan E. Quaggin
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Joseph and Wolf Lebovic Health Complex, Toronto, Ontario, Canada
- Division of Nephrology, St. Michael’s Hospital, and Department of Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Tony Pawson
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Joseph and Wolf Lebovic Health Complex, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
117
|
Bautista-García P, Reyes JL, Martín D, Namorado MC, Chavez-Munguía B, Soria-Castro E, Huber O, González-Mariscal L. Zona occludens-2 protects against podocyte dysfunction induced by ADR in mice. Am J Physiol Renal Physiol 2012; 304:F77-87. [PMID: 23034938 DOI: 10.1152/ajprenal.00089.2012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Zona occludens-2 (ZO-2) is a protein present at the tight junction and nucleus of epithelial cells. ZO-2 represses the transcription of genes regulated by the Wnt/β-catenin pathway. This pathway plays a critical role in podocyte injury and proteinuria. Here, we analyze whether the overexpression of ZO-2 in the glomerulus, by hydrodynamics transfection, prevents podocyte injury mediated by the Wnt/β-catenin pathway in the mouse model of adriamycin (ADR) nephrosis. By immunofluorescence and immunogold electron microscopy, we show that ZO-2 is present in mice glomerulus, not at the slit diaphragms where nephrin concentrates, but in the cytoplasm and at processes of podocytes. Our results indicate that in the glomeruli of mice treated with ADR, ZO-2 overexpression increases the amount of phosphorylated β-catenin, inhibits the expression of the transcription factor snail, prevents nephrin and podocalyxin loss, reduces podocyte effacement and massive fusions, restrains proteinuria, and supports urea and creatinine clearance. These results suggest that ZO-2 could be a new target for the regulation of hyperactive Wnt/β-catenin signaling in proteinuric kidney diseases.
Collapse
Affiliation(s)
- Pablo Bautista-García
- Dept. of Physiology, Biophysics, and Neuroscience, Center for Research and Advanced Studies (Cinvestav), México
| | | | | | | | | | | | | | | |
Collapse
|
118
|
Zhang W, Savelieva KV, Tran DT, Pogorelov VM, Cullinan EB, Baker KB, Platt KA, Hu S, Rajan I, Xu N, Lanthorn TH. Characterization of PTPRG in knockdown and phosphatase-inactive mutant mice and substrate trapping analysis of PTPRG in mammalian cells. PLoS One 2012; 7:e45500. [PMID: 23029056 PMCID: PMC3447766 DOI: 10.1371/journal.pone.0045500] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 08/17/2012] [Indexed: 01/06/2023] Open
Abstract
Receptor tyrosine phosphatase gamma (PTPRG, or RPTPγ) is a mammalian receptor-like tyrosine phosphatase which is highly expressed in the nervous system as well as other tissues. Its function and biochemical characteristics remain largely unknown. We created a knockdown (KD) line of this gene in mouse by retroviral insertion that led to 98–99% reduction of RPTPγ gene expression. The knockdown mice displayed antidepressive-like behaviors in the tail-suspension test, confirming observations by Lamprianou et al. 2006. We investigated this phenotype in detail using multiple behavioral assays. To see if the antidepressive-like phenotype was due to the loss of phosphatase activity, we made a knock-in (KI) mouse in which a mutant, RPTPγ C1060S, replaced the wild type. We showed that human wild type RPTPγ protein, expressed and purified, demonstrated tyrosine phosphatase activity, and that the RPTPγ C1060S mutant was completely inactive. Phenotypic analysis showed that the KI mice also displayed some antidepressive-like phenotype. These results lead to a hypothesis that an RPTPγ inhibitor could be a potential treatment for human depressive disorders. In an effort to identify a natural substrate of RPTPγ for use in an assay for identifying inhibitors, “substrate trapping” mutants (C1060S, or D1028A) were studied in binding assays. Expressed in HEK293 cells, these mutant RPTPγs retained a phosphorylated tyrosine residue, whereas similarly expressed wild type RPTPγ did not. This suggested that wild type RPTPγ might auto-dephosphorylate which was confirmed by an in vitro dephosphorylation experiment. Using truncation and mutagenesis studies, we mapped the auto-dephosphorylation to the Y1307 residue in the D2 domain. This novel discovery provides a potential natural substrate peptide for drug screening assays, and also reveals a potential functional regulatory site for RPTPγ. Additional investigation of RPTPγ activity and regulation may lead to a better understanding of the biochemical underpinnings of human depression.
Collapse
Affiliation(s)
- Wandong Zhang
- Neuroscience Research, Lexicon Pharmaceuticals, Inc., The Woodlands, TX, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Abstract
The use of anti-angiogenic agents as part of the therapeutic armamentarium for advanced stage solid tumors has become the standard of care in several instances, particularly for renal cell carcinoma, non-small cell lung carcinoma, colorectal carcinoma, and gastrointestinal stromal tumors. These agents primarily target vascular endothelial growth factor (VEGF) and/or its receptors, and include bevacizumab, a humanized monoclonal antibody against VEGF, as well as tyrosine kinase inhibitors that target several receptor tyrosine kinases (RTK), including VEGF receptors. These therapies, as a general class of anti-angiogenic medications, have been shown to have common adverse vascular effects attributable directly or indirectly to their anti-VEGF effects, including hypertension, renal vascular injury, often manifested by proteinuria and thrombotic microangiopathy, and congestive heart failure. Knowledge of these common side effects and their underlying mechanisms may allow for more accurate and prompt diagnoses, timely clinical interventions, and the development of rational and standard treatments. These measures may minimize patient morbidity and mortality, not only by the treatment of side effects, but also by minimizing the disruption of treatment of the underlying malignancy, as well as improving patient quality of life.
Collapse
Affiliation(s)
- Suzanne R Hayman
- Department of Internal Medicine, Division of Hematology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA.
| | | | | | | |
Collapse
|
120
|
Eddy AA, López-Guisa JM, Okamura DM, Yamaguchi I. Investigating mechanisms of chronic kidney disease in mouse models. Pediatr Nephrol 2012; 27:1233-47. [PMID: 21695449 PMCID: PMC3199379 DOI: 10.1007/s00467-011-1938-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 04/22/2011] [Accepted: 04/25/2011] [Indexed: 12/21/2022]
Abstract
Animal models of chronic kidney disease (CKD) are important experimental tools that are used to investigate novel mechanistic pathways and to validate potential new therapeutic interventions prior to pre-clinical testing in humans. Over the past several years, mouse CKD models have been extensively used for these purposes. Despite significant limitations, the model of unilateral ureteral obstruction (UUO) has essentially become the high-throughput in vivo model, as it recapitulates the fundamental pathogenetic mechanisms that typify all forms of CKD in a relatively short time span. In addition, several alternative mouse models are available that can be used to validate new mechanistic paradigms and/or novel therapies. Here, we review several models-both genetic and experimentally induced-that provide investigators with an opportunity to include renal functional study end-points together with quantitative measures of fibrosis severity, something that is not possible with the UUO model.
Collapse
Affiliation(s)
- Allison A Eddy
- Center for Tissue and Cell Sciences, Seattle Children's Research Institute, 1900 Ninth Avenue, M/S C9S-5, Seattle, WA 98101-1309, USA.
| | | | | | | |
Collapse
|
121
|
An overview of molecular mechanism of nephrotic syndrome. Int J Nephrol 2012; 2012:937623. [PMID: 22844593 PMCID: PMC3401527 DOI: 10.1155/2012/937623] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 06/20/2012] [Accepted: 06/20/2012] [Indexed: 12/13/2022] Open
Abstract
Podocytopathies (minimal change disease (MCD) and focal segmental glomerulosclerosis (FSGS)) together with membranous nephropathy are the main causes of nephrotic syndrome. Some changes on the expression of nephrin, podocin, TGF-β, and slit diaphragm components as well as transcription factors and transmembrane proteins have been demonstrated in podocytopathies. Considering the pathogenesis of proteinuria, some elucidations have been directed towards the involvement of epithelial-mesenchymal transition. Moreover, the usefulness of some markers such as TGF-β1, nephrin, synaptopodin, dystroglycans, and malondialdehyde have been determined in the differentiation between MCD and FSGS. Experimental models and human samples indicated an essential role of autoantibodies in membranous glomerulonephritis, kidney damage, and proteinuria events. Megalin and phospholipase-A2-receptor have been described as antigens responsible for the formation of the subepithelial immune complexes and renal disease occurrence. In addition, the complement system seems to play a key role in basal membrane damage and in the development of proteinuria in membranous nephropathy. This paper focuses on the common molecular changes involved in the development of nephrotic proteinuria.
Collapse
|
122
|
Functional study of mammalian Neph proteins in Drosophila melanogaster. PLoS One 2012; 7:e40300. [PMID: 22792268 PMCID: PMC3391254 DOI: 10.1371/journal.pone.0040300] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 06/07/2012] [Indexed: 02/04/2023] Open
Abstract
Neph molecules are highly conserved immunoglobulin superfamily proteins (IgSF) which are essential for multiple morphogenetic processes, including glomerular development in mammals and neuronal as well as nephrocyte development in D. melanogaster. While D. melanogaster expresses two Neph-like proteins (Kirre and IrreC/Rst), three Neph proteins (Neph1–3) are expressed in the mammalian system. However, although these molecules are highly abundant, their molecular functions are still poorly understood. Here we report on a fly system in which we overexpress and replace endogenous Neph homologs with mammalian Neph1–3 proteins to identify functional Neph protein networks required for neuronal and nephrocyte development. Misexpression of Neph1, but neither Neph2 nor Neph3, phenocopies the overexpression of endogenous Neph molecules suggesting a functional diversity of mammalian Neph family proteins. Moreover, structure-function analysis identified a conserved and specific Neph1 protein motif that appears to be required for the functional replacement of Kirre. Hereby, we establish D. melanogaster as a genetic system to specifically model molecular Neph1 functions in vivo and identify a conserved amino acid motif linking Neph1 to Drosophila Kirre function.
Collapse
|
123
|
Progress in pathogenesis of proteinuria. Int J Nephrol 2012; 2012:314251. [PMID: 22693670 PMCID: PMC3368192 DOI: 10.1155/2012/314251] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Revised: 03/24/2012] [Accepted: 03/26/2012] [Indexed: 02/06/2023] Open
Abstract
Aims. Proteinuria not only is a sign of kidney damage, but also is involved in the progression of renal diseases as an independent pathologic factor. Clinically, glomerular proteinuria is most commonly observed, which relates to structural and functional anomalies in the glomerular filtration barrier. The aim of this paper was to describe the pathogenesis of glomerular proteinuria. Data Sources. Articles on glomerular proteinuria retrieved from Pubmed and MEDLINE in the recent 5 years were reviewed. Results. The new understanding of the roles of glomerular endothelial cells and the glomerular basement membrane (GBM) in the pathogenesis of glomerular proteinuria was gained. The close relationships of slit diaphragm (SD) molecules such as nephrin, podocin, CD2-associated protein (CD2AP), a-actinin-4, transient receptor potential cation channel 6 (TRPC6), Densin and membrane-associated guanylate kinase inverted 1 (MAGI-1), α3β1 integrin, WT1, phospholipase C epsilon-1 (PLCE1), Lmx1b, and MYH9, and mitochondrial disorders and circulating factors in the pathogenesis of glomerular proteinuria were also gradually discovered. Conclusion. Renal proteinuria is a manifestation of glomerular filtration barrier dysfunction. Not only glomerular endothelial cells and GBM, but also the glomerular podocytes and their SDs play an important role in the pathogenesis of glomerular proteinuria.
Collapse
|
124
|
Garovic VD, Craici IM, Wagner SJ, White WM, Brost BC, Rose CH, Grande JP, Barnidge DR. Mass spectrometry as a novel method for detection of podocyturia in pre-eclampsia. Nephrol Dial Transplant 2012; 28:1555-61. [PMID: 22523117 DOI: 10.1093/ndt/gfs074] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Podocyturia, i.e. urinary loss of viable podocytes, may serve as a diagnostic tool for pre-eclampsia and as a marker of active renal disease. The current method to detect podocyturia is technically complex, lengthy and requires a high level of expertise for interpretation. The aim of this study was to develop a new technique for the identification of urinary podocytes, based on the detection of podocyte-specific tryptic peptides by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS), which will provide an operator-independent and highly reproducible method. METHODS AND RESULTS The diagnosis of pre-eclampsia was confirmed in the presence of hypertension (>140/90 mmHg) and proteinuria >0.3 g/24 h urine. The diagnosis of HELLP was confirmed based on the accepted clinical criteria of hemolysis, elevated liver enzymes and low platelet count. Random urine samples within 24 h prior to delivery were collected and centrifuged. One half of the sediment was cultured for 24 h to select for viable cells and then stained with a podocin antibody, followed by a secondary fluorescein isothiocyanate-labeled antibody to identify podocytes. The second half of the pellet was solubilized, digested and analyzed by LC-MS/MS using an internal standard. We have recruited 13 patients with pre-eclampsia and 6 patients with pre-eclampsia/HELLP syndrome. The presence of podocytes was confirmed in all patients by the podocyte culture method. In the respective samples, the presence of a podocin-specific tryptic peptide was confirmed with LC-MS/MS technology. CONCLUSION The LC-MS/MS method is a reliable technology for the identification of urinary podocytes, based on the presence of podocyte-specific proteins in the urine.
Collapse
Affiliation(s)
- Vesna D Garovic
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.
| | | | | | | | | | | | | | | |
Collapse
|
125
|
Chang JH, Paik SY, Mao L, Eisner W, Flannery PJ, Wang L, Tang Y, Mattocks N, Hadjadj S, Goujon JM, Ruiz P, Gurley SB, Spurney RF. Diabetic kidney disease in FVB/NJ Akita mice: temporal pattern of kidney injury and urinary nephrin excretion. PLoS One 2012; 7:e33942. [PMID: 22496773 PMCID: PMC3319540 DOI: 10.1371/journal.pone.0033942] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 02/23/2012] [Indexed: 11/24/2022] Open
Abstract
Akita mice are a genetic model of type 1 diabetes. In the present studies, we investigated the phenotype of Akita mice on the FVB/NJ background and examined urinary nephrin excretion as a marker of kidney injury. Male Akita mice were compared with non-diabetic controls for functional and structural characteristics of renal and cardiac disease. Podocyte number and apoptosis as well as urinary nephrin excretion were determined in both groups. Male FVB/NJ Akita mice developed sustained hyperglycemia and albuminuria by 4 and 8 weeks of age, respectively. These abnormalities were accompanied by a significant increase in systolic blood pressure in 10-week old Akita mice, which was associated with functional, structural and molecular characteristics of cardiac hypertrophy. By 20 weeks of age, Akita mice developed a 10-fold increase in albuminuria, renal and glomerular hypertrophy and a decrease in the number of podocytes. Mild-to-moderate glomerular mesangial expansion was observed in Akita mice at 30 weeks of age. In 4-week old Akita mice, the onset of hyperglycemia was accompanied by increased podocyte apoptosis and enhanced excretion of nephrin in urine before the development of albuminuria. Urinary nephrin excretion was also significantly increased in albuminuric Akita mice at 16 and 20 weeks of age and correlated with the albumin excretion rate. These data suggest that: 1. FVB/NJ Akita mice have phenotypic characteristics that may be useful for studying the mechanisms of kidney and cardiac injury in diabetes, and 2. Enhanced urinary nephrin excretion is associated with kidney injury in FVB/NJ Akita mice and is detectable early in the disease process.
Collapse
Affiliation(s)
- Jae-Hyung Chang
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina, United States of America
| | - Seung-Yeol Paik
- Chung-ang University Medical School, Seoul, Republic of Korea
| | - Lan Mao
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - William Eisner
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina, United States of America
| | - Patrick J. Flannery
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina, United States of America
| | - Liming Wang
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina, United States of America
| | - Yuping Tang
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina, United States of America
| | - Natalie Mattocks
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina, United States of America
| | - Samy Hadjadj
- INSERM U927, Poitiers, France and INSERM CIC 0802, Poitiers, France and CHU Poitiers, Endocrinologie, Poitiers, France
| | - Jean-Michel Goujon
- CHU Poitiers, Pathology Unit, Poitiers, France
- INSERM U927, Poitiers, France and INSERM CIC 0802, Poitiers, France and CHU Poitiers, Endocrinologie, Poitiers, France
| | - Phillip Ruiz
- Department of Surgery and Pathology, University of Miami, Miami, Florida, United States of America
| | - Susan B. Gurley
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina, United States of America
| | - Robert F. Spurney
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina, United States of America
| |
Collapse
|
126
|
Mallik L, Arif E, Sharma P, Rathore YS, Wong HN, Holzman LB, Ashish, Nihalani D. Solution structure analysis of cytoplasmic domain of podocyte protein Neph1 using small/wide angle x-ray scattering (SWAXS). J Biol Chem 2012; 287:9441-53. [PMID: 22262837 PMCID: PMC3308819 DOI: 10.1074/jbc.m111.284927] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 01/16/2012] [Indexed: 12/27/2022] Open
Abstract
Neph1 is present in podocytes, where it plays a critical role in maintaining the filtration function of the glomerulus, in part through signaling events mediated by its cytoplasmic domain that are involved in actin cytoskeleton organization. To understand the function of this protein, a detailed knowledge of the structure of the Neph1 cytoplasmic domain (Neph1-CD) is required. In this study, the solution structure of this domain was determined by small/wide angle x-ray scattering (SWAXS). Analysis of Neph1-CD by SWAXS suggested that this protein adopts a global shape with a radius of gyration and a maximum linear dimension of 21.3 and 70 Å, respectively. These parameters and the data from circular dichroism experiments were used to construct a structural model of this protein. The His-ZO-1-PDZ1 (first PDZ domain of zonula occludens) domain that binds Neph1-CD was also analyzed by SWAXS, to confirm that it adopts a global structure similar to its crystal structure. We used the SWAXS intensity profile, the structural model of Neph1-CD, and the crystal structure of ZO-1-PDZ1 to construct a structural model of the Neph1-CD·ZO-1-PDZ1 complex. Mapping of the intermolecular interactions suggested that in addition to the C-terminal residues Thr-His-Val, residues Lys-761 and Tyr-762 in Neph1 are also critical for stabilizing the complex. Estimated intensity values from the SWAXS data and in vivo and in vitro pull-down experiments demonstrated loss of binding to ZO-1 when these residues were individually mutated to alanines. Our findings present a structural model that provides novel insights into the molecular structure and function of Neph1-CD.
Collapse
Affiliation(s)
- Leena Mallik
- From the CSIR-Institute of Microbial Technology, Chandigarh 160036, India and
| | - Ehtesham Arif
- the Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Pankaj Sharma
- From the CSIR-Institute of Microbial Technology, Chandigarh 160036, India and
| | - Yogendra S. Rathore
- From the CSIR-Institute of Microbial Technology, Chandigarh 160036, India and
| | - Hetty N. Wong
- the Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Lawrence B. Holzman
- the Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Ashish
- From the CSIR-Institute of Microbial Technology, Chandigarh 160036, India and
| | - Deepak Nihalani
- the Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
127
|
Downing C, Balderrama-Durbin C, Kimball A, Biers J, Wright H, Gilliam D, Johnson TE. Quantitative trait locus mapping for ethanol teratogenesis in BXD recombinant inbred mice. Alcohol Clin Exp Res 2012; 36:1340-54. [PMID: 22413943 DOI: 10.1111/j.1530-0277.2012.01754.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 12/13/2011] [Indexed: 11/30/2022]
Abstract
BACKGROUND Individual differences in susceptibility to the detrimental effects of prenatal ethanol (EtOH) exposure have been demonstrated. Many factors, including genetics, play a role in susceptibility and resistance. We have previously shown that C57BL/6J (B6) mice display a number of morphological malformations following an acute dose of EtOH in utero, while DBA/2J (D2) mice are relatively resistant. Here, we present the results of quantitative trait locus (QTL) mapping for EtOH teratogenesis in recombinant inbred strains derived from a cross between B6 and D2 (BXD RIs). METHODS Pregnant dams were intubated with either maltose-dextrin or 5.8 g/kg EtOH on day 9 of gestation (GD9). On GD 18, dams were sacrificed and fetuses and placentae were removed. Placentae and fetuses were weighed; fetuses were sexed and examined for gross morphological malformations. Fetuses were then either placed in Bouin's fixative for subsequent soft-tissue analyses or eviscerated and placed in EtOH for subsequent skeletal examinations. QTL mapping for maternal weight gain (MWG), prenatal mortality, fetal weight (FW) at c-section, placental weight (PW), and several morphological malformations was performed using WebQTL. RESULTS Heritability for our traits ranged from 0.06 for PW to 0.39 for MWG. We found suggestive QTLs mediating all phenotypes and significant QTLs for FW and digit and rib malformations. While most QTL regions are large, several intriguing candidate genes emerged based on polymorphisms between B6 and D2 and gene function. CONCLUSIONS In this first mapping study for EtOH teratogenesis, several QTLs were identified. Future studies will further characterize these regions. Identification of genes and epigenetic modifications mediating susceptibility to the teratogenic effects of alcohol in mice will provide targets to examine in human populations.
Collapse
Affiliation(s)
- Chris Downing
- Institute for Behavioral Genetics, University of Colorado, Boulder, USA.
| | | | | | | | | | | | | |
Collapse
|
128
|
Garg P, Holzman LB. Podocytes: gaining a foothold. Exp Cell Res 2012; 318:955-63. [PMID: 22421512 DOI: 10.1016/j.yexcr.2012.02.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 02/24/2012] [Indexed: 01/29/2023]
Abstract
In an attempt to understand the basis of glomerular disease, significant progress has been made in understanding the mechanisms that determine podocyte development and the maintenance of podocyte health. This review examines recent advances in this area focusing on the podocyte intercellular junction, actin cytoskeletal dynamics, and determinants of podocyte cell polarity, autophagy and mTOR biology.
Collapse
Affiliation(s)
- Puneet Garg
- Division of Nephrology, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
129
|
Kakani S, Yardeni T, Poling J, Ciccone C, Niethamer T, Klootwijk ED, Manoli I, Darvish D, Hoogstraten-Miller S, Zerfas P, Tian E, Ten Hagen KG, Kopp JB, Gahl WA, Huizing M. The Gne M712T mouse as a model for human glomerulopathy. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:1431-40. [PMID: 22322304 DOI: 10.1016/j.ajpath.2011.12.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 10/13/2011] [Accepted: 12/09/2011] [Indexed: 12/17/2022]
Abstract
Pathological glomerular hyposialylation has been implicated in certain unexplained glomerulopathies, including minimal change nephrosis, membranous glomerulonephritis, and IgA nephropathy. We studied our previously established mouse model carrying a homozygous mutation in the key enzyme of sialic acid biosynthesis, N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase. Mutant mice died before postnatal day 3 (P3) from severe glomerulopathy with podocyte effacement and segmental glomerular basement membrane splitting due to hyposialylation. Administration of the sialic acid precursor N-acetylmannosamine (ManNAc) led to improved sialylation and survival of mutant pups beyond P3. We determined the onset of the glomerulopathy in the embryonic stage. A lectin panel, distinguishing normally sialylated from hyposialylated glycans, used WGA, SNA, PNA, Jacalin, HPA, and VVA, indicating glomerular hyposialylation of predominantly O-linked glycoproteins in mutant mice. The glomerular glycoproteins nephrin and podocalyxin were hyposialylated in this unique murine model. ManNAc treatment appeared to ameliorate the hyposialylation status of mutant mice, indicated by a lectin histochemistry pattern similar to that of wild-type mice, with improved sialylation of both nephrin and podocalyxin, as well as reduced albuminuria compared with untreated mutant mice. These findings suggest application of our lectin panel for categorizing human kidney specimens based on glomerular sialylation status. Moreover, the partial restoration of glomerular architecture in ManNAc-treated mice highlights ManNAc as a potential treatment for humans affected with disorders of glomerular hyposialylation.
Collapse
Affiliation(s)
- Sravan Kakani
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892-1851, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
|
131
|
Völker LA, Petry M, Abdelsabour-Khalaf M, Schweizer H, Yusuf F, Busch T, Schermer B, Benzing T, Brand-Saberi B, Kretz O, Höhne M, Kispert A. Comparative analysis of Neph gene expression in mouse and chicken development. Histochem Cell Biol 2011; 137:355-66. [PMID: 22205279 PMCID: PMC3278613 DOI: 10.1007/s00418-011-0903-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2011] [Indexed: 12/24/2022]
Abstract
Neph proteins are evolutionarily conserved members of the immunoglobulin superfamily of adhesion proteins and regulate morphogenesis and patterning of different tissues. They share a common protein structure consisting of extracellular immunoglobulin-like domains, a transmembrane region, and a carboxyl terminal cytoplasmic tail required for signaling. Neph orthologs have been widely characterized in invertebrates where they mediate such diverse processes as neural development, synaptogenesis, or myoblast fusion. Vertebrate Neph proteins have been described first at the glomerular filtration barrier of the kidney. Recently, there has been accumulating evidence suggesting a function of Neph proteins also outside the kidney. Here we demonstrate that Neph1, Neph2, and Neph3 are expressed differentially in various tissues during ontogenesis in mouse and chicken. Neph1 and Neph2 were found to be amply expressed in the central nervous system while Neph3 expression remained localized to the cerebellum anlage and the spinal cord. Outside the nervous system, Neph mRNAs were also differentially expressed in branchial arches, somites, heart, lung bud, and apical ectodermal ridge. Our findings support the concept that vertebrate Neph proteins, similarly to their Drosophila and C. elegans orthologs, provide guidance cues for cell recognition and tissue patterning in various organs which may open interesting perspectives for future research on Neph1-3 controlled morphogenesis.
Collapse
Affiliation(s)
- Linus A Völker
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, 50937 Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Wang H, Lehtonen S, Chen YC, Heikkilä E, Panula P, Holthöfer H. Neph3 associates with regulation of glomerular and neural development in zebrafish. Differentiation 2011; 83:38-46. [PMID: 22099175 DOI: 10.1016/j.diff.2011.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 08/22/2011] [Accepted: 08/23/2011] [Indexed: 01/13/2023]
Abstract
Neph3 (filtrin) is a membrane protein expressed in the glomerular epithelial cells (podocytes), but its role in the glomerulus is still largely unknown. To characterize the function of Neph3 in the glomerulus, we employed the zebrafish as a model system. Here we show that the expression of neph3 in pronephros starts before the onset of nephrin and podocin expression, peaks when the nephron primordium differentiates into glomerulus and tubulus, and is then downregulated upon glomerular maturation. By histology, we found that neph3 is specifically expressed in pronephric podocytes at 36hpf. Furthermore, disruption of neph3 expression by antisense morpholino oligonucleotides results in distorted body curvature and transient pericardial edema, the latter likely reflecting perturbation of glomerular osmoregulatory function. Histological analysis of neph3 morphants reveals altered glomerular morphology and dilated pronephric tubules. The phenotype of neph3 morphants, curved body and pericardial edema, is rescued by wild-type zebrafish neph3 mRNA. In addition to glomerulus, neph3 is highly expressed in the developing brain and specific regions of mature midbrain and hindbrain. In line with this, neph3 morphants show aberrant brain morphology. Collectively, the expression of neph3 in glomerulus and brain together with the morphant phenotype imply that neph3 is a pleiotropic gene active during distinct stages of tissue differentiation and associates directly in the regulation of both glomerular and neural development.
Collapse
Affiliation(s)
- Hong Wang
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
133
|
Abstract
PURPOSE OF REVIEW The functioning kidney requires proper organization in multiple cell types that mediate filtration and removal of wastes. Interest has increasingly focused on the podocyte as an important mediator of kidney function; defects in podocyte function likely mediate a broad palate of kidney dysfunctions. Here I explore recent work that establishes the Drosophila nephrocyte as a useful model for podocyte function and dysfunction. RECENT FINDINGS Although described many decades in the past, recent evidence has emphasized important similarities in the molecules that construct the 'nephrocyte diaphragm' and its vertebrate cousin the 'podocyte diaphragm'. For example, loss of Nephrin and its associated proteins lead to collapse of these structures and loss of proper filtration. SUMMARY These data emphasize both differences between the podocyte and nephrocyte and also useful similarities. These similarities provide the promise of bringing Drosophila genetics--strongly successful in other disciplines--to the complex problem of how podocyte dysfunction leads to disease. To further explore this point I discuss work on Nephrin in a better understood tissue, the Drosophila eye, in which the role of Nephrin and its connection to actin dynamics is under intense study.
Collapse
|
134
|
Gigante M, Piemontese M, Gesualdo L, Iolascon A, Aucella F. Molecular and genetic basis of inherited nephrotic syndrome. Int J Nephrol 2011; 2011:792195. [PMID: 21904677 PMCID: PMC3167185 DOI: 10.4061/2011/792195] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 06/16/2011] [Accepted: 06/16/2011] [Indexed: 12/26/2022] Open
Abstract
Nephrotic syndrome is an heterogeneous disease characterized by increased permeability of the glomerular filtration barrier for macromolecules. Podocytes, the visceral epithelial cells of glomerulus, play critical role in ultrafiltration of plasma and are involved in a wide number of inherited and acquired glomerular diseases. The identification of mutations in nephrin and other podocyte genes as causes of genetic forms of nephrotic syndrome has revealed new important aspects of the pathogenesis of proteinuric kidney diseases and expanded our knowledge of the glomerular biology. Moreover, a novel concept of a highly dynamic slit diaphragm proteins is emerging. The most significant discoveries in our understanding of the structure and function of the glomerular filtration barrier are reviewed in this paper.
Collapse
Affiliation(s)
- Maddalena Gigante
- Division of Nephrology, Department of Biomedical Science, University of Foggia, 71121 Foggia, Italy
| | | | | | | | | |
Collapse
|
135
|
Kawakami H, Kamiie J, Yasuno K, Kobayashi R, Aihara N, Shirota K. Dynamics of absolute amount of nephrin in a single podocyte in puromycin aminonucleoside nephrosis rats calculated by quantitative glomerular proteomics approach with selected reaction monitoring mode. Nephrol Dial Transplant 2011; 27:1324-30. [DOI: 10.1093/ndt/gfr492] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
136
|
Functional and spatial analysis of C. elegans SYG-1 and SYG-2, orthologs of the Neph/nephrin cell adhesion module directing selective synaptogenesis. PLoS One 2011; 6:e23598. [PMID: 21858180 PMCID: PMC3156230 DOI: 10.1371/journal.pone.0023598] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 07/20/2011] [Indexed: 01/25/2023] Open
Abstract
The assembly of specific synaptic connections represents a prime example of cellular recognition. Members of the Ig superfamily are among the most ancient proteins represented in the genomes of both mammalian and invertebrate organisms, where they constitute a trans-synaptic adhesion system. The correct connectivity patterns of the highly conserved immunoglobulin superfamily proteins nephrin and Neph1 are crucial for the assembly of functional neuronal circuits and the formation of the kidney slit diaphragm, a synapse-like structure forming the filtration barrier. Here, we utilize the nematode C. elegans model for studying the requirements of synaptic specificity mediated by nephrin-Neph proteins. In C. elegans, the nephrin/Neph1 orthologs SYG-2 and SYG-1 form intercellular contacts strictly in trans between epithelial guidepost cells and neurons specifying the localization of synapses. We demonstrate a functional conservation between mammalian nephrin and SYG-2. Expression of nephrin effectively compensated loss of syg-2 function in C. elegans and restored defective synaptic connectivity further establishing the C. elegans system as a valuable model for slit diaphragm proteins. Next, we investigated the effect of SYG-1 and SYG-2 trans homodimerization respectively. Strikingly, synapse assembly could be induced by homophilic SYG-1 but not SYG-2 binding indicating a critical role of SYG-1 intracellular signalling for morphogenetic events and pointing toward the dynamic and stochastic nature of extra- and intracellular nephrin-Neph interactions to generate reproducible patterns of synaptic connectivity.
Collapse
|
137
|
Machado MCR, Octacilio-Silva S, Costa MSA, Ramos RGP. rst transcriptional activity influences kirre mRNA concentration in the Drosophila pupal retina during the final steps of ommatidial patterning. PLoS One 2011; 6:e22536. [PMID: 21857931 PMCID: PMC3152562 DOI: 10.1371/journal.pone.0022536] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Accepted: 06/23/2011] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Drosophila retinal architecture is laid down between 24-48 hours after puparium formation, when some of the still uncommitted interommatidial cells (IOCs) are recruited to become secondary and tertiary pigment cells while the remaining ones undergo apoptosis. This choice between survival and death requires the product of the roughest (rst) gene, an immunoglobulin superfamily transmembrane glycoprotein involved in a wide range of developmental processes. Both temporal misexpression of Rst and truncation of the protein intracytoplasmic domain, lead to severe defects in which IOCs either remain mostly undifferentiated and die late and erratically or, instead, differentiate into extra pigment cells. Intriguingly, mutants not expressing wild type protein often have normal or very mild rough eyes. METHODOLOGY/PRINCIPAL FINDINGS By using quantitative real time PCR to examine rst transcriptional dynamics in the pupal retina, both in wild type and mutant alleles we showed that tightly regulated temporal changes in rst transcriptional rate underlie its proper function during the final steps of eye patterning. Furthermore we demonstrated that the unexpected wild type eye phenotype of mutants with low or no rst expression correlates with an upregulation in the mRNA levels of the rst paralogue kin-of-irre (kirre), which seems able to substitute for rst function in this process, similarly to their role in myoblast fusion. This compensatory upregulation of kirre mRNA levels could be directly induced in wild type pupa upon RNAi-mediated silencing of rst, indicating that expression of both genes is also coordinately regulated in physiological conditions. CONCLUSIONS/SIGNIFICANCE These findings suggest a general mechanism by which rst and kirre expression could be fine tuned to optimize their redundant roles during development and provide a clearer picture of how the specification of survival and apoptotic fates by differential cell adhesion during the final steps of retinal morphogenesis in insects are controlled at the transcriptional level.
Collapse
Affiliation(s)
- Maiaro Cabral Rosa Machado
- Departmento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Shirlei Octacilio-Silva
- Departmento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Mara Silvia A. Costa
- Departmento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ricardo Guelerman P. Ramos
- Departmento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
138
|
Relevance of VEGF and nephrin expression in glomerular diseases. JOURNAL OF SIGNAL TRANSDUCTION 2011; 2011:718609. [PMID: 21808734 PMCID: PMC3144718 DOI: 10.1155/2011/718609] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 05/25/2011] [Indexed: 12/23/2022]
Abstract
The glomerular filtration barrier is affected in a large number of acquired and inherited diseases resulting in extensive leakage of plasma albumin and larger proteins, leading to nephrotic syndrome and end-stage renal disease. Unfortunately, the molecular mechanisms governing the development of the nephrotic syndrome remain poorly understood. Here, I give an overview of recent investigations that have focused on characterizing the interrelationships between the slit diaphragm components and podocytes-secreted VEGF, which have a significant role for maintaining the normal podocyte structure and the integrity of the filtering barrier.
Collapse
|
139
|
Molecular and cellular mechanisms of mammalian cell fusion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 713:33-64. [PMID: 21432013 DOI: 10.1007/978-94-007-0763-4_4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The fusion of one cell with another occurs in development, injury and disease. Despite the diversity of fusion events, five steps in sequence appear common. These steps include programming fusion-competent status, chemotaxis, membrane adhesion, membrane fusion, and post-fusion resetting. Recent advances in the field start to reveal the molecules involved in each step. This review focuses on some key molecules and cellular events of cell fusion in mammals. Increasing evidence demonstrates that membrane lipid rafts, adhesion proteins and actin rearrangement are critical in the final step of membrane fusion. Here we propose a new model for the formation and expansion of membrane fusion pores based on recent observations on myotube formation. In this model, membrane lipid rafts first recruit adhesion molecules and align with opposing membranes, with the help of a cortical actin "wall" as a rigid supportive platform. Second, the membrane adhesion proteins interact with each other and trigger actin rearrangement, which leads to rapid dispersion of lipid rafts and flow of a highly fluidic phospholipid bilayer into the site. Finally, the opposing phospholipid bilayers are then pushed into direct contact leading to the formation of fusion pores by the force generated through actin polymerization. The actin polymerization generated force also drives the expansion of the fusion pores. However, several key questions about the process of cell fusion still remain to be explored. The understanding of the mechanisms of cell fusion may provide new opportunities in correcting development disorders or regenerating damaged tissues by inhibiting or promoting molecular events associated with fusion.
Collapse
|
140
|
Trans-interaction of nephrin and Neph1/Neph3 induces cell adhesion that associates with decreased tyrosine phosphorylation of nephrin. Biochem J 2011; 435:619-28. [PMID: 21306299 DOI: 10.1042/bj20101599] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Slit diaphragms are specialized junctions between glomerular epithelial cells (podocytes) that are crucial for glomerular ultrafiltration. The Ig superfamily members nephrin and Neph1 are essential components of the slit diaphragm, whereas the role of Neph1 homologue Neph3 in the slit diaphragm is unknown. In the present paper we show that Neph3 homodimerizes and heterodimerizes with nephrin and Neph1. We further investigated whether these interactions play a role in cell adhesion by using mouse L fibroblasts that lack endogenous cell-adhesion activity and found that Neph1 and Neph3 are able to induce cell adhesion alone, whereas nephrin needs to trans-interact with Neph1 or Neph3 in order to promote formation of cell-cell contacts. Tyrosine phosphorylation of nephrin was down-regulated after nephrin trans-interacted with either Neph1 or Neph3 leading to formation of cell-cell contacts. We further found that the expression of Neph3 was increased in nephrin-deficient mouse podocytes. The findings of the present paper show that nephrin and Neph1 or Neph3 trans-interactions promote cell-contact formation, suggesting that they may also function together in slit diaphragm assembly.
Collapse
|
141
|
Garg P, Rabelink T. Glomerular proteinuria: a complex interplay between unique players. Adv Chronic Kidney Dis 2011; 18:233-42. [PMID: 21782129 DOI: 10.1053/j.ackd.2011.06.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 05/31/2011] [Accepted: 06/01/2011] [Indexed: 11/11/2022]
Abstract
Protein leak in the urine is a harbinger of disruption of the glomerular filtration barrier. It also correlates with disease progression and development of ESRD. At present, therapies are aimed at decreasing proteinuria to decrease further damage to the filter and as a marker of remission. Understanding the mechanism of molecular events that lead to protein leak is vital to developing new therapeutic interventions. There has been tremendous progress over the last decade in identifying gene defects which result in hereditary proteinuric defects. This has led to identifying pathways by which these genes regulate the structure and function of the components of the filtration barrier, namely the podocytes, mesangial cells, endothelial cells, and the basement membrane. Using gene knockout mouse models, a role of tubular cells in regulating proteinuria is also emerging. In this review, we have attempted to present some of the prevailing understanding of the underlying mechanisms and physiology of proteinuria.
Collapse
|
142
|
Sirolimus and proteinuria in renal transplant patients: evidence for a dose-dependent effect on slit diaphragm-associated proteins. Transplantation 2011; 91:997-1004. [PMID: 21364499 DOI: 10.1097/tp.0b013e318211d342] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The mechanisms underlying the development of proteinuria in renal-transplant recipients converted from calcineurin inhibitors to sirolimus are still unknown. METHODS This is a single-center cohort study. One hundred ten kidney transplant recipients converted from calcineurin inhibitors to sirolimus in the period from September 2000 to December 2005 were included in the study. All patients underwent a graft biopsy before conversion (T0) and a second protocol biopsy 2 years thereafter (T2), according to our standard clinical protocol. On the basis of the changes observed in proteinuria between T0 and T2 (median 70%), the patients were divided into two groups: group I (<70%) and group II (>70%). The authors blinded the sirolimus blood trough levels. We investigated in vivo the effects of sirolimus on nephrin, podocin, CD2ap, and actin protein expression. Slit diaphragm (SD)-associated protein expressions were evaluated in T0 and T2 biopsies. The same analysis was performed in cultured human podocytes treated with different doses of sirolimus (5, 10, 20, and 50 ng/mL). RESULTS The SD protein expression in group II T2 biopsies was significantly reduced compared with the T0 biopsies and with T2 group I biopsies. In addition, sirolimus blood trough levels directly and significantly correlated with the SD protein expression at T2 graft biopsies. Group II patients presented significantly higher sirolimus blood levels than group I. In vitro study confirmed that sirolimus effect on podocytes was dose dependent. CONCLUSIONS Our data suggest that sirolimus-induced proteinuria may be a dose-dependent effect of the drug on key podocyte structures.
Collapse
|
143
|
The BAR domain protein PICK1 regulates cell recognition and morphogenesis by interacting with Neph proteins. Mol Cell Biol 2011; 31:3241-51. [PMID: 21690291 DOI: 10.1128/mcb.05286-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neph proteins are evolutionarily conserved membrane proteins of the immunoglobulin superfamily that control the formation of specific intercellular contacts. Cell recognition through these proteins is essential in diverse cellular contexts such as patterning of the compound eye in Drosophila melanogaster, neuronal connectivity in Caenorhabditis elegans, and the formation of the kidney filtration barrier in mammals. Here we identify the PDZ and BAR domain protein PICK1 (protein interacting with C-kinase 1) as a Neph-interacting protein. Binding required dimerization of PICK1, was dependent on PDZ domain protein interactions, and mediated stabilization of Neph1 at the plasma membrane. Moreover, protein kinase C (PKCα) activity facilitated the interaction through releasing Neph proteins from their binding to the multidomain scaffolding protein zonula occludens 1 (ZO-1), another PDZ domain protein. In Drosophila, the Neph homologue Roughest is essential for sorting of interommatidial precursor cells and patterning of the compound eye. RNA interference-mediated knockdown of PICK1 in the Drosophila eye imaginal disc caused a Roughest destabilization at the plasma membrane and a phenotype that resembled rst mutation. These data indicate that Neph proteins and PICK1 synergistically regulate cell recognition and contact formation.
Collapse
|
144
|
Rosuvastatin beneficially alters the glomerular structure of kidneys from spontaneously hypertensive rats (SHRs). J Mol Histol 2011; 42:323-31. [PMID: 21670990 DOI: 10.1007/s10735-011-9336-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 05/30/2011] [Indexed: 10/18/2022]
Abstract
The incidence of chronic renal diseases is increasing worldwide, and there is a great need to identify therapies capable of arresting or reducing disease progression. The current treatment of chronic nephropathies is limited to angiotensin-converting enzyme inhibitors and angiotensin receptor blockers, but increasing clinical and experimental evidence suggests that statins could play a therapeutic role. Ultrastructural studies have shown the presence of gap junctions within all the cells of the glomerulus and podocytes have been found to contain primarily connexin-43. The present study aims to observe the beneficial effects of rosuvastatin on structural and ultrastructural renal morphology and on glomerular connexin-43 expression in normotensive rats and spontaneously hypertensive rats (SHR). Rats were randomly allocated into four groups: WKY-C: normotensive animals no receiving rosuvastatin; WKY-ROS: normotensive animals receiving rosuvastatin; SHR-C: hypertensive animals no receiving rosuvastatin; SHR-ROS: hypertensive animals receiving rosuvastatin. Our results show no differences in blood urea, creatinine, uric acid and creatine phosphokinase levels between the groups, however, there was an decreasing of 24-h protein excretion in SHR-ROS. Capsular area in SHR-ROS was decreased, however, there was no alteration in urinary space. By transmission electron microscopy the slit diaphragm and podocyte foot processes were more preserved in SHR-ROS. By scanning electron microscopy the podocyte foot processes were more preserved in SHR-ROS. Increased connexin-43 immunofluorescence was observed in glomeruli of WKY-ROS and SHR-ROS. In conclusion, we hypothesize that renal pleiotropic effect of rosuvastatin can be a therapeutic tool for improving kidney ultrastructure and, consequently, renal function in hypertensive individuals.
Collapse
|
145
|
Tyrosine kinase signaling in kidney glomerular podocytes. JOURNAL OF SIGNAL TRANSDUCTION 2011; 2011:317852. [PMID: 21776384 PMCID: PMC3135133 DOI: 10.1155/2011/317852] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 03/17/2011] [Accepted: 03/30/2011] [Indexed: 01/27/2023]
Abstract
During the last decade, several key molecules have been identified as essential components for the filtration barrier function of kidney glomerular podocytes. Mutations in genes encoding these molecules severely impair the podocyte architecture in the affected patients, leading to the development of proteinuria. Extensive investigations have been performed on the function of these molecules, which highlights the importance of tyrosine kinase signaling in the podocytes. An Src family tyrosine kinase, Fyn, plays a major role in this signaling pathway. Here, we review the current understanding of this important signal transduction system and its role in the development and the maintenance of podocytes.
Collapse
|
146
|
He B, Ebarasi L, Hultenby K, Tryggvason K, Betsholtz C. Podocin-green fluorescence protein allows visualization and functional analysis of podocytes. J Am Soc Nephrol 2011; 22:1019-23. [PMID: 21566056 DOI: 10.1681/asn.2010121291] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Podocytes do not remain fully differentiated when cultured, and they are difficult to image in vivo, making the study of podocyte biology challenging. Zebrafish embryos are transparent and develop a single, midline, pronephric glomerulus accessible for imaging and systematic functional analysis. Here, we describe a transgenic zebrafish line that expresses green fluorescence protein (GFP) from the zebrafish podocin promoter. The line recapitulates the endogenous pronephric podocin expression pattern, showing GFP expression exclusively in podocytes starting 2 days postfertilization. Using the podocyte GFP signal as a guide for dissection, we examined the pronephric glomerulus by scanning electron microscopy; the surface ultrastructure exhibited fine, interdigitating podocyte foot processes surrounding glomerular capillaries. To determine whether the GFP signal could serve as a direct readout of developmental abnormalities or injury to the glomerulus, we knocked down the podocyte-associated protein crb2b; this led to a loss of GFP signal. Thus, podocin-GFP zebrafish provide a model for ultrastructural studies and in vivo visualization and functional analysis of glomerular podocytes. This model should also be useful for high-throughput genetic or chemical analysis of glomerular development and function.
Collapse
Affiliation(s)
- Bing He
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
147
|
Pereira RL, Buscariollo BN, Corrêa-Costa M, Semedo P, Oliveira CD, Reis VO, Maquigussa E, Araújo RC, Braga TT, Soares MF, Moura IC, Malheiros DMAC, Filho APS, Keller AC, Câmara NOS. Bradykinin receptor 1 activation exacerbates experimental focal and segmental glomerulosclerosis. Kidney Int 2011; 79:1217-27. [PMID: 21412216 DOI: 10.1038/ki.2011.14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Focal and segmental glomerulosclerosis (FSGS) is one of the most important causes of end-stage renal failure. The bradykinin B1 receptor has been associated with tissue inflammation and renal fibrosis. To test for a role of the bradykinin B1 receptor in podocyte injury, we pharmacologically modulated its activity at different time points in an adriamycin-induced mouse model of FSGS. Estimated albuminuria and urinary protein to creatinine ratios correlated with podocytopathy. Adriamycin injection led to loss of body weight, proteinuria, and upregulation of B1 receptor mRNA. Early treatment with a B1 antagonist reduced albuminuria and glomerulosclerosis, and inhibited the adriamycin-induced downregulation of podocin, nephrin, and α-actinin-4 expression. Moreover, delayed treatment with antagonist also induced podocyte protection. Conversely, a B1 agonist aggravated renal dysfunction and even further suppressed the levels of podocyte-related molecules. Thus, we propose that kinin has a crucial role in the pathogenesis of FSGS operating through bradykinin B1 receptor signaling.
Collapse
Affiliation(s)
- Rafael L Pereira
- Departamento de Medicina, Laboratório de Imunologia Clínica e Experimental, Disciplina de Nefrologia, Universidade Federal de São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Motor protein Myo1c is a podocyte protein that facilitates the transport of slit diaphragm protein Neph1 to the podocyte membrane. Mol Cell Biol 2011; 31:2134-50. [PMID: 21402783 DOI: 10.1128/mcb.05051-11] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The podocyte proteins Neph1 and nephrin organize a signaling complex at the podocyte cell membrane that forms the structural framework for a functional glomerular filtration barrier. Mechanisms regulating the movement of these proteins to and from the membrane are currently unknown. This study identifies a novel interaction between Neph1 and the motor protein Myo1c, where Myo1c plays an active role in targeting Neph1 to the podocyte cell membrane. Using in vivo and in vitro experiments, we provide data supporting a direct interaction between Neph1 and Myo1c which is dynamic and actin dependent. Unlike wild-type Myo1c, the membrane localization of Neph1 was significantly reduced in podocytes expressing dominant negative Myo1c. In addition, Neph1 failed to localize at the podocyte cell membrane and cell junctions in Myo1c-depleted podocytes. We further demonstrate that similarly to Neph1, Myo1c also binds nephrin and reduces its localization at the podocyte cell membrane. A functional analysis of Myo1c knockdown cells showed defects in cell migration, as determined by a wound assay. In addition, the ability to form tight junctions was impaired in Myo1c knockdown cells, as determined by transepithelial electric resistance (TER) and bovine serum albumin (BSA) permeability assays. These results identify a novel Myo1c-dependent molecular mechanism that mediates the dynamic organization of Neph1 and nephrin at the slit diaphragm and is critical for podocyte function.
Collapse
|
149
|
George M, Rainey MA, Naramura M, Foster KW, Holzapfel MS, Willoughby LL, Ying G, Goswami RM, Gurumurthy CB, Band V, Satchell SC, Band H. Renal thrombotic microangiopathy in mice with combined deletion of endocytic recycling regulators EHD3 and EHD4. PLoS One 2011; 6:e17838. [PMID: 21408024 PMCID: PMC3052385 DOI: 10.1371/journal.pone.0017838] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2010] [Accepted: 02/15/2011] [Indexed: 11/19/2022] Open
Abstract
Eps15 Homology Domain-containing 3 (EHD3), a member of the EHD protein family that regulates endocytic recycling, is the first protein reported to be specifically expressed in the glomerular endothelium in the kidney; therefore we generated Ehd3(-/-) mice and assessed renal development and pathology. Ehd3(-/-) animals showed no overt defects, and exhibited no proteinuria or glomerular pathology. However, as the expression of EHD4, a related family member, was elevated in the glomerular endothelium of Ehd3(-/-) mice and suggested functional compensation, we generated and analyzed Ehd3(-/-); Ehd4(-/-) mice. These mice were smaller, possessed smaller and paler kidneys, were proteinuric and died between 3-24 weeks of age. Detailed analyses of Ehd3(-/-); Ehd4(-/-) kidneys demonstrated thrombotic microangiopathy (TMA)-like glomerular lesions including thickening and duplication of glomerular basement membrane, endothelial swelling and loss of fenestrations. Other changes included segmental podocyte foot process effacement, mesangial interposition, and abnormal podocytic and mesangial marker expression. The glomerular lesions observed were strikingly similar to those seen in human pre-eclampsia and mouse models of reduced VEGF expression. As altered glomerular endothelial VEGFR2 expression and localization and increased apoptosis was observed in the absence of EHD3 and EHD4, we propose that EHD-mediated endocytic traffic of key surface receptors such as VEGFR2 is essential for physiological control of glomerular function. Furthermore, Ehd3(-/-); Ehd4(-/-) mice provide a unique model to elucidate mechanisms of glomerular endothelial injury which is observed in a wide variety of human renal and extra-renal diseases.
Collapse
Affiliation(s)
- Manju George
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail: (MG); (MN); (HB)
| | - Mark A. Rainey
- Department of Pharmacology, Creighton University, Omaha, Nebraska, United States of America
| | - Mayumi Naramura
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail: (MG); (MN); (HB)
| | - Kirk W. Foster
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Melissa S. Holzapfel
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Laura L. Willoughby
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - GuoGuang Ying
- Oncology Central Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Rasna M. Goswami
- Abbott Laboratories, Abbott Park, Illinois, United States of America
| | - Channabasavaiah B. Gurumurthy
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Vimla Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | | | - Hamid Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Departments of Biochemistry and Molecular Biology, and Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail: (MG); (MN); (HB)
| |
Collapse
|
150
|
Garcia-Pinto AB, de Matos VS, Rocha V, Moraes-Teixeira J, Carvalho JJ. Low-Intensity physical activity beneficially alters the ultrastructural renal morphology of spontaneously hypertensive rats. Clinics (Sao Paulo) 2011; 66:855-63. [PMID: 21789392 PMCID: PMC3109387 DOI: 10.1590/s1807-59322011000500024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Accepted: 01/17/2011] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION AND OBJECTIVE Kidney disorders can cause essential hypertension, which can subsequently cause renal disease. High blood pressure is also common among those with chronic kidney disease; moreover, it is a well-known risk factor for a more rapid progression to kidney failure. Because hypertension and kidney function are closely linked, the present study aimed to observe the beneficial effects of low-intensity physical activity on structural and ultrastructural renal morphology and blood pressure in normotensive and spontaneously hypertensive rats. METHOD Male Wistar-Kyoto rats and spontaneously hypertensive rats were randomly allocated into four groups: sedentary or exercised Wistar-Kyoto and sedentary or exercised spontaneously hypertensive rats. The exercise lasted 20 weeks and consisted of treadmill training for 1 hour/day, 5 days/week. RESULTS The exercised, spontaneously hypertensive rats showed a significant blood pressure reduction of 26%. The body masses of the Wistar-Kyoto and spontaneously hypertensive strains were significantly different. There were improvements in some of the renal structures of the animals treated with physical activity: (i) the interdigitations of the proximal and distal convoluted tubules; (ii) the basal membrane of the proximal and distal convoluted tubules; and (iii) in the basal membrane, slit diaphragm and pedicels of the glomerular filtration barrier. The spontaneously hypertensive rats also showed a decreased expression of connexin-43. CONCLUSION Physical exercise could be a therapeutic tool for improving kidney ultrastructure and, consequently, renal function in hypertensive individuals.
Collapse
|