101
|
Effect of Hypoxia on Gene Expression in Cell Populations Involved in Wound Healing. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2626374. [PMID: 31534956 PMCID: PMC6724439 DOI: 10.1155/2019/2626374] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/28/2019] [Accepted: 07/25/2019] [Indexed: 01/27/2023]
Abstract
Wound healing is a complex process regulated by multiple signals and consisting of several phases known as haemostasis, inflammation, proliferation, and remodelling. Keratinocytes, endothelial cells, macrophages, and fibroblasts are the major cell populations involved in wound healing process. Hypoxia plays a critical role in this process since cells sense and respond to hypoxic conditions by changing gene expression. This study assessed the in vitro expression of 77 genes involved in angiogenesis, metabolism, cell growth, proliferation and apoptosis in human keratinocytes (HaCaT), microvascular endothelial cells (HMEC-1), differentiated macrophages (THP-1), and dermal fibroblasts (HDF). Results indicated that the gene expression profiles induced by hypoxia were cell-type specific. In HMEC-1 and differentiated THP-1, most of the genes modulated by hypoxia encode proteins involved in angiogenesis or belonging to cytokines and growth factors. In HaCaT and HDF, hypoxia mainly affected the expression of genes encoding proteins involved in cell metabolism. This work can help to enlarge the current knowledge about the mechanisms through which a hypoxic environment influences wound healing processes at the molecular level.
Collapse
|
102
|
Ratushnyy AY, Rudimova YV, Buravkova LB. Alteration of Hypoxia-Associated Gene Expression in Replicatively Senescent Mesenchymal Stromal Cells under Physiological Oxygen Level. BIOCHEMISTRY (MOSCOW) 2019; 84:263-271. [PMID: 31221064 DOI: 10.1134/s0006297919030088] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mesenchymal stromal cells (MSCs) are a population of adult stem cells that modulate functional state of neighboring tissues. During cell aging, the biological activity of MSC changes, which may affect tissue homeostasis. It is known that reducing the oxygen level in vitro to physiological values typical to a particular cell niche leads to attenuation of some morphological and functional changes associated with aging. This work aimed to study gene expression in MSCs involved in response to physiological hypoxia using a replicative aging model under physiological (5%) and atmospheric (20%) oxygen in cultures. Our results show that significant reduction of proliferative activity of MSCs is observed after 20 passages (~50 cell generations). Regardless of the oxygen, in senescent cells PKM2, SERPINE1, and VEGFA were upregulated while ANKRD37, DDIT4, HIF1A, and TXNIP were downregulated. Also, ADORA2B, BNIPL, CCNG2, EGLN1, MAP3K1, MXI1, and P4HA1 were downregulated under hypoxia. The effect of oxygen was more pronounced at earlier passages both on the cellular and transcription levels. Irrespective of the passage, genes ANGPTL4, GYS1, PKM2, SERPINE1, and TP53 were downregulated under hypoxia. Also, decreased expression was observed for ADM, F10, HMOX1, P4HB, PFKL, SLC16A3 in earlier passages, and for HK2 - in later passages. Upregulation was only observed for ANKRD37, both at early and late cultures.
Collapse
Affiliation(s)
- A Yu Ratushnyy
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, 123007, Russia
| | - Yu V Rudimova
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, 123007, Russia
| | - L B Buravkova
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, 123007, Russia.
| |
Collapse
|
103
|
Wang B, Peng L, Ouyang H, Wang L, He D, Zhong J, Xiao Y, Deng Y, Li M, Li S, Yuan J. Induction of DDIT4 Impairs Autophagy Through Oxidative Stress in Dry Eye. ACTA ACUST UNITED AC 2019; 60:2836-2847. [DOI: 10.1167/iovs.19-27072] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Bowen Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lulu Peng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hong Ouyang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Li Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Dalian He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jing Zhong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yichen Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuqing Deng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Meng Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Saiqun Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jin Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
104
|
Mordhorst BR, Murphy SL, Schauflinger M, Rojas Salazar S, Ji T, Behura SK, Wells KD, Green JA, Prather RS. Porcine Fetal-Derived Fibroblasts Alter Gene Expression and Mitochondria to Compensate for Hypoxic Stress During Culture. Cell Reprogram 2019; 20:225-235. [PMID: 30089028 PMCID: PMC6088251 DOI: 10.1089/cell.2018.0008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The Warburg effect is characterized by decreased mitochondrial oxidative phosphorylation and increased glycolytic flux in adequate oxygen. The preimplantation embryo has been described to have characteristics of the Warburg effect, including similar changes in gene expression and mitochondria, which are more rudimentary in appearance. We hypothesized hypoxia would facilitate anaerobic glycolysis in fibroblasts thereby promoting gene expression and media metabolite production reflecting the Warburg effect hallmarks in early embryos. Additionally, we speculated that hypoxia would induce a rudimentary small mitochondrial phenotype observed in several cell types evidenced to demonstrate the Warburg effect. While many have examined the role hypoxia plays in pathological conditions, few studies have investigated changes in primary cells which could be used in somatic cell nuclear transfer. We found that cells grown in 1.25% O2 had normal cell viability and more, but smaller mitochondria. Several hypoxia-inducible genes were identified, including seven genes for glycolytic enzymes. In conditioned media from hypoxic cells, the quantities of gluconolactone, cytosine, and uric acid were decreased indicating higher consumption than control cells. These results indicate that fibroblasts alter gene expression and mitochondria to compensate for hypoxic stress and maintain viability. Furthermore, the metabolic changes observed, making them more similar to preimplantation embryos, could be facilitating nuclear reprogramming making these cells more amendable to future use in somatic cell nuclear transfer.
Collapse
Affiliation(s)
- Bethany R Mordhorst
- 1 Department of Animal Sciences, University of Missouri , Columbia, Missouri
| | - Stephanie L Murphy
- 1 Department of Animal Sciences, University of Missouri , Columbia, Missouri
| | - Martin Schauflinger
- 2 Electron Microscopy Core Facility, University of Missouri , Columbia, Missouri
| | | | - Tieming Ji
- 3 Department of Statistics, University of Missouri , Columbia, Missouri
| | - Susanta K Behura
- 1 Department of Animal Sciences, University of Missouri , Columbia, Missouri
| | - Kevin D Wells
- 1 Department of Animal Sciences, University of Missouri , Columbia, Missouri
| | - Jonathan A Green
- 1 Department of Animal Sciences, University of Missouri , Columbia, Missouri
| | - Randall S Prather
- 1 Department of Animal Sciences, University of Missouri , Columbia, Missouri
| |
Collapse
|
105
|
Hettiarachchi GK, Katneni UK, Hunt RC, Kames JM, Athey JC, Bar H, Sauna ZE, McGill JR, Ibla JC, Kimchi-Sarfaty C. Translational and transcriptional responses in human primary hepatocytes under hypoxia. Am J Physiol Gastrointest Liver Physiol 2019; 316:G720-G734. [PMID: 30920299 PMCID: PMC6620582 DOI: 10.1152/ajpgi.00331.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The liver is the primary source of a large number of plasma proteins and plays a critical role in multiple biological processes. Inadequate oxygen supply characterizing various clinical settings such as liver transplantation exposes the liver to hypoxic conditions. Studies assessing hypoxia-induced global translational changes in liver are lacking. Here, we employed a recently developed ribosome-profiling technique to assess global translational responses of human primary hepatocytes exposed to acute hypoxic stress (1% O2) for the short term. In parallel, transcriptome profiling was performed to assess mRNA expression changes. We found that translational responses appeared earlier and were predominant over transcriptional responses. A significant decrease in translational efficiency of several ribosome genes indicated translational inhibition of new ribosome protein synthesis in hypoxia. Pathway enrichment analysis highlighted altered translational regulation of MAPK signaling, drug metabolism, oxidative phosphorylation, and nonalcoholic fatty liver disease pathways. Gene Ontology enrichment analysis revealed terms related to translation, metabolism, angiogenesis, apoptosis, and response to stress. Transcriptional induction of genes encoding heat shock proteins was observed within 30 min of hypoxia. Induction of genes encoding stress response mediators, metabolism regulators, and proangiogenic proteins was observed at 240 min. Despite the liver being the primary source of coagulation proteins and the implicated role of hypoxia in thrombosis, limited differences were observed in genes encoding coagulation-associated proteins. Overall, our study demonstrates the predominance of translational regulation over transcription and highlights differentially regulated pathways or biological processes in short-term hypoxic stress responses of human primary hepatocytes. NEW & NOTEWORTHY The novelty of this study lies in applying parallel ribosome- and transcriptome-profiling analyses to human primary hepatocytes in hypoxia. To our knowledge, this is the first study to assess global translational responses using ribosome profiling in hypoxic hepatocytes. Our results demonstrate the predominance of translational responses over transcriptional responses in early hepatic hypoxic stress responses. Furthermore, our study reveals multiple pathways and specific genes showing altered regulation in hypoxic hepatocytes.
Collapse
Affiliation(s)
- Gaya K. Hettiarachchi
- 1Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland
| | - Upendra K. Katneni
- 1Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland
| | - Ryan C. Hunt
- 1Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland
| | - Jacob M. Kames
- 1Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland
| | - John C. Athey
- 1Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland
| | - Haim Bar
- 2Department of Statistics, University of Connecticut, Storrs, Connecticut
| | - Zuben E. Sauna
- 1Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland
| | - Joseph R. McGill
- 1Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland
| | - Juan C. Ibla
- 3Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Chava Kimchi-Sarfaty
- 1Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland
| |
Collapse
|
106
|
Park J, Joe Y, Ryter SW, Surh YJ, Chung HT. Similarities and Distinctions in the Effects of Metformin and Carbon Monoxide in Immunometabolism. Mol Cells 2019; 42:292-300. [PMID: 31091555 PMCID: PMC6530647 DOI: 10.14348/molcells.2019.0016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/14/2019] [Accepted: 04/18/2019] [Indexed: 12/31/2022] Open
Abstract
Immunometabolism, defined as the interaction of metabolic pathways with the immune system, influences the pathogenesis of metabolic diseases. Metformin and carbon monoxide (CO) are two pharmacological agents known to ameliorate metabolic disorders. There are notable similarities and differences in the reported effects of metformin and CO on immunometabolism. Metformin, an anti-diabetes drug, has positive effects on metabolism and can exert anti-inflammatory and anti-cancer effects via adenosine monophosphate-activated protein kinase (AMPK)-dependent and AMPK-independent mechanisms. CO, an endogenous product of heme oxygenase-1 (HO-1), can exert anti-inflammatory and antioxidant effects at low concentration. CO can confer cytoprotection in metabolic disorders and cancer via selective activation of the protein kinase R-like endoplasmic reticulum (ER) kinase (PERK) pathway. Both metformin and CO can induce mitochondrial stress to produce a mild elevation of mitochondrial ROS (mtROS) by distinct mechanisms. Metformin inhibits complex I of the mitochondrial electron transport chain (ETC), while CO inhibits ETC complex IV. Both metformin and CO can differentially induce several protein factors, including fibroblast growth factor 21 (FGF21) and sestrin2 (SESN2), which maintain metabolic homeostasis; nuclear factor erythroid 2-related factor 2 (Nrf2), a master regulator of the antioxidant response; and REDD1, which exhibits an anticancer effect. However, metformin and CO regulate these effects via different pathways. Metformin stimulates p53- and AMPK-dependent pathways whereas CO can selectively trigger the PERK-dependent signaling pathway. Although further studies are needed to identify the mechanistic differences between metformin and CO, pharmacological application of these agents may represent useful strategies to ameliorate metabolic diseases associated with altered immunometabolism.
Collapse
Affiliation(s)
- Jeongmin Park
- Department of Biological Sciences, University of Ulsan, Ulsan 44610,
Korea
| | - Yeonsoo Joe
- Department of Biological Sciences, University of Ulsan, Ulsan 44610,
Korea
| | - Stefan W. Ryter
- Joan and Sanford I. Weill Department of Medicine, and Division of Pulmonary and Critical Care Medicine, Weill Cornell Medical Center, NY 10065,
USA
| | - Young-Joon Surh
- Tumor microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08733,
Korea
| | - Hun Taeg Chung
- Department of Biological Sciences, University of Ulsan, Ulsan 44610,
Korea
| |
Collapse
|
107
|
Su J, Wang M, Yan Y, Ju S, Chen J, Wu X. Increased REDD1 facilitates neuronal damage after subarachnoid hemorrhage. Neurochem Int 2019; 128:14-20. [PMID: 30930273 DOI: 10.1016/j.neuint.2019.03.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/12/2019] [Accepted: 03/26/2019] [Indexed: 11/29/2022]
Abstract
Regulated in development and DNA damage responses 1 (REDD1) is a highly conserved stress-response protein and can be induced by hypoxia/ischemia and DNA damage. However, it is not known whether REDD1 involves in neuronal damage caused by subarachnoid hemorrhage (SAH) that is known as one of the most important causes of disability and death worldwide. Here, we first found that SAH markedly induced the increase of REDD1 (35.467 ng/ml) in cerebrospinal fluid (CSF) of patients at acute stage (within 24 h from bleeding) compared to that of control (0.644 ng/ml). And, REDD1 level was positively correlated with severity of brain injuries (Hunt-Hess grade of SAH), but it showed an obvious decline at recovery stage 6.201 ng/ml (before discharge from hospital) because of good recovery. Moreover, it was found that the expression of REDD1 was significantly induced by hemolysate in a dose-dependent way in neurons. Knockdown of REDD1 by lentivirus encoded REDD1-shRNA could inhibit the neuronal apoptosis and LDH leakage caused by hemolysate. Importantly, the level of REDD1 in peripheral blood of SAH patients was significantly higher (4.364 ng/ml) than that of healthy persons (1.317 ng/ml) and also was positively correlated with that in CSF. Taken together, our findings provide the novel and direct evidence that REDD1 could play a critical role of process of neuronal damage caused by SAH, suggesting a new molecular target to protect brain function from SAH injury.
Collapse
Affiliation(s)
- Jianyou Su
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Meng Wang
- Department of Neurochemistry, Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yaohua Yan
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Jian Chen
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, China.
| | - Xiaomei Wu
- Department of Neurochemistry, Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.
| |
Collapse
|
108
|
Liu C, Li Y, Wei M, Zhao L, Yu Y, Li G. Identification of a novel glycolysis-related gene signature that can predict the survival of patients with lung adenocarcinoma. Cell Cycle 2019; 18:568-579. [PMID: 30727821 DOI: 10.1080/15384101.2019.1578146] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Lung cancer is one of the most malignant cancers worldwide, and lung adenocarcinoma (LUAD) is the most common histologic subtype. Thousands of biomarkers related to the survival and prognosis of patients with this cancer type have been investigated through database mining; however, the prediction effect of a single gene biomarker is not satisfactorily specific or sensitive. Thus, the present study aimed to develop a novel gene signature of prognostic values for patients with LUAD. Using a data-mining method, we performed expression profiling of 1145 mRNAs in large cohorts with LUAD (n = 511) from The Cancer Genome Atlas database. Using the Gene Set Enrichment Analysis, we selected 198 genes related to GLYCOLYSIS, which is the most important enrichment gene set. Moreover, these genes were identified using Cox proportional regression modeling. We established a risk score staging system to predict the outcome of patients with LUAD and subsequently identified four genes (AGRN, AKR1A1, DDIT4, and HMMR) that were closely related to the prognosis of patients with LUAD. The identified genes allowed us to classify patients into the high-risk group (with poor outcome) and low-risk group (with better outcome). Compared with other clinical factors, the risk score has a better performance in predicting the outcome of patients with LUAD, particularly in the early stage of LUAD. In conclusion, we developed a four-gene signature related to glycolysis by utilizing the Cox regression model and a risk staging model for LUAD, which might prove valuable for the clinical management of patients with LUAD.
Collapse
Affiliation(s)
- Chang Liu
- a Department of Radiation Oncology , The First Affiliated Hospital of China Medical University , Shenyang , China
| | - Yinyan Li
- b Department of Ultrasound , The First Affiliated Hospital of China Medical University , Shenyang , China
| | - Minjie Wei
- c Department of Pharmacology, School of Pharmacy , China Medical University , Shenyang , China
| | - Lin Zhao
- c Department of Pharmacology, School of Pharmacy , China Medical University , Shenyang , China
| | - Yangyang Yu
- a Department of Radiation Oncology , The First Affiliated Hospital of China Medical University , Shenyang , China
| | - Guang Li
- a Department of Radiation Oncology , The First Affiliated Hospital of China Medical University , Shenyang , China
| |
Collapse
|
109
|
The physiological mTOR complex 1 inhibitor DDIT4 mediates therapy resistance in glioblastoma. Br J Cancer 2019; 120:481-487. [PMID: 30745581 PMCID: PMC6461855 DOI: 10.1038/s41416-018-0368-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 11/28/2018] [Accepted: 12/04/2018] [Indexed: 12/20/2022] Open
Abstract
Background Despite significant advances in the understanding of glioblastoma genetics and biology, survival is still poor. Hypoxia and nutrient depletion in the tumour microenvironment induce adaptive signalling and metabolic responses, which can influence sensitivity to therapeutic regimens. DNA damage-inducible transcript 4 (DDIT4) is a protein induced by hypoxia and in response to DNA stress. Mechanistically, DDIT4 inhibits mammalian target of rapamycin complex 1 (mTORC1) signalling by activation of the tuberous sclerosis 1/2 (TSC1/2) complex. Methods Using short hairpin RNA-mediated gene suppression as well as doxycycline-regulated gene induction, we developed a glioblastoma cell model to study effects of DDIT4 under conditions of the glioblastoma microenvironment and therapy. Results We found an intact DDIT4-mTORC1 signalling axis in human glioblastoma cells that was inducible by hypoxia. Temozolomide and radiotherapy also induced DDIT4 and repressed mTORC1 activity in some glioblastoma cell lines. DDIT4 gene suppression sensitised glioma cells towards hypoxia-induced cell death, while DDIT4 overexpression protected them. Additionally, in clonogenic survival analyses, DDIT4 induction conferred protection from radiotherapy and temozolomide, while DDIT4 gene suppression sensitised cells. Conclusions We identified DDIT4 as a cell-intrinsic regulator for adaptive responses and therapy resistance in glioblastoma cells which may interfere with cell death induction by temozolomide, radiotherapy or hypoxia by inhibiting mTORC1 activity.
Collapse
|
110
|
PI3K inhibitors protect against glucocorticoid-induced skin atrophy. EBioMedicine 2019; 41:526-537. [PMID: 30737086 PMCID: PMC6441871 DOI: 10.1016/j.ebiom.2019.01.055] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 12/20/2022] Open
Abstract
Background Skin atrophy is a major adverse effect of topical glucocorticoids. We recently reported that REDD1 (regulated in development and DNA damage 1) and FKBP51 (FK506 binding protein 5), negative regulators of mTOR/Akt signaling, are induced by glucocorticoids in mouse and human skin and are central drivers of steroid skin atrophy. Thus, we hypothesized that REDD1/FKBP51 inhibitors could protect skin against catabolic effects of glucocorticoids. Methods Using drug repurposing approach, we screened LINCS library (http://lincsproject.org/LINCS/) to identify repressors of REDD1/FKBP51 expression. Candidate compounds were tested for their ability to inhibit glucocorticoid-induced REDD1/FKBP51 expression in human primary/immortalized keratinocytes and in mouse skin. Reporter gene expression, microarray, and chromatin immunoprecipitation were employed to evaluate effect of these inhibitors on the glucocorticoid receptor (GR) signaling. Findings Bioinformatics analysis unexpectedly identified phosphoinositide-3-kinase (PI3K)/mTOR/Akt inhibitors as a pharmacological class of REDD1/FKBP51 repressors. Selected PI3K/mTOR/Akt inhibitors-Wortmannin (WM), LY294002, AZD8055, and two others indeed blocked REDD1/FKBP51expression in human keratinocytes. PI3K/mTOR/Akt inhibitors also modified global effect of glucocorticoids on trascriptome, shifting it towards therapeutically important transrepression; negatively impacted GR phosphorylation; nuclear translocation; and GR loading on REDD1/FKBP51 gene promoters. Further, topical application of LY294002 together with glucocorticoid fluocinolone acetonide (FA) protected mice against FA-induced proliferative block and skin atrophy but did not alter the anti-inflammatory activity of FA in ear edema test. Interpretation Our results built a strong foundation for development of safer GR-targeted therapies for inflammatory skin diseases using combination of glucocorticoids with PI3K/mTOR/Akt inhibitors. Fund Work is supported by NIH grants R01GM112945, R01AI125366, and HESI-THRIVE foundation.
Collapse
|
111
|
Dungan CM, Gordon BS, Williamson DL. Acute treadmill exercise discriminately improves the skeletal muscle insulin-stimulated growth signaling responses in mice lacking REDD1. Physiol Rep 2019; 7:e14011. [PMID: 30806987 PMCID: PMC6383112 DOI: 10.14814/phy2.14011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 02/01/2019] [Indexed: 12/12/2022] Open
Abstract
A loss of the regulated in development and DNA damage 1 (REDD1) hyperactivates mechanistic Target of Rapamycin Complex 1 (mTORC1) reducing insulin-stimulated insulin signaling, which could provide insight into mechanisms of insulin resistance. Although aerobic exercise acutely inhibits mTORC1 signaling, improvements in insulin-stimulated signaling are exhibited. The goal of this study was to determine if a single bout of treadmill exercise was sufficient to improve insulin signaling in mice lacking REDD1. REDD1 wildtype (WT) and REDD1 knockout (KO) mice were acutely exercised on a treadmill (30 min, 20 m/min, 5% grade). A within animal noninsulin-to-insulin-stimulated percent change in skeletal muscle insulin-stimulated kinases (IRS-1, ERK1/2, Akt), growth signaling activation (4E-BP1, S6K1), and markers of growth repression (REDD1, AMPK, FOXO1/3A) was examined, following no exercise control or an acute bout of exercise. Unlike REDD1 KO mice, REDD1 WT mice exhibited an increase (P < 0.05) in REDD1 following treadmill exercise. However, both REDD1 WT and KO mice exhibited an increase (P < 0.05) AMPK phosphorylation, and a subsequent reduction (P < 0.05) in mTORC1 signaling after the exercise bout versus nonexercising WT or KO mice. Exercise increased (P < 0.05) the noninsulin-to-insulin-stimulated percent change phosphorylation of mTORC1, ERK1/2, IRS-1, and Akt on S473 in REDD1 KO mice when compared to nonexercised KO mice. However, there was no change in the noninsulin-to-insulin-stimulated percent change activation of Akt on T308 and FOXO1/3A in the KO when compared to WT or KO mouse muscle after exercise. Our data show that a bout of treadmill exercise discriminately improves insulin-stimulated signaling in the absence of REDD1.
Collapse
Affiliation(s)
- Cory M. Dungan
- Department of Rehabilitation SciencesCollege of Health SciencesUniversity of KentuckyLexingtonKentucky
| | - Bradley S. Gordon
- Department of Nutrition, Food, and Exercise SciencesCollege of Human SciencesFlorida State UniversityTallahasseeFlorida
| | - David L. Williamson
- Kinesiology ProgramSchool of Behavioral Sciences and EducationPenn State HarrisburgMiddletownPennsylvania
| |
Collapse
|
112
|
Toka FN, Dunaway K, Smaltz F, Szulc-Dąbrowska L, Drnevich J, Mielcarska MB, Bossowska-Nowicka M, Schweizer M. Bacterial and viral pathogen-associated molecular patterns induce divergent early transcriptomic landscapes in a bovine macrophage cell line. BMC Genomics 2019; 20:15. [PMID: 30621583 PMCID: PMC6323673 DOI: 10.1186/s12864-018-5411-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 12/26/2018] [Indexed: 02/08/2023] Open
Abstract
Background Pathogens stimulate immune functions of macrophages. Macrophages are a key sentinel cell regulating the response to pathogenic ligands and orchestrating the direction of the immune response. Our study aimed at investigating the early transcriptomic changes of bovine macrophages (Bomacs) in response to stimulation with CpG DNA or polyI:C, representing bacterial and viral ligands respectively, and performed transcriptomics by RNA sequencing (RNASeq). KEGG, GO and IPA analytical tools were used to reconstruct pathways, networks and to map out molecular and cellular functions of differentially expressed genes (DE) in stimulated cells. Results A one-way ANOVA analysis of RNASeq data revealed significant differences between the CpG DNA and polyI:C-stimulated Bomac. Of the 13,740 genes mapped to the bovine genome, 2245 had p-value ≤0.05, deemed as DE. At 6 h post stimulation of Bomac, poly(I:C) induced a very different transcriptomic profile from that induced by CpG DNA. Whereas, 347 genes were upregulated and 210 downregulated in response to CpG DNA, poly(I:C) upregulated 761 genes and downregulated 414 genes. The topmost DE genes in poly(I:C)-stimulated cells had thousand-fold changes with highly significant p-values, whereas in CpG DNA stimulated cells had 2–5-fold changes with less stringent p-values. The highest DE genes in both stimulations belonged to the TNF superfamily, TNFSF18 (CpG) and TNFSF10 (poly(I:C)) and in both cases the lowest downregulated gene was CYP1A1. CpG DNA highly induced canonical pathways that are unrelated to immune response in Bomac. CpG DNA influenced expression of genes involved in molecular and cellular functions in free radical scavenging. By contrast, poly(I:C) highly induced exclusively canonical pathways directly related to antiviral immune functions mediated by interferon signalling genes. The transcriptomic profile after poly(I:C)-stimulation was consistent with induction of TLR3 signalling. Conclusion CpG DNA and poly(I:C) induce different early transcriptional landscapes in Bomac, but each is suited to a specific function of macrophages during interaction with pathogens. Poly(I:C) influenced antiviral response genes, whereas CpG DNA influenced genes important for phagocytic processes. Poly(I:C) was more potent in setting the inflammatory landscape desirable for an efficient immune response against virus infection. Electronic supplementary material The online version of this article (10.1186/s12864-018-5411-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Felix N Toka
- Department of Biomedical Sciences, Center for Integrative Mammalian Research, Ross University School of Veterinary Medicine, 00-334, Basseterre, Saint Kitts and Nevis. .,Department of Preclinical Sciences, Faculty of Veterinary Medicine, SGGW, Warsaw, Poland.
| | - Kiera Dunaway
- Department of Biomedical Sciences, Center for Integrative Mammalian Research, Ross University School of Veterinary Medicine, 00-334, Basseterre, Saint Kitts and Nevis
| | - Felicia Smaltz
- Department of Biomedical Sciences, Center for Integrative Mammalian Research, Ross University School of Veterinary Medicine, 00-334, Basseterre, Saint Kitts and Nevis
| | - Lidia Szulc-Dąbrowska
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, SGGW, Warsaw, Poland
| | - Jenny Drnevich
- HPCBio and the Carver Biotechnology Center, University of Illinois, Champaign, IL, USA
| | | | | | - Matthias Schweizer
- Institute of Virology and Immunology, Federal Food Safety and Veterinary Office FSVO, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
113
|
Frangou E, Chrysanthopoulou A, Mitsios A, Kambas K, Arelaki S, Angelidou I, Arampatzioglou A, Gakiopoulou H, Bertsias GK, Verginis P, Ritis K, Boumpas DT. REDD1/autophagy pathway promotes thromboinflammation and fibrosis in human systemic lupus erythematosus (SLE) through NETs decorated with tissue factor (TF) and interleukin-17A (IL-17A). Ann Rheum Dis 2018; 78:238-248. [PMID: 30563869 PMCID: PMC6352428 DOI: 10.1136/annrheumdis-2018-213181] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 10/28/2018] [Accepted: 11/01/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVES The release of neutrophil extracellular traps (NETs) represents a novel neutrophil effector function in systemic lupus erythematosus (SLE) pathogenesis. However, the molecular mechanism underlying NET release and how NETs mediate end-organ injury in SLE remain elusive. METHODS NET formation and NET-related proteins were assessed in the peripheral blood and biopsies from discoid lupus and proliferative nephritis, using immunofluorescence, immunoblotting, quantitative PCR and ELISA. Autophagy was assessed by immunofluorescence and immunoblotting. The functional effects of NETs in vitro were assessed in a primary fibroblast culture. RESULTS Neutrophils from patients with active SLE exhibited increased basal autophagy levels leading to enhanced NET release, which was inhibited in vitro by hydroxychloroquine. NETosis in SLE neutrophils correlated with increased expression of the stress-response protein REDD1. Endothelin-1 (ET-1) and hypoxia-inducible factor-1α (HIF-1α) were key mediators of REDD1-driven NETs as demonstrated by their inhibition with bosentan and L-ascorbic acid, respectively. SLE NETs were decorated with tissue factor (TF) and interleukin-17A (IL-17A), which promoted thrombin generation and the fibrotic potential of cultured skin fibroblasts. Notably, TF-bearing and IL-17A-bearing NETs were abundant in discoid skin lesions and in the glomerular and tubulointerstitial compartment of proliferative nephritis biopsy specimens. CONCLUSIONS Our data suggest the involvement of REDD1/autophagy/NET axis in end-organ injury and fibrosis in SLE, a likely candidate for repositioning of existing drugs for SLE therapy. Autophagy-mediated release of TF-bearing and IL-17A-bearing NETs provides a link between thromboinflammation and fibrosis in SLE and may account for the salutary effects of hydroxychloroquine.
Collapse
Affiliation(s)
- Eleni Frangou
- Laboratory of Immune Regulation and Tolerance, Autoimmunity and Inflammation, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Department of Internal Medicine, Medical School, University of Cyprus, Nicosia, Cyprus.,Department of Nephrology and Transplantation, Nicosia General Hospital, Nicosia, Cyprus
| | - Akrivi Chrysanthopoulou
- Department of Internal Medicine, Laboratory of Molecular Hematology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Alexandros Mitsios
- Department of Internal Medicine, Laboratory of Molecular Hematology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Konstantinos Kambas
- Department of Internal Medicine, Laboratory of Molecular Hematology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Stella Arelaki
- Department of Pathology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Iliana Angelidou
- Department of Internal Medicine, Laboratory of Molecular Hematology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Athanasios Arampatzioglou
- Department of Internal Medicine, Laboratory of Molecular Hematology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Hariklia Gakiopoulou
- 1st Department of Pathology, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - George K Bertsias
- Rheumatology, Clinical Immunology and Allergy, University of Crete School of Medicine, Heraklion, Greece
| | - Panayotis Verginis
- Laboratory of Immune Regulation and Tolerance, Autoimmunity and Inflammation, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Konstantinos Ritis
- Department of Internal Medicine, Laboratory of Molecular Hematology, Democritus University of Thrace, Alexandroupolis, Greece.,First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Dimitrios T Boumpas
- Laboratory of Immune Regulation and Tolerance, Autoimmunity and Inflammation, Biomedical Research Foundation of the Academy of Athens, Athens, Greece .,Department of Internal Medicine, Medical School, University of Cyprus, Nicosia, Cyprus.,4th Department of Medicine, Attikon University Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece.,Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece
| |
Collapse
|
114
|
Tuder RM. Bringing Light to Chronic Obstructive Pulmonary Disease Pathogenesis and Resilience. Ann Am Thorac Soc 2018; 15:S227-S233. [PMID: 30759011 PMCID: PMC6944393 DOI: 10.1513/annalsats.201808-583mg] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/03/2018] [Indexed: 12/15/2022] Open
Abstract
The pathogenesis of chronic obstructive pulmonary disease remains elusive; investigators in the field have struggled to decipher the cellular and molecular processes underlying chronic bronchitis and emphysema. Studies in the past 20 years have underscored that the tissue destruction, notably in emphysema, involves a multitude of injurious stresses, with progressive engagement of endogenous destructive processes triggered by decades of exposure to cigarette smoke and/or pollutants. These lead to an aged lung, with evidence of macromolecular damage that is unlikely to repair. Here we discuss these key pathogenetic elements in the context of organismal evolution as this concept may best capture the challenges facing chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Rubin M Tuder
- Program in Translational Lung Research and Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
115
|
Chang B, Meng J, Zhu H, Du X, Sun L, Wang L, Li S, Yang G. Overexpression of the recently identified oncogene REDD1 correlates with tumor progression and is an independent unfavorable prognostic factor for ovarian carcinoma. Diagn Pathol 2018; 13:87. [PMID: 30428884 PMCID: PMC6236897 DOI: 10.1186/s13000-018-0754-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/28/2018] [Indexed: 02/08/2023] Open
Abstract
Background Regulated in development and DNA damage response (REDD1), a gene responding to hypoxia or multiple DNA damage events, was recently implicated in cancer development and progression. Previously, in vivo and in vitro experiments indicated that REDD1 functions as an oncogene in ovarian cancer cells. However, the role of REDD1 in cancer cell migration and invasion and in clinical significance of prognostic values is not examined in detail. Methods We detected the REDD1 protein expression by immunohistochemistry in 18 normal ovarian surface epithelium or fallopian tube epithelium specimens, 24 ovarian borderline tumors, and 229 ovarian cancers. Fisher’s exact test, logistic regression analysis, the Kaplan–Meier method, and the log-rank test were used to evaluate the association of REDD1 with clinical factors, overall survival and disease-free survival. The prognostic predictive value of REDD1 for ovarian cancer patients was evaluated using multivariate Cox proportional hazard regression models. REDD1 expression in HEY, HEY A8, SKOV3, SKOV3 ip1, OVCA429, OVCA433 and A2780 human ovarian epithelial cancer cell lines was detected by western blotting. The role of REDD1 in cell invasion and migration was assessed by transwell migration and invasion assays using SKOV3, A2780, HEY, HEYA8, and SKOV3-REDD1 with parental A2780-REDD1 HEY-REDD1i and HEY A8-REDD1i. Results High expression of REDD1 was observed in 35.4% of primary ovarian carcinoma samples. Overexpression of cytoplasmic REDD1 in ovarian cancer was significantly associated with serous carcinoma (P < 0.001), late-stage disease (P < 0.001), ascites (P < 0.001), and partial or non-response to chemotherapy (P < 0.001). High cytoplasmic expression of REDD1 was correlated with poorer overall survival (P < 0.001) and disease-free survival (P < 0.001). The multivariate Cox proportional hazards regression analysis indicated that patients with high cytoplasmic REDD1 expression had a high risk of death (P < 0.001) and high risk of an event (i.e., recurrence, progression, or death) (P < 0.001). REDD1 was first reported as an independent prognostic factor in ovarian cancer patients. In addition, REDD1 overexpression enhanced ovarian cancer cell migration and invasion. Conclusion REDD1 is an independent unfavorable prognostic factor in ovarian carcinoma and may promote ovarian cancer metastasis. Electronic supplementary material The online version of this article (10.1186/s13000-018-0754-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bin Chang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 20032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 20032, China
| | - Jiao Meng
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 20032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 20032, China
| | - Huimin Zhu
- Department of Pathology, Shihezi University School of Medicine, Shihezi, 832003, Xinjiang, China
| | - Xiang Du
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 20032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 20032, China
| | - Lili Sun
- Department of Pathology, Shihezi University School of Medicine, Shihezi, 832003, Xinjiang, China
| | - Lei Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 20032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 20032, China
| | - Shugang Li
- Department of Preventive Medicine, Shihezi University School of Medicine, Shihezi, 832003, Xinjiang, China
| | - Gong Yang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 20032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 20032, China. .,Central Laboratory, the Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China.
| |
Collapse
|
116
|
The involvement of regulated in development and DNA damage response 1 (REDD1) in the pathogenesis of intervertebral disc degeneration. Exp Cell Res 2018; 372:188-197. [DOI: 10.1016/j.yexcr.2018.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/05/2018] [Accepted: 10/07/2018] [Indexed: 11/22/2022]
|
117
|
Seong M, Lee J, Kang H. Hypoxia-induced regulation of mTOR signaling by miR-7 targeting REDD1. J Cell Biochem 2018; 120:4523-4532. [PMID: 30302791 DOI: 10.1002/jcb.27740] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/30/2018] [Indexed: 12/17/2022]
Abstract
Oxygen is an important factor mediating cell growth and survival under physiological and pathological conditions. Therefore, cells have well-regulated response mechanisms in the face of changes in oxygen levels in their environment. A subset of microRNAs (miRNAs) termed the hypoxamir has been suggested to be a critical mediator of the cellular response to hypoxia. Regulated in development and DNA damage response 1 (REDD1) is a negative regulator of mammalian target of rapamycin (mTOR) signaling in the response to cellular stress, and is elevated in many cell types under hypoxia, with consequent inhibition of mTOR signaling. However, the underlying posttranscriptional regulatory mechanism by miRNAs that contribute to this hypoxia-induced reduction in REDD1 expression remain unknown. Therefore, the aim of the current study was to identify the miRNAs participating in the hypoxic cellular response by scanning the 3'-untranslated region (3'-UTR) of REDD1 for potential miRNA-binding sites using a computer algorithm, TargetScan. miR-7 emerged as a novel hypoxamir that regulates REDD1 expression and is involved in mTOR signaling. miR-7 could repress REDD1 expression posttranscriptionally by directly binding with the 3'-UTR. Upon hypoxia, miR-7 expression was downregulated in HeLa cells to consequently derepress REDD1, resulting in inhibition of mTOR signaling. Moreover, overexpression of miR-7 was sufficient to reverse the hypoxia-induced inhibition of mTOR signaling. Therefore, our findings suggest miR-7 as a key regulator of hypoxia-mediated mTOR signaling through modulation of REDD1 expression. These findings contribute new insight into the miRNA-mediated molecular mechanism of the hypoxic response through mTOR signaling, highlighting potential targets for tumor suppression.
Collapse
Affiliation(s)
- Minhyeong Seong
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Korea
| | - Jihui Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Korea
| | - Hara Kang
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Korea
| |
Collapse
|
118
|
Bhargava P, Kumari A, Putri JF, Ishida Y, Terao K, Kaul SC, Sundar D, Wadhwa R. Caffeic acid phenethyl ester (CAPE) possesses pro-hypoxia and anti-stress activities: bioinformatics and experimental evidences. Cell Stress Chaperones 2018; 23:1055-1068. [PMID: 29869000 PMCID: PMC6111076 DOI: 10.1007/s12192-018-0915-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/07/2018] [Accepted: 05/14/2018] [Indexed: 12/27/2022] Open
Abstract
Honeybee propolis and its bioactive component, caffeic acid phenethyl ester (CAPE), are known for a variety of therapeutic potentials. By recruiting a cell-based reporter assay for screening of hypoxia-modulating natural drugs, we identified CAPE as a pro-hypoxia factor. In silico studies were used to probe the capacity of CAPE to interact with potential hypoxia-responsive proteins. CAPE could not dock into hypoxia inducing factor (HIF-1), the master regulator of hypoxia response pathway. On the other hand, it was predicted to bind to factor inhibiting HIF (FIH-1). The active site residue (Asp201) of FIH-1α was involved in hydrogen bond formation with CAPE and its analogue, caffeic acid methyl ester (CAME), especially in the presence of Fe and 2-oxoglutaric acid (OGA). We provide experimental evidence that the low doses of CAPE, that did not cause cytotoxicity or anti-migratory effect, activated HIF-1α and inhibited stress-induced protein aggregation, a common cause of age-related pathologies. Furthermore, by structural homology search, we explored and found candidate compounds that possess stronger FIH-1 binding capacity. These compounds could be promising candidates for modulating therapeutic potential of CAPE, and its recruitment in treatment of protein aggregation-based disorders.
Collapse
Affiliation(s)
- Priyanshu Bhargava
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science and Technology (AIST), Central 5-41, 1-1-1 Higashi, Tsukuba, Ibaraki, 305 8565, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305 8572, Japan
| | - Anjani Kumari
- DAILAB, Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, New Delhi, 110 016, India
| | - Jayarani F Putri
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science and Technology (AIST), Central 5-41, 1-1-1 Higashi, Tsukuba, Ibaraki, 305 8565, Japan
| | - Yoshiyuki Ishida
- CycloChem Co., Ltd, 7-4-5 Minatojima-minamimachi, Chuo-ku, Kobe, 650 0047, Japan
| | - Keiji Terao
- CycloChem Co., Ltd, 7-4-5 Minatojima-minamimachi, Chuo-ku, Kobe, 650 0047, Japan
| | - Sunil C Kaul
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science and Technology (AIST), Central 5-41, 1-1-1 Higashi, Tsukuba, Ibaraki, 305 8565, Japan.
| | - Durai Sundar
- DAILAB, Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, New Delhi, 110 016, India.
| | - Renu Wadhwa
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science and Technology (AIST), Central 5-41, 1-1-1 Higashi, Tsukuba, Ibaraki, 305 8565, Japan.
| |
Collapse
|
119
|
Cho SS, Kim KM, Yang JH, Kim JY, Park SJ, Kim SJ, Kim JK, Cho IJ, Ki SH. Induction of REDD1 via AP-1 prevents oxidative stress-mediated injury in hepatocytes. Free Radic Biol Med 2018; 124:221-231. [PMID: 29909290 DOI: 10.1016/j.freeradbiomed.2018.06.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/28/2018] [Accepted: 06/12/2018] [Indexed: 12/27/2022]
Abstract
Regulated in development and DNA damage responses 1 (REDD1) is an inducible gene in response to various stresses, which functions as a negative regulator of the mammalian target of rapamycin protein kinase in complex 1. In the present study, we identified the role of REDD1 under the oxidative stress-mediated hepatocyte injury and its regulatory mechanism. REDD1 protein was increased in H2O2 or tert-butylhydroperoxide (t-BHP)-treated hepatocytes· H2O2 also elevated REDD1 mRNA levels. This event was inhibited by antioxidants such as diphenyleneiodonium chloride, N-acetyl-L-cysteine, or butylated hydroxy anisole. Interestingly, we found that H2O2-mediated REDD1 induction was transcriptionally regulated by activator protein-1 (AP-1), and that overexpression of c-Jun increased REDD1 protein levels and REDD1 promoter-driven luciferase activity. Deletion of the putative AP-1 binding site in proximal region of the human REDD1 promoter significantly abolished REDD1 transactivation by c-Jun. A NF-E2-related factor 2 activator, tert-butylhydroquinone treatment also elevated REDD1 levels, but it was independent on NF-E2-related factor 2 activation. Furthermore, we observed that REDD1 overexpression attenuated H2O2 or t-BHP-derived reactive oxygen species formation as well as cytotoxicity. Conversely, siRNA against REDD1 aggravated t-BHP-induced reactive oxygen species generation and cell death. In addition, we showed that REDD1 was induced by in vitro or in vivo ischemia/reperfusion model. Our results demonstrate that REDD1 induction by oxidative stress is mainly transcriptionally regulated by AP-1, and protects oxidative stress-mediated hepatocyte injury. These findings suggest REDD1 as a novel molecule that reduced susceptibility to oxidant-induced liver injury.
Collapse
Affiliation(s)
- Sam Seok Cho
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| | - Kyu Min Kim
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| | - Ji Hye Yang
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| | - Ji Young Kim
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| | - Su Jung Park
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| | - Seung Jung Kim
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| | - Jae Kwang Kim
- MRC-GHF, College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongsangbuk-do 38610, Republic of Korea
| | - Il Je Cho
- MRC-GHF, College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongsangbuk-do 38610, Republic of Korea.
| | - Sung Hwan Ki
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea.
| |
Collapse
|
120
|
Rebl A, Verleih M, Nipkow M, Altmann S, Bochert R, Goldammer T. Gradual and Acute Temperature Rise Induces Crossing Endocrine, Metabolic, and Immunological Pathways in Maraena Whitefish ( Coregonus maraena). Front Genet 2018; 9:241. [PMID: 30073015 PMCID: PMC6060367 DOI: 10.3389/fgene.2018.00241] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/19/2018] [Indexed: 12/17/2022] Open
Abstract
The complex and still poorly understood nature of thermoregulation in various fish species complicates the determination of the physiological status on the basis of diagnostic marker genes and indicative molecular pathways. The present study aimed to compare the physiological impacts of both gradual and acute temperature rise from 18 to 24°C on maraena whitefish in aquaculture. Microarray-based transcriptome profiles in the liver, spleen and kidney of heat-stressed maraena whitefish revealed the modulation of a significantly higher number of genes in those groups exposed to gradually rising temperatures compared with the acutely stressed groups, which might reflect early adaptation mechanisms. Moreover, we suggest a common set of 11 differentially expressed genes that indicate thermal stress induced by gradual or acute temperature rise in the three selected tissues. Besides the two pathways regulated in both data sets unfolded protein response and aldosterone signaling in epithelial cells, we identified unique tissue- and stress type-specific pathways reflecting the crossroads between signal transduction, metabolic and immunologic pathways to cope with thermal stress. In addition, comparing lists of differentially regulated genes with meta-analyzed published data sets revealed that “acute temperature rise”-responding genes that encode members of the HSP70, HSP90, and HSP40 families; their functional homologs; co-chaperones and stress-signal transducers are well-conserved across different species, tissues and/or cell types and experimental approaches.
Collapse
Affiliation(s)
- Alexander Rebl
- Fish Genetics Unit, Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Marieke Verleih
- Fish Genetics Unit, Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Mareen Nipkow
- Fish Genetics Unit, Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Simone Altmann
- Fish Genetics Unit, Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Ralf Bochert
- Research Station Aquaculture Born, Institute of Fisheries, Mecklenburg-Vorpommern Research Centre for Agriculture and Fisheries (LFA MV), Born, Germany
| | - Tom Goldammer
- Fish Genetics Unit, Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
121
|
Lin CH, Funayama S, Peng SF, Kuo CL, Chung JG. The ethanol extraction of prepared Psoralea corylifolia induces apoptosis and autophagy and alteres genes expression assayed by cDNA microarray in human prostate cancer PC-3 cells. ENVIRONMENTAL TOXICOLOGY 2018; 33:770-788. [PMID: 29667321 DOI: 10.1002/tox.22564] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 03/25/2018] [Accepted: 04/01/2018] [Indexed: 06/08/2023]
Abstract
Prostate cancer is the most common male reproductive system cancer. The prevalence of prostate cancer in Europe and the United States is higher than that in the Asian region. However, the treatment of prostate cancer remains unsatisfactory. Psoralea corylifolia has been used to cure this disease as Chinese medicine in the Asian region. In this study, we analyzed the components of ethanol extraction of unprepared and prepared P. corylifolia by HPLC. Psoralen and isopsoralen content from the prepared P. corylifolia is twofold higher than that from unprepared, so we use the prepared extraction in this study. However, the effects of the ethanol extraction of P. corylifolia (PCE) on PC-3 human prostate cancer cells remain unclear. PC-3 cells were treated with PCE for different time periods and cells were examined for cell morphological change and total viable cells by using contrast phase microscopy and flow cytometer, respectively. Results indicated that PCE induced cell morphological changes and cytotoxic effect in PC-3 cells in dose-dependent manners. PCE induced chromatin condensation of PC-3 cells dose-dependently. PCE also induced apoptosis and autophagy in PC-3 by western blotting and acridine orange (AO) staining, respectively. Furthermore, a complementary DNA microarray analysis demonstrated that PCE treatment led to 944 genes upregulation and 872 genes downregulation. For example, the DNA damage-associated gene DNA-damage-inducible transcript 3 (DDIT 3) had a 62.1-fold upregulation and CDK1 2.68-fold downregulation. The differential genes were classified according to the Gene Ontology. Furthermore, GeneGo software was used for the key genes involved and their possible interaction pathways. Those genes were affected by P. corylifolia, which provided information for the understanding of the antiprostate cancer mechanism at the genetic level and provide additional targets for the treatments of human prostate cancer.
Collapse
Affiliation(s)
- Chia-Hsin Lin
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, 404, Taiwan
| | - Shinji Funayama
- Department of Kampo Pharmaceutical Sciences, Nihon Pharmaceutical University Saitama, Saitama, Japan
| | - Shu-Fen Peng
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 404, Taiwan
| | - Chao-Lin Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, 404, Taiwan
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, 404, Taiwan, Taichung
- Department of Biotechnology, Asia University, Taichung, 413, Taiwan
| |
Collapse
|
122
|
Ma Y, Vassetzky Y, Dokudovskaya S. mTORC1 pathway in DNA damage response. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1293-1311. [PMID: 29936127 DOI: 10.1016/j.bbamcr.2018.06.011] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 12/27/2022]
Abstract
Living organisms have evolved various mechanisms to control their metabolism and response to various stresses, allowing them to survive and grow in different environments. In eukaryotes, the highly conserved mechanistic target of rapamycin (mTOR) signaling pathway integrates both intracellular and extracellular signals and serves as a central regulator of cellular metabolism, proliferation and survival. A growing body of evidence indicates that mTOR signaling is closely related to another cellular protection mechanism, the DNA damage response (DDR). Many factors important for the DDR are also involved in the mTOR pathway. In this review, we discuss how these two pathways communicate to ensure an efficient protection of the cell against metabolic and genotoxic stresses. We also describe how anticancer therapies benefit from simultaneous targeting of the DDR and mTOR pathways.
Collapse
Affiliation(s)
- Yinxing Ma
- CNRS UMR 8126, Université Paris-Sud 11, Institut Gustave Roussy, 114, rue Edouard Vaillant, 94805 Villejuif, France
| | - Yegor Vassetzky
- CNRS UMR 8126, Université Paris-Sud 11, Institut Gustave Roussy, 114, rue Edouard Vaillant, 94805 Villejuif, France
| | - Svetlana Dokudovskaya
- CNRS UMR 8126, Université Paris-Sud 11, Institut Gustave Roussy, 114, rue Edouard Vaillant, 94805 Villejuif, France.
| |
Collapse
|
123
|
Britto FA, Cortade F, Belloum Y, Blaquière M, Gallot YS, Docquier A, Pagano AF, Jublanc E, Bendridi N, Koechlin-Ramonatxo C, Chabi B, Francaux M, Casas F, Freyssenet D, Rieusset J, Giorgetti-Peraldi S, Carnac G, Ollendorff V, Favier FB. Glucocorticoid-dependent REDD1 expression reduces muscle metabolism to enable adaptation under energetic stress. BMC Biol 2018; 16:65. [PMID: 29895328 PMCID: PMC5998563 DOI: 10.1186/s12915-018-0525-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 05/04/2018] [Indexed: 12/14/2022] Open
Abstract
Background Skeletal muscle atrophy is a common feature of numerous chronic pathologies and is correlated with patient mortality. The REDD1 protein is currently recognized as a negative regulator of muscle mass through inhibition of the Akt/mTORC1 signaling pathway. REDD1 expression is notably induced following glucocorticoid secretion, which is a component of energy stress responses. Results Unexpectedly, we show here that REDD1 instead limits muscle loss during energetic stresses such as hypoxia and fasting by reducing glycogen depletion and AMPK activation. Indeed, we demonstrate that REDD1 is required to decrease O2 and ATP consumption in skeletal muscle via reduction of the extent of mitochondrial-associated endoplasmic reticulum membranes (MAMs), a central hub connecting energy production by mitochondria and anabolic processes. In fact, REDD1 inhibits ATP-demanding processes such as glycogen storage and protein synthesis through disruption of the Akt/Hexokinase II and PRAS40/mTORC1 signaling pathways in MAMs. Our results uncover a new REDD1-dependent mechanism coupling mitochondrial respiration and anabolic processes during hypoxia, fasting, and exercise. Conclusions Therefore, REDD1 is a crucial negative regulator of energy expenditure that is necessary for muscle adaptation during energetic stresses. This present study could shed new light on the role of REDD1 in several pathologies associated with energetic metabolism alteration, such as cancer, diabetes, and Parkinson’s disease. Electronic supplementary material The online version of this article (10.1186/s12915-018-0525-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | - Marine Blaquière
- PHYMEDEXP, Univ. Montpellier, INSERM, CNRS, CHRU of Montpellier, Montpellier, France
| | | | | | | | | | - Nadia Bendridi
- INSERM UMR-1060, CarMeN Laboratory, Lyon 1 University, INRA U1397, Oullins, France
| | | | | | - Marc Francaux
- Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | | | - Jennifer Rieusset
- INSERM UMR-1060, CarMeN Laboratory, Lyon 1 University, INRA U1397, Oullins, France
| | | | - Gilles Carnac
- PHYMEDEXP, Univ. Montpellier, INSERM, CNRS, CHRU of Montpellier, Montpellier, France
| | | | | |
Collapse
|
124
|
Abstract
Hypoxia is a common feature in solid tumors and is associated with cancer progression. The main regulators of the hypoxic response are hypoxia-inducible transcription factors (HIFs) that guide the cellular adaptation to hypoxia by gene activation. The actual oxygen sensing is performed by HIF prolyl hydroxylases (PHDs) that under normoxic conditions mark the HIF-α subunit for degradation. Cancer progression is not regulated only by the cancer cells themselves but also by the whole tumor microenvironment, which consists of cellular and extracellular components. Hypoxic conditions also affect the stromal compartment, where stromal cells are in close contact with the cancer cells. The important function of HIF in cancer cells has been shown by many animal models and described in hundreds of reviews, but less in known about PHDs and even less PHDs in stromal cells. Here, we review hypoxic signaling in tumors, mainly in the tumor stroma, with a focus on HIFs and PHDs.
Collapse
Affiliation(s)
- Anu Laitala
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen (UCPH), Copenhagen, Denmark
| | - Janine T Erler
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen (UCPH), Copenhagen, Denmark
| |
Collapse
|
125
|
Angelidou I, Chrysanthopoulou A, Mitsios A, Arelaki S, Arampatzioglou A, Kambas K, Ritis D, Tsironidou V, Moschos I, Dalla V, Stakos D, Kouklakis G, Mitroulis I, Ritis K, Skendros P. REDD1/Autophagy Pathway Is Associated with Neutrophil-Driven IL-1β Inflammatory Response in Active Ulcerative Colitis. THE JOURNAL OF IMMUNOLOGY 2018; 200:3950-3961. [DOI: 10.4049/jimmunol.1701643] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/05/2018] [Indexed: 12/30/2022]
|
126
|
Tirado-Hurtado I, Fajardo W, Pinto JA. DNA Damage Inducible Transcript 4 Gene: The Switch of the Metabolism as Potential Target in Cancer. Front Oncol 2018; 8:106. [PMID: 29707520 PMCID: PMC5906527 DOI: 10.3389/fonc.2018.00106] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/26/2018] [Indexed: 12/02/2022] Open
Abstract
DNA damage inducible transcript 4 (DDIT4) gene is expressed under stress situations turning off the metabolic activity triggered by the mammalian target of rapamycin (mTOR). Several in vitro and in vivo works have demonstrated the ability of DDIT4 to generate resistance to cancer therapy. The link between the metabolism suppression and aggressiveness features of cancer cells remains poorly understood since anti-mTOR agents who are part of the repertoire of drugs used for systemic treatment of cancer achieving variable results. Interestingly, the high DDIT4 expression is associated with worse outcomes compared to tumors with low DDIT4 expression, seen in a wide variety of solid and hematological tumors, which suggests the driver role of this gene and provide the basis to target it as part of a new therapeutic strategy. In this review, we highlight our current knowledge about the biology of DDIT4 and its role as a prognostic biomarker, encompassing the motives for the development of target drugs against DDIT4 as a better target than mTOR inhibitors.
Collapse
Affiliation(s)
| | - Williams Fajardo
- Escuela de Medicina Humana, Universidad Privada San Juan Bautista, Lima, Peru
| | - Joseph A Pinto
- Unidad de Investigación Básica y Traslacional, Oncosalud-AUNA, Lima, Peru
| |
Collapse
|
127
|
Hulmi JJ, Nissinen TA, Räsänen M, Degerman J, Lautaoja JH, Hemanthakumar KA, Backman JT, Ritvos O, Silvennoinen M, Kivelä R. Prevention of chemotherapy-induced cachexia by ACVR2B ligand blocking has different effects on heart and skeletal muscle. J Cachexia Sarcopenia Muscle 2018; 9:417-432. [PMID: 29230965 PMCID: PMC5879968 DOI: 10.1002/jcsm.12265] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/15/2017] [Accepted: 10/12/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Toxicity of chemotherapy on skeletal muscles and the heart may significantly contribute to cancer cachexia, mortality, and decreased quality of life. Doxorubicin (DOX) is an effective cytostatic agent, which unfortunately has toxic effects on many healthy tissues. Blocking of activin receptor type IIB (ACVR2B) ligands is an often used strategy to prevent skeletal muscle loss, but its effects on the heart are relatively unknown. METHODS The effects of DOX treatment with or without pre-treatment with soluble ACVR2B-Fc (sACVR2B-Fc) were investigated. The mice were randomly assigned into one of the three groups: (1) vehicle (PBS)-treated controls, (2) DOX-treated mice (DOX), and (3) DOX-treated mice administered with sACVR2B-Fc during the experiment (DOX + sACVR2B-Fc). DOX was administered with a cumulative dose of 24 mg/kg during 2 weeks to investigate cachexia outcome in the heart and skeletal muscle. To understand similarities and differences between skeletal and cardiac muscles in their responses to chemotherapy, the tissues were collected 20 h after a single DOX (15 mg/kg) injection and analysed with genome-wide transcriptomics and mRNA and protein analyses. The combination group was pre-treated with sACVR2B-Fc 48 h before DOX administration. Major findings were also studied in mice receiving only sACVR2B-Fc. RESULTS The DOX treatment induced similar (~10%) wasting in skeletal muscle and the heart. However, transcriptional changes in response to DOX were much greater in skeletal muscle. Pathway analysis and unbiased transcription factor analysis showed that p53-p21-REDD1 is the main common pathway activated by DOX in both skeletal and cardiac muscles. These changes were attenuated by blocking ACVR2B ligands especially in skeletal muscle. Tceal7 (3-fold to 5-fold increase), transferrin receptor (1.5-fold increase), and Ccl21 (0.6-fold to 0.9-fold decrease) were identified as novel genes responsive to blocking ACVR2B ligands. Overall, at the transcriptome level, ACVR2B ligand blocking had only minor influence in the heart while it had marked effects in skeletal muscle. The same was also true for the effects on tissue wasting. This may be explained in part by about 18-fold higher gene expression of myostatin in skeletal muscle compared with the heart. CONCLUSIONS Cardiac and skeletal muscles display similar atrophy after DOX treatment, but the mechanisms for this may differ between the tissues. The present results suggest that p53-p21-REDD1 signalling is the main common DOX-activated pathway in these tissues and that blocking activin receptor ligands attenuates this response, especially in skeletal muscle supporting the overall stronger effects of this treatment in skeletal muscles.
Collapse
Affiliation(s)
- Juha J Hulmi
- Biology of Physical Activity, Neuromuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland.,Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tuuli A Nissinen
- Biology of Physical Activity, Neuromuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Markus Räsänen
- Wihuri Research Institute, Helsinki, Finland and Translational Cancer Biology Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Joni Degerman
- Wihuri Research Institute, Helsinki, Finland and Translational Cancer Biology Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Juulia H Lautaoja
- Biology of Physical Activity, Neuromuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Karthik Amudhala Hemanthakumar
- Wihuri Research Institute, Helsinki, Finland and Translational Cancer Biology Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Janne T Backman
- Department of Clinical Pharmacology, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Olli Ritvos
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mika Silvennoinen
- Biology of Physical Activity, Neuromuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Riikka Kivelä
- Wihuri Research Institute, Helsinki, Finland and Translational Cancer Biology Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
128
|
Lesovaya E, Agarwal S, Readhead B, Vinokour E, Baida G, Bhalla P, Kirsanov K, Yakubovskaya M, Platanias LC, Dudley JT, Budunova I. Rapamycin Modulates Glucocorticoid Receptor Function, Blocks Atrophogene REDD1, and Protects Skin from Steroid Atrophy. J Invest Dermatol 2018; 138:1935-1944. [PMID: 29596905 DOI: 10.1016/j.jid.2018.02.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 02/16/2018] [Accepted: 02/21/2018] [Indexed: 12/20/2022]
Abstract
Glucocorticoids have excellent therapeutic properties; however, they cause significant adverse atrophogenic effects. The mTORC1 inhibitor REDD1 has been recently identified as a key mediator of glucocorticoid-induced atrophy. We performed computational screening of a connectivity map database to identify putative REDD1 inhibitors. The top selected candidates included rapamycin, which was unexpected because it inhibits pro-proliferative mTOR signaling. Indeed, rapamycin inhibited REDD1 induction by glucocorticoids dexamethasone, clobetasol propionate, and fluocinolone acetonide in keratinocytes, lymphoid cells, and mouse skin. We also showed blunting of glucocorticoid-induced REDD1 induction by either catalytic inhibitor of mTORC1/2 (OSI-027) or genetic inhibition of mTORC1, highlighting role of mTOR in glucocorticoid receptor signaling. Moreover, rapamycin inhibited glucocorticoid receptor phosphorylation, nuclear translocation, and loading on glucocorticoid-responsive elements in REDD1 promoter. Using microarrays, we quantified a global effect of rapamycin on gene expression regulation by fluocinolone acetonide in human keratinocytes. Rapamycin inhibited activation of glucocorticoid receptor target genes yet enhanced the repression of pro-proliferative and proinflammatory genes. Remarkably, rapamycin protected skin against glucocorticoid-induced atrophy but had no effect on the glucocorticoid anti-inflammatory activity in different in vivo models, suggesting the clinical potential of combining rapamycin with glucocorticoids for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Ekaterina Lesovaya
- N. Blokhin Cancer Research Center, Moscow, Russia; I.P. Pavlov Ryazan State Medical University, Ryazan, Russia
| | - Shivani Agarwal
- Department of Dermatology, Northwestern University, Chicago, Illinois, USA
| | - Ben Readhead
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Elena Vinokour
- Department of Dermatology, Northwestern University, Chicago, Illinois, USA
| | - Gleb Baida
- Department of Dermatology, Northwestern University, Chicago, Illinois, USA
| | - Pankaj Bhalla
- Department of Dermatology, Northwestern University, Chicago, Illinois, USA
| | | | | | - Leonidas C Platanias
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA; Department of Medicine, Jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - Joel T Dudley
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Irina Budunova
- Department of Dermatology, Northwestern University, Chicago, Illinois, USA.
| |
Collapse
|
129
|
Notch signaling and neuronal death in stroke. Prog Neurobiol 2018; 165-167:103-116. [PMID: 29574014 DOI: 10.1016/j.pneurobio.2018.03.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 02/08/2018] [Accepted: 03/20/2018] [Indexed: 12/18/2022]
Abstract
Ischemic stroke is a leading cause of morbidity and death, with the outcome largely determined by the amount of hypoxia-related neuronal death in the affected brain regions. Cerebral ischemia and hypoxia activate the Notch1 signaling pathway and four prominent interacting pathways (NF-κB, p53, HIF-1α and Pin1) that converge on a conserved DNA-associated nuclear multi-protein complex, which controls the expression of genes that can determine the fate of neurons. When neurons experience a moderate level of ischemic insult, the nuclear multi-protein complex up-regulates adaptive stress response genes encoding proteins that promote neuronal survival, but when ischemia is more severe the nuclear multi-protein complex induces genes encoding proteins that trigger and execute a neuronal death program. We propose that the nuclear multi-protein transcriptional complex is a molecular mediator of neuronal hormesis and a target for therapeutic intervention in stroke.
Collapse
|
130
|
Banelli B, Daga A, Forlani A, Allemanni G, Marubbi D, Pistillo MP, Profumo A, Romani M. Small molecules targeting histone demethylase genes (KDMs) inhibit growth of temozolomide-resistant glioblastoma cells. Oncotarget 2018; 8:34896-34910. [PMID: 28432280 PMCID: PMC5471020 DOI: 10.18632/oncotarget.16820] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 03/22/2017] [Indexed: 12/29/2022] Open
Abstract
In glioblastoma several histone demethylase genes (KDM) are overexpressed compared to normal brain tissue and the development of Temozolomide (TMZ) resistance is accompanied by the transient further increased expression of KDM5A and other KDMs following a mechanism that we defined as “epigenetic resilience”. We hypothesized that targeting KDMs may kill the cells that survive the cytotoxic therapy. We determined the effect of JIB 04 and CPI-455, two KDM inhibitors, on glioblastoma cells and found that both molecules are more effective against TMZ-resistant rather than native cells. Because of its lower IC50, we focused on JIB 04 that targets KDM5A and other KDMs as well. We have shown that this molecule activates autophagic and apoptotic pathways, interferes with cell cycle progression, inhibits cell clonogenicity and dephosphorylates Akt thus inactivating a potent pro-survival pathway. We performed combination temozolomide/JIB 04 in vitro treatments showing that these two molecules, under certain conditions, have a strong synergic effect and we hypothesize that JIB 04 intercepts the cells that escape the G2 block exerted by TMZ. Finally we studied the permeability of JIB 04 across the blood-brain barrier and found that this molecule reaches bioactive concentration in the brain; furthermore a pilot in vivo experiment in an orthotopic GB xenograft model showed a trend toward longer survival in treated mice with an Hazard Ratio of 0.5. In conclusion we propose that the combination between cytotoxic drugs and molecules acting on the epigenetic landscape may offer the opportunity to develop new therapies for this invariably lethal disease.
Collapse
Affiliation(s)
- Barbara Banelli
- Laboratory of Tumor Epigenetics, IRCCS AOU San Martino-IST, Genova, Italy.,Department of Health Sciences, University of Genova, Genova, Italy
| | - Antonio Daga
- Laboratory of Regenerative Medicine, IRCCS AOU San Martino-IST, Genova, Italy
| | - Alessandra Forlani
- Laboratory of Tumor Epigenetics, IRCCS AOU San Martino-IST, Genova, Italy
| | - Giorgio Allemanni
- Laboratory of Tumor Epigenetics, IRCCS AOU San Martino-IST, Genova, Italy
| | - Daniela Marubbi
- Laboratory of Regenerative Medicine, IRCCS AOU San Martino-IST, Genova, Italy.,Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy
| | - Maria Pia Pistillo
- Laboratory of Tumor Epigenetics, IRCCS AOU San Martino-IST, Genova, Italy
| | - Aldo Profumo
- Biopolymers and Proteomic Unit, IRCCS AOU San Martino-IST, Genova, Italy
| | - Massimo Romani
- Laboratory of Tumor Epigenetics, IRCCS AOU San Martino-IST, Genova, Italy
| |
Collapse
|
131
|
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) coordinates cellular growth and metabolism with environmental inputs to ensure that cells grow only under favourable conditions. When active, mTORC1 stimulates biosynthetic pathways including protein, lipid and nucleotide synthesis and inhibits cellular catabolism through repression of the autophagic pathway, thereby promoting cell growth and proliferation. The recruitment of mTORC1 to the lysosomal surface has been shown to be essential for its activation. This finding has significantly enhanced our knowledge of mTORC1 regulation and has focused the attention of the field on the lysosome as a signalling hub which coordinates several homeostatic pathways. The intriguing localisation of mTORC1 to the cellular organelle that plays a crucial role in catabolism enables mTORC1 to feedback to autophagy and lysosomal biogenesis, thus leading mTORC1 to enact precise spatial and temporal control of cell growth. This review will cover the signalling interactions which take place on the surface of lysosomes and the cross-talk which exists between mTORC1 activity and lysosomal function.
Collapse
Affiliation(s)
- Yoana Rabanal-Ruiz
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK.
| | - Viktor I Korolchuk
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK.
| |
Collapse
|
132
|
|
133
|
Su J, Huang H, Ju S, Shi J. Elevated RTP801 promotes cell proliferation in non-small cell lung cancer. IUBMB Life 2018; 70:310-319. [PMID: 29485721 DOI: 10.1002/iub.1727] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/02/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Jianyou Su
- Laboratory Medicine Center; Affiliated Hospital of Nantong University; Nantong China
| | - Hua Huang
- Department of Pathology; Affiliated Hospital of Nantong University; Nantong China
| | - Shaoqing Ju
- Laboratory Medicine Center; Affiliated Hospital of Nantong University; Nantong China
| | - Jiahai Shi
- Department of Cardiothoracic Surgery; Affiliated Hospital of Nantong University; Nantong China
| |
Collapse
|
134
|
Yang J, Zhang Y, Tong J, Lv H, Zhang C, Chen ZJ. Dysfunction of DNA damage-inducible transcript 4 in the decidua is relevant to the pathogenesis of preeclampsia†. Biol Reprod 2018; 98:821-833. [PMID: 29447340 DOI: 10.1093/biolre/ioy038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/12/2018] [Indexed: 12/25/2022] Open
Affiliation(s)
- Jieqiong Yang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yachao Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Ji’nan, Shandong, China
| | - Jing Tong
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hong Lv
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Cong Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Ji’nan, Shandong, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
135
|
Zhang Z, Chu S, Wang S, Jiang Y, Gao Y, Yang P, Ai Q, Chen N. RTP801 is a critical factor in the neurodegeneration process of A53T α-synuclein in a mouse model of Parkinson's disease under chronic restraint stress. Br J Pharmacol 2018; 175:590-605. [PMID: 29130486 PMCID: PMC5786460 DOI: 10.1111/bph.14091] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 10/31/2017] [Accepted: 11/07/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND AND PURPOSE Recently, the incidence of Parkinson's disease has shown a tendency to move to a younger population, linked to the constantly increasing stressors of modern society. However, this relationship remains obscure. Here, we have investigated the contribution of stress and the mechanisms underlying this change. EXPERIMENTAL APPROACH Ten-month-old α-synuclein A53T mice, a model of Parkinson's disease (PD), were treated with chronic restraint stress (CRS) to simulate a PD-sensitive person with constant stress stimulation. PD-like behavioural tests and pathological changes were evaluated. Differentiated PC12-A53T cells were treated with corticosterone in vitro. We used Western blot, microRNA expression analysis, immunofluorescence staining, dual luciferase reporter assay and HPLC electrochemical detection to assess cellular and molecular networks after stress treatment. In vivo, stereotaxic injection of shRNA lentivirus was used to confirm our in vitro results. KEY RESULTS The protein RTP801 is encoded by DNA-damage-inducible transcript 4, and it was specifically increased in dopaminergic neurons of the substantia nigra after CRS treatment. RTP801 was post-transcriptionally inhibited by the down-regulation of miR-7. Delayed turnover of RTP801, through the inhibition of proteasome degradation also contributed to its high content. Elevated RTP801 blocked autophagy, thus increasing accumulation of oligomeric α-synuclein and aggravating endoplasmic reticulum stress. RTP801 inhibition alleviated the symptoms of neurodegeneration during this process. CONCLUSIONS AND IMPLICATIONS RTP801 is a promising target for the treatment of PD, especially for PD-sensitive patients who live under increased social pressure. Down-regulation of RTP801 could inhibit the current tendency to an earlier onset of PD.
Collapse
Affiliation(s)
- Zhao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience CenterChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Shi‐Feng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience CenterChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Sha‐Sha Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience CenterChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- School of Basic MedicineShanxi University of Traditional Chinese MedicineShanxiChina
| | - Yi‐Na Jiang
- College of PharmacyHunan University of Chinese MedicineChangshaChina
| | - Yan Gao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience CenterChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Peng‐Fei Yang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience CenterChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Qi‐Di Ai
- College of PharmacyHunan University of Chinese MedicineChangshaChina
| | - Nai‐Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience CenterChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- College of PharmacyHunan University of Chinese MedicineChangshaChina
- Institute of Clinical PharmacologyGuangzhou University of Chinese MedicineGuangzhouChina
- School of Basic MedicineShanxi University of Traditional Chinese MedicineShanxiChina
| |
Collapse
|
136
|
Loss of NEDD4 contributes to RTP801 elevation and neuron toxicity: implications for Parkinson's disease. Oncotarget 2018; 7:58813-58831. [PMID: 27494837 PMCID: PMC5312278 DOI: 10.18632/oncotarget.11020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/22/2016] [Indexed: 11/25/2022] Open
Abstract
Parkinson's disease (PD) is a disorder characterized by the degeneration of certain neuronal populations in the central and peripheral nervous system. One of the hallmarks of the disease is the toxic accumulation of proteins within susceptible neurons due to major impairment in the degradation/clearance protein systems. RTP801 is a pro-apoptotic protein that is sufficient and necessary to induce neuronal death in cellular and animal models of PD. RTP801 is also upregulated in sporadic and parkin mutant PD brains. Here, we report the role of NEDD4, an E3 ligase involved in α-synuclein degradation and PD pathogenesis, in the regulation of RTP801 protein levels and toxicity. NEDD4 polyubiquitinates RTP801 in a cell-free system and in cellular cultures, and they interact physically. NEDD4 conjugates K63-ubiquitin chains to RTP801 and targets it for degradation. NEDD4 regulates RTP801 protein levels in both cultured cells and in the brain tissue. NEDD4 levels are diminished in nigral neurons from human PD brains. Interestingly, neurotoxin 6-OHDA decreases dramatically NEDD4 protein expression but elevates RTP801 protein levels. Moreover, NEDD4 protects neuronal PC12 cells from both 6-OHDA and RTP801-induced toxicity. In primary cortical neurons, NEDD4 knockdown toxicity is mediated by RTP801 since the double knockdown of RTP801 and NEDD4 abrogates the loss of phospho Ser473-Akt and the appearance of caspase-cleaved spectrin fragments. Thus, NEDD4 ligase regulates RTP801 and is sensitive to PD-associated oxidative stress. This suggests that NEDD4 loss of function in PD could contribute importantly into neuronal death by elevating RTP801.
Collapse
|
137
|
Miller WP, Yang C, Mihailescu ML, Moore JA, Dai W, Barber AJ, Dennis MD. Deletion of the Akt/mTORC1 Repressor REDD1 Prevents Visual Dysfunction in a Rodent Model of Type 1 Diabetes. Diabetes 2018; 67:110-119. [PMID: 29074598 PMCID: PMC5741149 DOI: 10.2337/db17-0728] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/20/2017] [Indexed: 12/25/2022]
Abstract
Diabetes-induced visual dysfunction is associated with significant neuroretinal cell death. The current study was designed to investigate the role of the Protein Regulated in Development and DNA Damage Response 1 (REDD1) in diabetes-induced retinal cell death and visual dysfunction. We recently demonstrated that REDD1 protein expression was elevated in response to hyperglycemia in the retina of diabetic rodents. REDD1 is an important regulator of Akt and mammalian target of rapamycin and as such plays a key role in neuronal function and survival. In R28 retinal cells in culture, hyperglycemic conditions enhanced REDD1 protein expression concomitant with caspase activation and cell death. By contrast, in REDD1-deficient R28 cells, neither hyperglycemic conditions nor the absence of insulin in culture medium were sufficient to promote cell death. In the retinas of streptozotocin-induced diabetic mice, retinal apoptosis was dramatically elevated compared with nondiabetic controls, whereas no difference was observed in diabetic and nondiabetic REDD1-deficient mice. Electroretinogram abnormalities observed in b-wave and oscillatory potentials of diabetic wild-type mice were also absent in REDD1-deficient mice. Moreover, diabetic wild-type mice exhibited functional deficiencies in visual acuity and contrast sensitivity, whereas diabetic REDD1-deficient mice had no visual dysfunction. The results support a role for REDD1 in diabetes-induced retinal neurodegeneration.
Collapse
Affiliation(s)
- William P Miller
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA
| | - Chen Yang
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA
| | - Maria L Mihailescu
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA
| | - Joshua A Moore
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA
| | - Weiwei Dai
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA
| | - Alistair J Barber
- Department of Ophthalmology, Penn State College of Medicine, Hershey, PA
| | - Michael D Dennis
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA
| |
Collapse
|
138
|
Lee M, Kim MJ, Oh J, Piao C, Park YW, Lee DY. Gene delivery to pancreatic islets for effective transplantation in diabetic animal. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2017.07.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
139
|
Blueberry anthocyanin induces apoptosis in HepG-2 cells and the mechanism of the process. Eur Food Res Technol 2017. [DOI: 10.1007/s00217-017-2956-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
140
|
Pastor F, Dumas K, Barthélémy MA, Regazzetti C, Druelle N, Peraldi P, Cormont M, Tanti JF, Giorgetti-Peraldi S. Implication of REDD1 in the activation of inflammatory pathways. Sci Rep 2017; 7:7023. [PMID: 28765650 PMCID: PMC5539207 DOI: 10.1038/s41598-017-07182-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/26/2017] [Indexed: 01/14/2023] Open
Abstract
In response to endotoxemia, the organism triggers an inflammatory response, and the visceral adipose tissue represents a major source of proinflammatory cytokines. The regulation of inflammation response in the adipose tissue is thus of crucial importance. We demonstrated that Regulated in development and DNA damage response-1 (REDD1) is involved in inflammation. REDD1 expression was increased in response to lipopolysaccharide (LPS) in bone marrow derived macrophages (BMDM) and in epidydimal adipose tissue. Loss of REDD1 protected the development of inflammation, since the expression of proinflammatory cytokines (TNFα, IL-6, IL-1β) was decreased in adipose tissue of REDD1−/− mice injected with LPS compared to wild-type mice. This decrease was associated with an inhibition of the activation of p38MAPK, JNK, NF-κB and NLRP3 inflammasome leading to a reduction of IL-1β secretion in response to LPS and ATP in REDD1−/− BMDM. Although REDD1 is an inhibitor of mTORC1, loss of REDD1 decreased inflammation independently of mTORC1 activation but more likely through oxidative stress regulation. Absence of REDD1 decreases ROS associated with a dysregulation of Nox-1 and GPx3 expression. Absence of REDD1 in macrophages decreases the development of insulin resistance in adipocyte-macrophage coculture. Altogether, REDD1 appears to be a key player in the control of inflammation.
Collapse
Affiliation(s)
- Faustine Pastor
- Université Nice Côte d'Azur, Inserm U1065, C3M, Team Cellular and Molecular Physiopathology of Obesity, Nice, France
| | - Karine Dumas
- Université Nice Côte d'Azur, Inserm U1065, C3M, Team Cellular and Molecular Physiopathology of Obesity, Nice, France
| | - Marie-Astrid Barthélémy
- Université Nice Côte d'Azur, Inserm U1065, C3M, Team Cellular and Molecular Physiopathology of Obesity, Nice, France
| | - Claire Regazzetti
- Université Nice Côte d'Azur, Inserm U1065, C3M, Team Cellular and Molecular Physiopathology of Obesity, Nice, France.,Université Nice Côte d'Azur, Inserm U1065, C3M, Team " Study of the melanocytic differentiation applied to vitiligo and melanoma: from the patient to the molecular mechanisms", Nice, France
| | - Noémie Druelle
- Université Nice Côte d'Azur, Inserm U1065, C3M, Team Cellular and Molecular Physiopathology of Obesity, Nice, France.,Université Nice Côte d'Azur, Inserm U1091, CNRS U7277, iBV, Team Diabetes genetic team, Nice, France
| | - Pascal Peraldi
- Université Nice Côte d'Azur, Inserm U1091, CNRS U7277, iBV, Team "Stem cells and differentiation", Nice, France
| | - Mireille Cormont
- Université Nice Côte d'Azur, Inserm U1065, C3M, Team Cellular and Molecular Physiopathology of Obesity, Nice, France
| | - Jean-François Tanti
- Université Nice Côte d'Azur, Inserm U1065, C3M, Team Cellular and Molecular Physiopathology of Obesity, Nice, France
| | - Sophie Giorgetti-Peraldi
- Université Nice Côte d'Azur, Inserm U1065, C3M, Team Cellular and Molecular Physiopathology of Obesity, Nice, France.
| |
Collapse
|
141
|
Yang Q, Tripathy A, Yu W, Eberhart CG, Asnaghi L. Hypoxia inhibits growth, proliferation, and increases response to chemotherapy in retinoblastoma cells. Exp Eye Res 2017; 162:48-61. [PMID: 28689747 DOI: 10.1016/j.exer.2017.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/01/2017] [Accepted: 07/05/2017] [Indexed: 12/11/2022]
Abstract
Retinoblastoma is a malignant tumor of the retina and the most frequent intraocular cancer in children. Low oxygen tension (hypoxia) is a common phenomenon in advanced retinoblastomas, but its biological effect on retinoblastoma growth is not clearly understood. Here we studied how hypoxia altered retinoblastoma gene expression and modulated growth and response to chemotherapy. The hypoxic marker lysyl oxidase (LOX) was expressed in 8 of 12 human retinoblastomas analyzed by immunohistochemistry, suggesting that a hypoxic microenvironment is present in up to two thirds of the cases. WERI Rb1 and Y79 retinoblastoma lines were exposed to 1% or 5% pO2, cobalt chloride (CoCl2), or to normoxia (21% pO2) for up to 8 days. Both 1% and 5% pO2 inhibited growth of both lines by more than 50%. Proliferation was reduced by 25-50% when retinoblastoma cells were exposed to 1% vs 21% pO2, as determined by Ki67 assay. Surprisingly, Melphalan, Carboplatin, and Etoposide produced greater reduction in growth and survival of hypoxic cells than normoxic ones. Gene expression profile analysis of both lines, exposed for 48 h to 1%, 5%, or 21% pO2, showed that glycolysis and glucose transport were the most up-regulated pathways, whereas oxidative phosphorylation was the most down-regulated pathway in hypoxia as compared to normoxia. These data support a role for hypoxia in suppressing growth, proliferation, and enhancing response of retinoblastoma cells to chemotherapy, possibly by impairing energy production through activation of glycolysis and inhibition of mitochondrial respiration. Targeting glucose metabolism or enhancing delivery of chemotherapeutic agents to hypoxic regions may improve treatment of advanced retinoblastomas.
Collapse
Affiliation(s)
- Qian Yang
- Department of Ophthalmology, Second Hospital of Dalian Medical University, Dalian, China; Departments of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Arushi Tripathy
- Departments of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Wayne Yu
- Microarray Core Facility, Sidney Kimmel Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Charles G Eberhart
- Departments of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA; Ophthalmology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA; Oncology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.
| | - Laura Asnaghi
- Departments of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
142
|
Ono A, Ito A, Sato T, Yamaguchi M, Suzuki T, Kawabe Y, Kamihira M. Hypoxia-responsive transgene expression system using RTP801 promoter and synthetic transactivator fused with oxygen-dependent degradation domain. J Biosci Bioeng 2017; 124:115-124. [DOI: 10.1016/j.jbiosc.2017.02.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/31/2017] [Accepted: 02/15/2017] [Indexed: 12/14/2022]
|
143
|
Potaczek DP, Garn H, Unger SD, Renz H. Antisense molecules: A new class of drugs. J Allergy Clin Immunol 2017; 137:1334-46. [PMID: 27155029 DOI: 10.1016/j.jaci.2015.12.1344] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 11/24/2015] [Accepted: 12/15/2015] [Indexed: 12/20/2022]
Abstract
An improved understanding of disease pathogenesis leads to identification of novel therapeutic targets. From a pharmacologic point of view, these can be addressed by small chemical compounds, so-called biologicals (eg, mAbs and recombinant proteins), or by a rather new class of molecule based on the antisense concept. Recently, a new wave of clinical studies exploring antisense strategies is evolving. In addition to cancer, they include predominantly trials on infectious and noninfectious diseases, such as chronic inflammatory and metabolic conditions. This article, based on a systematic PubMed literature search, highlights recent developments in this emerging field.
Collapse
Affiliation(s)
- Daniel P Potaczek
- Institute of Laboratory Medicine, Philipps-University Marburg, Marburg, Germany
| | - Holger Garn
- Institute of Laboratory Medicine, Philipps-University Marburg, Marburg, Germany
| | - Sebastian D Unger
- Institute of Laboratory Medicine, Philipps-University Marburg, Marburg, Germany
| | - Harald Renz
- Institute of Laboratory Medicine, Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
144
|
Alvarez-Garcia O, Matsuzaki T, Olmer M, Plate L, Kelly JW, Lotz MK. Regulated in Development and DNA Damage Response 1 Deficiency Impairs Autophagy and Mitochondrial Biogenesis in Articular Cartilage and Increases the Severity of Experimental Osteoarthritis. Arthritis Rheumatol 2017; 69:1418-1428. [PMID: 28334504 DOI: 10.1002/art.40104] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 03/16/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Regulated in development and DNA damage response 1 (REDD1) is an endogenous inhibitor of mechanistic target of rapamycin (mTOR) that regulates cellular stress responses. REDD1 expression is decreased in aged and osteoarthritic (OA) cartilage, and it regulates mTOR signaling and autophagy in articular chondrocytes in vitro. This study was undertaken to investigate the effects of REDD1 deletion in vivo using a mouse model of experimental OA. METHODS OA severity was histologically assessed in 4-month-old wild-type and REDD1-/- mice subjected to surgical destabilization of the medial meniscus (DMM). Chondrocyte autophagy, apoptosis, mitochondrial content, and expression of mitochondrial biogenesis markers were determined in cartilage and cultured chondrocytes from wild-type and REDD1-/- mice. RESULTS REDD1 deficiency increased the severity of changes in cartilage, menisci, subchondral bone, and synovium in the DMM model of OA. Chondrocyte death was increased in the cartilage of REDD1-/- mice and in cultured REDD1-/- mouse chondrocytes under oxidative stress conditions. Expression of key autophagy markers (microtubule-associated protein 1A/1B light chain 3 and autophagy protein 5) was markedly reduced in cartilage from REDD1-/- mice and in cultured human and mouse chondrocytes with REDD1 depletion. Mitochondrial content, ATP levels, and expression of the mitochondrial biogenesis markers peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) and transcription factor A, mitochondrial (TFAM) were also decreased in REDD1-deficient chondrocytes. REDD1 was required for AMP-activated protein kinase-induced PGC-1α in chondrocytes. CONCLUSION Our findings suggest that REDD1 is a key mediator of cartilage homeostasis through regulation of autophagy and mitochondrial biogenesis and that REDD1 deficiency exacerbates the severity of injury-induced OA.
Collapse
Affiliation(s)
| | | | - Merissa Olmer
- The Scripps Research Institute, La Jolla, California
| | - Lars Plate
- The Scripps Research Institute, La Jolla, California
| | | | - Martin K Lotz
- The Scripps Research Institute, La Jolla, California
| |
Collapse
|
145
|
|
146
|
Park JA, Lee CH. Time-Course Change of Redd1 Expressions in the Hippocampal CA1 Region Following Chronic Cerebral Hypoperfusion. Cell Mol Neurobiol 2017; 37:563-569. [PMID: 27233899 DOI: 10.1007/s10571-016-0385-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/20/2016] [Indexed: 12/22/2022]
Abstract
Redd1, also known as RTP801/Dig2/DDIT4, is a stress-induced protein and marked changes of Redd1 expression occurs in response to hypoxia or cerebral ischemia. In the present study, we examined the time-course changes in Redd1 protein expressions in the rat hippocampal CA1 region following chronic cerebral hypoperfusion (CCH) induced by permanent bilateral common carotid arteries occlusion (2VO). Redd1 immunoreactivity in the pyramidal neurons of the hippocampal CA1 region was increased at 7 days after 2VO surgery, and then the immunoreactivity was decreased with time. Especially, very weak Redd1 immunoreactivity was observed in the hippocampal CA1 region at 28 days after 2VO surgery. Western blot analysis showed that Redd1 level in the hippocampal CA1 region was significantly increased at 7 days following CCH and significantly decreased at 28 days after 2VO surgery, compared with that of the sham-operated group. These results indicate that Redd1 expressions is markedly changed in the hippocampal CA1 region following CCH and that change of Redd1 expression may be associated with the CCH-induced neuronal damage in the hippocampal CA1 region.
Collapse
Affiliation(s)
- Jin-A Park
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan, 31116, South Korea
| | - Choong-Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan, 31116, South Korea.
| |
Collapse
|
147
|
Alvarez-Garcia O, Matsuzaki T, Olmer M, Plate L, Kelly JW, Lotz MK. Regulated in Development and DNA Damage Response 1 Deficiency Impairs Autophagy and Mitochondrial Biogenesis in Articular Cartilage and Increases the Severity of Experimental Osteoarthritis. ARTHRITIS & RHEUMATOLOGY (HOBOKEN, N.J.) 2017. [PMID: 28334504 DOI: 10.1002/art.40104.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Regulated in development and DNA damage response 1 (REDD1) is an endogenous inhibitor of mechanistic target of rapamycin (mTOR) that regulates cellular stress responses. REDD1 expression is decreased in aged and osteoarthritic (OA) cartilage, and it regulates mTOR signaling and autophagy in articular chondrocytes in vitro. This study was undertaken to investigate the effects of REDD1 deletion in vivo using a mouse model of experimental OA. METHODS OA severity was histologically assessed in 4-month-old wild-type and REDD1-/- mice subjected to surgical destabilization of the medial meniscus (DMM). Chondrocyte autophagy, apoptosis, mitochondrial content, and expression of mitochondrial biogenesis markers were determined in cartilage and cultured chondrocytes from wild-type and REDD1-/- mice. RESULTS REDD1 deficiency increased the severity of changes in cartilage, menisci, subchondral bone, and synovium in the DMM model of OA. Chondrocyte death was increased in the cartilage of REDD1-/- mice and in cultured REDD1-/- mouse chondrocytes under oxidative stress conditions. Expression of key autophagy markers (microtubule-associated protein 1A/1B light chain 3 and autophagy protein 5) was markedly reduced in cartilage from REDD1-/- mice and in cultured human and mouse chondrocytes with REDD1 depletion. Mitochondrial content, ATP levels, and expression of the mitochondrial biogenesis markers peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) and transcription factor A, mitochondrial (TFAM) were also decreased in REDD1-deficient chondrocytes. REDD1 was required for AMP-activated protein kinase-induced PGC-1α in chondrocytes. CONCLUSION Our findings suggest that REDD1 is a key mediator of cartilage homeostasis through regulation of autophagy and mitochondrial biogenesis and that REDD1 deficiency exacerbates the severity of injury-induced OA.
Collapse
Affiliation(s)
| | | | - Merissa Olmer
- The Scripps Research Institute, La Jolla, California
| | - Lars Plate
- The Scripps Research Institute, La Jolla, California
| | | | - Martin K Lotz
- The Scripps Research Institute, La Jolla, California
| |
Collapse
|
148
|
PML nuclear bodies contribute to the basal expression of the mTOR inhibitor DDIT4. Sci Rep 2017; 7:45038. [PMID: 28332630 PMCID: PMC5362932 DOI: 10.1038/srep45038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 02/20/2017] [Indexed: 11/16/2022] Open
Abstract
The promyelocytic leukemia (PML) protein is an essential component of PML nuclear bodies (PML NBs) frequently lost in cancer. PML NBs coordinate chromosomal regions via modification of nuclear proteins that in turn may regulate genes in the vicinity of these bodies. However, few PML NB-associated genes have been identified. PML and PML NBs can also regulate mTOR and cell fate decisions in response to cellular stresses. We now demonstrate that PML depletion in U2OS cells or TERT-immortalized normal human diploid fibroblasts results in decreased expression of the mTOR inhibitor DDIT4 (REDD1). DNA and RNA immuno-FISH reveal that PML NBs are closely associated with actively transcribed DDIT4 loci, implicating these bodies in regulation of basal DDIT4 expression. Although PML silencing did reduce the sensitivity of U2OS cells to metabolic stress induced by metformin, PML loss did not inhibit the upregulation of DDIT4 in response to metformin, hypoxia-like (CoCl2) or genotoxic stress. Analysis of publicly available cancer data also revealed a significant correlation between PML and DDIT4 expression in several cancer types (e.g. lung, breast, prostate). Thus, these findings uncover a novel mechanism by which PML loss may contribute to mTOR activation and cancer progression via dysregulation of basal DDIT4 gene expression.
Collapse
|
149
|
Makowski K, Mir JF, Mera P, Ariza X, Asins G, Hegardt FG, Herrero L, García J, Serra D. (-)-UB006: A new fatty acid synthase inhibitor and cytotoxic agent without anorexic side effects. Eur J Med Chem 2017; 131:207-221. [PMID: 28324785 DOI: 10.1016/j.ejmech.2017.03.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 02/20/2017] [Accepted: 03/08/2017] [Indexed: 01/04/2023]
Abstract
C75 is a synthetic anticancer drug that inhibits fatty acid synthase (FAS) and shows a potent anorexigenic side effect. In order to find new cytotoxic compounds that do not impact food intake, we synthesized a new family of C75 derivatives. The most promising anticancer compound among them was UB006 ((4SR,5SR)-4-(hydroxymethyl)-3-methylene-5-octyldihydrofuran-2(3H)-one). The effects of this compound on cytotoxicity, food intake and body weight were studied in UB006 racemic mixture and in both its enantiomers separately. The results showed that both enantiomers inhibit FAS activity and have potent cytotoxic effects in several tumour cell lines, such as the ovarian cell cancer line OVCAR-3. The (-)-UB006 enantiomer's cytotoxic effect on OVCAR-3 was 40-fold higher than that of racemic C75, and 2- and 38-fold higher than that of the racemic mixture and its opposite enantiomer, respectively. This cytotoxic effect on the OVCAR-3 cell line involves mechanisms that reduce mitochondrial respiratory capacity and ATP production, DDIT4/REDD1 upregulation, mTOR activity inhibition, and caspase-3 activation, resulting in apoptosis. In addition, central and peripheral administration of (+)-UB006 or (-)-UB006 into rats and mice did not affect food intake or body weight. Altogether, our data support the discovery of a new potential anticancer compound (-)-UB006 that has no anorexigenic side effects.
Collapse
Affiliation(s)
- Kamil Makowski
- Department of Chemistry, YachayTech University, Hacienda San Jose SN, San Miguel de Urcuqui 100119, Ecuador
| | - Joan Francesc Mir
- Department of Biochemistry and Physiology, Facultat de Farmàcia i Ciències de l'A limentació and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain
| | - Paula Mera
- Department of Biochemistry and Physiology, Facultat de Farmàcia i Ciències de l'A limentació and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain; Columbia University Medical Center, 701 West 168th Street, New York, USA
| | - Xavier Ariza
- Department of Inorganic and Organic Chemistry, Section of Organic Chemistry, Facultat de Química, Universitat de Barcelona, E-08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Guillermina Asins
- Department of Biochemistry and Physiology, Facultat de Farmàcia i Ciències de l'A limentació and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain
| | - Fausto G Hegardt
- Department of Biochemistry and Physiology, Facultat de Farmàcia i Ciències de l'A limentació and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain
| | - Laura Herrero
- Department of Biochemistry and Physiology, Facultat de Farmàcia i Ciències de l'A limentació and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Jordi García
- Department of Inorganic and Organic Chemistry, Section of Organic Chemistry, Facultat de Química, Universitat de Barcelona, E-08028 Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain.
| | - Dolors Serra
- Department of Biochemistry and Physiology, Facultat de Farmàcia i Ciències de l'A limentació and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain.
| |
Collapse
|
150
|
Tsuchida W, Iwata M, Akimoto T, Matsuo S, Asai Y, Suzuki S. Heat Stress Modulates Both Anabolic and Catabolic Signaling Pathways Preventing Dexamethasone-Induced Muscle Atrophy In Vitro. J Cell Physiol 2017; 232:650-664. [PMID: 27649272 PMCID: PMC5132157 DOI: 10.1002/jcp.25609] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 09/19/2016] [Indexed: 12/29/2022]
Abstract
It is generally recognized that synthetic glucocorticoids induce skeletal muscle weakness, and endogenous glucocorticoid levels increase in patients with muscle atrophy. It is reported that heat stress attenuates glucocorticoid-induced muscle atrophy; however, the mechanisms involved are unknown. Therefore, we examined the mechanisms underlying the effects of heat stress against glucocorticoid-induced muscle atrophy using C2C12 myotubes in vitro, focusing on expression of key molecules and signaling pathways involved in regulating protein synthesis and degradation. The synthetic glucocorticoid dexamethasone decreased myotube diameter and protein content, and heat stress prevented the morphological and biochemical glucocorticoid effects. Heat stress also attenuated increases in mRNAs of regulated in development and DNA damage responses 1 (REDD1) and Kruppel-like factor 15 (KLF15). Heat stress recovered the dexamethasone-induced inhibition of PI3K/Akt signaling. These data suggest that changes in anabolic and catabolic signals are involved in heat stress-induced protection against glucocorticoid-induced muscle atrophy. These results have a potentially broad clinical impact because elevated glucocorticoid levels are implicated in a wide range of diseases associated with muscle wasting. J. Cell. Physiol. 232: 650-664, 2017. © 2016 The Authors. Journal of Cellular Physiology published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Wakako Tsuchida
- Department of RehabilitationFaculty of Health SciencesNihon Fukushi UniversityHandaAichiJapan
- Program in Physical and Occupational TherapyGraduate School of MedicineNagoya UniversityNagoyaAichiJapan
| | - Masahiro Iwata
- Department of RehabilitationFaculty of Health SciencesNihon Fukushi UniversityHandaAichiJapan
- Program in Physical and Occupational TherapyGraduate School of MedicineNagoya UniversityNagoyaAichiJapan
| | - Takayuki Akimoto
- Faculty of Sport SciencesWaseda UniversityTokorozawaSaitamaJapan
| | - Shingo Matsuo
- Department of RehabilitationFaculty of Health SciencesNihon Fukushi UniversityHandaAichiJapan
- Program in Physical and Occupational TherapyGraduate School of MedicineNagoya UniversityNagoyaAichiJapan
| | - Yuji Asai
- Department of RehabilitationFaculty of Health SciencesNihon Fukushi UniversityHandaAichiJapan
| | - Shigeyuki Suzuki
- Program in Physical and Occupational TherapyGraduate School of MedicineNagoya UniversityNagoyaAichiJapan
| |
Collapse
|