101
|
Jacob J, Joseph A, Nair HR, Prasad GP, Kumar VV, Padmakumari LT. Steatosis, inflammation, fibroprogression, and cirrhosis in remnant liver post-liver donation. JGH Open 2024; 8:e70015. [PMID: 39185485 PMCID: PMC11342348 DOI: 10.1002/jgh3.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/13/2024] [Accepted: 08/03/2024] [Indexed: 08/27/2024]
Abstract
Background and Aim This is a cross-sectional observational study conducted on living liver donors focusing on "long-term remnant liver health" specifically looking at steatosis, inflammation, and fibrosis using multiparametric ultra sonological evaluation and noninvasive blood tests. Methods Multiparametric ultrasound evaluation included assessment of shear wave elastography (fibrosis), sound speed plane wave ultrasound, attenuation plane wave ultrasound (steatosis), and viscosity plane wave ultrasound (inflammation). Blood test based APRI and FIB-4 were calculated. Liver biopsy was performed if noninvasive evaluation pointed toward clinically relevant fibro progression (F4). Results Out of 36 donors, significant fibrosis (>F2) was found in 11 donors (30.5%), seven donors (19.4%) had severe fibrosis (>F3), and two donors had shear wave elastography values suggestive of cirrhosis(F4). Of these two, one donor was extensively evaluated and was found to have biopsy proven cirrhosis with endoscopic evidence of portal hypertension. The prevalence of fatty liver disease in our study group was 50%. Conclusion We report the first liver donor cohort with fibroprogression and cirrhosis occurring in the remnant liver. Our donor cohort with a significant proportion having steatosis and fibroprogression underscores the importance of regular follow-up of liver donors and evaluation of remnant liver.
Collapse
Affiliation(s)
- Jeby Jacob
- Department of Liver & Digestive CareApollo Adlux HospitalErnakulamKeralaIndia
| | - Amal Joseph
- Department of Gastroenterology and HepatologyErnakulam Medical CentreKochiKeralaIndia
| | - Harikumar R Nair
- Department of Gastroenterology and HepatologyErnakulam Medical CentreKochiKeralaIndia
| | | | - Vijosh V Kumar
- Department of Liver & Digestive CareApollo Adlux HospitalErnakulamKeralaIndia
| | | |
Collapse
|
102
|
Nixdorf L, Hartl L, Ströhl S, Felsenreich DM, Mairinger M, Jedamzik J, Richwien P, Mozayani B, Semmler G, Balcar L, Schwarz M, Jachs M, Dominik N, Bichler C, Trauner M, Mandorfer M, Reiberger T, Langer FB, Bauer DJM, Prager G. Rapid improvement of hepatic steatosis and liver stiffness after metabolic/bariatric surgery: a prospective study. Sci Rep 2024; 14:17558. [PMID: 39080285 PMCID: PMC11289378 DOI: 10.1038/s41598-024-67415-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/11/2024] [Indexed: 08/02/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) and related steatohepatitis (MASH) are common among obese patients and may improve after metabolic/bariatric surgery (MBS). 93 Patients undergoing MBS in 2021-2022 were prospectively enrolled. Liver stiffness measurement (LSM; via vibration-controlled transient elastography [VCTE], point [pSWE] and 2D [2DSWE] shear wave elastography) and non-invasive steatosis assessment (via controlled attenuation parameter [CAP]) were performed before (baseline [BL]) and three months (M3) after surgery. 93 patients (median age 40.9 years, 68.8% female, median BL-BMI: 46.0 kg/m2) were included. BL-liver biopsy showed MASLD in 82.8% and MASH in 34.4% of patients. At M3 the median relative total weight loss (%TWL) was 20.1% and the median BMI was 36.1 kg/m2. LSM assessed by VCTE and 2DSWE, as well as median CAP all decreased significantly from BL to M3 both in the overall cohort and among patients with MASH. There was a decrease from BL to M3 in median levels of ALT (34.0 U/L to 31 U/L; p = 0.025), gamma glutamyl transferase (BL: 30.0 to 21.0 U/L; p < 0.001) and MASLD fibrosis score (BL: - 0.97 to - 1.74; p < 0.001). Decreasing LSM and CAP, as well as liver injury markers suggest an improvement of MASLD/MASH as early as 3 months after MBS.
Collapse
Affiliation(s)
- Larissa Nixdorf
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Lukas Hartl
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Stefanie Ströhl
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Daniel Moritz Felsenreich
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Magdalena Mairinger
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Julia Jedamzik
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Paula Richwien
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Behrang Mozayani
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Georg Semmler
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Lorenz Balcar
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Michael Schwarz
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Mathias Jachs
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Nina Dominik
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Christoph Bichler
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Mattias Mandorfer
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria.
| | - Felix B Langer
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - David Josef Maria Bauer
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Gerhard Prager
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
103
|
Saini A, Rutledge B, Damughatla AR, Rasheed M, Naylor P, Mutchnick M. Manifestation and Progression of Metabolic Dysfunction-Associated Steatotic Liver Disease in a Predominately African American Population at a Multi-Specialty Healthcare Organization. Healthcare (Basel) 2024; 12:1478. [PMID: 39120181 PMCID: PMC11311600 DOI: 10.3390/healthcare12151478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
African Americans (AA) have a high incidence of risk factors associated with MASLD (metabolic dysfunction-associated steatotic liver disease); the AA population has a lower incidence of MASLD and MASH (metabolic-associated steatotic hepatitis) than Caucasian and Hispanic Americans (non-AA). We investigated if underlying risk factor variation between AA and non-AA individuals could provide a rationale for the racial diversity seen in MASLD/MASH. Using ICD-10 codes, patients from 2017 to 2020 with MASLD/MASH were identified and confirmed to have either MASLD or MASH. Despite the large (>80%) AA population in our clinics, only 54% of the MASLD/MASH patients were African American. When the non-invasive NAFLD Fibrosis Scores (NFS) evaluated at early diagnosis were compared to the most recent values, the only increase in fibrosis score by NFS over time was in non-AA MASH patients. The increase in fibrosis only in non-AA MASLD patients is consistent with racial disparity in the disease progression in non-AA as compared to AA patients. Even with the large proportion of AA patients in our study, there was no significant racial disparity in the earliest assessment of either risk factors, laboratory values, or fibrosis scores that would account for racial disparity in the development and progression of MASLD.
Collapse
Affiliation(s)
| | | | | | | | - Paul Naylor
- Department of Internal Medicine, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (A.S.); (B.R.); (A.R.D.); (M.R.); (M.M.)
| | | |
Collapse
|
104
|
Liu Y, Wang R. Association between serum selenium and non-alcoholic fatty liver disease: Results from NHANES: An observational study. Medicine (Baltimore) 2024; 103:e38845. [PMID: 38996172 PMCID: PMC11245274 DOI: 10.1097/md.0000000000038845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/14/2024] [Indexed: 07/14/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) encompasses a broad spectrum of diseases and stands as the second most prevalent liver disorder in the 21st century. Advanced hepatic fibrosis (AHF) is a crucial indicator of the progression of NAFLD. Selenium (Se) is an indispensable trace element for human physiology; however, excessive intake can lead to poisoning and detrimental effects. Notably, males exhibit significantly higher serum Se levels compared to females. To investigate the correlation between serum Se levels and the prevalence of NAFLD and AHF across different genders. Utilizing data from the National Health and Nutrition Examination Survey (NHANES) 2017-2020, 7271 participants were included. Through descriptive analysis, multivariable logistic regression, subgroup analysis, interaction, and restricted cubic spline regression analysis, the relationship between serum Se levels and the prevalence of NAFLD and AHF was investigated. serum Se levels were significantly higher in both male and female NAFLD groups compared to the non-NAFLD groups (Males: 187.570 vs 183.300, Z = -16.169, P < .001; Females: 184.780 vs 180.130, Z = -4.102, P < .001). After adjusting for confounders, an increase in one quartile of serum Se was associated with a 17.60% increase in NAFLD prevalence in males (OR, 1.176; 95% CI: 1.052-1.315) and a 38.50% decrease in AHF prevalence (OR, 0.615; 95% CI: 0.479-0.789). In females, each quartile increase in serum Se was associated with a 29.10% increase in NAFLD prevalence (OR,1.291;95%CI: 1.155-1.442) and a 51.60% decrease in AHF prevalence (OR, 0.484; 95% CI: 0.344-0.682). serum Se levels are positively correlated with the prevalence of NAFLD and negatively correlated with the prevalence of AHF in both males and females.
Collapse
Affiliation(s)
- Yajie Liu
- Department of Spleen, Stomach, Liver and Gallbladder Diseases, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Ruilin Wang
- Department of Traditional Chinese Medicine and Liver Diseases, Fifth Medical Center, PLA General Hospital, Beijing, China
| |
Collapse
|
105
|
Dufour JF, Wong VWS. Non-invasive assessment of MASH resolution. Gut 2024; 73:1227-1228. [PMID: 38479806 DOI: 10.1136/gutjnl-2024-332060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 07/13/2024]
Affiliation(s)
| | - Vincent Wai-Sun Wong
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- State Key Laboratory of Digestive Disease, Chinese University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| |
Collapse
|
106
|
Nakano M, Kuromatsu R, Kawaguchi T. Ultrasonographic Assessment of Tissue Stiffness: Recent Progress in Transient Elastography and Shear Wave Elastography in the Liver and Various Organs. Kurume Med J 2024; 70:1-10. [PMID: 38763738 DOI: 10.2739/kurumemedj.ms7012010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Ultrasonography is a noninvasive and widely accessible modality in clinical practice. Recently, ultrasonography has been used to evaluate tissue stiffness; the two representative techniques are transient elastography (FibroScan®) and shear wave elastography. These modalities are now generally used for the assessment of liver fibrosis, the prediction of hepatocarcinogenesis, and determining prognosis. In addition, shear wave elastography is available, not only for the liver but also for various other organs, including the breast and brain. In the breast and brain, shear wave elastography distinguishes malignant lesions from benign ones. Moreover, shear wave elastography can be useful for differentiating between ischemic and hemorrhagic strokes. This review summarizes the recent progress in transient elastography and shear wave elastography of the liver and introduces the advantages of ultrasonographic assessment of tissue stiffness in various organs, including the breast, brain, kidney, heart, thyroid, pancreas, muscle, and bone.
Collapse
Affiliation(s)
- Masahito Nakano
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine
| | - Ryoko Kuromatsu
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine
- Ultrasound Diagnostic Center, Kurume University Hospital
| | - Takumi Kawaguchi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine
| |
Collapse
|
107
|
van Kleef LA, Francque SM, Prieto-Ortiz JE, Sonneveld MJ, Sanchez-Luque CB, Prieto-Ortiz RG, Kwanten WJ, Vonghia L, Verrijken A, De Block C, Gadi Z, Janssen HLA, de Knegt RJ, Brouwer WP. Metabolic Dysfunction-Associated Fibrosis 5 (MAF-5) Score Predicts Liver Fibrosis Risk and Outcome in the General Population With Metabolic Dysfunction. Gastroenterology 2024; 167:357-367.e9. [PMID: 38513745 DOI: 10.1053/j.gastro.2024.03.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/10/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND & AIMS There is an unmet need for noninvasive tests to improve case-finding and aid primary care professionals in referring patients at high risk of liver disease. METHODS A metabolic dysfunction-associated fibrosis (MAF-5) score was developed and externally validated in a total of 21,797 individuals with metabolic dysfunction in population-based (National Health and Nutrition Examination Survey 2017-2020, National Health and Nutrition Examination Survey III, and Rotterdam Study) and hospital-based (from Antwerp and Bogota) cohorts. Fibrosis was defined as liver stiffness ≥8.0 kPa. Diagnostic accuracy was compared with FIB-4, nonalcoholic fatty liver disease fibrosis score (NFS), LiverRisk score and steatosis-associated fibrosis estimator (SAFE). MAF-5 was externally validated with liver stiffness measurement ≥8.0 kPa, with shear-wave elastography ≥7.5 kPa, and biopsy-proven steatotic liver disease according to Metavir and Nonalcoholic Steatohepatitis Clinical Research Network scores, and was tested for prognostic performance (all-cause mortality). RESULTS The MAF-5 score comprised waist circumference, body mass index (calculated as kg / m2), diabetes, aspartate aminotransferase, and platelets. With this score, 60.9% was predicted at low, 14.1% at intermediate, and 24.9% at high risk of fibrosis. The observed prevalence was 3.3%, 7.9%, and 28.1%, respectively. The area under the receiver operator curve of MAF-5 (0.81) was significantly higher than FIB-4 (0.61), and outperformed the FIB-4 among young people (negative predictive value [NPV], 99%; area under the curve [AUC], 0.86 vs NPV, 94%; AUC, 0.51) and older adults (NPV, 94%; AUC, 0.75 vs NPV, 88%; AUC, 0.55). MAF-5 showed excellent performance to detect liver stiffness measurement ≥12 kPa (AUC, 0.86 training; AUC, 0.85 validation) and good performance in detecting liver stiffness and biopsy-proven liver fibrosis among the external validation cohorts. MAF-5 score >1 was associated with increased risk of all-cause mortality in (un)adjusted models (adjusted hazard ratio, 1.59; 95% CI, 1.47-1.73). CONCLUSIONS The MAF-5 score is a validated, age-independent, inexpensive referral tool to identify individuals at high risk of liver fibrosis and all-cause mortality in primary care populations, using simple variables.
Collapse
Affiliation(s)
- Laurens A van Kleef
- Department of Gastroenterology and Hepatology, Erasmus Medical Center, University Medical Center, Rotterdam, The Netherlands
| | - Sven M Francque
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium; Laboratory of Experimental Medicine and Paediatrics, University of Antwerp, Antwerp, Belgium
| | | | - Milan J Sonneveld
- Department of Gastroenterology and Hepatology, Erasmus Medical Center, University Medical Center, Rotterdam, The Netherlands
| | | | | | - Wilhelmus J Kwanten
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium; Laboratory of Experimental Medicine and Paediatrics, University of Antwerp, Antwerp, Belgium
| | - Luisa Vonghia
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium; Laboratory of Experimental Medicine and Paediatrics, University of Antwerp, Antwerp, Belgium
| | - An Verrijken
- Laboratory of Experimental Medicine and Paediatrics, University of Antwerp, Antwerp, Belgium; Department of Endocrinology, Diabetology and Metabolism, Antwerp University Hospital, Antwerp, Belgium
| | - Christophe De Block
- Laboratory of Experimental Medicine and Paediatrics, University of Antwerp, Antwerp, Belgium; Department of Endocrinology, Diabetology and Metabolism, Antwerp University Hospital, Antwerp, Belgium
| | - Zouhir Gadi
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium; Laboratory of Experimental Medicine and Paediatrics, University of Antwerp, Antwerp, Belgium
| | - Harry L A Janssen
- Department of Gastroenterology and Hepatology, Erasmus Medical Center, University Medical Center, Rotterdam, The Netherlands; Toronto Centre for Liver Disease, Toronto General Hospital, University Health Network, Canada
| | - Robert J de Knegt
- Department of Gastroenterology and Hepatology, Erasmus Medical Center, University Medical Center, Rotterdam, The Netherlands
| | - Willem Pieter Brouwer
- Department of Gastroenterology and Hepatology, Erasmus Medical Center, University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
108
|
Prince DS, Hoque S, Kim C, Maher S, Miller J, Chomley P, Pritchard-Jones J, Spruce S, McGarry N, Baker D, Elix P, Liu K, Strasser SI, Goodger B, Zekry A, McCaughan GW. Screening patients in general practice for advanced chronic liver disease using an innovative IT solution: The Liver Toolkit. Hepatol Commun 2024; 8:e0482. [PMID: 38934697 PMCID: PMC11213595 DOI: 10.1097/hc9.0000000000000482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/08/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Identifying patients with undiagnosed advanced chronic liver disease (ACLD) is a public health challenge. Patients with advanced fibrosis or compensated cirrhosis have much better outcomes than those with decompensated disease and may be eligible for interventions to prevent disease progression. METHODS A cloud-based software solution ("the Liver Toolkit") was developed to access primary care practice software to identify patients at risk of ACLD. Clinical history and laboratory results were extracted to calculate aspartate aminotransferase-to-platelet ratio index and fibrosis 4 scores. Patients identified were recalled for assessment, including Liver Stiffness Measurement (LSM) via transient elastography. Those with an existing diagnosis of cirrhosis were excluded. RESULTS Existing laboratory results of more than 32,000 adults across nine general practices were assessed to identify 703 patients at increased risk of ACLD (2.2% of the cohort). One hundred seventy-nine patients (26%) were successfully recalled, and 23/179 (13%) were identified to have ACLD (LSM ≥10.0 kPa) (10% found at indeterminate risk [LSM 8.0-9.9 kPa] and 77% low risk of fibrosis [LSM <8.0 kPa]). In most cases, the diagnosis of liver disease was new, with the most common etiology being metabolic dysfunction-associated steatotic liver disease (n=20, 83%). Aspartate aminotransferase-to-platelet ratio index ≥1.0 and fibrosis 4 ≥3.25 had a positive predictive value for detecting ACLD of 19% and 24%, respectively. Patients who did not attend recall had markers of more severe disease with a higher median aspartate aminotransferase-to-platelet ratio index score (0.57 vs. 0.46, p=0.041). CONCLUSIONS This novel information technology system successfully screened a large primary care cohort using existing laboratory results to identify patients at increased risk ACLD. More than 1 in 5 patients recalled were found to have liver disease requiring specialist follow-up.
Collapse
Affiliation(s)
- David S. Prince
- AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Liver Injury and Cancer Program, Centenary Institute, Sydney, New South Wales, Australia
- Department of Gastroenterology and Liver, Liverpool Hospital, Liverpool, New South Wales, Australia
- Faculty of Medicine and Health, The University of New South Wales, Sydney, New South Wales, Australia
| | - Shakira Hoque
- Department of Gastroenterology and Hepatology, St George Hospital, Kogarah, New South Wales, Australia
| | - Christy Kim
- Department of Gastroenterology and Hepatology, St George Hospital, Kogarah, New South Wales, Australia
| | - Salim Maher
- AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Department of Gastroenterology and Hepatology, St George Hospital, Kogarah, New South Wales, Australia
| | - Jane Miller
- Central and Eastern Sydney Primary Health Network, Mascot, New South Wales, Australia
| | - Phoebe Chomley
- Central and Eastern Sydney Primary Health Network, Mascot, New South Wales, Australia
| | - Janice Pritchard-Jones
- AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Sally Spruce
- AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Nathan McGarry
- Department of Gastroenterology and Hepatology, St George Hospital, Kogarah, New South Wales, Australia
| | - David Baker
- East Sydney Doctors Darlinghurst, New South Wales, Australia
| | - Penelope Elix
- Fountain Street General Practice, Alexandria, New South Wales, Australia
| | - Ken Liu
- AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Simone I. Strasser
- AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Brendan Goodger
- Central and Eastern Sydney Primary Health Network, Mascot, New South Wales, Australia
| | - Amany Zekry
- Faculty of Medicine and Health, The University of New South Wales, Sydney, New South Wales, Australia
- Department of Gastroenterology and Hepatology, St George Hospital, Kogarah, New South Wales, Australia
| | - Geoffrey W. McCaughan
- AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Liver Injury and Cancer Program, Centenary Institute, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
109
|
Zannad F, Sanyal AJ, Butler J, Ferreira JP, Girerd N, Miller V, Pandey A, Parikh CR, Ratziu V, Younossi ZM, Harrison SA. MASLD and MASH at the crossroads of hepatology trials and cardiorenal metabolic trials. J Intern Med 2024; 296:24-38. [PMID: 38738988 DOI: 10.1111/joim.13793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Steatotic liver disease (SLD) is a worldwide public health problem, causing considerable morbidity and mortality. Patients with SLD are at increased risk for major adverse cardiovascular (CV) events, type 2 diabetes mellitus and chronic kidney disease. Conversely, patients with cardiometabolic conditions have a high prevalence of SLD. In addition to epidemiological evidence linking many of these conditions, there is evidence of shared pathophysiological processes. In December 2022, a unique multi-stakeholder, multi-specialty meeting, called MOSAIC (Metabolic multi Organ Science Accelerating Innovation in Clinical Trials) was convened to foster collaboration across metabolic, hepatology, nephrology and CV disorders. One of the goals of the meeting was to consider approaches to drug development that would speed regulatory approval of treatments for multiple disorders by combining liver and cardiorenal endpoints within a single study. Non-invasive tests, including biomarkers and imaging, are needed in hepatic and cardiorenal trials. They can be used as trial endpoints, to enrich trial populations, to diagnose and risk stratify patients and to assess treatment efficacy and safety. Although they are used in proof of concept and phase 2 trials, they are often not acceptable for regulatory approval of therapies. The challenge is defining the optimal combination of biomarkers, imaging and morbidity/mortality outcomes and ensuring that they are included in future trials while minimizing the burden on patients, trialists and trial sponsors. This paper provides an overview of some of the wide array of CV, liver and kidney measurements that were discussed at the MOSAIC meeting.
Collapse
Affiliation(s)
- Faiez Zannad
- Université de Lorraine, Inserm Clinical Investigation Center at Institut Lorrain du Coeur et des Vaisseaux, University Hospital of Nancy, Nancy, France
| | - Arun J Sanyal
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Javed Butler
- Baylor Scott and White Research Institute, Dallas, Texas, USA
- University of Mississippi, Jackson, Mississippi, USA
| | - João Pedro Ferreira
- UnIC@RISE, Cardiovascular Research and Development Center, Department Surgery Physiology, University of Porto, Porto, Portugal
- Centre d'Investigations Cliniques Plurithématique 1433, INSERM, Université de Lorraine, Nancy, France
- F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), INSERM U1116, Centre Hospitalier Régional Universitaire de Nancy, Nancy, France
| | - Nicolas Girerd
- Université de Lorraine, Centre d'Investigation Clinique-Plurithématique, CHRU Nancy, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France
| | - Veronica Miller
- Forum for Collaborative Research, Washington, District of Columbia, USA
- University of California Berkeley School of Public Health, Berkeley, California, USA
| | | | - Chirag R Parikh
- Division of Nephrology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Vlad Ratziu
- Sorbonne Université, Hôpital Pitié-Salpêtrière, Institute for Cardiometabolism and Nutrition, INSERM UMRS, Paris, France
| | | | - Stephen A Harrison
- Visiting Professor of Hepatology Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
110
|
McPherson S, Dyson JK, Jopson L, Masson S, Patel P, Anstee QM. How effective are experienced hepatologists at staging fibrosis using non-invasive fibrosis tests in patients with metabolic dysfunction-associated steatotic liver disease? Aliment Pharmacol Ther 2024; 60:267-273. [PMID: 38860621 DOI: 10.1111/apt.18061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/21/2024] [Accepted: 05/13/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND Sequential use of non-invasive fibrosis tests (NITs) to identify patients with advanced hepatic fibrosis is recommended. However, it remains unclear how reliable clinicians are staging liver fibrosis using combinations of NITs. AIM Our aim was to assess concordance between NIT-based 'clinician fibrosis assessment (CFA)' and histology in patients with metabolic dysfunction-associated steatotic liver disease (MASLD) and compare this with established algorithmic approaches. METHODS Six experienced hepatologists independently staged 230 MASLD patients for advanced fibrosis (F0-2 vs F3-4) using FIB-4, FIB-4+ELF, FIB-4+ vibration controlled transient elastography (VCTE; Fibroscan™) and FIB-4+ELF+VTCE. Concordance between histology and CFA or algorithmic approaches were assessed. RESULTS A total of 230 patients were included (median age 54 [22-78] years; 55% female; median FIB-4 1.21 [IQR: 0.78-1.91]; ELF 9.3 [IQR: 8.6-10.2]; VCTE 9.4 [IQR: 6.3-14.3]; 41% F0-1, 22% F2, 21% F3 and 16% F4). Overall, area under the receiver operator curves for histologic F3-4 for the raw tests were 0.84 for FIB-4, 0.86 for ELF and 0.86 for VCTE. Concordance between the hepatologists was good (FIB4, κ = 0.64; FIB-4+ELF, κ = 0.70; FIB-4+VCTE, κ = 0.69; FIB-4+ELF+VCTE, κ = 0.70). Concordance between individual CFA and histology was variable, which was reflected in variability in sensitivity (44%-84%) and specificity (76%-94%). Concordance with histology was better when clinicians used NIT combinations. Purely algorithmic approaches, particularly sequential use of FIB-4 then VCTE, tended to perform better than the CFA. CONCLUSIONS Adhering to the recommended algorithmic approaches using NITs to stage fibrosis tended to perform more accurately than less-structured clinician NIT-based assessments conducted by experienced hepatologists.
Collapse
Affiliation(s)
- Stuart McPherson
- Liver Unit, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Freeman Hospital, Newcastle upon Tyne, UK
- Newcastle NIHR Biomedical Research Centre, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Translational & Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Jessica K Dyson
- Liver Unit, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Freeman Hospital, Newcastle upon Tyne, UK
- Newcastle NIHR Biomedical Research Centre, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Translational & Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Laura Jopson
- Liver Unit, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Freeman Hospital, Newcastle upon Tyne, UK
| | - Steven Masson
- Liver Unit, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Freeman Hospital, Newcastle upon Tyne, UK
- Newcastle NIHR Biomedical Research Centre, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Translational & Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Preya Patel
- Liver Unit, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Freeman Hospital, Newcastle upon Tyne, UK
| | - Quentin M Anstee
- Liver Unit, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Freeman Hospital, Newcastle upon Tyne, UK
- Newcastle NIHR Biomedical Research Centre, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Translational & Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
111
|
Savino A, Loglio A, Neri F, Camagni S, Pasulo L, Lucà MG, Trevisan R, Fagiuoli S, Viganò M. Metabolic-Dysfunction-Associated Steatotic Liver Disease (MASLD) after Liver Transplantation: A Narrative Review of an Emerging Issue. J Clin Med 2024; 13:3871. [PMID: 38999436 PMCID: PMC11242808 DOI: 10.3390/jcm13133871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
The development of steatotic liver disease after liver transplant (LT) is widely described, and epidemiological data have revealed an increased incidence in recent times. Its evolution runs from simple steatosis to steatohepatitis and, in a small proportion of patients, to significant fibrosis and cirrhosis. Apparently, post-LT steatotic disease has no impact on the recipient's overall survival; however, a higher cardiovascular and malignancy burden has been reported. Many donors' and recipients' risk factors have been associated with this occurrence, although the recipient-related ones seem of greater impact. Particularly, pre- and post-LT metabolic alterations are strictly associated with steatotic graft disease, sharing common pathophysiologic mechanisms that converge on insulin resistance. Other relevant risk factors include genetic variants, sex, age, baseline liver diseases, and immunosuppressive drugs. Diagnostic evaluation relies on liver biopsy, although non-invasive methods are being increasingly used to detect and monitor both steatosis and fibrosis stages. Management requires a multifaceted approach focusing on lifestyle modifications, the optimization of immunosuppressive therapy, and the management of metabolic complications. This review aims to synthesize the current knowledge of post-LT steatotic liver disease, focusing on the recent definition of metabolic-dysfunction-associated steatotic liver disease (MASLD) and its metabolic and multisystemic concerns.
Collapse
Affiliation(s)
- Alberto Savino
- Gastroenterology Hepatology and Transplantation Unit, ASST Papa Giovanni XXIII, Piazza OMS 1, 24127 Bergamo, Italy; (A.S.); (S.F.)
- Gastroenterology, Department of Medicine, University of Milan Bicocca, 20126 Milan, Italy
| | - Alessandro Loglio
- Gastroenterology Hepatology and Transplantation Unit, ASST Papa Giovanni XXIII, Piazza OMS 1, 24127 Bergamo, Italy; (A.S.); (S.F.)
| | - Flavia Neri
- Department of Organ Failure and Transplantation, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Stefania Camagni
- Department of Organ Failure and Transplantation, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Luisa Pasulo
- Gastroenterology Hepatology and Transplantation Unit, ASST Papa Giovanni XXIII, Piazza OMS 1, 24127 Bergamo, Italy; (A.S.); (S.F.)
| | - Maria Grazia Lucà
- Gastroenterology Hepatology and Transplantation Unit, ASST Papa Giovanni XXIII, Piazza OMS 1, 24127 Bergamo, Italy; (A.S.); (S.F.)
| | - Roberto Trevisan
- Endocrine and Diabetology Unit, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
- Department of Medicine and Surgery, University of Milano Bicocca, 20126 Milan, Italy
| | - Stefano Fagiuoli
- Gastroenterology Hepatology and Transplantation Unit, ASST Papa Giovanni XXIII, Piazza OMS 1, 24127 Bergamo, Italy; (A.S.); (S.F.)
- Gastroenterology, Department of Medicine, University of Milan Bicocca, 20126 Milan, Italy
| | - Mauro Viganò
- Gastroenterology Hepatology and Transplantation Unit, ASST Papa Giovanni XXIII, Piazza OMS 1, 24127 Bergamo, Italy; (A.S.); (S.F.)
- Gastroenterology, Department of Medicine, University of Milan Bicocca, 20126 Milan, Italy
| |
Collapse
|
112
|
Jamalinia M, Lonardo A. Perspective article: determinants and assessment of cardiovascular risk in steatotic liver disease owing to metabolic dysfunction-addressing the challenge. METABOLISM AND TARGET ORGAN DAMAGE 2024; 4. [DOI: 10.20517/mtod.2024.34] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) stands as an independent risk factor for cardiovascular disease (CVD), which is the leading cause of mortality among MASLD patients. The diverse spectrum of cardio-nephro-metabolic and vascular manifestations inherent in MASLD highlights the complex profile of CVD risk associated with this condition. However, current approaches to assessing CVD risk in MASLD lack specificity, predominantly relying on traditional markers. Although it is widely accepted that patients with advanced fibrosis are more prone to CVD risk, recent evidence suggests that this isolated focus may overlook the remarkable phenotypic variability of this CVD risk across the entire MASLD population. Emerging data indicate a progressive escalation of CVD risk in parallel with the severity of MASLD, highlighting the need for precise disease staging to inform accurate risk assessment. To address this challenge, we propose a novel sequential approach to CVD risk assessment in MASLD. While traditional CVD risk factors remain essential, incorporating liver-specific parameters enhances risk stratification and guides targeted interventions to mitigate the substantial burden of cardiovascular disease in this vulnerable population. This approach involves initial screening using FIB-4 and NAFLD fibrosis score, followed by assessment of liver fibrosis with imaging-based non-invasive techniques in individuals at intermediate-high risk for advanced fibrosis and liver fat quantification in low-risk individuals. Future prospective investigations should focus on the simultaneous use of liver biomarkers and imaging modalities to evaluate, in a sex-specific manner, the efficacy of the proposed approach and to determine optimal thresholds of liver fibrosis and steatosis for optimal CVD risk assessment.
Collapse
|
113
|
Lee HW, Kim KH, Ahn SH, Lee HC, Choi J. The associations between fibrosis changes and liver-related events in patients with metabolic dysfunction-associated steatotic liver disease. Liver Int 2024; 44:1448-1455. [PMID: 38488679 DOI: 10.1111/liv.15897] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/14/2024] [Accepted: 03/01/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND The prognosis of metabolic dysfunction-associated steatotic liver disease (MASLD) is associated with liver fibrosis. We investigated the associations between changes in liver stiffness measurement (LSM) over 3-year period and the development of cirrhosis or hepatocellular carcinoma (HCC) in patients with MASLD. METHODS This study involved patients with MASLD who underwent transient elastography at baseline and 3 years after baseline from 2012 to 2020. Low (L), indeterminate (I) and high (H) LSM values were classified as <8 kPa, 8-12 kPa and >12 kPa respectively. RESULTS Among 1738 patients, 150 (8.6%) were diagnosed with cirrhosis or HCC. The proportions of patients with L, I and H risk were 69.7%, 19.9% and 10.5% at baseline, and 78.8%, 12.8% and 8.4% at 3 years after baseline, respectively. The incidence rates of cirrhosis or HCC per 1000 person-years were 3.7 (95% confidence interval [CI], 2.4-5.5) in the L → L + I group, 23.9 (95% CI, 17.1-32.6) in the I → L + I group, 38.3 (95% CI, 22.3-61.3) in the H → L + I group, 62.5 (95% CI, 32.3-109.2) in the I → H group, 67.8 (95% CI, 18.5-173.6) in the L → H group and 93.9 (95% CI 70.1-123.1) in the H → H group. Two risk factors for the development of cirrhosis or HCC were LSM changes and low platelet counts. CONCLUSION LSM changes could predict clinical outcomes in patients with MASLD. Thus, it is important to monitor changes in the fibrotic burden by regular assessment of LSM values.
Collapse
Affiliation(s)
- Hye Won Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Yonsei Liver Center, Severance Hospital, Seoul, Republic of Korea
| | - Kun Hee Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang Hoon Ahn
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Yonsei Liver Center, Severance Hospital, Seoul, Republic of Korea
| | - Han Chu Lee
- Department of Gastroenterology, Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jonggi Choi
- Department of Gastroenterology, Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
114
|
Qadri S, Yki-Järvinen H. Surveillance of the liver in type 2 diabetes: important but unfeasible? Diabetologia 2024; 67:961-973. [PMID: 38334817 PMCID: PMC11058902 DOI: 10.1007/s00125-024-06087-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/04/2023] [Indexed: 02/10/2024]
Abstract
Fatty liver plays a pivotal role in the pathogenesis of the metabolic syndrome and type 2 diabetes. According to an updated classification, any individual with liver steatosis and one or more features of the metabolic syndrome, without excess alcohol consumption or other known causes of steatosis, has metabolic dysfunction-associated steatotic liver disease (MASLD). Up to 60-70% of all individuals with type 2 diabetes have MASLD. However, the prevalence of advanced liver fibrosis in type 2 diabetes remains uncertain, with reported estimates of 10-20% relying on imaging tests and likely overestimating the true prevalence. All stages of MASLD impact prognosis but fibrosis is the best predictor of all-cause and liver-related mortality risk. People with type 2 diabetes face a two- to threefold increase in the risk of liver-related death and hepatocellular carcinoma, with 1.3% progressing to severe liver disease over 7.7 years. Because reliable methods for detecting steatosis are lacking, MASLD mostly remains an incidental finding on imaging. Regardless, several medical societies advocate for universal screening of individuals with type 2 diabetes for advanced fibrosis. Proposed screening pathways involve annual calculation of the Fibrosis-4 (FIB-4) index, followed by a secondary test such as transient elastography (TE) for intermediate-to-high-risk individuals. However, owing to unsatisfactory biomarker specificity, these pathways are expected to channel approximately 40% of all individuals with type 2 diabetes to TE and 20% to tertiary care, with a false discovery rate of up to 80%, raising concerns about feasibility. There is thus an urgent need to develop more effective strategies for surveying the liver in type 2 diabetes. Nonetheless, weight loss through lifestyle changes, pharmacotherapy or bariatric surgery remains the cornerstone of management, proving highly effective not only for metabolic comorbidities but also for MASLD. Emerging evidence suggests that fibrosis biomarkers may serve as tools for risk-based targeting of weight-loss interventions and potentially for monitoring response to therapy.
Collapse
Affiliation(s)
- Sami Qadri
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Hannele Yki-Järvinen
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
- Minerva Foundation Institute for Medical Research, Helsinki, Finland.
| |
Collapse
|
115
|
Chan WK, Petta S, Noureddin M, Goh GBB, Wong VWS. Diagnosis and non-invasive assessment of MASLD in type 2 diabetes and obesity. Aliment Pharmacol Ther 2024; 59 Suppl 1:S23-S40. [PMID: 38813831 DOI: 10.1111/apt.17866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/24/2023] [Accepted: 12/26/2023] [Indexed: 05/31/2024]
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is currently the most common chronic liver disease and an important cause of cirrhosis and hepatocellular carcinoma. It is strongly associated with type 2 diabetes and obesity. Because of the huge number of patients at risk of MASLD, it is imperative to use non-invasive tests appropriately. AIMS To provide a narrative review on the performance and limitations of non-invasive tests, with a special emphasis on the impact of diabetes and obesity. METHODS We searched PubMed and Cochrane databases for articles published from 1990 to August 2023. RESULTS Abdominal ultrasonography remains the primary method to diagnose hepatic steatosis, while magnetic resonance imaging proton density fat fraction is currently the gold standard to quantify steatosis. Simple fibrosis scores such as the Fibrosis-4 index are well suited as initial assessment in primary care and non-hepatology settings to rule out advanced fibrosis and future risk of liver-related complications. However, because of its low positive predictive value, an abnormal test should be followed by specific blood (e.g. Enhanced Liver Fibrosis score) or imaging biomarkers (e.g. vibration-controlled transient elastography and magnetic resonance elastography) of fibrosis. Some non-invasive tests of fibrosis appear to be less accurate in patients with diabetes. Obesity also affects the performance of abdominal ultrasonography and transient elastography, whereas magnetic resonance imaging may not be feasible in some patients with severe obesity. CONCLUSIONS This article highlights issues surrounding the clinical application of non-invasive tests for MASLD in patients with type 2 diabetes and obesity.
Collapse
Affiliation(s)
- Wah-Kheong Chan
- Gastroenterology and Hepatology Unit, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Salvatore Petta
- Sezione di Gastroenterologia, PROMISE, University of Palermo, Palermo, Italy
- Department of Economics and Statistics, University of Palermo, Palermo, Italy
| | - Mazen Noureddin
- Houston Methodist Hospital, Houston Research Institute, Houston, Texas, USA
| | - George Boon Bee Goh
- Department of Gastroenterology and Hepatology, Singapore General Hospital, Singapore
- Medicine Academic Clinical Program, Duke-NUS Medical School, Singapore
| | - Vincent Wai-Sun Wong
- Medical Data Analytics Centre, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
116
|
Effenberger M, Grander C, Hausmann B, Enrich B, Pjevac P, Zoller H, Tilg H. Apelin and the gut microbiome: Potential interaction in human MASLD. Dig Liver Dis 2024; 56:932-940. [PMID: 38087672 DOI: 10.1016/j.dld.2023.11.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 05/28/2024]
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is a leading cause of chronic liver disease with increasing numbers worldwide. Adipokines like apelin (APLN) can act as key players in the complex pathophysiology of MASLD. AIMS Investigating the role of APLN in MASLD. METHODS Fecal and blood samples were collected in a MASLD cohort and healthy controls (HC). MASLD patients with liver fibrosis and MASLD-associated hepatocellular carcinoma (HCC) were included into the study. Systemic concentration of Apelin, Apelin receptor (APLNR) and circulating cytokines were measured in serum samples. RESULTS Apelin concentration correlated with the Fib-4 score and was elevated in MASLD patients (mild fibrosis, mF (Fib-4 <3.25) and severe fibrosis, sF (Fib-4 >3.25)) as well as in MASLD-associated HCC patients compared to HC. In accordance APLNR and circulating cytokines were also elevated in mF and sF. In contrast apelin levels were negatively associated with liver survival at three and five years. Changes in taxa composition at phylum level showed an increase of Enterobactericae, Prevotellaceae and Lactobacillaceae in patients with sF compared to mF. We could also observe an association between apelin concentrations and bacterial lineages (phyla). CONCLUSIONS Circulating apelin is associated with liver fibrosis and HCC. In addition, there might exist an interaction between systemic apelin and the gut microbiome.
Collapse
Affiliation(s)
- Maria Effenberger
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Christoph Grander
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria.
| | - Bela Hausmann
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria; Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Barbara Enrich
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Petra Pjevac
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria; Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Heinz Zoller
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
117
|
Zheng T, Qu Y, Chen J, Yang J, Yan H, Jiang H, Song B. Noninvasive diagnosis of liver cirrhosis: qualitative and quantitative imaging biomarkers. Abdom Radiol (NY) 2024; 49:2098-2115. [PMID: 38372765 DOI: 10.1007/s00261-024-04225-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/20/2024]
Abstract
A diagnosis of cirrhosis initiates a shift in the management of chronic liver disease and affects the diagnostic workflow and treatment decision of primary liver cancer. Liver biopsy remains the gold standard for cirrhosis diagnosis, but it is invasive and susceptible to sampling bias and observer variability. Various qualitative and quantitative imaging biomarkers based on ultrasound, CT and MRI have been proposed for noninvasive diagnosis of cirrhosis. Qualitative imaging features are easy to apply but have moderate diagnostic sensitivity. Elastography techniques allow quantitative assessment of liver stiffness and are highly accurate for cirrhosis diagnosis. Ultrasound elastography are widely used in clinical practice, while MR elastography has narrower availability. Although not applicable in clinical practice yet, other quantitative imaging features, including liver surface nodularity, linear and volumetric measurement, extracellular volume fraction, liver enhancement on hepatobiliary phase, and parameters derived from diffusion-weighted imaging, can provide additional information of liver morphology, perfusion, and function, thus may increase diagnosis performance. The introduction of radiomics and deep learning has further improved diagnostic accuracy while reducing subjectivity. Several imaging features may also help to assess liver function and outcomes in patients with cirrhosis. In this review, we summarize the qualitative and quantitative imaging biomarkers for noninvasive cirrhosis diagnosis, and the assessment of liver function and outcomes, and discuss the challenges and future directions in this field.
Collapse
Affiliation(s)
- Tianying Zheng
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, Sichuan, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan, Chengdu, Sichuan, China
| | - Yali Qu
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, Sichuan, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan, Chengdu, Sichuan, China
| | - Jie Chen
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, Sichuan, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan, Chengdu, Sichuan, China
| | - Jie Yang
- Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hualin Yan
- Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hanyu Jiang
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, Sichuan, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan, Chengdu, Sichuan, China
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, Sichuan, 610041, China.
- Functional and Molecular Imaging Key Laboratory of Sichuan, Chengdu, Sichuan, China.
- Department of Radiology, Sanya People's Hospital, Sanya, Hainan, China.
| |
Collapse
|
118
|
Taru MG, Tefas C, Neamti L, Minciuna I, Taru V, Maniu A, Rusu I, Petrushev B, Procopciuc LM, Leucuta DC, Procopet B, Ferri S, Lupsor-Platon M, Stefanescu H. FAST and Agile-the MASLD drift: Validation of Agile 3+, Agile 4 and FAST scores in 246 biopsy-proven NAFLD patients meeting MASLD criteria of prevalent caucasian origin. PLoS One 2024; 19:e0303971. [PMID: 38781158 PMCID: PMC11115280 DOI: 10.1371/journal.pone.0303971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND MASLD is a prevalent chronic liver condition with substantial clinical implications. This study aimed to assess the effectiveness of three new, elastography-based, scoring systems for advanced fibrosis ≥F3 (Agile 3+), cirrhosis F4 (Agile 4), and fibrotic NASH: NASH + NAS ≥4 + F≥2 (FAST score), in a cohort of biopsy-proven NAFLD meeting MASLD criteria. Our secondary aim was to compare their diagnostic performances with those of other fibrosis prediction tools: LSM-VCTE alone, and common, easily available scores (FIB-4 or APRI). METHODS Single-center, retrospective study, on consecutive patients with baseline laboratory tests, liver biopsy, and reliable LSM-VCTE measurements. The discrimination between tests was evaluated by analyzing the AUROCs. Dual cut-off approaches were applied to rule-out and rule-in ≥F3, F4 and fibrotic NASH. We tested previously reported cut-off values and provided our best thresholds to achieve Se ≥85%, Se ≥90%, and Sp ≥90%, Sp ≥95%. RESULTS Among 246 patients, 113 (45.9%) were women, and 75 (30.5%) presented diabetes. Agile 3+ and Agile 4 demonstrated excellent performance in identifying ≥F3 and F4, achieving AUROCs of 0.909 and 0.968, while the FAST score yielded acceptable results in distinguishing fibrotic NASH. When compared to FIB-4 and LSM-VCTE, both Agile 3+ and Agile 4 performed better than FIB-4 and had a similar performance to LSM-VCTE, but with higher diagnostic accuracy, hence reducing the grey zone. CONCLUSION Agile 3+ and Agile 4 are reliable, non-invasive tests for identifying advanced fibrosis or cirrhosis in MASLD patients, while FAST score demonstrates moderate performance in identifying fibrotic NASH.
Collapse
Affiliation(s)
- Madalina-Gabriela Taru
- Faculty of Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Cluj, Romania
- Regional Institute of Gastroenterology and Hepatology "Octavian Fodor", Cluj-Napoca, Cluj, Romania
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Cristian Tefas
- Faculty of Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Cluj, Romania
- Regional Institute of Gastroenterology and Hepatology "Octavian Fodor", Cluj-Napoca, Cluj, Romania
| | - Lidia Neamti
- Faculty of Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Cluj, Romania
- Regional Institute of Gastroenterology and Hepatology "Octavian Fodor", Cluj-Napoca, Cluj, Romania
| | - Iulia Minciuna
- Faculty of Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Cluj, Romania
- Regional Institute of Gastroenterology and Hepatology "Octavian Fodor", Cluj-Napoca, Cluj, Romania
| | - Vlad Taru
- Faculty of Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Cluj, Romania
- Regional Institute of Gastroenterology and Hepatology "Octavian Fodor", Cluj-Napoca, Cluj, Romania
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Anca Maniu
- Regional Institute of Gastroenterology and Hepatology "Octavian Fodor", Cluj-Napoca, Cluj, Romania
| | - Ioana Rusu
- Regional Institute of Gastroenterology and Hepatology "Octavian Fodor", Cluj-Napoca, Cluj, Romania
| | - Bobe Petrushev
- Regional Institute of Gastroenterology and Hepatology "Octavian Fodor", Cluj-Napoca, Cluj, Romania
| | - Lucia Maria Procopciuc
- Faculty of Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Cluj, Romania
| | - Dan Corneliu Leucuta
- Faculty of Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Cluj, Romania
| | - Bogdan Procopet
- Faculty of Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Cluj, Romania
- Regional Institute of Gastroenterology and Hepatology "Octavian Fodor", Cluj-Napoca, Cluj, Romania
| | - Silvia Ferri
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero—Universitaria di Bologna, Bologna, Italy
| | - Monica Lupsor-Platon
- Faculty of Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Cluj, Romania
- Regional Institute of Gastroenterology and Hepatology "Octavian Fodor", Cluj-Napoca, Cluj, Romania
| | - Horia Stefanescu
- Regional Institute of Gastroenterology and Hepatology "Octavian Fodor", Cluj-Napoca, Cluj, Romania
| |
Collapse
|
119
|
Tobaruela-Resola AL, Riezu-Boj JI, Milagro FI, Mogna-Pelaez P, Herrero JI, Elorz M, Benito-Boillos A, Tur JA, Martínez JA, Abete I, Zulet MA. Multipanel Approach including miRNAs, Inflammatory Markers, and Depressive Symptoms for Metabolic Dysfunction-Associated Steatotic Liver Disease Diagnosis during 2-Year Nutritional Intervention. Nutrients 2024; 16:1547. [PMID: 38892481 PMCID: PMC11174705 DOI: 10.3390/nu16111547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), with a prevalence of 30% of adults globally, is considered a multifactorial disease. There is a lack of effective non-invasive methods for accurate diagnosis and monitoring. Therefore, this study aimed to explore associations between changes in circulating miRNA levels, inflammatory markers, and depressive symptoms with hepatic variables in MASLD subjects and their combined potential to predict the disease after following a dietary intervention. Biochemical markers, body composition, circulating miRNAs and hepatic and psychological status of 55 subjects with MASLD with obesity and overweight from the FLiO study were evaluated by undergoing a 6-, 12- and 24-month nutritional intervention. The highest accuracy values of combined panels to predict the disease were identified after 24 months. A combination panel that included changes in liver stiffness, high-density lipoprotein cholesterol (HDL-c), body mass index (BMI), depressive symptoms, and triglycerides (TG) yielded an AUC of 0.90. Another panel that included changes in hepatic fat content, total cholesterol (TC), miR15b-3p, TG, and depressive symptoms revealed an AUC of 0.89. These findings identify non-invasive biomarker panels including circulating miRNAs, inflammatory markers, depressive symptoms and other metabolic variables for predicting MASLD presence and emphasize the importance of precision nutrition in MASLD management and the sustained adherence to healthy lifestyle patterns.
Collapse
Affiliation(s)
- Ana Luz Tobaruela-Resola
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (A.L.T.-R.); (J.I.R.-B.); (F.I.M.); (P.M.-P.); (I.A.)
| | - José I. Riezu-Boj
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (A.L.T.-R.); (J.I.R.-B.); (F.I.M.); (P.M.-P.); (I.A.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (J.I.H.); (M.E.); (A.B.-B.)
| | - Fermin I. Milagro
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (A.L.T.-R.); (J.I.R.-B.); (F.I.M.); (P.M.-P.); (I.A.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (J.I.H.); (M.E.); (A.B.-B.)
- Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.A.T.); (J.A.M.)
| | - Paola Mogna-Pelaez
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (A.L.T.-R.); (J.I.R.-B.); (F.I.M.); (P.M.-P.); (I.A.)
| | - José I. Herrero
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (J.I.H.); (M.E.); (A.B.-B.)
- Liver Unit, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- Biomedical Research Centre Network in Hepatic and Digestive Diseases (CIBERehd), 28029 Madrid, Spain
| | - Mariana Elorz
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (J.I.H.); (M.E.); (A.B.-B.)
- Department of Radiology, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Alberto Benito-Boillos
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (J.I.H.); (M.E.); (A.B.-B.)
- Department of Radiology, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Josep A. Tur
- Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.A.T.); (J.A.M.)
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands-IUNICS & IDISBA, 07122 Palma, Spain
| | - J. Alfredo Martínez
- Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.A.T.); (J.A.M.)
- Precision Nutrition and Cardiovascular Health Program, IMDEA Food, CEI UAM + CSIC, 28049 Madrid, Spain
| | - Itziar Abete
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (A.L.T.-R.); (J.I.R.-B.); (F.I.M.); (P.M.-P.); (I.A.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (J.I.H.); (M.E.); (A.B.-B.)
- Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.A.T.); (J.A.M.)
| | - M. Angeles Zulet
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (A.L.T.-R.); (J.I.R.-B.); (F.I.M.); (P.M.-P.); (I.A.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (J.I.H.); (M.E.); (A.B.-B.)
- Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.A.T.); (J.A.M.)
| |
Collapse
|
120
|
Kokkorakis M, Muzurović E, Volčanšek Š, Chakhtoura M, Hill MA, Mikhailidis DP, Mantzoros CS. Steatotic Liver Disease: Pathophysiology and Emerging Pharmacotherapies. Pharmacol Rev 2024; 76:454-499. [PMID: 38697855 DOI: 10.1124/pharmrev.123.001087] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/22/2023] [Accepted: 01/25/2024] [Indexed: 05/05/2024] Open
Abstract
Steatotic liver disease (SLD) displays a dynamic and complex disease phenotype. Consequently, the metabolic dysfunction-associated steatotic liver disease (MASLD)/metabolic dysfunction-associated steatohepatitis (MASH) therapeutic pipeline is expanding rapidly and in multiple directions. In parallel, noninvasive tools for diagnosing and monitoring responses to therapeutic interventions are being studied, and clinically feasible findings are being explored as primary outcomes in interventional trials. The realization that distinct subgroups exist under the umbrella of SLD should guide more precise and personalized treatment recommendations and facilitate advancements in pharmacotherapeutics. This review summarizes recent updates of pathophysiology-based nomenclature and outlines both effective pharmacotherapeutics and those in the pipeline for MASLD/MASH, detailing their mode of action and the current status of phase 2 and 3 clinical trials. Of the extensive arsenal of pharmacotherapeutics in the MASLD/MASH pipeline, several have been rejected, whereas other, mainly monotherapy options, have shown only marginal benefits and are now being tested as part of combination therapies, yet others are still in development as monotherapies. Although the Food and Drug Administration (FDA) has recently approved resmetirom, additional therapeutic approaches in development will ideally target MASH and fibrosis while improving cardiometabolic risk factors. Due to the urgent need for the development of novel therapeutic strategies and the potential availability of safety and tolerability data, repurposing existing and approved drugs is an appealing option. Finally, it is essential to highlight that SLD and, by extension, MASLD should be recognized and approached as a systemic disease affecting multiple organs, with the vigorous implementation of interdisciplinary and coordinated action plans. SIGNIFICANCE STATEMENT: Steatotic liver disease (SLD), including metabolic dysfunction-associated steatotic liver disease and metabolic dysfunction-associated steatohepatitis, is the most prevalent chronic liver condition, affecting more than one-fourth of the global population. This review aims to provide the most recent information regarding SLD pathophysiology, diagnosis, and management according to the latest advancements in the guidelines and clinical trials. Collectively, it is hoped that the information provided furthers the understanding of the current state of SLD with direct clinical implications and stimulates research initiatives.
Collapse
Affiliation(s)
- Michail Kokkorakis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Emir Muzurović
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Špela Volčanšek
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Marlene Chakhtoura
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Michael A Hill
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Dimitri P Mikhailidis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| |
Collapse
|
121
|
Katsuyama H, Hakoshima M, Kaji E, Mino M, Kakazu E, Iida S, Adachi H, Kanto T, Yanai H. Effects of Once-Weekly Semaglutide on Cardiovascular Risk Factors and Metabolic Dysfunction-Associated Steatotic Liver Disease in Japanese Patients with Type 2 Diabetes: A Retrospective Longitudinal Study Based on Real-World Data. Biomedicines 2024; 12:1001. [PMID: 38790963 PMCID: PMC11118092 DOI: 10.3390/biomedicines12051001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Once-weekly semaglutide is a widely used glucagon-like peptide-1 receptor agonist (GLP-1RA) used for the treatment of type 2 diabetes (T2D). In clinical trials, semaglutide improved glycemic control and obesity, and reduced major cardiovascular events. However, the reports are limited on its real-world efficacy relating to various metabolic factors such as dyslipidemia or metabolic dysfunction-associated steatotic liver disease (MASLD) in Asian patients with T2D. In our retrospective longitudinal study, we selected patients with T2D who were given once-weekly semaglutide and compared metabolic parameters before and after the start of semaglutide. Seventy-five patients were eligible. HbA1c decreased significantly, by 0.7-0.9%, and body weight by 1.4-1.7 kg during the semaglutide treatment. Non-HDL cholesterol decreased significantly at 3, 6 and 12 months after the initiation of semaglutide; LDL cholesterol decreased at 3 and 6 months; and HDL cholesterol increased at 12 months. The effects on body weight, HbA1c and lipid profile were pronounced in patients who were given semaglutide as a first GLP-1RA (GLP-1R naïve), whereas improvements in HbA1c were also observed in patients who were given semaglutide after being switched from other GLP-1RAs. During a 12-month semaglutide treatment, the hepatic steatosis index (HSI) tended to decrease. Moreover, a significant decrease in the AST-to-platelet ratio index (APRI) was observed in GLP-1RA naïve patients. Our real-world study confirmed the beneficial effects of once-weekly semaglutide, namely, improved body weight, glycemic control and atherogenic lipid profile. The beneficial effects on MASLD were also suggested.
Collapse
Affiliation(s)
- Hisayuki Katsuyama
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Ichikawa 272-8516, Chiba, Japan; (M.H.); (E.K.); (S.I.); (H.A.); (H.Y.)
| | - Mariko Hakoshima
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Ichikawa 272-8516, Chiba, Japan; (M.H.); (E.K.); (S.I.); (H.A.); (H.Y.)
| | - Emika Kaji
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Ichikawa 272-8516, Chiba, Japan; (M.H.); (E.K.); (S.I.); (H.A.); (H.Y.)
| | - Masaaki Mino
- Department of Gastroenterology and Hepatology, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Ichikawa 272-8516, Chiba, Japan; (M.M.); (E.K.); (T.K.)
| | - Eiji Kakazu
- Department of Gastroenterology and Hepatology, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Ichikawa 272-8516, Chiba, Japan; (M.M.); (E.K.); (T.K.)
- Department of Liver Diseases, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Sakura Iida
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Ichikawa 272-8516, Chiba, Japan; (M.H.); (E.K.); (S.I.); (H.A.); (H.Y.)
| | - Hiroki Adachi
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Ichikawa 272-8516, Chiba, Japan; (M.H.); (E.K.); (S.I.); (H.A.); (H.Y.)
| | - Tatsuya Kanto
- Department of Gastroenterology and Hepatology, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Ichikawa 272-8516, Chiba, Japan; (M.M.); (E.K.); (T.K.)
- Department of Liver Diseases, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Hidekatsu Yanai
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Ichikawa 272-8516, Chiba, Japan; (M.H.); (E.K.); (S.I.); (H.A.); (H.Y.)
| |
Collapse
|
122
|
Ajmera V, Tesfai K, Sandoval E, Lopez S, Cervantes V, Madamba E, Bettencourt R, Manousou P, Richards L, Loomba R. Validation of AGA clinical care pathway and AASLD practice guidance for nonalcoholic fatty liver disease in a prospective cohort of patients with type 2 diabetes. Hepatology 2024; 79:1098-1106. [PMID: 37862551 PMCID: PMC11023802 DOI: 10.1097/hep.0000000000000635] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/28/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND AND AIMS Recently, the American Gastroenterological Association and the American Association for the Study of Liver Diseases developed clinical pathways to evaluate populations at high risk for NAFLD. We assessed the diagnostic performance of the new guidance in a well-phenotyped cohort of patients with Type 2 diabetes mellitus (T2DM). APPROACH AND RESULTS This prospective study enrolled patients age ≥50 years with T2DM. Participants underwent a standardized clinical research visit with MRI and ultrasound-based assessment of liver fat and stiffness and Enhanced Liver Fibrosis (ELF) testing. Of 417 participants (36% men) with T2DM with FIB-4 and MRE data, the prevalence of NAFLD was 64% and 12% had advanced fibrosis (MRE≥3.63 kPa). Applying the American Gastroenterological Association pathway of FIB-4 and vibration-controlled transient elastography, the false negative rate was 3.3% and 18% would qualify for specialty referral. Applying the FIB-4 + ELF American Association for the Study of Liver Diseases pathway, the false negative rate was 4.5%, but 50% would qualify for specialty referral. Applying higher ELF cut points improved the pathway, yielding a similar false negative rate of 4.9% but decreased specialty referral to 27%. CONCLUSION Validation of the American Gastroenterological Association clinical pathway in a prospectively recruited cohort with T2DM revealed a low false negative rate and avoided specialty referral in a large percentage of patients. The American Association for the Study of Liver Diseases pathway with FIB-4 + ELF resulted in a high rate of specialty referral, which improved with the utilization of higher ELF cut points and may serve as an alternative for primary care and endocrinology clinics without access to vibration-controlled transient elastography.
Collapse
Affiliation(s)
- Veeral Ajmera
- NAFLD Research Center, Division of Gastroenterology. University of California at San Diego, La Jolla, CA, USA
- Division of Gastroenterology and Hepatology, University of California at San Diego, La Jolla, CA, USA
| | - Kaleb Tesfai
- NAFLD Research Center, Division of Gastroenterology. University of California at San Diego, La Jolla, CA, USA
| | - Erick Sandoval
- NAFLD Research Center, Division of Gastroenterology. University of California at San Diego, La Jolla, CA, USA
| | - Scarlett Lopez
- NAFLD Research Center, Division of Gastroenterology. University of California at San Diego, La Jolla, CA, USA
| | - Vanessa Cervantes
- NAFLD Research Center, Division of Gastroenterology. University of California at San Diego, La Jolla, CA, USA
| | - Egbert Madamba
- NAFLD Research Center, Division of Gastroenterology. University of California at San Diego, La Jolla, CA, USA
| | - Ricki Bettencourt
- NAFLD Research Center, Division of Gastroenterology. University of California at San Diego, La Jolla, CA, USA
| | - Pinelopi Manousou
- Liver unit/Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Lisa Richards
- NAFLD Research Center, Division of Gastroenterology. University of California at San Diego, La Jolla, CA, USA
| | - Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology. University of California at San Diego, La Jolla, CA, USA
- Division of Gastroenterology and Hepatology, University of California at San Diego, La Jolla, CA, USA
- School of Public Health, University of California at San Diego, La Jolla, CA, USA
| |
Collapse
|
123
|
Dalbeni A, Lombardi R, Henrique M, Zoncapè M, Pennisi G, Petta S, Tateishi R, Keklikkiran C, Colecchia A, Sacerdoti D, Mantovani A, Ravaioli F. Diagnostic accuracy of AGILE 3+ score for advanced fibrosis in patients with NAFLD: A systematic review and meta-analysis. Hepatology 2024; 79:1107-1116. [PMID: 37976417 DOI: 10.1097/hep.0000000000000694] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND AND AIMS A simple noninvasive score, the Agile 3+ score, combining liver stiffness measurement, aspartate aminotransferase/alanine aminotransferase ratio, platelet count, diabetes status, sex, and age, has been proposed for the identification of advanced fibrosis in patients with suspected NAFLD. We performed a systematic review and meta-analysis of observational studies to evaluate the diagnostic accuracy of the Agile 3+ score in identifying patients with NAFLD and advanced fibrosis. Recently, an International consensus changed the nomenclature of NAFLD into metabolic-associated steatotic liver disease, so currently, the two terms are interchangeable. APPROACH AND RESULTS We systematically searched MEDLINE, Ovid Embase, Scopus, and Cochrane Library electronic databases for full-text published articles in any language from the inception to the April 24, 2023. We included original articles reporting data on the sensitivity and specificity of the Agile 3+ score, according to previously described rule-out (≤ 0.451) and rule-in (≥ 0.679) cutoffs. We included 6 observational studies (total of 6955 participants) with biopsy-proven NAFLD [mean age 53 (SE 4) years, mean body mass index 30.9 (SE 2.3) kg/m 2 , 54.0% men, prevalence of diabetes 59.6%]. The pooled prevalence of advanced fibrosis (≥ F3) was 42.1%. By the rule-out cutoff, the overall sensitivity and specificity were 88% (95% CI: 81-93%; I2 = 89.2%) and 65% (95% CI: 54-75%; I2 = 97.6%), respectively. By the rule-in cutoff, the overall sensitivity and specificity were 68% (95% CI: 57-78%; I2 =91.1%) and 87% (95% CI: 80%-92%; I2 =96.7%), respectively. Meta-regression analyses reported that the diagnostic accuracy was partly mediated by age ( p < 0.01), body mass index ( p < 0.01), and, although not statistically significant, sex ( p = 0.06). CONCLUSIONS Our systematic review and meta-analysis suggests that Agile 3+ accurately diagnoses NAFLD with advanced fibrosis and can identify patients eligible for biopsy and emerging pharmacotherapies.
Collapse
Affiliation(s)
- Andrea Dalbeni
- Section of General Medicine C, Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
- Liver Unit, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Rosa Lombardi
- Department of Pathophysiology and Transplantation, SC-Medicina Indirizzo Metabolico, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico of Milan, University of Milan, Italy
| | - Matteus Henrique
- Department of Internal Medicine, Federal University of Rio de Janeiro, Brazil
| | - Mirko Zoncapè
- Liver Unit, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Grazia Pennisi
- Sezione di Gastroenterologia, PROMISE, University of Palermo, Italy
| | - Salvatore Petta
- Sezione di Gastroenterologia, PROMISE, University of Palermo, Italy
| | - Ryosuke Tateishi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Caglayan Keklikkiran
- Department of Gastroenterology, School of Medicine, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Antonio Colecchia
- Department of Specialistic Medicines, Gastroenterology Unit, University of Modena & Reggio Emilia, University Hospital of Modena and Reggio Emilia, Modena, Italy
| | - David Sacerdoti
- Liver Unit, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Alessandro Mantovani
- Section of Endocrinology, Diabetes and Metabolism, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Federico Ravaioli
- Department of Specialistic Medicines, Gastroenterology Unit, University of Modena & Reggio Emilia, University Hospital of Modena and Reggio Emilia, Modena, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| |
Collapse
|
124
|
Jiang W, Yan Y, Yuan G, Du T. Referral to hepatologists or a second-line examination requirement is common in patients with type 2 diabetes mellitus. Nutr Metab Cardiovasc Dis 2024; 34:1314-1324. [PMID: 38220507 DOI: 10.1016/j.numecd.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/30/2023] [Accepted: 12/14/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND AND AIMS To estimate the number of patients who required a referral to hepatologists following the 2016 EASL-EASD-EASO guideline and a second-line vibration controlled transient elastography (VCTE) examination following the 2021 EASL guideline according to obesity, glycated hemoglobin (HbA1c), blood pressure (BP), and low-density lipoprotein cholesterol (LDL-C) control status in patients with type 2 diabetes mellitus (T2DM). METHODS AND RESULTS A total of 2515 T2DM patients who were hospitalized were cross-sectionally assessed. When we applied the 2016 EASL-EASD-EASO guideline, 26.8 %-46.4 % (depending on the scores used for diagnosing fibrosis) of T2DM patients needed a referral to hepatologists. When we applied the 2021 EASL guideline, a VCTE examination was required in 10.9 %-35 % (depending on the scores used for diagnosing fibrosis) of T2DM patients. The referral rates and the VCTE requirement were even higher in patients who were obese and/or had poor HbA1c, BP, and/or LDL-C control. CONCLUSIONS Application of the screening guidelines would lead to a referral to hepatologists or a second-line VCTE examination requirement for a substantial number of T2DM patients, regardless of obesity and metabolic goal attainment status.
Collapse
Affiliation(s)
- Wangyan Jiang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China; Department of Clinical Nutrition, Deyang People's Hospital, Deyang, Sichuan, China
| | - Yongli Yan
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China
| | - Gang Yuan
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China
| | - Tingting Du
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China.
| |
Collapse
|
125
|
Lin H, Lee HW, Yip TCF, Tsochatzis E, Petta S, Bugianesi E, Yoneda M, Zheng MH, Hagström H, Boursier J, Calleja JL, Goh GBB, Chan WK, Gallego-Durán R, Sanyal AJ, de Lédinghen V, Newsome PN, Fan JG, Castéra L, Lai M, Harrison SA, Fournier-Poizat C, Wong GLH, Pennisi G, Armandi A, Nakajima A, Liu WY, Shang Y, de Saint-Loup M, Llop E, Teh KKJ, Lara-Romero C, Asgharpour A, Mahgoub S, Chan MSW, Canivet CM, Romero-Gomez M, Kim SU, Wong VWS. Vibration-Controlled Transient Elastography Scores to Predict Liver-Related Events in Steatotic Liver Disease. JAMA 2024; 331:1287-1297. [PMID: 38512249 PMCID: PMC10958386 DOI: 10.1001/jama.2024.1447] [Citation(s) in RCA: 61] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/30/2024] [Indexed: 03/22/2024]
Abstract
IMPORTANCE Metabolic dysfunction-associated steatotic liver disease (MASLD) is currently the most common chronic liver disease worldwide. It is important to develop noninvasive tests to assess the disease severity and prognosis. OBJECTIVE To study the prognostic implications of baseline levels and dynamic changes of the vibration-controlled transient elastography (VCTE)-based scores developed for the diagnosis of advanced fibrosis (Agile 3+) and cirrhosis (Agile 4) in patients with MASLD. DESIGN, SETTING, AND PARTICIPANTS This cohort study included data from a natural history cohort of patients with MASLD who underwent VCTE examination at 16 tertiary referral centers in the US, Europe, and Asia from February 2004 to January 2023, of which the data were collected prospectively at 14 centers. Eligible patients were adults aged at least 18 years with hepatic steatosis diagnosed by histologic methods (steatosis in ≥5% of hepatocytes) or imaging studies (ultrasonography, computed tomography or magnetic resonance imaging, or controlled attenuation parameter ≥248 dB/m by VCTE). MAIN OUTCOMES AND MEASURES The primary outcome was liver-related events (LREs), defined as hepatocellular carcinoma or hepatic decompensation (ascites, variceal hemorrhage, hepatic encephalopathy, or hepatorenal syndrome), liver transplant, and liver-related deaths. The Agile scores were compared with histologic and 8 other noninvasive tests. RESULTS A total of 16 603 patients underwent VCTE examination at baseline (mean [SD] age, 52.5 [13.7] years; 9600 [57.8%] were male). At a median follow-up of 51.7 (IQR, 25.2-85.2) months, 316 patients (1.9%) developed LREs. Both Agile 3+ and Agile 4 scores classified fewer patients between the low and high cutoffs than most fibrosis scores and achieved the highest discriminatory power in predicting LREs (integrated area under the time-dependent receiver-operating characteristic curve, 0.89). A total of 10 920 patients (65.8%) had repeated VCTE examination at a median interval of 15 (IQR, 11.3-27.7) months and were included in the serial analysis. A total of 81.9% of patients (7208 of 8810) had stable Agile 3+ scores and 92.6% of patients (8163 of 8810) had stable Agile 4 scores (same risk categories at both assessments). The incidence of LREs was 0.6 per 1000 person-years in patients with persistently low Agile 3+ scores and 30.1 per 1000 person-years in patients with persistently high Agile 3+ scores. In patients with high Agile 3+ score at baseline, a decrease in the score by more than 20% was associated with substantial reduction in the risk of LREs. A similar trend was observed for the Agile 4 score, although it missed more LREs in the low-risk group. CONCLUSIONS AND RELEVANCE Findings of this study suggest that single or serial Agile scores are highly accurate in predicting LREs in patients with MASLD, making them suitable alternatives to liver biopsy in routine clinical practice and in phase 2b and 3 clinical trials for steatohepatitis.
Collapse
Affiliation(s)
- Huapeng Lin
- Medical Data Analytics Centre, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Hye Won Lee
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Terry Cheuk-Fung Yip
- Medical Data Analytics Centre, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Emmanuel Tsochatzis
- University College London Institute for Liver and Digestive Health, Royal Free Hospital and UCL, London, United Kingdom
| | - Salvatore Petta
- Sezione di Gastroenterologia, PROMISE, University of Palermo, Italy
| | - Elisabetta Bugianesi
- Department of Medical Sciences, Division of Gastroenterology and Hepatology, A.O.U. Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Masato Yoneda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hannes Hagström
- Department of Medicine, Huddinge, Karolinska Institutet, Sweden
- Division of Hepatology, Department of Upper GI Diseases, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Jérôme Boursier
- Hepato-Gastroenterology and Digestive Oncology Department, Angers University Hospital, Angers, France
- HIFIH Laboratory, SFR ICAT 4208, Angers University, Angers, France
| | - José Luis Calleja
- Department of Gastroenterology and Hepatology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - George Boon-Bee Goh
- Department of Gastroenterology and Hepatology, Singapore General Hospital, Singapore
| | - Wah-Kheong Chan
- Gastroenterology and Hepatology Unit, Department of Medicine, Faculty of Medicine, University of Malaya, Malaysia
| | - Rocio Gallego-Durán
- Digestive Diseases Unit and CIBERehd, Virgen Del Rocío University Hospital, Seville, Spain
| | - Arun J. Sanyal
- Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, VCU School of Medicine, Richmond, Virginia
| | - Victor de Lédinghen
- Centre d’Investigation de la Fibrose Hépatique, Haut-Lévêque Hospital, University Hospital of Bordeaux, Pessac, France
| | - Philip N. Newsome
- National Institute for Health Research, Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham, United Kingdom
| | - Jian-Gao Fan
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Laurent Castéra
- Université Paris Cité, UMR1149 (CRI), INSERM, Paris, France; Service d’Hépatologie, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris (AP-HP), Clichy, France
| | - Michelle Lai
- Division of Gastroenterology & Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Stephen A. Harrison
- Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- Pinnacle Clinical Research, San Antonio, Texas
| | | | - Grace Lai-Hung Wong
- Medical Data Analytics Centre, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Grazia Pennisi
- Sezione di Gastroenterologia, PROMISE, University of Palermo, Italy
| | - Angelo Armandi
- Department of Medical Sciences, Division of Gastroenterology and Hepatology, A.O.U. Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Wen-Yue Liu
- Department of Endocrinology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ying Shang
- Department of Medicine, Huddinge, Karolinska Institutet, Sweden
| | - Marc de Saint-Loup
- Hepato-Gastroenterology and Digestive Oncology Department, Angers University Hospital, Angers, France
| | - Elba Llop
- Department of Gastroenterology and Hepatology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Kevin Kim-Jun Teh
- Department of Gastroenterology and Hepatology, Singapore General Hospital, Singapore
| | - Carmen Lara-Romero
- Digestive Diseases Unit and CIBERehd, Virgen Del Rocío University Hospital, Seville, Spain
| | - Amon Asgharpour
- Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, VCU School of Medicine, Richmond, Virginia
| | - Sara Mahgoub
- National Institute for Health Research, Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham, United Kingdom
| | | | - Clemence M. Canivet
- Hepato-Gastroenterology and Digestive Oncology Department, Angers University Hospital, Angers, France
- HIFIH Laboratory, SFR ICAT 4208, Angers University, Angers, France
| | - Manuel Romero-Gomez
- Digestive Diseases Unit and CIBERehd, Virgen Del Rocío University Hospital, Seville, Spain
| | - Seung Up Kim
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Vincent Wai-Sun Wong
- Medical Data Analytics Centre, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
126
|
Drapkina OM, Kontsevaya AV, Kalinina AM, Avdeev SN, Agaltsov MV, Alekseeva LI, Almazova II, Andreenko EY, Antipushina DN, Balanova YA, Berns SA, Budnevsky AV, Gainitdinova VV, Garanin AA, Gorbunov VM, Gorshkov AY, Grigorenko EA, Jonova BY, Drozdova LY, Druk IV, Eliashevich SO, Eliseev MS, Zharylkasynova GZ, Zabrovskaya SA, Imaeva AE, Kamilova UK, Kaprin AD, Kobalava ZD, Korsunsky DV, Kulikova OV, Kurekhyan AS, Kutishenko NP, Lavrenova EA, Lopatina MV, Lukina YV, Lukyanov MM, Lyusina EO, Mamedov MN, Mardanov BU, Mareev YV, Martsevich SY, Mitkovskaya NP, Myasnikov RP, Nebieridze DV, Orlov SA, Pereverzeva KG, Popovkina OE, Potievskaya VI, Skripnikova IA, Smirnova MI, Sooronbaev TM, Toroptsova NV, Khailova ZV, Khoronenko VE, Chashchin MG, Chernik TA, Shalnova SA, Shapovalova MM, Shepel RN, Sheptulina AF, Shishkova VN, Yuldashova RU, Yavelov IS, Yakushin SS. Comorbidity of patients with noncommunicable diseases in general practice. Eurasian guidelines. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2024; 23:3696. [DOI: 10.15829/1728-8800-2024-3996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
Создание руководства поддержано Советом по терапевтическим наукам отделения клинической медицины Российской академии наук.
Collapse
|
127
|
Chen LD, Huang ZR, Yang H, Cheng MQ, Hu HT, Lu XZ, Li MD, Lu RF, He DN, Lin P, Ma QP, Huang H, Ruan SM, Ke WP, Liao B, Zhong BH, Ren J, Lu MD, Xie XY, Wang W. US-based Sequential Algorithm Integrating an AI Model for Advanced Liver Fibrosis Screening. Radiology 2024; 311:e231461. [PMID: 38652028 DOI: 10.1148/radiol.231461] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Background Noninvasive tests can be used to screen patients with chronic liver disease for advanced liver fibrosis; however, the use of single tests may not be adequate. Purpose To construct sequential clinical algorithms that include a US deep learning (DL) model and compare their ability to predict advanced liver fibrosis with that of other noninvasive tests. Materials and Methods This retrospective study included adult patients with a history of chronic liver disease or unexplained abnormal liver function test results who underwent B-mode US of the liver between January 2014 and September 2022 at three health care facilities. A US-based DL network (FIB-Net) was trained on US images to predict whether the shear-wave elastography (SWE) value was 8.7 kPa or higher, indicative of advanced fibrosis. In the internal and external test sets, a two-step algorithm (Two-step#1) using the Fibrosis-4 Index (FIB-4) followed by FIB-Net and a three-step algorithm (Three-step#1) using FIB-4 followed by FIB-Net and SWE were used to simulate screening scenarios where liver stiffness measurements were not or were available, respectively. Measures of diagnostic accuracy were calculated using liver biopsy as the reference standard and compared between FIB-4, SWE, FIB-Net, and European Association for the Study of the Liver guidelines (ie, FIB-4 followed by SWE), along with sequential algorithms. Results The training, validation, and test data sets included 3067 (median age, 42 years [IQR, 33-53 years]; 2083 male), 1599 (median age, 41 years [IQR, 33-51 years]; 1124 male), and 1228 (median age, 44 years [IQR, 33-55 years]; 741 male) patients, respectively. FIB-Net obtained a noninferior specificity with a margin of 5% (P < .001) compared with SWE (80% vs 82%). The Two-step#1 algorithm showed higher specificity and positive predictive value (PPV) than FIB-4 (specificity, 79% vs 57%; PPV, 44% vs 32%) while reducing unnecessary referrals by 42%. The Three-step#1 algorithm had higher specificity and PPV compared with European Association for the Study of the Liver guidelines (specificity, 94% vs 88%; PPV, 73% vs 64%) while reducing unnecessary referrals by 35%. Conclusion A sequential algorithm combining FIB-4 and a US DL model showed higher diagnostic accuracy and improved referral management for all-cause advanced liver fibrosis compared with FIB-4 or the DL model alone. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Ghosh in this issue.
Collapse
Affiliation(s)
- Li-Da Chen
- From the Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound (L.D.C., Z.R.H., M.Q.C., H.T.H., M.D. Li, R.F.L., H.H., S.M.R., W.P.K., M.D. Lu, X.Y.X., W.W.), Department of Traditional Chinese Medicine (X.Z.L.), Department of Pathology (B.L.), Department of Gastroenterology (B.H.Z.), and Department of Hepatobiliary Surgery (M.D. Lu), the First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan Rd 2, Guangzhou 510080, People's Republic of China; Department of Medical Ultrasound, the First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China (H.Y., P.L.); Department of Medical Ultrasonics, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, People's Republic of China (D.N.H.); and Department of Medical Ultrasonics, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China (Q.P.M., J.R.)
| | - Ze-Rong Huang
- From the Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound (L.D.C., Z.R.H., M.Q.C., H.T.H., M.D. Li, R.F.L., H.H., S.M.R., W.P.K., M.D. Lu, X.Y.X., W.W.), Department of Traditional Chinese Medicine (X.Z.L.), Department of Pathology (B.L.), Department of Gastroenterology (B.H.Z.), and Department of Hepatobiliary Surgery (M.D. Lu), the First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan Rd 2, Guangzhou 510080, People's Republic of China; Department of Medical Ultrasound, the First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China (H.Y., P.L.); Department of Medical Ultrasonics, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, People's Republic of China (D.N.H.); and Department of Medical Ultrasonics, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China (Q.P.M., J.R.)
| | - Hong Yang
- From the Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound (L.D.C., Z.R.H., M.Q.C., H.T.H., M.D. Li, R.F.L., H.H., S.M.R., W.P.K., M.D. Lu, X.Y.X., W.W.), Department of Traditional Chinese Medicine (X.Z.L.), Department of Pathology (B.L.), Department of Gastroenterology (B.H.Z.), and Department of Hepatobiliary Surgery (M.D. Lu), the First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan Rd 2, Guangzhou 510080, People's Republic of China; Department of Medical Ultrasound, the First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China (H.Y., P.L.); Department of Medical Ultrasonics, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, People's Republic of China (D.N.H.); and Department of Medical Ultrasonics, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China (Q.P.M., J.R.)
| | - Mei-Qing Cheng
- From the Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound (L.D.C., Z.R.H., M.Q.C., H.T.H., M.D. Li, R.F.L., H.H., S.M.R., W.P.K., M.D. Lu, X.Y.X., W.W.), Department of Traditional Chinese Medicine (X.Z.L.), Department of Pathology (B.L.), Department of Gastroenterology (B.H.Z.), and Department of Hepatobiliary Surgery (M.D. Lu), the First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan Rd 2, Guangzhou 510080, People's Republic of China; Department of Medical Ultrasound, the First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China (H.Y., P.L.); Department of Medical Ultrasonics, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, People's Republic of China (D.N.H.); and Department of Medical Ultrasonics, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China (Q.P.M., J.R.)
| | - Hang-Tong Hu
- From the Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound (L.D.C., Z.R.H., M.Q.C., H.T.H., M.D. Li, R.F.L., H.H., S.M.R., W.P.K., M.D. Lu, X.Y.X., W.W.), Department of Traditional Chinese Medicine (X.Z.L.), Department of Pathology (B.L.), Department of Gastroenterology (B.H.Z.), and Department of Hepatobiliary Surgery (M.D. Lu), the First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan Rd 2, Guangzhou 510080, People's Republic of China; Department of Medical Ultrasound, the First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China (H.Y., P.L.); Department of Medical Ultrasonics, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, People's Republic of China (D.N.H.); and Department of Medical Ultrasonics, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China (Q.P.M., J.R.)
| | - Xiao-Zhou Lu
- From the Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound (L.D.C., Z.R.H., M.Q.C., H.T.H., M.D. Li, R.F.L., H.H., S.M.R., W.P.K., M.D. Lu, X.Y.X., W.W.), Department of Traditional Chinese Medicine (X.Z.L.), Department of Pathology (B.L.), Department of Gastroenterology (B.H.Z.), and Department of Hepatobiliary Surgery (M.D. Lu), the First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan Rd 2, Guangzhou 510080, People's Republic of China; Department of Medical Ultrasound, the First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China (H.Y., P.L.); Department of Medical Ultrasonics, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, People's Republic of China (D.N.H.); and Department of Medical Ultrasonics, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China (Q.P.M., J.R.)
| | - Ming-De Li
- From the Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound (L.D.C., Z.R.H., M.Q.C., H.T.H., M.D. Li, R.F.L., H.H., S.M.R., W.P.K., M.D. Lu, X.Y.X., W.W.), Department of Traditional Chinese Medicine (X.Z.L.), Department of Pathology (B.L.), Department of Gastroenterology (B.H.Z.), and Department of Hepatobiliary Surgery (M.D. Lu), the First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan Rd 2, Guangzhou 510080, People's Republic of China; Department of Medical Ultrasound, the First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China (H.Y., P.L.); Department of Medical Ultrasonics, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, People's Republic of China (D.N.H.); and Department of Medical Ultrasonics, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China (Q.P.M., J.R.)
| | - Rui-Fang Lu
- From the Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound (L.D.C., Z.R.H., M.Q.C., H.T.H., M.D. Li, R.F.L., H.H., S.M.R., W.P.K., M.D. Lu, X.Y.X., W.W.), Department of Traditional Chinese Medicine (X.Z.L.), Department of Pathology (B.L.), Department of Gastroenterology (B.H.Z.), and Department of Hepatobiliary Surgery (M.D. Lu), the First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan Rd 2, Guangzhou 510080, People's Republic of China; Department of Medical Ultrasound, the First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China (H.Y., P.L.); Department of Medical Ultrasonics, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, People's Republic of China (D.N.H.); and Department of Medical Ultrasonics, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China (Q.P.M., J.R.)
| | - Dan-Ni He
- From the Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound (L.D.C., Z.R.H., M.Q.C., H.T.H., M.D. Li, R.F.L., H.H., S.M.R., W.P.K., M.D. Lu, X.Y.X., W.W.), Department of Traditional Chinese Medicine (X.Z.L.), Department of Pathology (B.L.), Department of Gastroenterology (B.H.Z.), and Department of Hepatobiliary Surgery (M.D. Lu), the First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan Rd 2, Guangzhou 510080, People's Republic of China; Department of Medical Ultrasound, the First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China (H.Y., P.L.); Department of Medical Ultrasonics, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, People's Republic of China (D.N.H.); and Department of Medical Ultrasonics, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China (Q.P.M., J.R.)
| | - Peng Lin
- From the Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound (L.D.C., Z.R.H., M.Q.C., H.T.H., M.D. Li, R.F.L., H.H., S.M.R., W.P.K., M.D. Lu, X.Y.X., W.W.), Department of Traditional Chinese Medicine (X.Z.L.), Department of Pathology (B.L.), Department of Gastroenterology (B.H.Z.), and Department of Hepatobiliary Surgery (M.D. Lu), the First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan Rd 2, Guangzhou 510080, People's Republic of China; Department of Medical Ultrasound, the First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China (H.Y., P.L.); Department of Medical Ultrasonics, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, People's Republic of China (D.N.H.); and Department of Medical Ultrasonics, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China (Q.P.M., J.R.)
| | - Qiu-Ping Ma
- From the Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound (L.D.C., Z.R.H., M.Q.C., H.T.H., M.D. Li, R.F.L., H.H., S.M.R., W.P.K., M.D. Lu, X.Y.X., W.W.), Department of Traditional Chinese Medicine (X.Z.L.), Department of Pathology (B.L.), Department of Gastroenterology (B.H.Z.), and Department of Hepatobiliary Surgery (M.D. Lu), the First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan Rd 2, Guangzhou 510080, People's Republic of China; Department of Medical Ultrasound, the First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China (H.Y., P.L.); Department of Medical Ultrasonics, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, People's Republic of China (D.N.H.); and Department of Medical Ultrasonics, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China (Q.P.M., J.R.)
| | - Hui Huang
- From the Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound (L.D.C., Z.R.H., M.Q.C., H.T.H., M.D. Li, R.F.L., H.H., S.M.R., W.P.K., M.D. Lu, X.Y.X., W.W.), Department of Traditional Chinese Medicine (X.Z.L.), Department of Pathology (B.L.), Department of Gastroenterology (B.H.Z.), and Department of Hepatobiliary Surgery (M.D. Lu), the First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan Rd 2, Guangzhou 510080, People's Republic of China; Department of Medical Ultrasound, the First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China (H.Y., P.L.); Department of Medical Ultrasonics, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, People's Republic of China (D.N.H.); and Department of Medical Ultrasonics, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China (Q.P.M., J.R.)
| | - Si-Min Ruan
- From the Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound (L.D.C., Z.R.H., M.Q.C., H.T.H., M.D. Li, R.F.L., H.H., S.M.R., W.P.K., M.D. Lu, X.Y.X., W.W.), Department of Traditional Chinese Medicine (X.Z.L.), Department of Pathology (B.L.), Department of Gastroenterology (B.H.Z.), and Department of Hepatobiliary Surgery (M.D. Lu), the First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan Rd 2, Guangzhou 510080, People's Republic of China; Department of Medical Ultrasound, the First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China (H.Y., P.L.); Department of Medical Ultrasonics, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, People's Republic of China (D.N.H.); and Department of Medical Ultrasonics, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China (Q.P.M., J.R.)
| | - Wei-Ping Ke
- From the Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound (L.D.C., Z.R.H., M.Q.C., H.T.H., M.D. Li, R.F.L., H.H., S.M.R., W.P.K., M.D. Lu, X.Y.X., W.W.), Department of Traditional Chinese Medicine (X.Z.L.), Department of Pathology (B.L.), Department of Gastroenterology (B.H.Z.), and Department of Hepatobiliary Surgery (M.D. Lu), the First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan Rd 2, Guangzhou 510080, People's Republic of China; Department of Medical Ultrasound, the First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China (H.Y., P.L.); Department of Medical Ultrasonics, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, People's Republic of China (D.N.H.); and Department of Medical Ultrasonics, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China (Q.P.M., J.R.)
| | - Bing Liao
- From the Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound (L.D.C., Z.R.H., M.Q.C., H.T.H., M.D. Li, R.F.L., H.H., S.M.R., W.P.K., M.D. Lu, X.Y.X., W.W.), Department of Traditional Chinese Medicine (X.Z.L.), Department of Pathology (B.L.), Department of Gastroenterology (B.H.Z.), and Department of Hepatobiliary Surgery (M.D. Lu), the First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan Rd 2, Guangzhou 510080, People's Republic of China; Department of Medical Ultrasound, the First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China (H.Y., P.L.); Department of Medical Ultrasonics, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, People's Republic of China (D.N.H.); and Department of Medical Ultrasonics, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China (Q.P.M., J.R.)
| | - Bi-Hui Zhong
- From the Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound (L.D.C., Z.R.H., M.Q.C., H.T.H., M.D. Li, R.F.L., H.H., S.M.R., W.P.K., M.D. Lu, X.Y.X., W.W.), Department of Traditional Chinese Medicine (X.Z.L.), Department of Pathology (B.L.), Department of Gastroenterology (B.H.Z.), and Department of Hepatobiliary Surgery (M.D. Lu), the First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan Rd 2, Guangzhou 510080, People's Republic of China; Department of Medical Ultrasound, the First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China (H.Y., P.L.); Department of Medical Ultrasonics, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, People's Republic of China (D.N.H.); and Department of Medical Ultrasonics, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China (Q.P.M., J.R.)
| | - Jie Ren
- From the Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound (L.D.C., Z.R.H., M.Q.C., H.T.H., M.D. Li, R.F.L., H.H., S.M.R., W.P.K., M.D. Lu, X.Y.X., W.W.), Department of Traditional Chinese Medicine (X.Z.L.), Department of Pathology (B.L.), Department of Gastroenterology (B.H.Z.), and Department of Hepatobiliary Surgery (M.D. Lu), the First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan Rd 2, Guangzhou 510080, People's Republic of China; Department of Medical Ultrasound, the First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China (H.Y., P.L.); Department of Medical Ultrasonics, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, People's Republic of China (D.N.H.); and Department of Medical Ultrasonics, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China (Q.P.M., J.R.)
| | - Ming-De Lu
- From the Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound (L.D.C., Z.R.H., M.Q.C., H.T.H., M.D. Li, R.F.L., H.H., S.M.R., W.P.K., M.D. Lu, X.Y.X., W.W.), Department of Traditional Chinese Medicine (X.Z.L.), Department of Pathology (B.L.), Department of Gastroenterology (B.H.Z.), and Department of Hepatobiliary Surgery (M.D. Lu), the First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan Rd 2, Guangzhou 510080, People's Republic of China; Department of Medical Ultrasound, the First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China (H.Y., P.L.); Department of Medical Ultrasonics, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, People's Republic of China (D.N.H.); and Department of Medical Ultrasonics, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China (Q.P.M., J.R.)
| | - Xiao-Yan Xie
- From the Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound (L.D.C., Z.R.H., M.Q.C., H.T.H., M.D. Li, R.F.L., H.H., S.M.R., W.P.K., M.D. Lu, X.Y.X., W.W.), Department of Traditional Chinese Medicine (X.Z.L.), Department of Pathology (B.L.), Department of Gastroenterology (B.H.Z.), and Department of Hepatobiliary Surgery (M.D. Lu), the First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan Rd 2, Guangzhou 510080, People's Republic of China; Department of Medical Ultrasound, the First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China (H.Y., P.L.); Department of Medical Ultrasonics, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, People's Republic of China (D.N.H.); and Department of Medical Ultrasonics, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China (Q.P.M., J.R.)
| | - Wei Wang
- From the Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound (L.D.C., Z.R.H., M.Q.C., H.T.H., M.D. Li, R.F.L., H.H., S.M.R., W.P.K., M.D. Lu, X.Y.X., W.W.), Department of Traditional Chinese Medicine (X.Z.L.), Department of Pathology (B.L.), Department of Gastroenterology (B.H.Z.), and Department of Hepatobiliary Surgery (M.D. Lu), the First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan Rd 2, Guangzhou 510080, People's Republic of China; Department of Medical Ultrasound, the First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China (H.Y., P.L.); Department of Medical Ultrasonics, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, People's Republic of China (D.N.H.); and Department of Medical Ultrasonics, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China (Q.P.M., J.R.)
| |
Collapse
|
128
|
Hosseini MS, Jahanshahlou F, Akbarzadeh MA, Zarei M, Vaez-Gharamaleki Y. Formulating research questions for evidence-based studies. JOURNAL OF MEDICINE, SURGERY, AND PUBLIC HEALTH 2024; 2:100046. [DOI: 10.1016/j.glmedi.2023.100046] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
|
129
|
de Almeida Cardoso MM, Thabane L, Romeiro FG, Silva GF, Machado-Rugolo J, Fonseca AF, Dos Santos WM, de Almeida JTC, Thavorn K, Tarride JE. Economic evaluation of non-invasive liver tests for the diagnosis of liver fibrosis in chronic liver diseases: a systematic review protocol. JBI Evid Synth 2024; 22:681-688. [PMID: 37789815 DOI: 10.11124/jbies-23-00097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
OBJECTIVE The objective of this review is to determine the costs and benefits of non-invasive liver tests vs liver biopsy in patients with chronic liver diseases. INTRODUCTION Hepatic diseases can lead to liver fibrosis, cirrhosis, and hepatocellular carcinoma. In the past, liver biopsy was the only option for diagnosing fibrosis degree. Liver biopsy is an invasive procedure that depends on the sample size to be able to deliver an accurate diagnosis. In recent years, non-invasive liver tests have been increasingly used to estimate liver fibrosis degree; however, there is a lack of economic assessments of technology implementation outcomes. INCLUSION CRITERIA This review will include partial (cost studies) and complete economic evaluation studies on hepatitis B, hepatitis C, alcoholic liver disease, and non-alcoholic fatty liver disease that compare non-invasive liver tests with liver biopsies. Studies published in English, French, Spanish, German, Italian, or Portuguese will be included. No date limits will be applied to the search. METHODS This review will identify published and unpublished studies. Published studies will be identified using MEDLINE (PubMed), Cochrane Library (CENTRAL), Embase, Web of Science, Scopus, and LILACS. Sources of unpublished studies and gray literature will include sources from health technology assessment agencies, clinical practice guidelines, regulatory approvals, advisories and warnings, and clinical trial registries, as well as Google Scholar. Two independent reviewers will screen and assess studies, and extract and critically appraise the data. Data extracted from the included studies will be analyzed and summarized to address the review objective using narrative text, and the JBI dominance ranking matrix. REVIEW REGISTRATION PROSPERO CRD42023404278.
Collapse
Affiliation(s)
- Marilia Mastrocolla de Almeida Cardoso
- Health Technology Assessment Center, Hospital das Clínicas of Medical School (FMB), HCFMB, Botucatu, SP, Brazil
- The Brazilian Centre for Evidence-based Healthcare: A JBI Centre of Excellence, University of São Paulo, São Paulo, Brazil
| | - Lehana Thabane
- McMaster University, Department of Health Research Methods, Evidence, and Impact, Hamilton, ON, Canada
- St Joseph's Healthcare Hamilton, Biostatistics Unit, Hamilton, ON, Canada
- University of Johannesburg, Faculty of Health Sciences, Johannesburg, South Africa
| | - Fernando Gomes Romeiro
- São Paulo State University, Medical School (FMB), Department of Internal Medicine, Botucatu, SP, Brazil
| | - Giovanni Faria Silva
- São Paulo State University, Medical School (FMB), Department of Internal Medicine, Botucatu, SP, Brazil
| | - Juliana Machado-Rugolo
- Health Technology Assessment Center, Hospital das Clínicas of Medical School (FMB), HCFMB, Botucatu, SP, Brazil
| | - Alan Francisco Fonseca
- Health Technology Assessment Center, Hospital das Clínicas of Medical School (FMB), HCFMB, Botucatu, SP, Brazil
| | - Wendel Mombaque Dos Santos
- The Brazilian Centre for Evidence-based Healthcare: A JBI Centre of Excellence, University of São Paulo, São Paulo, Brazil
| | | | - Kednapa Thavorn
- Ottawa Hospital Research Institute, Ottawa, ON, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
| | - Jean-Eric Tarride
- McMaster University, Department of Health Research Methods, Evidence, and Impact, Hamilton, ON, Canada
- Centre for Health Economics and Policy Analysis (CHEPA), McMaster University, Hamilton, ON, Cananda
- Programs for Assessment of Technology in Health (PATH), The Research Institute of St Joe's Hamilton, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| |
Collapse
|
130
|
Huang CF, Liang PC, Wang CW, Jang TY, Hsu PY, Tsai PC, Wei YJ, Yeh ML, Hsieh MY, Lin YH, Huang CK, Dai CY, Huang JF, Chuang WL, Yu ML. Performance of noninvasive seromarkers in predicting liver fibrosis among MAFLD patients with or without viral hepatitis. Kaohsiung J Med Sci 2024; 40:374-383. [PMID: 38234005 DOI: 10.1002/kjm2.12804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/11/2023] [Accepted: 12/25/2023] [Indexed: 01/19/2024] Open
Abstract
The accuracy of noninvasive seromarkers in predicting liver fibrosis in metabolic dysfunction-associated fatty liver disease (MAFLD) patients with or without viral hepatitis is elusive. The AST to platelet ratio index (APRI), fibrosis-4 index (FIB-4), and NAFLD fibrosis score (NFS) were assessed in 871 MAFLD patients who received elastography in a viral hepatitis-endemic area. The area under the receiver operating characteristic (AUROC) curve increased substantially with increasing fibrotic stage across the three biomarkers. APRI (AUROC range 0.73-0.80) and FIB-4 (AUROC range 0.66-0.82) performed better than NFS (AUROC range 0.63-0.75). When patients were divided into viral and non-viral MAFLD groups, a better AUROC of APRI (range 0.76-0.80) and FIB-4 (range 0.68-0.78) than NFS (range 0.62-70) existed only in viral MALFD but not in non-viral MAFLD. Regarding the NFS, the AUROC was higher in non-viral MAFLD (range 0.69-0.86) and outperformed viral MAFLD at all fibrotic stages. The accuracy in predicting liver fibrosis increased with the advancement of liver disease for the three biomarkers. NFS exerted better diagnostic accuracy in non-viral than in viral MAFLD patients across different fibrotic stages. The best accuracy was 91.1% using the cutoff value of -9.98 for the NFS in predicting liver cirrhosis in non-viral MAFLD patients. The APRI and FIB-4 performed better than the NFS in predicting liver fibrosis in MAFLD as a whole. The suboptimal performance and accuracy of the NFS existed only in viral MAFLD patients. Caution should be taken when assessing the NFS in MAFLD patients with viral hepatitis.
Collapse
Affiliation(s)
- Chung-Feng Huang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Ph.D. Program in Translational Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Academia Sinica, Taipei City, Taiwan
- Faculty of Internal Medicine and Hepatitis Research Center, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Po-Cheng Liang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Wen Wang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Faculty of Internal Medicine and Hepatitis Research Center, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tyng-Yuan Jang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Faculty of Internal Medicine and Hepatitis Research Center, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Po-Yao Hsu
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Pei-Chien Tsai
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Ju Wei
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Lun Yeh
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Faculty of Internal Medicine and Hepatitis Research Center, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Yen Hsieh
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Hung Lin
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chao-Kuan Huang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Yen Dai
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Faculty of Internal Medicine and Hepatitis Research Center, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jee-Fu Huang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Faculty of Internal Medicine and Hepatitis Research Center, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wan-Long Chuang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Faculty of Internal Medicine and Hepatitis Research Center, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Lung Yu
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Faculty of Internal Medicine and Hepatitis Research Center, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Medicine and Doctoral Program of Clinical and Experimental Medicine, College of Medicine and Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-sen University, Kaohsiung, Taiwan
- Division of Hepato-Gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| |
Collapse
|
131
|
Gopalakrishna H, Nair GB, Roghani RS, Ravendhran N, Rotman Y. Optimizing surveillance of low-risk metabolic dysfunction associated steatotic liver disease using transient elastography. Eur J Gastroenterol Hepatol 2024; 36:476-481. [PMID: 38407839 PMCID: PMC10923068 DOI: 10.1097/meg.0000000000002713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
BACKGROUND Most people with metabolic dysfunction-associated steatotic liver disease (MASLD) lack significant fibrosis and are considered low-risk. Surveillance strategy for low-risk MASLD remains uncertain. AIM Identify which low-risk subjects can avoid follow-up vibration-controlled transient elastography (VCTE) within 1 year. METHODS Retrospective analysis of two independent low-risk MASLD cohorts (baseline liver stiffness [LS] < 8kPa) with routine 6-12 months follow-up VCTE. The primary outcome was LS ≥ 8kPa on follow-up, requiring referral and further work-up according to current guidance. Predictors of the primary outcome on univariate and multivariate logistic regression were incorporated into a decision algorithm, and validated in an independent cohort. RESULTS Of 206 subjects in the derivation cohort, 96 were low-risk. After a median of 10 months, 24 (25%) low-risk subjects had LS ≥ 8kPa. Baseline LS ( P < 0.01) and ALT change from baseline ( P = 0.02) (multivariate AUROC = 0.84 [0.74-0.94]) predicted the primary outcome, and were incorporated to a two-step decision algorithm. Low-risk subjects with baseline LS < 5.5 kPa can avoid repeating VCTE in a year, while those with LS > 6.8 kPa require one. For intermediate baseline LS (5.5-6.8kPa), repeat VCTE is only indicated when ALT increase > 6 U/L. The algorithm had 92% negative predictive value, 78% specificity, and 78% accuracy in the derivation cohort. In the validation cohort (n = 64), it had 91% NPV, 72% specificity, and 71% accuracy. CONCLUSION In low-risk MASLD, a simple algorithm combining baseline LS and ALT change can be used to safely avoid a repeat VCTE in a year.
Collapse
Affiliation(s)
- Harish Gopalakrishna
- Liver & Energy Metabolism Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Gayatri B Nair
- Department of Pulmonary and Sleep Medicine, Medstar Georgetown University Hospital, Washington DC, USA
| | - Roham Salman Roghani
- Liver & Energy Metabolism Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
- Department of Internal Medicine, Eisenhower Health, Rancho Mirage, CA, USA
| | - Natarajan Ravendhran
- Digestive Disease Associates, Baltimore, MD, USA
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Yaron Rotman
- Liver & Energy Metabolism Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
132
|
Lemmer P, Rohr LC, Henning M, Bulut K, Manka P, Canbay A, Sowa JP. Liver Stiffness Determined by Transient Elastography Is a Simple and Highly Accurate Predictor for Presence of Liver Cirrhosis in Clinical Routine. Dig Dis 2024; 42:265-275. [PMID: 38527437 DOI: 10.1159/000538426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 03/12/2024] [Indexed: 03/27/2024]
Abstract
INTRODUCTION Early detection of patients with advanced chronic liver disease is critical for the prevention of complications and inclusion in surveillance programs for hepatocellular carcinoma. In daily clinical care, it remains challenging to differentiate early cirrhosis from lower fibrosis grades without performing a liver biopsy. The aim of the present study was to assess the performance of different non-invasive detection tools to differentiate cirrhosis from lower fibrosis grades. METHODS Data of 116 patients (51 male, 65 female) with chronic liver disease of various origins undergoing liver biopsy was analyzed. Routine laboratory values, liver stiffness measurement (LSM) by transient elastography, and histological liver assessment were collected. RESULTS Robust and significant correlations with the histological fibrosis stage were identified for LSM (r = 0.65), the FAST score (0.64), the FIB-4 (0.48), serum aspartate aminotransferase (AST) concentration (0.41), NFS (0.33), international normalized ratio (INR; 0.30), methacetin breath test results (-0.40), and serum albumin concentration (-0.29) by spearman rank correlation. Receiver operating characteristic curves were built for these parameters to separate patients with cirrhosis from those with any other fibrosis stage. The highest AUC was achieved by LSM (0.9130), followed by the FAST score (0.8842), the FIB-4 (0.8644), the NFS (0.8227), INR (0.8142), serum albumin (0.7710), and serum AST (0.7620). The most promising clinical applicability would be an LSM value of 12.2 kPa, achieving 95.7% sensitivity and 75.3% specificity. CONCLUSION LSM and FAST score seem to be robust non-invasive measurements for liver fibrosis. LSM and FAST scores may have the potential to reliably detect patients with liver cirrhosis in clinical routine settings.
Collapse
Affiliation(s)
- Peter Lemmer
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Department of Medicine, Universitätsklinikum Knappschaftskrankenhaus Bochum, Ruhr University, Bochum, Germany
| | - Lydia Christina Rohr
- Department of Medicine, Universitätsklinikum Knappschaftskrankenhaus Bochum, Ruhr University, Bochum, Germany
| | - Marie Henning
- Department of Medicine, Universitätsklinikum Knappschaftskrankenhaus Bochum, Ruhr University, Bochum, Germany
| | - Kerem Bulut
- Department of Medicine, Universitätsklinikum Knappschaftskrankenhaus Bochum, Ruhr University, Bochum, Germany
| | - Paul Manka
- Department of Medicine, Universitätsklinikum Knappschaftskrankenhaus Bochum, Ruhr University, Bochum, Germany
| | - Ali Canbay
- Department of Medicine, Universitätsklinikum Knappschaftskrankenhaus Bochum, Ruhr University, Bochum, Germany
| | - Jan-Peter Sowa
- Department of Medicine, Universitätsklinikum Knappschaftskrankenhaus Bochum, Ruhr University, Bochum, Germany,
| |
Collapse
|
133
|
Al Hashmi K, Giglio RV, Pantea Stoian A, Patti AM, Al Waili K, Al Rasadi K, Ciaccio M, Rizzo M. Metabolic dysfunction-associated fatty liver disease: current therapeutic strategies. Front Nutr 2024; 11:1355732. [PMID: 38567250 PMCID: PMC10985255 DOI: 10.3389/fnut.2024.1355732] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
The definition of "Metabolic Associated Fatty Liver Disease - MAFLD" has replaced the previous definition of Nonalcoholic Fatty Liver Disease (NAFLD), because cardiometabolic criteria have been added for the prevention of cardiological risk in these patients. This definition leads to an in-depth study of the bidirectional relationships between hepatic steatosis, Type 2 Diabetes Mellitus (T2DM), Cardiovascular Disease (CVD) and/or their complications. Lifestyle modification, which includes correct nutrition combined with regular physical activity, represents the therapeutic cornerstone of MAFLD. When therapy is required, there is not clear accord on how to proceed in an optimal way with nutraceutical or pharmacological therapy. Numerous studies have attempted to identify nutraceuticals with a significant benefit on metabolic alterations and which contribute to the improvement of hepatic steatosis. Several evidences are supporting the use of silymarin, berberine, curcumin, Nigella sativa, Ascophyllum nodosum, and Fucus vesiculosus, vitamin E, coenzyme Q10 and Omega-3. However, more evidence regarding the long-term efficacy and safety of these compounds are required. There is numerous evidence that highlights the use of therapies such as incretins or the use of Proprotein Convertase Subtilisin/Kexin type 9 (PCSK9) inhibitors or other similar therapies which, by assisting existing therapies for pathologies such as diabetes, hypertension, insulin resistance, have given a breakthrough in prevention and the reduction of cardiometabolic risk. This review gave an overview of the current therapeutic strategies that are expected to aid in the treatment and prevention of MAFLD.
Collapse
Affiliation(s)
- Khamis Al Hashmi
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Rosaria Vincenza Giglio
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
- Department of Laboratory Medicine, University Hospital, Palermo, Italy
| | - Anca Pantea Stoian
- Department of Diabetes, Nutrition and Metabolic Diseases, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Angelo Maria Patti
- Internal Medicine Unit, “Vittorio Emanuele II” Hospital, Castelvetrano, Italy
| | - Khalid Al Waili
- Department of Biochemistry, Sultan Qaboos University Hospital, Muscat, Oman
| | - Khalid Al Rasadi
- Department of Biochemistry, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
- Medical Research Center, Sultan Qaboos University, Muscat, Oman
| | - Marcello Ciaccio
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
- Department of Laboratory Medicine, University Hospital, Palermo, Italy
| | - Manfredi Rizzo
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| |
Collapse
|
134
|
Boutari C, Athyros VG. The Association Between Liver Histology and Cardiovascular Risk: Time to Introduce Steatotic Liver Disease Screening in High-Risk Patient Groups? Angiology 2024; 75:205-207. [PMID: 37691291 DOI: 10.1177/00033197231201706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Affiliation(s)
- Chrysoula Boutari
- Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippokration General Hospital, Thessaloniki, Greece
| | - Vasilios G Athyros
- Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippokration General Hospital, Thessaloniki, Greece
| |
Collapse
|
135
|
Fan R, Yu N, Li G, Arshad T, Liu WY, Wong GLH, Liang X, Chen Y, Jin XZ, Leung HHW, Chen J, Wang XD, Yip TCF, Sanyal AJ, Sun J, Wong VWS, Zheng MH, Hou J. Machine-learning model comprising five clinical indices and liver stiffness measurement can accurately identify MASLD-related liver fibrosis. Liver Int 2024; 44:749-759. [PMID: 38131420 DOI: 10.1111/liv.15818] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/13/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND & AIMS aMAP score, as a hepatocellular carcinoma risk score, is proven to be associated with the degree of chronic hepatitis B-related liver fibrosis. We aimed to evaluate the ability of aMAP score for metabolic dysfunction-associated steatotic liver disease (MASLD; formerly NAFLD)-related fibrosis diagnosis and establish a machine-learning (ML) model to improve the diagnostic performance. METHODS A total of 946 biopsy-proved MASLD patients from China and the United States were included in the analysis. The aMAP score, demographic/clinical indices and liver stiffness measurement (LSM) were included in seven ML algorithms to build fibrosis diagnostic models in the training set (N = 703). The performance of ML models was evaluated in the external validation set (N = 125). RESULTS The AUROCs of aMAP versus fibrosis-4 index (FIB-4) and aspartate aminotransferase-platelet ratio (APRI) in cirrhosis and advanced fibrosis were (0.850 vs. 0.857 [P = 0.734], 0.735 [P = 0.001]) and (0.759 vs. 0.795 [P = 0.027], 0.709 [P = 0.049]). When using dual cut-off values, aMAP had a smaller uncertainty area and higher accuracy (26.9%, 86.6%) than FIB-4 (37.3%, 85.0%) and APRI (59.0%, 77.3%) in cirrhosis diagnosis. The seven ML models performed satisfactorily in most cases. In the validation set, the ML model comprising LSM and 5 indices (including age, sex, platelets, albumin and total bilirubin used in aMAP calculator), built by logistic regression algorithm (called LSM-plus model), exhibited excellent performance. In cirrhosis and advanced fibrosis detection, the LSM-plus model had higher accuracy (96.8%, 91.2%) than LSM alone (86.4%, 67.2%) and Agile score (76.0%, 83.2%), respectively. Additionally, the LSM-plus model also displayed high specificity (cirrhosis: 98.3%; advanced fibrosis: 92.6%) with satisfactory AUROC (0.932, 0.875, respectively) and sensitivity (88.9%, 82.4%, respectively). CONCLUSIONS The aMAP score is capable of diagnosing MASLD-related fibrosis. The LSM-plus model could accurately identify MASLD-related cirrhosis and advanced fibrosis.
Collapse
Affiliation(s)
- Rong Fan
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangdong Provincial Clinical Research Center for Viral Hepatitis, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ning Yu
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangdong Provincial Clinical Research Center for Viral Hepatitis, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guanlin Li
- Medical Data Analytics Center, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Tamoore Arshad
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Wen-Yue Liu
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Grace Lai-Hung Wong
- Medical Data Analytics Center, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Xieer Liang
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangdong Provincial Clinical Research Center for Viral Hepatitis, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yongpeng Chen
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangdong Provincial Clinical Research Center for Viral Hepatitis, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiao-Zhi Jin
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Howard Ho-Wai Leung
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Jinjun Chen
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangdong Provincial Clinical Research Center for Viral Hepatitis, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiao-Dong Wang
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| | - Terry Cheuk-Fung Yip
- Medical Data Analytics Center, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Arun J Sanyal
- Division of Gastroenterology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jian Sun
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangdong Provincial Clinical Research Center for Viral Hepatitis, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Vincent Wai-Sun Wong
- Medical Data Analytics Center, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| | - Jinlin Hou
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangdong Provincial Clinical Research Center for Viral Hepatitis, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
136
|
López Tórrez SM, Ayala CO, Ruggiro PB, Costa CAD, Wagner MB, Padoin AV, Mattiello R. Accuracy of prognostic serological biomarkers in predicting liver fibrosis severity in people with metabolic dysfunction-associated steatotic liver disease: a meta-analysis of over 40,000 participants. Front Nutr 2024; 11:1284509. [PMID: 38419854 PMCID: PMC10899345 DOI: 10.3389/fnut.2024.1284509] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/25/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction A prognostic model to predict liver severity in people with metabolic dysfunction-associated steatotic liver disease (MASLD) is very important, but the accuracy of the most commonly used tools is not yet well established. Objective The meta-analysis aimed to assess the accuracy of different prognostic serological biomarkers in predicting liver fibrosis severity in people with MASLD. Methods Adults ≥18 years of age with MASLD were included, with the following: liver biopsy and aspartate aminotransferase-to-platelet ratio (APRI), fibrosis index-4 (FIB-4), non-alcoholic fatty liver disease fibrosis score (NFS), body mass index, aspartate aminotransferase/alanine aminotransferase ratio, diabetes score (BARD score), FibroMeter, FibroTest, enhanced liver fibrosis (ELF), Forns score, and Hepascore. Meta-analyses were performed using a random effects model based on the DerSimonian and Laird methods. The study's risk of bias was assessed using the Quality Assessment of Diagnostic Accuracy Studies-2. Results In total, 138 articles were included, of which 86 studies with 46,514 participants met the criteria for the meta-analysis. The results for the summary area under the receiver operating characteristic (sAUROC) curve, according to the prognostic models, were as follows: APRI: advanced fibrosis (AF): 0.78, any fibrosis (AnF): 0.76, significant fibrosis (SF): 0.76, cirrhosis: 0.72; FIB-4: cirrhosis: 0.83, AF: 0.81, AnF: 0.77, SF: 0.75; NFS: SF: 0.81, AF: 0.81, AnF: 0.71, cirrhosis: 0.69; BARD score: SF: 0.77, AF: 0.73; FibroMeter: SF: 0.88, AF: 0.84; FibroTest: SF: 0.86, AF: 0.78; and ELF: AF: 0.87. Conclusion The results of this meta-analysis suggest that, when comparing the scores of serological biomarkers with liver biopsies, the following models showed better diagnostic accuracy in predicting liver fibrosis severity in people with MASLD: FIB-4 for any fibrosis, FibroMeter for significant fibrosis, ELF for advanced fibrosis, and FIB-4 for cirrhosis.Clinical trial registration: [https://clinicaltrials.gov/], identifier [CRD 42020180525].
Collapse
Affiliation(s)
- Sergio M. López Tórrez
- School of Medicine, Graduate Program in Medicine and Health Sciences, Pontifícia Universidade Católica de Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Camila O. Ayala
- School of Medicine, Postgraduate Program in Pediatrics and Child Health, Pontifícia Universidade Católica de Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Paula Bayer Ruggiro
- School of Medicine, Pontifícia Universidade Católica de Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Caroline Abud Drumond Costa
- School of Medicine, Postgraduate Program in Pediatrics and Child Health, Pontifícia Universidade Católica de Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Mario B. Wagner
- School of Medicine, Graduate Program in Medicine and Health Sciences, Pontifícia Universidade Católica de Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- School Medicine, Universidade Federal de Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Alexandre Vontobel Padoin
- School of Medicine, Graduate Program in Medicine and Health Sciences, Pontifícia Universidade Católica de Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Rita Mattiello
- School Medicine, Universidade Federal de Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- School of Medicine, Postgraduate Program in Epidemiology, Universidade Federal de Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
137
|
Boeckmans J, Sandrin L, Knackstedt C, Schattenberg JM. Liver stiffness as a cornerstone in heart disease risk assessment. Liver Int 2024; 44:344-356. [PMID: 38014628 DOI: 10.1111/liv.15801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/05/2023] [Accepted: 11/12/2023] [Indexed: 11/29/2023]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) typically presents with hepatic fibrosis in advanced disease, resulting in increased liver stiffness. A subset of patients further develops liver cirrhosis and hepatocellular carcinoma. Cardiovascular disease is a common comorbidity in patients with MASLD and its prevalence is increasing in parallel. Recent evidence suggests that especially liver stiffness, whether or not existing against a background of MASLD, is associated with heart diseases. We conducted a narrative review on the role of liver stiffness in the prediction of highly prevalent heart diseases including heart failure, cardiac arrhythmias (in particular atrial fibrillation), coronary heart disease, and aortic valve sclerosis. Research papers were retrieved from major scientific databases (PubMed, Web of Science) until September 2023 using 'liver stiffness' and 'liver fibrosis' as keywords along with the latter cardiac conditions. Increased liver stiffness, determined by vibration-controlled transient elastography or hepatic fibrosis as predicted by biomarker panels, are associated with a variety of cardiovascular diseases, including heart failure, atrial fibrillation, and coronary heart disease. Elevated liver stiffness in patients with metabolic liver disease should lead to considerations of cardiac workup including N-terminal pro-B-type natriuretic peptide/B-type natriuretic peptide determination, electrocardiography, and coronary computed tomography angiography. In addition, patients with MASLD would benefit from heart disease case-finding strategies in which liver stiffness measurements can play a key role. In conclusion, increased liver stiffness should be a trigger to consider a cardiac workup in metabolically compromised patients.
Collapse
Affiliation(s)
- Joost Boeckmans
- Metabolic Liver Research Center, I. Department of Medicine, University Medical Center Mainz, Mainz, Germany
- In Vitro Liver Disease Modelling Team, Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Christian Knackstedt
- Department of Cardiology, Maastricht University Medical Center+, Maastricht, the Netherlands
- Faculty of Health, Medicine, and Life Sciences, CARIM School for Cardiovascular Diseases, Maastricht, the Netherlands
| | - Jörn M Schattenberg
- Metabolic Liver Research Center, I. Department of Medicine, University Medical Center Mainz, Mainz, Germany
- Department of Medicine II, Saarland University Medical Center, Homburg, Germany
| |
Collapse
|
138
|
Gupta U, Ruli T, Buttar D, Shoreibah M, Gray M. Metabolic dysfunction associated steatotic liver disease: Current practice, screening guidelines and management in the primary care setting. Am J Med Sci 2024; 367:77-88. [PMID: 37967750 DOI: 10.1016/j.amjms.2023.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/29/2023] [Accepted: 11/10/2023] [Indexed: 11/17/2023]
Abstract
Metabolic dysfunction associated steatotic liver disease, previously known as non-alcoholic fatty liver disease, is the most common cause of chronic liver disease in the United States with rapidly rising prevalence. There have been significant changes recently in the field with screening now recommended for patients at risk for significant liver fibrosis in primary care and endocrine settings, along with clear guidance for management of metabolic comorbidities and changes in nomenclature. This paper serves as a summary of recent guidance for the primary care physician focusing on identifying appropriate patients for screening, selecting suitable screening modalities, and determining when referral to specialty care is necessary. The hope is that providers will shift away from past practices of utilizing liver tests alone as a screening tool and shift towards fibrosis screening in patients at risk for significant fibrosis. This culture change will allow for earlier identification of patients at risk for end stage liver disease and serious liver related complications, and overall improved patient care.
Collapse
Affiliation(s)
- Udita Gupta
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Thomas Ruli
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Danyaal Buttar
- Department of Medicine, Campbell University School of Medicine, NC, USA
| | - Mohamed Shoreibah
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Meagan Gray
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
139
|
Behari J, Bradley A, Townsend K, Becich MJ, Cappella N, Chuang CH, Fernandez SA, Ford DE, Kirchner HL, Morgan R, Paranjape A, Silverstein JC, Williams DA, Donahoo WT, Asrani SK, Ntanios F, Ateya M, Hegeman-Dingle R, McLeod E, McTigue K. Limitations of Noninvasive Tests-Based Population-Level Risk Stratification Strategy for Nonalcoholic Fatty Liver Disease. Dig Dis Sci 2024; 69:370-383. [PMID: 38060170 DOI: 10.1007/s10620-023-08186-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/06/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) are highly prevalent but underdiagnosed. AIMS We used an electronic health record data network to test a population-level risk stratification strategy using noninvasive tests (NITs) of liver fibrosis. METHODS Data were obtained from PCORnet® sites in the East, Midwest, Southwest, and Southeast United States from patients aged [Formula: see text] 18 with or without ICD-10-CM diagnosis codes for NAFLD, NASH, and NASH-cirrhosis between 9/1/2017 and 8/31/2020. Average and standard deviations (SD) for Fibrosis-4 index (FIB-4), NAFLD fibrosis score (NFS), and Hepatic Steatosis Index (HSI) were estimated by site for each patient cohort. Sample-wide estimates were calculated as weighted averages across study sites. RESULTS Of 11,875,959 patients, 0.8% and 0.1% were coded with NAFLD and NASH, respectively. NAFLD diagnosis rates in White, Black, and Hispanic patients were 0.93%, 0.50%, and 1.25%, respectively, and for NASH 0.19%, 0.04%, and 0.16%, respectively. Among undiagnosed patients, insufficient EHR data for estimating NITs ranged from 68% (FIB-4) to 76% (NFS). Predicted prevalence of NAFLD by HSI was 60%, with estimated prevalence of advanced fibrosis of 13% by NFS and 7% by FIB-4. Approximately, 15% and 23% of patients were classified in the intermediate range by FIB-4 and NFS, respectively. Among NAFLD-cirrhosis patients, a third had FIB-4 scores in the low or intermediate range. CONCLUSIONS We identified several potential barriers to a population-level NIT-based screening strategy. HSI-based NAFLD screening appears unrealistic. Further research is needed to define merits of NFS- versus FIB-4-based strategies, which may identify different high-risk groups.
Collapse
Affiliation(s)
- Jaideep Behari
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Suite 201, Kaufmann Medical Building, 3471 Fifth Ave, Pittsburgh, PA, 15213, USA.
| | - Allison Bradley
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15206, USA
| | - Kevin Townsend
- US Medical Affairs, Pfizer Inc, New York, NY, 10017, USA
| | - Michael J Becich
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15206, USA
| | - Nickie Cappella
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15206, USA
| | - Cynthia H Chuang
- Division of General Internal Medicine, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Soledad A Fernandez
- Department of Biomedical Informatics, Wexner Medical Center, The Ohio State University, Columbus, OH, 43201, USA
| | - Daniel E Ford
- Department of General Internal Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - H Lester Kirchner
- Department of Population Health Sciences, Geisinger Health System, Danville, PA, 17822, USA
| | - Richard Morgan
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15206, USA
| | - Anuradha Paranjape
- Department of Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Jonathan C Silverstein
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15206, USA
| | - David A Williams
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, 48105, USA
| | - W Troy Donahoo
- Division of Endocrinology, Diabetes and Metabolism, University of Florida, Gainesville, FL, 32608, USA
| | | | - Fady Ntanios
- US Medical Affairs, Pfizer Inc, New York, NY, 10017, USA
| | - Mohammad Ateya
- US Medical Affairs, Pfizer Inc, New York, NY, 10017, USA
| | | | - Euan McLeod
- Pfizer Health Economics and Outcomes Research, Tadworth, UK
| | - Kathleen McTigue
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, USA
| |
Collapse
|
140
|
Godoy-Matos AF, Valério CM, Silva Júnior WS, de Araujo-Neto JM, Bertoluci MC. 2024 UPDATE: the Brazilian Diabetes Society position on the management of metabolic dysfunction-associated steatotic liver disease (MASLD) in people with prediabetes or type 2 diabetes. Diabetol Metab Syndr 2024; 16:23. [PMID: 38238868 PMCID: PMC10797995 DOI: 10.1186/s13098-024-01259-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common liver disease affecting 30% of the world's population and is often associated with metabolic disorders such as metabolic syndrome, type 2 diabetes (T2D), and cardiovascular disease. This review is an update of the Brazilian Diabetes Society (Sociedade Brasileira de Diabetes [SBD]) evidence-based guideline for the management of MASLD in clinical practice. METHODS The methodology was published previously and was defined by the internal institutional steering committee. The SBD Metabolic Syndrome and Prediabetes Department drafted the manuscript, selecting key clinical questions for a narrative review using MEDLINE via PubMed with the MeSH terms [diabetes] and [fatty liver]. The best available evidence was reviewed, including randomized clinical trials (RCTs), meta-analyses, and high-quality observational studies related to MASLD. RESULTS AND CONCLUSIONS The SBD Metabolic Syndrome and Prediabetes Department formulated 9 recommendations for the management of MASLD in people with prediabetes or T2D. Screening for the risk of advanced fibrosis associated with MASLD is recommended in all adults with prediabetes or T2D. Lifestyle modification (LSM) focusing on a reduction in body weight of at least 5% is recommended as the first choice for these patients. In situations where LSMs are insufficient to achieve weight loss, the use of anti-obesity medications is recommended for those with a body mass index (BMI) ≥ 27 kg/m2. Pioglitazone and glucagon-like peptide-1 receptor agonists (GLP-1RA) monotherapy are the first-line pharmacological treatments for steatohepatitis in people with T2D, and sodium-glucose cotransporter-2 (SGLT2) inhibitors may be considered in this context. The combination of these agents may be considered in the treatment of steatohepatitis and/or fibrosis, and bariatric surgery should be considered in patients with a BMI ≥ 35 kg/m2, in which the combination of LSM and pharmacotherapy has not been shown to be effective in improving MASLD.
Collapse
Affiliation(s)
- Amélio F Godoy-Matos
- Sociedade Brasileira de Diabetes (SBD), São Paulo, Brazil
- Instituto Estadual de Diabetes e Endocrinologia do Rio de Janeiro (IEDE), Rio de Janeiro, RJ, Brazil
| | - Cynthia Melissa Valério
- Sociedade Brasileira de Diabetes (SBD), São Paulo, Brazil
- Instituto Estadual de Diabetes e Endocrinologia do Rio de Janeiro (IEDE), Rio de Janeiro, RJ, Brazil
| | - Wellington S Silva Júnior
- Sociedade Brasileira de Diabetes (SBD), São Paulo, Brazil.
- Endocrinology Discipline, Department of Medicine I, Faculty of Medicine, Center of Biological Sciences, Universidade Federal do Maranhão (UFMA), Praça Gonçalves Dias, 21, Centro, São Luís, MA, CEP 65020-240, Brazil.
| | - João Marcello de Araujo-Neto
- Sociedade Brasileira de Diabetes (SBD), São Paulo, Brazil
- Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Marcello Casaccia Bertoluci
- Sociedade Brasileira de Diabetes (SBD), São Paulo, Brazil
- Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
141
|
Kalaiyarasi K, Sanchalika A, Hsien Min L, Wei Ming Y, Vishalkumar S, Kuo Chao Y, Jee Keem L, Sameer J, Terence HCW, Yen Ping T. Transient Elastography Is the Best-Performing Non-Invasive Test of Liver Fibrosis in Obese Asian Patients with Non-Alcoholic Fatty Liver Disease: A Pilot, Cross-Sectional Study. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:169. [PMID: 38256429 PMCID: PMC10819647 DOI: 10.3390/medicina60010169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024]
Abstract
Background and Objectives: The prevalence of NAFLD (non-alcoholic fatty liver disease) is increasing, and up to 64% of Asian patients with NAFLD are obese. Non-invasive tests (NITs) for the assessment of liver fibrosis are increasingly being used, but data on their performance in obese Asian patients are lacking. In this pilot cross-sectional study, we aim to compare the distribution of serum and radiological markers of fibrosis between obese Asian biopsy-proven NAFLD patients with and without fibrosis and estimate the diagnostic accuracies of these indices. Materials and Methods: Obese Asian patients with NAFLD and who had undergone a liver biopsy showing histological evidence of NAFLD were invited to participate. Liver fibrosis was assessed using laboratory (APRI, AAR, BARD, FIB4, NFS, and Asia-Pacific NAFLD advanced fibrosis score) and imaging modalities (TE: transient elastography, MRE: magnetic resonance elastography, and SWU: shear wave ultrasonography). Results: A total of 16 patients were included in the final analysis. On liver biopsy, nine patients (56.3%) had significant fibrosis (F2 or higher), and six of these patients had advanced fibrosis (F3 or higher). F4 fibrosis was present in one patient (6.3%). For the laboratory markers, we found that the BARD score correctly identified five out of six patients with advanced fibrosis (83.4%, p value 0.045). Among all the NITs studied, liver stiffness measured by TE had the highest accuracy of 87.5% in its established threshold of 8.5 kPa for the detection of advanced fibrosis. MRE also performed well (81.2% in 3.64 kPa). Conclusions: In conclusion, TE has performed well in the detection of advanced fibrosis in obese Asian patients with biopsy-proven NAFLD in our pilot study. Further large-scale definitive studies are needed to validate the results of our findings.
Collapse
Affiliation(s)
- Kaliyaperumal Kalaiyarasi
- Division of Hepatology and Gastroenterology, Tan Tock Seng Hospital, 11 Jln Tan Tock Seng, Singapore 308433, Singapore;
| | - Acharyya Sanchalika
- Clinical Research & Innovation Office, Tan Tock Seng Hospital, 11 Jln Tan Tock Seng, Singapore 308433, Singapore;
| | - Low Hsien Min
- Division of Radiology, Tan Tock Seng Hospital, 11 Jln Tan Tock Seng, Singapore 308433, Singapore;
| | - Yap Wei Ming
- Division of Pathology, Tan Tock Seng Hospital, 11 Jln Tan Tock Seng, Singapore 308433, Singapore;
| | - Shelat Vishalkumar
- Division of General Surgery, Tan Tock Seng Hospital, 11 Jln Tan Tock Seng, Singapore 308433, Singapore; (L.J.K.); (J.S.); (H.C.W.T.); (T.Y.P.)
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Yew Kuo Chao
- Division of Hepatology and Gastroenterology, Tan Tock Seng Hospital, 11 Jln Tan Tock Seng, Singapore 308433, Singapore;
| | - Low Jee Keem
- Division of General Surgery, Tan Tock Seng Hospital, 11 Jln Tan Tock Seng, Singapore 308433, Singapore; (L.J.K.); (J.S.); (H.C.W.T.); (T.Y.P.)
| | - Junnarkar Sameer
- Division of General Surgery, Tan Tock Seng Hospital, 11 Jln Tan Tock Seng, Singapore 308433, Singapore; (L.J.K.); (J.S.); (H.C.W.T.); (T.Y.P.)
| | - Huey Cheong Wei Terence
- Division of General Surgery, Tan Tock Seng Hospital, 11 Jln Tan Tock Seng, Singapore 308433, Singapore; (L.J.K.); (J.S.); (H.C.W.T.); (T.Y.P.)
| | - Tan Yen Ping
- Division of General Surgery, Tan Tock Seng Hospital, 11 Jln Tan Tock Seng, Singapore 308433, Singapore; (L.J.K.); (J.S.); (H.C.W.T.); (T.Y.P.)
| |
Collapse
|
142
|
Sariyar N, Kani HT, Celikel CA, Yilmaz Y. Predicting fibrosis progression in non-alcoholic fatty liver disease patients using the FAST Score: A paired biopsy study. HEPATOLOGY FORUM 2024; 5:33-36. [PMID: 38283271 PMCID: PMC10809337 DOI: 10.14744/hf.2023.2023.0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/05/2023] [Accepted: 06/14/2023] [Indexed: 01/30/2024]
Abstract
Background and Aim This study aimed to investigate the predictive value of various non-invasive scores for identifying the progression of hepatic fibrosis over time in patients with Non-Alcoholic Fatty Liver Disease (NAFLD). Materials and Methods We examined 69 patients with NAFLD who had undergone two liver biopsies at an average interval of 21.3±9.7 months. Progression and regression of fibrosis were defined as an increase or decrease of at least one stage in fibrosis between the initial and follow-up biopsies, respectively. The Fibrosis-4 Index (FIB-4), NAFLD Fibrosis Score (NFS), Agile 3+, Agile 4, and FibroScan-AST (FAST) scores were calculated at the initial biopsy. Results Comparison of paired biopsies revealed that 45% of participants (n=31) exhibited no change in fibrosis stages, 26% (n=18) experienced progression, and 29% (n=20) demonstrated regression. Multivariable logistic regression analysis identified the FAST score as the only independent predictor of progressive fibrosis, with the odds increasing by 19% (95% CI: 8-38%, p<0.05) for each unit increase in the FAST score at the initial biopsy. No independent predictors for fibrosis regression were identified. Conclusion Higher baseline FAST scores were associated with an increased likelihood of fibrosis progression, independent of other variables. Thus, the FAST score could serve as both a diagnostic and prognostic tool for fibrosis in patients with NAFLD.
Collapse
Affiliation(s)
- Nisanur Sariyar
- Department of Internal Medicine, Marmara University School of Medicine, Istanbul, Turkiye
| | - Haluk Tarik Kani
- Department of Gastroenterology, Marmara University School of Medicine, Istanbul, Turkiye
| | | | - Yusuf Yilmaz
- Liver Research Unit, Institute of Gastroenterology, Marmara University, Istanbul, Turkiye
- Department of Gastroenterology, Recep Tayyip Erdogan University School of Medicine, Rize, Turkiye
| |
Collapse
|
143
|
Stefanska A, Bergmann K, Suwała S, Mankowska-Cyl A, Kozinski M, Junik R, Krintus M, Panteghini M. Performance Evaluation of a Novel Non-Invasive Test for the Detection of Advanced Liver Fibrosis in Metabolic Dysfunction-Associated Fatty Liver Disease. Metabolites 2024; 14:52. [PMID: 38248855 PMCID: PMC10819013 DOI: 10.3390/metabo14010052] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/07/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) may progress to advanced liver fibrosis (ALF). We evaluated the diagnostic accuracy of a novel Liver Fibrosis Risk Index (LFRI) in MAFLD subjects using transient elastography (TE) as the reference method for liver fibrosis measurement and then the diagnostic performance of a new two-step non-invasive algorithm for the detection of ALF risk in MAFLD, using Fibrosis-4 (FIB-4) followed by LFRI and comparing it to the reference algorithm based on FIB-4 and TE. We conducted a prospective study on 104 MAFLD European adult subjects. All consenting subjects underwent TE and measurements of FIB-4 and LFRI. For FIB-4 and TE, validated cut-offs were used. An ROC analysis showed that LFRI diagnosed severe fibrosis with moderate accuracy in MAFLD subjects with a negative predictive value above 90%. Using the new algorithm with LFRI thresholds recommended by the manufacturer, the number of subjects classified into ALF risk groups (low, intermediate, or high) differed significantly when compared with the reference algorithm (p = 0.001), with moderate agreement between them (weighted kappa (95% CI) = 0.59 (0.41-0.77)). To improve the performance of the LFRI-based algorithm, we modified cut-off points based on ROC curves obtained by dividing the study population according to the reference algorithm and observed no difference between algorithms (p = 0.054) in categorizing ALF risk, with a slight increase in the total agreement (weighted kappa (95% CI) = 0.63 (0.44-0.82)). Our findings suggest that using the novel LFRI as a second-line test may represent a potential alternative for liver fibrosis risk stratification in MAFLD patients; however, modified cut-offs are needed to optimize its performance.
Collapse
Affiliation(s)
- Anna Stefanska
- Department of Laboratory Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 87-100 Torun, Poland; (K.B.); (A.M.-C.); (M.K.); (M.P.)
| | - Katarzyna Bergmann
- Department of Laboratory Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 87-100 Torun, Poland; (K.B.); (A.M.-C.); (M.K.); (M.P.)
| | - Szymon Suwała
- Department of Endocrinology and Diabetology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 87-100 Torun, Poland; (S.S.); (R.J.)
| | - Aneta Mankowska-Cyl
- Department of Laboratory Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 87-100 Torun, Poland; (K.B.); (A.M.-C.); (M.K.); (M.P.)
| | - Marek Kozinski
- Department of Cardiology and Internal Diseases, Institute of Maritime and Tropical Medicine, Medical University in Gdansk, 81-519 Gdynia, Poland;
| | - Roman Junik
- Department of Endocrinology and Diabetology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 87-100 Torun, Poland; (S.S.); (R.J.)
| | - Magdalena Krintus
- Department of Laboratory Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 87-100 Torun, Poland; (K.B.); (A.M.-C.); (M.K.); (M.P.)
| | - Mauro Panteghini
- Department of Laboratory Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 87-100 Torun, Poland; (K.B.); (A.M.-C.); (M.K.); (M.P.)
| |
Collapse
|
144
|
Fitzinger J, Rodriguez-Blanco G, Herrmann M, Borenich A, Stauber R, Aigner E, Mangge H. Gender-Specific Bile Acid Profiles in Non-Alcoholic Fatty Liver Disease. Nutrients 2024; 16:250. [PMID: 38257143 PMCID: PMC10821077 DOI: 10.3390/nu16020250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is increasing worldwide. A main cause is the obesogenic, so-called Western lifestyle. NAFLD follows a long, unperceived course, and ends potentially fatally. Early diagnosis of aggressive subtypes saves lives. So far, non-invasive means of detection are limited. A better understanding of the pathogenic interplay among insulin resistance, immune inflammation, microbiome, and genetic background is important. Metabolomics may give insight into these interlaced processes. METHODS In this study, we measured bile acids (BA) in the plasma of adult NAFLD and alcohol-associated liver disease (ALD) patients and healthy controls with targeted mass spectrometry. We focused on gender-related bile acid production pathology in NAFLD and ALD. RESULTS Compared to healthy controls, women with NAFLD had significantly higher concentrations of total BA, total primary BA, total cholic (CA), total chenodeoxycholic (CDCA), total glycine-conjugated, and total non-12-a-OH BA. Concerning subtypes, glycocholic (GCA) and glycochenodeoxycholic (GCDCA), BA were elevated in women with NAFLD. In contrast, men with NAFLD had no significantly altered total BA fractions. However, the subtypes GCA, glycodeoxycholic (GDCA), glycolithocholic (GLCA), lithocholic (LCA), taurolithocholic (TLCA), and tauroursodeoxycholic acid (TUDCA) were elevated, while CA was significantly decreased. In NAFLD, except ursodeoxycholic acid (UDC), all total BA correlated significantly positively in both sexes with the ELF score, while in ALD, only males showed significant correlations exceptive for total UDC BA. In NAFLD, total BA, total primary BA, total secondary BA, total free secondary BA, total CA, total CDCA, total taurine conjugated, total glycine conjugated, total 12-a-OH, and total non-12-a-OH were significantly higher in cases of a high enhanced liver fibrosis (ELF) score above 9.8. In ALD, total UDC was additionally elevated. Between NAFLD with and without NASH, we found no significant differences. CONCLUSION Our data show gender-specific bile acid profiles in NAFLD and markedly different BA patterns in ALD. Women with NAFLD had more severe cholestasis. Men may better compensate fat storage-driven bile acid dynamics, indicated by higher levels of taurine-conjugated BA, which associate with beneficial metabolic functions.
Collapse
Affiliation(s)
- Julia Fitzinger
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria; (J.F.); (M.H.)
| | - Giovanny Rodriguez-Blanco
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria; (J.F.); (M.H.)
| | - Markus Herrmann
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria; (J.F.); (M.H.)
| | - Andrea Borenich
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, 8036 Graz, Austria;
| | - Rudolf Stauber
- Division of Gastroenterology and Hepatology, Medical University of Graz, 8036 Graz, Austria;
| | - Elmar Aigner
- First Department of Medicine, University Clinic Salzburg, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria;
| | - Harald Mangge
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria; (J.F.); (M.H.)
| |
Collapse
|
145
|
Jirapinyo P, Thompson CC, Garcia-Tsao G, Zucker SD, Ryou M. The effect of endoscopic gastric plication on portosystemic pressure gradient in patients with nonalcoholic fatty liver disease and compensated advanced chronic liver disease. Endoscopy 2024; 56:56-62. [PMID: 37532114 DOI: 10.1055/a-2146-8857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
BACKGROUND The goals of therapy for patients with nonalcoholic fatty liver disease and compensated advanced chronic liver disease include weight loss and reduction of the portosystemic pressure gradient (PPG) to decrease the risk of hepatic decompensation. Endoscopic gastric plication (EGP) is an effective endoscopic weight loss procedure. This study aimed to assess the effect of EGP on PPG. METHODS In this prospective pilot study, patients with nonalcoholic fatty liver disease and compensated advanced chronic liver disease underwent endoscopic ultrasound-guided PPG measurement prior to and at 6 months following EGP. Primary outcomes were the change in PPG and proportion of patients experiencing ≥ 20 % reduction in PPG at 6 months. Secondary outcomes included percent total weight loss (TWL) and changes in noninvasive tests of fibrosis. RESULTS 20 patients were included. Baseline median body mass index and liver stiffness measurement were 40.2 kg/m2 (range 30.1-56.7) and 14.7 kPa (range 8.2-36), respectively. At 6 months, median PPG decreased from 5.4 mmHg (range 0.7-19.6) to 1.8 mmHg (range 0.4-17.6) (P = 0.002), with 79 % (11/14) experiencing ≥ 20 % reduction. Patients experienced 12.5 % (6.5 %-26.1 %) TWL (P < 0.001) at 6 months, with 89 % (17/19) achieving ≥ 7 % and 68 % (13/19) achieving ≥ 10 % TWL. There were significant improvements in noninvasive tests of fibrosis. CONCLUSION EGP appeared to be effective at reducing PPG in patients with nonalcoholic fatty liver disease and compensated advanced chronic liver disease.
Collapse
Affiliation(s)
- Pichamol Jirapinyo
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Boston, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
| | - Christopher C Thompson
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Boston, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
| | - Guadalupe Garcia-Tsao
- Section of Digestive Diseases, Yale School of Medicine, New Haven, Connecticut, United States
- Section of Digestive Diseases, VA-CT Healthcare System, West Haven, Connecticut, United States
| | - Stephen D Zucker
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Boston, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
| | - Marvin Ryou
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Boston, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
146
|
Biswas T, Lehker A, Mukherjee D. Novel Therapies for Nonalcoholic Steatohepatitis (NASH) and Cardiovascular Risk Reduction. Cardiovasc Hematol Disord Drug Targets 2024; 24:211-217. [PMID: 39563216 DOI: 10.2174/011871529x345190241113103911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/27/2024] [Accepted: 10/15/2024] [Indexed: 11/21/2024]
Abstract
Nonalcoholic steatohepatitis (NASH) is a type of nonalcoholic fatty liver disease (NAFLD) characterized by hepatocyte injury and inflammation, in addition to only the presence of steatosis NAFLD. We review the existing data on available novel therapies for NASH and NAFLD and also discuss several therapies in development. We assessed therapies for NASH by searching the databases of PubMed, EMBASE, and Web of Science (SCI) from their inception dates until September 15, 2024. Search terms used were: nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, liver inflammation and hepatocyte injury.Until very recently, therapeutic lifestyle change was the primary modality of treatment for NASH, including modification of diet and physical activity. The FDA recently approved resmetirom using its expedited approval mechanism for NASH. There are also several pharmacotherapies in development for NASH which aim at weight loss, insulin sensitization and improvement in lipid levels, although some drugs may have multiple effects which are discussed. The availability of resmetirom offers patients with NASH an effective adjunctive therapy in addition to lifestyle changes. Several other novel therapies are also currently being tested and will add to our therapeutic armamentarium.
Collapse
Affiliation(s)
- Tarun Biswas
- Tulip Nursing Home, 96 R,B.C. Road, Kolkata, India
| | - Angelica Lehker
- Department of Internal Medicine, Texas Tech University, El Paso, United States of America
| | - Debabrata Mukherjee
- Department of Internal Medicine, Division of Cardiovascular Medicine, Texas Tech University, El Paso, United States of America
| |
Collapse
|
147
|
Wang T, Xi Y, Raji A, Crutchlow M, Fernandes G, Engel SS, Zhang X. Overall and subgroup prevalence of non-alcoholic fatty liver disease and prevalence of advanced fibrosis in the United States: An updated national estimate in National Health and Nutrition Examination Survey (NHANES) 2011-2018. Ann Hepatol 2024; 29:101154. [PMID: 37742743 DOI: 10.1016/j.aohep.2023.101154] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/07/2023] [Accepted: 09/09/2023] [Indexed: 09/26/2023]
Abstract
INTRODUCTION AND OBJECTIVES Data on the prevalence of non-alcoholic fatty liver disease (NAFLD) in subgroups of the United States (US) population are limited. This study was conducted to estimate NAFLD prevalence overall and by subgroups, and prevalence of NAFLD with advanced fibrosis. MATERIALS AND METHODS Using the National Health and Nutrition Examination Survey (NHANES) 2011-2018 data, a cross-sectional study was conducted. NAFLD was defined as having a US Fatty Liver Index (USFLI) ≥ 30 in the absence of other causes of liver disease, including excessive alcohol intake, chronic hepatitis B, and chronic hepatitis C. Likelihood for having advanced fibrosis was determined by the calculated NAFLD fibrosis score (NFS; high ≥ 0.676; low < -1.445) and fibrosis-4 index (FIB-4; high ≥ 2.67; low < 1.30). RESULTS The weighted national prevalence of NAFLD in US adults was 26.7% (95% confidence interval: 25.3%-28.1%). Prevalence was higher among those aged ≥ 65 years, males, Mexican Americans, with BMI ≥ 35 kg/m2 (class 2 and 3 obesity) and with type 2 diabetes (T2D). Of those meeting the USFLI criterion for NAFLD, 18.1% and 3.7% were determined as having a high probability of advanced fibrosis based on NFS ≥ 0.676 and FIB-4 ≥ 2.67 cut-off values, respectively. CONCLUSIONS This study supports an increased prevalence of NAFLD in specific subpopulations (aged ≥ 65 years, males, Mexican Americans, obese population, and patients with T2D). The observed difference in the prevalence of advanced fibrosis as estimated by NFS and FIB-4 highlights the challenge of choosing optimal cut-off values.
Collapse
Affiliation(s)
| | - Yuzhi Xi
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Annaswamy Raji
- Global Clinical Development, Merck & Co., Inc., Rahway, NJ, USA
| | | | - Gail Fernandes
- Center for Observational and Real-World Evidence, Merck & Co., Inc., Rahway, NJ, USA
| | - Samuel S Engel
- Global Clinical Development, Merck & Co., Inc., Rahway, NJ, USA
| | - Xiao Zhang
- Epidemiology, Merck & Co., Inc., Rahway, NJ, USA.
| |
Collapse
|
148
|
American Diabetes Association Professional Practice Committee, ElSayed NA, Aleppo G, Bannuru RR, Bruemmer D, Collins BS, Cusi K, Ekhlaspour L, Fleming TK, Hilliard ME, Johnson EL, Khunti K, Lingvay I, Matfin G, McCoy RG, Napoli N, Perry ML, Pilla SJ, Polsky S, Prahalad P, Pratley RE, Segal AR, Seley JJ, Stanton RC, Verduzco-Gutierrez M, Younossi ZM, Gabbay RA. 4. Comprehensive Medical Evaluation and Assessment of Comorbidities: Standards of Care in Diabetes-2024. Diabetes Care 2024; 47:S52-S76. [PMID: 38078591 PMCID: PMC10725809 DOI: 10.2337/dc24-s004] [Citation(s) in RCA: 64] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The American Diabetes Association (ADA) "Standards of Care in Diabetes" includes the ADA's current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, an interprofessional expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA's clinical practice recommendations and a full list of Professional Practice Committee members, please refer to Introduction and Methodology. Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.
Collapse
|
149
|
Zeng Q, Liu CH, Ampuero J, Wu D, Jiang W, Zhou L, Li H, Bai L, Romero-Gómez M, Tang H. Circular RNAs in non-alcoholic fatty liver disease: Functions and clinical significance. RNA Biol 2024; 21:1-15. [PMID: 38113132 PMCID: PMC10761141 DOI: 10.1080/15476286.2023.2290769] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2023] [Indexed: 12/21/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), which affects approximately 25% of the global population, is an urgent health issue leading to various metabolic comorbidities. Circular RNAs (circRNAs), covalently closed RNA molecules, are characterized by ubiquity, diversity, stability, and conservatism. Indeed, they participate in various biological processes via distinct mechanisms that could modify the natural history of NAFLD. In this review, we briefly introduce the biogenesis, characteristics, and biological functions of circRNAs. Furthermore, we summarize circRNAs expression profiles in NAFLD by intersecting seven sequencing data sets and describe the cellular roles of circRNAs and their potential advantages as biomarkers of NAFLD. In addition, we emphatically discuss the exosomal non-coding RNA sorting mechanisms and possible functions in recipient cells. Finally, we extensively discuss the potential application of targeting disease-related circRNAs and competing endogenous RNA networks through gain-of-function and loss-of-function approaches in targeted therapy of NAFLD.
Collapse
Affiliation(s)
- Qingmin Zeng
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Chang-Hai Liu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Javier Ampuero
- Digestive Diseases Unit, Virgen del Rocío University Hospital. SeLiver group at Institute of Biomedicine of Seville (IBIS: HUVRocío/CSIC/US). University of Seville, Seville, Spain
| | - Dongbo Wu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Jiang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Lingyun Zhou
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Li
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Lang Bai
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Manuel Romero-Gómez
- Digestive Diseases Unit, Virgen del Rocío University Hospital. SeLiver group at Institute of Biomedicine of Seville (IBIS: HUVRocío/CSIC/US). University of Seville, Seville, Spain
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
150
|
Canivet CM, Faure S. [Diagnosis and evaluation of metabolic dysfunction associated steatotic liver disease (MASLD)]. Rev Med Interne 2024; 45:41-47. [PMID: 38158295 DOI: 10.1016/j.revmed.2023.10.438] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/12/2023] [Indexed: 01/03/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) or recently called Metabolic Dysfunction Associated Steatotic Liver Disease (MASLD), is the leading cause of liver disease, with an estimated worldwide prevalence of 25%. MASLD is suspected, in a metabolic condition, in the presence of hepatic steatosis, moderate hepatic cytolysis or hyperferritinemia. The severity of the disease depends on the stage of liver fibrosis, which can be suspected in clinical practice by simple blood tests such as the FIB-4 or NAFLD fibrosis Score. The treatment is based on lifestyle intervention combining weight loss, increased physical activity and a Mediterranean-style diet. Only a small minority of patients with MASLD will develop advanced liver disease and require liver specialist. Given the high prevalence of MASLD, the identification of these patients cannot be envisaged without the taking part in the screening of all physicians (general practitioners and specialists).
Collapse
Affiliation(s)
- C M Canivet
- Service d'hépato-gastroentérologie et oncologie digestive, CHU d'Angers, Angers, France; Laboratoire HIFIH, UPRES EA3859, SFR 4208, université d'Angers, Angers, France
| | - S Faure
- Service d'hépato-gastroentérologie et oncologie digestive, CHU de Montpellier, Montpellier, France.
| |
Collapse
|