101
|
Abstract
Pancreatic ductal adenocarcinoma (PDA) remains a highly lethal disease; new therapeutic modalities are urgently needed. A number of immunotherapies tested in preclinical models have shown promise. Early-phase clinical trials have demonstrated evidence of immune activation that in some cases correlates with clinical response. Moreover, recent evidence delineates the intricate role of inflammation in PDA, even at its earliest stages. Pancreatic ductal adenocarcinoma is thus ripe for immunotherapy; however, significant challenges remain before success can be realized. Future studies will need to focus on the discovery of novel PDA antigens and the identification of the multiple immune suppressive pathways within the PDA tumor microenvironment that inhibit an effective PDA-targeted immune response. Technologies are now available to rapidly advance discovery. Rapid translation of new discoveries into scientifically driven clinical trials testing combinations of immune agents will likely continue to shift the procarcinogenic tumor environment toward the most potent anticancer response.
Collapse
|
102
|
Wen F, Shen A, Choi A, Gerner EW, Shi J. Extracellular DNA in pancreatic cancer promotes cell invasion and metastasis. Cancer Res 2013; 73:4256-4266. [PMID: 23722544 PMCID: PMC3777608 DOI: 10.1158/0008-5472.can-12-3287] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Aggressive metastasis is the chief cause of the high morbidity and mortality associated with pancreatic cancer, yet the basis for its aggressive behavior remains elusive. Extracellular DNA (exDNA) is a recently discovered component of inflammatory tissue states. Here, we report that exDNA is present on the surface of pancreatic cancer cells where it is critical for driving metastatic behavior. exDNA was abundant on the surface and vicinity of cultured pancreatic cancer cells but absent from normal pancreas cells. Strikingly, treatment of cancer cell cultures with DNase I to degrade DNA nonspecifically reduced metastatic characters associated with matrix attachment, migration, and invasion. We further assessed the role of exDNA in pancreatic cancer metastasis in vivo using an orthotopic xenograft model established by implantation of pancreatic cancer cells expressing firefly luciferase. Noninvasive bioluminescent imaging confirmed that DNase I treatment was sufficient to suppress tumor metastasis. Mechanistic investigations suggested the existence of a positive feedback loop in which exDNA promotes expression of the inflammatory chemokine CXCL8, which leads to higher production of exDNA by pancreatic cancer cells, with a significant reduction in CXCL8 levels achieved by DNase I treatment. Taken together, our results strongly suggest that exDNA contributes to the highly invasive and metastatic character of pancreatic cancer.
Collapse
Affiliation(s)
- Fushi Wen
- Department of Surgery, Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Alex Shen
- Department of Surgery, Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Andrew Choi
- Department of Surgery, Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Eugene W. Gerner
- BIO5 Institute and Arizona Cancer Center, BIO5 Oro Valley, University of Arizona, Tucson, AZ, USA
| | - Jiaqi Shi
- Department of Pathology, University of Michigan, 1301 Catherine St., Ann Arbor, MI, USA
| |
Collapse
|
103
|
Wörmann SM, Diakopoulos KN, Lesina M, Algül H. The immune network in pancreatic cancer development and progression. Oncogene 2013; 33:2956-67. [PMID: 23851493 DOI: 10.1038/onc.2013.257] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 04/22/2013] [Accepted: 04/22/2013] [Indexed: 02/07/2023]
Abstract
The presence of stromal desmoplasia is a hallmark of spontaneous pancreatic ductal adenocarcinoma, forming a unique microenvironment that comprises many cell types. Only recently, the immune system has entered the pathophysiology of pancreatic ductal adenocarcinoma development. Tumor cells in the pancreas seem to dysbalance the immune system, thus facilitating spontaneous cancer development. This review will try to assemble all relevant data to demonstrate the implications of the immune network on spontaneous cancer development.
Collapse
Affiliation(s)
- S M Wörmann
- Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - K N Diakopoulos
- Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - M Lesina
- Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - H Algül
- Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
104
|
Partecke LI, Günther C, Hagemann S, Jacobi C, Merkel M, Sendler M, van Rooijen N, Käding A, Nguyen Trung D, Lorenz E, Diedrich S, Weiss FU, Heidecke CD, von Bernstorff W. Induction of M2-macrophages by tumour cells and tumour growth promotion by M2-macrophages: a quid pro quo in pancreatic cancer. Pancreatology 2013; 13:508-16. [PMID: 24075516 DOI: 10.1016/j.pan.2013.06.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 05/03/2013] [Accepted: 06/30/2013] [Indexed: 12/11/2022]
Abstract
INTRODUCTION More effective therapies are required to improve survival of pancreatic cancer. Possible immunologic targets include tumour associated macrophages (TAMs), generally consisting of M1- and M2-macrophages. We have analysed the impact of TAMS on pancreatic cancer in a syngeneic orthotopic murine model. METHODS 6606PDA murine pancreatic cancer cells were orthotopically injected into C57BL6 mice. Tumour growth was monitored using MRI. Macrophages were depleted by clodronate liposomes. Tumours including microvessel density were evaluated using immunohistochemistry, immunofluorescence and/or cytometric beads assays. Naïve macrophages were generated employing peritoneal macrophages. In vitro experiments included culturing of macrophages in tumour supernatants as well as tumour cells cultured in macrophage supernatants using arginase as well as Griess assays. RESULTS Clodronate treatment depleted macrophages by 80% in livers (p = 0.0051) and by 60% in pancreatic tumours (p = 0.0169). MRI revealed tumour growth inhibition from 221.8 mm(3) to 92.3 mm(3) (p = 0.0216). Micro vessel densities were decreased by 44% (p = 0.0315). Yet, MCP-1-, IL-4- and IL-10-levels within pancreatic tumours were unchanged. 6606PDA culture supernatants led to a shift from naïve macrophages towards an M2-phenotype after a 36 h treatment (p < 0.0001), reducing M1-macrophages at the same time (p < 0.037). In vivo, M2-macrophages represented 85% of all TAMs (p < 0.0001). Finally, culture supernatants of M2-macrophages induced tumour growth in vitro by 63.2% (p = 0.0034). CONCLUSIONS This quid pro quo of tumour cells and M2-macrophages could serve as a new target for future immunotherapies that interrupt tumour promoting activities of TAMs and change the iNOS-arginase balance towards their tumoricidal capacities.
Collapse
Affiliation(s)
- L I Partecke
- Department of General, Visceral, Thoracic and Vascular Surgery, University Medicine Greifswald, Ernst-Moritz-Arndt-University, Ferdinand Sauerbruchstraße, 17475 Greifswald, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Zheng L, Xue J, Jaffee EM, Habtezion A. Role of immune cells and immune-based therapies in pancreatitis and pancreatic ductal adenocarcinoma. Gastroenterology 2013; 144:1230-40. [PMID: 23622132 PMCID: PMC3641650 DOI: 10.1053/j.gastro.2012.12.042] [Citation(s) in RCA: 252] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 12/12/2012] [Accepted: 12/21/2013] [Indexed: 12/22/2022]
Abstract
Immune cells are important in the pathogenesis of acute pancreatitis and determine disease severity. Results from cytokine-based clinical trials for acute pancreatitis have been disappointing, so strategies that target and alter the behavior of infiltrating immune cells require consideration. Recurrent acute pancreatitis can progress to chronic pancreatitis, which is a well-described risk factor for pancreatic ductal adenocarcinoma (PDA). However, most patients with chronic pancreatitis do not develop PDA, and most patients with PDA do not have a history of pancreatitis. Interestingly, chronic pancreatitis and PDA tissues have similarities in their desmoplasia and inflammatory infiltrates, indicating overlapping inflammatory responses. Further studies are needed to determine the differences and similarities of these responses, improve our understanding of PDA pathogenesis, and develop specific immune-based therapies. Immune cells in PDA produce immunosuppressive signals that allow tumors to evade the immune response. Unlike single therapeutic agent studies that block immunosuppressive mechanisms, studies of combination therapies that include therapeutic vaccines have provided promising results.
Collapse
Affiliation(s)
- Lei Zheng
- Stanford University School of Medicine, Department of Medicine, Division of Gastroenterology and Hepatology, Stanford, California and The Sidney Kimmel Cancer Center at Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jing Xue
- Stanford University School of Medicine, Department of Medicine, Division of Gastroenterology and Hepatology, Stanford, California and The Sidney Kimmel Cancer Center at Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Elizabeth M. Jaffee
- Stanford University School of Medicine, Department of Medicine, Division of Gastroenterology and Hepatology, Stanford, California and The Sidney Kimmel Cancer Center at Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Aida Habtezion
- Stanford University School of Medicine, Department of Medicine, Division of Gastroenterology and Hepatology, Stanford, California and The Sidney Kimmel Cancer Center at Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
106
|
Genetic and pharmacologic inhibition of complement impairs endothelial cell function and ablates ovarian cancer neovascularization. Neoplasia 2013; 14:994-1004. [PMID: 23226093 DOI: 10.1593/neo.121262] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 09/21/2012] [Accepted: 09/27/2012] [Indexed: 12/16/2022] Open
Abstract
Complement activation plays a critical role in controlling inflammatory responses. To assess the role of complement during ovarian cancer progression, we crossed two strains of mice with genetic complement deficiencies with transgenic mice that develop epithelial ovarian cancer (TgMISIIR-TAg). TgMISIIR-TAg mice fully or partially deficient for complement factor 3 (C3) (Tg(+)C3(KO) and Tg(+)C3(HET), respectively) or fully deficient for complement factor C5a receptor (C5aR) (Tg(+)C5aR(KO)) develop either no ovarian tumors or tumors that were small and poorly vascularized compared to wild-type littermates (Tg(+)C3(WT), Tg(+)C5aR(WT)). The percentage of tumor infiltrating immune cells in Tg(+)C3(HET) tumors compared to Tg(+)C3(WT) controls was either similar (macrophages, B cells, myeloid-derived suppressor cells), elevated (effector T cells), or decreased (regulatory T cells). Regardless of these ratios, cytokine production by immune cells taken from Tg(+)C3(HET) tumors was reduced on stimulation compared to Tg(+)C3(WT) controls. Interestingly, CD31(+) endothelial cell (EC) function in angiogenesis was significantly impaired in both C3(KO) and C5aR(KO) mice. Further, using the C5aR antagonist PMX53, tube formation of ECs was shown to be C5a-dependent, possibly through interactions with the VEGF(165) but not VEGF(121) isoform. Finally, the mouse VEGF(164) transcript was underexpressed in C3(KO) livers compare to C3(WT) livers. Thus, we conclude that complement inhibition blocks tumor outgrowth by altering EC function and VEGF(165) expression.
Collapse
|
107
|
Guzmán E, Maher M, Temkin A, Pitts T, Wright A. Spongiatriol inhibits nuclear factor kappa B activation and induces apoptosis in pancreatic cancer cells. Mar Drugs 2013; 11:1140-51. [PMID: 23549285 PMCID: PMC3705394 DOI: 10.3390/md11041140] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 02/14/2013] [Accepted: 03/19/2013] [Indexed: 12/22/2022] Open
Abstract
Pancreatic cancer, the fourth leading cause of cancer death in the US, is highly resistant to all current chemotherapies, and its growth is facilitated by chronic inflammation. The majority of pro-inflammatory cytokines initiate signaling cascades that converge at the activation of the Nuclear Factor Kappa B (NFκB), a signal transduction molecule that promotes cell survival, proliferation and angiogenesis. In an effort to identify novel inhibitors of NFκB, the HBOI library of pure compounds was screened using a reporter cell line that produces luciferin under the transcriptional control of NFκB. Seven compounds were identified through this screen, but in the case of five of them, their reported mechanism of action made them unlikely to be specific NFκB inhibitors. Spongiatriol, a marine furanoditerpenoid that was first isolated in the 1970s, is shown here to inhibit NFκB transcriptional activity in a reporter cell line, to reduce levels of phosphorylated (active) NFκB in the AsPC-1 cell line, to have an IC50 for cytotoxicity in the low micromolar range against the AsPC-1, BxPC-3, MiaPaCa-2 and Panc-1 pancreatic cancer cell lines, and to induce moderate but significant apoptosis in both the AsPC-1 and the Panc-1 cell lines.
Collapse
Affiliation(s)
- Esther Guzmán
- Center for Marine Biomedical and Biotechnology Research, Harbor Branch Oceanographic Institute at Florida Atlantic University, Fort Pierce, FL 34946, USA.
| | | | | | | | | |
Collapse
|
108
|
Eljaszewicz A, Wiese M, Helmin-Basa A, Jankowski M, Gackowska L, Kubiszewska I, Kaszewski W, Michalkiewicz J, Zegarski W. Collaborating with the enemy: function of macrophages in the development of neoplastic disease. Mediators Inflamm 2013; 2013:831387. [PMID: 23576856 PMCID: PMC3613099 DOI: 10.1155/2013/831387] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Revised: 12/26/2012] [Accepted: 01/13/2013] [Indexed: 01/15/2023] Open
Abstract
Due to the profile of released mediators (such as cytokines, chemokines, growth factors, etc.), neoplastic cells modulate the activity of immune system, directly affecting its components both locally and peripherally. This is reflected by the limited antineoplastic activity of the immune system (immunosuppressive effect), induction of tolerance to neoplastic antigens, and the promotion of processes associated with the proliferation of neoplastic tissue. Most of these responses are macrophages dependent, since these cells show proangiogenic properties, attenuate the adaptive response (anergization of naïve T lymphocytes, induction of Treg cell formation, polarization of immune response towards Th2, etc.), and support invasion and metastases formation. Tumor-associated macrophages (TAMs), a predominant component of leukocytic infiltrate, "cooperate" with the neoplastic tissue, leading to the intensified proliferation and the immune escape of the latter. This paper characterizes the function of macrophages in the development of neoplastic disease.
Collapse
Affiliation(s)
- Andrzej Eljaszewicz
- Chair of Immunology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University of Torun, Bydgoszcz, Poland.
| | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Tang D, Wang D, Yuan Z, Xue X, Zhang Y, An Y, Chen J, Tu M, Lu Z, Wei J, Jiang K, Miao Y. Persistent activation of pancreatic stellate cells creates a microenvironment favorable for the malignant behavior of pancreatic ductal adenocarcinoma. Int J Cancer 2013; 132:993-1003. [PMID: 22777597 DOI: 10.1002/ijc.27715] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 06/20/2012] [Accepted: 06/28/2012] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most common malignant tumors with poor prognosis due to extremely high malignancy, low rate of eligibility for surgical resection and chemoradiation resistance. Increasing evidence indicate that the interaction between activated pancreatic stellate cells (PSCs) and PDAC cells plays an important role in the development of PDAC. By producing high levels of cytokines, chemotactic factors, growth factors and excessive extracellular matrix (ECM), PSCs create desmoplasia and a hypoxic microenvironment that promote the initiation, development, evasion of immune surveillance, invasion, metastasis and resistance to chemoradiation of PDAC. Therefore, targeting the interaction between PSCs and PDAC cells may represent a novel therapeutic approach to advanced PDAC, especially therapies that target PSCs of the pancreatic tumor microenvironment.
Collapse
Affiliation(s)
- Dong Tang
- Department of Gastrointestinal Surgery, Subei People's Hospital of Jiangsu Province (Clinical Medical College of Yangzhou University), Yangzhou, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Crnogorac-Jurcevic T, Chelala C, Barry S, Harada T, Bhakta V, Lattimore S, Jurcevic S, Bronner M, Lemoine NR, Brentnall TA. Molecular analysis of precursor lesions in familial pancreatic cancer. PLoS One 2013; 8:e54830. [PMID: 23372777 PMCID: PMC3553106 DOI: 10.1371/journal.pone.0054830] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 12/17/2012] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND With less than a 5% survival rate pancreatic adenocarcinoma (PDAC) is almost uniformly lethal. In order to make a significant impact on survival of patients with this malignancy, it is necessary to diagnose the disease early, when curative surgery is still possible. Detailed knowledge of the natural history of the disease and molecular events leading to its progression is therefore critical. METHODS AND FINDINGS We have analysed the precursor lesions, PanINs, from prophylactic pancreatectomy specimens of patients from four different kindreds with high risk of familial pancreatic cancer who were treated for histologically proven PanIN-2/3. Thus, the material was procured before pancreatic cancer has developed, rather than from PanINs in a tissue field that already contains cancer. Genome-wide transcriptional profiling using such unique specimens was performed. Bulk frozen sections displaying the most extensive but not microdissected PanIN-2/3 lesions were used in order to obtain the holistic view of both the precursor lesions and their microenvironment. A panel of 76 commonly dysregulated genes that underlie neoplastic progression from normal pancreas to PanINs and PDAC were identified. In addition to shared genes some differences between the PanINs of individual families as well as between the PanINs and PDACs were also seen. This was particularly pronounced in the stromal and immune responses. CONCLUSIONS Our comprehensive analysis of precursor lesions without the invasive component provides the definitive molecular proof that PanIN lesions beget cancer from a molecular standpoint. We demonstrate the need for accumulation of transcriptomic changes during the progression of PanIN to PDAC, both in the epithelium and in the surrounding stroma. An identified 76-gene signature of PDAC progression presents a rich candidate pool for the development of early diagnostic and/or surveillance markers as well as potential novel preventive/therapeutic targets for both familial and sporadic pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Tatjana Crnogorac-Jurcevic
- Molecular Oncology Centre, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Arumugam T, Ramachandran V, Sun D, Peng Z, Pal A, Maxwell DS, Bornmann WG, Logsdon CD. Designing and developing S100P inhibitor 5-methyl cromolyn for pancreatic cancer therapy. Mol Cancer Ther 2013; 12:654-62. [PMID: 23303403 DOI: 10.1158/1535-7163.mct-12-0771] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We have previously shown that the antiallergic drug cromolyn blocks S100P interaction with its receptor receptor for advanced glycation end product (RAGE) and improves gemcitabine effectiveness in pancreatic ductal adenocarcinoma (PDAC). However, the concentration required to achieve its effectiveness was high (100 μmol/L). In this study, we designed and synthesized analogs of cromolyn and analyzed their effectiveness compared with the parent molecule. An ELISA was used to confirm the binding of S100P with RAGE and to test the effectiveness of the different analogs. Analog 5-methyl cromolyn (C5OH) blocked S100P binding as well as the increases in NF-κB activity, cell growth, and apoptosis normally caused by S100P. In vivo C5OH systemic delivery reduced NF-κB activity to a greater extent than cromolyn and at 10 times lesser dose (50 mg vs. 5 mg). Treatment of mice-bearing syngeneic PDAC tumors showed that C5OH treatment reduced both tumor growth and metastasis. C5OH treatment of nude mice bearing orthotopic highly aggressive pancreatic Mpanc96 cells increased the overall animal survival. Therefore, the cromolyn analog, C5OH, was found to be more efficient and potent than cromolyn as a therapeutic for PDAC.
Collapse
|
112
|
Abstract
Mast cells are well known as principle effector cells of type I hypersensitivity responses. Beyond this role in allergic disease, these cells are now appreciated as playing an important role in many inflammatory conditions. This review summarizes the support for mast cell involvement in resisting bacterial infection, exacerbating autoimmunity and atherosclerosis, and promoting cancer progression. A commonality in these conditions is the ability of mast cells to elicit migration of many cell types, often through the production of inflammatory cytokines such as tumor necrosis factor. However, recent data also demonstrates that mast cells can suppress the immune response through interleukin-10 production. The data encourage those working in this field to expand their view of how mast cells contribute to immune homeostasis.
Collapse
|
113
|
Oldford SA, Marshall JS. Mast Cell Modulation of the Tumor Microenvironment. THE TUMOR IMMUNOENVIRONMENT 2013:479-509. [DOI: 10.1007/978-94-007-6217-6_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
114
|
Abstract
Smoking is a major risk factor for chronic pancreatitis and pancreatic cancer. However, the mechanisms through which it causes the diseases remain unknown. In the present manuscript we reviewed the latest knowledge gained on the effect of cigarette smoke and smoking compounds on cell signaling pathways mediating both diseases. We also reviewed the effect of smoking on the pancreatic cell microenvironment including inflammatory cells and stellate cells.
Collapse
Affiliation(s)
- Mouad Edderkaoui
- Cedars-Sinai Medical Center & University of California, Los Angeles, USA
| | | |
Collapse
|
115
|
Gutkin DW. Tumor Infiltration by Immune Cells: Pathologic Evaluation and a Clinical Significance. THE TUMOR IMMUNOENVIRONMENT 2013:39-82. [DOI: 10.1007/978-94-007-6217-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
116
|
Microenvironment elements involved in the development of pancreatic cancer tumor. Gastroenterol Res Pract 2012; 2012:585674. [PMID: 23304126 PMCID: PMC3530867 DOI: 10.1155/2012/585674] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 11/22/2012] [Indexed: 01/04/2023] Open
Abstract
Introduction. In spite of intensive research during many years, pancreatic adenocarcinoma remains one of the deadliest cancers. The surgical intervention remains main possibility of treatment because chemotherapy and radiotherapy has a minimal impact on long-term survival. We are still looking for the weak points of this devastating disease. Materials and Methods. Pancreatic tumor tissue samples were collected from 36 patients. Immunohistochemistry staining was used to evaluate expression of growth factors and immune infiltrates. Activity of MMP2 and MMP9 was assessed by gelatin zymography on 7.5% SDS-PAGE gel with 0.1% gelatin. Results. All growth factors were strongly expressed in pancreatic tumor tissue. We found that level of expression of c-Met receptor was higher for G3 tumors than for G2 tumors. Also we found that active MMP2 was present at all stages of tumor while active MMP9 just at more advanced tumors. Abundant immune cells infiltration was distinctive for tumor tissue, especially macrophages were infiltrating tumor tissue. We found that amount of macrophages was associated with lymph nodes metastases. Conclusion. In our research we demonstrated that among many factors influencing tumor microenvironment c-Met receptor, infiltrating macrophages and MMP2 have significant influence on development and invasion of pancreatic cancer.
Collapse
|
117
|
Cavel O, Shomron O, Shabtay A, Vital J, Trejo-Leider L, Weizman N, Krelin Y, Fong Y, Wong RJ, Amit M, Gil Z. Endoneurial macrophages induce perineural invasion of pancreatic cancer cells by secretion of GDNF and activation of RET tyrosine kinase receptor. Cancer Res 2012; 72:5733-43. [PMID: 22971345 DOI: 10.1158/0008-5472.can-12-0764] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Perineural invasion of cancer cells (CPNI) is found in most patients with pancreatic adenocarcinomas (PDA), prostate, or head and neck cancers. These patients undergo palliative rather than curative treatment due to dissemination of cancer along nerves, well beyond the extent of any local invasion. Although CPNI is a common source of distant tumor spread and a cause of significant morbidity, its exact mechanism is undefined. Immunohistochemical analysis of specimens excised from patients with PDAs showed a significant increase in the number of endoneurial macrophages (EMΦ) that lie around nerves invaded by cancer compared with normal nerves. Video microscopy and time-lapse analysis revealed that EMΦs are recruited by the tumor cells in response to colony-stimulated factor-1 secreted by invading cancer cells. Conditioned medium (CM) of tumor-activated EMΦs (tEMΦ) induced a 5-fold increase in migration of PDA cells compared with controls. Compared with resting EMΦs, tEMΦs secreted higher levels of glial-derived neurotrophic factor (GDNF), inducing phosphorylation of RET and downstream activation of extracellular signal-regulated kinases (ERK) in PDA cells. Genetic and pharmacologic inhibition of the GDNF receptors GFRA1 and RET abrogated the migratory effect of EMΦ-CM and reduced ERK phosphorylation. In an in vivo CPNI model, CCR2-deficient mice that have reduced macrophage recruitment and activation showed minimal nerve invasion, whereas wild-type mice developed complete sciatic nerve paralysis due to massive CPNI. Taken together, our results identify a paracrine response between EMΦs and PDA cells that orchestrates the formation of cancer nerve invasion.
Collapse
Affiliation(s)
- Oren Cavel
- The Laboratory for Applied Cancer Research, Department of Pathology, Tel Aviv Medical Center, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Hindriksen S, Bijlsma MF. Cancer Stem Cells, EMT, and Developmental Pathway Activation in Pancreatic Tumors. Cancers (Basel) 2012; 4:989-1035. [PMID: 24213498 PMCID: PMC3712732 DOI: 10.3390/cancers4040989] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 10/02/2012] [Accepted: 10/09/2012] [Indexed: 12/15/2022] Open
Abstract
Pancreatic cancer is a disease with remarkably poor patient survival rates. The frequent presence of metastases and profound chemoresistance pose a severe problem for the treatment of these tumors. Moreover, cross-talk between the tumor and the local micro-environment contributes to tumorigenicity, metastasis and chemoresistance. Compared to bulk tumor cells, cancer stem cells (CSC) have reduced sensitivity to chemotherapy. CSC are tumor cells with stem-like features that possess the ability to self-renew, but can also give rise to more differentiated progeny. CSC can be identified based on increased in vitro spheroid- or colony formation, enhanced in vivo tumor initiating potential, or expression of cell surface markers. Since CSC are thought to be required for the maintenance of a tumor cell population, these cells could possibly serve as a therapeutic target. There appears to be a causal relationship between CSC and epithelial-to-mesenchymal transition (EMT) in pancreatic tumors. The occurrence of EMT in pancreatic cancer cells is often accompanied by re-activation of developmental pathways, such as the Hedgehog, WNT, NOTCH, and Nodal/Activin pathways. Therapeutics based on CSC markers, EMT, developmental pathways, or tumor micro-environment could potentially be used to target pancreatic CSC. This may lead to a reduction of tumor growth, metastatic events, and chemoresistance in pancreatic cancer.
Collapse
Affiliation(s)
- Sanne Hindriksen
- Laboratory for Experimental Oncology and Radiobiology, Academic Medical Centre, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands.
| | | |
Collapse
|
119
|
Wei P, Tang H, Li D. Insights into pancreatic cancer etiology from pathway analysis of genome-wide association study data. PLoS One 2012; 7:e46887. [PMID: 23056513 PMCID: PMC3464266 DOI: 10.1371/journal.pone.0046887] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 09/06/2012] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Pancreatic cancer is the fourth leading cause of cancer death in the U.S. and the etiology of this highly lethal disease has not been well defined. To identify genetic susceptibility factors for pancreatic cancer, we conducted pathway analysis of genome-wide association study (GWAS) data in 3,141 pancreatic cancer patients and 3,367 controls with European ancestry. METHODS Using the gene set ridge regression in association studies (GRASS) method, we analyzed 197 pathways identified from the Kyoto Encyclopedia of Genes and Genomes database. We used the logistic kernel machine (LKM) test to identify major contributing genes to each pathway. We conducted functional enrichment analysis of the most significant genes (P<0.01) using the Database for Annotation, Visualization, and Integrated Discovery (DAVID). RESULTS Two pathways were significantly associated with risk of pancreatic cancer after adjusting for multiple comparisons (P<0.00025) and in replication testing: neuroactive ligand-receptor interaction, (Ps<0.00002), and the olfactory transduction pathway (P = 0.0001). LKM test identified four genes that were significantly associated with risk of pancreatic cancer after Bonferroni correction (P<1×10(-5)): ABO, HNF1A, OR13C4, and SHH. Functional enrichment analysis using DAVID consistently found the G protein-coupled receptor signaling pathway (including both neuroactive ligand-receptor interaction and olfactory transduction pathways) to be the most significant pathway for pancreatic cancer risk in this study population. CONCLUSION These novel findings provide new perspectives on genetic susceptibility to and molecular mechanisms of pancreatic cancer.
Collapse
Affiliation(s)
- Peng Wei
- Division of Biostatistics and Human Genetics Center, School of Public Health, University of Texas Health Science Center, Houston, Texas, United States of America
| | - Hongwei Tang
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Donghui Li
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
120
|
Schmid MC, Varner JA. Myeloid cells in tumor inflammation. Vasc Cell 2012; 4:14. [PMID: 22938502 PMCID: PMC3479419 DOI: 10.1186/2045-824x-4-14] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 06/25/2012] [Indexed: 02/08/2023] Open
Abstract
Bone marrow derived myeloid cells progressively accumulate in tumors, where they establish an inflammatory microenvironment that is favorable for tumor growth and spread. These cells are comprised primarily of monocytic and granulocytic myeloid derived suppressor cells (MDSCs) or tumor-associated macrophages (TAMs), which are generally associated with a poor clinical outcome. MDSCs and TAMs promote tumor progression by stimulating immunosuppression, neovascularization, metastasis and resistance to anti-cancer therapy. Strategies to target the tumor-promoting functions of myeloid cells could provide substantial therapeutic benefit to cancer patients.
Collapse
Affiliation(s)
- Michael C Schmid
- Moores UCSD Cancer Center, University of California, San Diego, 3855 Health Sciences Drive, La Jolla, CA, 92093-0912, USA.
| | | |
Collapse
|
121
|
Dalton DK, Noelle RJ. The roles of mast cells in anticancer immunity. Cancer Immunol Immunother 2012; 61:1511-20. [PMID: 22527244 PMCID: PMC3808963 DOI: 10.1007/s00262-012-1246-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 03/09/2012] [Indexed: 01/05/2023]
Abstract
The tumor microenvironment (TME), which is composed of stromal cells such as endothelial cells, fibroblasts, and immune cells, provides a supportive niche promoting the growth and invasion of tumors. The TME also raises an immunosuppressive barrier to effective antitumor immune responses and is therefore emerging as a target for cancer immunotherapies. Mast cells (MCs) accumulate in the TME at early stages, and their presence in the TME is associated with poor prognosis in many aggressive human cancers. Some well-established roles of MCs in cancer are promoting angiogenesis and tumor invasion into surrounding tissues. Several mouse models of inducible and spontaneous cancer show that MCs are among the first immune cells to accumulate within and shape the TME. Although MCs and other suppressive myeloid cells are associated with poor prognosis in human cancers, high densities of intratumoral T effector (T(eff)) cells are associated with a favorable prognosis. The latter finding has stimulated interest in developing therapies to increase intratumoral T cell density. However, cellular and molecular mechanisms promoting high densities of intratumoral T(eff) cells within the TME are poorly understood. New evidence suggests that MCs are essential for shaping the immune-suppressive TME and impairing both antitumor T(eff) cell responses and intratumoral T cell accumulation. These roles for MCs warrant further elucidation in order to improve antitumor immunity. Here, we will summarize clinical studies of the prognostic significance of MCs within the TME in human cancers, as well as studies in mouse models of cancer that reveal how MCs are recruited to the TME and how MCs facilitate tumor growth. Also, we will summarize our recent studies indicating that MCs impair generation of protective antitumor T cell responses and accumulation of intratumoral T(eff) cells. We will also highlight some approaches to target MCs in the TME in order to unleash antitumor cytotoxicity.
Collapse
Affiliation(s)
- Dyana K Dalton
- Department of Microbiology and Immunology, Dartmouth Medical School, 1 Medical Center Drive, Lebanon, NH 03756, USA.
| | | |
Collapse
|
122
|
Erkan M, Hausmann S, Michalski CW, Fingerle AA, Dobritz M, Kleeff J, Friess H. The role of stroma in pancreatic cancer: diagnostic and therapeutic implications. Nat Rev Gastroenterol Hepatol 2012; 9:454-67. [PMID: 22710569 DOI: 10.1038/nrgastro.2012.115] [Citation(s) in RCA: 486] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the five most lethal malignancies worldwide and survival has not improved substantially in the past 30 years. Desmoplasia (abundant fibrotic stroma) is a typical feature of PDAC in humans, and stromal activation commonly starts around precancerous lesions. It is becoming clear that this stromal tissue is not a bystander in disease progression. Cancer-stroma interactions effect tumorigenesis, angiogenesis, therapy resistance and possibly the metastatic spread of tumour cells. Therefore, targeting the tumour stroma, in combination with chemotherapy, is a promising new option for the treatment of PDAC. In this Review, we focus on four issues. First, how can stromal activity be used to detect early steps of pancreatic carcinogenesis? Second, what is the effect of perpetual pancreatic stellate cell activity on angiogenesis and tissue perfusion? Third, what are the (experimental) antifibrotic therapy options in PDAC? Fourth, what lessons can be learned from Langton's Ant (a simple mathematical model) regarding the unpredictability of genetically engineered mouse models?
Collapse
Affiliation(s)
- Mert Erkan
- Department of General Surgery, Klinikum rechts der Isar, Technische Universität München, Ismaningerstrasse 12, 81675 Munich, Germany.
| | | | | | | | | | | | | |
Collapse
|
123
|
Evans A, Costello E. The role of inflammatory cells in fostering pancreatic cancer cell growth and invasion. Front Physiol 2012; 3:270. [PMID: 22969725 PMCID: PMC3431795 DOI: 10.3389/fphys.2012.00270] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 06/26/2012] [Indexed: 12/11/2022] Open
Abstract
The pancreatic ductal adenocarcinoma (PDAC) microenvironment accommodates a variety of cell types and a plethora of complex interactions between tumor cells, host cells and extracellular matrix (ECM) components. Here we review the role of inflammatory cells, in particular mast cells, myeloid-derived suppressor cells, macrophages, T regulatory cells, T helper cells and neutrophils. The picture that emerges is that of a tumor microenvironment, in which the immune response is actively suppressed, and inflammatory cells contribute in a variety of ways to tumor progression.
Collapse
Affiliation(s)
- Anthony Evans
- Liverpool Cancer Research UK Centre, University of Liverpool Liverpool, UK
| | | |
Collapse
|
124
|
Gardian K, Janczewska S, Olszewski WL, Durlik M. Analysis of pancreatic cancer microenvironment: role of macrophage infiltrates and growth factors expression. J Cancer 2012; 3:285-91. [PMID: 22773932 PMCID: PMC3390598 DOI: 10.7150/jca.4537] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 06/05/2012] [Indexed: 12/18/2022] Open
Abstract
Background: Research over the last twenty years has yielded much insight into pancreatic cancer biology, but it has neither improved diagnostics methods nor the way of treatment. The question remains as to what the critical deciding factor is in making pancreatic cancer such an aggressive disease. Methods: Pancreatic tumor tissue came from 36 patients. To assess lymphatic vessels color lymphangiography and immunohistochemistry were used. Activity of matrix metalloproteinases was studied with gel and in situ zymography. Expression of growth factors and infiltrating immune cells were investigated using immunohistochemistry. Results: Our study revealed that the structures that correspond to lymphatic vessels were not observed in tumor center but only at the edge of the tumor. All studied growth factors were present in tumor tissue. We found that the difference in expression between G2 and G3 stage was statistically relevant in cases of c-Met receptor. Inflammatory cells were present around neoplastic glands and also strongly around nerves infiltrated by cancer cells. The number of infiltrating macrophages in tumor tissue was significantly higher in group with metastases to lymph nodes. Conclusion: We showed two factors that influence pancreatic cancer progression and invasion: c-Met receptors and macrophages infiltrating tumor tissue. Based on our analysis, this indicates that epithelial-mesenchymal transition might be crucial in the progression of pancreatic cancer.
Collapse
Affiliation(s)
- Katarzyna Gardian
- Mossakowski Medical Research Centre Polish Academy of Sciences, Department of Surgical Research and Transplantology 5 Pawinskiego Str, 02-106 Warsaw, POLAND
| | | | | | | |
Collapse
|
125
|
Pandol SJ, Apte MV, Wilson JS, Gukovskaya AS, Edderkaoui M. The burning question: why is smoking a risk factor for pancreatic cancer? Pancreatology 2012; 12:344-349. [PMID: 22898636 PMCID: PMC3956306 DOI: 10.1016/j.pan.2012.06.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 06/13/2012] [Accepted: 06/29/2012] [Indexed: 12/11/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease. The prognosis is poor; less than 5% of those diagnosed are still alive five years after diagnosis, and complete remission is still rare. Tobacco smoking is a major risk factor of pancreatic cancer. However, the mechanism(s) through which it causes the disease remains unknown. Accumulating evidence indicates that carcinogenic compounds in cigarette smoke stimulate pancreatic cancer progression through induction of inflammation and fibrosis which act in concert with genetic factors leading to the inhibition of cell death and stimulation of proliferation resulting in the promotion of the PDAC.
Collapse
Affiliation(s)
- Stephen J. Pandol
- Veterans Affairs Greater Los Angeles Healthcare System and University of California Los Angeles, California
| | - Minoti V. Apte
- Pancreatic Research Group, South Western Sydney Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Jeremy S. Wilson
- Pancreatic Research Group, South Western Sydney Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Anna S. Gukovskaya
- Veterans Affairs Greater Los Angeles Healthcare System and University of California Los Angeles, California
| | - Mouad Edderkaoui
- Veterans Affairs Greater Los Angeles Healthcare System and University of California Los Angeles, California
| |
Collapse
|
126
|
Tang D, Yuan Z, Xue X, Lu Z, Zhang Y, Wang H, Chen M, An Y, Wei J, Zhu Y, Miao Y, Jiang K. High expression of Galectin-1 in pancreatic stellate cells plays a role in the development and maintenance of an immunosuppressive microenvironment in pancreatic cancer. Int J Cancer 2012; 130:2337-2348. [PMID: 21780106 DOI: 10.1002/ijc.26290] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 06/28/2011] [Indexed: 02/05/2023]
Abstract
Galectin-1 is implicated in making tumor cells immune privileged, in part by regulating the survival of infiltrating T cells. Galectin-1 is strongly expressed in activated pancreatic stellate cells (PSCs); however, whether this is linked to tumor cell immune escape in pancreatic cancer is unknown. Galectin-1 was knocked down in PSCs isolated from pancreatic tissues using small interfering RNA (siRNA), or overexpressed using recombinant lentiviruses, and the PSCs were cocultured with T cells. CD3(+) , CD4(+) and CD8(+) T cell apoptosis was detected by flow cytometry; T cell IL-2, IL-4, IL-5 and INF-γ production levels were quantified using ELISA. Immunohistochemical analysis showed increased numbers of PSCs expressed Galectin-1 (p < 0.01) and pancreatic cancers had increased CD3(+) T cell densities (p < 0.01) compared to normal pancreas or chronic pancreatitis samples. In coculture experiments, PSCs that overexpressed Galectin-1 induced apoptosis of CD4(+) T cells (p < 0.01) and CD8(+) T cells (p < 0.05) significantly, compared to normal PSCs. Knockdown of Galectin-1 in PSCs increased CD4(+) T cell (p < 0.01) and CD8(+) T cell viability (p < 0.05). Supernatants from T cells cocultured with PSCs that overexpressed Galectin-1 contained significantly increased levels of Th2 cytokines (IL-4 and IL-5, p < 0.01) and decreased Th1 cytokines (IL-2 and INF-γ, p < 0.01). However, the knockdown of PSC Galectin-1 had the opposite effect on Th1 and Th2 cytokine secretion. Our study suggests that the overexpression of Galectin-1 in PSCs induced T cell apoptosis and Th2 cytokine secretion, which may regulate PSC-dependent immunoprivilege in the pancreatic cancer microenvironment. Galectin-1 may provide a novel candidate target for pancreatic cancer immunotherapy.
Collapse
Affiliation(s)
- Dong Tang
- Department of General Surgery, Nanjing Medical University, Nanjing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Abstract
With the continued failures of both early diagnosis and treatment options for pancreatic cancer, it is now time to comprehensively evaluate the role of the immune system on the development and progression of pancreatic cancer. It is important to develop strategies that harness the molecules and cells of the immune system to treat this disease. This review will focus primarily on the role of immune cells in the development and progression of pancreatic ductal adenocarcinoma and to evaluate what is known about the interaction of immune cells with the tumor microenvironment and their role in tumor growth and metastasis. We will conclude with a brief discussion of therapy for pancreatic cancer and the potential role for immunotherapy. We hypothesize that the role of the immune system in tumor development and progression is tissue specific. Our hope is that better understanding of this process will lead to better treatments for this devastating disease.
Collapse
Affiliation(s)
- Megan B. Wachsmann
- Masters Program in Clinical Sciences, University of Texas Southwestern Medical Center at Dallas, 6000 Harry Hines Blvd, Dallas, Texas 75390-8576, USA
| | - Laurentiu M. Pop
- The Cancer Immunobiology Center, University of Texas Southwestern Medical Center at Dallas, 6000 Harry Hines Blvd, Dallas, Texas 75390-8576, USA
| | - Ellen S. Vitetta
- The Cancer Immunobiology Center, University of Texas Southwestern Medical Center at Dallas, 6000 Harry Hines Blvd, Dallas, Texas 75390-8576, USA
- The Departments of Microbiology and Immunology, University of Texas Southwestern Medical Center at Dallas, 6000 Harry Hines Blvd, Dallas, Texas 75390-8576, USA
| |
Collapse
|
128
|
Kurahara H, Takao S, Kuwahata T, Nagai T, Ding Q, Maeda K, Shinchi H, Mataki Y, Maemura K, Matsuyama T, Natsugoe S. Clinical significance of folate receptor β-expressing tumor-associated macrophages in pancreatic cancer. Ann Surg Oncol 2012; 19:2264-71. [PMID: 22350599 DOI: 10.1245/s10434-012-2263-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Indexed: 12/21/2022]
Abstract
PURPOSE To examine the appearance and distribution of folate receptor β-expressing (FRβ+) macrophages in the pancreatic tumor microenvironment and their relationship to metastasis and prognosis in pancreatic cancer patients. METHODS Tumor samples were obtained from 76 patients with pancreatic cancer who underwent curative resection. None of these patients had received any preoperative chemotherapy or radiotherapy. Both FRβ+ and tumor-infiltrating (CD68+) macrophages were examined in each tumor specimen by immunohistochemical and immunofluorescence staining using a newly developed anti-human FRβ monoclonal antibody and CD68 antibody. The appearance, distribution, expression of vascular endothelial growth factor (VEGF) on FRβ-expressing or CD68+ macrophages, and tumor microvessel density (MVD) were assessed. Log rank test and Cox proportional hazard regression were used to investigate the associations among CD68+ or FRβ+ macrophages, clinicopathologic factors, and overall survival. RESULTS FRβ+ macrophages were prominent in the perivascular regions of the tumor-invasive front and a specific subset with VEGF expression in the CD68+ macrophages. A high number of FRβ+ macrophages showed a positive association with high MVD, a high incidence of hematogenous metastasis, and a poor prognosis in pancreatic cancer patients. CONCLUSIONS FRβ+ macrophages are a novel subset of tumor-associated macrophages in pancreatic cancer and may play an important role in the tumor microenvironment in association with systemic metastasis through the interaction with tumor cells and vessels. FRβ+ macrophages may be promising a targeting therapy for pancreatic cancer.
Collapse
Affiliation(s)
- Hiroshi Kurahara
- Department of Digestive Surgery, Kagoshima University, Kagoshima, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
McCleary-Wheeler AL, McWilliams R, Fernandez-Zapico ME. Aberrant signaling pathways in pancreatic cancer: a two compartment view. Mol Carcinog 2012; 51:25-39. [PMID: 22162229 DOI: 10.1002/mc.20827] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pancreatic cancer is a devastating disease with historically limited success in treatment and a poor prognosis. Pancreatic cancer appears to have a progressive pathway of development, initiating from well-described pancreatic intraepithelial neoplasia lesions and concluding with invasive carcinoma. These early lesions have been shown to harbor-specific alterations in signaling pathways that remain throughout this tumorigenesis process. Meanwhile, new alterations occur during this process of disease progression to have a cumulative effect. This series of events not only impacts the epithelial cells comprising the tumor, but they may also affect the surrounding stromal cells. The result is the formation of complex signaling networks of communication between the tumor epithelial cell and the stromal cell compartments to promote a permissive and cooperative environment. This article highlights some of the most common pathway aberrations involved with this disease, and how these may subsequently affect one or both cellular compartments. Consequently, furthering our understanding of these pathways in terms of their function on the tumoral epithelial and stromal compartments may prove to be crucial to the development of targeted and more successful therapies in the future.
Collapse
|
130
|
The desmoplastic stroma plays an essential role in the accumulation and modulation of infiltrated immune cells in pancreatic adenocarcinoma. Clin Dev Immunol 2011; 2011:212810. [PMID: 22190968 PMCID: PMC3235447 DOI: 10.1155/2011/212810] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Revised: 08/22/2011] [Accepted: 09/05/2011] [Indexed: 02/07/2023]
Abstract
Tumor microenvironment is composed of tumor cells, fibroblasts, and infiltrating immune cells, which all work together and create an inflammatory environment favoring tumor progression. The present study aimed to investigate the role of the desmoplastic stroma in pancreatic ductal adenocarcinoma (PDAC) regarding expression of inflammatory factors and infiltration of immune cells and their impact on the clinical outcome. The PDAC tissues examined expressed significantly increased levels of immunomodulatory and chemotactic factors (IL-6, TGFβ, IDO, COX-2, CCL2, and CCL20) and immune cell-specific markers corresponding to macrophages, myeloid, and plasmacytoid dendritic cells (DCs) as compared to controls. Furthermore, short-time survivors had the lowest levels of DC markers. Immunostainings indicated that the different immune cells and inflammatory factors are mainly localized to the desmoplastic stroma. Therapies modulating the inflammatory tumor microenvironment to promote the attraction of DCs and differentiation of monocytes into functional DCs might improve the survival of PDAC patients.
Collapse
|
131
|
Interleukin 1α sustains the expression of inflammatory factors in human pancreatic cancer microenvironment by targeting cancer-associated fibroblasts. Neoplasia 2011; 13:664-75. [PMID: 21847358 DOI: 10.1593/neo.11332] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 05/17/2011] [Accepted: 05/20/2011] [Indexed: 02/06/2023] Open
Abstract
The tumor microenvironment in pancreatic ductal adenocarcinoma (PDAC) is dynamic, with an extensive interaction between the stroma and tumor cells. The aim of this study was to delineate the cross talk between PDAC and cancer-associated fibroblasts (CAFs), with a focus on the mechanism creating the chronic inflammatory tumor milieu. We assessed the effects of the cross talk between PDAC and CAF cell lines on the creation and sustenance of the inflammatory tumor microenvironment in pancreatic cancer. The coculture of PDAC and CAF cell lines enhanced the levels of inflammatory factors including IL-1α, IL-6, CXCL8, VEGF-A, CCL20, and COX-2. CAFs were superior to tumor cells regarding the production of most inflammatory factors, and tumor cell-associated IL-1α was established as the initiator of the enhanced production of inflammatory factors through the binding of IL-1α to IL-1 receptor 1 (IL-1R1) expressed predominantly by CAFs. Furthermore, we found a correlation between IL-1α and CXCL8 expression levels in PDAC tissues and correlation between IL-1α expression and the clinical outcome of the patients. This confirmed an important role for the IL-1 signaling cascade in the creation and sustenance of a tumor favorable microenvironment. Neutralization of the IL-1α signaling efficiently diminished the cross talk-induced production of inflammatory factors. These data suggest that the cross talk between PDAC cells and the main stroma cell type, i.e. CAFs, is one essential factor in the formation of the inflammatory tumor environment, and we propose that neutralization of the IL-1α signaling might be a potential therapy for this cancer.
Collapse
|
132
|
Gaida MM, Welsch T, Herpel E, Tschaharganeh DF, Fischer L, Schirmacher P, Hänsch GM, Bergmann F. MHC class II expression in pancreatic tumors: a link to intratumoral inflammation. Virchows Arch 2011; 460:47-60. [PMID: 22120497 DOI: 10.1007/s00428-011-1175-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Revised: 10/28/2011] [Accepted: 11/09/2011] [Indexed: 12/22/2022]
Abstract
Major histocompatibility complex class II antigens (MHC class II) are constitutively expressed by professional antigen presenting cells and present antigenic peptides to specific CD4+ T lymphocytes. MHC class II expression, however, can also be induced on epithelial cells and in a variety of solid tumors. We tested MHC class II expression on tissue samples derived from patients with pancreatic ductal adenocarcinoma (PDAC) and pancreatic endocrine tumors (PET). Immunohistochemistry revealed MHC class II expression in 86 of 112 (76.8%) PDAC samples and in 30 of 43 (70.0%) PET samples. In PDAC and PET, MHC class II expression correlated significantly with severity and activity of intratumoral inflammation, as well as with the infiltration of CD4+ T lymphocytes. High MHC class II expression significantly correlated with a better histological grade of differentiation in PDAC. In vitro MHC class II expression could be induced on PDAC tumor cell lines by interferon-γ. These cells were then able to present the staphylococci enterotoxin B superantigen to T lymphocytes, which resulted in T cell proliferation. Our findings suggest that MHC class II expression on pancreatic tumor cells is induced by the intratumoral inflammatory reaction in pancreatic tumors.
Collapse
Affiliation(s)
- Matthias M Gaida
- Institute of Pathology, University of Heidelberg, Im Neuenheimer Feld 220, Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
133
|
Benckert C, Thelen A, Cramer T, Weichert W, Gaebelein G, Gessner R, Jonas S. Impact of microvessel density on lymph node metastasis and survival after curative resection of pancreatic cancer. Surg Today 2011; 42:169-76. [DOI: 10.1007/s00595-011-0045-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 02/18/2011] [Indexed: 12/30/2022]
|
134
|
Amedei A, Niccolai E, D'Elios MM. T cells and adoptive immunotherapy: recent developments and future prospects in gastrointestinal oncology. Clin Dev Immunol 2011; 2011:320571. [PMID: 22110523 PMCID: PMC3216375 DOI: 10.1155/2011/320571] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 08/24/2011] [Indexed: 12/15/2022]
Abstract
Gastrointestinal oncology is one of the foremost causes of death: the gastric cancer accounts for 10.4% of cancer deaths worldwide, the pancreatic cancer for 6%, and finally, the colorectal cancer for 9% of all cancer-related deaths. For all these gastrointestinal cancers, surgical tumor resection remains the primary curative treatment, but the overall 5-year survival rate remains poor, ranging between 20-25%; the addition of combined modality strategies (pre- or postoperative chemoradiotherapy or perioperative chemotherapy) results in 5-year survival rates of only 30-35%. Therefore, many investigators believe that the potential for making significant progress lies on understanding and exploiting the molecular biology of gastrointestinal tumors to investigate new therapeutic strategies such as specific immunotherapy. In this paper we will focus on recent knowledge concerning the role of T cells and the use of T adoptive immunotherapy in the treatment of gastrointestinal cancers.
Collapse
Affiliation(s)
- Amedeo Amedei
- Department of Internal Medicine, University of Florence, Viale Morgagni 85, 50134 Florence, Italy.
| | | | | |
Collapse
|
135
|
The role of tumor-infiltrating immune cells and chronic inflammation at the tumor site on cancer development, progression, and prognosis: emphasis on non-small cell lung cancer. J Thorac Oncol 2011; 6:824-33. [PMID: 21173711 DOI: 10.1097/jto.0b013e3182037b76] [Citation(s) in RCA: 252] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In addition to malignant neoplastic cells, cancer tissues also include immune cells, fibroblasts, and endothelial cells, including an abundant collection of growth factors, proangiogenic mediators, cytokines, chemokines, and components of the extracellular matrix. The main physiological function of the immune cells is to monitor tissue homeostasis, to protect against invading pathogens, and to eliminate transformed or damaged cells. Between immune cells and malignant cells in the tumor stroma, there is in fact a complex interaction which has significant prognostic relevance as the immune system has both tumor-promoting and -inhibiting roles. In non-small cell lung cancer (NSCLC), there is a marked infiltration of different types of immune cells, and the distribution, tissue localization, and cell types are significantly associated with progression and survival. Cancer immunotherapy has seen a significant progress during the last decade. An increased understanding of the mechanisms by which lung cancer cells escape the immune system, and the recognition of the key tumor antigens and immune system components in tumor ignorance have led to the development of several lung cancer vaccines. As the NSCLC prognosis in general is dismal, one may hope that future immunotherapy may be an effective adjunct to standard therapy, reversing immunologic tolerance in the tumor microenvironment. This review reports on the tumor stroma and in particular tumor-suppressing and -promoting roles of the immune system. Furthermore, it presents recent literature on relevant immune cell-related research in NSCLC.
Collapse
|
136
|
Tang QL, Chen WL, Tan XY, Li HG, Yuan XP, Fan S, Wen B, Song Y. Expression and significance of Cyr61 in distant metastasis cells of human primary salivary adenoid cystic carcinoma. ACTA ACUST UNITED AC 2011; 112:228-36. [DOI: 10.1016/j.tripleo.2011.02.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 02/12/2011] [Accepted: 02/15/2011] [Indexed: 11/27/2022]
|
137
|
Lashinger LM, Malone LM, McArthur MJ, Goldberg JA, Daniels EA, Pavone A, Colby JK, Smith NC, Perkins SN, Fischer SM, Hursting SD. Genetic reduction of insulin-like growth factor-1 mimics the anticancer effects of calorie restriction on cyclooxygenase-2-driven pancreatic neoplasia. Cancer Prev Res (Phila) 2011; 4:1030-40. [PMID: 21593196 PMCID: PMC3131443 DOI: 10.1158/1940-6207.capr-11-0027] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Risk of pancreatic cancer, the fourth deadliest cancer in the United States, is increased by obesity. Calorie restriction (CR) prevents obesity, suppresses carcinogenesis in many models, and reduces serum levels of IGF-1. In the present study, we examined the impact of CR on a model of inflammation-associated pancreatitis and pancreatic dysplasia, with a focus on the mechanistic contribution of systemic IGF-1. Administration of a 30% CR diet for 14 weeks decreased serum IGF-1 levels and hindered pancreatic ductal lesion formation and dysplastic severity, relative to a higher calorie control diet, in transgenic mice overexpressing COX-2 [bovine keratin-5 promoter (BK5.COX-2)]. These findings in CR mice correlated with reductions in Ki-67-positive cells, vascular luminal size, VEGF expression, and phosphorylation and total expression of downstream mediators of the IGF-1 pathway. Cell lines derived from BK5.COX-2 ductal lesions (JC101 cells) formed pancreatic tumors in wild-type FVB mice that were significantly reduced in size by a 14-week CR regimen, relative to the control diet. To further understand the impact of circulating levels of IGF-1 on tumor growth in this model, we orthotopically injected JC101 cells into liver-specific IGF-1-deficient (LID) mice. The approximate 65% reduction of serum IGF-1 levels in LID mice resulted in significantly decreased burden of JC101 tumors, despite modestly elevated levels of circulating insulin and leptin. These data show that CR prevents development of dysplasia and growth of pancreatic cancer through alterations in IGF-1, suggesting that modulation of this pathway with dietary and/or pharmacologic interventions is a promising pancreatic cancer prevention strategy.
Collapse
Affiliation(s)
- Laura M. Lashinger
- Department of Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Smithville, TX 78957, USA
- Department of Nutritional Sciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Lauren M. Malone
- Department of Nutritional Sciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Mark J. McArthur
- Department of Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Smithville, TX 78957, USA
| | - Jason A. Goldberg
- Department of Nutritional Sciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Elizabeth A. Daniels
- Department of Nutritional Sciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Amy Pavone
- Department of Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Smithville, TX 78957, USA
| | - Jennifer K. Colby
- Department of Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Smithville, TX 78957, USA
| | - Nicole C. Smith
- Department of Nutritional Sciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Susan N. Perkins
- Department of Nutritional Sciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Susan M. Fischer
- Department of Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Smithville, TX 78957, USA
| | - Stephen D. Hursting
- Department of Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Smithville, TX 78957, USA
- Department of Nutritional Sciences, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
138
|
Li CL, Cui YF, Du XF, Tai S. Clinical significance of matrix metalloproteinases-3 and vascular endothelial growth factor expression in pancreatic carcinoma. Shijie Huaren Xiaohua Zazhi 2011; 19:1574-1578. [DOI: 10.11569/wcjd.v19.i15.1574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression of vascular endothelial growth factor (VEGF) and matrix metalloproteinases-3 (MMP-3) in pancreatic carcinoma (PC) and to analyze their relationship with tumor angiogenesis, invasion and metastasis.
METHODS: The protein expression of VEGF and MMP-3 and microvessel density (MVD) were detected by immunohistochemistry in 56 PC specimens and 56 normal pancreatic tissue specimens.
RESULTS: The positive rates of both MMP-3 and VEGF were significantly higher in PC than in normal pancreatic tissue (75.00% vs 3.57%, 67.85% vs 1.78%, both P < 0.01). There was a positive correlation between the expression of VEGF and that of MMP-3. Higher expression of MMP-3 was detected in late-stage PC and PC with lymph node metastasis. The expression of VEGF was correlated with clinical stage (P < 0.05). MVD was correlated with expression of MMP-3 and VEGF in PC (both P < 0.05).
CONCLUSION: MMP-3 and VEGF may promote tumor angiogenesis and play an important role in the development and progression of PC. Detection of MMP-3 expression could be used to predict early metastasis of PC. Lower expression of VEGF may be related to lower arterial blood supply in PC.
Collapse
|
139
|
Timke C, Winnenthal HS, Klug F, Roeder FFF, Bonertz A, Reissfelder C, Rochet N, Koch M, Tjaden C, Buechler MW, Debus J, Werner J, Beckhove P, Weitz J, Huber PE. Randomized controlled phase I/II study to investigate immune stimulatory effects by low dose radiotherapy in primarily operable pancreatic cancer. BMC Cancer 2011; 11:134. [PMID: 21489291 PMCID: PMC3101175 DOI: 10.1186/1471-2407-11-134] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 04/13/2011] [Indexed: 12/18/2022] Open
Abstract
Background The efficiencies of T cell based immunotherapies are affected by insufficient migration and activation of tumor specific effector T cells in the tumor. Accumulating evidence exists on the ability of ionizing radiation to modify the tumor microenvironment and generate inflammation. The aim of this phase I/II clinical trial is to evaluate whether low dose single fraction radiotherapy can improve T cell associated antitumor immune response in patients with pancreatic cancer. Methods/Design This trial has been designed as an investigator initiated; prospective randomised, 4-armed, controlled Phase I/II trial. Patients who are candidates for resection of pancreatic cancer will be randomized into 4 arms. A total of 40 patients will be enrolled. The patients receive 0 Gy, 0.5 Gy, 2 Gy or 5 Gy radiation precisely targeted to their pancreatic carcinoma. Radiation will be delivered by external beam radiotherapy using a 6 MV Linac with IMRT technique 48 h prior to the surgical resection. The primary objective is the determination of an active local external beam radiation dose, leading to tumor infiltrating T cells as a surrogate parameter for antitumor activity. Secondary objectives include local tumor control and recurrence patterns, survival, radiogenic treatment toxicity and postoperative morbidity and mortality, as well as quality of life. Further, frequencies of tumor reactive T cells in blood and bone marrow as well as whole blood cell transcriptomics and plasma-proteomics will be correlated with clinical outcome. An interim analysis will be performed after the enrolment of 20 patients for safety reasons. The evaluation of the primary endpoint will start four weeks after the last patient's enrolment. Discussion This trial will answer the question whether a low dose radiotherapy localized to the pancreatic tumor only can increase the number of tumor infiltrating T cells and thus potentially enhance the antitumor immune response. The study will also investigate the prognostic and predictive value of radiation-induced T cell activity along with transcriptomic and proteomic data with respect to clinical outcome. Trial registration ClinicalTrials.gov - NCT01027221
Collapse
Affiliation(s)
- Carmen Timke
- Department of Radiation Oncology, German Cancer Research Center and University Hospital Center, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Identification and validation of SRC and phospho-SRC family proteins in circulating mononuclear cells as novel biomarkers for pancreatic cancer. Transl Oncol 2011; 4:83-91. [PMID: 21461171 DOI: 10.1593/tlo.10202] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 12/16/2010] [Accepted: 12/30/2010] [Indexed: 01/21/2023] Open
Abstract
There is an urgent need to develop novel markers of pancreatic cancer to facilitate early diagnosis. Pancreatic carcinoma is characterized by marked stroma formation with a high number of infiltrating tumor-associated macrophages (TAMs) that originate from circulating mononuclear cells (MNCs). We hypothesized that differential analysis of protein expression and phosphorylation in circulating MNCs from healthy nude mice and nude mice bearing orthotopic human pancreatic cancer would identify a surrogate marker of pancreatic cancer. These differences were analyzed by two-dimensional gel electrophoresis followed by Western blot analysis using antibody against phosphorylated tyrosine proteins (pY). Protein and phosphorylated protein spots of interest were identified by mass spectrometry and validated by Western blot analysis as candidate markers for pancreatic cancer. We found that the expression and phosphorylation of Src family proteins were significantly higher in circulating MNCs from mice bearing pancreatic cancer than in circulating MNCs from healthy mice. TAMs in mice with pancreatic tumors also had higher Src family protein expression and phosphorylation than resident macrophages in the pancreas of healthy mice. The expression and phosphorylation of Src family proteins were correlated with tumor weight; however, increased Src expression and phosphorylation also occurred in MNCs from mice with chronic pancreatitis. This is the first report to explore novel pancreatic tumor markers in circulating MNCs. Although the specificity of the marker for pancreatic cancer was low, it could be used to monitor the disease or to select high-risk patients with chronic pancreatitis.
Collapse
|
141
|
Growth factor mediated signaling in pancreatic pathogenesis. Cancers (Basel) 2011; 3:841-71. [PMID: 24212642 PMCID: PMC3756392 DOI: 10.3390/cancers3010841] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 02/12/2011] [Accepted: 02/16/2011] [Indexed: 12/30/2022] Open
Abstract
Functionally, the pancreas consists of two types of tissues: exocrine and endocrine. Exocrine pancreatic disorders mainly involve acute and chronic pancreatitis. Acute pancreatitis typically is benign, while chronic pancreatitis is considered a risk factor for developing pancreatic cancer. Pancreatic carcinoma is the fourth leading cause of cancer related deaths worldwide. Most pancreatic cancers develop in the exocrine tissues. Endocrine pancreatic tumors are more uncommon, and typically are less aggressive than exocrine tumors. However, the endocrine pancreatic disorder, diabetes, is a dominant cause of morbidity and mortality. Importantly, different growth factors and their receptors play critical roles in pancreatic pathogenesis. Hence, an improved understanding of how various growth factors affect pancreatitis and pancreatic carcinoma is necessary to determine appropriate treatment. This chapter describes the role of different growth factors such as vascular endothelial growth factor (VEGF), insulin-like growth factor (IGF), platelet derived growth factor (PDGF), fibroblast growth factor (FGF), epidermal growth factor (EGF), and transforming growth factor (TGF) in various pancreatic pathophysiologies. Finally, the crosstalk between different growth factor axes and their respective signaling mechanisms, which are involved in pancreatitis and pancreatic carcinoma, are also discussed.
Collapse
|
142
|
Wu Y, Antony S, Juhasz A, Lu J, Ge Y, Jiang G, Roy K, Doroshow JH. Up-regulation and sustained activation of Stat1 are essential for interferon-gamma (IFN-gamma)-induced dual oxidase 2 (Duox2) and dual oxidase A2 (DuoxA2) expression in human pancreatic cancer cell lines. J Biol Chem 2011; 286:12245-56. [PMID: 21321110 DOI: 10.1074/jbc.m110.191031] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Dual oxidase 2 is a member of the NADPH oxidase (Nox) gene family that plays a critical role in the biosynthesis of thyroid hormone as well as in the inflammatory response of the upper airway mucosa and in wound healing, presumably through its ability to generate reactive oxygen species, including H2O2. The recently discovered overexpression of Duox2 in gastrointestinal malignancies, as well as our limited understanding of the regulation of Duox2 expression, led us to examine the effect of cytokines and growth factors on Duox2 in human tumor cells. We found that exposure of human pancreatic cancer cells to IFN-γ (but not other agents) produced a profound up-regulation of the expression of Duox2, and its cognate maturation factor DuoxA2, but not other members of the Nox family. Furthermore, increased Duox2/DuoxA2 expression was closely associated with a significant increase in the production of both intracellular reactive oxygen species and extracellular H2O2. Examination of IFN-γ-mediated signaling events demonstrated that in addition to the canonical Jak-Stat1 pathway, IFN-γ activated the p38-MAPK pathway in pancreatic cancer cells, and both played an important role in the induction of Duox2 by IFN-γ. Duox2 up-regulation following IFN-γ exposure is also directly associated with the binding of Stat1 to elements of the Duox2 promoter. Our findings suggest that the pro-inflammatory cytokine IFN-γ initiates a Duox2-mediated reactive oxygen cascade in human pancreatic cancer cells; reactive oxygen species production in this setting could contribute to the pathophysiologic characteristics of these tumors.
Collapse
Affiliation(s)
- Yongzhong Wu
- Laboratory of Molecular Pharmacology of the Center for Cancer Research, Division of Cancer Treatment and Diagnosis, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
143
|
Vizio B, Novarino A, Giacobino A, Cristiano C, Prati A, Brondino G, Ciuffreda L, Bellone G. Pilot study to relate clinical outcome in pancreatic carcinoma and angiogenic plasma factors/circulating mature/progenitor endothelial cells: Preliminary results. Cancer Sci 2010; 101:2448-54. [PMID: 20950371 PMCID: PMC11158513 DOI: 10.1111/j.1349-7006.2010.01692.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Circulating endothelial cells (CEC) and bone marrow-derived endothelial progenitors (ECP) play important roles in tumor growth and have been proposed as non-invasive markers of angiogenesis. However, CEC and ECP levels have not been investigated in pancreatic carcinoma patients. Using four-color flow cytometry procedures, we evaluated the count of resting (rCEC) and activated (aCEC) endothelial cells and ECP in the peripheral blood of pancreatic carcinoma patients before and after chemotherapy, consisting of gemcitabine (GEM) alone or in combination with oxaliplatin (OX), or with 5-fluorouracil (5-FU). We also correlated CEC and ECP levels with plasma levels of relevant angiogenic factors, such as vascular endothelial growth factor (VEGF)-A, VEGF-D, angiopoietin (Angio)-1, and chemokine C-X-C motif ligand (CXCL)12, measured by ELISA, and with clinical features of pancreatic cancer. The aCEC, rCEC, ECP, and VEGF-A plasma levels were significantly higher in locally-advanced and metastatic patients than controls. Both ECP and VEGF-A levels correlated positively with disease stage and inversely with patient's overall survival. Measurements after the treatment course showed that VEGF-A plasma concentrations and ECP counts had decreased significantly. In particular, VEGF-A and rCEC were significantly down after treatment with GEM alone or in combination with OX. No significant differences in terms of circulating angiogenic factor or endothelial cell subtype levels were found between responders (patients entering partial remission or with stable disease) and non-responders (patients with progressive disease). The study provides insights into angiogenesis mechanisms in pancreatic carcinoma, for which anti-angiogenic targeting of VEGF-A and ECP could be of interest.
Collapse
Affiliation(s)
- Barbara Vizio
- Department of Clinical Physiopathology, University of Turin, Turin, Italy
| | | | | | | | | | | | | | | |
Collapse
|
144
|
Oldford SA, Haidl ID, Howatt MA, Leiva CA, Johnston B, Marshall JS. A critical role for mast cells and mast cell-derived IL-6 in TLR2-mediated inhibition of tumor growth. THE JOURNAL OF IMMUNOLOGY 2010; 185:7067-76. [PMID: 21041732 DOI: 10.4049/jimmunol.1001137] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Several TLR agonists are effective in tumor immunotherapy, but their early innate mechanisms of action, particularly those of TLR2 agonists, are unclear. Mast cells are abundant surrounding solid tumors where they are often protumorigenic and enhance tumor angiogenesis. However, antitumor roles for mast cells have also been documented. The impact of mast cells may be dependent on their activation status and mediator release in different tumors. Using an orthotopic melanoma model in wild-type C57BL/6 and mast cell-deficient Kit(W-sh/W-sh) mice and a complementary Matrigel-tumor model in C57BL/6 mice, mast cells were shown to be crucial for TLR2 agonist (Pam(3)CSK(4))-induced tumor inhibition. Activation of TLR2 on mast cells reversed their well-documented protumorigenic role. Tumor growth inhibition after peritumoral administration of Pam(3)CSK(4) was restored in Kit(W-sh/W-sh) mice by local reconstitution with wild-type, but not TLR2-deficient, mast cells. Mast cells secrete multiple mediators after Pam(3)CSK(4) activation, and in vivo mast cell reconstitution studies also revealed that tumor growth inhibition required mast cell-derived IL-6, but not TNF. Mast cell-mediated anticancer properties were multifaceted. Direct antitumor effects in vitro and decreased angiogenesis and recruitment of NK and T cells in vivo were observed. TLR2-activated mast cells also inhibited the growth of lung cancer cells in vivo. Unlike other immune cells, mast cells are relatively radioresistant making them attractive candidates for combined treatment modalities. This study has important implications for the design of immunotherapeutic strategies and reveals, to our knowledge, a novel mechanism of action for TLR2 agonists in vivo.
Collapse
|
145
|
Effect of CC chemokine ligand 5 and CC chemokine receptor 5 genes polymorphisms on the risk and clinicopathological development of oral cancer. Oral Oncol 2010; 46:767-72. [DOI: 10.1016/j.oraloncology.2010.07.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 07/21/2010] [Accepted: 07/23/2010] [Indexed: 11/20/2022]
|
146
|
Myeloid cells in the tumor microenvironment: modulation of tumor angiogenesis and tumor inflammation. JOURNAL OF ONCOLOGY 2010; 2010:201026. [PMID: 20490273 PMCID: PMC2871549 DOI: 10.1155/2010/201026] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Revised: 02/09/2010] [Accepted: 03/02/2010] [Indexed: 12/26/2022]
Abstract
Myeloid cells are a heterogeneous population of bone marrow-derived cells that play a critical role during growth and metastasis of malignant tumors. Tumors exhibit significant myeloid cell infiltrates, which are actively recruited to the tumor microenvironment. Myeloid cells promote tumor growth by stimulating tumor angiogenesis, suppressing tumor immunity, and promoting metastasis to distinct sites. In this review, we discuss the role of myeloid cells in promoting tumor angiogenesis. Furthermore, we describe a subset of myeloid cells with immunosuppressive activity (known as myeloid-derived suppressor cells). Finally, we will comment on the mechanisms regulating myeloid cell recruitment to the tumor microenvironment and on the potential of myeloid cells as new targets for cancer therapy.
Collapse
|
147
|
Strouch MJ, Cheon EC, Salabat MR, Krantz SB, Gounaris E, Melstrom LG, Dangi-Garimella S, Wang E, Munshi HG, Khazaie K, Bentrem DJ. Crosstalk between mast cells and pancreatic cancer cells contributes to pancreatic tumor progression. Clin Cancer Res 2010; 16:2257-65. [PMID: 20371681 PMCID: PMC3122919 DOI: 10.1158/1078-0432.ccr-09-1230] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE To assess the clinical and pathologic significance of mast cell infiltration in human pancreatic cancer and evaluate crosstalk between mast cells and cancer cells in vitro. EXPERIMENTAL DESIGN Immunohistochemistry for tryptase was done on 53 pancreatic cancer specimens. Mast cell counts were correlated with clinical variables and survival. Serum tryptase activity from patients with cancer was compared with patients with benign pancreatic disease. In vitro, the effect of pancreatic cancer-conditioned medium on mast cell migration was assessed. The effect of conditioned medium from the human mast cell line, LAD-2, on cancer and normal ductal cell proliferation was assessed by thymidine incorporation. Matrigel invasion assays were used to evaluate the effect of mast cell-conditioned medium on cancer cell invasion in the presence and absence of a matrix metalloproteinase inhibitor, GM6001. RESULTS Mast cell infiltration was significantly increased in pancreatic cancer compared with normal pancreatic tissue (11.4 +/- 6.7 versus 2.0 +/- 1.4, P < 0.001). Increased infiltrating mast cells correlated with higher grade tumors (P < 0.0001) and worse survival. Patients with pancreatic cancer had elevated serum tryptase activity (P < 0.05). In vitro, AsPC1 and PANC-1 cells induced mast cell migration. Mast cell-conditioned medium induced pancreatic cancer cell migration, proliferation, and invasion but had no effect on normal ductal cells. Furthermore, the effect of mast cells on cancer cell invasion was, in large part, matrix metalloproteinase-dependent. CONCLUSIONS Tumor-infiltrating mast cells are associated with worse prognosis in pancreatic cancer. In vitro, the interaction between mast cells and pancreatic cancer cells promotes tumor growth and invasion.
Collapse
MESH Headings
- Aged
- Carcinoma, Pancreatic Ductal/immunology
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Papillary/immunology
- Carcinoma, Papillary/metabolism
- Carcinoma, Papillary/pathology
- Cell Communication/physiology
- Cell Line, Tumor
- Cell Movement
- Cell Proliferation
- Culture Media, Conditioned/pharmacology
- Cystadenocarcinoma, Mucinous/immunology
- Cystadenocarcinoma, Mucinous/metabolism
- Cystadenocarcinoma, Mucinous/pathology
- Disease Progression
- Female
- Humans
- Immunoenzyme Techniques
- Male
- Mast Cells/physiology
- Neoplasm Invasiveness
- Pancreatic Neoplasms/immunology
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Prognosis
- Survival Rate
- Tryptases/blood
Collapse
Affiliation(s)
- Matthew J Strouch
- Department of Surgery, The Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, and Jesse Brown VA Medical Center, Chicago, Illinois, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Unusual first presentation of metastatic pancreatic cancer as skin metastases in a burn patient. Burns 2010; 36:e111-4. [PMID: 20392566 DOI: 10.1016/j.burns.2009.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 12/05/2009] [Indexed: 01/04/2023]
|
149
|
Wilk M, Liszka Ł, Paleń P, Gabriel A, Laudański P. Intensity of angiogenesis and mast cell infiltration in cervical intraepithelial and invasive lesions – Are they correlated? Pathol Res Pract 2010; 206:217-22. [PMID: 20188487 DOI: 10.1016/j.prp.2009.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 05/14/2009] [Accepted: 10/16/2009] [Indexed: 01/26/2023]
|
150
|
Humbert M, Castéran N, Letard S, Hanssens K, Iovanna J, Finetti P, Bertucci F, Bader T, Mansfield CD, Moussy A, Hermine O, Dubreuil P. Masitinib combined with standard gemcitabine chemotherapy: in vitro and in vivo studies in human pancreatic tumour cell lines and ectopic mouse model. PLoS One 2010; 5:e9430. [PMID: 20209107 PMCID: PMC2832006 DOI: 10.1371/journal.pone.0009430] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 02/03/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Tyrosine kinases are attractive targets for pancreatic cancer therapy because several are over-expressed, including PDGFRalpha/beta, FAK, Src and Lyn. A critical role of mast cells in the development of pancreatic cancer has also been reported. Masitinib is a tyrosine kinase inhibitor that selectively targets c-Kit, PDGFRalpha/beta, Lyn, and to a lesser extent the FAK pathway, without inhibiting kinases of known toxicities. Masitinib is particularly efficient in controlling the proliferation, differentiation and degranulation of mast cells. This study evaluates the therapeutic potential of masitinib in pancreatic cancer, as a single agent and in combination with gemcitabine. METHODOLOGY/FINDINGS Proof-of-concept studies were performed in vitro on human pancreatic tumour cell lines and then in vivo using a mouse model of human pancreatic cancer. Molecular mechanisms were investigated via gene expression profiling. Masitinib as a single agent had no significant antiproliferative activity while the masitinib/gemcitabine combination showed synergy in vitro on proliferation of gemcitabine-refractory cell lines Mia Paca2 and Panc1, and to a lesser extent in vivo on Mia Paca2 cell tumour growth. Specifically, masitinib at 10 microM strongly sensitised Mia Paca2 cells to gemcitabine (>400-fold reduction in IC(50)); and moderately sensitised Panc1 cells (10-fold reduction). Transcriptional analysis identified the Wnt/beta-catenin signalling pathway as down-regulated in the cell lines resensitised by the masitinib/gemcitabine combination. CONCLUSIONS These data establish proof-of-concept that masitinib can sensitise gemcitabine-refractory pancreatic cancer cell lines and warrant further in vivo investigation. Indeed, such an effect has been recently observed in a phase 2 clinical study of patients with pancreatic cancer who received a masitinib/gemcitabine combination.
Collapse
Affiliation(s)
| | | | - Sébastien Letard
- Inserm U891, Centre de Recherche en Cancérologie de Marseille, Signalisation, Hématopoïèse et Mécanismes de l'Oncogenèse, Centre de Référence des Mastocytoses, Marseille, France
- Institut Paoli-Calmettes, Marseille, France
- Université de la Méditerranée, Marseille, France
| | | | - Juan Iovanna
- Inserm U624, Stress Cellulaire, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Pascal Finetti
- Université de la Méditerranée, Marseille, France
- Inserm, U891, Centre de Recherche en Cancérologie de Marseille, Département d'Oncologie Moléculaire, Département d'Oncologie Médicale, Institut Paoli-Calmettes, Marseille, France
| | - François Bertucci
- Université de la Méditerranée, Marseille, France
- Inserm, U891, Centre de Recherche en Cancérologie de Marseille, Département d'Oncologie Moléculaire, Département d'Oncologie Médicale, Institut Paoli-Calmettes, Marseille, France
| | | | | | | | - Olivier Hermine
- Hôpital Necker, Service d'Hématologie, CNRS UMR 8147, Centre de Référence des Mastocytoses, Université Paris V René Descartes, Paris, France
- * E-mail: (OH); (PD)
| | - Patrice Dubreuil
- Inserm U891, Centre de Recherche en Cancérologie de Marseille, Signalisation, Hématopoïèse et Mécanismes de l'Oncogenèse, Centre de Référence des Mastocytoses, Marseille, France
- Institut Paoli-Calmettes, Marseille, France
- Université de la Méditerranée, Marseille, France
- * E-mail: (OH); (PD)
| |
Collapse
|