101
|
Daniell H, Chan HT, Pasoreck EK. Vaccination via Chloroplast Genetics: Affordable Protein Drugs for the Prevention and Treatment of Inherited or Infectious Human Diseases. Annu Rev Genet 2016; 50:595-618. [PMID: 27893966 PMCID: PMC5496655 DOI: 10.1146/annurev-genet-120215-035349] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Plastid-made biopharmaceuticals treat major metabolic or genetic disorders, including Alzheimer's, diabetes, hypertension, hemophilia, and retinopathy. Booster vaccines made in chloroplasts prevent global infectious diseases, such as tuberculosis, malaria, cholera, and polio, and biological threats, such as anthrax and plague. Recent advances in this field include commercial-scale production of human therapeutic proteins in FDA-approved cGMP facilities, development of tags to deliver protein drugs to targeted human cells or tissues, methods to deliver precise doses, and long-term stability of protein drugs at ambient temperature, maintaining their efficacy. Codon optimization utilizing valuable information from sequenced chloroplast genomes enhanced expression of eukaryotic human or viral genes in chloroplasts and offered unique insights into translation in chloroplasts. Support from major biopharmaceutical companies, development of hydroponic production systems, and evaluation by regulatory agencies, including the CDC, FDA, and USDA, augur well for advancing this novel concept to the clinic and revolutionizing affordable healthcare.
Collapse
Affiliation(s)
- Henry Daniell
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| | - Hui-Ting Chan
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| | - Elise K Pasoreck
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| |
Collapse
|
102
|
Alencar AK, Montes GC, Montagnoli T, Silva AM, Martinez ST, Fraga AG, Wang H, Groban L, Sudo RT, Zapata-Sudo G. Activation of GPER ameliorates experimental pulmonary hypertension in male rats. Eur J Pharm Sci 2016; 97:208-217. [PMID: 27836751 DOI: 10.1016/j.ejps.2016.11.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/29/2016] [Accepted: 11/07/2016] [Indexed: 12/31/2022]
Abstract
RATIONALE Pulmonary hypertension (PH) is characterized by pulmonary vascular remodeling that leads to pulmonary congestion, uncompensated right-ventricle (RV) failure, and premature death. Preclinical studies have demonstrated that the G protein-coupled estrogen receptor (GPER) is cardioprotective in male rats and that its activation elicits vascular relaxation in rats of either sex. OBJECTIVES To study the effects of GPER on the cardiopulmonary system by the administration of its selective agonist G1 in male rats with monocrotaline (MCT)-induced PH. METHODS Rats received a single intraperitoneal injection of MCT (60mg/kg) for PH induction. Experimental groups were as follows: control, MCT+vehicle, and MCT+G1 (400μg/kg/daysubcutaneous). Animals (n=5pergroup) were treated with vehicle or G1 for 14days after disease onset. MEASUREMENTS AND MAIN RESULTS Activation of GPER attenuated exercise intolerance and reduced RV overload in PH rats. Rats with PH exhibited echocardiographic alterations, such as reduced pulmonary flow, RV hypertrophy, and left-ventricle dysfunction, by the end of protocol. G1 treatment reversed these PH-related abnormalities of cardiopulmonary function and structure, in part by promoting pulmonary endothelial nitric oxide synthesis, Ca2+ handling regulation and reduction of inflammation in cardiomyocytes, and a decrease of collagen deposition by acting in pulmonary and cardiac fibroblasts. CONCLUSIONS G1 was effective to reverse PH-induced RV dysfunction and exercise intolerance in male rats, a finding that have important implications for ongoing clinical evaluation of new cardioprotective and vasodilator drugs for the treatment of the disease.
Collapse
Affiliation(s)
- Allan K Alencar
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Guilherme C Montes
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Tadeu Montagnoli
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Ananssa M Silva
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Sabrina T Martinez
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Aline G Fraga
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Hao Wang
- Department of Anesthesiology, Wake Forest University, Winston-Salem, NC, USA
| | - Leanne Groban
- Department of Anesthesiology, Wake Forest University, Winston-Salem, NC, USA
| | - Roberto T Sudo
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Gisele Zapata-Sudo
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
103
|
Hahn SS, Makaryus M, Talwar A, Narasimhan M, Zaidi G. A review of therapeutic agents for the management of pulmonary arterial hypertension. Ther Adv Respir Dis 2016; 11:46-63. [PMID: 27595643 PMCID: PMC5941973 DOI: 10.1177/1753465816665289] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is an uncommon, progressive and life
threatening disease characterized by a proliferative vasculopathy of the small
muscular pulmonary arterioles resulting in elevated pulmonary vascular
resistance and eventually right ventricular failure. An increasing understanding
of the pathobiology of PAH and its natural history has led to the development of
numerous targeted therapies. Despite these advances there is significant
progression of disease and the survival rate remains low. This article reviews
the agents currently available for the medical management of PAH.
Collapse
Affiliation(s)
- Stella S Hahn
- Northwell Health Division of Pulmonary Critical Care and Sleep Medicine, 410 Lakeville Road, Suite 107, New Hyde Park, NY 11042, USA
| | - Mina Makaryus
- Northwell Health Division of Pulmonary Critical Care and Sleep Medicine, 410 Lakeville Road, Suite 107, New Hyde Park, NY 11042, USA
| | - Arunabh Talwar
- Northwell Health Division of Pulmonary Critical Care and Sleep Medicine, 410 Lakeville Road, Suite 107, New Hyde Park, NY 11042, USA
| | - Mangala Narasimhan
- Northwell Health Division of Pulmonary Critical Care and Sleep Medicine, 410 Lakeville Road, Suite 107, New Hyde Park, NY 11042, USA
| | - Gulrukh Zaidi
- Northwell Health Division of Pulmonary Critical Care and Sleep Medicine, 410 Lakeville Road, Suite 107, New Hyde Park, NY 11042, USA
| |
Collapse
|
104
|
Marino P. New targeted therapies in the treatment of pulmonary arterial hypertension: getting to the heart of the problem. Respirology 2016; 21:406-7. [PMID: 27000687 DOI: 10.1111/resp.12761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 02/03/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Philip Marino
- Lane Fox Respiratory Service, Departments of Respiratory and Critical Care, St Thomas' Hospital, London, UK
| |
Collapse
|
105
|
Richter MJ, Gall H, Grimminger J, Grimminger F, Ghofrani HA. Selexipag for the treatment of pulmonary arterial hypertension. Expert Opin Pharmacother 2016; 17:1825-34. [DOI: 10.1080/14656566.2016.1215429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Manuel Jonas Richter
- Department of Internal Medicine, University of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany, member of the German Center of Lung Research (DZL)
- Department of Pneumology, Kerckhoff Heart and Thoracic Center, Bad Nauheim, Germany
| | - Henning Gall
- Department of Internal Medicine, University of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany, member of the German Center of Lung Research (DZL)
| | - Jan Grimminger
- Department of Internal Medicine, University of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany, member of the German Center of Lung Research (DZL)
- Center for Pulmonary Hypertension, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Grimminger
- Department of Internal Medicine, University of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany, member of the German Center of Lung Research (DZL)
| | - Hossein-Ardeschir Ghofrani
- Department of Internal Medicine, University of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany, member of the German Center of Lung Research (DZL)
- Department of Pneumology, Kerckhoff Heart and Thoracic Center, Bad Nauheim, Germany
- Department of Medicine, Imperial College London, London, UK
| |
Collapse
|
106
|
Wardle AJ, Seager MJ, Wardle R, Tulloh RMR, Gibbs JSR. Guanylate cyclase stimulators for pulmonary hypertension. Cochrane Database Syst Rev 2016; 2016:CD011205. [PMID: 27482837 PMCID: PMC8502073 DOI: 10.1002/14651858.cd011205.pub2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Pulmonary hypertension is a condition of complex aetiology that culminates in right heart failure and early death. Soluble guanylate cyclase (sGC) stimulators are a promising class of agents that have recently gained approval for use. OBJECTIVES To evaluate the efficacy of sGC stimulators in pulmonary hypertension. SEARCH METHODS We searched CENTRAL (Cochrane Central Register of Controlled Trials), MEDLINE, EMBASE and the reference lists of articles. Searches are current as of 12 February 2016. SELECTION CRITERIA We selected randomised controlled trials (RCTs) involving participants with pulmonary hypertension of all ages, severities and durations of treatment. DATA COLLECTION AND ANALYSIS AW, MS and RW independently selected studies, assessed evidence quality and extracted data. This process was overseen by RT and SG. All included studies were sponsored by the drug manufacturer. MAIN RESULTS Five trials involving 962 participants are included in this review. All trials were of relatively short duration (< 16 weeks). Due to the heterogenous aetiology of pulmonary hypertension in participants, results are best considered according to each pulmonary hypertension subtype.Pooled analysis shows a mean difference (MD) increase in six-minute walking distance (6MWD) of 30.13 metres (95% CI 5.29 to 54.96; participants = 659; studies = 3). On subgroup analysis, for pulmonary arterial hypertension (PAH) there was no effect noted (6MWD; MD 11.91 metres, 95% CI -44.92 to 68.75; participants = 398; studies = 2), and in chronic thromboembolic pulmonary hypertension (CTEPH) sGC stimulators improved 6MWD by an MD of 45 metres (95% CI 23.87 to 66.13; participants = 261; studies = 1). Data for left heart disease-associated PH was not available for pooling. Importantly, when participants receiving phosphodiesterase inhibitors were excluded, sGC stimulators increased 6MWD by a MD of 36 metres in PAH. The second primary outcome, mortality, showed no change on pooled analysis against placebo (Peto odds ratio (OR) 0.57, 95% CI 0.18 to 1.80).Pooled secondary outcomes include an increase in World Health Organization (WHO) functional class (OR 1.53, 95% CI 0.87 to 2.72; participants = 858; studies = 4), no effect on clinical worsening (OR 0.45, 95% CI 0.17 to 1.14; participants = 842; studies = 3), and a reduction in mean pulmonary artery pressure (MD -2.77 mmHg, 95% CI -4.96 to -0.58; participants = 744; studies = 5). There was no significant difference in serious adverse events on pooled analysis (OR 1.12, 95% CI 0.66 to 1.90; participants = 818; studies = 5) or when analysed at PAH (MD -3.50, 95% CI -5.54 to -1.46; participants = 344; studies = 1), left heart disease associated subgroups (OR 1.56, 95% CI 0.78 to 3.13; participants = 159; studies = 2) or CTEPH subgroups (OR 1.29, 95% CI 0.65 to 2.56; participants = 261; studies = 1).It is important to consider the results for PAH in the context of a person who is not also receiving a phosphodiesterase-V inhibitor, a contra-indication to sGC stimulator use. It should also be noted that CTEPH results are applicable to inoperable or recurrent CTEPH only.Evidence was rated according to the GRADE scoring system. One outcome was considered high quality, two were moderate, and eight were of low or very low quality, meaning that for many of the outcomes the true effect could differ substantially from our estimate. There were only minor concerns regarding the risk of bias in these trials, all being RCTs largely following the original protocol. Most trials employed an intention-to-treat analysis. AUTHORS' CONCLUSIONS sGC stimulators improve pulmonary artery pressures in people with PAH (who are treatment naive or receiving a prostanoid or endothelin antagonist) or those with recurrent or inoperable CTEPH. In these settings this can be achieved without notable complication. However, sGC stimulators should not be taken by people also receiving phosphodiestase-V inhibitors or nitrates due to the risks of hypotension, and there is currently no evidence supporting their use in pulmonary hypertension associated with left heart disease. There is no evidence supporting their use in children. These conclusions are based on data with limitations, including unavailable data from two of the trials.
Collapse
Affiliation(s)
- Andrew J Wardle
- Imperial College LondonCardiology, Hammersmith HospitalNorfolk PlaceLondonUKW2 1PG
| | - Matthew J Seager
- Imperial College LondonAcademic Section of Vascular SurgeryCharing Cross HospitalFulham Palace RoadLondonUKW6 8RF
| | | | - Robert MR Tulloh
- Bristol Royal Hospital for Children and Bristol Heart InstituteCongenital Heart DiseaseUpper Maudlin StreetBristolUKBS2 8BJ
| | - J Simon R Gibbs
- Imperial College LondonNational Heart & Lung InstituteLondonUK
| | | |
Collapse
|
107
|
Identification of multiple ACVRL1 mutations in patients with pulmonary arterial hypertension by targeted exome capture. Clin Sci (Lond) 2016; 130:1559-69. [PMID: 27316748 DOI: 10.1042/cs20160247] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/17/2016] [Indexed: 11/17/2022]
Abstract
Pulmonary artery hypertension (PAH) is characterized as sustained elevation of pressure in the pulmonary vascular system that is attributable to a variety of causes. More than a dozen genes have previously been proposed as being associated with PAH. To examine potential mutations of these genes in patients with PAH, we developed a targeted exome kit containing 22 PAH-associated genes for genetic screens of 80 unrelated patients with PAH. As a result, we identified 16 different mutations in the BMPR2 gene and four different mutations in ACVRL1, the gene for activin receptor-like kinase-1 (ACVRL1). However, no deleterious mutations were found in the remaining 20 genes. In the present study, we provided detailed characterization of the ACVRL1 mutations in four pedigrees, including two novel missense mutations (c.676G>A, p.V226M; c.955G>C, p.G319R) and two recurrent mutations (c.1231C>T, p.R411W; c.1450C>T, p.R484W). Furthermore, we showed that markedly reduced Smad1/5 phosphorylation levels and reduced activities of luciferase reporters in each of the four ACVRL1 mutant-transfected NIH-3T3 cells. Therefore, our findings demonstrated that missense mutations of ACVRL1 identified in the present study significantly affected the bone morphogenetic protein 9 (BMP-9) pathway, implicating PAH pathogenesis. Detailed genotype–phenotype correlation analysis revealed initial symptoms of hereditary haemorrhagic telangiectasia (HHT) in some of the patients, suggesting the importance of sequencing molecular markers for early identification and intervention of individuals at risk for PAH and potential HHT. We developed a customized exome sequencing system to identify mutations in these PAH-associated genes, and found two novel missense mutations and two recurrent mutations in the ACVRL1 gene in four unrelated Chinese families; we also determined hypomorphic alleles using functional studies.
Collapse
|
108
|
Aubert JD, Juillerat-Jeanneret L. Endothelin-Receptor Antagonists beyond Pulmonary Arterial Hypertension: Cancer and Fibrosis. J Med Chem 2016; 59:8168-88. [PMID: 27266371 DOI: 10.1021/acs.jmedchem.5b01781] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The endothelin axis and in particular the two endothelin receptors, ETA and ETB, are targets for therapeutic intervention in human diseases. Endothelin-receptor antagonists are in clinical use to treat pulmonary arterial hypertension and have been under clinical investigation for the treatment of several other diseases, such as systemic hypertension, cancer, vasospasm, and fibrogenic diseases. In this Perspective, we review the molecules that have been evaluated in human clinical trials for the treatment of pulmonary arterial hypertension, as well as other cardiovascular diseases, cancer, and fibrosis. We will also discuss the therapeutic consequences of receptor selectivity with regard to ETA-selective, ETB-selective, or dual ETA/ETB antagonists. We will also consider which chemical characteristics are relevant to clinical use and the properties of molecules necessary for efficacy in treating diseases against which known molecules displayed suboptimal efficacy.
Collapse
Affiliation(s)
- John-David Aubert
- Pneumology Division and Transplantation Center, Centre Hospitalier Universitaire Vaudois (CHUV) , CH1011 Lausanne, Switzerland
| | - Lucienne Juillerat-Jeanneret
- University Institute of Pathology and Transplantation Center, Centre Hospitalier Universitaire Vaudois (CHUV), and University of Lausanne (UNIL), CH1011 Lausanne, Switzerland
| |
Collapse
|
109
|
Ghofrani HA, Humbert M, Langleben D, Schermuly R, Stasch JP, Wilkins MR, Klinger JR. Riociguat: Mode of Action and Clinical Development in Pulmonary Hypertension. Chest 2016; 151:468-480. [PMID: 27263466 DOI: 10.1016/j.chest.2016.05.024] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 04/05/2016] [Accepted: 05/24/2016] [Indexed: 02/08/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) and chronic thromboembolic pulmonary hypertension (CTEPH) are progressive and debilitating diseases characterized by gradual obstruction of the pulmonary vasculature, leading to elevated pulmonary artery pressure (PAP) and increased pulmonary vascular resistance (PVR). If untreated, they can result in death due to right-sided heart failure. Riociguat is a novel soluble guanylate cyclase (sGC) stimulator that is approved for the treatment of PAH and CTEPH. We describe in detail the role of the nitric oxide-sGC-cyclic guanosine monophosphate (cGMP) signaling pathway in the pathogenesis of PAH and CTEPH and the mode of action of riociguat. We also review the preclinical data associated with the development of riociguat, along with the efficacy and safety data of riociguat from initial clinical trials and pivotal phase III randomized clinical trials in PAH and CTEPH.
Collapse
Affiliation(s)
- Hossein-Ardeschir Ghofrani
- University of Giessen and Marburg Lung Center, Giessen, Germany and the German Center for Lung Research (DZL); Department of Medicine, Imperial College London, London, England.
| | - Marc Humbert
- Assistance Publique-Hôpitaux de Paris, Service de Pneumologie, DHU Thorax Innovation, Hôpital Bicêtre and Université Paris-Sud, Laboratoire d'Excellence en Recherche sur le Médicament et Innovation Thérapeutique and INSERM Unité 999, Le Kremlin-Bicêtre, France
| | - David Langleben
- Center for Pulmonary Vascular Disease and Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Canada
| | - Ralph Schermuly
- University of Giessen and Marburg Lung Center, Giessen, Germany and the German Center for Lung Research (DZL)
| | - Johannes-Peter Stasch
- Bayer Pharma AG, Wuppertal and University Halle, Institute of Pharmacy, Halle (Saale), Germany
| | - Martin R Wilkins
- Department of Medicine, Imperial College London, London, England
| | - James R Klinger
- Division of Pulmonary, Sleep, and Critical Care Medicine, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI
| |
Collapse
|
110
|
Poch DS. Case report: a patient with pulmonary arterial hypertension transitioning from a PDE-5 inhibitor to Riociguat. BMC Pulm Med 2016; 16:82. [PMID: 27193179 PMCID: PMC4870744 DOI: 10.1186/s12890-016-0229-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 04/15/2016] [Indexed: 11/10/2022] Open
Abstract
Background We present here the case of a patient with pulmonary arterial hypertension and NYHA Class II symptoms who transitioned from PDE-5i therapy to riociguat. No protocol currently exists for transitioning between these PAH medications. Case presentation A 59-year old male with a history of anorexigen use initially presented in 2008 and was felt to have non-operable small vessel disease. His care was transitioned to our center after insurance would not cover high-dose sildenafil in addition to ERA therapy. Conclusion This case demonstrates a safe and successful transition from higher dose PDE-5is to riociguat with no interruption in therapy.
Collapse
Affiliation(s)
- David S Poch
- Division of Pulmonary, Critical Care, & Sleep Medicine, University of California, San Diego, CA, USA.
| |
Collapse
|
111
|
Voelkel NF, Tamosiuniene R, Nicolls MR. Challenges and opportunities in treating inflammation associated with pulmonary hypertension. Expert Rev Cardiovasc Ther 2016; 14:939-51. [PMID: 27096622 DOI: 10.1080/14779072.2016.1180976] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Inflammatory cells are present in the lungs from patients with many, if not all, forms of severe pulmonary hypertension. AREAS COVERED Historically the first inflammatory cell identified in the pulmonary vascular lesions was the mast cell. T and B lymphocytes, as well as macrophages, are present in and around the pulmonary arterioles and many patients have elevated blood levels of interleukin 1 and 6; some patients show elevated levels of leukotriene B4. An overlap between collagen-vascular disease-associated pulmonary arterial hypertension (PAH) and idiopathic PAH exists, yet only a few studies have been designed that evaluate the effect of anti-inflammatory treatments. Here we review the pertinent data that connect PAH and inflammation/autoimmune dysregulation and evaluate experimental models of severe PAH with an emphasis on the Sugen/athymic rat model of severe PAH. Expert commentary: We postulate that there are several inflammatory phenotypes and predict that there will be several anti-inflammatory treatment strategies for severe PAH.
Collapse
Affiliation(s)
- Norbert F Voelkel
- a School of Pharmacy , Virginia Commonwealth University , Richmond , VA , USA
| | - Rasa Tamosiuniene
- b Pulmonary and Critical Care Medicine Division , Stanford University , Palo Alto , CA , USA
| | - Mark R Nicolls
- b Pulmonary and Critical Care Medicine Division , Stanford University , Palo Alto , CA , USA
| |
Collapse
|
112
|
Dumas SJ, Humbert M, Cohen-Kaminsky S. [The cancer paradigm in pulmonary arterial hypertension: towards anti-remodeling therapies targeting metabolic dysfunction?]. Biol Aujourdhui 2016; 210:171-189. [PMID: 28327277 DOI: 10.1051/jbio/2016022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Indexed: 11/14/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a rare, complex and multifactorial disease in which pulmonary vascular remodeling plays a major role ending in right heart failure and death. Current specific therapies of PAH that mainly target the vasoconstriction/vasodilatation imbalance are not curative. Bi-pulmonary transplantation remains the only option in patients resistant to current therapies. It is thus crucial to identify novel vascular anti-remodeling therapeutic targets. This remodeling displays several properties of cancer cells, especially overproliferation and apoptosis resistance of pulmonary vascular cells, hallmarks of cancer related to the metabolic shift known as the "Warburg effect". The latter is characterized by a shift of ATP production, from oxidative phosphorylation to low rate aerobic glycolysis. In compensation, the cancer cells exhibit exacerbated glutaminolysis thus resulting in glutamine addiction, necessary to their overproliferation. Glutamine intake results in glutamate production, a molecule at the crossroads of energy metabolism and cancer cell communication, thus contributing to cell proliferation. Accordingly, therapeutic strategies targeting glutamate production, its release into the extracellular space and its membrane receptors have been suggested to treat different types of cancers, not only in the central nervous system but also in the periphery. We propose that similar strategies targeting glutamatergic signaling may be considered in PAH, especially as they could affect not only the vascular remodeling but also the right heart hypertrophy known to involve the glutaminolysis pathway. Ongoing studies aim to characterize the involvement of the glutamate pathway and its receptors in vascular remodeling, and the therapeutic potential of specific molecules targeting this pathway.
Collapse
Affiliation(s)
- Sébastien J Dumas
- INSERM UMR-S 999, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France - Univ. Paris-Sud, Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France - AP-HP Assistance Publique-Hôpitaux de Paris, Service de Pneumologie, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Marc Humbert
- INSERM UMR-S 999, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France - Univ. Paris-Sud, Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France - AP-HP Assistance Publique-Hôpitaux de Paris, Service de Pneumologie, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Sylvia Cohen-Kaminsky
- INSERM UMR-S 999, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France - Univ. Paris-Sud, Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| |
Collapse
|
113
|
Semen K, Yelisyeyeva O, Jarocka-Karpowicz I, Kaminskyy D, Solovey L, Skrzydlewska E, Yavorskyi O. Sildenafil reduces signs of oxidative stress in pulmonary arterial hypertension: Evaluation by fatty acid composition, level of hydroxynonenal and heart rate variability. Redox Biol 2015; 7:48-57. [PMID: 26654977 PMCID: PMC4683386 DOI: 10.1016/j.redox.2015.11.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/03/2015] [Accepted: 11/19/2015] [Indexed: 12/26/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare multifactorial disease with an unfavorable prognosis. Sildenafil therapy can improve functional capacity and pulmonary hemodynamics in PAH patients. Nowadays, it is increasingly recognized that the effects of sildenafil are pleiotropic and may also involve changes of the pro-/antioxidant balance, lipid peroxidation and autonomic control. In present study we aimed to assess the effects of sildenafil on the fatty acids (FAs) status, level of hydroxynonenal (HNE) and heart rate variability (HRV) in PAH patients. Patients with PAH were characterized by an increase in HNE and changes in the FAs composition with elevation of linoleic, oleic, docosahexanoic acids in phospholipids as well as reduced HRV with sympathetic predominance. Sildenafil therapy improved exercise capacity and pulmonary hemodynamics and reduced NT-proBNP level in PAH. Antioxidant and anti-inflammatory effects of sildenafil were noted from the significant lowering of HNE level and reduction of the phopholipid derived oleic, linoleic, docosahexanoic, docosapentanoic FAs. That was also associated with some improvement of HRV on account of the activation of the neurohumoral regulatory component. Incomplete recovery of the functional metabolic disorders in PAH patients may be assumed from the persistent increase in free FAs, reduced HRV with the sympathetic predominance in the spectral structure after treatment comparing to control group. The possibilities to improve PAH treatment efficacy through mild stimulation of free radical reactions and formation of hormetic reaction in the context of improved NO signaling are discussed. Sildenafil showed antioxidant and anti-inflammatory effects in pulmonary hypertension. Sildenafil reduced hydroxynonenal level and improved fatty acid profile in serum. Improvement of heart rate variability and functional capacity was noted after therapy. Mild prooxidant activity is suggested as the mechanism to improve sildenafil efficacy.
Collapse
Affiliation(s)
- Khrystyna Semen
- Department of Propedeutics of Internal Medicine #2, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine.
| | - Olha Yelisyeyeva
- Department of Histology, Cytology and Embryology, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine.
| | - Iwona Jarocka-Karpowicz
- Department of Analytical Chemistry, Medical University of Bialystok, Jana Kilinskego 1, 15089 Bialystok, Poland
| | - Danylo Kaminskyy
- Department of Pharmaceutical, Organic, and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine
| | - Lyubomyr Solovey
- Lviv Regional Clinical Hospital, Chernigivska 7, 79010 Lviv, Ukraine
| | - Elzbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Jana Kilinskego 1, 15089 Bialystok, Poland
| | - Ostap Yavorskyi
- Department of Propedeutics of Internal Medicine #2, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine
| |
Collapse
|
114
|
Papathanasiou A, Nakos G. Why there is a need to discuss pulmonary hypertension other than pulmonary arterial hypertension? World J Crit Care Med 2015; 4:274-277. [PMID: 26557477 PMCID: PMC4631872 DOI: 10.5492/wjccm.v4.i4.274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 08/11/2015] [Accepted: 09/16/2015] [Indexed: 02/06/2023] Open
Abstract
Pulmonary hypertension (PH) is a condition characterized by the elevation of the mean pulmonary artery pressure above 25 mmHg and the pulmonary vascular resistance above 3 wood units. Pulmonary arterial hypertension (PAH) is an uncommon condition with severe morbidity and mortality, needing early recognition and appropriate and specific treatment. PH is frequently associated with hypoxemia, mainly chronic obstructive pulmonary disease and DPLD and/or left heart diseases (LHD), mainly heart failure with reduced or preserved ejection fraction. Although in the majority of patients with PH the cause is not PAH, a significant number of published studies are still in regard to group I PH, leading to a logical assumption that PH due to other causes is not such an important issue. So, is there a reason to discuss PH other than PAH? Chronic lung diseases, mainly chronic obstructive lung disease and DPLD, are associated with a high incidence of PH which is linked to exercise limitations and a worse prognosis. Although pathophysiological studies suggest that specific PAH therapy may benefit such patients, the results presented from small studies in regard to the safety and effectiveness of the specific PAH therapy are discouraging. PH is a common complication of left heart disease and is related to disease severity, especially in patients with reduced ejection fraction. There are two types of PH related to LHD based on diastolic pressure difference (DPD, defined as diastolic pulmonary artery pressure - mean PAWP): Isolated post-capillary PH, defined as PAWP > 15 mmHg and DPD < 7 mmHg, and combined post-capillary PH and pre-capillary PH, defined as PAWP > 15 mmHg and DPD ≥ 7 mmHg. The potential use of PAH therapies in patients with PH related to left heart disease is based on a logical pathobiological rationale. In patients with heart failure, endothelial dysfunction has been proposed as a cause of PH and hence as a target for treatment, supported by the presence of increased endothelin-1 activity and impaired nitric oxide-dependent vasodilation. Unfortunately, so far, there is no evidence supporting the use of specific PAH therapies in patients with PH related to left heart disease. In conclusion, the presence of PH in patients with conditions other than PAH contributes to the severity of the disease, affecting the outcome and quality of life. The disappointing results regarding the effectiveness of specific PAH therapies in patients with chronic lung diseases and LHD underline the need for seeking new underlying mechanisms and thus novel therapies targeting PH due to left heart disease and/or lung diseases.
Collapse
|
115
|
From bedside to bench--meeting report of the 7th International Conference on cGMP "cGMP: generators, effectors and therapeutic implications" in Trier, Germany, from June 19th to 21st 2015. Naunyn Schmiedebergs Arch Pharmacol 2015; 388:1237-46. [PMID: 26486926 DOI: 10.1007/s00210-015-1176-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 09/24/2015] [Indexed: 12/27/2022]
Abstract
During the past decade, our knowledge on the physiology, pathophysiology, basic pharmacology, and clinical pharmacology of the second messenger (cGMP) has increased tremendously. It is now well-established that cGMP, generated by soluble and particulate guanylate cyclases, is highly compartmentalized in cells and regulates numerous body functions. New cGMP-regulated physiological functions include meiosis and temperature perception. cGMP is involved in the genesis of numerous pathologies including cardiovascular, pulmonary, endocrine, metabolic, neuropsychiatric, eye, and tumor diseases. Several new clinical uses of stimulators and activators of soluble guanylate cyclase and of phosphodiesterase inhibitors such as heart failure, kidney failure, cognitive disorders, obesity bronchial asthma, and osteoporosis are emerging. The combination of neprilysin inhibitors-enhancing stimulation of the particulate guanylate cyclase pathway by preventing natriuretic peptide degradation-with angiotensin AT1 receptor antagonists constitutes a novel promising strategy for heart failure treatment. The role of oxidative stress in cGMP signaling, application of cGMP sensors, and gene therapy for degenerative eye diseases are emerging topics. It is anticipated that cGMP research will further prosper over the next years and reach out into more and more basic and clinical disciplines.
Collapse
|