101
|
Montefiori DC. Importance of neutralization sieve analyses when seeking correlates of HIV-1 vaccine efficacy. Hum Vaccin Immunother 2015; 10:2507-11. [PMID: 25424964 PMCID: PMC4896798 DOI: 10.4161/hv.28950] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
This commentary describes a rationale for the use of breakthrough viruses from clinical trial participants to assess neutralizing antibodies as a correlate of HIV-1 vaccine efficacy. The rationale is based on principles of a genetic sieve analysis, where the 2 analyses may be cooperative for delineating neutralizing antibodies as a mechanistic correlate of protection.
Collapse
Affiliation(s)
- David C Montefiori
- a Laboratory for AIDS Vaccine Research & Development; Department of Surgery; Duke University Medical Center; Durham, NC USA
| |
Collapse
|
102
|
An Enhanced Synthetic Multiclade DNA Prime Induces Improved Cross-Clade-Reactive Functional Antibodies when Combined with an Adjuvanted Protein Boost in Nonhuman Primates. J Virol 2015; 89:9154-66. [PMID: 26085155 DOI: 10.1128/jvi.00652-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 06/06/2015] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED The search for an efficacious human immunodeficiency virus type 1 (HIV-1) vaccine remains a pressing need. The moderate success of the RV144 Thai clinical vaccine trial suggested that vaccine-induced HIV-1-specific antibodies can reduce the risk of HIV-1 infection. We have made several improvements to the DNA platform and have previously shown that improved DNA vaccines alone are capable of inducing both binding and neutralizing antibodies in small-animal models. In this study, we explored how an improved DNA prime and recombinant protein boost would impact HIV-specific vaccine immunogenicity in rhesus macaques (RhM). After DNA immunization with either a single HIV Env consensus sequence or multiple constructs expressing HIV subtype-specific Env consensus sequences, we detected both CD4(+) and CD8(+) T-cell responses to all vaccine immunogens. These T-cell responses were further increased after protein boosting to levels exceeding those of DNA-only or protein-only immunization. In addition, we observed antibodies that exhibited robust cross-clade binding and neutralizing and antibody-dependent cellular cytotoxicity (ADCC) activity after immunization with the DNA prime-protein boost regimen, with the multiple-Env formulation inducing a more robust and broader response than the single-Env formulation. The magnitude and functionality of these responses emphasize the strong priming effect improved DNA immunogens can induce, which are further expanded upon protein boost. These results support further study of an improved synthetic DNA prime together with a protein boost for enhancing anti-HIV immune responses. IMPORTANCE Even with effective antiretroviral drugs, HIV remains an enormous global health burden. Vaccine development has been problematic in part due to the high degree of diversity and poor immunogenicity of the HIV Env protein. Studies suggest that a relevant HIV vaccine will likely need to induce broad cellular and humoral responses from a simple vaccine regimen due to the resource-limited setting in which the HIV pandemic is most rampant. DNA vaccination lends itself well to increasing the amount of diversity included in a vaccine due to the ease of manufacturing multiple plasmids and formulating them as a single immunization. By increasing the number of Envs within a formulation, we were able to show an increased breadth of responses as well as improved functionality induced in a nonhuman primate model. This increased breadth could be built upon, leading to better coverage against circulating strains with broader vaccine-induced protection.
Collapse
|
103
|
Abstract
While advances have been made in some areas, more often than not attempts at vaccine development against the human immunodeficiency virus only serve to highlight gaps in our knowledge of host immunity. While numerous approaches have been explored, to control infection, an HIV vaccine will need to be able to induce production of neutralizing antibodies and a cytotoxic T cell response in order to prevent the formation of the CD4+ T cell viral reservoir. However, challenges still remain for the development of an HIV vaccine. Incomplete knowledge of host immunity lies at the core of the tribulations lying in the face of effective vaccine development.
Collapse
|
104
|
Khan L, Makhdoomi MA, Kumar S, Nair A, Andrabi R, Clark BE, Auyeung K, Bhattacharya J, Vajpayee M, Wig N, Pantophlet R, Luthra K. Identification of CD4-Binding Site Dependent Plasma Neutralizing Antibodies in an HIV-1 Infected Indian Individual. PLoS One 2015; 10:e0125575. [PMID: 25962059 PMCID: PMC4427266 DOI: 10.1371/journal.pone.0125575] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/24/2015] [Indexed: 12/02/2022] Open
Abstract
Dissecting antibody specificities in the plasma of HIV-1 infected individuals that develop broadly neutralizing antibodies (bNAbs) is likely to provide useful information for refining target epitopes for vaccine design. Several studies have reported CD4-binding site (CD4bs) antibodies as neutralization determinants in the plasma of subtype B-infected individuals; however there is little information on the prevalence of CD4bs specificities in HIV-infected individuals in India. Here, we report on the presence of CD4bs antibodies and their contribution to virus neutralization in the plasma from a cohort of HIV-1 infected Indian individuals. Plasma from 11 of the 140 HIV-1 infected individuals (7.9%) studied here exhibited cross-neutralization activity against a panel of subtype B and C viruses. Analyses of these 11 plasma samples for the presence of CD4bs antibodies using two CD4bs-selective probes (antigenically resurfaced HXB2gp120 core protein RSC3 and hyperglycosylated JRFLgp120 mutant ΔN2mCHO) revealed that five (AIIMS 617, 619, 627, 642, 660) contained RSC3-reactive plasma antibodies and only one (AIIMS 660) contained ΔN2mCHO-reactive antibodies. Plasma antibody depletion and competition experiments confirmed that the neutralizing activity in the AIIMS 660 plasma was dependent on CD4bs antibodies. To the best of our knowledge, this is the first study to report specifically on the presence of CD4bs antibodies in the plasma of a cohort of HIV-1 infected Indian donors. The identification of CD4bs dependent neutralizing antibodies in an HIV-1 infected Indian donor is a salient finding of this study and is supportive of ongoing efforts to induce similar antibodies by immunization.
Collapse
Affiliation(s)
- Lubina Khan
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | | | - Sanjeev Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Ambili Nair
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Raiees Andrabi
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Brenda E. Clark
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Kate Auyeung
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Jayanta Bhattacharya
- HIV Vaccine Translational Research Laboratory, THSTI-IAVI HIV Vaccine Design Program, Translational Health Science and Technology Institute, Gurgaon, Haryana, India
| | - Madhu Vajpayee
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Naveet Wig
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Ralph Pantophlet
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
- * E-mail:
| |
Collapse
|
105
|
Crooks ET, Tong T, Chakrabarti B, Narayan K, Georgiev IS, Menis S, Huang X, Kulp D, Osawa K, Muranaka J, Stewart-Jones G, Destefano J, O’Dell S, LaBranche C, Robinson JE, Montefiori DC, McKee K, Du SX, Doria-Rose N, Kwong PD, Mascola JR, Zhu P, Schief WR, Wyatt RT, Whalen RG, Binley JM. Vaccine-Elicited Tier 2 HIV-1 Neutralizing Antibodies Bind to Quaternary Epitopes Involving Glycan-Deficient Patches Proximal to the CD4 Binding Site. PLoS Pathog 2015; 11:e1004932. [PMID: 26023780 PMCID: PMC4449185 DOI: 10.1371/journal.ppat.1004932] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 05/04/2015] [Indexed: 12/28/2022] Open
Abstract
Eliciting broad tier 2 neutralizing antibodies (nAbs) is a major goal of HIV-1 vaccine research. Here we investigated the ability of native, membrane-expressed JR-FL Env trimers to elicit nAbs. Unusually potent nAb titers developed in 2 of 8 rabbits immunized with virus-like particles (VLPs) expressing trimers (trimer VLP sera) and in 1 of 20 rabbits immunized with DNA expressing native Env trimer, followed by a protein boost (DNA trimer sera). All 3 sera neutralized via quaternary epitopes and exploited natural gaps in the glycan defenses of the second conserved region of JR-FL gp120. Specifically, trimer VLP sera took advantage of the unusual absence of a glycan at residue 197 (present in 98.7% of Envs). Intriguingly, removing the N197 glycan (with no loss of tier 2 phenotype) rendered 50% or 16.7% (n = 18) of clade B tier 2 isolates sensitive to the two trimer VLP sera, showing broad neutralization via the surface masked by the N197 glycan. Neutralizing sera targeted epitopes that overlap with the CD4 binding site, consistent with the role of the N197 glycan in a putative "glycan fence" that limits access to this region. A bioinformatics analysis suggested shared features of one of the trimer VLP sera and monoclonal antibody PG9, consistent with its trimer-dependency. The neutralizing DNA trimer serum took advantage of the absence of a glycan at residue 230, also proximal to the CD4 binding site and suggesting an epitope similar to that of monoclonal antibody 8ANC195, albeit lacking tier 2 breadth. Taken together, our data show for the first time that strain-specific holes in the glycan fence can allow the development of tier 2 neutralizing antibodies to native spikes. Moreover, cross-neutralization can occur in the absence of protecting glycan. Overall, our observations provide new insights that may inform the future development of a neutralizing antibody vaccine.
Collapse
Affiliation(s)
- Ema T. Crooks
- San Diego Biomedical Research Institute, San Diego, California, United States of America
| | - Tommy Tong
- San Diego Biomedical Research Institute, San Diego, California, United States of America
| | - Bimal Chakrabarti
- International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center at The Scripps Research Institute, Department of Immunology and Microbial Science, La Jolla, California, United States of America
| | - Kristin Narayan
- Altravax, Inc., Sunnyvale, California, United States of America
| | - Ivelin S. Georgiev
- Vaccine Research Center, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Sergey Menis
- International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center at The Scripps Research Institute, Department of Immunology and Microbial Science, La Jolla, California, United States of America
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California, United States of America
| | - Xiaoxing Huang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Daniel Kulp
- International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center at The Scripps Research Institute, Department of Immunology and Microbial Science, La Jolla, California, United States of America
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California, United States of America
| | - Keiko Osawa
- San Diego Biomedical Research Institute, San Diego, California, United States of America
| | | | - Guillaume Stewart-Jones
- Vaccine Research Center, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Hospital, Oxford, United Kingdom
| | - Joanne Destefano
- International AIDS Vaccine Initiative, Design and Development Laboratory, Brooklyn, New York, United States of America
| | - Sijy O’Dell
- Vaccine Research Center, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Celia LaBranche
- Department of Surgery, Duke University, Duke University Medical Center, Durham, North Carolina, United States of America
| | - James E. Robinson
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - David C. Montefiori
- Department of Surgery, Duke University, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Krisha McKee
- Vaccine Research Center, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Sean X. Du
- Altravax, Inc., Sunnyvale, California, United States of America
| | - Nicole Doria-Rose
- Vaccine Research Center, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Peter D. Kwong
- Vaccine Research Center, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - John R. Mascola
- Vaccine Research Center, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Ping Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - William R. Schief
- International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center at The Scripps Research Institute, Department of Immunology and Microbial Science, La Jolla, California, United States of America
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California, United States of America
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
| | - Richard T. Wyatt
- International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center at The Scripps Research Institute, Department of Immunology and Microbial Science, La Jolla, California, United States of America
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California, United States of America
| | | | - James M. Binley
- San Diego Biomedical Research Institute, San Diego, California, United States of America
| |
Collapse
|
106
|
Doria-Rose NA, Joyce MG. Strategies to guide the antibody affinity maturation process. Curr Opin Virol 2015; 11:137-47. [PMID: 25913818 DOI: 10.1016/j.coviro.2015.04.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/02/2015] [Accepted: 04/06/2015] [Indexed: 11/16/2022]
Abstract
Antibodies with protective activity are critical for vaccine efficacy. Affinity maturation increases antibody activity through multiple rounds of somatic hypermutation and selection in the germinal center. Identification of HIV-1 specific and influenza-specific antibody developmental pathways, as well as characterization of B cell and virus co-evolution in patients, has informed our understanding of antibody development. In order to counteract HIV-1 and influenza viral diversity, broadly neutralizing antibodies precisely target specific sites of vulnerability and require high levels of affinity maturation. We present immunization strategies that attempt to recapitulate these natural processes and guide the affinity maturation process.
Collapse
Affiliation(s)
- Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - M Gordon Joyce
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
107
|
Immunogenic Display of Purified Chemically Cross-Linked HIV-1 Spikes. J Virol 2015; 89:6725-45. [PMID: 25878116 DOI: 10.1128/jvi.03738-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 04/11/2015] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED HIV-1 envelope glycoprotein (Env) spikes are prime vaccine candidates, at least in principle, but suffer from instability, molecular heterogeneity and a low copy number on virions. We anticipated that chemical cross-linking of HIV-1 would allow purification and molecular characterization of trimeric Env spikes, as well as high copy number immunization. Broadly neutralizing antibodies bound tightly to all major quaternary epitopes on cross-linked spikes. Covalent cross-linking of the trimer also stabilized broadly neutralizing epitopes, although surprisingly some individual epitopes were still somewhat sensitive to heat or reducing agent. Immunodepletion using non-neutralizing antibodies to gp120 and gp41 was an effective method for removing non-native-like Env. Cross-linked spikes, purified via an engineered C-terminal tag, were shown by negative stain EM to have well-ordered, trilobed structure. An immunization was performed comparing a boost with Env spikes on virions to spikes cross-linked and captured onto nanoparticles, each following a gp160 DNA prime. Although differences in neutralization did not reach statistical significance, cross-linked Env spikes elicited a more diverse and sporadically neutralizing antibody response against Tier 1b and 2 isolates when displayed on nanoparticles, despite attenuated binding titers to gp120 and V3 crown peptides. Our study demonstrates display of cross-linked trimeric Env spikes on nanoparticles, while showing a level of control over antigenicity, purity and density of virion-associated Env, which may have relevance for Env based vaccine strategies for HIV-1. IMPORTANCE The envelope spike (Env) is the target of HIV-1 neutralizing antibodies, which a successful vaccine will need to elicit. However, native Env on virions is innately labile, as well as heterogeneously and sparsely displayed. We therefore stabilized Env spikes using a chemical cross-linker and removed non-native Env by immunodepletion with non-neutralizing antibodies. Fixed native spikes were recognized by all classes of known broadly neutralizing antibodies but not by non-neutralizing antibodies and displayed on nanoparticles in high copy number. An immunization experiment in rabbits revealed that cross-linking Env reduced its overall immunogenicity; however, high-copy display on nanoparticles enabled boosting of antibodies that sporadically neutralized some relatively resistant HIV-1 isolates, albeit at a low titer. This study describes the purification of stable and antigenically correct Env spikes from virions that can be used as immunogens.
Collapse
|
108
|
Abstract
PURPOSE OF REVIEW T follicular helper (Tfh) cells play a critical role as providers of B-cell help and dysfunction in Tfh/B-cell interactions can lead to autoimmunity or immunodeficiency. These observations have generated a great deal of interest in understanding how these cells are affected during HIV infection and how their functional changes might affect antibody responses. RECENT FINDINGS Recent studies have shown that HIV/simian immunodeficiency virus (SIV) infection affects both Tfh-cell frequency and function and suggest that Tfh-cell perturbations might contribute to the relative inefficiency of HIV-infected individuals to generate broadly neutralizing antibodies (bNAbs). SUMMARY The present review will highlight these recent findings addressing the role of Tfh cells in HIV infection as well as the impact HIV infection has on Tfh and circulating memory Tfh (cTfh) cell frequency and function.
Collapse
|
109
|
Carrillo J, Molinos-Albert LM, de la Concepción MLR, Marfil S, García E, Derking R, Sanders RW, Clotet B, Blanco J. Gp120/CD4 blocking antibodies are frequently elicited in ART-naïve chronically HIV-1 infected individuals. PLoS One 2015; 10:e0120648. [PMID: 25803681 PMCID: PMC4372395 DOI: 10.1371/journal.pone.0120648] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/25/2015] [Indexed: 11/24/2022] Open
Abstract
Antibodies with the ability to block the interaction of HIV-1 envelope glycoprotein (Env) gp120 with CD4, including those overlapping the CD4 binding site (CD4bs antibodies), can protect from infection by HIV-1, and their elicitation may be an interesting goal for any vaccination strategy. To identify gp120/CD4 blocking antibodies in plasma samples from HIV-1 infected individuals we have developed a competitive flow cytometry-based functional assay. In a cohort of treatment-naïve chronically infected patients, we showed that gp120/CD4 blocking antibodies were frequently elicited (detected in 97% plasma samples) and correlated with binding to trimeric HIV-1 envelope glycoproteins. However, no correlation was observed between functional CD4 binding blockade data and titer of CD4bs antibodies determined by ELISA using resurfaced gp120 proteins. Consistently, plasma samples lacking CD4bs antibodies were able to block the interaction between gp120 and its receptor, indicating that antibodies recognizing other epitopes, such as PGT126 and PG16, can also play the same role. Antibodies blocking CD4 binding increased over time and correlated positively with the capacity of plasma samples to neutralize the laboratory-adapted NL4.3 and BaL virus isolates, suggesting their potential contribution to the neutralizing workforce of plasma in vivo. Determining whether this response can be boosted to achieve broadly neutralizing antibodies may provide valuable information for the design of new strategies aimed to improve the anti-HIV-1 humoral response and to develop a successful HIV-1 vaccine.
Collapse
Affiliation(s)
- Jorge Carrillo
- Institut de Recerca de la SIDA-IrsiCaixa-HIVACAT, Badalona, Barcelona, Spain
- * E-mail:
| | - Luis Manuel Molinos-Albert
- Institut de Recerca de la SIDA-IrsiCaixa-HIVACAT, Badalona, Barcelona, Spain
- Institut de Recerca en Ciències de la Salut Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
| | | | - Silvia Marfil
- Institut de Recerca de la SIDA-IrsiCaixa-HIVACAT, Badalona, Barcelona, Spain
| | - Elisabet García
- Institut de Recerca de la SIDA-IrsiCaixa-HIVACAT, Badalona, Barcelona, Spain
| | - Ronald Derking
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Rogier W. Sanders
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Bonaventura Clotet
- Institut de Recerca de la SIDA-IrsiCaixa-HIVACAT, Badalona, Barcelona, Spain
- Universitat Autònoma de Barcelona, Cerdanyola del Vallés, Barcelona, Spain
- Universitat de Vic-Central de Catalunya, UVIC-UCC, Vic, Barcelona, Spain
- Fundació Lluita contra la SIDA, Badalona, Barcelona, Spain
| | - Julià Blanco
- Institut de Recerca de la SIDA-IrsiCaixa-HIVACAT, Badalona, Barcelona, Spain
- Institut de Recerca en Ciències de la Salut Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
- Universitat Autònoma de Barcelona, Cerdanyola del Vallés, Barcelona, Spain
- Universitat de Vic-Central de Catalunya, UVIC-UCC, Vic, Barcelona, Spain
| |
Collapse
|
110
|
Chikaev AN, Bakulina AY, Burdick RC, Karpenko LI, Pathak VK, Ilyichev AA. Selection of peptide mimics of HIV-1 epitope recognized by neutralizing antibody VRC01. PLoS One 2015; 10:e0120847. [PMID: 25785734 PMCID: PMC4364665 DOI: 10.1371/journal.pone.0120847] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 01/26/2015] [Indexed: 12/24/2022] Open
Abstract
The ability to induce anti-HIV-1 antibodies that can neutralize a broad spectrum of viral isolates from different subtypes seems to be a key requirement for development of an effective HIV-1 vaccine. The epitopes recognized by the most potent broadly neutralizing antibodies that have been characterized are largely discontinuous. Mimetics of such conformational epitopes could be potentially used as components of a synthetic immunogen that can elicit neutralizing antibodies. Here we used phage display technology to identify peptide motifs that mimic the epitope recognized by monoclonal antibody VRC01, which is able to neutralize up to 91% of circulating primary isolates. Three rounds of biopanning were performed against 2 different phage peptide libraries for this purpose. The binding specificity of selected phage clones to monoclonal antibody VRC01 was estimated using dot blot analysis. The putative peptide mimics exposed on the surface of selected phages were analyzed for conformational and linear homology to the surface of HIV-1 gp120 fragment using computational analysis. Corresponding peptides were synthesized and checked for their ability to interfere with neutralization activity of VRC01 in a competitive inhibition assay. One of the most common peptides selected from 12-mer phage library was found to partially mimic a CD4-binding loop fragment, whereas none of the circular C7C-mer peptides was able to mimic any HIV-1 domains. However, peptides identified from both the 12-mer and C7C-mer peptide libraries showed rescue of HIV-1 infectivity in the competitive inhibition assay. The identification of epitope mimics may lead to novel immunogens capable of inducing broadly reactive neutralizing antibodies.
Collapse
Affiliation(s)
- Anton N. Chikaev
- State Research Center of Virology and Biotechnology VECTOR, Koltsovo, Novosibirsk region, 630559, Russia
- * E-mail:
| | - Anastasiya Yu. Bakulina
- State Research Center of Virology and Biotechnology VECTOR, Koltsovo, Novosibirsk region, 630559, Russia
| | - Ryan C. Burdick
- HIV Drug Resistance Program, National Cancer Institute-Frederick, Viral Mutation Section, Frederick, Maryland, 21702, United States of America
| | - Larisa I. Karpenko
- State Research Center of Virology and Biotechnology VECTOR, Koltsovo, Novosibirsk region, 630559, Russia
| | - Vinay K. Pathak
- HIV Drug Resistance Program, National Cancer Institute-Frederick, Viral Mutation Section, Frederick, Maryland, 21702, United States of America
| | - Alexander A. Ilyichev
- State Research Center of Virology and Biotechnology VECTOR, Koltsovo, Novosibirsk region, 630559, Russia
| |
Collapse
|
111
|
Christdas J, Manoharan P, Harshavardhan S. Neutralization function affected by single amino acid replacement in the HIV-1 antibody targets. Bioinformation 2015; 11:57-62. [PMID: 25848164 PMCID: PMC4369679 DOI: 10.6026/97320630011057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 01/08/2015] [Indexed: 11/29/2022] Open
Abstract
The viral envelope glycoproteins are essential for entry into their host cells and studied extensively for designing vaccines. We hypothesize that the glycosylation on the HIV-1 viral envelope glycoprotein 41(gp41) at critical residues offers viral escape from the specific immune surveillant neutralizing antibodies Z13, 4E10 and 10E8 targeted to their linear epitopes in the Membrane Proximal External Region (MPER). The glycosylation occurring on the 50th residue (Asparagine) contained in the target (NWFNIT) can mask itself to be inaccessible for these neutralizing antibodies. The glycosylation rate of the epitopes which are shared by the Z13, 4E10 and 10E8 neutralizing antibodies of HIV-1 were predicited in silico. We analyzed the reliable frequency of glycosylation on the HIV-1 envelope gp41 using prediction tools to unravel the plausibility of the glycosylation by a mannose at 50th residue in the 59 amino acid long HIV-gp41 trimer (PDBID: 2M7W and 2LP7). It is evident that the glycosylation by a mannose that masks these targets is possible only when the 50th amino-acid is N (Asparagine, Asn) which is not possible when N is mutated to D (Aspartatic acid, Asp). The additive advantage for the retrovirus is its error-prone reverse transcriptase which can choose to copy these survivable mutants with Asn N-50 that can be glycosylated as explained by the Copy-choice model. So the glycan shields varying in their intensity and patterns have to be essentially studied to understand the viral escape strategies that will give a way forward towards a successful vaccine that can elicit a neutralizing antibody response to confer protection.
Collapse
Affiliation(s)
- Johnson Christdas
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, India,625021
| | - Prabu Manoharan
- Centre of Excellence in Bioinformatics, Madurai Kamaraj University, Madurai, Tamil Nadu, India, 625021
| | - Shakila Harshavardhan
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, India,625021
| |
Collapse
|
112
|
Pegu A, Yang ZY, Boyington JC, Wu L, Ko SY, Schmidt SD, McKee K, Kong WP, Shi W, Chen X, Todd JP, Letvin NL, Huang J, Nason MC, Hoxie JA, Kwong PD, Connors M, Rao SS, Mascola JR, Nabel GJ. Neutralizing antibodies to HIV-1 envelope protect more effectively in vivo than those to the CD4 receptor. Sci Transl Med 2015; 6:243ra88. [PMID: 24990883 DOI: 10.1126/scitranslmed.3008992] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
HIV-1 infection depends on effective viral entry mediated by the interaction of its envelope (Env) glycoprotein with specific cell surface receptors. Protective antiviral antibodies generated by passive or active immunization must prevent these interactions. Because the HIV-1 Env is highly variable, attention has also focused on blocking the HIV-1 primary cell receptor CD4. We therefore analyzed the in vivo protective efficacy of three potent neutralizing monoclonal antibodies (mAbs) to HIV-1 Env compared to an antibody against the CD4 receptor. Protection was assessed after mucosal challenge of rhesus macaques with simian/HIV (SHIV). Despite its comparable or greater neutralization potency in vitro, the anti-CD4 antibody did not provide effective protection in vivo, whereas the HIV-1-specific mAbs VRC01, 10E8, and PG9, targeting the CD4 binding site, membrane-proximal, and V1V2 glycan Env regions, respectively, conferred complete protection, albeit at different relative potencies. These findings demonstrate the protective efficacy of broadly neutralizing antibodies directed to the HIV-1 Env and suggest that targeting the HIV-1 Env is preferable to the cell surface receptor CD4 for the prevention of HIV-1 transmission.
Collapse
Affiliation(s)
- Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 40 Convent Drive, Bethesda, MD 20892, USA
| | - Zhi-yong Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 40 Convent Drive, Bethesda, MD 20892, USA
| | - Jeffrey C Boyington
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 40 Convent Drive, Bethesda, MD 20892, USA
| | - Lan Wu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 40 Convent Drive, Bethesda, MD 20892, USA
| | - Sung-Youl Ko
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 40 Convent Drive, Bethesda, MD 20892, USA
| | - Stephen D Schmidt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 40 Convent Drive, Bethesda, MD 20892, USA
| | - Krisha McKee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 40 Convent Drive, Bethesda, MD 20892, USA
| | - Wing-Pui Kong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 40 Convent Drive, Bethesda, MD 20892, USA
| | - Wei Shi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 40 Convent Drive, Bethesda, MD 20892, USA
| | - Xuejun Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 40 Convent Drive, Bethesda, MD 20892, USA
| | - John-Paul Todd
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 40 Convent Drive, Bethesda, MD 20892, USA
| | - Norman L Letvin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 40 Convent Drive, Bethesda, MD 20892, USA. Division of Viral Pathogenesis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, RE113, P. O. Box 15732, Boston, MA 02115, USA
| | - Jinghe Huang
- HIV-Specific Immunity Section, Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD 20892, USA
| | - Martha C Nason
- Biostatistics Research Branch, NIAID, NIH, Bethesda, MD 20892, USA
| | - James A Hoxie
- Biostatistics Research Branch, NIAID, NIH, Bethesda, MD 20892, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 40 Convent Drive, Bethesda, MD 20892, USA
| | - Mark Connors
- HIV-Specific Immunity Section, Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD 20892, USA
| | - Srinivas S Rao
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 40 Convent Drive, Bethesda, MD 20892, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 40 Convent Drive, Bethesda, MD 20892, USA.
| | - Gary J Nabel
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 40 Convent Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
113
|
Yu HT, Tian D, Wang JY, Guo CX, Li Y, Wang X, Li D, Zhang FM, Zhuang M, Ling H. An HIV-1 envelope immunogen with W427S mutation in CD4 binding site induced more T follicular helper memory cells and reduced non-specific antibody responses. PLoS One 2014; 9:e115047. [PMID: 25546013 PMCID: PMC4278894 DOI: 10.1371/journal.pone.0115047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 11/18/2014] [Indexed: 11/25/2022] Open
Abstract
The CD4 binding site (CD4BS) of the HIV-1 envelope glycoprotein (Env) contains epitopes for broadly neutralizing antibody (nAb) and is the target for the vaccine development. However, the CD4BS core including residues 425-430 overlaps the B cell superantigen site and may be related to B cell exhaustion in HIV-1 infection. Furthermore, production of nAb and high-affinity plasma cells needs germinal center reaction and the help of T follicular helper (Tfh) cells. We believe that strengthening the ability of Env CD4BS in inducing Tfh response and decreasing the effects of the superantigen are the strategies for eliciting nAb and development of HIV-1 vaccine. We constructed a gp120 mutant W427S of an HIV-1 primary R5 strain and examined its ability in the elicitation of Ab and the production of Tfh by immunization of BALB/c mice. We found that the trimeric wild-type gp120 can induce more non-specific antibody-secreting plasma cells, higher serum IgG secretion, and more Tfh cells by splenocyte. The modified W427S gp120 elicits higher levels of specific binding antibodies as well as nAbs though it produces less Tfh cells. Furthermore, higher Tfh cell frequency does not correlate to the specific binding Abs or nAbs indicating that the wild-type gp120 induced some non-specific Tfh that did not contribute to the production of specific Abs. This gp120 mutant led to more memory Tfh production, especially, the effector memory Tfh cells. Taken together, W427S gp120 could induce higher level of specific binding and neutralizing Ab production that may be associated with the reduction of non-specific Tfh but strengthening of the memory Tfh.
Collapse
Affiliation(s)
- Hao-Tong Yu
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Dan Tian
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Jia-Ye Wang
- Department of Microbiology, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Lab for Infection and Immunity, Key Lab of Etiology of Heilongjiang Province Education Bureau, Harbin, China
| | - Cai-Xia Guo
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Yan Li
- Department of Microbiology, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Lab for Infection and Immunity, Key Lab of Etiology of Heilongjiang Province Education Bureau, Harbin, China
| | - Xin Wang
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Di Li
- Department of Microbiology, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Lab for Infection and Immunity, Key Lab of Etiology of Heilongjiang Province Education Bureau, Harbin, China
| | - Feng-Min Zhang
- Department of Microbiology, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Lab for Infection and Immunity, Key Lab of Etiology of Heilongjiang Province Education Bureau, Harbin, China
| | - Min Zhuang
- Department of Microbiology, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Lab for Infection and Immunity, Key Lab of Etiology of Heilongjiang Province Education Bureau, Harbin, China
- * E-mail: (MZ); (HL)
| | - Hong Ling
- Department of Microbiology, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Lab for Infection and Immunity, Key Lab of Etiology of Heilongjiang Province Education Bureau, Harbin, China
- Department of Parasitology, Harbin Medical University, Harbin, China
- * E-mail: (MZ); (HL)
| |
Collapse
|
114
|
Sok D, Doores KJ, Briney B, Le KM, Saye-Francisco KL, Ramos A, Kulp DW, Julien JP, Menis S, Wickramasinghe L, Seaman MS, Schief WR, Wilson IA, Poignard P, Burton DR. Promiscuous glycan site recognition by antibodies to the high-mannose patch of gp120 broadens neutralization of HIV. Sci Transl Med 2014; 6:236ra63. [PMID: 24828077 DOI: 10.1126/scitranslmed.3008104] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Broadly neutralizing monoclonal antibodies (bnmAbs) that target the high-mannose patch centered around the glycan at position 332 on HIV Env are promising vaccine leads and therapeutic candidates because they effectively protect against mucosal SHIV challenge and strongly suppress SHIV viremia in established infection in macaque models. However, these antibodies demonstrate varying degrees of dependency on the N332 glycan site, and the origins of their neutralization breadth are not always obvious. By measuring neutralization on an extended range of glycan site viral variants, we found that some bnmAbs can use alternate N-linked glycans in the absence of the N332 glycan site and therefore neutralize a substantial number of viruses lacking the site. Furthermore, many of the antibodies can neutralize viruses in which the N332 glycan site is shifted to the 334 position. Finally, we found that a combination of three antibody families that target the high-mannose patch can lead to 99% neutralization coverage of a large panel of viruses containing the N332/N334 glycan site and up to 66% coverage for viruses that lack the N332/N334 glycan site. The results indicate that a diverse response against the high-mannose patch may provide near-equivalent coverage as a combination of bnmAbs targeting multiple epitopes. Additionally, the ability of some bnmAbs to use other N-linked glycan sites can help counter neutralization escape mediated by shifting of glycosylation sites. Overall, this work highlights the importance of promiscuous glycan binding properties in bnmAbs to the high-mannose patch for optimal antiviral activity in either protective or therapeutic modalities.
Collapse
Affiliation(s)
- Devin Sok
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Katie J Doores
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. Department of Infectious Diseases, King's College London School of Medicine, Guy's Hospital, London SE1 9RT, UK.
| | - Bryan Briney
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Khoa M Le
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Karen L Saye-Francisco
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Alejandra Ramos
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative, New York, NY 10038, USA
| | - Daniel W Kulp
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative, New York, NY 10038, USA
| | - Jean-Philippe Julien
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sergey Menis
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative, New York, NY 10038, USA
| | - Lalinda Wickramasinghe
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative, New York, NY 10038, USA
| | | | - William R Schief
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative, New York, NY 10038, USA. Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Boston, MA 02142, USA
| | - Ian A Wilson
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA. Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Pascal Poignard
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative, New York, NY 10038, USA
| | - Dennis R Burton
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Boston, MA 02142, USA.
| |
Collapse
|
115
|
de Goede AL, Vulto AG, Osterhaus ADME, Gruters RA. Understanding HIV infection for the design of a therapeutic vaccine. Part II: Vaccination strategies for HIV. ANNALES PHARMACEUTIQUES FRANÇAISES 2014; 73:169-79. [PMID: 25528627 DOI: 10.1016/j.pharma.2014.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 11/07/2014] [Indexed: 02/07/2023]
Abstract
HIV infection leads to a gradual loss CD4(+) T lymphocytes comprising immune competence and progression to AIDS. Effective treatment with combined antiretroviral drugs (cART) decreases viral load below detectable levels but is not able to eliminate the virus from the body. The success of cART is frustrated by the requirement of expensive lifelong adherence, accumulating drug toxicities and chronic immune activation resulting in increased risk of several non-AIDS disorders, even when viral replication is suppressed. Therefore, there is a strong need for therapeutic strategies as an alternative to cART. Immunotherapy, or therapeutic vaccination, aims to increase existing immune responses against HIV or induce de novo immune responses. These immune responses should provide a functional cure by controlling viral replication and preventing disease progression in the absence of cART. The key difficulty in the development of an HIV vaccine is our ignorance of the immune responses that control of viral replication, and thus how these responses can be elicited and how they can be monitored. Part one of this review provides an extensive overview of the (patho-) physiology of HIV infection. It describes the structure and replication cycle of HIV, the epidemiology and pathogenesis of HIV infection and the innate and adaptive immune responses against HIV. Part two of this review discusses therapeutic options for HIV. Prevention modalities and antiretroviral therapy are briefly touched upon, after which an extensive overview on vaccination strategies for HIV is provided, including the choice of immunogens and delivery strategies.
Collapse
Affiliation(s)
- A L de Goede
- Department of Viroscience, Erasmus MC, 's-Gravendijkwal 230, PO box 2040, 3000 CA Rotterdam, The Netherlands; Department of Hospital Pharmacy, Erasmus MC, 's-Gravendijkwal 230, PO box 2040, 3000 CA Rotterdam, The Netherlands.
| | - A G Vulto
- Department of Hospital Pharmacy, Erasmus MC, 's-Gravendijkwal 230, PO box 2040, 3000 CA Rotterdam, The Netherlands
| | - A D M E Osterhaus
- Department of Viroscience, Erasmus MC, 's-Gravendijkwal 230, PO box 2040, 3000 CA Rotterdam, The Netherlands
| | - R A Gruters
- Department of Viroscience, Erasmus MC, 's-Gravendijkwal 230, PO box 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
116
|
Improving neutralization potency and breadth by combining broadly reactive HIV-1 antibodies targeting major neutralization epitopes. J Virol 2014; 89:2659-71. [PMID: 25520506 DOI: 10.1128/jvi.03136-14] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The isolation of broadly neutralizing HIV-1 monoclonal antibodies (MAbs) to distinct epitopes on the viral envelope glycoprotein (Env) provides the potential to use combinations of MAbs for prevention and treatment of HIV-1 infection. Since many of these MAbs have been isolated in the last few years, the potency and breadth of MAb combinations have not been well characterized. In two parallel experiments, we examined the in vitro neutralizing activities of double-, triple-, and quadruple-MAb combinations targeting four distinct epitopes, including the CD4-binding site, the V1V2-glycan region, the V3-glycan supersite, and the gp41 membrane-proximal external region (MPER), using a panel of 125 Env-pseudotyped viruses. All MAb combinations showed substantially improved neutralization breadth compared to the corresponding single MAbs, while the neutralization potency of individual MAbs was maintained. At a 50% inhibitory concentration (IC50) cutoff of 1 μg/ml per antibody, double-MAb combinations neutralized 89 to 98% of viruses, and triple combinations neutralized 98 to 100%. Overall, the improvement of neutralization breadth was closely predicted by an additive-effect model and explained by complementary neutralization profiles of antibodies recognizing distinct epitopes. Subtle but consistent favorable interactions were observed in some MAb combinations, whereas less favorable interactions were observed on a small subset of viruses that are highly sensitive to V3-glycan MAbs. These data demonstrate favorable in vitro combinations of broadly neutralizing HIV-1 MAbs and suggest that such combinations could have utility for HIV-1 prevention and treatment. IMPORTANCE Over the last 5 years, numerous broadly reactive HIV-1-neutralizing MAbs have been isolated from B cells of HIV-1-infected donors. Each of these MAbs binds to one of the major vulnerable sites (epitopes) on the surface of the viral envelope glycoprotein. Since antibodies to distinct viral epitopes could theoretically act together to provide greater potency and breadth of virus neutralization, we tested physical mixtures of double, triple, and quadruple combinations of neutralizing MAbs targeting four major epitopes on HIV-1 Env. When tested together, antibody combinations showed substantially improved neutralization breadth compared to single MAbs. This improvement could be explained by the complementary neutralization profiles of individual MAbs. We further demonstrated that each antibody maintained its full neutralization potency when used in combination with other MAbs. These data provide a rationale for clinical use of antibody-based combinations for HIV-1 prevention and therapy.
Collapse
|
117
|
|
118
|
Van Regenmortel MHV. An Outdated Notion of Antibody Specificity is One of the Major Detrimental Assumptions of the Structure-Based Reverse Vaccinology Paradigm, Which Prevented It from Helping to Develop an Effective HIV-1 Vaccine. Front Immunol 2014; 5:593. [PMID: 25477882 PMCID: PMC4235417 DOI: 10.3389/fimmu.2014.00593] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 11/05/2014] [Indexed: 01/12/2023] Open
Abstract
The importance of paradigms for guiding scientific research is explained with reference to the seminal work of Karl Popper and Thomas Kuhn. A prevalent paradigm, followed for more than a decade in HIV-1 vaccine research, which gave rise to the strategy known as structure-based reverse vaccinology is described in detail. Several reasons why this paradigm did not allow the development of an effective HIV-1 vaccine are analyzed. A major reason is the belief shared by many vaccinologists that antibodies possess a narrow specificity for a single epitope and are not polyspecific for a diverse group of potential epitopes. When this belief is abandoned, it becomes obvious that the one particular epitope structure observed during the crystallographic analysis of a neutralizing antibody–antigen complex does not necessarily reveal, which immunogenic structure should be used to elicit the same type of neutralizing antibody. In the physical sciences, scientific explanations are usually presented as logical deductions derived from a relevant law of nature together with certain initial conditions. In immunology, causal explanations in terms of a single cause acting according to a law of nature are not possible because numerous factors always play a role in bringing about an effect. The implications of this state of affairs for the rational design of HIV vaccines are outlined. An alternative approach to obtain useful scientific understanding consists in intervening empirically in the immune system and it is suggested that manipulating the system experimentally is needed to learn to control it and achieve protective immunity by vaccination.
Collapse
Affiliation(s)
- Marc H V Van Regenmortel
- CNRS, Biotechnologie des Interactions Moleculaires, IREBS, School of Biotechnology, ESBS, University of Strasbourg , Illkirch , France
| |
Collapse
|
119
|
Bęczkowski PM, Logan N, McMonagle E, Litster A, Willett BJ, Hosie MJ. An investigation of the breadth of neutralizing antibody response in cats naturally infected with feline immunodeficiency virus. J Gen Virol 2014; 96:671-680. [PMID: 25395594 PMCID: PMC4336861 DOI: 10.1099/vir.0.071522-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Neutralizing antibodies (NAbs) are believed to comprise an essential component of the protective immune response induced by vaccines against feline immunodeficiency virus (FIV) and human immunodeficiency virus (HIV) infections. However, relatively little is known about the role of NAbs in controlling FIV infection and subsequent disease progression. Here, we present studies where we examined the neutralization of HIV-luciferase pseudotypes bearing homologous and heterologous FIV envelope proteins (n = 278) by sequential plasma samples collected at 6 month intervals from naturally infected cats (n = 38) over a period of 18 months. We evaluated the breadth of the NAb response against non-recombinant homologous and heterologous clade A and clade B viral variants, as well as recombinants, and assessed the results, testing for evidence of an association between the potency of the NAb response and the duration of infection, CD4+ T lymphocyte numbers, health status and survival times of the infected cats. Neutralization profiles varied significantly between FIV-infected cats and strong autologous neutralization, assessed using luciferase-based in vitro assays, did not correlate with the clinical outcome. No association was observed between strong NAb responses and either improved health status or increased survival time of infected animals, implying that other protective mechanisms were likely to be involved. Similarly, no correlation was observed between the development of autologous NAbs and the duration of infection. Furthermore, cross-neutralizing antibodies were evident in only a small proportion (13 %) of cats.
Collapse
Affiliation(s)
- Paweł M Bęczkowski
- Small Animal Hospital, University of Glasgow, Glasgow, UK.,MRC University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Nicola Logan
- MRC University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Elizabeth McMonagle
- MRC University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Annette Litster
- Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Brian J Willett
- MRC University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Margaret J Hosie
- MRC University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| |
Collapse
|
120
|
Abstract
UNLABELLED It is generally acknowledged that human broadly neutralizing antibodies (bNAbs) capable of neutralizing multiple HIV-1 clades are often polyreactive or autoreactive. Whereas polyreactivity or autoreactivity has been proposed to be crucial for neutralization breadth, no systematic, quantitative study of self-reactivity among nonneutralizing HIV-1 Abs (nNAbs) has been performed to determine whether poly- or autoreactivity in bNAbs is a consequence of chronic antigen (Ag) exposure and/or inflammation or a fundamental property of neutralization. Here, we use protein microarrays to assess binding to >9,400 human proteins and find that as a class, bNAbs are significantly more poly- and autoreactive than nNAbs. The poly- and autoreactive property is therefore not due to the infection milieu but rather is associated with neutralization. Our observations are consistent with a role of heteroligation for HIV-1 neutralization and/or structural mimicry of host Ags by conserved HIV-1 neutralization sites. Although bNAbs are more mutated than nNAbs as a group, V(D)J mutation per se does not correlate with poly- and autoreactivity. Infrequent poly- or autoreactivity among nNAbs implies that their dominance in humoral responses is due to the absence of negative control by immune regulation. Interestingly, four of nine bNAbs specific for the HIV-1 CD4 binding site (CD4bs) (VRC01, VRC02, CH106, and CH103) bind human ubiquitin ligase E3A (UBE3A), and UBE3A protein competitively inhibits gp120 binding to the VRC01 bNAb. Among these four bNAbs, avidity for UBE3A was correlated with neutralization breadth. Identification of UBE3A as a self-antigen recognized by CD4bs bNAbs offers a mechanism for the rarity of this bNAb class. IMPORTANCE Eliciting bNAbs is key for HIV-1 vaccines; most Abs elicited by HIV-1 infection or immunization, however, are strain specific or nonneutralizing, and unsuited for protection. Here, we compare the specificities of bNAbs and nNAbs to demonstrate that bNAbs are significantly more poly- and autoreactive than nNAbs. The strong association of poly- and autoreactivity with bNAbs, but not nNAbs from infected patients, indicates that the infection milieu, chronic inflammation and Ag exposure, CD4 T-cell depletion, etc., alone does not cause poly- and autoreactivity. Instead, these properties are fundamentally linked to neutralization breadth, either by the requirement for heteroligation or the consequence of host mimicry by HIV-1. Indeed, we show that human UBE3A shares an epitope(s) with HIV-1 envelope recognized by four CD4bs bNAbs. The poly- and autoreactivity of bNAbs surely contribute to the rarity of membrane-proximal external region (MPER) and CD4bs bNAbs and identify a roadblock that must be overcome to induce protective vaccines.
Collapse
|
121
|
He L, Sok D, Azadnia P, Hsueh J, Landais E, Simek M, Koff WC, Poignard P, Burton DR, Zhu J. Toward a more accurate view of human B-cell repertoire by next-generation sequencing, unbiased repertoire capture and single-molecule barcoding. Sci Rep 2014; 4:6778. [PMID: 25345460 PMCID: PMC4894419 DOI: 10.1038/srep06778] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 10/07/2014] [Indexed: 11/09/2022] Open
Abstract
B-cell repertoire analysis using next-generation sequencing has become a valuable tool for interrogating the genetic record of humoral response to infection. However, key obstacles such as low throughput, short read length, high error rate, and undetermined bias of multiplex PCR method have hindered broader application of this technology. In this study, we report several technical advances in antibody repertoire sequencing. We first demonstrated the ability to sequence antibody variable domains using the Ion Torrent PGM platform. As a test case, we analyzed the PGT121 class of antibodies from IAVI donor 17, an HIV-1-infected individual. We then obtained "unbiased" antibody repertoires by sequencing the 5'-RACE PCR products of B-cell transcripts from IAVI donor 17 and two HIV-1-uninfected individuals. We also quantified the bias of previously published gene-specific primers by comparing the repertoires generated by 5'-RACE PCR and multiplex PCR. We further developed a single-molecule barcoding strategy to reduce PCR-based amplification noise. Lastly, we evaluated several new PGM technologies in the context of antibody sequencing. We expect that, based upon long-read and high-fidelity next-generation sequencing technologies, the unbiased analysis will provide a more accurate view of the overall antibody repertoire while the barcoding strategy will facilitate high-resolution analysis of individual antibody families.
Collapse
Affiliation(s)
- Linling He
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Devin Sok
- 1] Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California 92037, USA [2] IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California 92037, USA [3] International AIDS Vaccine Initiative (IAVI), New York, NY 10004, USA [4] Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Parisa Azadnia
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Jessica Hsueh
- 1] Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California 92037, USA [2] IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California 92037, USA [3] Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Elise Landais
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Melissa Simek
- International AIDS Vaccine Initiative (IAVI), New York, NY 10004, USA
| | - Wayne C Koff
- International AIDS Vaccine Initiative (IAVI), New York, NY 10004, USA
| | - Pascal Poignard
- 1] Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California 92037, USA [2] IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California 92037, USA [3] International AIDS Vaccine Initiative (IAVI), New York, NY 10004, USA
| | - Dennis R Burton
- 1] Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California 92037, USA [2] IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California 92037, USA [3] International AIDS Vaccine Initiative (IAVI), New York, NY 10004, USA [4] Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California 92037, USA [5] Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Cambridge, MA 02139-3583, USA
| | - Jiang Zhu
- 1] Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California 92037, USA [2] Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California 92037, USA [3] Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| |
Collapse
|
122
|
Bruun TH, Mühlbauer K, Benen T, Kliche A, Wagner R. A mammalian cell based FACS-panning platform for the selection of HIV-1 envelopes for vaccine development. PLoS One 2014; 9:e109196. [PMID: 25279768 PMCID: PMC4184847 DOI: 10.1371/journal.pone.0109196] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 09/09/2014] [Indexed: 11/27/2022] Open
Abstract
An increasing number of broadly neutralizing monoclonal antibodies (bnMAb) against the HIV-1 envelope (Env) protein has been discovered recently. Despite this progress, vaccination efforts with the aim to re-elicit bnMAbs that provide protective immunity have failed so far. Herein, we describe the development of a mammalian cell based FACS-panning method in which bnMAbs are used as tools to select surface-exposed envelope variants according to their binding affinity. For that purpose, an HIV-1 derived lentiviral vector was developed to infect HEK293T cells at low multiplicity of infection (MOI) in order to link Env phenotype and genotype. For proof of principle, a gp145 Env model-library was established in which the complete V3 domain was substituted by five strain specific V3 loop sequences with known binding affinities to nMAb 447-52D, respectively. Env genes were recovered from selected cells by PCR, subcloned into a lentiviral vector (i) to determine and quantify the enrichment nMAb binders and (ii) to generate a new batch of transduction competent particles. After 2 selection cycles the Env variant with highest affinity was enriched 20-fold and represented 80% of the remaining Env population. Exploiting the recently described bnMAbs, this procedure might prove useful in selecting Env proteins from large Env libraries with the potential to elicit bnMAbs when used as vaccine candidates.
Collapse
Affiliation(s)
- Tim-Henrik Bruun
- Institute of Medical Microbiology and Hygiene, University Regensburg, Regensburg, Bavaria, Germany
| | - Katharina Mühlbauer
- Institute of Medical Microbiology and Hygiene, University Regensburg, Regensburg, Bavaria, Germany
| | - Thomas Benen
- Institute of Medical Microbiology and Hygiene, University Regensburg, Regensburg, Bavaria, Germany
| | - Alexander Kliche
- Institute of Medical Microbiology and Hygiene, University Regensburg, Regensburg, Bavaria, Germany
| | - Ralf Wagner
- Institute of Medical Microbiology and Hygiene, University Regensburg, Regensburg, Bavaria, Germany
- * E-mail:
| |
Collapse
|
123
|
Bart PA, Huang Y, Karuna ST, Chappuis S, Gaillard J, Kochar N, Shen X, Allen MA, Ding S, Hural J, Liao HX, Haynes BF, Graham BS, Gilbert PB, McElrath MJ, Montefiori DC, Tomaras GD, Pantaleo G, Frahm N. HIV-specific humoral responses benefit from stronger prime in phase Ib clinical trial. J Clin Invest 2014; 124:4843-56. [PMID: 25271627 DOI: 10.1172/jci75894] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 08/26/2014] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND. Vector prime-boost immunization strategies induce strong cellular and humoral immune responses. We examined the priming dose and administration order of heterologous vectors in HIV Vaccine Trials Network 078 (HVTN 078), a randomized, double-blind phase Ib clinical trial to evaluate the safety and immunogenicity of heterologous prime-boost regimens, with a New York vaccinia HIV clade B (NYVAC-B) vaccine and a recombinant adenovirus 5-vectored (rAd5-vectored) vaccine. METHODS. NYVAC-B included HIV-1 clade B Gag-Pol-Nef and gp120, while rAd5 included HIV-1 clade B Gag-Pol and clades A, B, and C gp140. Eighty Ad5-seronegative subjects were randomized to receive 2 × NYVAC-B followed by 1 × 1010 PFU rAd5 (NYVAC/Ad5hi); 1 × 108 PFU rAd5 followed by 2 × NYVAC-B (Ad5lo/NYVAC); 1 × 109 PFU rAd5 followed by 2 × NYVAC-B (Ad5med/NYVAC); 1 × 1010 PFU rAd5 followed by 2 × NYVAC-B (Ad5hi/NYVAC); or placebo. Immune responses were assessed 2 weeks after the final vaccination. Intracellular cytokine staining measured T cells producing IFN-γ and/or IL-2; cross-clade and epitope-specific binding antibodies were determined; and neutralizing antibodies (nAbs) were assessed with 6 tier 1 viruses. RESULTS. CD4+ T cell response rates ranged from 42.9% to 93.3%. NYVAC/Ad5hi response rates (P ≤ 0.01) and magnitudes (P ≤ 0.03) were significantly lower than those of other groups. CD8+ T cell response rates ranged from 65.5% to 85.7%. NYVAC/Ad5hi magnitudes were significantly lower than those of other groups (P ≤ 0.04). IgG response rates to the group M consensus gp140 were 89.7% for NYVAC/Ad5hi and 21.4%, 84.6%, and 100% for Ad5lo/NYVAC, Ad5med/NYVAC, and Ad5hi/NYVAC, respectively, and were similar for other vaccine proteins. Overall nAb responses were low, but aggregate responses appeared stronger for Ad5med/NYVAC and Ad5hi/NYVAC than for NYVAC/Ad5hi. CONCLUSIONS. rAd5 prime followed by NYVAC boost is superior to the reverse regimen for both vaccine-induced cellular and humoral immune responses. Higher Ad5 priming doses significantly increased binding and nAbs. These data provide a basis for optimizing the design of future clinical trials testing vector-based heterologous prime-boost strategies. TRIAL REGISTRATION. ClinicalTrials.gov NCT00961883. FUNDING. NIAID, NIH UM1AI068618, AI068635, AI068614, and AI069443.
Collapse
|
124
|
Qin Y, Banasik M, Kim S, Penn-Nicholson A, Habte HH, LaBranche C, Montefiori DC, Wang C, Cho MW. Eliciting neutralizing antibodies with gp120 outer domain constructs based on M-group consensus sequence. Virology 2014; 462-463:363-76. [PMID: 25046154 DOI: 10.1016/j.virol.2014.06.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 05/25/2014] [Accepted: 06/04/2014] [Indexed: 12/14/2022]
Abstract
One strategy being evaluated for HIV-1 vaccine development is focusing immune responses towards neutralizing epitopes on the gp120 outer domain (OD) by removing the immunodominant, but non-neutralizing, inner domain. Previous OD constructs have not elicited strong neutralizing antibodies (nAbs). We constructed two immunogens, a monomeric gp120-OD and a trimeric gp120-OD×3, based on an M group consensus sequence (MCON6). Their biochemical and immunological properties were compared with intact gp120. Results indicated better preservation of critical neutralizing epitopes on gp120-OD×3. In contrast to previous studies, our immunogens induced potent, cross-reactive nAbs in rabbits. Although nAbs primarily targeted Tier 1 viruses, they exhibited significant breadth. Epitope mapping analyses indicated that nAbs primarily targeted conserved V3 loop elements. Although the potency and breadth of nAbs were similar for all three immunogens, nAb induction kinetics indicated that gp120-OD×3 was superior to gp120-OD, suggesting that gp120-OD×3 is a promising prototype for further gp120 OD-based immunogen development.
Collapse
Affiliation(s)
- Yali Qin
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States; Center for Advanced Host Defenses, Immunobiotics and Translational Comparative Medicine, Iowa State University, Ames, IA 50011, United States
| | - Marisa Banasik
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States; Center for Advanced Host Defenses, Immunobiotics and Translational Comparative Medicine, Iowa State University, Ames, IA 50011, United States
| | - SoonJeung Kim
- Case Western Reserve University, Department of Physiology and Biophysics, School of Medicine, Cleveland, Ohio 44106, United States
| | - Adam Penn-Nicholson
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease & Molecular Medicine and School of Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Habtom H Habte
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States; Center for Advanced Host Defenses, Immunobiotics and Translational Comparative Medicine, Iowa State University, Ames, IA 50011, United States
| | - Celia LaBranche
- Department of Surgery, Duke University, Durham, NC 27710, United States
| | | | - Chong Wang
- Department of Statistics, Iowa State University, Ames, IA 50011, United States; Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, United States
| | - Michael W Cho
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States; Center for Advanced Host Defenses, Immunobiotics and Translational Comparative Medicine, Iowa State University, Ames, IA 50011, United States.
| |
Collapse
|
125
|
Kok T, Gaeguta A, Finnie J, Gorry PR, Churchill M, Li P. Designer antigens for elicitation of broadly neutralizing antibodies against HIV. Clin Transl Immunology 2014; 3:e24. [PMID: 25505973 PMCID: PMC4232059 DOI: 10.1038/cti.2014.22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/31/2014] [Accepted: 08/03/2014] [Indexed: 11/09/2022] Open
Abstract
Broadly neutralizing antibodies (bNAbs) are a consistent protective immune correlate in human immunodeficiency virus (HIV) patients as well as in passive immunotherapy studies. The inability to elicit bNAbs is the core reason underlining the repeated failures in traditional HIV vaccine research. Rare monoclonal bNAbs against HIV, however, have been produced. The significance of producing and studying more monoclonal bNAbs against HIV is underlined by its capability of defining critical epitopes for antigen designs aimed at the development of a serum-neutralizing HIV vaccine. In this regard, traditional antigen preparations have failed. There is a need to clearly advocate the concept, and systematic study, of more sophisticated 'designer antigens' (DAGs), which carry epitopes that can lead to the elicitation of bNAbs. Using an extremely efficient cell-to-cell HIV infection model for the preparation of HIV prefusion intermediates, we have investigated a novel and systematic approach to produce (not screen for) potential bNAbs against HIV. We have established the concept and the experimental system for producing formaldehyde-fixed HIV DAGs that carry temperature-arrested prefusion intermediates. These prefusion intermediates are structures on the cell surface after viral attachment and receptor engagement but before fully functional viral entry. Using defined HIV prefusion DAGs, we have produced monoclonal antibodies (mAbs) specific to novel epitopes on HIV prefusion intermediates. These mAbs do not react with the static/native surface HIV or cellular antigens, but react with the DAGs. This is a paradigm shift from the current mainstream approach of screening elite patients' bNAbs.
Collapse
Affiliation(s)
- Tuckweng Kok
- School of Molecular and Biomedical Science, University of Adelaide , Adelaide, South Australia, Australia ; SA Pathology , Adelaide, South Australia, Australia
| | - Adriana Gaeguta
- School of Molecular and Biomedical Science, University of Adelaide , Adelaide, South Australia, Australia
| | - John Finnie
- School of Molecular and Biomedical Science, University of Adelaide , Adelaide, South Australia, Australia ; SA Pathology , Adelaide, South Australia, Australia
| | - Paul R Gorry
- Burnet Institute , Melbourne, Victoria, Australia
| | | | - Peng Li
- School of Molecular and Biomedical Science, University of Adelaide , Adelaide, South Australia, Australia
| |
Collapse
|
126
|
Gunawardana M, Baum MM, Smith TJ, Moss JA. An intravaginal ring for the sustained delivery of antibodies. J Pharm Sci 2014; 103:3611-3620. [PMID: 25231193 DOI: 10.1002/jps.24154] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 07/23/2014] [Accepted: 08/06/2014] [Indexed: 02/06/2023]
Abstract
Human monoclonal antibodies (mAbs) based on IgG and IgA have shown promise as topical microbicide candidates to protect women from HIV infection. Application of mAbs has been limited, however, by the inability of vaginal gels and conventional intravaginal ring (IVR) designs, the predominant vaginal product formulations, to effectively deliver biomolecules in a coitally independent fashion with retention of bioactivity. We have developed a novel pod-IVR platform that delivers ovine IgG (ov-IgG) as a model for IgG and IgA human mAbs. In vitro release of ov-IgG from the pod-IVRs was sustained for 14 days. Facile control of release rate was achieved by changing the size of delivery channels in the ring structure, and the feasibility of ov-IgG delivery in the range 0.5-30 mg day(-1) from a 10-pod IVR was demonstrated. The activity of ov-IgG in pod-IVR formulations was maintained as confirmed by ELISA binding assay. Pod-IVRs delivering ov-IgG show promise for the effective sustained topical delivery of antibody-based microbicides. This significantly broadens the range of microbicides that can be delivered in a sustained fashion from IVRs and enables a new arsenal of topical biologic microbicide candidates beyond small molecule antiretrovirals.
Collapse
Affiliation(s)
- Manjula Gunawardana
- Department of Chemistry, Oak Crest Institute of Science, Pasadena, California; Auritec Pharmaceuticals, Inc., Pasadena, California
| | - Marc M Baum
- Department of Chemistry, Oak Crest Institute of Science, Pasadena, California
| | - Thomas J Smith
- Department of Chemistry, Oak Crest Institute of Science, Pasadena, California; Auritec Pharmaceuticals, Inc., Pasadena, California
| | - John A Moss
- Department of Chemistry, Oak Crest Institute of Science, Pasadena, California.
| |
Collapse
|
127
|
Drift of the HIV-1 envelope glycoprotein gp120 toward increased neutralization resistance over the course of the epidemic: a comprehensive study using the most potent and broadly neutralizing monoclonal antibodies. J Virol 2014; 88:13910-7. [PMID: 25231299 DOI: 10.1128/jvi.02083-14] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Extending our previous analyses to the most recently described monoclonal broadly neutralizing antibodies (bNAbs), we confirmed a drift of HIV-1 clade B variants over 2 decades toward higher resistance to bNAbs targeting almost all the identified gp120-neutralizing epitopes. In contrast, the sensitivity to bNAbs targeting the gp41 membrane-proximal external region remained stable, suggesting a selective pressure on gp120 preferentially. Despite this evolution, selected combinations of bNAbs remain capable of neutralizing efficiently most of the circulating variants.
Collapse
|
128
|
Early preservation of CXCR5+ PD-1+ helper T cells and B cell activation predict the breadth of neutralizing antibody responses in chronic HIV-1 infection. J Virol 2014; 88:13310-21. [PMID: 25210168 DOI: 10.1128/jvi.02186-14] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Much is known about the characteristics of broadly neutralizing antibodies (bNAbs) generated during HIV-1 infection, but little is known about immunological mechanisms responsible for their development in only a minority of those infected by HIV-1. By monitoring longitudinally a cohort of HIV-1-infected subjects, we observed that the preservation of CXCR5(+) CD4(+) T helper cell frequencies and activation status of B cells during the first year of infection correlates with the maximum breadth of plasma neutralizing antibody responses during chronic infection independently of viral load. Although, during the first year of infection, no differences were observed in the abilities of peripheral CXCR5(+) CD4(+) T helper cells to induce antibody secretion by autologous naive B cells, higher frequencies of class-switched antibodies were detected in cocultures of CXCR5(+) CD4(+) T and B cells from the subjects who later developed broadly neutralizing antibody responses than those who did not. Furthermore, B cells from the former subjects had higher expression of AICDA than B cells from the latter subjects, and transcript levels correlated with the frequency of CXCR5(+) CD4(+) T cells. Thus, the early preservation of CXCR5(+) CD4(+) T cells and B cell function are central to the development of bNAbs. Our study provides a possible explanation for their infrequent generation during HIV-1 infection. IMPORTANCE Broadly neutralizing antibodies are developed by HIV-1-infected subjects, but so far (and despite intensive efforts over the past 3 decades) they have not been elicited by immunization. Understanding how bNAbs are generated during natural HIV-1 infection and why only some HIV-1-infected subjects generate such antibodies will assist our efforts to elicit bNAbs by immunization. CXCR5(+) PD-1(+) CD4(+) T cells are critical for the development of high-affinity antigen-specific antibody responses. In our study, we found that the HIV-1-infected subjects who develop bNAbs have a higher frequency of peripheral CXCR5(+) PD-1(+) CD4(+) T cells in early infection and also that this frequency mirrored what was observed in uninfected subjects and correlated with the level of B cell activation across subjects. Our study highlights the critical role helper T cell function has in the elicitation of broadly neutralizing antibody responses in the context of HIV infection.
Collapse
|
129
|
Envelope variants circulating as initial neutralization breadth developed in two HIV-infected subjects stimulate multiclade neutralizing antibodies in rabbits. J Virol 2014; 88:12949-67. [PMID: 25210191 DOI: 10.1128/jvi.01812-14] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
UNLABELLED Identifying characteristics of the human immunodeficiency virus type 1 (HIV-1) envelope that are effective in generating broad, protective antibodies remains a hurdle to HIV vaccine design. Emerging evidence of the development of broad and potent neutralizing antibodies in HIV-infected subjects suggests that founder and subsequent progeny viruses may express unique antigenic motifs that contribute to this developmental pathway. We hypothesize that over the course of natural infection, B cells are programmed to develop broad antibodies by exposure to select populations of emerging envelope quasispecies variants. To test this hypothesis, we identified two unrelated subjects whose antibodies demonstrated increasing neutralization breadth against a panel of HIV-1 isolates over time. Full-length functional env genes were cloned longitudinally from these subjects from months after infection through 2.6 to 5.8 years of infection. Motifs associated with the development of breadth in published, cross-sectional studies were found in both subjects. We compared the immunogenicity of envelope vaccines derived from time points obtained during and after broadening of neutralization activity within these subjects. Rabbits were coimmunized four times with selected multiple gp160 DNAs and gp140-trimeric envelope proteins. The affinity of the polyclonal response increased as a function of boosting. The most rapid and persistent neutralization of multiclade tier 1 viruses was elicited by envelopes that were circulating in plasma at time points prior to the development of 50% neutralization breadth in both human subjects. The breadth elicited in rabbits was not improved by exposure to later envelope variants. These data have implications for vaccine development in describing a target time point to identify optimal envelope immunogens. IMPORTANCE Vaccine protection against viral infections correlates with the presence of neutralizing antibodies; thus, vaccine components capable of generating potent neutralization are likely to be critical constituents in an effective HIV vaccine. However, vaccines tested thus far have elicited only weak antibody responses and very modest, waning protection. We hypothesized that B cells develop broad antibodies by exposure to the evolving viral envelope population and tested this concept using multiple envelopes from two subjects who developed neutralization breadth within a few years of infection. We compared different combinations of envelopes from each subject to identify the most effective immunogens and regimens. In each subject, use of HIV envelopes circulating during the early development and maturation of breadth generated more-potent antibodies that were modestly cross neutralizing. These data suggest a new approach to identifying envelope immunogens that may be more effective in generating protective antibodies in humans.
Collapse
|
130
|
Lederle A, Su B, Holl V, Penichon J, Schmidt S, Decoville T, Laumond G, Moog C. Neutralizing antibodies inhibit HIV-1 infection of plasmacytoid dendritic cells by an FcγRIIa independent mechanism and do not diminish cytokines production. Sci Rep 2014; 4:5845. [PMID: 25132382 PMCID: PMC4135332 DOI: 10.1038/srep05845] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 06/23/2014] [Indexed: 01/11/2023] Open
Abstract
Plasmacytoid dendritic cells (pDC) expressing FcγRIIa are antigen-presenting cells able to link innate and adaptive immunity and producing various cytokines and chemokines. Although highly restricted, they are able to replicate HIV-1. We determined the activity of anti-HIV-1 neutralizing antibodies (NAb) and non-neutralizing inhibitory antibodies (NNIAb) on the infection of primary pDC by HIV-1 primary isolates and analyzed cytokines and chemokines production. Neutralization assay was performed with primary pDC in the presence of serial antibodies (Ab) concentrations. In parallel, we measured the release of cytokines and chemokines by ELISA and CBA Flex assay. We found that NAb, but not NNIAb, inhibit HIV-1 replication in pDC. This inhibitory activity was lower than that detected for myeloid dendritic cells (mDC) infection and independent of FcγRIIa expressed on pDC. Despite the complete protection, IFN-α production was detected in the supernatant of pDC treated with NAb VRC01, 4E10, PGT121, 10-1074, 10E8, or polyclonal IgG44 but not with NAb b12. Production of MIP-1α, MIP-1β, IL-6, and TNF-α by pDC was also maintained in the presence of 4E10, b12 and VRC01. These findings suggest that pDC can be protected from HIV-1 infection by both NAb and IFN-α release triggered by the innate immune response during infection.
Collapse
Affiliation(s)
- Alexandre Lederle
- 1] INSERM U1109, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 3 rue Koeberlé, 67000 Strasbourg, France [2]
| | - Bin Su
- INSERM U1109, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 3 rue Koeberlé, 67000 Strasbourg, France
| | - Vincent Holl
- 1] INSERM U1109, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 3 rue Koeberlé, 67000 Strasbourg, France [2]
| | - Julien Penichon
- 1] INSERM U1109, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 3 rue Koeberlé, 67000 Strasbourg, France [2]
| | - Sylvie Schmidt
- INSERM U1109, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 3 rue Koeberlé, 67000 Strasbourg, France
| | - Thomas Decoville
- INSERM U1109, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 3 rue Koeberlé, 67000 Strasbourg, France
| | - Géraldine Laumond
- INSERM U1109, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 3 rue Koeberlé, 67000 Strasbourg, France
| | - Christiane Moog
- INSERM U1109, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 3 rue Koeberlé, 67000 Strasbourg, France
| |
Collapse
|
131
|
Abstract
In spite of several attempts over many years at developing a HIV vaccine based on classical strategies, none has convincingly succeeded to date. As HIV is transmitted primarily by the mucosal route, particularly through sexual intercourse, understanding antiviral immunity at mucosal sites is of major importance. An ideal vaccine should elicit HIV-specific antibodies and mucosal CD8⁺ cytotoxic T-lymphocyte (CTL) as a first line of defense at a very early stage of HIV infection, before the virus can disseminate into the secondary lymphoid organs in mucosal and systemic tissues. A primary focus of HIV preventive vaccine research is therefore the induction of protective immune responses in these crucial early stages of HIV infection. Numerous approaches are being studied in the field, including building upon the recent RV144 clinical trial. In this article, we will review current strategies and briefly discuss the use of adjuvants in designing HIV vaccines that induce mucosal immune responses.
Collapse
|
132
|
Gao F, Bonsignori M, Liao HX, Kumar A, Xia SM, Lu X, Cai F, Hwang KK, Song H, Zhou T, Lynch RM, Alam SM, Moody MA, Ferrari G, Berrong M, Kelsoe G, Shaw GM, Hahn BH, Montefiori DC, Kamanga G, Cohen MS, Hraber P, Kwong PD, Korber BT, Mascola JR, Kepler TB, Haynes BF. Cooperation of B cell lineages in induction of HIV-1-broadly neutralizing antibodies. Cell 2014; 158:481-91. [PMID: 25065977 PMCID: PMC4150607 DOI: 10.1016/j.cell.2014.06.022] [Citation(s) in RCA: 225] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/05/2014] [Accepted: 06/04/2014] [Indexed: 10/25/2022]
Abstract
Development of strategies for induction of HIV-1 broadly neutralizing antibodies (bnAbs) by vaccines is a priority. Determining the steps of bnAb induction in HIV-1-infected individuals who make bnAbs is a key strategy for immunogen design. Here, we study the B cell response in a bnAb-producing individual and report cooperation between two B cell lineages to drive bnAb development. We isolated a virus-neutralizing antibody lineage that targeted an envelope region (loop D) and selected virus escape mutants that resulted in both enhanced bnAb lineage envelope binding and escape mutant neutralization-traits associated with increased B cell antigen drive. Thus, in this individual, two B cell lineages cooperated to induce the development of bnAbs. Design of vaccine immunogens that simultaneously drive both helper and broadly neutralizing B cell lineages may be important for vaccine-induced recapitulation of events that transpire during the maturation of neutralizing antibodies in HIV-1-infected individuals.
Collapse
Affiliation(s)
- Feng Gao
- Duke University Human Vaccine Institute, Departments of Medicine, Surgery, Pediatrics and Immunology, Duke University School of Medicine, Durham NC 27710, USA; The Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham NC 27710, USA.
| | - Mattia Bonsignori
- Duke University Human Vaccine Institute, Departments of Medicine, Surgery, Pediatrics and Immunology, Duke University School of Medicine, Durham NC 27710, USA; The Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham NC 27710, USA
| | - Hua-Xin Liao
- Duke University Human Vaccine Institute, Departments of Medicine, Surgery, Pediatrics and Immunology, Duke University School of Medicine, Durham NC 27710, USA; The Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham NC 27710, USA
| | - Amit Kumar
- Duke University Human Vaccine Institute, Departments of Medicine, Surgery, Pediatrics and Immunology, Duke University School of Medicine, Durham NC 27710, USA; The Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham NC 27710, USA
| | - Shi-Mao Xia
- Duke University Human Vaccine Institute, Departments of Medicine, Surgery, Pediatrics and Immunology, Duke University School of Medicine, Durham NC 27710, USA; The Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham NC 27710, USA
| | - Xiaozhi Lu
- Duke University Human Vaccine Institute, Departments of Medicine, Surgery, Pediatrics and Immunology, Duke University School of Medicine, Durham NC 27710, USA; The Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham NC 27710, USA
| | - Fangping Cai
- Duke University Human Vaccine Institute, Departments of Medicine, Surgery, Pediatrics and Immunology, Duke University School of Medicine, Durham NC 27710, USA; The Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham NC 27710, USA
| | - Kwan-Ki Hwang
- Duke University Human Vaccine Institute, Departments of Medicine, Surgery, Pediatrics and Immunology, Duke University School of Medicine, Durham NC 27710, USA; The Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham NC 27710, USA
| | - Hongshuo Song
- Duke University Human Vaccine Institute, Departments of Medicine, Surgery, Pediatrics and Immunology, Duke University School of Medicine, Durham NC 27710, USA; The Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham NC 27710, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rebecca M Lynch
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - S Munir Alam
- Duke University Human Vaccine Institute, Departments of Medicine, Surgery, Pediatrics and Immunology, Duke University School of Medicine, Durham NC 27710, USA; The Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham NC 27710, USA
| | - M Anthony Moody
- Duke University Human Vaccine Institute, Departments of Medicine, Surgery, Pediatrics and Immunology, Duke University School of Medicine, Durham NC 27710, USA; The Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham NC 27710, USA
| | - Guido Ferrari
- Duke University Human Vaccine Institute, Departments of Medicine, Surgery, Pediatrics and Immunology, Duke University School of Medicine, Durham NC 27710, USA; The Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham NC 27710, USA
| | - Mark Berrong
- Duke University Human Vaccine Institute, Departments of Medicine, Surgery, Pediatrics and Immunology, Duke University School of Medicine, Durham NC 27710, USA; The Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham NC 27710, USA
| | - Garnett Kelsoe
- Duke University Human Vaccine Institute, Departments of Medicine, Surgery, Pediatrics and Immunology, Duke University School of Medicine, Durham NC 27710, USA; The Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham NC 27710, USA
| | - George M Shaw
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Beatrice H Hahn
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David C Montefiori
- Duke University Human Vaccine Institute, Departments of Medicine, Surgery, Pediatrics and Immunology, Duke University School of Medicine, Durham NC 27710, USA; The Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham NC 27710, USA
| | - Gift Kamanga
- UNC Project, Lilongwe, Malawi; Departments of Health Policy and Management, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Myron S Cohen
- Departments of Medicine, Epidemiology and Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Peter Hraber
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bette T Korber
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thomas B Kepler
- Department of Microbiology, Boston University, Boston, MA 02215, USA
| | - Barton F Haynes
- Duke University Human Vaccine Institute, Departments of Medicine, Surgery, Pediatrics and Immunology, Duke University School of Medicine, Durham NC 27710, USA; The Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham NC 27710, USA.
| |
Collapse
|
133
|
Chiodo F, Enríquez-Navas PM, Angulo J, Marradi M, Penadés S. Assembling different antennas of the gp120 high mannose-type glycans on gold nanoparticles provides superior binding to the anti-HIV antibody 2G12 than the individual antennas. Carbohydr Res 2014; 405:102-9. [PMID: 25573666 DOI: 10.1016/j.carres.2014.07.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/11/2014] [Accepted: 07/15/2014] [Indexed: 11/16/2022]
Abstract
In order to re-build Man9GlcNAc2 clusters of the HIV gp120 glycoprotein, ∼2 nm gold glyconanoparticles (GNPs) were coated with the synthetic partial structures of Man9, the tetramannoside Manα1-2Manα1-2Manα1-3Manα1- and the pentamannoside Manα1-2Manα1-3[Manα1-2Manα1-6]Manα1-. Their interactions with the anti-HIV broadly neutralizing antibody 2G12 were studied by surface plasmon resonance (SPR)-based biosensors and saturation transfer difference (STD)-NMR spectroscopy. A synergistic effect of the tetra- and pentamannosides multimerized on a same GNP was observed. The assembly of these antennas of the gp120 high-mannose type glycan on GNPs provided superior binding to the anti-HIV antibody 2G12 with respect to GNPs carrying only the individual oligomannosides. The results presented in this work provide new molecular information on the interactions between clusters of oligomannosides and 2G12 that could help in the design of a carbohydrate-based vaccine against HIV.
Collapse
Affiliation(s)
- Fabrizio Chiodo
- Laboratory of Glyconanotechnology, Biofunctional Nanomaterials Unit, CIC biomaGUNE, P° de Miramón 182, 28009 San Sebastian, Spain
| | - Pedro M Enríquez-Navas
- Laboratory of Glyconanotechnology, Biofunctional Nanomaterials Unit, CIC biomaGUNE, P° de Miramón 182, 28009 San Sebastian, Spain
| | - Jesús Angulo
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Marco Marradi
- Laboratory of Glyconanotechnology, Biofunctional Nanomaterials Unit, CIC biomaGUNE, P° de Miramón 182, 28009 San Sebastian, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), P° de Miramón 182, 28009 San Sebastian, Spain
| | - Soledad Penadés
- Laboratory of Glyconanotechnology, Biofunctional Nanomaterials Unit, CIC biomaGUNE, P° de Miramón 182, 28009 San Sebastian, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), P° de Miramón 182, 28009 San Sebastian, Spain.
| |
Collapse
|
134
|
Vela Ramirez JE, Roychoudhury R, Habte HH, Cho MW, Pohl NLB, Narasimhan B. Carbohydrate-functionalized nanovaccines preserve HIV-1 antigen stability and activate antigen presenting cells. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2014; 25:1387-406. [PMID: 25068589 DOI: 10.1080/09205063.2014.940243] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The functionalization of polymeric nanoparticles with ligands that target specific receptors on immune cells offers the opportunity to tailor adjuvant properties by conferring pathogen mimicking attributes to the particles. Polyanhydride nanoparticles are promising vaccine adjuvants with desirable characteristics such as immunomodulation, sustained antigen release, activation of antigen presenting cells (APCs), and stabilization of protein antigens. These capabilities can be exploited to design nanovaccines against viral pathogens, such as HIV-1, due to the important role of dendritic cells (DCs) and macrophages in viral spread. In this work, an optimized process was developed for carbohydrate functionalization of HIV-1 antigen-loaded polyanhydride nanoparticles. The carbohydrate-functionalized nanoparticles preserved antigenic properties upon release and also enabled sustained antigen release kinetics. Particle internalization was observed to be chemistry-dependent with positively charged nanoparticles being taken up more efficiently by DCs. Up-regulation of the activation makers CD40 and CD206 was demonstrated with carboxymethyl-α-d-mannopyranosyl-(1,2)-d-mannopyranoside functionalized nanoparticles. The secretion of the cytokines IL-6 and TNF-α was shown to be chemistry-dependent upon stimulation with carbohydrate-functionalized nanoparticles. These results offer important new insights upon the interactions between carbohydrate-functionalized nanoparticles and APCs and provide foundational information for the rational design of targeted nanovaccines against HIV-1.
Collapse
Affiliation(s)
- J E Vela Ramirez
- a Department of Chemical and Biological Engineering , Iowa State University , Ames , IA 50011 , USA
| | | | | | | | | | | |
Collapse
|
135
|
Patil S, Choudhary I, Chaudhary NK, Ringe R, Bansal M, Shukla BN, Boliar S, Chakrabarti BK, Bhattacharya J. Determinants in V2C2 region of HIV-1 clade C primary envelopes conferred altered neutralization susceptibilities to IgG1b12 and PG9 monoclonal antibodies in a context-dependent manner. Virology 2014; 462-463:266-72. [PMID: 24999839 DOI: 10.1016/j.virol.2014.06.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 04/14/2014] [Accepted: 06/16/2014] [Indexed: 11/16/2022]
Abstract
In the present study by examining pseudoviruses expressing patient chimeric envelopes (Envs) made between an IgG1b12 (b12)-sensitive (2-5.J3) and a b12-resistant (4.J22) HIV-1 clade C envelope, we identified determinants in the V2C2 region that governed susceptibility to b12 monoclonal antibody, but not to other CD4 binding site antibodies. Interestingly, when the V2C2 sequence of the 2-5.J3 Env was transferred to other b12-resistant primary clade C Envs, their susceptibility to b12 varied, indicating that this effect was context dependent. In addition, we identified determinants within the V2 region in the b12-resistant envelope that significantly modulated the neutralization of Env-pseudotyped viruses to PG9/PG16 MAbs. The enhanced neutralization susceptibilities of Envs to b12 and PG9 MAbs were correlated with increased exposure of their corresponding epitopes highlighting vulnerabilities in the V2C2 region that altered Env conformation necessary for the efficient accessibility of b12 and PG9 antibodies.
Collapse
Affiliation(s)
- Shilpa Patil
- HIV Vaccine Translational Research Laboratory, THSTI-IAVI HIV Vaccine Design Program, Translational Health Science and Technology Institute, 450, Udyog Vihar, Phase-III, Gurgaon 122016, Haryana, India
| | | | - Nakul K Chaudhary
- HIV Vaccine Translational Research Laboratory, THSTI-IAVI HIV Vaccine Design Program, Translational Health Science and Technology Institute, 450, Udyog Vihar, Phase-III, Gurgaon 122016, Haryana, India
| | - Rajesh Ringe
- National AIDS Research Institute, Pune, Maharashtra, India
| | - Manish Bansal
- HIV Vaccine Translational Research Laboratory, THSTI-IAVI HIV Vaccine Design Program, Translational Health Science and Technology Institute, 450, Udyog Vihar, Phase-III, Gurgaon 122016, Haryana, India
| | - Brihaspati Narayan Shukla
- HIV Vaccine Translational Research Laboratory, THSTI-IAVI HIV Vaccine Design Program, Translational Health Science and Technology Institute, 450, Udyog Vihar, Phase-III, Gurgaon 122016, Haryana, India
| | - Saikat Boliar
- HIV Vaccine Translational Research Laboratory, THSTI-IAVI HIV Vaccine Design Program, Translational Health Science and Technology Institute, 450, Udyog Vihar, Phase-III, Gurgaon 122016, Haryana, India
| | - Bimal K Chakrabarti
- HIV Vaccine Translational Research Laboratory, THSTI-IAVI HIV Vaccine Design Program, Translational Health Science and Technology Institute, 450, Udyog Vihar, Phase-III, Gurgaon 122016, Haryana, India
| | - Jayanta Bhattacharya
- HIV Vaccine Translational Research Laboratory, THSTI-IAVI HIV Vaccine Design Program, Translational Health Science and Technology Institute, 450, Udyog Vihar, Phase-III, Gurgaon 122016, Haryana, India.
| |
Collapse
|
136
|
Abstract
UNLABELLED The extraordinary diversity of the human immunodeficiency virus type 1 (HIV-1) envelope (Env) glycoprotein poses a major challenge for the development of an HIV-1 vaccine. One strategy to circumvent this problem utilizes bioinformatically optimized mosaic antigens. However, mosaic Env proteins expressed as trimers have not been previously evaluated for their stability, antigenicity, and immunogenicity. Here, we report the production and characterization of a stable HIV-1 mosaic M gp140 Env trimer. The mosaic M trimer bound CD4 as well as multiple broadly neutralizing monoclonal antibodies, and biophysical characterization suggested substantial stability. The mosaic M trimer elicited higher neutralizing antibody (nAb) titers against clade B viruses than a previously described clade C (C97ZA.012) gp140 trimer in guinea pigs, whereas the clade C trimer elicited higher nAb titers than the mosaic M trimer against clade A and C viruses. A mixture of the clade C and mosaic M trimers elicited nAb responses that were comparable to the better component of the mixture for each virus tested. These data suggest that combinations of relatively small numbers of immunologically complementary Env trimers may improve nAb responses. IMPORTANCE The development of an HIV-1 vaccine remains a formidable challenge due to multiple circulating strains of HIV-1 worldwide. This study describes a candidate HIV-1 Env protein vaccine whose sequence has been designed by computational methods to address HIV-1 diversity. The characteristics and immunogenicity of this Env protein, both alone and mixed together with a clade C Env protein vaccine, are described.
Collapse
|
137
|
Su B, Moog C. Which Antibody Functions are Important for an HIV Vaccine? Front Immunol 2014; 5:289. [PMID: 24995008 PMCID: PMC4062070 DOI: 10.3389/fimmu.2014.00289] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 06/03/2014] [Indexed: 01/18/2023] Open
Abstract
HIV antibody (Ab) functions capable of preventing mucosal cell-free or cell-to-cell HIV transmission are critical for the development of effective prophylactic and therapeutic vaccines. In addition to CD4(+) T cells, other potential HIV-target cell types including antigen-presenting cells (APCs) (dendritic cells, macrophages) residing at mucosal sites are infected. Moreover, the interactions between APCs and HIV lead to HIV cell-to-cell transmission. Recently discovered broadly neutralizing antibodies (NAbs) are able to neutralize a broad spectrum of HIV strains, inhibit cell-to-cell transfer, and efficiently protect from infection in the experimentally challenged macaque model. However, the 31% protection observed in the RV144 vaccine trial in the absence of detectable NAbs in blood samples pointed to the possible role of additional Ab inhibitory functions. Increasing evidence suggests that IgG Fcγ receptor (FcγR)-mediated inhibition of Abs present at the mucosal site may play a role in protection against HIV mucosal transmission. Moreover, mucosal IgA Abs may be determinant in protection against HIV sexual transmission. Therefore, defining Ab inhibitory functions that could lead to protection is critical for further HIV vaccine design. Here, we review different inhibitory properties of HIV-specific Abs and discuss their potential role in protection against HIV sexual transmission.
Collapse
Affiliation(s)
- Bin Su
- INSERM U1109, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg , Strasbourg , France
| | - Christiane Moog
- INSERM U1109, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg , Strasbourg , France
| |
Collapse
|
138
|
Nashar TO. The Quest for an HIV-1 Vaccine Adjuvant: Bacterial Toxins as New Potential Platforms. JOURNAL OF CLINICAL & CELLULAR IMMUNOLOGY 2014; 5. [PMID: 27375924 PMCID: PMC4929853 DOI: 10.4172/2155-9899.1000225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
While tremendous efforts are undergoing towards finding an effective HIV-1 vaccine, the search for an HIV-1 vaccine adjuvant lags behind and is understudied. More recently, however, efforts have focused on testing adjuvant formulations that can boost the immune response and generate broadly neutralizing antibodies to HIV-1 ENV (gp160). Despite this, there remain a number of challenges towards achieving this goal. These include safety of adjuvant formulations; stability of the incorporated antigens; maintenance of ENV immunogenicity; optimal inoculation sites; the effective combination of adjuvants; stability of ENV neutralizing epitopes in some adjuvant formulations; mucosal immunity; and long-term maintenance of the immune response. A new class of adjuvants for HIV-1 proteins is suggested to overcome many of the limitations of some other adjuvants. Type 1 (LT-I) and type 2 (LT-II) human E. coli enterotoxins (HLTs) and their non-toxic B-subunits derivatives are strong systemic and mucosal adjuvants and effective carriers for other proteins and epitopes. Their stable molecular structure in the presence of fused proteins and epitopes, and their ability to target surface receptors on antigen presenting cells make them ideal for the delivery of HIV-1 ENV or HIV other proteins. Importantly, unlike some other adjuvants, HLTs and derivatives have well-defined modes of immune system activation. The challenges in finding optimal HIV-1 vaccine adjuvant formulation and the important properties of HLTs are discussed.
Collapse
Affiliation(s)
- Toufic O Nashar
- College of Veterinary Medicine, Nursing & Allied Health, Department of Pathobiology, Tuskegee University, Tuskegee, AL 36088, USA
| |
Collapse
|
139
|
Rao M, Peachman KK, Kim J, Gao G, Alving CR, Michael NL, Rao VB. HIV-1 variable loop 2 and its importance in HIV-1 infection and vaccine development. Curr HIV Res 2014; 11:427-38. [PMID: 24191938 DOI: 10.2174/1570162x113116660064] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 05/24/2013] [Accepted: 06/13/2013] [Indexed: 12/30/2022]
Abstract
A vaccine that can prevent the transmission of HIV-1 at the site of exposure to the host is one of the best hopes to control the HIV-1 pandemic. The trimeric envelope spike consisting of heterodimers, gp120 and gp41, is essential for virus entry and thus has been a key target for HIV-1 vaccine development. However, it has been extremely difficult to identify the types of antibodies required to block the transmission of various HIV-1 strains and the immunogens that can elicit such antibodies due to the high genetic diversity of the HIV-1 envelope. The modest efficacy of the gp120 HIV-1 vaccine used in the RV144 Thai trial, including the studies on the immune correlates of protection, and the discovery of vaccine-induced immune responses to certain signature regions of the envelope have shown that the gp120 variable loop 2 (V2) is an important region. Since there is evidence that the V2 region interacts with the integrin α4β7 receptor of the host cell, and that this interaction might be important for virus capture, induction of antibodies against V2 loop could be postulated as one of the mechanisms to prevent the acquisition of HIV-1. Immunogens that can induce these antibodies should therefore be taken into consideration when designing HIV-1 vaccine formulations.
Collapse
Affiliation(s)
- Mangala Rao
- Laboratory of Adjuvant and Antigen Research, USMHRP at the Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Rm 2A08, Sliver Spring, MD 20910, USA.
| | | | | | | | | | | | | |
Collapse
|
140
|
Sheppard NC, Brinckmann SA, Gartlan KH, Puthia M, Svanborg C, Krashias G, Eisenbarth SC, Flavell RA, Sattentau QJ, Wegmann F. Polyethyleneimine is a potent systemic adjuvant for glycoprotein antigens. Int Immunol 2014; 26:531-8. [PMID: 24844701 DOI: 10.1093/intimm/dxu055] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Polyethyleneimine (PEI) is an organic polycation used extensively as a gene and DNA vaccine delivery reagent. Although the DNA targeting activity of PEI is well documented, its immune activating activity is not. We recently reported that PEI has robust mucosal adjuvanticity when administered intranasally with glycoprotein antigens. Here, we show that PEI has strong immune activating activity after systemic delivery. PEI administered subcutaneously with viral glycoprotein (HIV-1 gp140) enhanced antigen-specific serum IgG production in the context of mixed Th1/Th2-type immunity. PEI elicited higher titers of both antigen binding and neutralizing antibodies than alum in mice and rabbits and induced an increased proportion of antibodies reactive with native antigen. In an intraperitoneal model, PEI recruited neutrophils followed by monocytes to the site of administration and enhanced antigen uptake by antigen-presenting cells. The Th bias was modulated by PEI activation of the Nlrp3 inflammasome; however its global adjuvanticity was unchanged in Nlrp3-deficient mice. When coformulated with CpG oligodeoxynucleotides, PEI adjuvant potency was synergistically increased and biased toward a Th1-type immune profile. Taken together, these data support the use of PEI as a versatile systemic adjuvant platform with particular utility for induction of secondary structure-reactive antibodies against glycoprotein antigens.
Collapse
Affiliation(s)
- Neil C Sheppard
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX13RE, UK Present address: GlaxoSmithKline, 1250 S Collegeville Road, Collegeville, PA 19426, USA
| | - Sarah A Brinckmann
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX13RE, UK
| | - Kate H Gartlan
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX13RE, UK
| | - Manoj Puthia
- Division of Microbiology, Immunology and Glycobiology, Lund University, Lund, Sweden
| | - Catharina Svanborg
- Division of Microbiology, Immunology and Glycobiology, Lund University, Lund, Sweden
| | - George Krashias
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX13RE, UK
| | | | - Richard A Flavell
- Department of Immunobiology, Yale University, New Haven, CT 06519-1612, USA
| | - Quentin J Sattentau
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX13RE, UK
| | - Frank Wegmann
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX13RE, UK Present address: Crucell Holland B.V., Archimedesweg 4-6, 2333CN Leiden, The Netherlands
| |
Collapse
|
141
|
Trott M, Weiß S, Antoni S, Koch J, von Briesen H, Hust M, Dietrich U. Functional characterization of two scFv-Fc antibodies from an HIV controller selected on soluble HIV-1 Env complexes: a neutralizing V3- and a trimer-specific gp41 antibody. PLoS One 2014; 9:e97478. [PMID: 24828352 PMCID: PMC4020869 DOI: 10.1371/journal.pone.0097478] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 04/20/2014] [Indexed: 12/30/2022] Open
Abstract
HIV neutralizing antibodies (nAbs) represent an important tool in view of prophylactic and therapeutic applications for HIV-1 infection. Patients chronically infected by HIV-1 represent a valuable source for nAbs. HIV controllers, including long-term non-progressors (LTNP) and elite controllers (EC), represent an interesting subgroup in this regard, as here nAbs can develop over time in a rather healthy immune system and in the absence of any therapeutic selection pressure. In this study, we characterized two particular antibodies that were selected as scFv antibody fragments from a phage immune library generated from an LTNP with HIV neutralizing antibodies in his plasma. The phage library was screened on recombinant soluble gp140 envelope (Env) proteins. Sequencing the selected peptide inserts revealed two major classes of antibody sequences. Binding analysis of the corresponding scFv-Fc derivatives to various trimeric and monomeric Env constructs as well as to peptide arrays showed that one class, represented by monoclonal antibody (mAb) A2, specifically recognizes an epitope localized in the pocket binding domain of the C heptad repeat (CHR) in the ectodomain of gp41, but only in the trimeric context. Thus, this antibody represents an interesting tool for trimer identification. MAb A7, representing the second class, binds to structural elements of the third variable loop V3 and neutralizes tier 1 and tier 2 HIV-1 isolates of different subtypes with matching critical amino acids in the linear epitope sequence. In conclusion, HIV controllers are a valuable source for the selection of functionally interesting antibodies that can be selected on soluble gp140 proteins with properties from the native envelope spike.
Collapse
Affiliation(s)
- Maria Trott
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Svenja Weiß
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Sascha Antoni
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Joachim Koch
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Hagen von Briesen
- HIV Specimen Cryorepository (HSC) at Fraunhofer Institute of Biomedical Engineering, St. Ingbert, Germany
| | - Michael Hust
- Technische Universität Braunschweig, Institute of Biochemistry, Biotechnology and Bioinformatics, Braunschweig, Germany
| | - Ursula Dietrich
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
- * E-mail:
| |
Collapse
|
142
|
Dugast AS, Chan Y, Hoffner M, Licht A, Nkolola J, Li H, Streeck H, Suscovich TJ, Ghebremichael M, Ackerman ME, Barouch DH, Alter G. Lack of protection following passive transfer of polyclonal highly functional low-dose non-neutralizing antibodies. PLoS One 2014; 9:e97229. [PMID: 24820481 PMCID: PMC4018276 DOI: 10.1371/journal.pone.0097229] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 04/16/2014] [Indexed: 11/19/2022] Open
Abstract
Recent immune correlates analysis from the RV144 vaccine trial has renewed interest in the role of non-neutralizing antibodies in mediating protection from infection. While neutralizing antibodies have proven difficult to induce through vaccination, extra-neutralizing antibodies, such as those that mediate antibody-dependent cellular cytotoxicity (ADCC), are associated with long-term control of infection. However, while several non-neutralizing monoclonal antibodies have been tested for their protective efficacy in vivo, no studies to date have tested the protective activity of naturally produced polyclonal antibodies from individuals harboring potent ADCC activity. Because ADCC-inducing antibodies are highly enriched in elite controllers (EC), we passively transferred highly functional non-neutralizing polyclonal antibodies, purified from an EC, to assess the potential impact of polyclonal non-neutralizing antibodies on a stringent SHIV-SF162P3 challenge in rhesus monkeys. Passive transfer of a low-dose of ADCC inducing antibodies did not protect from infection following SHIV-SF162P3 challenge. Passively administered antibody titers and gp120-specific, but not gp41-specific, ADCC and antibody induced phagocytosis (ADCP) were detected in the majority of the monkeys, but did not correlate with post infection viral control. Thus these data raise the possibility that gp120-specific ADCC activity alone may not be sufficient to control viremia post infection but that other specificities or Fc-effector profiles, alone or in combination, may have an impact on viral control and should be tested in future passive transfer experiments.
Collapse
Affiliation(s)
- Anne-Sophie Dugast
- Ragon Institute of Massachusetts General Hospital, Harvard University and Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Ying Chan
- Ragon Institute of Massachusetts General Hospital, Harvard University and Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Michelle Hoffner
- Ragon Institute of Massachusetts General Hospital, Harvard University and Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Anna Licht
- Ragon Institute of Massachusetts General Hospital, Harvard University and Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Joseph Nkolola
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Hualin Li
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Hendrik Streeck
- Military HIV Research Program, Henry Jackson Foundation, Rockville, Maryland, United States of America
| | - Todd J. Suscovich
- Ragon Institute of Massachusetts General Hospital, Harvard University and Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Musie Ghebremichael
- Ragon Institute of Massachusetts General Hospital, Harvard University and Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Margaret E. Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Dan H. Barouch
- Ragon Institute of Massachusetts General Hospital, Harvard University and Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Galit Alter
- Ragon Institute of Massachusetts General Hospital, Harvard University and Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
143
|
Chanzu N, Ondondo B. Induction of Potent and Long-Lived Antibody and Cellular Immune Responses in the Genitorectal Mucosa Could be the Critical Determinant of HIV Vaccine Efficacy. Front Immunol 2014; 5:202. [PMID: 24847327 PMCID: PMC4021115 DOI: 10.3389/fimmu.2014.00202] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 04/23/2014] [Indexed: 01/28/2023] Open
Abstract
The field of HIV prevention has indeed progressed in leaps and bounds, but with major limitations of the current prevention and treatment options, the world remains desperate for an HIV vaccine. Sadly, this continues to be elusive, because more than 30 years since its discovery there is no licensed HIV vaccine. Research aiming to define immunological biomarkers to accurately predict vaccine efficacy have focused mainly on systemic immune responses, and as such, studies defining correlates of protection in the genitorectal mucosa, the primary target site for HIV entry and seeding are sparse. Clearly, difficulties in sampling and analysis of mucosal specimens, as well as their limited size have been a major deterrent in characterizing the type (mucosal antibodies, cytokines, chemokines, or CTL), threshold (magnitude, depth, and breadth) and viral inhibitory capacity of HIV-1-specific immune responses in the genitorectal mucosa, where they are needed to immediately block HIV acquisition and arrest subsequent virus dissemination. Nevertheless, a few studies document the existence of HIV-specific immune responses in the genitorectal mucosa of HIV-infected aviremic and viremic controllers, as well as in highly exposed persistently seronegative (HEPS) individuals with natural resistance to HIV-1. Some of these responses strongly correlate with protection from HIV acquisition and/or disease progression, thus providing significant clues of the ideal components of an efficacious HIV vaccine. In this study, we provide an overview of the key features of protective immune responses found in HEPS, elite and viremic controllers, and discuss how these can be achieved through mucosal immunization. Inevitably, HIV vaccine development research will have to consider strategies that elicit potent antibody and cellular immune responses within the genitorectal mucosa or induction of systemic immune cells with an inherent potential to home and persist at mucosal sites of HIV entry.
Collapse
Affiliation(s)
- Nadia Chanzu
- Institute of Tropical and Infectious Diseases, College of Health Sciences, University of Nairobi , Nairobi , Kenya
| | - Beatrice Ondondo
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford , Oxford , UK
| |
Collapse
|
144
|
Tong T, Crooks ET, Osawa K, Robinson JE, Barnes M, Apetrei C, Binley JM. Multi-Parameter Exploration of HIV-1 Virus-Like Particles as Neutralizing Antibody Immunogens in Guinea Pigs, Rabbits and Macaques. Virology 2014; 456-457:55-69. [PMID: 24882891 PMCID: PMC4037872 DOI: 10.1016/j.virol.2014.03.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 02/26/2014] [Accepted: 03/13/2014] [Indexed: 12/18/2022]
Abstract
Virus-like particles (VLPs) offer a platform to test the hypothesis that, since antibody binding to native envelope glycoprotein (Env) trimers results in HIV-1 neutralization, that native Env trimers presented in membranes may be useful for inducing neutralizing antibodies (nAbs) in a vaccine setting. So far, VLPs have not fulfilled this potential. Here, using a "shotgun" approach, we evaluated a wide cross-section of variables in a series of VLP immunizations. We identified 3 tentative leads. First, that VLP doses may not have been sufficient for optimal nAb induction. Second, that dampening the antigenicity of non-functional Env (for example uncleaved gp160) using either protease digests or IgG masking may be useful. Third, that guinea pig sera preferentially target non-conserved epitopes and exhibit relatively high background activity, suggesting that rabbits may be preferable as small animal vaccine models. Recent immunogenicity studies in rabbits appear to bear out all 3 of these leads.
Collapse
Affiliation(s)
- Tommy Tong
- Torrey Pines Institute for Molecular Studies, 3550 General Atomics Court, San Diego, CA 92121, USA
| | - Ema T. Crooks
- Torrey Pines Institute for Molecular Studies, 3550 General Atomics Court, San Diego, CA 92121, USA
| | - Keiko Osawa
- Torrey Pines Institute for Molecular Studies, 3550 General Atomics Court, San Diego, CA 92121, USA
| | | | - Mary Barnes
- Tulane National Primate Research Center, 18703 Three Rivers Rd, Covington, LA 70433, USA
| | - Cristian Apetrei
- Tulane National Primate Research Center, 18703 Three Rivers Rd, Covington, LA 70433, USA
| | - James M. Binley
- Torrey Pines Institute for Molecular Studies, 3550 General Atomics Court, San Diego, CA 92121, USA
| |
Collapse
|
145
|
Strasz N, Morozov VA, Kreutzberger J, Keller M, Eschricht M, Denner J. Immunization with hybrid proteins containing the membrane proximal external region of HIV-1. AIDS Res Hum Retroviruses 2014; 30:498-508. [PMID: 24392780 DOI: 10.1089/aid.2013.0191] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The transmembrane envelope (TM) protein gp41 of HIV-1 is an attractive target when designing a vaccine to induce neutralizing antibodies. A few broadly neutralizing antibodies (2F5, 4E10, and 10E8) that target conserved epitopes in the membrane proximal external region (MPER) of gp41 have been isolated from infected individuals. However, attempts to induce such antibodies by immunizations with gp41 and Env derivatives containing the MPER were successful only to some extent. In contrast, immunizations with the ectodomain of the TM protein p15E of different gamma retroviruses resulted in the induction of neutralizing antibodies. These sera recognized epitopes located in the MPER and in the fusion peptide proximal region (FPPR) of p15E. Based on these results, both regions of p15E were substituted with the corresponding sequences derived from gp41 of HIV-1. Thus, four different hybrid antigens were produced. One of the inserted sequences contained the epitopes of 2F5 and 4E10 in the MPER; the other corresponded to the FPPR. Vaccination of rats, guinea pigs, and a goat induced binding antibodies directed against the FPPR of gp41 and the 2F5 epitope (ELDKWA) located in the MPER. Despite the exact recognition of the 2F5 epitope, no or very weak neutralization of HIV-1NL4-3 by the immune sera was demonstrated. Nonetheless, using the strategy of hybrid proteins, antibodies targeting the desired epitope were successfully induced.
Collapse
|
146
|
Ringe R, Bhattacharya J. Preventive and therapeutic applications of neutralizing antibodies to Human Immunodeficiency Virus Type 1 (HIV-1). THERAPEUTIC ADVANCES IN VACCINES 2014; 1:67-80. [PMID: 24757516 DOI: 10.1177/2051013613494534] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The development of a preventive vaccine to neutralize the highly variable and antigenically diverse human immunodeficiency virus type 1 (HIV-1) has been an indomitable goal. The recent discovery of a number of cross-neutralizing and potent monoclonal antibodies from elite neutralizers has provided important insights in this field. Neutralizing antibodies (NAbs) are useful in identifying neutralizing epitopes of vaccine utility and for understanding the mechanism of potent and broad cross-neutralization thus providing a modality of preventive and therapeutic value. In this article we review the current understanding on the potential use of broadly neutralizing antibodies (bNAbs) in their full-length IgG structure, engineered domain antibody or bispecific versions towards preventive and therapeutic applications. The potential implications of NAbs are discussed in the light of the recent developments as key components in vaccination against HIV-1. The development of a vaccine immunogen which elicits bNAbs and confers protective immunity remains a real challenge.
Collapse
Affiliation(s)
- Rajesh Ringe
- Weill Medical College of Cornell University, New York, NY, USA
| | - Jayanta Bhattacharya
- International AIDS Vaccine Initiative (IAVI), THSTI-IAVI HVTR Laboratory, Translational Health Science and Technology Institute (THSTI), Gurgaon-122016, Haryana, India
| |
Collapse
|
147
|
West AP, Scharf L, Scheid JF, Klein F, Bjorkman PJ, Nussenzweig MC. Structural insights on the role of antibodies in HIV-1 vaccine and therapy. Cell 2014; 156:633-48. [PMID: 24529371 DOI: 10.1016/j.cell.2014.01.052] [Citation(s) in RCA: 267] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Indexed: 11/30/2022]
Abstract
Despite 30 years of effort, there is no effective vaccine for HIV-1. However, antibodies can prevent HIV-1 infection in humanized mice and macaques when passively transferred. New single-cell-based methods have uncovered many broad and potent donor-derived antibodies, and structural studies have revealed the molecular bases for their activities. The new data suggest why such antibodies are difficult to elicit and inform HIV-1 vaccine development efforts. In addition to protecting against infection, the newly identified antibodies can suppress active infections in mice and macaques, suggesting they could be valuable additions to anti-HIV-1 therapies and to strategies to eradicate HIV-1 infection.
Collapse
Affiliation(s)
- Anthony P West
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA.
| | - Louise Scharf
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Johannes F Scheid
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Florian Klein
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
148
|
Co-Administration of Molecular Adjuvants Expressing NF-Kappa B Subunit p65/RelA or Type-1 Transactivator T-bet Enhance Antigen Specific DNA Vaccine-Induced Immunity. Vaccines (Basel) 2014; 2:196-215. [PMID: 26344618 PMCID: PMC4494262 DOI: 10.3390/vaccines2020196] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 01/31/2014] [Accepted: 02/28/2014] [Indexed: 12/26/2022] Open
Abstract
DNA vaccine-induced immunity can be enhanced by the co-delivery of synthetic gene-encoding molecular adjuvants. Many of these adjuvants have included cytokines, chemokines or co-stimulatory molecules that have been demonstrated to enhance vaccine-induced immunity by increasing the magnitude or type of immune responses and/or protective efficacy. In this way, through the use of adjuvants, immune responses can be highly customizable and functionally tailored for optimal efficacy against pathogen specific (i.e., infectious agent) or non-pathogen (i.e., cancer) antigens. In the novel study presented here, we examined the use of cellular transcription factors as molecular adjuvants. Specifically the co-delivery of (a) RelA, a subunit of the NF-κB transcription complex or (b) T-bet, a Th1-specific T box transcription factor, along with a prototypical DNA vaccine expressing HIV-1 proteins was evaluated. As well, all of the vaccines and adjuvants were administered to mice using in vivo electroporation (EP), a technology demonstrated to dramatically increase plasmid DNA transfection and subsequent transgene expression with concomitant enhancement of vaccine induced immune responses. As such, this study demonstrated that co-delivery of either adjuvant resulted in enhanced T and B cell responses, specifically characterized by increased T cell numbers, IFN-γ production, as well as enhanced antibody responses. This study demonstrates the use of cellular transcription factors as adjuvants for enhancing DNA vaccine-induced immunity.
Collapse
|
149
|
Kuhlmann AS, Steckbeck JD, Sturgeon TJ, Craigo JK, Montelaro RC. Unique functional properties of conserved arginine residues in the lentivirus lytic peptide domains of the C-terminal tail of HIV-1 gp41. J Biol Chem 2014; 289:7630-40. [PMID: 24497632 PMCID: PMC3953275 DOI: 10.1074/jbc.m113.529339] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/20/2014] [Indexed: 11/06/2022] Open
Abstract
A previous study from our laboratory reported a preferential conservation of arginine relative to lysine in the C-terminal tail (CTT) of HIV-1 envelope (Env). Despite substantial overall sequence variation in the CTT, specific arginines are highly conserved in the lentivirus lytic peptide (LLP) motifs and are scarcely substituted by lysines, in contrast to gp120 and the ectodomain of gp41. However, to date, no explanation has been provided to explain the selective incorporation and conservation of arginines over lysines in these motifs. Herein, we address the functions in virus replication of the most conserved arginines by performing conservative mutations of arginine to lysine in the LLP1 and LLP2 motifs. The presence of lysine in place of arginine in the LLP1 motif resulted in significant impairment of Env expression and consequently virus replication kinetics, Env fusogenicity, and incorporation. By contrast, lysine exchanges in LLP2 only affected the level of Env incorporation and fusogenicity. Our findings demonstrate that the conservative lysine substitutions significantly affect Env functional properties indicating a unique functional role for the highly conserved arginines in the LLP motifs. These results provide for the first time a functional explanation to the preferred incorporation of arginine, relative to lysine, in the CTT of HIV-1 Env. We propose that these arginines may provide unique functions for Env interaction with viral or cellular cofactors that then influence overall Env functional properties.
Collapse
Affiliation(s)
- Anne-Sophie Kuhlmann
- From the Center for Vaccine Research and
- the Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Jonathan D. Steckbeck
- From the Center for Vaccine Research and
- the Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | | | - Jodi K. Craigo
- From the Center for Vaccine Research and
- the Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Ronald C. Montelaro
- From the Center for Vaccine Research and
- the Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
150
|
Abstract
PURPOSE OF REVIEW Although a large number of novel broadly neutralizing antibodies has been recently described, the induction of such antibodies via vaccination has proven difficult. By contrast, nonneutralizing antibodies arise early during infection and have been repeatedly associated with both protection from infection and disease progression. RECENT FINDINGS We are beginning to gain new insights into the broader landscape of antiviral mechanisms that nonneutralizing antibodies may harness to fight HIV, providing an unprecedented breadth of approaches by which HIV can be blocked and contained. SUMMARY In this review, we summarize the characteristics of nonneutralizing antibodies, their role in HIV infection, and new paradigm-shifting functions that may be exploited by next-generation vaccine approaches aimed at blocking HIV infection.
Collapse
|