101
|
Duran R, Cravo-Laureau C. Role of environmental factors and microorganisms in determining the fate of polycyclic aromatic hydrocarbons in the marine environment. FEMS Microbiol Rev 2016; 40:814-830. [PMID: 28201512 PMCID: PMC5091036 DOI: 10.1093/femsre/fuw031] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/28/2015] [Accepted: 07/24/2016] [Indexed: 11/14/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widespread in marine ecosystems and originate from natural sources and anthropogenic activities. PAHs enter the marine environment in two main ways, corresponding to chronic pollution or acute pollution by oil spills. The global PAH fluxes in marine environments are controlled by the microbial degradation and the biological pump, which plays a role in particle settling and in sequestration through bioaccumulation. Due to their low water solubility and hydrophobic nature, PAHs tightly adhere to sediments leading to accumulation in coastal and deep sediments. Microbial assemblages play an important role in determining the fate of PAHs in water and sediments, supporting the functioning of biogeochemical cycles and the microbial loop. This review summarises the knowledge recently acquired in terms of both chronic and acute PAH pollution. The importance of the microbial ecology in PAH-polluted marine ecosystems is highlighted as well as the importance of gaining further in-depth knowledge of the environmental services provided by microorganisms.
Collapse
Affiliation(s)
- Robert Duran
- Equipe Environnement et Microbiologie, MELODY group, Université de Pau et des Pays de l'Adour, Pau Cedex, France
| | - Cristiana Cravo-Laureau
- Equipe Environnement et Microbiologie, MELODY group, Université de Pau et des Pays de l'Adour, Pau Cedex, France
| |
Collapse
|
102
|
Meng L, Liu H, Bao M, Sun P. Microbial community structure shifts are associated with temperature, dispersants and nutrients in crude oil-contaminated seawaters. MARINE POLLUTION BULLETIN 2016; 111:203-212. [PMID: 27485782 DOI: 10.1016/j.marpolbul.2016.07.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/04/2016] [Accepted: 07/08/2016] [Indexed: 06/06/2023]
Abstract
This study tracked structure shifts of bacterial compositions before, during and after invading by crude oil to determine the microbial response and explore how temperature, dispersants and nutrients affect the composition of microbial communities or their activities of biodegradation in artificial marine environment. During petroleum hydrocarbons exposed, the composition and functional dynamics of marine microbial communities were altered, favoring bacteria that could utilize this rich carbon source such as the Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes phyla. Low temperature as a dominant factor decreased bacterial richness and catabolic diversity due to abated enzymes activities in correlation with the process of biodegradation. Dispersants exerted no negative consequences on microbial composition, however, bacterial composition by the Chloroflexi, TM6, OP8, Cyanobacteria and Gemmatimonadetes phyla increased. It seemed that more frequent fertilizer application could be equally safe to bacteria and increased significantly the abundance of bacterial strains but Actinobacteria phyla decreased.
Collapse
Affiliation(s)
- Long Meng
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Han Liu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Mutai Bao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| | - Peiyan Sun
- Key Laboratory of Marine Spill Oil Identification and Damage Assessment Technology, North China Sea Environmental Monitoring Center, State Oceanic Administration, Qingdao 266033, China
| |
Collapse
|
103
|
Jeanbille M, Gury J, Duran R, Tronczynski J, Agogué H, Ben Saïd O, Ghiglione JF, Auguet JC. Response of Core Microbial Consortia to Chronic Hydrocarbon Contaminations in Coastal Sediment Habitats. Front Microbiol 2016; 7:1637. [PMID: 27790213 PMCID: PMC5061854 DOI: 10.3389/fmicb.2016.01637] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/30/2016] [Indexed: 11/13/2022] Open
Abstract
Traditionally, microbial surveys investigating the effect of chronic anthropogenic pressure such as polyaromatic hydrocarbons (PAHs) contaminations consider just the alpha and beta diversity and ignore the interactions among the different taxa forming the microbial community. Here, we investigated the ecological relationships between the three domains of life (i.e., Bacteria, Archaea, and Eukarya) using 454 pyrosequencing on the 16S rRNA and 18S rRNA genes from chronically impacted and pristine sediments, along the coasts of the Mediterranean Sea (Gulf of Lion, Vermillion coast, Corsica, Bizerte lagoon and Lebanon) and the French Atlantic Ocean (Bay of Biscay and English Channel). Our approach provided a robust ecological framework for the partition of the taxa abundance distribution into 859 core Operational taxonomic units (OTUs) and 6629 satellite OTUs. OTUs forming the core microbial community showed the highest sensitivity to changes in environmental and contaminant variations, with salinity, latitude, temperature, particle size distribution, total organic carbon (TOC) and PAH concentrations as main drivers of community assembly. The core communities were dominated by Gammaproteobacteria and Deltaproteobacteria for Bacteria, by Thaumarchaeota, Bathyarchaeota and Thermoplasmata for Archaea and Metazoa and Dinoflagellata for Eukarya. In order to find associations among microorganisms, we generated a co-occurrence network in which PAHs were found to impact significantly the potential predator – prey relationship in one microbial consortium composed of ciliates and Actinobacteria. Comparison of network topological properties between contaminated and non-contaminated samples showed substantial differences in the network structure and indicated a higher vulnerability to environmental perturbations in the contaminated sediments.
Collapse
Affiliation(s)
- Mathilde Jeanbille
- Equipe Environnement et Microbiologie, Institut Pluridisciplinaire de Recherche sur l'Environnement et les Matériaux, UMR 5254 Centre National de la Recherche Scientifique - Université de Pau et des Pays de L'Adour Pau, France
| | - Jérôme Gury
- Equipe Environnement et Microbiologie, Institut Pluridisciplinaire de Recherche sur l'Environnement et les Matériaux, UMR 5254 Centre National de la Recherche Scientifique - Université de Pau et des Pays de L'Adour Pau, France
| | - Robert Duran
- Equipe Environnement et Microbiologie, Institut Pluridisciplinaire de Recherche sur l'Environnement et les Matériaux, UMR 5254 Centre National de la Recherche Scientifique - Université de Pau et des Pays de L'Adour Pau, France
| | - Jacek Tronczynski
- Laboratoire Biogéochimie des Contaminants Organiques, Unité Biogéochimie et Ecotoxicologie, Département Ressources Biologiques et Environnement, Ifremer Centre Atlantique Nantes, France
| | - Hélène Agogué
- Littoral, Environnement et Sociétés, UMR 7266 Centre National de la Recherche Scientifique - Université de La Rochelle La Rochelle, France
| | - Olfa Ben Saïd
- Equipe Environnement et Microbiologie, Institut Pluridisciplinaire de Recherche sur l'Environnement et les Matériaux, UMR 5254 Centre National de la Recherche Scientifique - Université de Pau et des Pays de L'AdourPau, France; Laboratoire de Bio-surveillance de l'Environnement, Faculté des Sciences de BizerteZarzouna, Tunisie
| | - Jean-François Ghiglione
- Laboratoire d'Océanographie Microbienne, Sorbonne Universités, UMR 7621, Centre National de la Recherche Scientifique-University Pierre and Marie Curie Banyuls sur mer, France
| | - Jean-Christophe Auguet
- Marine Biodiversity, Exploitation and Conservation, UMR Centre National de la Recherche Scientifique 9190 Montpellier, France
| |
Collapse
|
104
|
Chen H, Hou A, Corilo YE, Lin Q, Lu J, Mendelssohn IA, Zhang R, Rodgers RP, McKenna AM. 4 Years after the Deepwater Horizon Spill: Molecular Transformation of Macondo Well Oil in Louisiana Salt Marsh Sediments Revealed by FT-ICR Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:9061-9069. [PMID: 27465015 DOI: 10.1021/acs.est.6b01156] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Gulf of Mexico saltmarsh sediments were heavily impacted by Macondo well oil (MWO) released from the 2010 Deepwater Horizon (DWH) oil spill. Detailed molecular-level characterization of sediment extracts collected over 48 months post-spill highlights the chemical complexity of highly polar, oxygen-containing compounds that remain environmentally persistent. Electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS), combined with chromatographic prefractionation, correlates bulk chemical properties to elemental compositions of oil-transformation products as a function of time. Carboxylic acid incorporation into parent MWO hydrocarbons detected in sediment extracts (corrected for mass loss relative to C30 hopane) proceeds with an increase of ∼3-fold in O2 species after 9 months to a maximum of a ∼5.5-fold increase after 36 months, compared to the parent MWO. More importantly, higher-order oxygenated compounds (O4-O6) not detected in the parent MWO increase in relative abundance with time as lower-order oxygenated species are transformed into highly polar, oxygen-containing compounds (Ox, where x > 3). Here, we present the first molecular-level characterization of temporal compositional changes that occur in Deepwater Horizon derived oil contamination deposited in a saltmarsh ecosystem from 9 to 48 months post-spill and identify highly oxidized Macondo well oil compounds that are not detectable by routine gas-chromatography-based techniques.
Collapse
Affiliation(s)
| | - Aixin Hou
- Department of Environmental Sciences, College of the Coast and Environment, Louisiana State University , 1285 Energy, Coast, and Environment Building, Baton Rouge, Louisiana 70803, United States
| | | | - Qianxin Lin
- Department of Oceanography and Coastal Sciences, College of the Coast and Environment, Louisiana State University , 1002-Y Energy, Coast, and Environment Building, Baton Rouge, Louisiana 70803, United States
| | | | - Irving A Mendelssohn
- Department of Oceanography and Coastal Sciences, College of the Coast and Environment, Louisiana State University , 1002-Y Energy, Coast, and Environment Building, Baton Rouge, Louisiana 70803, United States
| | - Rui Zhang
- Department of Environmental Sciences, College of the Coast and Environment, Louisiana State University , 1285 Energy, Coast, and Environment Building, Baton Rouge, Louisiana 70803, United States
| | | | | |
Collapse
|
105
|
Techtmann SM, Hazen TC. Metagenomic applications in environmental monitoring and bioremediation. J Ind Microbiol Biotechnol 2016; 43:1345-54. [PMID: 27558781 DOI: 10.1007/s10295-016-1809-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 07/30/2016] [Indexed: 01/08/2023]
Abstract
With the rapid advances in sequencing technology, the cost of sequencing has dramatically dropped and the scale of sequencing projects has increased accordingly. This has provided the opportunity for the routine use of sequencing techniques in the monitoring of environmental microbes. While metagenomic applications have been routinely applied to better understand the ecology and diversity of microbes, their use in environmental monitoring and bioremediation is increasingly common. In this review we seek to provide an overview of some of the metagenomic techniques used in environmental systems biology, addressing their application and limitation. We will also provide several recent examples of the application of metagenomics to bioremediation. We discuss examples where microbial communities have been used to predict the presence and extent of contamination, examples of how metagenomics can be used to characterize the process of natural attenuation by unculturable microbes, as well as examples detailing the use of metagenomics to understand the impact of biostimulation on microbial communities.
Collapse
Affiliation(s)
| | - Terry C Hazen
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, USA
| |
Collapse
|
106
|
Jeanbille M, Gury J, Duran R, Tronczynski J, Ghiglione JF, Agogué H, Saïd OB, Taïb N, Debroas D, Garnier C, Auguet JC. Chronic Polyaromatic Hydrocarbon (PAH) Contamination Is a Marginal Driver for Community Diversity and Prokaryotic Predicted Functioning in Coastal Sediments. Front Microbiol 2016; 7:1303. [PMID: 27594854 PMCID: PMC4990537 DOI: 10.3389/fmicb.2016.01303] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/08/2016] [Indexed: 01/11/2023] Open
Abstract
Benthic microorganisms are key players in the recycling of organic matter and recalcitrant compounds such as polyaromatic hydrocarbons (PAHs) in coastal sediments. Despite their ecological importance, the response of microbial communities to chronic PAH pollution, one of the major threats to coastal ecosystems, has received very little attention. In one of the largest surveys performed so far on coastal sediments, the diversity and composition of microbial communities inhabiting both chronically contaminated and non-contaminated coastal sediments were investigated using high-throughput sequencing on the 18S and 16S rRNA genes. Prokaryotic alpha-diversity showed significant association with salinity, temperature, and organic carbon content. The effect of particle size distribution was strong on eukaryotic diversity. Similarly to alpha-diversity, beta-diversity patterns were strongly influenced by the environmental filter, while PAHs had no influence on the prokaryotic community structure and a weak impact on the eukaryotic community structure at the continental scale. However, at the regional scale, PAHs became the main driver shaping the structure of bacterial and eukaryotic communities. These patterns were not found for PICRUSt predicted prokaryotic functions, thus indicating some degree of functional redundancy. Eukaryotes presented a greater potential for their use as PAH contamination biomarkers, owing to their stronger response at both regional and continental scales.
Collapse
Affiliation(s)
- Mathilde Jeanbille
- Equipe Environnement et Microbiologie, Institut Pluridisciplinaire de Recherche sur l'Environnement et les Matériaux, UMR 5254 CNRS - Université de Pau et des Pays de L'Adour Pau, France
| | - Jérôme Gury
- Equipe Environnement et Microbiologie, Institut Pluridisciplinaire de Recherche sur l'Environnement et les Matériaux, UMR 5254 CNRS - Université de Pau et des Pays de L'Adour Pau, France
| | - Robert Duran
- Equipe Environnement et Microbiologie, Institut Pluridisciplinaire de Recherche sur l'Environnement et les Matériaux, UMR 5254 CNRS - Université de Pau et des Pays de L'Adour Pau, France
| | - Jacek Tronczynski
- Laboratoire Biogéochimie des Contaminants Organiques, Unité Biogéochimie et Ecotoxicologie, Département Ressources Biologiques et Environnement, Ifremer Centre Atlantique Nantes, France
| | - Jean-François Ghiglione
- Laboratoire d'Océanographie Microbienne, Sorbonne Universités, CNRS, Université Pierre-et-Marie-Curie, UMR 7621, Observatoire Océanologique Banyuls-sur-mer, France
| | - Hélène Agogué
- Littoral, Environnement et Sociétés, UMR 7266 CNRS - Université de La Rochelle La Rochelle, France
| | - Olfa Ben Saïd
- Laboratoire de Bio-surveillance de l'Environnement, Faculté des Sciences de Bizerte Zarzouna, Tunisia
| | - Najwa Taïb
- Laboratoire Microorganismes: Génome et Environnement, UMR 6023 CNRS - Université Blaise Pascal Aubière, France
| | - Didier Debroas
- Laboratoire Microorganismes: Génome et Environnement, UMR 6023 CNRS - Université Blaise Pascal Aubière, France
| | - Cédric Garnier
- Processus de Transferts et d'Echanges dans l'Environnement, EA 3819, Université de Toulon La Garde, France
| | | |
Collapse
|
107
|
Obi CC, Adebusoye SA, Ugoji EO, Ilori MO, Amund OO, Hickey WJ. Microbial Communities in Sediments of Lagos Lagoon, Nigeria: Elucidation of Community Structure and Potential Impacts of Contamination by Municipal and Industrial Wastes. Front Microbiol 2016; 7:1213. [PMID: 27547200 PMCID: PMC4974257 DOI: 10.3389/fmicb.2016.01213] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 07/21/2016] [Indexed: 01/13/2023] Open
Abstract
Estuarine sediments are significant repositories of anthropogenic contaminants, and thus knowledge of the impacts of pollution upon microbial communities in these environments is important to understand potential effects on estuaries as a whole. The Lagos lagoon (Nigeria) is one of Africa’s largest estuarine ecosystems, and is impacted by hydrocarbon pollutants and other industrial and municipal wastes. The goal of this study was to elucidate microbial community structure in Lagos lagoon sediments to identify groups that may be adversely affected by pollution, and those that may serve as degraders of environmental contaminants, especially polycyclic aromatic hydrocarbons (PAHs). Sediment samples were collected from sites that ranged in types and levels of anthropogenic impacts. The sediments were characterized for a range of physicochemical properties, and microbial community structure was determined by Illumina sequencing of the 16S rRNA genes. Microbial diversity (species richness and evenness) in the Apapa and Eledu sediments was reduced compared to that of the Ofin site, and communities of both of the former two were dominated by a single operational taxonomic unit (OTU) assigned to the family Helicobacteraceae (Epsilonproteobacteria). In the Ofin community, Epsilonproteobacteria were minor constituents, while the major groups were Cyanobacteria, Bacteroidetes, and Firmicutes, which were all minor in the Apapa and Eledu sediments. Sediment oxygen demand (SOD), a broad indicator of contamination, was identified by multivariate analyses as strongly correlated with variation in alpha diversity. Environmental variables that explained beta diversity patterns included SOD, as well as levels of naphthalene, acenaphthylene, cobalt, cadmium, total organic matter, or nitrate. Of 582 OTU identified, abundance of 167 was significantly correlated (false discovery rate q≤ 0.05) to environmental variables. The largest group of OTU correlated with PAH levels were PAH/hydrocarbon-degrading genera of the Oceanospirillales order (Gammaproteobacteria), which were most abundant in the hydrocarbon-contaminated Apapa sediment. Similar Oceanospirillales taxa are responsive to marine oil spills and thus may present a unifying theme in marine microbiology as bacteria adapted for degradation of high hydrocarbon loads, and may represent a potential means for intrinsic remediation in the case of the Lagos lagoon sediments.
Collapse
Affiliation(s)
- Chioma C Obi
- Department of Microbiology, University of LagosLagos, Nigeria; O.N. Allen Laboratory for Soil Microbiology, Department of Soil Science, University of Wisconsin-Madison, MadisonWI, USA
| | | | - Esther O Ugoji
- Department of Microbiology, University of Lagos Lagos, Nigeria
| | - Mathew O Ilori
- Department of Microbiology, University of Lagos Lagos, Nigeria
| | | | - William J Hickey
- O.N. Allen Laboratory for Soil Microbiology, Department of Soil Science, University of Wisconsin-Madison, Madison WI, USA
| |
Collapse
|
108
|
Scoma A, Yakimov MM, Boon N. Challenging Oil Bioremediation at Deep-Sea Hydrostatic Pressure. Front Microbiol 2016; 7:1203. [PMID: 27536290 PMCID: PMC4971052 DOI: 10.3389/fmicb.2016.01203] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/20/2016] [Indexed: 11/25/2022] Open
Abstract
The Deepwater Horizon accident has brought oil contamination of deep-sea environments to worldwide attention. The risk for new deep-sea spills is not expected to decrease in the future, as political pressure mounts to access deep-water fossil reserves, and poorly tested technologies are used to access oil. This also applies to the response to oil-contamination events, with bioremediation the only (bio)technology presently available to combat deep-sea spills. Many questions about the fate of petroleum-hydrocarbons within deep-sea environments remain unanswered, as well as the main constraints limiting bioremediation under increased hydrostatic pressures and low temperatures. The microbial pathways fueling oil bioassimilation are unclear, and the mild upregulation observed for beta-oxidation-related genes in both water and sediments contrasts with the high amount of alkanes present in the spilled oil. The fate of solid alkanes (tar), hydrocarbon degradation rates and the reason why the most predominant hydrocarbonoclastic genera were not enriched at deep-sea despite being present at hydrocarbon seeps at the Gulf of Mexico have been largely overlooked. This mini-review aims at highlighting the missing information in the field, proposing a holistic approach where in situ and ex situ studies are integrated to reveal the principal mechanisms accounting for deep-sea oil bioremediation.
Collapse
Affiliation(s)
- Alberto Scoma
- Center of Microbial Ecology and Technology, University of Gent Gent, Belgium
| | - Michail M Yakimov
- Institute for Coastal Marine Environment - National Council of ResearchMessina, Italy; Immanuel Kant Baltic Federal UniversityKaliningrad, Russia
| | - Nico Boon
- Center of Microbial Ecology and Technology, University of Gent Gent, Belgium
| |
Collapse
|
109
|
Gutierrez T, Berry D, Teske A, Aitken MD. Enrichment of Fusobacteria in Sea Surface Oil Slicks from the Deepwater Horizon Oil Spill. Microorganisms 2016; 4:E24. [PMID: 27681918 PMCID: PMC5039584 DOI: 10.3390/microorganisms4030024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/14/2016] [Accepted: 07/20/2016] [Indexed: 11/25/2022] Open
Abstract
The Deepwater Horizon (DWH) oil spill led to rapid microbial community shifts in the Gulf of Mexico, including the formation of unprecedented quantities of marine oil snow (MOS) and of a massive subsurface oil plume. The major taxa that bloomed in sea surface oil slicks during the spill included Cycloclasticus, and to a lesser extent Halomonas, Alteromonas, and Pseudoalteromonas-organisms that grow and degrade oil hydrocarbons aerobically. Here, we show that sea surface oil slicks at DWH contained obligate and facultative anaerobic taxa, including members of the obligate anaerobic phylum Fusobacteria that are commonly found in marine sediment environments. Pyrosequencing analysis revealed that Fusobacteria were strongly selected for when sea surface oil slicks were allowed to develop anaerobically. These organisms have been found in oil-contaminated sediments in the Gulf of Mexico, in deep marine oil reservoirs, and other oil-contaminated sites, suggesting they have putative hydrocarbon-degrading qualities. The occurrence and strong selection for Fusobacteria in a lab-based incubation of a sea surface oil slick sample collected during the spill suggests that these organisms may have become enriched in anaerobic zones of suspended particulates, such as MOS. Whilst the formation and rapid sinking of MOS is recognised as an important mechanism by which a proportion of the Macondo oil had been transported to the sea floor, its role in potentially transporting microorganisms, including oil-degraders, from the upper reaches of the water column to the seafloor should be considered. The presence of Fusobacteria on the sea surface-a highly oxygenated environment-is intriguing, and may be explained by the vertical upsurge of oil that provided a carrier to transport these organisms from anaerobic/micro-aerophilic zones in the oil plume or seabed to the upper reaches of the water column. We also propose that the formation of rapidly-sinking MOS may have re-transported these, and other microbial taxa, to the sediment in the Gulf of Mexico.
Collapse
Affiliation(s)
- Tony Gutierrez
- School of Life Sciences, Heriot Watt University, Edinburgh, EH14 4AS, UK.
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - David Berry
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, A-1090 Vienna, Austria.
| | - Andreas Teske
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Michael D Aitken
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
110
|
Herath A, Wawrik B, Qin Y, Zhou J, Callaghan AV. Transcriptional response of Desulfatibacillum alkenivorans AK-01 to growth on alkanes: insights from RT-qPCR and microarray analyses. FEMS Microbiol Ecol 2016; 92:fiw062. [PMID: 27009900 DOI: 10.1093/femsec/fiw062] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2016] [Indexed: 12/16/2022] Open
Abstract
Microbial transformation of n-alkanes in anaerobic ecosystems plays a pivotal role in biogeochemical carbon cycling and bioremediation, but the requisite genetic machinery is not well elucidated.Desulfatibacillum alkenivorans AK-01 utilizes n-alkanes (C13 to C18) and contains two genomic loci encoding alkylsuccinate synthase (ASS) gene clusters. ASS catalyzes alkane addition to fumarate to form methylalkylsuccinic acids. We hypothesized that the genes in the two clusters would be differentially expressed depending on the alkane substrate utilized for growth. RT-qPCR was used to investigate ass-gene expression across AK-01's known substrate range, and microarray-based transcriptomic analysis served to investigate whole-cell responses to growth on n-hexadecane versus hexadecanoate. RT-qPCR revealed induction of ass gene cluster 1 during growth on all tested alkane substrates, and the transcriptional start sites in cluster 1 were determined via 5'RACE. Induction of ass gene cluster 2 was not observed under the tested conditions. Transcriptomic analysis indicated that the upregulation of genes potentially involved in methylalkylsuccinate metabolism, including methylmalonyl-CoA mutase and a putative carboxyl transferase. These findings provide new directions for studying the transcriptional regulation of genes involved in alkane addition to fumarate, fumarate recycling and the processing of methylalkylsuccinates with regard to isolates, enrichment cultures and ecological datasets.
Collapse
Affiliation(s)
- Anjumala Herath
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Boris Wawrik
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Yujia Qin
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA Institute of Environmental Genomics, Stephenson Research Center, 101 David L. Boren Blvd, Norman, OK 73019, USA
| | - Jizhong Zhou
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA Institute of Environmental Genomics, Stephenson Research Center, 101 David L. Boren Blvd, Norman, OK 73019, USA Earth Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94270, USA State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Amy V Callaghan
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA
| |
Collapse
|
111
|
Abstract
Crude oil has been part of the marine environment for millions of years, and microbes that use its rich source of energy and carbon are found in seawater, sediments, and shorelines from the tropics to the polar regions. Catastrophic oil spills stimulate these organisms to "bloom" in a reproducible fashion, and although oil does not provide bioavailable nitrogen, phosphorus or iron, there are enough of these nutrients in the sea that when dispersed oil droplets dilute to low concentrations these low levels are adequate for microbial growth. Most of the hydrocarbons in dispersed oil are degraded in aerobic marine waters with a half-life of days to months. In contrast, oil that reaches shorelines is likely to be too concentrated, have lower levels of nutrients, and have a far longer residence time in the environment. Oil that becomes entrained in anaerobic sediments is also likely to have a long residence time, although it too will eventually be biodegraded. Thus, data that encompass everything from the ecosystem to the molecular level are needed for understanding the complicated process of petroleum biodegradation in marine environments.
Collapse
Affiliation(s)
- Terry C Hazen
- Departments of Civil & Environmental Engineering, Microbiology, Earth & Planetary Sciences, Center for Environmental Biotechnology, Bredesen Center, Genome Science & Technology, Institute for Secure and Sustainable Environment, University of Tennessee , Knoxville, Tennessee 37996, United States and
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- ExxonMobil Biomed Sci Inc., Annandale, New Jersey 08801, United States
- Department of Civil and Environmental Engineering, University of Tennessee , Knoxville, Tennessee 37996, United States
| | - Roger C Prince
- Departments of Civil & Environmental Engineering, Microbiology, Earth & Planetary Sciences, Center for Environmental Biotechnology, Bredesen Center, Genome Science & Technology, Institute for Secure and Sustainable Environment, University of Tennessee , Knoxville, Tennessee 37996, United States and
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- ExxonMobil Biomed Sci Inc., Annandale, New Jersey 08801, United States
- Department of Civil and Environmental Engineering, University of Tennessee , Knoxville, Tennessee 37996, United States
| | - Nagissa Mahmoudi
- Departments of Civil & Environmental Engineering, Microbiology, Earth & Planetary Sciences, Center for Environmental Biotechnology, Bredesen Center, Genome Science & Technology, Institute for Secure and Sustainable Environment, University of Tennessee , Knoxville, Tennessee 37996, United States and
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- ExxonMobil Biomed Sci Inc., Annandale, New Jersey 08801, United States
- Department of Civil and Environmental Engineering, University of Tennessee , Knoxville, Tennessee 37996, United States
| |
Collapse
|
112
|
Acosta-González A, Marqués S. Bacterial diversity in oil-polluted marine coastal sediments. Curr Opin Biotechnol 2016; 38:24-32. [PMID: 26773654 DOI: 10.1016/j.copbio.2015.12.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 11/27/2022]
Abstract
Marine environments harbour a persistent microbial seed which can be shaped by changes of the environmental conditions such as contamination by petroleum components. Oil spills, together with small but continuous discharges of oil from transportation and recreational activities, are important sources of hydrocarbon pollution within the marine realm. Consequently, prokaryotic communities have become well pre-adapted toward oil pollution, and many microorganisms that are exposed to its presence develop an active degradative response. The natural attenuation of oil pollutants, as has been demonstrated in many sites, is modulated according to the intrinsic environmental properties such as the availability of terminal electron acceptors and elemental nutrients, together with the degree of pollution and the type of hydrocarbon fractions present. Whilst dynamics in the bacterial communities in the aerobic zones of coastal sediments are well characterized and the key players in hydrocarbon biodegradation have been identified, the subtidal ecology of the anaerobic community is still not well understood. However, current data suggest common patterns of response in these ecosystems.
Collapse
Affiliation(s)
- Alejandro Acosta-González
- Grupo de Investigación en Bioprospección (GIBP), Facultad de Ingeniería, Universidad de La Sabana, Autopista Norte km 7, Chía, Cundinamarca, Colombia
| | - Silvia Marqués
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Department of Environmental Protection, Profesor Albareda 1, E-18008 Granada, Spain.
| |
Collapse
|
113
|
Gittel A, Donhauser J, Røy H, Girguis PR, Jørgensen BB, Kjeldsen KU. Ubiquitous Presence and Novel Diversity of Anaerobic Alkane Degraders in Cold Marine Sediments. Front Microbiol 2015; 6:1414. [PMID: 26733961 PMCID: PMC4681840 DOI: 10.3389/fmicb.2015.01414] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 11/27/2015] [Indexed: 01/05/2023] Open
Abstract
Alkanes are major constituents of crude oil and are released to the marine environment by natural seepage and from anthropogenic sources. Due to their chemical inertness, their removal from anoxic marine sediments is primarily controlled by the activity of anaerobic alkane-degrading microorganisms. To facilitate comprehensive cultivation-independent surveys of the diversity and distribution of anaerobic alkane degraders, we designed novel PCR primers that cover all known diversity of the 1-methylalkyl succinate synthase gene (masD/assA), which catalyzes the initial activation of alkanes. We studied masD/assA gene diversity in pristine and seepage-impacted Danish coastal sediments, as well as in sediments and alkane-degrading enrichment cultures from the Middle Valley (MV) hydrothermal vent system in the Pacific Northwest. MasD/assA genes were ubiquitously present, and the primers captured the diversity of both known and previously undiscovered masD/assA gene diversity. Seepage sediments were dominated by a single masD/assA gene cluster, which is presumably indicative of a substrate-adapted community, while pristine sediments harbored a diverse range of masD/assA phylotypes including those present in seepage sediments. This rare biosphere of anaerobic alkane degraders will likely increase in abundance in the event of seepage or accidental oil spillage. Nanomolar concentrations of short-chain alkanes (SCA) were detected in pristine and seepage sediments. Interestingly, anaerobic alkane degraders closely related to strain BuS5, the only SCA degrader in pure culture, were found in mesophilic MV enrichments, but not in cold sediments from Danish waters. We propose that the new masD/assA gene lineages in these sediments represent novel phylotypes that are either fueled by naturally occurring low levels of SCA or that metabolize medium- to long-chain alkanes. Our study highlights that masD/assA genes are a relevant diagnostic marker to identify seepage and microseepage, e.g., during prospecting for oil and gas, and may act as an indicator of anthropogenic oil spills in marine sediments.
Collapse
Affiliation(s)
- Antje Gittel
- Center for Geomicrobiology, Department of Bioscience, Aarhus UniversityAarhus, Denmark
| | - Jonathan Donhauser
- Center for Geomicrobiology, Department of Bioscience, Aarhus UniversityAarhus, Denmark
| | - Hans Røy
- Center for Geomicrobiology, Department of Bioscience, Aarhus UniversityAarhus, Denmark
| | - Peter R. Girguis
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridge, MA, USA
| | - Bo B. Jørgensen
- Center for Geomicrobiology, Department of Bioscience, Aarhus UniversityAarhus, Denmark
| | - Kasper U. Kjeldsen
- Center for Geomicrobiology, Department of Bioscience, Aarhus UniversityAarhus, Denmark
| |
Collapse
|
114
|
Caruso G, La Ferla R, Azzaro M, Zoppini A, Marino G, Petochi T, Corinaldesi C, Leonardi M, Zaccone R, Fonda Umani S, Caroppo C, Monticelli L, Azzaro F, Decembrini F, Maimone G, Cavallo RA, Stabili L, Hristova Todorova N, K. Karamfilov V, Rastelli E, Cappello S, Acquaviva MI, Narracci M, De Angelis R, Del Negro P, Latini M, Danovaro R. Microbial assemblages for environmental quality assessment: Knowledge, gaps and usefulness in the European Marine Strategy Framework Directive. Crit Rev Microbiol 2015; 42:883-904. [DOI: 10.3109/1040841x.2015.1087380] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
115
|
Hydrocarbon-Degrading Bacteria Exhibit a Species-Specific Response to Dispersed Oil while Moderating Ecotoxicity. Appl Environ Microbiol 2015; 82:518-27. [PMID: 26546426 DOI: 10.1128/aem.02379-15] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/29/2015] [Indexed: 12/22/2022] Open
Abstract
The Deepwater Horizon blowout in April 2010 represented the largest accidental marine oil spill and the largest release of chemical dispersants into the environment to date. While dispersant application may provide numerous benefits to oil spill response efforts, the impacts of dispersants and potential synergistic effects with crude oil on individual hydrocarbon-degrading bacteria are poorly understood. In this study, two environmentally relevant species of hydrocarbon-degrading bacteria were utilized to quantify the response to Macondo crude oil and Corexit 9500A-dispersed oil in terms of bacterial growth and oil degradation potential. In addition, specific hydrocarbon compounds were quantified in the dissolved phase of the medium and linked to ecotoxicity using a U.S. Environmental Protection Agency (EPA)-approved rotifer assay. Bacterial treatment significantly and drastically reduced the toxicity associated with dispersed oil (increasing the 50% lethal concentration [LC50] by 215%). The growth and crude oil degradation potential of Acinetobacter were inhibited by Corexit by 34% and 40%, respectively; conversely, Corexit significantly enhanced the growth of Alcanivorax by 10% relative to that in undispersed oil. Furthermore, both bacterial strains were shown to grow with Corexit as the sole carbon and energy source. Hydrocarbon-degrading bacterial species demonstrate a unique response to dispersed oil compared to their response to crude oil, with potentially opposing effects on toxicity. While some species have the potential to enhance the toxicity of crude oil by producing biosurfactants, the same bacteria may reduce the toxicity associated with dispersed oil through degradation or sequestration.
Collapse
|
116
|
Dudchenko AV, Rolf J, Shi L, Olivas L, Duan W, Jassby D. Coupling Underwater Superoleophobic Membranes with Magnetic Pickering Emulsions for Fouling-Free Separation of Crude Oil/Water Mixtures: An Experimental and Theoretical Study. ACS NANO 2015; 9:9930-9941. [PMID: 26422748 DOI: 10.1021/acsnano.5b04880] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Oil/water separations have become an area of great interest, as growing oil extraction activities are increasing the generation of oily wastewaters as well as increasing the risk of oil spills. Here, we demonstrate a membrane-based and fouling-free oil/water separation method that couples carbon nanotube-poly(vinyl alcohol) underwater superoleophobic ultrafiltration membranes with magnetic Pickering emulsions. We demonstrate that this process is insensitive to low water temperatures, high ionic strength, or crude oil loading, while allowing operation at high permeate fluxes and producing high quality permeate. Furthermore, we develop a theoretical framework that analyzes the stability of Pickering emulsions under filtration mechanics, relating membrane surface properties and hydrodynamic conditions in the Pickering emulsion cake layer to membrane performance. Finally, we demonstrate the recovery and recyclability of the nanomagnetite used to form the Pickering emulsions through a magnetic separation step, resulting in an environmentally friendly, continuous process for oil/water separation.
Collapse
Affiliation(s)
- Alexander V Dudchenko
- Department of Chemical and Environmental Engineering, University of California , Riverside, California 92521, United States
| | - Julianne Rolf
- Department of Chemical and Environmental Engineering, University of California , Riverside, California 92521, United States
| | - Lucy Shi
- Department of Chemical and Environmental Engineering, University of California , Riverside, California 92521, United States
| | - Liana Olivas
- Department of Chemical and Environmental Engineering, University of California , Riverside, California 92521, United States
| | - Wenyan Duan
- Department of Chemical and Environmental Engineering, University of California , Riverside, California 92521, United States
| | - David Jassby
- Department of Chemical and Environmental Engineering, University of California , Riverside, California 92521, United States
| |
Collapse
|
117
|
Atlas RM, Stoeckel DM, Faith SA, Minard-Smith A, Thorn JR, Benotti MJ. Oil Biodegradation and Oil-Degrading Microbial Populations in Marsh Sediments Impacted by Oil from the Deepwater Horizon Well Blowout. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:8356-8366. [PMID: 26091189 DOI: 10.1021/acs.est.5b00413] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
To study hydrocarbon biodegradation in marsh sediments impacted by Macondo oil from the Deepwater Horizon well blowout, we collected sediment cores 18-36 months after the accident at the marshes in Bay Jimmy (Upper Barataria Bay), Louisiana, United States. The highest concentrations of oil were found in the top 2 cm of sediment nearest the waterline at the shorelines known to have been heavily oiled. Although petroleum hydrocarbons were detectable, Macondo oil could not be identified below 8 cm in 19 of the 20 surveyed sites. At the one site where oil was detected below 8 cm, concentrations were low. Residual Macondo oil was already highly weathered at the start of the study, and the concentrations of individual saturated hydrocarbons and polycyclic aromatic hydrocarbons continued to decrease over the course of the study due to biodegradation. Desulfococcus oleovorans, Marinobacter hydrocarbonoclasticus, Mycobacterium vanbaalenii, and related mycobacteria were the most abundant oil-degrading microorganisms detected in the top 2 cm at the oiled sites. Relative populations of these taxa declined as oil concentrations declined. The diversity of the microbial community was low at heavily oiled sites compared to that of the unoiled reference sites. As oil concentrations decreased over time, microbial diversity increased and approached the diversity levels of the reference sites. These trends show that the oil continues to be biodegraded, and microbial diversity continues to increase, indicating ongoing overall ecological recovery.
Collapse
Affiliation(s)
- Ronald M Atlas
- Department of Biology, University of Louisville, Louisville Kentucky 40292, United States
- Battelle Memorial Institute, Columbus, Ohio 43201, United States
- Battelle Memorial Institute, Norwell, Massachusetts 02061, United States
| | - Donald M Stoeckel
- Department of Biology, University of Louisville, Louisville Kentucky 40292, United States
- Battelle Memorial Institute, Columbus, Ohio 43201, United States
- Battelle Memorial Institute, Norwell, Massachusetts 02061, United States
| | - Seth A Faith
- Department of Biology, University of Louisville, Louisville Kentucky 40292, United States
- Battelle Memorial Institute, Columbus, Ohio 43201, United States
- Battelle Memorial Institute, Norwell, Massachusetts 02061, United States
| | - Angela Minard-Smith
- Department of Biology, University of Louisville, Louisville Kentucky 40292, United States
- Battelle Memorial Institute, Columbus, Ohio 43201, United States
- Battelle Memorial Institute, Norwell, Massachusetts 02061, United States
| | - Jonathan R Thorn
- Department of Biology, University of Louisville, Louisville Kentucky 40292, United States
- Battelle Memorial Institute, Columbus, Ohio 43201, United States
- Battelle Memorial Institute, Norwell, Massachusetts 02061, United States
| | - Mark J Benotti
- Department of Biology, University of Louisville, Louisville Kentucky 40292, United States
- Battelle Memorial Institute, Columbus, Ohio 43201, United States
- Battelle Memorial Institute, Norwell, Massachusetts 02061, United States
| |
Collapse
|
118
|
Dynamic Response of Mycobacterium vanbaalenii PYR-1 to BP Deepwater Horizon Crude Oil. Appl Environ Microbiol 2015; 81:4263-76. [PMID: 25888169 DOI: 10.1128/aem.00730-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 04/09/2015] [Indexed: 12/26/2022] Open
Abstract
We investigated the response of the hydrocarbon-degrading Mycobacterium vanbaalenii PYR-1 to crude oil from the BP Deepwater Horizon (DWH) spill, using substrate depletion, genomic, and proteome analyses. M. vanbaalenii PYR-1 cultures were incubated with BP DWH crude oil, and proteomes and degradation of alkanes and polycyclic aromatic hydrocarbons (PAHs) were analyzed at four time points over 30 days. Gas chromatography-mass spectrometry (GC-MS) analysis showed a chain length-dependent pattern of alkane degradation, with C12 and C13 being degraded at the highest rate, although alkanes up to C28 were degraded. Whereas phenanthrene and pyrene were completely degraded, a significantly smaller amount of fluoranthene was degraded. Proteome analysis identified 3,948 proteins, with 876 and 1,859 proteins up- and downregulated, respectively. We observed dynamic changes in protein expression during BP crude oil incubation, including transcriptional factors and transporters potentially involved in adaptation to crude oil. The proteome also provided a molecular basis for the metabolism of the aliphatic and aromatic hydrocarbon components in the BP DWH crude oil, which included upregulation of AlkB alkane hydroxylase and an expression pattern of PAH-metabolizing enzymes different from those in previous proteome expression studies of strain PYR-1 incubated with pure or mixed PAHs, particularly the ring-hydroxylating oxygenase (RHO) responsible for the initial oxidation of aromatic hydrocarbons. Based on these results, a comprehensive cellular response of M. vanbaalenii PYR-1 to BP crude oil was proposed. This study increases our fundamental understanding of the impact of crude oil on the cellular response of bacteria and provides data needed for development of practical bioremediation applications.
Collapse
|
119
|
Johnson JM, Wawrik B, Isom C, Boling WB, Callaghan AV. Interrogation of Chesapeake Bay sediment microbial communities for intrinsic alkane-utilizing potential under anaerobic conditions. FEMS Microbiol Ecol 2015; 91:1-14. [DOI: 10.1093/femsec/fiu035] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
120
|
Rodriguez-R LM, Overholt WA, Hagan C, Huettel M, Kostka JE, Konstantinidis KT. Microbial community successional patterns in beach sands impacted by the Deepwater Horizon oil spill. ISME JOURNAL 2015; 9:1928-40. [PMID: 25689026 DOI: 10.1038/ismej.2015.5] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/16/2014] [Accepted: 12/23/2014] [Indexed: 12/30/2022]
Abstract
Although petroleum hydrocarbons discharged from the Deepwater Horizon (DWH) blowout were shown to have a pronounced impact on indigenous microbial communities in the Gulf of Mexico, effects on nearshore or coastal ecosystems remain understudied. This study investigated the successional patterns of functional and taxonomic diversity for over 1 year after the DWH oil was deposited on Pensacola Beach sands (FL, USA), using metagenomic and 16S rRNA gene amplicon techniques. Gamma- and Alphaproteobacteria were enriched in oiled sediments, in corroboration of previous studies. In contrast to previous studies, we observed an increase in the functional diversity of the community in response to oil contamination and a functional transition from generalist populations within 4 months after oil came ashore to specialists a year later, when oil was undetectable. At the latter time point, a typical beach community had reestablished that showed little to no evidence of oil hydrocarbon degradation potential, was enriched in archaeal taxa known to be sensitive to xenobiotics, but differed significantly from the community before the oil spill. Further, a clear succession pattern was observed, where early responders to oil contamination, likely degrading aliphatic hydrocarbons, were replaced after 3 months by populations capable of aromatic hydrocarbon decomposition. Collectively, our results advance the understanding of how natural benthic microbial communities respond to crude oil perturbation, supporting the specialization-disturbance hypothesis; that is, the expectation that disturbance favors generalists, while providing (microbial) indicator species and genes for the chemical evolution of oil hydrocarbons during degradation and weathering.
Collapse
Affiliation(s)
| | - Will A Overholt
- School of Biology, Georgia Institute of Technology, Atlanta, GA, USA
| | - Christopher Hagan
- Department of Earth, Ocean and Atmospheric Sciences, Florida State University, Tallahassee, FL, USA
| | - Markus Huettel
- Department of Earth, Ocean and Atmospheric Sciences, Florida State University, Tallahassee, FL, USA
| | - Joel E Kostka
- 1] School of Biology, Georgia Institute of Technology, Atlanta, GA, USA [2] School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Konstantinos T Konstantinidis
- 1] School of Biology, Georgia Institute of Technology, Atlanta, GA, USA [2] School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
121
|
Sinha S, Mahmoud KA, Das S. Conditions for spontaneous oil–water separation with oil–water separators. RSC Adv 2015. [DOI: 10.1039/c5ra16096k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A theory is proposed for the selection of the nature of the separator for spontaneous oil–water separation from oil-in-water and water-in-oil systems.
Collapse
Affiliation(s)
- Shayandev Sinha
- Department of Mechanical Engineering
- University of Maryland
- College Park
- USA
| | | | - Siddhartha Das
- Department of Mechanical Engineering
- University of Maryland
- College Park
- USA
| |
Collapse
|
122
|
Kimes NE, Callaghan AV, Suflita JM, Morris PJ. Microbial transformation of the Deepwater Horizon oil spill-past, present, and future perspectives. Front Microbiol 2014; 5:603. [PMID: 25477866 PMCID: PMC4235408 DOI: 10.3389/fmicb.2014.00603] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/23/2014] [Indexed: 01/24/2023] Open
Abstract
The Deepwater Horizon blowout, which occurred on April 20, 2010, resulted in an unprecedented oil spill. Despite a complex effort to cap the well, oil and gas spewed from the site until July 15, 2010. Although a large proportion of the hydrocarbons was depleted via natural processes and human intervention, a substantial portion of the oil remained unaccounted for and impacted multiple ecosystems throughout the Gulf of Mexico. The depth, duration and magnitude of this spill were unique, raising many questions and concerns regarding the fate of the hydrocarbons released. One major question was whether or not microbial communities would be capable of metabolizing the hydrocarbons, and if so, by what mechanisms and to what extent? In this review, we summarize the microbial response to the oil spill as described by studies performed during the past four years, providing an overview of the different responses associated with the water column, surface waters, deep-sea sediments, and coastal sands/sediments. Collectively, these studies provide evidence that the microbial response to the Deepwater Horizon oil spill was rapid and robust, displaying common attenuation mechanisms optimized for low molecular weight aliphatic and aromatic hydrocarbons. In contrast, the lack of evidence for the attenuation of more recalcitrant hydrocarbon components suggests that future work should focus on both the environmental impact and metabolic fate of recalcitrant compounds, such as oxygenated oil components.
Collapse
Affiliation(s)
- Nikole E. Kimes
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel HernándezSan Juan, Spain
| | - Amy V. Callaghan
- Department of Microbiology and Plant Biology, University of OklahomaNorman, OK, USA
| | - Joseph M. Suflita
- Department of Microbiology and Plant Biology, University of OklahomaNorman, OK, USA
| | - Pamela J. Morris
- Belle W. Baruch Institute for Marine and Coastal Sciences, University of South CarolinaGeorgetown, SC, USA
| |
Collapse
|
123
|
Kostka JE, Teske AP, Joye SB, Head IM. The metabolic pathways and environmental controls of hydrocarbon biodegradation in marine ecosystems. Front Microbiol 2014; 5:471. [PMID: 25237309 PMCID: PMC4154464 DOI: 10.3389/fmicb.2014.00471] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 08/19/2014] [Indexed: 11/20/2022] Open
Affiliation(s)
- Joel E Kostka
- School of Biology and Earth and Atmospheric Sciences, Georgia Institute of Technology Atlanta, GA, USA
| | - Andreas P Teske
- Department of Marine Sciences, University of North Carolina Chapel Hill, NC, USA
| | - Samantha B Joye
- Department of Marine Sciences, University of Georgia Athens, GA, USA
| | - Ian M Head
- School of Civil Engineering and Geosciences, Newcastle University Newcastle upon Tyne, UK
| |
Collapse
|