101
|
Takeda K, Yamada T, Takahashi G, Iwai T, Ueda K, Kuriyama S, Koizumi M, Matsuda A, Shinji S, Ohta R, Yokoyama Y, Hotta M, Hara K, Yoshida H. Analysis of colorectal cancer-related mutations by liquid biopsy: Utility of circulating cell-free DNA and circulating tumor cells. Cancer Sci 2019; 110:3497-3509. [PMID: 31465598 PMCID: PMC6825018 DOI: 10.1111/cas.14186] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/22/2019] [Accepted: 08/27/2019] [Indexed: 01/06/2023] Open
Abstract
We recruited 56 colorectal cancer patients and compared the mutational spectrum of tumor tissue DNA, circulating cell‐free DNA (ccfDNA) and circulating tumor cell (CTC) DNA (ctcDNA) to evaluate the potential of liquid biopsy to detect heterogeneity of cancer. Tumor tissue DNA, ccfDNA, and ctcDNA were extracted from each patient and analyzed using next‐generation sequencing (NGS) and digital PCR. To maximize yields of CTC, three antibodies were used in the capture process. From 34 untreated patients, 53 mutations were detected in tumor tissue DNA using NGS. Forty‐seven mutations were detected in ccfDNA, including 20 not detected in tissues. Sixteen mutations were detected in ctcDNA, including five not detected in tissues. In 12 patients (35.3%), mutations not found in tumor tissues were detected by liquid biopsy: nine (26.5%) in ccfDNA only and three (8.8%) in ctcDNA only. Combination analysis of the two liquid biopsy samples increased the sensitivity to detect heterogeneity. From 22 stage IV patients with RAS mutations in their primary tumors, RAS mutations were detected in 14 (63.6%) ccfDNA and in eight (36.4%) ctcDNA using digital PCR. Mutations not detected in primary tumors can be identified in ccfDNA and in ctcDNA, indicating the potential of liquid biopsy in complementing gene analysis. Combination analysis improves sensitivity. Sensitivity to detect cancer‐specific mutations is higher in ccfDNA compared with ctcDNA.
Collapse
Affiliation(s)
- Kohki Takeda
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, Tokyo, Japan
| | - Takeshi Yamada
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, Tokyo, Japan
| | - Goro Takahashi
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, Tokyo, Japan
| | - Takuma Iwai
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, Tokyo, Japan
| | - Koji Ueda
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, Tokyo, Japan
| | - Sho Kuriyama
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, Tokyo, Japan
| | - Michihiro Koizumi
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, Tokyo, Japan
| | - Akihisa Matsuda
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, Tokyo, Japan
| | - Seiichi Shinji
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, Tokyo, Japan
| | - Ryo Ohta
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, Tokyo, Japan
| | - Yasuyuki Yokoyama
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, Tokyo, Japan
| | - Masahiro Hotta
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, Tokyo, Japan
| | - Keisuke Hara
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, Tokyo, Japan
| | - Hiroshi Yoshida
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
102
|
Yu Z, Qin S, Wang H. Alter circulating cell-free DNA variables in plasma of ovarian cancer patients. J Obstet Gynaecol Res 2019; 45:2237-2242. [PMID: 31502389 DOI: 10.1111/jog.14102] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 08/14/2019] [Indexed: 12/13/2022]
Abstract
AIM Liquid biopsy shows great potential in the fields of early diagnosis and prognosis in cancer. Ovarian cancer (OC) is the seventh most common cancer and the eighth most common cause of death from cancer in women. The early diagnosis of OC is vital for subsequent treatment and outcome. Here we investigated two markers: cell-free DNA concentration (cfDNA conc) and cell-free DNA integrity (cfDI) between OC patients and healthy controls. METHODS Age-matched OC patients and healthy controls were enrolled in this study. In total, there are 20 patients and 20 healthy controls. cfDNA conc and cfDI were calculated by arthrobacter luteus (ALU) gene using quantitative real-time polymerase chain reaction (PCR). RESULTS An increased cfDNA conc in OC patients compared to healthy controls was observed (mean cfDNA conc for OC patients: 1.98 ng/μL, for healthy control: 0.51 ng/μL, P = 0.02). For cfDI, the median value of OC patients is 0.49 while the median value of healthy control is 0.61 (P = 0.038). The diagnostic value of area under the curve was 0.86 for cfDNA conc and 0.72 for cfDI. When cfDNA conc and cfDI were combined, the diagnostic value was 0.90 which indicates a good diagnostic marker. CONCLUSION As few reports of cfDNA conc and cfDI differences between OC patients and healthy controls reported, our study shows increased cfDNA concentrations and decreased cfDI in OC patients compared to healthy controls. We also propose that cfDNA biomarkers can be potential diagnostic markers in ovarian cancer.
Collapse
Affiliation(s)
- Zhou Yu
- Department of Obstetrics and Gynecology, The Affiliated Huaian No.1 People's Hospital, Nanjing Medical University, Huai'an, China
| | - Shanshan Qin
- Department of Obstetrics and Gynecology, The Affiliated Huaian No.1 People's Hospital, Nanjing Medical University, Huai'an, China
| | - Haidong Wang
- Department of Obstetrics and Gynecology, The Affiliated Huaian No.1 People's Hospital, Nanjing Medical University, Huai'an, China
| |
Collapse
|
103
|
Cayrefourcq L, De Roeck A, Garcia C, Stoebner PE, Fichel F, Garima F, Perriard F, Daures JP, Meunier L, Alix-Panabières C. S100-EPISPOT: A New Tool to Detect Viable Circulating Melanoma Cells. Cells 2019; 8:cells8070755. [PMID: 31330795 PMCID: PMC6678250 DOI: 10.3390/cells8070755] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/09/2019] [Accepted: 07/18/2019] [Indexed: 12/16/2022] Open
Abstract
Metastatic melanoma is one of the most aggressive and drug-resistant cancers with very poor overall survival. Circulating melanoma cells (CMCs) were first described in 1991. However, there is no general consensus on the clinical utility of CMC detection, largely due to conflicting results linked to the use of heterogeneous patient populations and different detection methods. Here, we developed a new EPithelial ImmunoSPOT (EPISPOT) assay to detect viable CMCs based on their secretion of the S100 protein (S100-EPISPOT). Then, we compared the results obtained with the S100-EPISPOT assay and the CellSearch® CMC kit using blood samples from a homogeneous population of patients with metastatic melanoma. We found that S100-EPISPOT sensitivity was significantly higher than that of CellSearch®. Specifically, the percentage of patients with ≥2 CMCs was significantly higher using S100-EPISPOT than CellSearch® (48% and 21%, respectively; p = 0.0114). Concerning CMC prognostic value, only the CellSearch® results showed a significant association with overall survival (p = 0.006). However, due to the higher sensitivity of the new S100-EPISPOT assay, it would be interesting to determine whether this functional test could be used in patients with non-metastatic melanoma for the early detection of tumor relapse and for monitoring the treatment response.
Collapse
Affiliation(s)
- Laure Cayrefourcq
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, UPRES EA2415, 34093 Montpellier, France
| | - Aurélie De Roeck
- Department of Dermatology, Nîmes University Hospital, University of Montpellier, 30029 Nîmes, France
| | - Caroline Garcia
- Department of Dermatology, Nîmes University Hospital, University of Montpellier, 30029 Nîmes, France
| | - Pierre-Emmanuel Stoebner
- Department of Dermatology, Nîmes University Hospital, University of Montpellier, 30029 Nîmes, France
| | - Fanny Fichel
- Department of Dermatology, Nîmes University Hospital, University of Montpellier, 30029 Nîmes, France
| | - Françoise Garima
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, UPRES EA2415, 34093 Montpellier, France
| | - Françoise Perriard
- UPRES EA2415, University Institute of Clinical Research (IURC), Montpellier University, 34093 Montpellier, France
| | - Jean-Pierre Daures
- UPRES EA2415, University Institute of Clinical Research (IURC), Montpellier University, 34093 Montpellier, France
| | - Laurent Meunier
- Department of Dermatology, Nîmes University Hospital, University of Montpellier, 30029 Nîmes, France
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, UPRES EA2415, 34093 Montpellier, France.
| |
Collapse
|
104
|
Chen J, Chen J, He F, Huang Y, Lu S, Fan H, Wang M, Xu R. Design of a Targeted Sequencing Assay to Detect Rare Mutations in Circulating Tumor DNA. Genet Test Mol Biomarkers 2019; 23:264-269. [PMID: 30986100 DOI: 10.1089/gtmb.2018.0173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Qualitative and quantitative detection of circulating tumor DNA (ctDNA) is a liquid biopsy technology used for early cancer diagnosis. However, the plasma ctDNA content is extremely low, so it is difficult to detect somatic mutations of tumors using conventional sequencing methods. Target region sequencing (TRS) technology, through enrichment of the target genomic region followed by next generation sequencing, overcomes this challenge and has been widely used in ctDNA sequencing. METHODS We designed a ctDNA sequencing panel to capture 128 tumor genes, and tested the performance of the panel by running TRS for ctDNA of a clear cell renal cell carcinoma (ccRCC) patient and 12 breast cancer patients. RESULTS TRS using the new ctDNA panel at more than 500 × coverage depth achieved almost the same accuracy as traditional whole-exome sequencing (WES). PBRM1 p.L641V was detected in the plasma sample of the ccRCC patient with an allele frequency of 0.2%. The ctDNA of 12 breast cancer patients was sequenced at a depth of 500-fold, achieving 99.89% coverage; 34 genes were detected with mutations, including the drug target genes BRCA2, PTEN, TP53, APC, KDR, and NOTCH2. CONCLUSIONS This TRS new ctDNA panel can be used to detect mutations in cell-free DNA from multiple types of cancer.
Collapse
Affiliation(s)
- Jianxia Chen
- 1 Clinical Laboratory, Longgang Central Hospital of Shenzhen, Shenzhen, China
| | - Jun Chen
- 2 Imunobio, Shenzhen, Shenzhen, China
| | | | - Yiqiong Huang
- 3 Department of Breast Thyroid Vascular Surgery, Longgang Central Hospital of Shenzhen, Shenzhen, China
| | - Shan Lu
- 3 Department of Breast Thyroid Vascular Surgery, Longgang Central Hospital of Shenzhen, Shenzhen, China
| | - Haibo Fan
- 4 Division of ultrasonography, Shenzhen People's Hospital, Shenzhen, China
| | - Mingbang Wang
- 5 Xiamen Branch, Shanghai Key Laboratory of Birth Defects, Division of Neonatology, Children's Hospital of Fudan University, National Center for Children's Health, Shanghai, China
| | - Ruihuan Xu
- 1 Clinical Laboratory, Longgang Central Hospital of Shenzhen, Shenzhen, China
| |
Collapse
|
105
|
Maly V, Maly O, Kolostova K, Bobek V. Circulating Tumor Cells in Diagnosis and Treatment of Lung Cancer. In Vivo 2019; 33:1027-1037. [PMID: 31280190 PMCID: PMC6689346 DOI: 10.21873/invivo.11571] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/11/2019] [Accepted: 05/13/2019] [Indexed: 02/06/2023]
Abstract
Circulating tumor cells (CTCs), detached from the primary tumor or metastases and shed in the patient's bloodstream, represent a relatively easily obtainable sample of the cancer tissue that can indicate the actual state of cancer, and their evaluation can be repeated many times during the course of treatment. As part of liquid biopsy, evaluation of CTCs provides a lot of clinically relevant information, which reflects the actual, real-time conditions of the disease. CTCs can be used in cancer diagnosis or screening, real-time long-term disease monitoring and even therapy guidance. Their analysis can include their number, morphology, and biological features by using immunocytochemistry and all "-omic" technologies. This review describes methods of CTC isolation and potential clinical utilization in lung cancer.
Collapse
Affiliation(s)
- Vilem Maly
- Department of Laboratory Genetics, Laboratory Diagnostics, University Hospital Kralovske Vinohrady, Prague, Czech Republic
- Department of Thoracic Surgery, Krajska Zdravotni a.s. Hospital, Usti nad Labem, Czech Republic
| | - Ondrej Maly
- Department of Laboratory Genetics, Laboratory Diagnostics, University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Katarina Kolostova
- Department of Laboratory Genetics, Laboratory Diagnostics, University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Vladimir Bobek
- Department of Laboratory Genetics, Laboratory Diagnostics, University Hospital Kralovske Vinohrady, Prague, Czech Republic
- Department of Thoracic Surgery, Krajska Zdravotni a.s. Hospital, Usti nad Labem, Czech Republic
- Department of Thoracic Surgery, Lower Silesian Oncology Centre, Wroclaw, Poland
- 3rd Department of Surgery, University Hospital FN Motol and 1st Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Histology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
106
|
Conway AM, Mitchell C, Cook N. Challenge of the Unknown: How Can We Improve Clinical Outcomes in Cancer of Unknown Primary? J Clin Oncol 2019; 37:2089-2090. [PMID: 31211603 DOI: 10.1200/jco.19.00449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Alicia-Marie Conway
- Alicia-Marie Conway, MD, The Christie NHS Foundation Trust, Manchester, United Kingdom, The University of Manchester, Manchester, United Kingdom, and Cancer Research UK Manchester Institute, Manchester, United Kingdom; Claire Mitchell, MD, PhD, The Christie NHS Foundation Trust, Manchester, United Kingdom; and Natalie Cook, MD, PhD, The Christie NHS Foundation Trust and The University of Manchester, Manchester, United Kingdom
| | - Claire Mitchell
- Alicia-Marie Conway, MD, The Christie NHS Foundation Trust, Manchester, United Kingdom, The University of Manchester, Manchester, United Kingdom, and Cancer Research UK Manchester Institute, Manchester, United Kingdom; Claire Mitchell, MD, PhD, The Christie NHS Foundation Trust, Manchester, United Kingdom; and Natalie Cook, MD, PhD, The Christie NHS Foundation Trust and The University of Manchester, Manchester, United Kingdom
| | - Natalie Cook
- Alicia-Marie Conway, MD, The Christie NHS Foundation Trust, Manchester, United Kingdom, The University of Manchester, Manchester, United Kingdom, and Cancer Research UK Manchester Institute, Manchester, United Kingdom; Claire Mitchell, MD, PhD, The Christie NHS Foundation Trust, Manchester, United Kingdom; and Natalie Cook, MD, PhD, The Christie NHS Foundation Trust and The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
107
|
Howell J, Atkinson SR, Pinato DJ, Knapp S, Ward C, Minisini R, Burlone ME, Leutner M, Pirisi M, Büttner R, Khan SA, Thursz M, Odenthal M, Sharma R. Identification of mutations in circulating cell-free tumour DNA as a biomarker in hepatocellular carcinoma. Eur J Cancer 2019; 116:56-66. [PMID: 31173963 DOI: 10.1016/j.ejca.2019.04.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/03/2019] [Accepted: 04/18/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is increasing globally. Prognostic biomarkers are urgently needed to guide treatment and reduce mortality. Tumour-derived circulating cell-free DNA (ctDNA) is a novel, minimally invasive means of determining genetic alterations in cancer. We evaluate the accuracy of ctDNA as a biomarker in HCC. METHODS Plasma cell-free DNA, matched germline DNA and HCC tissue DNA were isolated from patients with HCC (n = 51) and liver cirrhosis (n = 10). Targeted, multiplex polymerase chain reaction ultra-deep sequencing was performed using a liver cancer-specific primer panel for genes ARID1A, ARID2, AXIN1, ATM, CTNNB1, HNF1A and TP53. Concordance of mutations in plasma ctDNA and HCC tissue DNA was determined, and associations with clinical outcomes were analysed. RESULTS Plasma cell-free DNA was detected in all samples. Lower plasma cell-free DNA levels were seen in Barcelona Clinic Liver Cancer (BCLC A compared with BCLC stage B/C/D (median concentration 122.89 ng/mL versus 168.21 ng/mL, p = 0.041). 29 mutations in the eight genes (21 unique mutations) were detected in 18/51 patients (35%), median 1.5 mutations per patient (interquartile range 1-2). Mutations were most frequently detected in ARID1A (11.7%), followed by CTNNB1 (7.8%) and TP53 (7.8%). In patients with matched tissue DNA, all mutations detected in plasma ctDNA detected were confirmed in HCC DNA; however, 71% of patients had mutations identified in HCC tissue DNA that were not detected in matched ctDNA. CONCLUSION ctDNA is quantifiable across all HCC stages and allows detection of mutations in key driver genes of hepatic carcinogenesis. This study demonstrates high specificity but low sensitivity of plasma ctDNA for detecting mutations in matched HCC tissue.
Collapse
Affiliation(s)
- Jessica Howell
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, W120HS, London, UK; Centre for Population Health, Macfarlane-Burnet Institute, 85 Commercial Rd, Melbourne, 3004, Australia; Department of Medicine, University of Melbourne, St Vincent's Hospital, 55 Victoria Pde, Fitzroy, 3065, Melbourne, Australia; Department of Epidemiology and Preventive Medicine, Monash University, 85 Commercial Rd, Melbourne 3004, Australia
| | - Stephen R Atkinson
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, W120HS, London, UK
| | - David J Pinato
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, W120HS, London, UK
| | - Susanne Knapp
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, W120HS, London, UK; Department of Women's Cancer, Institute for Women's Health, University College London, 72 Huntley St, London, WC1C6DD, UK
| | - Caroline Ward
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, W120HS, London, UK
| | - Rosalba Minisini
- Department of Translational Medicine, Università degli Studi del Piemonte Orientale "A. Avogadro", Via Solaroli 17, 28100, Novara, Italy
| | - Michela E Burlone
- Department of Translational Medicine, Università degli Studi del Piemonte Orientale "A. Avogadro", Via Solaroli 17, 28100, Novara, Italy
| | - Monica Leutner
- Department of Translational Medicine, Università degli Studi del Piemonte Orientale "A. Avogadro", Via Solaroli 17, 28100, Novara, Italy
| | - Mario Pirisi
- Department of Translational Medicine, Università degli Studi del Piemonte Orientale "A. Avogadro", Via Solaroli 17, 28100, Novara, Italy
| | - Reinhard Büttner
- Institute for Pathology, University Hospital of Cologne and Center of Integrative Oncology, University Clinic of Cologne and Bonn, Kerpener Str. 62, 50924, Cologne, Germany; The Center of Molecular Medicine, The Center for Molecular Medicine Cologne (CMMC), 50931, Cologne, Germany
| | - Shahid A Khan
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, W120HS, London, UK
| | - Mark Thursz
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, W120HS, London, UK
| | - Margarete Odenthal
- Institute for Pathology, University Hospital of Cologne and Center of Integrative Oncology, University Clinic of Cologne and Bonn, Kerpener Str. 62, 50924, Cologne, Germany; The Center of Molecular Medicine, The Center for Molecular Medicine Cologne (CMMC), 50931, Cologne, Germany
| | - Rohini Sharma
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, W120HS, London, UK.
| |
Collapse
|
108
|
Uemura S, Ishida T, Thwin KKM, Yamamoto N, Tamura A, Kishimoto K, Hasegawa D, Kosaka Y, Nino N, Lin KS, Takafuji S, Mori T, Iijima K, Nishimura N. Dynamics of Minimal Residual Disease in Neuroblastoma Patients. Front Oncol 2019; 9:455. [PMID: 31214500 PMCID: PMC6558004 DOI: 10.3389/fonc.2019.00455] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 05/14/2019] [Indexed: 12/11/2022] Open
Abstract
Neuroblastoma is a common extracranial solid tumor of neural crest (NC) origin that accounts for up to 15% of all pediatric cancer deaths. The disease arises from a transient population of NC cells that undergo an epithelial-mesenchymal transition (EMT) and generate diverse cell-types and tissues. Patients with neuroblastoma are characterized by their extreme heterogeneity ranging from spontaneous regression to malignant progression. More than half of newly diagnosed patients present highly metastatic tumors and are stratified into a high-risk group with dismal outcome. As many as 20% of high-risk patients have residual disease that is refractory or progressive during induction chemotherapy. Although a majority of high-risk patients achieve remission, larger part of those patients has minimal residual disease (MRD) that causes relapse even after additional consolidation therapy. MRD is composed of drug-resistant tumor cells and dynamically presented as cancer stem cells (CSCs) in residual tumors, circulating tumor cells (CTCs) in peripheral blood (PB), and disseminated tumor cells (DTCs) in bone marrow (BM) and other metastatic sites. EMT appears to be a key mechanism for cancer cells to acquire MRD phenotypes and malignant aggressiveness. Due to the restricted availability of residual tumors, PB and BM have been used to isolate and analyze CTCs and DTCs to evaluate MRD in cancer patients. In addition, recent technical advances make it possible to use circulating tumor DNA (ctDNA) shed from tumor cells into PB for MRD evaluation. Because MRD can be detected by tumor-specific antigens, genetic or epigenetic changes, and mRNAs, numerous assays using different methods and samples have been reported to detect MRD in cancer patients. In contrast to the tumor-specific gene-rearrangement-positive acute lymphoblastic leukemia (ALL) and the oncogenic fusion-gene-positive chronic myelogenous leukemia (CML) and several solid tumors, the clinical significance of MRD remains to be established in neuroblastoma. Given the extreme heterogeneity of neuroblastoma, dynamics of MRD in neuroblastoma patients will hold a key to the clinical validation. In this review, we summarize the biology and detection methods of cancer MRD in general and evaluate the available assays and clinical significance of neuroblastoma MRD to clarify its dynamics in neuroblastoma patients.
Collapse
Affiliation(s)
- Suguru Uemura
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Toshiaki Ishida
- Department of Hematology and Oncology, Kobe Children's Hospital, Kobe, Japan
| | - Khin Kyae Mon Thwin
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Nobuyuki Yamamoto
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Akihiro Tamura
- Department of Hematology and Oncology, Kobe Children's Hospital, Kobe, Japan
| | - Kenji Kishimoto
- Department of Hematology and Oncology, Kobe Children's Hospital, Kobe, Japan
| | - Daiichiro Hasegawa
- Department of Hematology and Oncology, Kobe Children's Hospital, Kobe, Japan
| | - Yoshiyuki Kosaka
- Department of Hematology and Oncology, Kobe Children's Hospital, Kobe, Japan
| | - Nanako Nino
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kyaw San Lin
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Satoru Takafuji
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takeshi Mori
- Department of Hematology and Oncology, Kobe Children's Hospital, Kobe, Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Noriyuki Nishimura
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
109
|
Sato H, Soh J, Aoe K, Fujimoto N, Tanaka S, Namba K, Torigoe H, Shien K, Yamamoto H, Tomida S, Tao H, Okabe K, Kishimoto T, Toyooka S. Droplet digital PCR as a novel system for the detection of microRNA‑34b/c methylation in circulating DNA in malignant pleural mesothelioma. Int J Oncol 2019; 54:2139-2148. [PMID: 30942424 DOI: 10.3892/ijo.2019.4768] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 03/08/2019] [Indexed: 11/06/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare malignancy arising from the pleura that is difficult to diagnose, contributing to its dismal prognosis. Previously, we reported that the degree of microRNA (miR)‑34b/c methylation in circulating DNA is associated with the development of MPM. Herein, we present a newly developed droplet digital PCR (ddPCR)‑based assay for the detection of miR‑34b/c methylation in circulating DNA in patients with MPM. We originally prepared two probes within a short amplicon of 60 bp, designing one from the positive strand and the other from the complementary strand. The two probes functioned cooperatively, and our established assay detected DNA methylation accurately in the preliminary validation. We subsequently verified this assay using clinical samples. Serum samples from 35 cases of MPM, 29 cases of pleural plaque and 10 healthy volunteers were collected from 3 different institutions and used in this study. We divided the samples into 2 groups (group A, n=33; group B, n=41). A receiver‑operating characteristic curve analysis using the samples in group A determined the optimal cut‑off value for the diagnosis of MPM, with a sensitivity of 76.9% and a specificity of 90%. On the other hand, the use of the same criterion yielded a sensitivity of 59.1% and a specificity of 100% in group B, and corresponding values of 65.7 and 94.9% for the entire cohort, indicating a moderate sensitivity and a high specificity. In addition, when the analysis was focused on stage II or more advanced MPM, the sensitivity improved to 81.8%, suggesting the possibility that the methylated allele frequency in MPM may be associated with the stage of disease progression. On the whole, the findings of this study indicate that miR‑34b/c methylation in circulating DNA is a promising biomarker for the prediction of disease progression in patients with MPM.
Collapse
Affiliation(s)
- Hiroki Sato
- Department of General Thoracic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700‑8558, Japan
| | - Junichi Soh
- Department of General Thoracic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700‑8558, Japan
| | - Keisuke Aoe
- Department of Medical Oncology, National Hospital Organization, Yamaguchi‑Ube Medical Center, Ube, Yamaguchi 755‑0241, Japan
| | - Nobukazu Fujimoto
- Department of Respiratory Medicine, Okayama Rosai Hospital, Okayama 702‑8055, Japan
| | - Shin Tanaka
- Department of General Thoracic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700‑8558, Japan
| | - Kei Namba
- Department of General Thoracic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700‑8558, Japan
| | - Hidejiro Torigoe
- Department of General Thoracic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700‑8558, Japan
| | - Kazuhiko Shien
- Department of General Thoracic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700‑8558, Japan
| | - Hiromasa Yamamoto
- Department of General Thoracic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700‑8558, Japan
| | - Shuta Tomida
- Department of Bioinformatics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700‑8558, Japan
| | - Hiroyuki Tao
- Department of Clinical Research, National Hospital Organization, Yamaguchi‑Ube Medical Center, Ube, Yamaguchi 755‑0241, Japan
| | - Kazunori Okabe
- Department of Clinical Research, National Hospital Organization, Yamaguchi‑Ube Medical Center, Ube, Yamaguchi 755‑0241, Japan
| | - Takumi Kishimoto
- Department of Respiratory Medicine, Okayama Rosai Hospital, Okayama 702‑8055, Japan
| | - Shinichi Toyooka
- Department of General Thoracic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700‑8558, Japan
| |
Collapse
|
110
|
Sipos F, Műzes G. Molecular and Biological Aspects of Self-Expandable Metallic Stent Placement in Malignant Colorectal Obstruction. J INVEST SURG 2019; 33:771-773. [PMID: 30897980 DOI: 10.1080/08941939.2019.1567879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ferenc Sipos
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Györgyi Műzes
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
111
|
Cai F, Cen C, Cai L, Falar Luis MA, Biskup E. Application of Circulation Tumor Cells Detection in Diagnosis and Treatment of Breast Tumors. Rejuvenation Res 2019; 22:498-502. [PMID: 30712469 DOI: 10.1089/rej.2018.2154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In recent years, the clinical application of circulating tumor cell (CTCs) detection has become one of the research hotspots in the field of precision medicine. CTCs detection is noninvasive, easy to obtain, can be repeatedly collected, and highly repeatable with other advantages. It not only can be a real-time comprehensive monitoring of cancer treatment but also can have a large number of applications, including early diagnosis of tumor, timely evaluation of efficacy, condition monitoring, resistance factor analysis, prognosis judgment, individualized treatment of tumors, drug guidance, and so on. At present, many large-scale clinical studies at home and abroad run through all stages of breast cancer diagnosis and treatment. For different treatment stages of breast cancer, the application value of CTCs detection is different. Compared with traditional detection methods, CTCs have advantages in dynamic monitoring of disease changes and efficacy evaluation in real-time. In the era of breast cancer classificational and individualized treatment, CTCs detection can provide patients with the most timely and optimized treatment plan.
Collapse
Affiliation(s)
- Fengfeng Cai
- Department of Breast Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Chunmei Cen
- Department of Breast Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Lu Cai
- Department of Breast Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Manuel Antonio Falar Luis
- Department of Breast Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Ewelina Biskup
- Shanghai University of Medicine and Health Sciences, Shanghai, P.R. China.,Cardiovascular Research Institute Basel (CRIB), University Hospital Basel, Basel, Switzerland
| |
Collapse
|
112
|
Rink M, Schwarzenbach H, Vetterlein MW, Riethdorf S, Soave A. The current role of circulating biomarkers in non-muscle invasive bladder cancer. Transl Androl Urol 2019; 8:61-75. [PMID: 30976570 PMCID: PMC6414344 DOI: 10.21037/tau.2018.11.05] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Non-muscle invasive bladder cancer (NMIBC) is characterized by its high rate of disease recurrence and relevant disease progression rates. Up to today clinical models are insufficiently predicting outcomes for reliable patient counseling and treatment decision-making. This particularly is a serious problem in patients with high-risk NMIBC who are at high risk for failure of local treatment and thus candidates for early radical cystectomy or even systemic (neoadjuvant) chemotherapy. Next to its clinical variability, bladder cancer is genetically a highly heterogeneous disease. There is an essential need of biomarkers for improving clinical staging, real-time monitoring of disease with or without active treatment, as well as improved outcome prognostication. Liquid biopsies of circulating biomarkers in the blood and urine are promising non-invasive diagnostics that hold the potential facilitating these needs. In this review we report the latest data and evidence on cell-free circulating tumor desoxyribonucleic acid (ctDNA) and circulating tumor cells (CTC) in NMIBC. We summarize their current status in clinical diagnostics, discuss limitations and address future needs.
Collapse
Affiliation(s)
- Michael Rink
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Heidi Schwarzenbach
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malte W Vetterlein
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sabine Riethdorf
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Armin Soave
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
113
|
Chen YH, Pulikkathodi AK, Ma YD, Wang YL, Lee GB. A microfluidic platform integrated with field-effect transistors for enumeration of circulating tumor cells. LAB ON A CHIP 2019; 19:618-625. [PMID: 30644487 DOI: 10.1039/c8lc01072b] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Circulating tumor cells (CTCs) are one of the promising cancer biomarkers whose concentrations are measured not only in the initial diagnostic stages, but also as treatment progresses. However, the existing methods for CTC detection are relatively time-consuming and labor-intensive. In this study, a new microfluidic platform integrated with field-effect transistors (FETs) and chambers for the trapping of CTCs was developed. This novel design could not only trap CTCs from whole blood samples, but also enumerate them via FET sensing of CTC-specific aptamer-CTC complexes. The FET output signal was experimentally found to increase with the increasing number of captured CTCs. More importantly, the enumeration of spiked CTCs in blood samples could be achieved in accordance with the signals measured on the FET devices. We therefore believe that this automated system could be a useful tool for enumeration of CTCs.
Collapse
Affiliation(s)
- Yi-Hong Chen
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan 30013.
| | | | | | | | | |
Collapse
|
114
|
Low-cost thermophoretic profiling of extracellular-vesicle surface proteins for the early detection and classification of cancers. Nat Biomed Eng 2019; 3:183-193. [PMID: 30948809 DOI: 10.1038/s41551-018-0343-6] [Citation(s) in RCA: 282] [Impact Index Per Article: 56.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 12/06/2018] [Indexed: 12/21/2022]
Abstract
Non-invasive assays for early cancer screening are hampered by challenges in the isolation and profiling of circulating biomarkers. Here, we show that surface proteins from serum extracellular vesicles labelled with a panel of seven fluorescent aptamers can be profiled, via thermophoretic enrichment and linear discriminant analysis, for cancer detection and classification. In a cohort of 102 patients, including 6 cancer types at stages I-IV, the assay detected stage I cancers with 95% sensitivity (95% confidence interval (CI): 74-100%) and 100% specificity (95% CI: 80-100%), and classified the cancer type with an overall accuracy of 68% (95% CI: 59-77%). For patients who underwent prostate biopsies, the assay was superior to the analysis of prostate-specific antigen levels (area under the curve: 0.94 versus 0.68; 33 patients) for the discrimination of prostate cancer and benign prostate enlargement, and also in the assessment of biochemical cancer recurrence after radical prostatectomy. The assay is inexpensive, fast, and requires small serum volumes (<1 µl), and if validated in larger cohorts may facilitate cancer screening, classification and monitoring.
Collapse
|
115
|
Conway AM, Mitchell C, Kilgour E, Brady G, Dive C, Cook N. Molecular characterisation and liquid biomarkers in Carcinoma of Unknown Primary (CUP): taking the 'U' out of 'CUP'. Br J Cancer 2019; 120:141-153. [PMID: 30580378 PMCID: PMC6342985 DOI: 10.1038/s41416-018-0332-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 10/02/2018] [Accepted: 10/04/2018] [Indexed: 02/07/2023] Open
Abstract
Cancers of Unknown Primary (CUP) comprise a heterogeneous clinical entity of confirmed metastatic cancer where the primary site of origin is undetectable. It has a poor prognosis with limited treatment options. CUP is historically under-researched; however, understanding its biology has the potential to not only improve treatment and survival by implementation of biomarkers for patient management, but also to greatly contribute to our understanding of carcinogenesis and metastasis across all cancer types. Here we review the current advances in CUP research and explore the debated hypotheses underlying its biology. The evolution of molecular profiling and tissue-of-origin classifiers have the potential to transform the diagnosis, classification and therapeutic management of patients with CUP but robust evidence to support widespread use is lacking. Precision medicine has transformed treatment strategy in known tumour types; in CUP, however, there remains a clinical need for a better understanding of molecular characteristics to establish the potential role of novel or existing therapeutics. The emergence of liquid biopsies as a source of predictive and prognostic biomarkers within known tumour types is gaining rapid ground and this review explores the potential utility of liquid biopsies in CUP.
Collapse
Affiliation(s)
- Alicia-Marie Conway
- The Christie NHS Foundation Trust, Wilmslow Road, Manchester, M20 4BX, UK
- The University of Manchester, Oxford Road, Manchester, UK
- Cancer Research UK Manchester Institute, Alderley Park, Alderley Edge, Macclesfield, Cheshire, SK10 4TG, UK
| | - Claire Mitchell
- The Christie NHS Foundation Trust, Wilmslow Road, Manchester, M20 4BX, UK
- The University of Manchester, Oxford Road, Manchester, UK
| | - Elaine Kilgour
- The University of Manchester, Oxford Road, Manchester, UK
- Cancer Research UK Manchester Institute, Alderley Park, Alderley Edge, Macclesfield, Cheshire, SK10 4TG, UK
| | - Gerard Brady
- The University of Manchester, Oxford Road, Manchester, UK
- Cancer Research UK Manchester Institute, Alderley Park, Alderley Edge, Macclesfield, Cheshire, SK10 4TG, UK
| | - Caroline Dive
- The University of Manchester, Oxford Road, Manchester, UK
- Cancer Research UK Manchester Institute, Alderley Park, Alderley Edge, Macclesfield, Cheshire, SK10 4TG, UK
| | - Natalie Cook
- The Christie NHS Foundation Trust, Wilmslow Road, Manchester, M20 4BX, UK.
- The University of Manchester, Oxford Road, Manchester, UK.
| |
Collapse
|
116
|
Abstract
Circulating tumor cells (CTCs) have long been assumed to be the substrate of cancer metastasis. However, only in recent years have we begun to leverage the potential of CTCs found in minimally invasive peripheral blood specimens to improve care for cancer patients. Currently, CTC enumeration is an accepted prognostic indicator for breast, prostate, and colorectal cancer; however, CTC enumeration remains largely a research tool. More recently, the focus has shifted to CTC characterization and isolation which holds great promise for predictive testing. This review summarizes the relevant clinical, biological, and technical background necessary for pathologists and cytopathologists to appreciate the potential of CTC techniques. A summary of relevant systematic reviews of CTCs for specific cancers is then presented, as well as potential applications to precision medicine. Finally, we suggest future applications of CTC technologies that can be easily incorporated in the pathology laboratory, with the recommendation that pathologists and particularly cytopathologists apply these technologies to small specimens in the era of "doing more with less."
Collapse
|
117
|
Rohanizadegan M, Kulkarni S. Transformational role of liquid biopsy in diagnosis and treatment of cancer. Cancer Genet 2018; 228-229:129-130. [PMID: 30553466 DOI: 10.1016/j.cancergen.2018.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
118
|
Lai J, Du B, Wang Y, Wu R, Yu Z. Next-generation sequencing of circulating tumor DNA for detection of gene mutations in lung cancer: implications for precision treatment. Onco Targets Ther 2018; 11:9111-9116. [PMID: 30588023 PMCID: PMC6299472 DOI: 10.2147/ott.s174877] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Lung cancer remains a major global health problem, which causes millions of deaths annually. Because the prognosis is mainly determined by the stage of lung cancer, precise early diagnosis is of great significance to improve the survival and prognosis. Circulating tumor DNA (ctDNA) has been recognized as a sensitive and specific biomarker for the detection of early- and late-stage lung cancer, and next-generation sequencing (NGS) of ctDNA has been accepted as a noninvasive tool for early identification and monitoring of cancer mutations. This study aimed to assess the value of NGS-based ctDNA analysis in detecting gene mutations in lung cancer patients. Methods A total of 101 subjects with pathological diagnosis of lung cancer were enrolled, and blood samples were collected. ctDNA samples were prepared and subjected to NGS assays. Results There were 31 cases harboring 40 gene mutations, and EGFR was the most frequently mutated gene (27.72%). In addition, there were seven cases with double mutations and one case with triple mutations, with EGFR p.T790M mutation exhibiting the highest frequency. Conclusion Our findings demonstrate that NGS of ctDNA is effective in detecting gene mutations in lung cancer patients, and may be used as a liquid biopsy for lung cancer, which facilitates the development of precision treatment regimens for lung cancer.
Collapse
Affiliation(s)
- Jinhuo Lai
- Department of Oncology, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, People's Republic of China,
| | - Bin Du
- Department of Oncology, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, People's Republic of China,
| | - Yao Wang
- Department of Oncology, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, People's Republic of China,
| | - Riping Wu
- Department of Oncology, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, People's Republic of China,
| | - Zongyang Yu
- Department of Medical Oncology, Fuzhou General Hospital of PLA, Fuzhou 350025, Fujian Province, People's Republic of China
| |
Collapse
|
119
|
Raghunath A, Sundarraj K, Arfuso F, Sethi G, Perumal E. Dysregulation of Nrf2 in Hepatocellular Carcinoma: Role in Cancer Progression and Chemoresistance. Cancers (Basel) 2018; 10:cancers10120481. [PMID: 30513925 PMCID: PMC6315366 DOI: 10.3390/cancers10120481] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/29/2018] [Accepted: 11/29/2018] [Indexed: 12/23/2022] Open
Abstract
The liver executes versatile functions and is the chief organ for metabolism of toxicants/xenobiotics. Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and the third foremost cause of cancer death worldwide. Oxidative stress is a key factor related with the development and progression of HCC. Nuclear factor erythroid 2 [NF-E2]-related factor 2 (Nrf2) is a cytosolic transcription factor, which regulates redox homeostasis by activating the expression of an array of antioxidant response element-dependent genes. Nrf2 displays conflicting roles in normal, healthy liver and HCC; in the former, Nrf2 offers beneficial effects, whereas in the latter it causes detrimental effects favouring the proliferation and survival of HCC. Sustained Nrf2 activation has been observed in HCC and facilitates its progression and aggressiveness. This review summarizes the role and mechanism(s) of action of Nrf2 dysregulation in HCC and therapeutic options that can be employed to modulate this transcription factor.
Collapse
Affiliation(s)
- Azhwar Raghunath
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, Tamilnadu, India.
| | - Kiruthika Sundarraj
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, Tamilnadu, India.
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6009, Australia.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, Tamilnadu, India.
| |
Collapse
|
120
|
Characteristics, properties, and potential applications of circulating cell-free dna in clinical diagnostics: a focus on transplantation. J Immunol Methods 2018; 463:27-38. [DOI: 10.1016/j.jim.2018.09.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 09/19/2018] [Accepted: 09/24/2018] [Indexed: 12/18/2022]
|
121
|
Autologous cell lines from circulating colon cancer cells captured from sequential liquid biopsies as model to study therapy-driven tumor changes. Sci Rep 2018; 8:15931. [PMID: 30374140 PMCID: PMC6206091 DOI: 10.1038/s41598-018-34365-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/18/2018] [Indexed: 02/06/2023] Open
Abstract
Circulating tumor cells (CTCs) are important clinical indicators for prognosis and treatment efficacy. However, CTC investigation is hampered by their low number, making the establishment of permanent CTC lines very challenging. We derived and characterized nine CTC lines using blood samples from a patient with metastatic colorectal cancer collected before and after chemotherapy and targeted therapy, and during cancer progression. These cell lines displayed an intermediate epithelial/mesenchymal phenotype, stem-cell like characteristics, angiogenesis potential, an osteomimetic signature and the capacity to escape from the immune system. Moreover, they showed changes in mRNA and protein expression (e.g., DEFA6, ABCB1 and GAL), whereas analysis of chromosomal copy number aberrations revealed no significant variation over time. These data indicate that although CTC lines derived from sequential blood samples during therapy have common traits, treatment-resistant CTC clones with distinct phenotypic characteristics are selected over time.
Collapse
|
122
|
Wu J, Chen Q, Lin JM. Microfluidic technologies in cell isolation and analysis for biomedical applications. Analyst 2018; 142:421-441. [PMID: 27900377 DOI: 10.1039/c6an01939k] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Efficient platforms for cell isolation and analysis play an important role in applied and fundamental biomedical studies. As cells commonly have a size of around 10 microns, conventional handling approaches at a large scale are still challenged in precise control and efficient recognition of cells for further performance of isolation and analysis. Microfluidic technologies have become more prominent in highly efficient cell isolation for circulating tumor cells (CTCs) detection, single-cell analysis and stem cell separation, since microfabricated devices allow for the spatial and temporal control of complex biochemistries and geometries by matching cell morphology and hydrodynamic traps in a fluidic network, as well as enabling specific recognition with functional biomolecules in the microchannels. In addition, the fabrication of nano-interfaces in the microchannels has been increasingly emerging as a very powerful strategy for enhancing the capability of cell capture by improving cell-interface interactions. In this review, we focus on highlighting recent advances in microfluidic technologies for cell isolation and analysis. We also describe the general biomedical applications of microfluidic cell isolation and analysis, and finally make a prospective for future studies.
Collapse
Affiliation(s)
- Jing Wu
- School of Science, China University of Geosciences (Beijing), Beijing 100083, China.
| | - Qiushui Chen
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China.
| | - Jin-Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
123
|
Elazezy M, Joosse SA. Techniques of using circulating tumor DNA as a liquid biopsy component in cancer management. Comput Struct Biotechnol J 2018; 16:370-378. [PMID: 30364656 PMCID: PMC6197739 DOI: 10.1016/j.csbj.2018.10.002] [Citation(s) in RCA: 233] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 10/04/2018] [Indexed: 12/12/2022] Open
Abstract
Precision medicine in the clinical management of cancer may be achieved through the diagnostic platform called “liquid biopsy”. This method utilizes the detection of biomarkers in blood for prognostic and predictive purposes. One of the latest blood born markers under investigation in the field of liquid biopsy in cancer patients is circulating tumor DNA (ctDNA). ctDNA is released by tumor cells through different mechanisms and can therefore provide information about the genomic make-up of the tumor currently present in the patient. Through longitudinal ctDNA-based liquid biopsies, tumor dynamics may be monitored to predict and assess drug response and/or resistance. However, because ctDNA is highly fragmented and because its concentration can be extremely low in a high background of normal circulating DNA, screening for clinical relevant mutations is challenging. Although significant progress has been made in advancing the detection and analysis of ctDNA in the last few years, the current challenges include standardization and increasing current techniques to single molecule sensitivity in combination with perfect specificity. This review focuses on the potential role of ctDNA in the clinical management of cancer patients, the current technologies that are being employed, and the hurdles that still need to be taken to achieve ctDNA-based liquid biopsy towards precision medicine.
Collapse
Affiliation(s)
- Maha Elazezy
- University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Simon A Joosse
- University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| |
Collapse
|
124
|
Cai J, Huang L, Huang J, Kang L, Lin H, Huang P, Zhu P, Wang J, Dong J, Wang L, Xian CJ. Associations between the cyclooxygenase-2 expression in circulating tumor cells and the clinicopathological features of patients with colorectal cancer. J Cell Biochem 2018; 120:4935-4941. [PMID: 30260024 DOI: 10.1002/jcb.27768] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/06/2018] [Indexed: 12/26/2022]
Abstract
While previous studies have shown that the number of circulating tumor cells (CTCs) alone is not sufficient to reflect tumor progression and that cyclooxygenase-2 (COX-2) expression is correlated with colorectal cancer (CRC) metastasis, COX-2 expression status and its potential functions in CTCs of CRC patients are unknown. Here, epithelial-mesenchymal transition (EMT) phenotype-based subsets of CTCs and the COX-2 expression status in CTCs were identified and their potential clinical values were assessed in 91 CRC patients. CTCs were enumerated in peripheral blood and subsets of CTCs (epithelial [eCTCs], mesenchymal [mCTCs], and biophenotypic [bCTCs]) and the COX-2 expression status were determined using the RNA in situ hybridization method. CTCs were detected in 80.2% (73 of 91) patients. Neither the total CTC nor eCTC numbers were found to significantly associate with any of the clinicopathological features. However, the number of mCTCs was significantly associated with distance metastasis (P = 0.035) and had a trend of being associated with lymph node metastasis ( P = 0.055). Among the 73 patients enrolled for evaluating COX-2 expression, 52.5% (38 of 73) were found to express COX-2 in CTCs, and COX-2 expression in CTCs was not found to associate with the clinicopathological factors. However, COX-2 expression in mCTCs tended to have a higher rate in patients with metastasis compared with those without metastasis (72.0% vs 42.8%; P = 0.072). Furthermore, COX-2 expression and mCTC marker expression correlated positively ( R = 0.287; P = 0.017). Further studies are required to investigate the clinical value of the expression of COX-2 in mCTCs, especially in CRC patients with the advanced tumor stage and distant metastasis.
Collapse
Affiliation(s)
- Jinlin Cai
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liang Huang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jun Huang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liang Kang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hongcheng Lin
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Pinzhu Huang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Peixuan Zhu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jianping Wang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jianghui Dong
- UniSA Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Liping Wang
- UniSA Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Cory J Xian
- UniSA Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| |
Collapse
|
125
|
Li X, Seebacher NA, Hornicek FJ, Xiao T, Duan Z. Application of liquid biopsy in bone and soft tissue sarcomas: Present and future. Cancer Lett 2018; 439:66-77. [PMID: 30223067 DOI: 10.1016/j.canlet.2018.09.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 08/13/2018] [Accepted: 09/06/2018] [Indexed: 02/06/2023]
Abstract
Bone and soft tissue sarcomas account for approximately 1% of adult solid malignancies and 20% of pediatric solid malignancies. Sarcomas are divided into more than 50 subtypes. Each subtype is highly heterogeneous and characterized by significant morphological and phenotypic variability. Currently, sarcoma characterization is based on tissue biopsies. However, primary and invasive tissue biopsies may not accurately reflect the current disease condition following treatment as is may cause marked changes to the tumor cells. Liquid biopsy offers an alternative minimally invasive approach to provide dynamic tumor information, allowing for the application of precision medicine in the treatment of sarcomas. Recently, there have been numerous blood-based tumor components identified by liquid biopsy in sarcomas, including circulating tumor cells, circulating cell-free nucleic acids, tumor-derived exosomes and metabolites in circulation. Here, we summarize the current evolving technologies and then elaborate on emerging novel concepts that may further propel the field of liquid biopsy in sarcomas. We address the applications in the context of our current knowledge about liquid biopsy in sarcomas and highlight the potential of translating these recent advances into the clinic for more effective management strategies for sarcoma patients.
Collapse
Affiliation(s)
- Xiaoyang Li
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, PR China; Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine at University of Los Angeles, Los Angeles, CA, 90095, USA.
| | - Nicole A Seebacher
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine at University of Los Angeles, Los Angeles, CA, 90095, USA.
| | - Francis J Hornicek
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine at University of Los Angeles, Los Angeles, CA, 90095, USA.
| | - Tao Xiao
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, PR China.
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine at University of Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
126
|
Abstract
Despite the high long-term survival in localized prostate cancer, metastatic prostate cancer remains largely incurable even after intensive multimodal therapy. The lethality of advanced disease is driven by the lack of therapeutic regimens capable of generating durable responses in the setting of extreme tumor heterogeneity on the genetic and cell biological levels. Here, we review available prostate cancer model systems, the prostate cancer genome atlas, cellular and functional heterogeneity in the tumor microenvironment, tumor-intrinsic and tumor-extrinsic mechanisms underlying therapeutic resistance, and technological advances focused on disease detection and management. These advances, along with an improved understanding of the adaptive responses to conventional cancer therapies, anti-androgen therapy, and immunotherapy, are catalyzing development of more effective therapeutic strategies for advanced disease. In particular, knowledge of the heterotypic interactions between and coevolution of cancer and host cells in the tumor microenvironment has illuminated novel therapeutic combinations with a strong potential for more durable therapeutic responses and eventual cures for advanced disease. Improved disease management will also benefit from artificial intelligence-based expert decision support systems for proper standard of care, prognostic determinant biomarkers to minimize overtreatment of localized disease, and new standards of care accelerated by next-generation adaptive clinical trials.
Collapse
Affiliation(s)
- Guocan Wang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Di Zhao
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Denise J Spring
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ronald A DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
127
|
Herbal management of hepatocellular carcinoma through cutting the pathways of the common risk factors. Biomed Pharmacother 2018; 107:1246-1258. [PMID: 30257339 PMCID: PMC7127621 DOI: 10.1016/j.biopha.2018.08.104] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/11/2018] [Accepted: 08/15/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is considered the most frequent tumor that associated with high mortality rate. Several risk factors contribute to the pathogenesis of HCC, such as chronic persistent infection with hepatitis C virus or hepatitis B virus, chronic untreated inflammation of liver with different etiology, oxidative stress and fatty liver disease. Several treatment protocols are used in the treatment of HCC but they also associated with diverse side effects. Many natural products are helpful in the co-treatment and prevention of HCC. Several mechanisms are involved in the action of these herbal products and their bioactive compounds in the prevention and co-treatment of HCC. They can inhibit the liver cancer development and progression in several ways as protecting against liver carcinogens, enhancing effects of chemotherapeutic drugs, inhibiting tumor cell growth and metastasis, and suppression of oxidative stress and chronic inflammation. In this review, we will discuss the utility of diverse natural products in the prevention and co-treatment of HCC, through its capturing of the common risk factors known to lead to HCC and shed the light on their possible mechanisms of action. Our theory assumes that shutting down the risk factor to cancer development pathways is a critical strategy in cancer prevention and management. We recommend the use of these plants side by side to recent chemical medications and after stopping these chemicals, as a maintenance therapy to avoid HCC progression and decrease its global incidence.
Collapse
|
128
|
Natanzon Y, Goode EL, Cunningham JM. Epigenetics in ovarian cancer. Semin Cancer Biol 2018; 51:160-169. [PMID: 28782606 PMCID: PMC5976557 DOI: 10.1016/j.semcancer.2017.08.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 12/24/2022]
Abstract
Ovarian cancer is a disease with a poor prognosis and little progress has been made to improve treatment. It is now recognized that there are several histotypes of ovarian cancer, each with distinct epidemiologic and genomic characteristics. Cancer therapy is moving beyond classical chemotherapy to include epigenetic approaches. Epigenetics is the dynamic regulation of gene expression by DNA methylation and histone post translational modification in response to environmental cues. Improvement in technology to study DNA methylation has enabled a more agnostic approach and, with larger samples sets, has begun to unravel how epigenetics contributes to the etiology, response to chemotherapy and prognosis in of ovarian cancer. Investigations into histone modifications in ovarian cancer are more nascent. Much more is needed to be done to fully realize the potential that epigenetics holds for ovarian cancer clinical care.
Collapse
Affiliation(s)
- Yanina Natanzon
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Ellen L Goode
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Julie M Cunningham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
129
|
Sawada K, Kotani D, Bando H. The Clinical Landscape of Circulating Tumor DNA in Gastrointestinal Malignancies. Front Oncol 2018; 8:263. [PMID: 30062088 PMCID: PMC6054927 DOI: 10.3389/fonc.2018.00263] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 06/25/2018] [Indexed: 12/28/2022] Open
Abstract
Technologies for genomic analyses have revealed more details in cancer biology and have changed standard treatments for cancer, including the introduction of targeted gene-specific therapy. Currently, liquid biopsies are increasingly being utilized in clinical trials and research settings to analyze circulating tumor DNA (ctDNA) from peripheral blood. Several studies have shown the potential of ctDNA in the screening, prognostication, molecular profiling, and monitoring of gastrointestinal malignancies. Although limitations continue to exist in the use of ctDNA, such as method standardization, the sensitivity, concordance with tumor tissue, and regulatory issues, this field offers promising benefits for cancer treatment. A deeper understanding of tumor biology via ctDNA analyses and ctDNA-guided clinical trials will lead to the increasing use of ctDNA in clinical practice in the near future; this development will result in the improvement of outcomes among patients with gastrointestinal malignancies.
Collapse
Affiliation(s)
- Kentaro Sawada
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
- Department of Gastroenterology, Hokkaido University Hospital, Sapporo, Japan
| | - Daisuke Kotani
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Hideaki Bando
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| |
Collapse
|
130
|
Sizova O, Kuriatnikov D, Liu Y, Su DM. Atrophied Thymus, a Tumor Reservoir for Harboring Melanoma Cells. Mol Cancer Res 2018; 16:1652-1664. [DOI: 10.1158/1541-7786.mcr-18-0308] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/01/2018] [Accepted: 06/22/2018] [Indexed: 11/16/2022]
|
131
|
Circulating tumor microemboli: Progress in molecular understanding and enrichment technologies. Biotechnol Adv 2018; 36:1367-1389. [DOI: 10.1016/j.biotechadv.2018.05.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 04/16/2018] [Accepted: 05/09/2018] [Indexed: 02/07/2023]
|
132
|
Chowdhury R, Bhatia S, Singh G, Nasreen S, De D. Circulating tumor cells: Screening and monitoring of oral cancers. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2018; 119:498-502. [PMID: 29959083 DOI: 10.1016/j.jormas.2018.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/17/2018] [Indexed: 12/23/2022]
Affiliation(s)
- R Chowdhury
- Department of Oral and Maxillofacial Pathology, Mithila Minority Dental College & Hospital, Samastipur Road, Mansukh Nagar (Ekmighat), Laheriasarai, Darbhanga, 846001, Bihar, India.
| | - S Bhatia
- Department of Oral and Maxillofacial Pathology, Vyas Dental College and Hospital, Kudi Haud, Pali Road, Jodhpur, Rajasthan, India.
| | - G Singh
- Department of Oral and Maxillofacial Pathology, Vyas Dental College and Hospital, Kudi Haud, Pali Road, Jodhpur, Rajasthan, India.
| | - S Nasreen
- Department of Oral Medicine and Radiology, Mithila Minority Dental College and Hospital, Samastipur Road, Mansukh Nagar, (Ekmighat), Laheriasarai, Darbhanga, 846001, Bihar, India.
| | - D De
- Department of Oral and Maxillofacial Pathology, Mithila Minority Dental College & Hospital, Samastipur Road, Mansukh Nagar (Ekmighat), Laheriasarai, Darbhanga, 846001, Bihar, India.
| |
Collapse
|
133
|
Sumbal S, Javed A, Afroze B, Zulfiqar HF, Javed F, Noreen S, Ijaz B. Circulating tumor DNA in blood: Future genomic biomarkers for cancer detection. Exp Hematol 2018; 65:17-28. [PMID: 29940219 DOI: 10.1016/j.exphem.2018.06.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/06/2018] [Accepted: 06/14/2018] [Indexed: 12/12/2022]
Abstract
Cancer is characterized by Darwinian evolution and is a primary cause of mortality and morbidity around the globe. Over the preceding decade, the treatment of cancer has been markedly improved by many targeted therapies, but these treatments have given birth to new challenges and issues. Clonal evolution and tumor heterogeneity present a significant challenge in designing cancer therapies. Fortunately, these restrictions have been overcome by technological advancements allowing us to track both genetic and epigenetic aberrations. Cell-free circulating tumor DNA (ctDNA) analysis, or "liquid biopsy" from a blood sample, provides the opportunity to track the genetic landscape of cancerous lesions. This review focuses on ctDNA analysis as a noninvasive method and versatile biomarker for cancer treatment and technological advancements for ctDNA analysis. This method may able to cope with all the challenges associated with previous cancer therapies and has the potential to monitor minimal residual disease, tumor burden, and therapy response and provide rapid detection of relapse. However, there are many challenges that still need to be addressed. Future prognosis, diagnosis, and analysis of ctDNA require reproducibility and accuracy of results, which are not possible without the validation and optimization of procedures. Integrated digital error suppression has thus far shown promise in the detection of ctDNA in cancer.
Collapse
Affiliation(s)
- Sumbal Sumbal
- Centre of Excellence in Molecular Biology, University of the Punjab Lahore, Pakistan
| | - Aneeqa Javed
- Centre of Excellence in Molecular Biology, University of the Punjab Lahore, Pakistan
| | - Bakht Afroze
- Centre of Excellence in Molecular Biology, University of the Punjab Lahore, Pakistan
| | | | - Faqeeha Javed
- Centre of Excellence in Molecular Biology, University of the Punjab Lahore, Pakistan
| | - Sobia Noreen
- Department of Chemistry, University of Sargodha, Sargodha, Pakistan
| | - Bushra Ijaz
- Centre of Excellence in Molecular Biology, University of the Punjab Lahore, Pakistan.
| |
Collapse
|
134
|
Luo CL, Xu ZG, Chen H, Ji J, Wang YH, Hu W, Wang K, Zhang WW, Yuan CH, Wang FB. LncRNAs and EGFRvIII sequestered in TEPs enable blood-based NSCLC diagnosis. Cancer Manag Res 2018; 10:1449-1459. [PMID: 29922089 PMCID: PMC5997181 DOI: 10.2147/cmar.s164227] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Tissue biopsy-based cancer diagnosis has limitations because of the fact that tumor tissues are in constant evolution and extremely heterogeneous. The current study was aimed to examine whether tumor-educated blood platelets (TEPs) might be a potential all-in-one source for blood-based cancer diagnostics to overcome the limitations of conventional cancer biopsy. Methods In the present study, we evaluated the expression pattern of MAGI2 antisense RNA 3 (MAGI2-AS3) and ZNFX1 antisense RNA 1 (ZFAS1) in both plasma and platelets of 101 non-small-cell lung cancer (NSCLC) patients. Receiver operating characteristic (ROC) curve was generated to evaluate their diagnostic potential. In addition, epidermal growth factor receptor (EGFR) mutations were detected in DNA and RNA samples of platelets for companion diagnostics. Results Our results showed that the levels of MAGI2-AS3 and ZFAS1 in both plasma and platelets of NSCLC patients were significantly downregulated than those in healthy controls. A positive correlation of long noncoding RNA expression was observed between platelets and plasma (r=0.738 for MAGI2-AS3, r=0.751 for ZFAS1, respectively). By ROC analysis, we found that molecular interrogation of MAGI2-AS3 and ZFAS1 in TEPs and plasma can offer valuable diagnostic performance for NSCLC patients (area under the ROC curve [AUC]MAGI2-AS3= 0.853/0.892, and AUCZFAS1=0.780/0.744 for diagnosing adenocarcinoma and squamous cell carcinoma cases from controls, respectively). Clinicopathologic characteristic analysis further revealed that MAGI2-AS3 level significantly correlated with tumor–node–metastasis (TNM) stage (p=0.001 in TEPs, p=0.003 in plasma), lymph-node metastasis (p=0.016 in TEPs, p=0.023 in plasma), and distant metastasis (p=0.045 in TEPs, p=0.045 in plasma), while ZFAS1 level was only correlated with TNM stage (p=0.005 in TEPs, p=0.044 in plasma). Furthermore, EGFRvIII RNA existed in both TEPs and plasma, but EGFR intracellular mutations cannot be detected in DNA of TEPs isolated from NSCLC. Conclusion Our data suggested that TEP is a promising source for NSCLC diagnosis and companion diagnostics.
Collapse
Affiliation(s)
- Chang-Liang Luo
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhi-Gao Xu
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hao Chen
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jia Ji
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu-Hui Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Hu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kun Wang
- Department of Laboratory Medicine, Hubei Cancer Hospital, Wuhan, China
| | - Wu-Wen Zhang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chun-Hui Yuan
- Department of Laboratory Medicine, Wuhan Children's Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Fu-Bing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
135
|
Krumbholz M, Woessmann W, Zierk J, Seniuk D, Ceppi P, Zimmermann M, Singh VK, Metzler M, Damm-Welk C. Characterization and diagnostic application of genomic NPM-ALK fusion sequences in anaplastic large-cell lymphoma. Oncotarget 2018; 9:26543-26555. [PMID: 29899875 PMCID: PMC5995187 DOI: 10.18632/oncotarget.25489] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/07/2018] [Indexed: 12/18/2022] Open
Abstract
Nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) fusion genes resulting from the translocation t(2;5)(p23;q35) are present in almost 90% of childhood ALK-positive anaplastic large-cell lymphomas (ALCL). Detection and quantification of minimal disseminated disease (MDD) by measuring NPM-ALK fusion transcript levels in the blood provide independent prognostic parameters. Characterization of the genomic breakpoints provides insights into the pathogenesis of the translocation and allows for DNA-based minimal disease monitoring. We designed a nested multiplex PCR assay for identification and characterization of genomic NPM-ALK fusion sequences in 45 pediatric ALCL-patients, and used the sequences for quantitative MDD monitoring. Breakpoint analysis indicates the involvement of inaccurate non-homologous end joining repair mechanisms in the formation of NPM-ALK fusions. Parallel quantification of RNA and DNA levels in the cellular fraction of 45 blood samples from eight patients with NPM-ALK-positive ALCL correlated, as did cell-free circulating NPM-ALK DNA copies in the plasma fraction of 37 blood samples. With genomic NPM-ALK fusion sequence quantification, plasma samples of ALCL patients become an additional source for MRD-assessment. Parallel quantification of NPM-ALK transcripts and fusion genes in ALCL cell lines treated with the ALK kinase inhibitor crizotinib illustrates the potential value of supplementary DNA-based quantification in particular clinical settings.
Collapse
Affiliation(s)
- Manuela Krumbholz
- University Hospital Erlangen, Department of Pediatrics, Erlangen, Germany
| | - Wilhelm Woessmann
- Justus-Liebig University, Department of Pediatric Hematology and Oncology, Giessen, Germany
| | - Jakob Zierk
- University Hospital Erlangen, Department of Pediatrics, Erlangen, Germany
| | - David Seniuk
- University Hospital Erlangen, Department of Pediatrics, Erlangen, Germany
| | - Paolo Ceppi
- Junior Research Group 1, Interdisciplinary Centre for Clinical Research, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Martin Zimmermann
- Hannover Medical School, Department of Pediatric Hematology and Oncology, Hannover, Germany
| | - Vijay Kumar Singh
- Justus-Liebig University, Department of Pediatric Hematology and Oncology, Giessen, Germany
| | - Markus Metzler
- University Hospital Erlangen, Department of Pediatrics, Erlangen, Germany
| | - Christine Damm-Welk
- Justus-Liebig University, Department of Pediatric Hematology and Oncology, Giessen, Germany
| |
Collapse
|
136
|
Massaro M, Cavallaro G, Colletti CG, Lazzara G, Milioto S, Noto R, Riela S. Chemical modification of halloysite nanotubes for controlled loading and release. J Mater Chem B 2018; 6:3415-3433. [PMID: 32254440 DOI: 10.1039/c8tb00543e] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Clay minerals have been used for medical purposes from ancient times. Among them, the halloysite nanotube, an aluminosilicate of the kaolin group, is an emerging nanomaterial which possesses peculiar chemical characteristics. By means of suitable modifications, such as supramolecular functionalization or covalent modifications, it is possible to obtain novel nanomaterials with tunable properties for several applications. In this context the covalent grafting of suitable organic moieties on the external surface or in the halloysite lumen has been exploited to improve the loading and release of several biologically active molecules. The resulting hybrid nanomaterials have been applied as drug carrier and delivery systems, as fillers for hydrogels, in tissue regeneration and in the gene delivery field. Furthermore the loading and release of specific molecules have been also investigated for environmental purposes. This review summarizes the main developments in the halloysite modifications in the last 20 years with a particular attention to the development in the past two years.
Collapse
Affiliation(s)
- Marina Massaro
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy.
| | | | | | | | | | | | | |
Collapse
|
137
|
Gorgannezhad L, Umer M, Islam MN, Nguyen NT, Shiddiky MJA. Circulating tumor DNA and liquid biopsy: opportunities, challenges, and recent advances in detection technologies. LAB ON A CHIP 2018; 18:1174-1196. [PMID: 29569666 DOI: 10.1039/c8lc00100f] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Cell-free DNA (cfDNA) refers to short fragments of acellular nucleic acids detectable in almost all body fluids, including blood, and is involved in various physiological and pathological phenomena such as immunity, coagulation, aging, and cancer. In cancer patients, a fraction of hematogenous cfDNA originates from tumors, termed circulating tumor DNA (ctDNA), and may carry the same mutations and genetic alterations as those of a primary tumor. Thus, ctDNA potentially provides an opportunity for noninvasive assessment of cancer. Recent advances in ctDNA analysis methods will potentially lead to the development of a liquid biopsy tool for the diagnosis, prognosis, therapy response monitoring, and tracking the rise of new mutant sub-clones in cancer patients. Over the past few decades, cancer-specific mutations in ctDNA have been detected using a variety of untargeted methods such as digital karyotyping, personalized analysis of rearranged ends (PARE), whole-genome sequencing of ctDNA, and targeted approaches such as conventional and digital PCR-based methods and deep sequencing-based technologies. More recently, several chip-based electrochemical sensors have been developed for the analysis of ctDNA in patient samples. This paper aims to comprehensively review the diagnostic, prognostic, and predictive potential of ctDNA as a minimally invasive liquid biopsy for cancer patients. We also present an overview of current advances in the analytical sensitivity and accuracy of ctDNA analysis methods as well as biological and technical challenges, which need to be resolved for the integration of ctDNA analysis into routine clinical practice.
Collapse
Affiliation(s)
- Lena Gorgannezhad
- School of Environment and Science, Griffith University, Nathan Campus, QLD 4111, Australia. and Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, QLD 4111, Australia
| | - Muhammad Umer
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, QLD 4111, Australia
| | - Md Nazmul Islam
- School of Environment and Science, Griffith University, Nathan Campus, QLD 4111, Australia. and Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, QLD 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, QLD 4111, Australia
| | - Muhammad J A Shiddiky
- School of Environment and Science, Griffith University, Nathan Campus, QLD 4111, Australia. and Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, QLD 4111, Australia
| |
Collapse
|
138
|
Sharma S, Zhuang R, Long M, Pavlovic M, Kang Y, Ilyas A, Asghar W. Circulating tumor cell isolation, culture, and downstream molecular analysis. Biotechnol Adv 2018; 36:1063-1078. [PMID: 29559380 DOI: 10.1016/j.biotechadv.2018.03.007] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 03/07/2018] [Accepted: 03/12/2018] [Indexed: 12/12/2022]
Abstract
Circulating tumor cells (CTCs) are a major contributor of cancer metastases and hold a promising prognostic significance in cancer detection. Performing functional and molecular characterization of CTCs provides an in-depth knowledge about this lethal disease. Researchers are making efforts to design devices and develop assays for enumeration of CTCs with a high capture and detection efficiency from whole blood of cancer patients. The existing and on-going research on CTC isolation methods has revealed cell characteristics which are helpful in cancer monitoring and designing of targeted cancer treatments. In this review paper, a brief summary of existing CTC isolation methods is presented. We also discuss methods of detaching CTC from functionalized surfaces (functional assays/devices) and their further use for ex-vivo culturing that aid in studies regarding molecular properties that encourage metastatic seeding. In the clinical applications section, we discuss a number of cases that CTCs can play a key role for monitoring metastases, drug treatment response, and heterogeneity profiling regarding biomarkers and gene expression studies that bring treatment design further towards personalized medicine.
Collapse
Affiliation(s)
- Sandhya Sharma
- Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA; Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431, USA
| | - Rachel Zhuang
- Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431, USA
| | - Marisa Long
- Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431, USA
| | - Mirjana Pavlovic
- Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Yunqing Kang
- Department of Ocean & Mechanical Engineering, College of Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA; Department of Biomedical Science, College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Azhar Ilyas
- Department of Electrical & Computer Engineering, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Waseem Asghar
- Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA; Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431, USA; Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA.
| |
Collapse
|
139
|
High-sensitivity assay for monitoring ESR1 mutations in circulating cell-free DNA of breast cancer patients receiving endocrine therapy. Sci Rep 2018. [PMID: 29531247 PMCID: PMC5847549 DOI: 10.1038/s41598-018-22312-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Approximately 70% of breast cancers (BCs) express estrogen receptor alpha (ERα) and are treated with endocrine therapy. However, the effectiveness of this therapy is limited by innate or acquired resistance in approximately one-third of patients. Activating mutations in the ESR1 gene that encodes ERα promote critical resistance mechanisms. Here, we developed a high sensitivity approach based on enhanced-ice-COLD-PCR for detecting ESR1 mutations. The method produced an enrichment up to 100-fold and allowed the unambiguous detection of ESR1 mutations even when they consisted of only 0.01% of the total ESR1 allelic fraction. After COLD-PCR enrichment, methods based on next-generation sequencing or droplet-digital PCR were employed to detect and quantify ESR1 mutations. We applied the method to detect ESR1 mutations in circulating free DNA from the plasma of 56 patients with metastatic ER-positive BC. Fifteen of these patients were found to have ESR1 mutations at codons 536-538. This study demonstrates the utility of the enhanced-ice-COLD-PCR approach for simplifying and improving the detection of ESR1 tumor mutations in liquid biopsies. Because of its high sensitivity, the approach may potentially be applicable to patients with non-metastatic disease.
Collapse
|
140
|
Yue C, Jiang Y, Li P, Wang Y, Xue J, Li N, Li D, Wang R, Dang Y, Hu Z, Yang Y, Xu J. Dynamic change of PD-L1 expression on circulating tumor cells in advanced solid tumor patients undergoing PD-1 blockade therapy. Oncoimmunology 2018; 7:e1438111. [PMID: 29900038 PMCID: PMC5993493 DOI: 10.1080/2162402x.2018.1438111] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 12/26/2022] Open
Abstract
Background: Tumor PD-L1 levels have predictive value in PD-1/PD-L1 checkpoint blockade therapies, yet biopsies can only provide baseline information. Whether PD-L1 expression on circulating tumor cells (CTCs) could serve as an alternative biomarker is of great interest. Design: We established an immunofluorescence assay for semi-quantitative assessment of the PD-L1 expression levels on CTCs with four categories (PD-L1negative, PD-L1low, PD-L1medium and PD-L1high). 35 patients with different advanced gastrointestinal tumors were enrolled in a phase 1 trial of a PD-1 inhibitor, IBI308. The CTC numeration and the PD-L1 expression levels were analyzed. Results: Prior the treatment of IBI308, 97% (34/35) patients had CTCs, ranging from1 to 70 (median 7). 74% (26/35) had PD-L1positive CTCs, and 60% (21/35) had at least one PD-L1high CTCs. The disease control (DC) rate in PD-L1high patients (48%) is much higher than the others (14%). The group with at least 20% abundance of PD-L1high CTCs had even higher DC rate of 64% (9/14), with only 14% DC rate for the rest (3/21). We also observed that the count changes of total CTC, PD-L1postive CTC and PD-L1high CTC correlate quite well with disease outcome (P<0.001, P = 0.002 and 0.007, respectively). In addition, the abundance of PD-L1high CTCs at baseline had predicative significance for progression free survival (PFS). Conclusions: We revealed that the abundance of PD-L1high CTCs at baseline might serve as a predictor to screen patients for PD-1/PD-L1 blockade therapies and measuring the dynamic changes of CTC could indicate the therapeutic response at early time.
Collapse
Affiliation(s)
- Chunyan Yue
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, P. R. China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Yubo Jiang
- Affiliated Hospital Cancer Center, Academy of Military Medical Sciences, P. R. China
| | - Ping Li
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, P. R. China
| | - Yuehua Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, P. R. China
| | - Jian Xue
- Nanopep Biotech Co., Beijing, P. R. China
| | - Nannan Li
- Nanopep Biotech Co., Beijing, P. R. China
| | - Da Li
- Nanopep Biotech Co., Beijing, P. R. China
| | - Ruina Wang
- Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai China
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yongjun Dang
- Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai China
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhiyuan Hu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, P. R. China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, P. R. China
- Center for Neuroscience Research, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, P. R. China
| | - Yanlian Yang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, P. R. China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Jianming Xu
- Affiliated Hospital Cancer Center, Academy of Military Medical Sciences, P. R. China
| |
Collapse
|
141
|
Yang B, Li M, Tang W, Liu W, Zhang S, Chen L, Xia J. Dynamic network biomarker indicates pulmonary metastasis at the tipping point of hepatocellular carcinoma. Nat Commun 2018; 9:678. [PMID: 29445139 PMCID: PMC5813207 DOI: 10.1038/s41467-018-03024-2] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 01/15/2018] [Indexed: 12/13/2022] Open
Abstract
Developing predictive biomarkers that can detect the tipping point before metastasis of hepatocellular carcinoma (HCC), is critical to prevent further irreversible deterioration. To discover such early-warning signals or biomarkers of pulmonary metastasis in HCC, we analyse time-series gene expression data in spontaneous pulmonary metastasis mice HCCLM3-RFP model with our dynamic network biomarker (DNB) method, and identify CALML3 as a core DNB member. All experimental results of gain-of-function and loss-of-function studies show that CALML3 could indicate metastasis initiation and act as a suppressor of metastasis. We also reveal the biological role of CALML3 in metastasis initiation at a network level, including proximal regulation and cascading influences in dysfunctional pathways. Our further experiments and clinical samples show that DNB with CALML3 reduced pulmonary metastasis in liver cancer. Actually, loss of CALML3 predicts shorter overall and relapse-free survival in postoperative HCC patients, thus providing a prognostic biomarker and therapy target in HCC.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Calmodulin/genetics
- Calmodulin/metabolism
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/surgery
- Cell Line, Tumor
- Disease-Free Survival
- Gene Expression Profiling/methods
- Gene Expression Regulation, Neoplastic
- Gene Regulatory Networks
- Hep G2 Cells
- Humans
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/surgery
- Lung Neoplasms/genetics
- Lung Neoplasms/secondary
- Male
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasm Recurrence, Local
- Prognosis
- Transplantation, Heterologous
Collapse
Affiliation(s)
- Biwei Yang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Meiyi Li
- Minhang Branch, Zhongshan Hospital, Fudan University/Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 170 Xinsong Road, Shanghai, 201199, China
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, CAS Center for Excellence in Animal Evolution and Genetics, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Wenqing Tang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Weixin Liu
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, CAS Center for Excellence in Animal Evolution and Genetics, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, 201210, China
| | - Si Zhang
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, 130 Dong'an Road, Shanghai, 200032, China
| | - Luonan Chen
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, CAS Center for Excellence in Animal Evolution and Genetics, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China.
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, 201210, China.
| | - Jinglin Xia
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
- Minhang Branch, Zhongshan Hospital, Fudan University/Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 170 Xinsong Road, Shanghai, 201199, China.
| |
Collapse
|
142
|
Wu CP, Wu P, Zhao HF, Liu WL, Li WP. Clinical Applications of and Challenges in Single-Cell Analysis of Circulating Tumor Cells. DNA Cell Biol 2018; 37:78-89. [PMID: 29265876 DOI: 10.1089/dna.2017.3981] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Chang-peng Wu
- Department of Neurosurgery, Shenzhen Second People's Hospital, Clinical Medicine College of Anhui Medical University, Shenzhen, China
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Peng Wu
- The Affiliated Luohu Hospital of Shenzhen University, Shenzhen Luohu Hospital Group Department of Urology, Shenzhen, China
| | - Hua-fu Zhao
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
- Department of Neurosurgery/Neuro-oncology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Wen-lan Liu
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Wei-ping Li
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| |
Collapse
|
143
|
Cai C, Guo Z, Cao Y, Zhang W, Chen Y. A dual biomarker detection platform for quantitating circulating tumor DNA (ctDNA). Nanotheranostics 2018; 2:12-20. [PMID: 29291160 PMCID: PMC5743835 DOI: 10.7150/ntno.22419] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 10/12/2017] [Indexed: 01/11/2023] Open
Abstract
Circulating tumor DNA (ctDNA), which includes DNA mutations, epigenetic alterations and other forms of tumor-specific abnormalities, is a promising “real-time” biomarker for noninvasive cancer assessment. Tumor DNA is of great value in the process of cancer treatment, including diagnostic and prognostic information before, during treatment and at progression. Here we introduce a peptide nucleic acids probe-gold nanoparticles (PNA-AuNPs) and lead phosphate apoferritin (LPA)-based dual biomarker detection platform, which could be used in a DNA biosensor to quantify ctDNA by detection of tumor-specific mutations and methylation of PIK3CA gene. On the one hand, PNA probe and anti-5-Methylcytosine monoclonal antibody (anti-5-mC) were used to recognize the different parts of ctDNA, forming a sandwich-structure on a screen-printed electrode (SPE) surface. On the other hand, AuNPs and LPA were introduced to construct the biosensor for double signal amplification. Square-wave voltammetry (SWV) was used to monitor the electrochemical signal of lead ions released from apoferritin. The proposed DNA biosensor yielded a linear current response to ctDNA concentrations over a broad range of 50-10000 fM with a detection limit of 10 fM. It also successfully detected ctDNA collected from cancer patient serum. Therefore, we anticipate this new platform opens up an approach to detect and monitor diverse malignancies, facilitating personalized cancer therapy.
Collapse
Affiliation(s)
- Chunyan Cai
- Institute for Interdisciplinary Research, Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Jianghan University, Wuhan 430056, PR China
| | - Zhenzhong Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, P.R.China
| | - Yiping Cao
- Institute for Interdisciplinary Research, Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Jianghan University, Wuhan 430056, PR China
| | - Weiying Zhang
- Institute for Interdisciplinary Research, Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Jianghan University, Wuhan 430056, PR China
| | - Yong Chen
- Institute for Interdisciplinary Research, Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Jianghan University, Wuhan 430056, PR China.,Ecole Normale Supérieure, CNRS-ENS-UPMC UMR 8640, 24 Rue Lhomond, Paris 75005, France
| |
Collapse
|
144
|
Huang Q, Wang Y, Chen X, Wang Y, Li Z, Du S, Wang L, Chen S. Nanotechnology-Based Strategies for Early Cancer Diagnosis Using Circulating Tumor Cells as a Liquid Biopsy. Nanotheranostics 2018; 2:21-41. [PMID: 29291161 PMCID: PMC5743836 DOI: 10.7150/ntno.22091] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/10/2017] [Indexed: 12/11/2022] Open
Abstract
Circulating tumor cells (CTCs) are cancer cells that shed from a primary tumor and circulate in the bloodstream. As a form of “tumor liquid biopsy”, CTCs provide important information for the mechanistic investigation of cancer metastasis and the measurement of tumor genotype evolution during treatment and disease progression. However, the extremely low abundance of CTCs in the peripheral blood and the heterogeneity of CTCs make their isolation and characterization major technological challenges. Recently, nanotechnologies have been developed for sensitive CTC detection; such technologies will enable better cell and molecular characterization and open up a wide range of clinical applications, including early disease detection and evaluation of treatment response and disease progression. In this review, we summarize the nanotechnology-based strategies for CTC isolation, including representative nanomaterials (such as magnetic nanoparticles, gold nanoparticles, silicon nanopillars, nanowires, nanopillars, carbon nanotubes, dendrimers, quantum dots, and graphene oxide) and microfluidic chip technologies that incorporate nanoroughened surfaces and discuss their key challenges and perspectives in CTC downstream analyses, such as protein expression and genetic mutations that may reflect tumor aggressiveness and patient outcome.
Collapse
Affiliation(s)
- Qinqin Huang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, and Brain Center, Zhongnan Hospital, and Medical Research Institute, Wuhan University, Wuhan 430072, China
| | - Yin Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, and Brain Center, Zhongnan Hospital, and Medical Research Institute, Wuhan University, Wuhan 430072, China
| | - Xingxiang Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, and Brain Center, Zhongnan Hospital, and Medical Research Institute, Wuhan University, Wuhan 430072, China
| | - Yimeng Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, and Brain Center, Zhongnan Hospital, and Medical Research Institute, Wuhan University, Wuhan 430072, China
| | - Zhiqiang Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, and Brain Center, Zhongnan Hospital, and Medical Research Institute, Wuhan University, Wuhan 430072, China
| | - Shiming Du
- Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Lianrong Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, and Brain Center, Zhongnan Hospital, and Medical Research Institute, Wuhan University, Wuhan 430072, China
| | - Shi Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, and Brain Center, Zhongnan Hospital, and Medical Research Institute, Wuhan University, Wuhan 430072, China
| |
Collapse
|
145
|
Yan L, Chen Y, Zhou J, Zhao H, Zhang H, Wang G. Diagnostic value of circulating cell-free DNA levels for hepatocellular carcinoma. Int J Infect Dis 2017; 67:92-97. [PMID: 29229500 DOI: 10.1016/j.ijid.2017.12.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 11/29/2017] [Accepted: 12/01/2017] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES Circulating cell-free DNA (cfDNA) is a potential biomarker for tumor diagnosis. Hepatocyte damage is a characteristic component of the pathobiology of hepatocellular carcinoma (HCC), which would be expected to result in substantial leakage of cfDNA into the circulation. However, the diagnostic value of cfDNA levels for HCC remains unclear. METHODS Plasma samples were collected from 24 HCC patients and 62 hepatitis B virus-related liver fibrosis patients. Plasma cfDNA levels were quantified by Qubit method. RESULTS Plasma cfDNA levels were associated with the degree of liver inflammation, body mass index, and alpha-fetoprotein (AFP) level, but were not associated with fibrosis stages. Plasma cfDNA levels were significantly higher in HCC patients than in non-HCC patients. Multivariate analysis revealed that age and cfDNA, rather than AFP, were independent predictors of HCC. The HCC index, a combination model including age, cfDNA, and AFP, had an area of 0.98 (95% confidence interval 0.92-1.00) under the receiver operating characteristics curve for the diagnosis of HCC at the cut-off value of 0.61, with 87.0% sensitivity and 100% specificity. The diagnostic power of the HCC index was superior to that of cfDNA alone and AFP alone. CONCLUSIONS These results suggest that the combination of cfDNA with age and AFP could improve the diagnostic performance for HCC.
Collapse
Affiliation(s)
- Linlin Yan
- Department of Infectious Disease, Center for Liver Disease, Peking University First Hospital, No. 8, Xishiku Street, Xicheng District, Beijing 100034, China
| | - Yanhui Chen
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Jingshundongjie 8, Beijing 100015, China; Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015, China; Genecast Precision Medicine Technology Institute, Huayuanbeilu 35, Beijing 100089, China
| | - Jiyuan Zhou
- Department of Infectious Disease, Center for Liver Disease, Peking University First Hospital, No. 8, Xishiku Street, Xicheng District, Beijing 100034, China
| | - Hong Zhao
- Department of Infectious Disease, Center for Liver Disease, Peking University First Hospital, No. 8, Xishiku Street, Xicheng District, Beijing 100034, China
| | - Henghui Zhang
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Jingshundongjie 8, Beijing 100015, China; Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015, China; Genecast Precision Medicine Technology Institute, Huayuanbeilu 35, Beijing 100089, China.
| | - Guiqiang Wang
- Department of Infectious Disease, Center for Liver Disease, Peking University First Hospital, No. 8, Xishiku Street, Xicheng District, Beijing 100034, China; The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
146
|
Ooi CC, Mantalas GL, Koh W, Neff NF, Fuchigami T, Wong DJ, Wilson RJ, Park SM, Gambhir SS, Quake SR, Wang SX. High-throughput full-length single-cell mRNA-seq of rare cells. PLoS One 2017; 12:e0188510. [PMID: 29186152 PMCID: PMC5706670 DOI: 10.1371/journal.pone.0188510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/08/2017] [Indexed: 12/30/2022] Open
Abstract
Single-cell characterization techniques, such as mRNA-seq, have been applied to a diverse range of applications in cancer biology, yielding great insight into mechanisms leading to therapy resistance and tumor clonality. While single-cell techniques can yield a wealth of information, a common bottleneck is the lack of throughput, with many current processing methods being limited to the analysis of small volumes of single cell suspensions with cell densities on the order of 107 per mL. In this work, we present a high-throughput full-length mRNA-seq protocol incorporating a magnetic sifter and magnetic nanoparticle-antibody conjugates for rare cell enrichment, and Smart-seq2 chemistry for sequencing. We evaluate the efficiency and quality of this protocol with a simulated circulating tumor cell system, whereby non-small-cell lung cancer cell lines (NCI-H1650 and NCI-H1975) are spiked into whole blood, before being enriched for single-cell mRNA-seq by EpCAM-functionalized magnetic nanoparticles and the magnetic sifter. We obtain high efficiency (> 90%) capture and release of these simulated rare cells via the magnetic sifter, with reproducible transcriptome data. In addition, while mRNA-seq data is typically only used for gene expression analysis of transcriptomic data, we demonstrate the use of full-length mRNA-seq chemistries like Smart-seq2 to facilitate variant analysis of expressed genes. This enables the use of mRNA-seq data for differentiating cells in a heterogeneous population by both their phenotypic and variant profile. In a simulated heterogeneous mixture of circulating tumor cells in whole blood, we utilize this high-throughput protocol to differentiate these heterogeneous cells by both their phenotype (lung cancer versus white blood cells), and mutational profile (H1650 versus H1975 cells), in a single sequencing run. This high-throughput method can help facilitate single-cell analysis of rare cell populations, such as circulating tumor or endothelial cells, with demonstrably high-quality transcriptomic data.
Collapse
Affiliation(s)
- Chin Chun Ooi
- Department of Chemical Engineering, Stanford University, Stanford, California, United States of America
- * E-mail:
| | - Gary L. Mantalas
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
| | - Winston Koh
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
| | - Norma F. Neff
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
| | - Teruaki Fuchigami
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
| | - Dawson J. Wong
- Department of Electrical Engineering, Stanford University, Stanford, California, United States of America
| | - Robert J. Wilson
- Department of Materials Science and Engineering, Stanford University, Stanford, California, United States of America
| | - Seung-min Park
- Department of Radiology, Stanford University School of Medicine, Stanford, California, United States of America
- Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California, United States of America
| | - Sanjiv S. Gambhir
- Department of Radiology, Stanford University School of Medicine, Stanford, California, United States of America
- Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California, United States of America
- Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Stephen R. Quake
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
- Department of Applied Physics, Stanford University, Stanford, California, United States of America
- Chan Zuckerberg Biohub, San Francisco, California, United States of America
| | - Shan X. Wang
- Department of Electrical Engineering, Stanford University, Stanford, California, United States of America
- Department of Materials Science and Engineering, Stanford University, Stanford, California, United States of America
- Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, California, United States of America
| |
Collapse
|
147
|
Macías M, Alegre E, Díaz-Lagares A, Patiño A, Pérez-Gracia JL, Sanmamed M, López-López R, Varo N, González A. Liquid Biopsy: From Basic Research to Clinical Practice. Adv Clin Chem 2017; 83:73-119. [PMID: 29304904 DOI: 10.1016/bs.acc.2017.10.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Liquid biopsy refers to the molecular analysis in biological fluids of nucleic acids, subcellular structures, especially exosomes, and, in the context of cancer, circulating tumor cells. In the last 10 years, there has been an intensive research in liquid biopsy to achieve a less invasive and more precise personalized medicine. Molecular assessment of these circulating biomarkers can complement or even surrogate tissue biopsy. Because of this research, liquid biopsy has been introduced in clinical practice, especially in oncology, prenatal screening, and transplantation. Here we review the biology, methodological approaches, and clinical applications of the main biomarkers involved in liquid biopsy.
Collapse
Affiliation(s)
| | - Estibaliz Alegre
- Clínica Universidad de Navarra, Pamplona, Spain; The Health Research Institute of Navarra (IDISNA), Pamplona, Spain
| | - Angel Díaz-Lagares
- Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS), CIBERONC, Santiago de Compostela, Spain; Roche-CHUS Joint Unit, University Clinical Hospital of Santiago (CHUS), Santiago de Compostela, Spain
| | - Ana Patiño
- Clínica Universidad de Navarra, Pamplona, Spain; The Health Research Institute of Navarra (IDISNA), Pamplona, Spain
| | - Jose L Pérez-Gracia
- Clínica Universidad de Navarra, Pamplona, Spain; The Health Research Institute of Navarra (IDISNA), Pamplona, Spain
| | - Miguel Sanmamed
- Yale University School of Medicine, New Haven, CT, United States
| | - Rafael López-López
- Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS), CIBERONC, Santiago de Compostela, Spain; Roche-CHUS Joint Unit, University Clinical Hospital of Santiago (CHUS), Santiago de Compostela, Spain
| | - Nerea Varo
- Clínica Universidad de Navarra, Pamplona, Spain; The Health Research Institute of Navarra (IDISNA), Pamplona, Spain
| | - Alvaro González
- Clínica Universidad de Navarra, Pamplona, Spain; The Health Research Institute of Navarra (IDISNA), Pamplona, Spain.
| |
Collapse
|
148
|
Raimondi L, De Luca A, Costa V, Amodio N, Carina V, Bellavia D, Tassone P, Pagani S, Fini M, Alessandro R, Giavaresi G. Circulating biomarkers in osteosarcoma: new translational tools for diagnosis and treatment. Oncotarget 2017; 8:100831-100851. [PMID: 29246026 PMCID: PMC5725068 DOI: 10.18632/oncotarget.19852] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/25/2017] [Indexed: 12/24/2022] Open
Abstract
Osteosarcoma (OS) is a rare primary malignant bone tumour arising from primitive bone-forming mesenchymal cells, with high incidence in children and young adults, accounting for approximately 60% of all malignant bone tumours. Currently, long-term disease-free survival can be achieved by surgical treatment plus chemotherapy in approximately 60% of patients with localized extremity disease, and in 20-30% of patients with metastatic lung or bone disease. Diagnosis of primary lesions and recurrences is achieved by using radiological investigations and standard tissue biopsy, the latter being costly, painful and hardly repeatable for patients. Therefore, despite some recent advances, novel biomarkers for OS diagnosis, prediction of response to therapy, disease progression and chemoresistance, are urgently needed. Biological fluids such as blood represent a rich source of non-invasive cancer biomarkers, which allow to understand what is really happening inside the tumour, either at diagnosis or during disease progression. In this regard, liquid biopsy potentially represents an alternative and non-invasive method to detect tumour onset, progression and response to therapy. In this review, we will summarize the state of the art in this novel area, illustrating recent studies on OS. Although the data reported in literature seem preliminary, liquid biopsy represents a promising tool with the potential to be rapidly translated in the clinical practice.
Collapse
Affiliation(s)
- Lavinia Raimondi
- Rizzoli Orthopedic Institute, Bologna, Italy
- Rizzoli Orthopedic Institute, Innovative Technology Platforms for Tissue Engineering, Theranostic and Oncology, Palermo, Italy
| | - Angela De Luca
- Rizzoli Orthopedic Institute, Bologna, Italy
- Rizzoli Orthopedic Institute, Innovative Technology Platforms for Tissue Engineering, Theranostic and Oncology, Palermo, Italy
| | - Viviana Costa
- Rizzoli Orthopedic Institute, Bologna, Italy
- Rizzoli Orthopedic Institute, Innovative Technology Platforms for Tissue Engineering, Theranostic and Oncology, Palermo, Italy
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Valeria Carina
- Rizzoli Orthopedic Institute, Bologna, Italy
- Rizzoli Orthopedic Institute, Innovative Technology Platforms for Tissue Engineering, Theranostic and Oncology, Palermo, Italy
| | - Daniele Bellavia
- Rizzoli Orthopedic Institute, Bologna, Italy
- Rizzoli Orthopedic Institute, Innovative Technology Platforms for Tissue Engineering, Theranostic and Oncology, Palermo, Italy
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Stefania Pagani
- Rizzoli Orthopedic Institute, Laboratory of Preclinical and Surgical Studies, Bologna, Italy
| | - Milena Fini
- Rizzoli Orthopedic Institute, Laboratory of Preclinical and Surgical Studies, Bologna, Italy
| | - Riccardo Alessandro
- Biology and Genetics Unit, Department of Biopathology and Medical Biotechnology, University of Palermo, Palermo, Italy
- Institute of Biomedicine and Molecular Immunology (IBIM), National Research Council, Palermo, Italy
| | - Gianluca Giavaresi
- Rizzoli Orthopedic Institute, Innovative Technology Platforms for Tissue Engineering, Theranostic and Oncology, Palermo, Italy
- Rizzoli Orthopedic Institute, Laboratory of Preclinical and Surgical Studies, Bologna, Italy
| |
Collapse
|
149
|
Kang Z, Stevanović S, Hinrichs CS, Cao L. Circulating Cell-free DNA for Metastatic Cervical Cancer Detection, Genotyping, and Monitoring. Clin Cancer Res 2017; 23:6856-6862. [PMID: 28899967 PMCID: PMC7885032 DOI: 10.1158/1078-0432.ccr-17-1553] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/02/2017] [Accepted: 09/01/2017] [Indexed: 01/06/2023]
Abstract
Purpose: Circulating cell-free (ccf) human papillomavirus (HPV) DNA may serve as a unique tumor marker for HPV-associated malignancies, including cervical cancer. We developed a method to genotype and quantify circulating HPV DNA in patients with HPV16- or HPV18-positive metastatic cervical cancer for potential disease monitoring and treatment-related decision making.Experimental Design: In this retrospective study, HPV ccfDNA was measured in serum samples from 19 metastatic cervical cancer patients by duplex digital droplet PCR (ddPCR). Nine patients had received tumor-infiltrating lymphocyte (TIL) immunotherapy. ccfDNA data were aligned with the tumor HPV genotype, drug treatment, and clinical outcome.Results: In blinded tests, HPV ccfDNA was detected in 19 of 19 (100%) patients with HPV-positive metastatic cervical cancer but not in any of the 45 healthy blood donors. The HPV genotype harbored in the patients' tumors was correctly identified in 87 of 87 (100%) sequential patient serum samples from 9 patients who received TIL immunotherapy. In three patients who experienced objective cancer regression after TIL treatment, a transient HPV ccfDNA peak was detected 2-3 days after TIL infusion. Furthermore, persistent clearance of HPV ccfDNA was only observed in two patients who experienced complete response (CR) after TIL immunotherapy.Conclusions: HPV ccfDNA represents a promising tumor marker for noninvasive HPV genotyping and may be used in selecting patients for HPV type-specific T-cell-based immunotherapies. It may also have value in detecting antitumor activity of therapeutic agents and in the long-term follow-up of cervical cancer patients in remission. Clin Cancer Res; 23(22); 6856-62. ©2017 AACR.
Collapse
Affiliation(s)
- Zhigang Kang
- Genetics Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Sanja Stevanović
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland
| | - Christian S Hinrichs
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland
| | - Liang Cao
- Genetics Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland.
| |
Collapse
|
150
|
Creemers SG, Korpershoek E, Atmodimedjo PN, Dinjens WNM, van Koetsveld PM, Feelders RA, Hofland LJ. Identification of Mutations in Cell-Free Circulating Tumor DNA in Adrenocortical Carcinoma: A Case Series. J Clin Endocrinol Metab 2017; 102:3611-3615. [PMID: 28973495 DOI: 10.1210/jc.2017-00174] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 06/27/2017] [Indexed: 02/13/2023]
Abstract
CONTEXT The disease course of adrenocortical carcinoma (ACC) patients is heterogeneous. A marker for prognosis and treatment response would facilitate choices for diagnosis and therapy. In other cancer types, circulating cell-free tumor DNA predicted tumor dynamics. CASE DESCRIPTIONS The present pilot study included six patients. Next-generation sequencing (NGS) showed mutations in three ACC cases. From these patients, blood was drawn before (1 to 2 weeks) and after surgery and cell-free circulating DNA (cfDNA) was isolated. Tumor-specific mutations were found in the cfDNA of one of the three patients, with metastasized ACC at diagnosis. NGS of the tumor showed an NRAS mutation (c.182A>G:p.Q61R) in 78%, a TP53 mutation (c.856G>A:p.E286K) in 60%, and a TERT gene mutation (1295250C>T) in 28% of the reads. The preoperative cfDNA showed the same mutations at a frequency of 64%, 32%, and 2%, respectively. The postoperative cfDNA showed the same mutations but at lower frequencies (52%, 16%, and 3%, respectively). The patient was postoperatively treated with mitotane and chemotherapy. No mutations were detected in the corresponding leukocyte DNA or in the cfDNA from the two other patients. CONCLUSIONS To the best of our knowledge, we report for the first time mutations occurring at high levels in cfDNA collected before and after surgery from one of three patients, after previous identification in the tumor. However, in the cfDNA from two patients with known mutations, we were unable to reliably detect mutations in the cfDNA. Our results indicate that mutation detection in cfDNA can vary among ACC patients, and other approaches might be required to detect the tumor response and monitor progressive disease.
Collapse
Affiliation(s)
- Sara G Creemers
- Division of Endocrinology, Department of Internal Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam 3000 CA, The Netherlands
| | - Esther Korpershoek
- Department of Pathology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam 3000 CA, The Netherlands
| | - Peggy N Atmodimedjo
- Department of Pathology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam 3000 CA, The Netherlands
| | - Winand N M Dinjens
- Department of Pathology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam 3000 CA, The Netherlands
| | - Peter M van Koetsveld
- Division of Endocrinology, Department of Internal Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam 3000 CA, The Netherlands
| | - Richard A Feelders
- Division of Endocrinology, Department of Internal Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam 3000 CA, The Netherlands
| | - Leo J Hofland
- Division of Endocrinology, Department of Internal Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam 3000 CA, The Netherlands
| |
Collapse
|